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Abstract
We study active object tracking, where a tracker
takes as input the visual observation (i.e., frame
sequence) and produces the camera control sig-
nal (e.g., move forward, turn left, etc.). Conven-
tional methods tackle the tracking and the camera
control separately, which is challenging to tune
jointly. It also incurs many human efforts for la-
beling and many expensive trial-and-errors in real-
world. To address these issues, we propose, in this
paper, an end-to-end solution via deep reinforce-
ment learning, where a ConvNet-LSTM function
approximator is adopted for the direct frame-to-
action prediction. We further propose an environ-
ment augmentation technique and a customized
reward function, which are crucial for a successful
training. The tracker trained in simulators (ViZ-
Doom, Unreal Engine) shows good generalization
in the case of unseen object moving path, unseen
object appearance, unseen background, and dis-
tracting object. It can restore tracking when occa-
sionally losing the target. With the experiments
over the VOT dataset, we also find that the track-
ing ability, obtained solely from simulators, can
potentially transfer to real-world scenarios.

1. Introduction
Object tracking has gained much attention in recent decades
(Bertinetto et al., 2016a; Danelljan et al., 2017; Zhu et al.,
2016; Cui et al., 2016). The aim of object tracking is to
localize an object in continuous video frames given an initial
annotation in the first frame. Much of the existing work
is, however, on the passive tracker, where it is presumed
that the object of interest is always in the image scene so
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Figure 1. The pipeline of active tracking. Left: end-to-end ap-
proach. Right: passive tracking plus other modules.

that there is no need to handle the camera control during
tracking. This fashion is inapplicable to some use-cases, e.g.,
the tracking performed by a mobile robot with a camera
mounted or by a drone. To this end, one should seek a
solution of active tracking, which composes two sub-tasks,
i.e., the object tracking and the camera control (Fig. 1,
Right).

Unfortunately, it is hard to jointly tune the pipeline with the
two separate sub-tasks. The tracking task may also involve
many human efforts for bounding box labeling. Moreover,
the implementation of camera control is non-trivial and can
incur many expensive trial-and-errors happening in real-
world. To address these issues, we propose an end-to-end
active tracking solution via deep reinforcement learning. To
be specific, we adopt a ConvNet-LSTM network, taking as
input raw video frames and outputting camera movement
actions (e.g., move forward, turn left, etc.).

We leverage virtual environments to conveniently simulate
active tracking, saving the expensive human labeling or real-
world trial-and-error. In a virtual environment, an agent
(i.e., the tracker) observes a state (a visual frame) from a
first-person perspective and takes an action, and then the
environment returns the updated state (next visual frame).
We adopt the modern Reinforcement Learning (RL) algo-
rithm A3C (Mnih et al., 2016) to train the agent, where a
customized reward function is designed to encourage the
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agent to be closely following the object.

We also adopt an environment augmentation technique to
boost the tracker’s generalization ability. For this purpose,
much engineering is devoted to preparing various envi-
ronments in different object appearances, different back-
grounds, and different object trajectories. We manage this
by either using a simulator’s plug-in or developing specific
APIs to communicate with a simulator engine. See Sec. 3.1.

To our slight surprise, the trained tracker shows good gen-
eralization capability. In testing, it performs robust active
tracking in the case of unseen object movement path, un-
seen object appearance, unseen background, and distracting
object. Additionally, the tracker can restore tracking when
it occasionally loses the target due to, e.g., abrupt object
movement.

In our experiments, the proposed tracking approach also
outperforms a few representative conventional passive track-
ers which are equipped with a hand-tuned camera-control
module. While we are not pursuing a state-of-the-art pas-
sive tracker in this work, the experimental results do show
that a passive tracker is not indispensable in active tracking.
Alternatively, a direct end-to-end solution can be effective.
As far as we know, there has not yet been any attempt to
deal with active tracking in an end-to-end manner.

Finally, we perform qualitative evaluation on some video
clips taken from the VOT dataset (Kristan et al., 2016). The
results show that the tracking ability, obtained purely from
simulators, can potentially transfer to real-world scenarios.

2. Related Work
Object Tracking. Roughly, object tracking (Wu et al.,
2013) is conducted in both passive and active ways. As
mentioned in Sec. 1, passive object tracking has gained
more attention due to its relatively simpler problem settings.
In recent decades, passive object tracking has achieved a
great progress (Wu et al., 2013). Many approaches (Hu
et al., 2012) have been proposed to overcome difficulties
resulted from the issues such as occlusion and illumina-
tion variations. In (Ross et al., 2008) subspace learning
was adopted to update the appearance model of an object
and integrated into a particle filter framework for object
tracking. Babenko et al. (Babenko et al., 2009) employed
multiple instance learning to track an object. Correlation
filter based object tracking (Valmadre et al., 2017; Choi
et al., 2017b) has also achieved a success in real-time object
tracking (Bolme et al., 2010; Henriques et al., 2015). In
(Hare et al., 2016), structured output prediction was used
to constrain object tracking, avoiding converting positions
to labels of training samples. In (Kalal et al., 2012), Track-
ing, Learning and Detection (TLD) were integrated into one
framework for long-term tracking, where a detection module

can re-initialize the tracker once a missing object reappears.
Recent years have witnessed the success of deep learning in
object tracking (Wang et al., 2016; Bertinetto et al., 2016b).
For instance, a stacked autoencoder was trained to learn
good representations for object tracking in (Wang & Yeung,
2013). Both low-level and high-level representations were
adopted to gain both accuracy and robustness (Ma et al.,
2015).

Active object tracking additionally considers camera control
compared with traditional object tracking. There exists not
much research attention in the area of active tracking. Con-
ventional solutions dealt with object tracking and camera
control in separate components (Denzler & Paulus, 1994;
Murray & Basu, 1994; Kim et al., 2005), but these solutions
are difficult to tune. Our proposal is completely different
from them as it tackles object tracking and camera control
simultaneously in an end-to-end manner.

Reinforcement Learning. Reinforcement Learning (RL)
(Sutton & Barto, 1998) intends for a principled approach
to temporal decision making problems. In a typical RL
framework, an agent learns from the environment a policy
function that maps state to action at each discrete time
step, where the objective is to maximize the accumulated
rewards returned by the environment. Historically, RL has
been successfully applied to inventory management, path
planning, game playing, etc.

On the other hand, the past half decade has witnessed
a breakthrough in deep learning applied to computer vi-
sion tasks, including image classification (Krizhevsky et al.,
2012), segmentation (Long et al., 2015), object detection
and localization (Girshick et al., 2014), and so on. In par-
ticular, researchers believe that deep Convolutional Neural
Networks (ConvNets) can learn good features from raw
image pixels, which is able to benefit higher-level tasks.

Equipped with deep ConvNets, RL also shows impressive
successes on those tasks involving image (-like) raw states,
e.g., playing board game GO (Silver et al., 2016) and video
game (Mnih et al., 2015; Wu & Tian, 2017). Recently, in
the computer vision community there are also preliminary
attempts of applying deep RL to traditional tasks, e.g., ob-
ject localization (Caicedo & Lazebnik, 2015) and region
proposal (Jie et al., 2016). There are also methods of vi-
sual tracking relying on RL (Choi et al., 2017a; Huang
et al., 2017; Supancic & Ramanan, 2017; Yun et al., 2017).
However, they are distinct from our work, as they formulate
passive tracking with RL but have nothing to do with camera
control. While our focus in this work is active tracking.

3. Our Approach
In our approach, virtual tracking scenes are generated for
both training and testing. To train the tracker, we employ
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Figure 2. The architecture of the ConvNet-LSTM network.

a state-of-the-art reinforcement learning algorithm, A3C
(Mnih et al., 2016). For the sake of robust and effective
training, we also propose data augmentation techniques and
a customized reward function, which are elaborated later.

Although various types of states are available, for a research
purpose we let the state be only an RGB screen frame of the
first-person perspective in this study. To be more specific,
the tracker observes the raw visual state and takes one action
from the action set A = {turn-left, turn-right, turn-left-and-
move-forward, turn-right-and-move-forward, move-forward,
no-op}. The action is processed by the environment, which
returns to the agent the updated screen frame as well as the
current reward.

3.1. Tracking Scenarios

It is impossible to train the desired end-to-end active tracker
in real-world scenarios. Thus, we adopt two types of virtual
environments for simulated training.

ViZDoom. ViZDoom (Kempka et al., 2016; ViZ) is an RL
research platform based on a 3D FPS video game called
Doom. In ViZDoom, the game engine corresponds to the
environment, while the video game player corresponds to
the agent. The agent receives from the environment a state
and a reward at each time step. In this study, we make
customized ViZDoom maps (see Fig. 4) composed of an
object (a monster) and background (ceiling, floor, and wall).
The monster walks along a pre-specified path programmed
by the ACS script (Kempka et al., 2016), and our goal is to
train the agent, i.e., the tracker, to follow closely the object.

Unreal Engine. Though convenient for research, ViZDoom
does not provide realistic scenarios. To this end, we adopt
Unreal Engine (UE) (unr) to construct nearly real-world
environments. UE is a popular game engine and has a broad
influence in the game industry. It provides realistic scenarios
which can mimic real-world scenes (please see exemplar
images in Fig. 5 and videos in our supplementary materials).
We employ UnrealCV (Qiu et al., 2017), which provides
convenient APIs, along with a wrapper (Zhong et al., 2017)
compatible with OpenAI Gym (Brockman et al., 2016), for
interactions between RL algorithms and the environments
constructed based on UE.

3.2. A3C Algorithm

Following (Mnih et al., 2016), we adopt a popular RL al-
gorithm called Actor-Critic. At time step t, we denote by
st the observed state, which corresponds to a raw RGB
frame. The action set is denoted by A of size K = |A|.
An action, at ∈ A, is drawn from a policy function distri-
bution: at v π(·|st) ∈ RK , referred to as an Actor. The
environment then returns a reward rt ∈ R according to a
reward function rt = g(st), which will be characterized in
Sec. 3.4. The updated state st+1 at next time step t+ 1 is
subject to a certain but unknown state transition function
st+1 = f(st, at), governed by the environment. In this
way, we can observe a trace consisting of a sequence of tu-
plets τ = {. . . , (st, at, rt) , (st+1, at+1, rt+1) , . . .}. Mean-
while, we denote by V (st) ∈ R the expected accumulated
reward in the future given state st (referred to as Critic).

The policy function π (·) and the value function V (·) are
then jointly modeled by a neural network, as will be dis-
cussed in Sec. 3.3. Rewriting them as π(·|st; θ) and
V (st; θ

′) with parameters θ and θ′, respectively, we can
learn θ and θ′ over the trace τ with simultaneous stochastic
policy gradient and value function regression:

θ ← θ + α
(
Rt − V (st)

)
∇θ log π (at|st) + β∇θH

(
π (·|st)

)
,

(1)

θ′ ← θ′ − α∇θ′
1

2

(
Rt − V (st)

)2
, (2)

whereRt =
∑t+T−1

t′=t γt
′−trt′ is a discounted sum of future

rewards up to T time steps with factor 0 < γ ≤ 1, α is the
learning rate, H (·) is an entropy regularizer, and β is the
regularizer factor.

During training, several threads are launched, each maintain-
ing an independent environment-agent interaction. However,
the network parameters are shared across the threads and
updated every T time steps asynchronously in a lock-free
manner using Eq. (1) in each thread. This kind of many-
thread training is reported to be fast yet stable, leading to
improved generalization (Mnih et al., 2016). Later in Sec.
3.5, we will introduce environment augmentation techniques
to further improve the generalization ability.
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Figure 3. A top view of a map with the local coordinate system.
The green dot indicates the agent (tracker). The gray dot indicates
the initial position and orientation of an object to be tracked. Three
gray dots mean three possible initial configurations. Arrow indi-
cates the orientation of an object. Dashed gray lines are parallel to
the y-axis. The outer thick black rectangle represents the boundary.
Best viewed in color.

3.3. Network Architecture

The tracker is a ConvNet-LSTM neural network as shown
in Fig. 2, where the architecture specification is given in
the following table. The FC6 and FC1 correspond to the
6-action policy π (·|st) and the value V (st), respectively.
The screen is resized to 84 × 84 × 3 RGB image as the
network input.

Layer# 1 2 3 4 5

Parameters C8×8-16S4 C4×4-32S2 FC256 LSTM256 FC6
FC1

3.4. Reward Function

To perform active tracking, it is a natural intuition that the
reward function should encourage the agent to closely follow
the object. In this line of thought, firstly we define a two-
dimensional local coordinate system, denoted by S (see Fig.
3). The x-axis points from the agent’s left shoulder to right
shoulder, and the y-axis is perpendicular to the x-axis and
points to the agent’s front. The origin is where the agent is.
System S is parallel to the floor. Secondly, we manage to
obtain object’s local coordinate (x, y) and orientation a (in
radius) with regard to system S.

With a slight abuse of notation, we can now write the reward
function as

r = A−

(√
x2 + (y − d)2

c
+ λ|a|

)
, (3)

where A > 0, c > 0, d > 0, λ > 0 are tuning parameters.
In plain English, Eq. (3) says that the maximum reward A
is achieved when the object stands perfectly in front of the
agent with a distance d and exhibits no rotation (see Fig. 3).

In Eq. (3) we have omitted the time step subscript t without
loss of clarity. Also note that the reward function defined
in this way does not explicitly depend on the raw visual
state. Instead, it depends on certain internal states. Thanks
to the APIs provided by virtual environments, we are able to
access the interested internal states and develop the desired

RandomizedSmall CacoDemon SharpTurn

Figure 4. Maps and screenshots of ViZDoom environments. In
all maps, the green dot (with white arrow indicating orientation)
represents the agent. The gray dot indicates the object. Blue lines
are planned paths and black lines are walls. Best viewed in color.

reward function.

3.5. Environment Augmentation

To make the tracker generalize well, we propose simple yet
effective techniques for environment augmentation during
training.

For ViZDoom, recall the object’s local position and ori-
entation (x, y, a) in system S described in Sec. 3.4. For
a given environment (i.e., a ViZDoom map) with initial
(x, y, a), we randomly perturb it N times by editing the
map with the ACS script (Kempka et al., 2016), yielding a
set of environments with varied initial positions and orienta-
tions {xi, yi, ai}Ni=1. We further allow flipping left-right the
screen frame (and accordingly the left-right action). As a
result, we obtain 2N environments out of one environment.
See Fig. 3 for an illustration of several possible initial po-
sitions and orientations in the local system S. During the
A3C training, we uniformly randomly sample one of the
2N environments at the beginning of every episode. As will
be seen in Sec. 4.2, this technique significantly improves
the generalization ability of the tracker.

For UE, we construct an environment with a character/target
walking following a fixed path. To augment the environment,
we randomly choose some background objects (e.g., tree
or building) in the environment and make them invisible.
At the same time, every episode starts from the position,
where the agent fails at the last episode. This makes the
environment and the starting point different from episode to
episode, so the variations of the environment during training
are augmented.

4. Experimental Results
The settings are described in Sec. 4.1. The experimental
results are reported for the virtual environments ViZDoom
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Figure 5. Screenshots of UE environments. From left to right, there are Stefani, Malcom, Path1, Path2, Square1 and Square2. Best viewed
in color.

(Sec. 4.2) and UE (Sec. 4.3). Qualitative evaluation is per-
formed for real-world scenarios taken from the VOT dataset
(Sec. 4.4). To investigate what the tracker has learned,
we conduct ablation analysis using a saliency visualization
technique (Simonyan et al., 2013) in Sec. 4.5.

4.1. Settings

Environment. A set of environments are produced for both
training and testing. For ViZDoom, we adopt a training map
as in Fig. 4, left column. This map is then augmented as
described in Sec. 3.5 with N = 21, leading to 42 environ-
ments that we can sample from during training. For testing,
we make other 9 maps, some of which are shown in Fig.
4, middle and right columns. In all maps, the path of the
target is pre-specified, indicated by the blue lines. However,
it is worth noting that the object does not strictly follow the
planned path. Instead, it sometimes randomly moves in a
“zig-zag” way during the course, which is a built-in game
engine behavior. This poses an additional difficulty to the
tracking problem.

For UE, we generate an environment named Square
with random invisible background objects and a tar-
get named Stefani walking along a fixed path for
training. For testing, we make another four en-
vironments named as Square1StefaniPath1 (S1SP1),
Square1MalcomPath1 (S1MP1), Square1StefaniPath2
(S1SP2), and Square2MalcomPath2 (S2MP2). As shown
in Fig. 5, Square1 and Square2 are two different maps,
Stefani and Malcom are two characters/targets, and Path1
and Path2 are different paths. Note that, the training envi-
ronment Square is generated by hiding some background
objects in Square1.

For both ViZDoom and UE, we terminate an episdoe when
either the accumulated reward drops below a threshold or
the episode length reaches a maximum number. In our
experiments, we let the reward threshold be -450 and the
maximum length be 3000, respectively.

Metric. Two metrics are employed for the experiments.
Specifically, Accumulated Reward (AR) and Episode Length
(EL) of each episode are calculated for quantitative evalu-
ation. Note that, the immediate reward defined in Eq. (3)
measures the goodness of tracking at some time step, so the
metric AR is conceptually much like Precision in the con-
ventional tracking literature. Also note that too small AR
means a failure of tracking and leads to a termination of the
current episode. As such, the metric EL roughly measures
the duration of good tracking, which shares the same spirit
of the metric Successfully Tracked Frames in conventional
tracking applications. When letting A = 1.0 in Eq. (3), we
have that the theoretically maximum AR and EL are both
3000 due to our episode termination criterion. In all the
following experiments, 100 episodes are run to report the
mean and standard deviation, unless specified otherwise.

Implementation details. We include the implementation
details in the supplementary material due to the space con-
straint.

4.2. Active Tracking in The ViZDoom Environment

We firstly test the active tracker in a testing environment
named Standard, showing the effectiveness of the proposed
environment augmentation technique. The second part is
contributed to the experiments in more challenging testing
environments which vary from the Standard environment
with regard to object appearance, background, path, and
object distraction. Comparison with a set of traditional
trackers is conducted in the last part.

Standard Testing Environment. In Tab. 1, we report
the results in an independent testing environment named
Standard (see supplementary materials for its detailed de-
scription), where we compare two training protocols: with
(called RandomizedEnv) or without (called SingleEnv) the
augmentation technique as in Sec. 3.5. As can be seen, Ran-
domizedEnv performs significantly better than SingleEnv.

We discover that the SingleEnv protocol quickly exhausts
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#1360 #1361 #1372 #1376 #1395 #1410

Figure 6. Recovering tracking when the target disappears in the
SharpTurn environment.

Table 1. Performance of different protocols in the Standard testing
environment.

Protocol AR EL
RandomizedEnv 2547±58 2959±32

SingleEnv 840±602 2404±287

the training capability and obtains the best validation result
at about 9 × 106 training iterations. On the contrary, the
best validation result of RandomizedEnv protocol occurs
at 48 × 106, showing that the capacity of the network is
exploited better despite the longer training time. In the
following experiments, we only report experimental results
with the RandomizedEnv protocol.

Various Testing Environments. To evaluate the general-
ization ability of our active tracker, we test it in 8 more
challenging environments as in Tab. 2. Comparing to the
training environment, they present different target appear-
ances, different backgrounds, more varying paths, and dis-
tracting targets. See supplementary materials for the detailed
description.

From the 4 categories in Tab. 2 we have findings below.
1) The tracker generalizes well in the case of target appear-
ance changing (Zombie, Cacodemon).
2) The tracker is insensitive to background variations such
as changing the ceiling and floor (FloorCeiling) or placing
additional walls in the map (Corridor).
3) The tracker does not lose a target even when the target
takes several sharp turns (SharpTurn). Note that in conven-
tional tracking, the target is commonly assumed to move
smoothly.
We also observe that the tracker can recover tracking when
it accidentally loses the target. As shown in Fig. 6, the
target turns right suddenly and the tracker loses it (frame
#1372). Although the target completely disappears in the
image, the tracker takes a series of turn-right actions (frame
#1376 to #1394). It rediscovers the target (frame #1410),
and continues to track steadily afterwards. We believe that
this capability attributes to the LSTM unit which takes into
account historical states when producing current outputs.
Our tracker performs well when the target walks counter-
clockwise (Counterclockwise), indicating that the tracker
does not work by simply memorizing the turning pattern.
4) The tracker is insensitive to a distracting object (Noise1),
even when the “bait” is very close to the path (Noise2).

The proposed tracker shows satisfactory generalization in
various unseen environments. Readers are encouraged to

Table 2. Performance of the proposed active tracker in different
testing environments.

Environment AR EL
CacoDemon 2415±71 2981±10

Zombie 2386±86 2904±40
FloorCeiling 1504 ± 158 2581 ± 84

Corridor 2636 ± 34 2983 ± 17
SharpTurn 2560±34 2987±12

Counterclockwise 2537±58 2964±23
Noise1 2493±72 2977±14
Noise2 2313±103 2855±56

Table 3. Comparison with traditional trackers. The best results are
shown in bold.
Environment Tracker AR EL

Standard

MIL -454.2 ± 0.3 743.1 ± 21.4
Meanshift -452.5 ± 0.2 553.4 ± 2.2

KCF -454.1 ± 0.2 228.4 ± 5.5
Correlation -453.6 ± 0.2 252.7 ± 16.6

Active 2457±58 2959±32

SharpTurn

MIL -453.3 ± 0.2 388.3 ± 15.5
Meanshift -454.4 ± 0.3 250.1 ± 1.9

KCF -452.4 ± 0.2 199.2 ± 5.7
Correlation -453.0 ± 0.2 186.3 ± 6.0

Active 2560±34 2987±12

Cacodemon

MIL -453.5 ± 0.2 540.6 ± 18.2
Meanshift -452.9 ± 0.2 484.3 ± 9.4

KCF -454.5 ± 0.3 263.1 ± 6.2
Correlation -453.3 ± 0.2 155.8 ± 1.9

Active 2451±71 2981±10

watch more result videos provided in our supplementary
materials.

Comparison with Simulated Active Trackers. In a more
extensive experiment we compare the proposed tracker with
a few traditional trackers. These trackers are originally
developed for passive tracking applications. Particularly,
the MIL (Babenko et al., 2009), Meanshift (Comaniciu
et al., 2000), KCF (Henriques et al., 2015), and Correlation
(Danelljan et al., 2014) trackers are employed for compari-
son. We implement them by directly invoking the interface
from OpenCV (Ope) (MIL, KCF and Meanshift trackers)
and Dlib (Dli) (Correlation tracker).

To make the comparison feasible, we add to the passive
tracker an additional PID-like module for the camera con-
trol, enabling it to interact with the environment (see Fig. 1,
Right). In the first frame, a manual bounding box must be
given to indicate the object to be tracked. For each subse-
quent frame, the passive tracker then predicts a bounding
box, which is passed to the “Camera Control” module. Fi-
nally, the action is produced by “pulling back” the target to
its position in a previous frame (see supplementary materials
for the details of the implementation). For a fair comparison
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Figure 7. Actions output from the proposed active tracker of the
Woman (top) and Sphere (bottom) sequences.

with the proposed active tracker, we employ the same action
set A as described in Sec. 3.

Armed with this camera-control module, the performance
of traditional trackers is compared with the active tracker in
Standard, SharpTurn and Cacodemon. The results in Tab. 3
show that the end-to-end active tracker beats the simulated
“active” trackers by a significant gap. We investigate the
tracking process of these trackers and find that they lose the
target soon. The Meanshift tracker works well when there
is no camera shift between continuous frames, while in the
active tracking scenario it loses the target soon. Both KCF
and Correlation trackers seem not capable of handling such
a large camera shift, so they do not work as well as the case
in passive tracking. The MIL tracker works reasonably in
the active case, while it easily drifts when the object turns
suddenly.

Recalling Fig. 6, another reason of our tracker beating the
traditional trackers is that our tracker can quickly discover
the target again in the case that it is missed. While the
simulated active trackers can hardly recover from failure
cases.

4.3. Active Tracking in The UE Environment

We firstly compare models trained with randomized envi-
ronment and single environment. Then we test our active
tracker in four environments and also compare it against

Table 4. Performance of different protocols in S2MP2.
Protocol AR EL

RandomizedEnv 1203.6±1428.4 2603.6±503.0
SingleEnv -453.4±1.5 461.9±180.0

Figure 8. Saliency maps learned by the tracker. The top row shows
input observations, and the bottom row shows their corresponding
saliency maps. The corresponding actions of these input images
are turn-right-and-move-forward, turn-left-and-move-forward and
turn-left-and-move-forward, respectively. These saliency maps
clearly show the focus of the tracker.

traditional trackers.

RandomizedEnv versus SingleEnv. Based on the Square
environment, we train two models individually by the Ran-
domizedEnv protocol (random number of invisible back-
ground objects and starting point) and SingleEnv protocol
(fixed environment). They are tested in the S2MP2 environ-
ment, where the map, target, and the path are unseen during
training. As shown in Tab. 4, similar results are obtained as
those in Tab. 1. We believe that the improvement benefits
from the environment randomness brought by the proposed
environment augmentation techniques. In the following, we
only report the results of RandomizedEnv protocol.

Various Testing Environments. To intensively investigate
the generalization ability of the active tracker, we test it in
four different environments and present the results in Tab. 5.
We compare it with the simulated active trackers described
in Sec. 4.2, as well as one based on the long-term TLD
tracker (Kalal et al., 2012).

According to the results in Tab. 5 we conduct the following
analysis: 1) Comparison between S1SP1 and S1MP1 shows
that the tracker generalizes well even when the model is
trained with target Stefani, revealing that it does not overfit
to a specialized appearance. 2) The active tracker performs
well when changing the path (S1SP1 versus S1SP2), demon-
strating that it does not act by memorizing specialized path.
3) When we change the map, target, and path at the same
time (S2MP2), though the tracker could not seize the target
as accurately as in previous environments (the AR value
drops), it can still track objects robustly (comparable EL
value as in previous environments), proving its superior gen-
eralization potential. 4) In most cases, the proposed tracker
outperforms the simulated active tracker, or achieves compa-
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Table 5. Comparison with traditional trackers. The best results are
shown in bold.
Environment Tracker AR EL

S1SP1

MIL -453.8 ±0.8 601.4 ± 300.9
Meanshift -454.1±1.3 628.6±111.2

KCF -453.6±2.5 782.4±136.1
Correlation -454.9±0.9 1710.4±417.0

TLD -453.6±1.3 376.0±70.9
Active 2495.7±12.4 3000.0±0.0

S1MP1

MIL -358.7±189.4 1430.0±825.3
Meanshift 708.3±3.3 3000.0±0.0

KCF -453.6±2.6 797.4±37.5
Correlation -453.5±1.3 1404.4±131.1

TLD -453.4±2.0 651.0±54.5
Active 2106.0±29.3 3000.0±0.0

S1SP2

MIL -452.4±0.7 420.2±104.9
Meanshift -453.0±1.8 630.2±223.8

KCF -453.9±1.5 594.0±378.8
Correlation -452.4±0.4 293.8±97.4

TLD -454.7±1.8 218.0±26.0
Active 2162.5±48.5 3000.0±0.0

S2MP2

MIL -453.1±0.9 749.0±301.0
Meanshift 726.5±10.8 3000.0±0.0

KCF -452.4±1.0 247.8±18.8
Correlation -215.0±475.3 1571.6±919.1

TLD -453.1±1.8 208.8±33.1
Active 740.0±577.4 2565.3±339.3

rable results if it is not the best. The results of the simulated
active tracker also suggest that it is difficult to tune a unified
camera-control module for them, even when a long term
tracker is adopted (see the results of TLD). However, our
work exactly sidesteps this issue by training an end-to-end
active tracker.

4.4. Active Tracking in Real-world Scenarios

To evaluate how the active tracker performs in real-world
scenarios, we take the network trained in a UE environment
and test it on a few video clips from the VOT dataset (Kristan
et al., 2016). Obviously, we can by no means control the
camera action for a recorded video. However, we can feed in
the video frame sequentially and observe the output action
predicted by the network, checking whether it is consistent
with the actual situation.

Fig. 7 shows the output actions for two video clips named
Woman and Sphere, respectively. The horizontal axis indi-
cates the position of the target in the image, with a pos-
itive (negative) value meaning that a target in the right
(left) part. The vertical axis indicates the size of the tar-
get, i.e., the area of the ground truth bounding box. Green
and red dots indicate turn-left/turn-left-and-move-forward
and turn-right/turn-right-and-move-forward actions, respec-
tively. Yellow dots represent No-op action. As the figure

show, 1) When the target resides in the right (left) side, the
tracker tends to turn right (left), trying to move the camera
to “pull” the target to the center. 2) When the target size
becomes bigger, which probably indicates that the tracker
is too close to the target, the tracker outputs no-op actions
more often, intending to stop and wait the target to move
farther.

We believe that the qualitative evaluation shows evidence
that the active tracker, learned from purely the virtual envi-
ronment, is able to output correct actions for camera control
in real-world scenarios. Due to the constraint of space,
we include more results of the real-world scenarios in the
supplementary materials.

4.5. Action Saliency Map

We are curious about what the tracker has learned so that
it leads to good performance. To this end, we follow the
method in (Simonyan et al., 2013) to generate a saliency map
of the input image with regard to a specific action. Making
it more specific, an input frame si is fed into the tracker
and forwarded to output the policy function. An action
ai will be sampled subsequently. Then the gradient of ai
with regard to si is propagated backwards to the input layer,
and a saliency map is generated. This process calculates
exactly which part of the original input image influences the
corresponding action with the greatest magnitude.

Note that the saliency map is image specific, i.e., for each
input image a corresponding saliency map can be derived.
Consequently, we can observe how the input images influ-
ence the tracker’s actions. Fig. 8 shows a few pairs of
input image and corresponding saliency map. The saliency
maps consistently show that the pixels corresponding to the
object dominate the importance to actions of the tracker.
It indicates that the tracker indeed learns how to find the
target.

5. Conclusion
We proposed an end-to-end active tracker via deep reinforce-
ment learning. Unlike conventional passive trackers, the
proposed tracker is trained in simulators, saving the efforts
of human labeling or trail-and-errors in real-world. It shows
good generalization to unseen environments. The tracking
ability can potentially transfer to real-world scenarios.
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