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Abstract
Fairness in machine learning has predominantly
been studied in static classification settings with-
out concern for how decisions change the under-
lying population over time. Conventional wisdom
suggests that fairness criteria promote the long-
term well-being of those groups they aim to pro-
tect. We study how static fairness criteria interact
with temporal indicators of well-being, such as
long-term improvement, stagnation, and decline
in a variable of interest. We demonstrate that even
in a one-step feedback model, common fairness
criteria in general do not promote improvement
over time, and may in fact cause harm in cases
where an unconstrained objective would not. We
completely characterize the delayed impact of
three standard criteria, contrasting the regimes in
which these exhibit qualitatively different behav-
ior. In addition, we find that a natural form of
measurement error broadens the regime in which
fairness criteria perform favorably. Our results
highlight the importance of measurement and tem-
poral modeling in the evaluation of fairness cri-
teria, suggesting a range of new challenges and
trade-offs.

1. Introduction
Machine learning commonly considers static objectives de-
fined on a snapshot of the population at one instant in time;
consequential decisions, in contrast, reshape the population
over time. Lending practices, for example, can shift the
distribution of debt and wealth in the population. Job adver-
tisements allocate opportunity. School admissions shape the
level of education in a community.

Existing scholarship on fairness in automated decision-
making criticizes unconstrained machine learning for its
potential to harm historically underrepresented or disad-
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vantaged groups in the population (Executive Office of the
President, 2016; Barocas & Selbst, 2016). Consequently,
a variety of fairness criteria have been proposed as con-
straints on standard learning objectives. Even though, in
each case, these constraints are clearly intended to protect
the disadvantaged group by an appeal to intuition, a rigorous
argument to that effect is often lacking.

In this work, we formally examine under what circum-
stances fairness criteria do indeed promote the long-term
well-being of disadvantaged groups measured in terms of
a temporal variable of interest. Going beyond the stan-
dard classification setting, we introduce a one-step feed-
back model of decision-making that exposes how decisions
change the underlying population over time.

Our running example is a hypothetical lending scenario.
There are two groups in the population with features de-
scribed by a summary statistic, such as a credit score, whose
distribution differs between the two groups. The bank can
choose thresholds for each group at which loans are of-
fered. While group-dependent thresholds may face legal
challenges (Ross & Yinger, 2006), they are generally in-
evitable for some of the criteria we examine. The impact
of a lending decision has multiple facets. A default event
not only diminishes profit for the bank, it also worsens the
financial situation of the borrower as reflected in a subse-
quent decline in credit score. A successful lending outcome
leads to profit for the bank and also to an increase in credit
score for the borrower.

When thinking of one of the two groups as disadvantaged, it
makes sense to ask what lending policies (choices of thresh-
olds) lead to an expected improvement in the score distri-
bution within that group. An unconstrained bank would
maximize profit, choosing thresholds that meet a break-even
point above which it is profitable to give out loans. One
frequently proposed fairness criterion, sometimes called de-
mographic parity, requires the bank to lend to both groups
at an equal rate. Subject to this requirement the bank would
continue to maximize profit to the extent possible. Another
criterion, originally called equality of opportunity, equalizes
the true positive rates between the two groups, thus requir-
ing the bank to lend in both groups at an equal rate among
individuals who repay their loan. Other criteria are natural,
but for clarity we restrict our attention to these three.
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Do these fairness criteria benefit the disadvantaged group?
When do they show a clear advantage over unconstrained
classification? Under what circumstances does profit maxi-
mization work in the interest of the individual? These are
important questions that we begin to address in this work.

1.1. Contributions

We introduce a one-step feedback model that allows us to
quantify the long-term impact of classification on different
groups in the population. We represent each of the two
groups A and B by a score distribution πA and πB, respec-
tively. The support of these distributions is a finite set X
comprising the possible values that the score can assume.
We think of the score as highlighting one variable of interest
in a specific domain such that higher score values corre-
spond to a higher probability of a positive outcome. An
institution chooses selection policies τA, τB : X → [0, 1]
that assign to each value inX a number representing the rate
of selection for that value. In our example, these policies
specify the lending rate at a given credit score within a given
group. The institution will always maximize their utility
(see (1)) subject to either (a) no constraint, or (b) equality
of selection rates, or (c) equality of true positive rates.

We assume the availability of a function ∆ : X → R that
provides the expected change in score for a selected indi-
vidual at a given score. The central quantity we study is the
expected difference ∆µj in the mean score in group j ∈
{A,B} that results from the selection policy. When model-
ing the problem, the expected mean difference can also ab-
sorb external factors such as “reversion to the mean” so long
as they are mean-preserving. Qualitatively, we distinguish
between long-term improvement (∆µj > 0), stagnation
(∆µj = 0), and decline (∆µj < 0).

Our findings can be summarized as follows.

1. Both fairness criteria (equal selection rates, equal true pos-
itive rates) can lead to all possible outcomes (improvement,
stagnation, and decline) in natural parameter regimes. We
provide a complete characterization of when each criterion
leads to each outcome in section 3.

• There are a class of settings where equal selection rates
cause decline, whereas equal true positive rates do not
(Theorem 3.5),

• Under a mild assumption, the institution’s optimal un-
constrained selection policy can never lead to decline
(Proposition 3.1).

2. We introduce the notion of an outcome curve (Figure 1)
which succinctly describes the different regimes in which
one criterion is preferable over the others.

3. We perform experiments on FICO credit score data from
2003 and show that under various models of bank utility

and score change, the outcomes of applying fairness criteria
are in line with our theoretical predictions.

4. We discuss how certain types of measurement error
(e.g., the bank underestimating the repayment ability of
the disadvantaged group) affect our comparison. We find
that measurement error narrows the regime in which fairness
criteria cause decline, suggesting that measurement should
be a factor when motivating these criteria.

5. We consider alternatives to hard fairness constraints.

• We evaluate the optimization problem where fairness
criterion is a regularization term in the objective. Qual-
itatively, this leads to the same findings.

• We discuss the possibility of optimizing for group score
improvement ∆µj directly subject to institution utility
constraints. The resulting solution provides an interest-
ing possible alternative to existing fairness criteria.

We focus on the impact of a selection policy over a single
epoch. The motivation is that the designer of a system usu-
ally has an understanding of the time horizon after which
the system is evaluated and possibly redesigned. Formally,
nothing prevents us from repeatedly applying our model
and tracing changes over multiple epochs. In reality, how-
ever, it is plausible that over greater time periods, economic
background variables might dominate the effect of selection.

Reflecting on our findings, we argue that careful temporal
modeling is necessary in order to accurately evaluate the
impact of different fairness criteria on the population. More-
over, an understanding of measurement error is important
in assessing the advantages of fairness criteria relative to
unconstrained selection. Finally, the nuances of our charac-
terization underline how intuition may be a poor guide in
judging the long-term impact of fairness constraints.

1.2. Related work

Recent work by Hu & Chen (2018) considers a model for
long-term outcomes in the labor market. They propose
imposing the demographic parity constraint in a temporary
labor market in order to provably achieve an equitable long-
term equilibrium in the permanent labor market, reminiscent
of economic arguments for affirmative action (e.g. Foster &
Vohra, 1992; Coate & Loury, 1993). Our general framework
is complementary to this type of domain specific approach.

Fuster et al. (2017) consider the problem of fairness in
credit markets from a different perspective. Their goal is
to study the effect of machine learning on interest rates
in different groups at an equilibrium, under a static model
without feedback.

Ensign et al. (2017) consider feedback loops in predictive
policing, where the police more heavily monitor high crime
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neighborhoods, thus further increasing the measured number
of crimes in those neighborhoods. While the work addresses
an important temporal phenomenon using the theory of urns,
it is rather different from our one-step feedback model both
conceptually and technically. Knowles et al. (2001) consider
a more dynamic model in which individuals react to their
probabilities of being searched.

Demographic parity and related formulations have been con-
sidered in numerous papers (e.g. Calders et al., 2009; Zafar
et al., 2017). Hardt et al. (2016) introduced the equality
of opportunity constraint and demonstrate limitations of a
broad class of criteria. Kleinberg et al. (2017) and Choulde-
chova (2016) point out the tension between “calibration by
group” and equal true/false positive rates. These trade-offs
carry over to some extent to the case where we only equalize
true positive rates (Pleiss et al., 2017).

A growing literature on fairness in the “bandits” setting of
learning (see Joseph et al., 2016, et seq.) deals with online
decision making that ought not to be confused with our one-
step feedback setting. Finally, there has been much work
in the social sciences on analyzing the effect of affirmative
action (see e.g., Keith et al., 1985; Kalev et al., 2006).

2. Problem Setting
We consider two groups A and B, which comprise a gA
and gB = 1 − gA fraction of the total population, and an
institution which makes a binary decision for each individual
in each group, called selection. Individuals in each group are
assigned scores in X := [C], and the scores for group j ∈
{A,B} are distributed according πj ∈ SimplexC−1. The
institution selects a policy τ := (τA, τB) ∈ [0, 1]2C , where
τ j(x) corresponds to the probability the institution selects
an individual in group j with score x. One should think
of a score as an abstract quantity which summarizes how
well an individual is suited to being selected; an example is
provided at the end of this section.

We assume that the institution is utility-maximizing, but
may impose certain constraints to ensure that the policy τ
is fair, in a sense described in Section 2.2. We assume that
there exists a functionu : X → R, such that the institution’s
expected utility for a policy τ is given by

U(τ ) =
∑

j∈{A,B} gj
∑

x∈X τ j(x)πj(x)u(x). (1)

Novel to this work, we focus on the effect of the selection
policy τ on the groups A and B. We quantify these outcomes
in terms of an average effect that a policy τ j has on group
j. Formally, for a function ∆(x) : X → R, we define the
average change of the mean score µj for group j

∆µj(τ ) :=
∑

x∈X πj(x)τ j(x)∆(x) . (2)

We remark that many of our results also go through if
∆µj(τ ) simply refers to an abstract change in well-being,

not necessarily a change in the mean score. Lastly, we as-
sume that the success of an individual is independent of
their group given the score; that is, the score summarizes all
relevant information about the success event, so there exists
a function ρ : X → [0, 1] such that individuals of score x
succeed with probability ρ(x).

We introduce the specific domain of credit scores as a run-
ning example in the rest of the paper. Other examples show-
ing the broad applicability of our model can be found in
Appendix A.

Example 2.1 (Credit scores). In the setting of loans, scores
x ∈ [C] represent credit scores, and the bank serves as the
institution. The bank chooses to grant or refuse loans to
individuals according to a policy τ . Both bank and per-
sonal utilities are given as functions of loan repayment, and
therefore depend on the success probabilities ρ(x), repre-
senting the probability that any individual with credit score
x can repay a loan within a fixed time frame. The expected
utility to the bank is given by the expected return from a
loan, which can be modeled as an affine function of ρ(x):
u(x) = u+ρ(x) + u−(1 − ρ(x)), where u+ denotes the
profit when loans are repaid and u− the loss when they are
defaulted on. Individual outcomes of being granted a loan
are based on whether or not an individual repays the loan,
and a simple model for ∆(x) may also be affine in ρ(x):
∆(x) = c+ρ(x) + c−(1− ρ(x)), modified accordingly at
boundary states. The constant c+ > 0 denotes the gain
in credit score if loans are repaid and c− < 0 is the score
penalty in case of default.

2.1. The Outcome Curve

We now introduce important outcome regimes, stated in
terms of the change in average group score. A pol-
icy (τA, τB) is said to cause active harm to group j if
∆µj(τ j) < 0, stagnation if ∆µj(τ j) = 0, and improvement
if ∆µj(τ j) > 0. We denote the policy that maximizes the
institution’s utility in the absence of constraints as MaxUtil.
Under our model, MaxUtil policies can be chosen in a stan-
dard fashion which applies the same threshold τ MaxUtil for
both groups, and is agnostic to the distributions πA and πB.
Hence, if we define

∆µMaxUtil
j := ∆µj(τ

MaxUtil) (3)

we say that a policy causes relative harm to group j
if ∆µj(τ j) < ∆µMaxUtil

j , and relative improvement if
∆µj(τ j) > ∆µMaxUtil

j . In particular, we focus on these
outcomes for a disadvantaged group, and consider whether
imposing a fairness constraint improves their outcomes rela-
tive to the MaxUtil strategy. From this point forward, we
take A to be the disadvantaged or protected group.

Figure 1 displays the important outcome regimes in terms
of selection rates βj :=

∑
x∈X πj(x)τ j(x). This succinct
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Figure 1. The above figure shows the outcome curve. The horizontal axis represents the selection rate for the population; the vertical axis
represents the mean change in score. (a) depicts the full spectrum of outcome regimes, and colors indicate regions of active harm, relative
harm, and no harm. In (b): a group that has much potential for gain, in (c): a group that has no potential for gain.

characterization is possible when considering decision rules
based on (possibly randomized) score thresholding, in which
all individuals with scores above a threshold are selected. In
Appendix B, we justify the restriction to such threshold poli-
cies by showing it preserves optimality. In Appendix B.1,
we show that the outcome curve is concave, thus implying
that it takes the shape depicted in Figure 1. To explicitly
connect selection rates to decision policies, we define the
rate function rπ(τ j) which returns the proportion of group
j selected by the policy. We show that this function is in-
vertible for a suitable class of threshold policies, and in fact
the outcome curve is precisely the graph of the map from
selection rate to outcome β 7→ ∆µA(r−1πA

(β)). Next, we
define the values of β that mark boundaries of the outcome
regions.

Definition 2.1 (Selection rates of interest). Given the
protected group A, the following selection rates are of
interest in distinguishing between qualitatively different
classes of outcomes (Figure 1). We define βMaxUtil

as the selection rate for A under MaxUtil; β0 as the
harm threshold, such that ∆µA(r−1πA

(β0)) = 0; β∗

as the selection rate such that ∆µA is maximized;
β as the outcome-complement of the MaxUtil selec-
tion rate, ∆µAr

−1
πA

(β)) = ∆µA(r−1πA
(βMaxUtil)) with

β > βMaxUtil.

2.2. Decision Rules and Fairness Criteria

We will consider policies that maximize the institution’s
total expected utility, potentially subject to a constraint: τ ∈

C ∈ [0, 1]2C which enforces some notion of “fairness”. For-
mally, the institution selects τ∗ ∈ argmax U(τ ) s.t. τ ∈ C.
We consider the three following constraints:
Definition 2.2 (Fairness criteria). The maximum util-
ity (MaxUtil) policy corresponds to the null-constraint
C = [0, 1]2C , so that the institution is free to
focus solely on utility. The demographic parity
(DemParity) policy results in equal selection rates be-
tween both groups. Formally, the constraint is C ={

(τA, τB) :
∑

x∈X πA(x)τA =
∑

x∈X πB(x)τB

}
. The

equal opportunity (EqOpt) policy results in equal true
positive rates (TPR) between both group, where TPR is
defined as TPRj(τ ) :=

∑
x∈X πj(x)ρ(x)τ (x)∑

x∈X πj(x)ρ(x)
. EqOpt en-

sures that the conditional probability of selection given
that the individual will be successful is independent of
the population, formally enforced by the constraint C =
{(τA, τB) : TPRA(τA) = TPRB(τB)} .

Just as the expected outcome ∆µ can be expressed in terms
of selection rate for threshold policies, so can the total utility
U . In the unconstrained case, U varies independently over
the selection rates for group A and B; however, in the pres-
ence of fairness constraints the selection rate for one group
determines the allowable selection rate for the other. The
selection rates must be equal for DemParity, but for EqOpt
we can define a transfer function, G(A→B), which for every
loan rate β in group A gives the loan rate in group B that
has the same true positive rate. Therefore, when considering
threshold policies, decision rules amount to maximizing
functions of single parameters. This idea is expressed in
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Figure 2, and underpins the results to follow.

3. Results
In order to clearly characterize the outcome of applying
fairness constraints, we make the following assumption.
Assumption 1 (Institution utilities). The institution’s indi-
vidual utility function is more stringent than the expected
score changes, u(x) > 0 =⇒ ∆(x) > 0. (For the linear
form presented in Example 2.1, u−

u+
< c−

c+
is necessary and

sufficient.)

This simplifying assumption quantifies the intuitive notion
that institutions take a greater risk by accepting than the
individual does by applying. For example, in the credit
setting, a bank loses the amount loaned in the case of a
default, but makes only interest in case of a payback. Using
Assumption 1, we can restrict the position of MaxUtil on
the outcome curve in the following sense.
Proposition 3.1 (MaxUtil does not cause active harm). Un-
der Assumption 1, 0 ≤ ∆µMaxUtil ≤ ∆µ∗.

We direct the reader to Appendix F for the proof of the
above proposition, and all subsequent theorems presented
in this section.

3.1. Prospects and Pitfalls of Fairness Criteria

We begin by characterizing general settings under which
fairness criteria act to improve outcomes over unconstrained
MaxUtil strategies. For this result, we will assume that
group A is disadvantaged in the sense that the MaxUtil ac-
ceptance rate for B is large compared to relevant acceptance
rates for A.
Theorem 3.2 (Fairness criteria can cause relative improve-
ment). (a) Under the assumption that βMaxUtilA < β and
βMaxUtilB > βMaxUtilA , there exist population proportions
g0 < g1 < 1 such that, for all gA ∈ [g0, g1], βMaxUtilA <

βDemParityA < β. That is, DemParity causes relative im-
provement.

(b) Under the assumption that there exist βMaxUtilA < β <
β′ < β such that βMaxUtilB > G(A→B)(β), G(A→B)(β′),
there exist population proportions g2 < g3 < 1 such that,
for all gA ∈ [g2, g3], βMaxUtilA < βEqOptA < β. That is, EqOpt
causes relative improvement.

This result gives the conditions under which we can guaran-
tee the existence of settings in which fairness criteria cause
improvement relative to MaxUtil. Relying on machinery
proved in the appendix, the result follows from comparing
the position of optima on the utility curve to the outcome
curve. Figure 2 displays a illustrative example of both the
outcome curve and the institutions’ utility U as a function
of the selection rates in group A. In the utility function (1),

0
1

Selection Rate

MU
DP
EO

0
1

Figure 2. Both outcomes ∆µ and institution utilities U can be
plotted as a function of selection rate for one group. The maxima
of the utility curves determine the selection rates resulting from
various decision rules.

the contributions of each group are weighted by their popu-
lation proportions gj, and thus the resulting selection rates
are sensitive to these proportions.

As we see in the remainder of this section, fairness criteria
can achieve nearly any position along the outcome curve un-
der the right conditions. This fact comes from the potential
mismatch between the outcomes, controlled by ∆, and the
institution’s utility u.

The next theorem implies that DemParity can be bad
for long term well-being of the protected group by
being over-generous, under the mild assumption that
∆µA(βMaxUtilB ) < 0:

Theorem 3.3 (DemParity can cause harm by being
over-eager). Fix a selection rate β. Assume that
βMaxUtilB > β > βMaxUtilA . Then, there exists a population
proportion g0 such that, for all gA ∈ [0, g0], βDemParityA > β.
In particular, when β = β0, DemParity causes active harm,
and when β = β, DemParity causes relative harm.

The assumption ∆µA(βMaxUtilB ) < 0 implies that a pol-
icy which selects individuals from group A at the selection
rate that MaxUtil would have used for group B necessarily
lowers average score in A. This is one natural notion of
protected group A’s ‘disadvantage’ relative to group B. In
this case, DemParity penalizes the scores of group A even
more than a naive MaxUtil policy, as long as group propor-
tion gA is small enough. Again, small gA is another notion
of group disadvantage.
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Using credit scores as an example, Theorem 3.3 tells us that
an overly aggressive fairness criterion will give too many
loans to people in a protected group who cannot pay them
back, hurting the group’s credit scores on average. In the
following theorem, we show that an analogous result holds
for EqOpt.

Theorem 3.4 (EqOpt can cause harm by being over-eager).
Suppose that βMaxUtilB > G(A→B)(β) and β > βMaxUtilA .
Then, there exists a population proportion g0 such that, for
all gA ∈ [0, g0], βEqOptA > β. In particular, when β = β0,
EqOpt causes active harm, and when β = β, EqOpt causes
relative harm.

We remark that in Theorem 3.4, we rely on the transfer
function, G(A→B), which for every loan rate β in group A
gives the loan rate in group B that has the same true posi-
tive rate. Notice that if G(A→B) were the identity function,
Theorems 3.3 and Theorem 3.4 would be exactly the same.
Indeed, our framework (detailed in Appendix E) unifies the
analyses for a large class of fairness constraints that includes
DemParity and EqOpt as specific cases, and allows us to
derive results about impact on ∆µ using general techniques.
In the next section, we present further results that compare
the fairness criteria, demonstrating the usefulness of our
technical framework.

3.2. Comparing EqOpt and DemParity

Our analysis of the acceptance rates of EqOpt and
DemParity in Appendix C suggests that it is difficult
to compare DemParity and EqOpt without knowing the
full distributions πA,πB, which is necessary to compute
the transfer function G(A→B). In fact, we have found
that settings exist both in which DemParity causes harm
while EqOpt causes improvement and in which DemParity

causes improvement while EqOpt causes harm. There can-
not be one general rule as to which fairness criteria provides
better outcomes in all settings. We now present simple suf-
ficient conditions on the geometry of the distributions for
which EqOpt is always better than DemParity in terms of
∆µA.

Theorem 3.5 (EqOpt may avoid active harm where
DemParity fails). Fix a selection rate β. Suppose πA,πB

are identical up to a translation with µA < µB, i.e.
πA(x) = πB(x + (µB − µA)). For simplicity, take ρ(x)
to be linear in x. Suppose

β0 >
∑
x>µA

πA.

Then there exists an interval [g1, g2] ⊆ [0, 1], such that
∀gA > g1, βEqOpt < β while ∀gA < g2, βDemParity > β.
In particular, when β = β0, this implies DemParity

causes active harm but EqOpt causes improvement for

gA ∈ [g1, g2], but for any gA such that DemParity causes
improvement, EqOpt also causes improvement.

To interpret the conditions under which Corollary 3.5 holds,
consider when we might have β0 >

∑
x>µA

πA. This is
precisely when ∆µA(

∑
x>µA

πA) > 0, that is, ∆µA > 0
for a policy that selects every individual whose score is
above the group A mean, which is reasonable in reality.
Indeed, the converse would imply that group A has such low
scores that even selecting all above average individuals in A
would hurt the average score. In such a case, Corollary 3.5
suggests that EqOpt is better than DemParity at avoiding
active harm, because it is more conservative. A natural
question then is: can EqOpt cause relative harm by being
too stingy?
Theorem 3.6 (DemParity never loans less than MaxUtil,
but EqOpt might). Recall the definition of the TPR func-
tions ωj, and suppose that the MaxUtil policy τ MaxUtil

is such that βMaxUtilA < βMaxUtilB and TPRA(τ MaxUtil) >

TPRB(τ MaxUtil). Then βEqOptA < βMaxUtilA < βDemParityA .
That is, EqOpt causes relative harm by selecting at a rate
lower than MaxUtil.

The above theorem shows that DemParity is never stingier
than MaxUtil to the protected group A, as long as a A is
disadvantaged in the sense that MaxUtil selects a larger
proportion of B than A. On the other hand, EqOpt can
select less of group A than MaxUtil, and by definition,
cause relative harm. This is a surprising result about EqOpt,
and this phenomenon arises from high levels of in-group
inequality for group A. Moreover, we show in Appendix
F that there are parameter settings where the conditions in
Theorem 3.6 are satisfied even under a stringent notion of
disadvantage we call CDF domination, described therein.

4. Relaxations of Constrained Fairness
Regularized fairness: In many cases, it may be unrealistic
for an institution to ensure that fairness constraints are met
exactly. However, one can consider “soft” formulations of
fairness constraints which either penalized the differences
in acceptance rate (DemParity) or the differences in TPR
(EqOpt). In Appendix E, we formulate these soft constraints
as regularized objectives. For example, a soft-DemParity
can be rendered as

max
τ :=τA,τB

U(τ )− λΦ(〈πA, τA〉 − 〈πB, τB〉) , (4)

where λ > 0 is a regularization parameter, and Φ(t) is a
convex regularization function. We show that the solutions
to these objectives are threshold policies, and can be fully
characterized in terms of the group-wise selection rate. We
also make rigorous the notion that policies which solve the
soft-constraint objective interpolate between MaxUtil poli-
cies at λ = 0 and hard-constrained policies (DemParity or
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EqOpt) as λ→∞. This fact is clearly demonstrated by the
form of the solutions in the special case of the regularization
function Φ(t) = |t|, provided in the appendix.

Fairness under measurement error: Next, consider the
implications of an institution with imperfect knowledge
of scores. Under a simple model in which the estimate
of an individual’s score X ∼ π is prone to errors e(X)

such that X + e(X) := X̂ ∼ π̂. Constraining the
error to be negative results in the setting that scores are
systematically underestimated. In this setting, it is equiv-
alent to consider the CDF of underestimated distribution
π̂ to be dominated by the CDF true distribution π, that is∑

x≥c π̂(x) ≤
∑

x≥c π(x) for all c ∈ [C]. Then we can
compare the institution’s behavior under this estimation to
its behavior under the truth.

Proposition 4.1 (Underestimation causes underselection).
Fix the distribution of B as πB and let β be the acceptance
rate of A when the institution makes the decision using
perfect knowledge of the distribution πA. Denote β̂ as the
acceptance rate when the group is instead taken as π̂A.
Then βMaxUtilA > β̂MaxUtilA and βDemParityA > β̂DemParityA . If
the errors are further such that the true TPR dominates the
estimated TPR, it is also true that βEqOptA > β̂EqOptA .

Because fairness criteria encourage a higher selection rate
for disadvantaged groups (Theorem 3.2), systematic under-
estimation widens the regime of their applicability. Further-
more, since the estimated MaxUtil policy underloans, the
region for relative improvement in the outcome curve (Fig-
ure 1) is larger, corresponding to more regimes under which
fairness criteria can yield favorable outcomes. Thus poten-
tial measurement error should be a factor when motivating
these criteria.

Outcome-based alternative: As explained in the preced-
ing sections, fairness criteria may actively harm disadvan-
taged groups. It is thus natural to consider a modified deci-
sion rule which involves the explicit maximization of ∆µA.
In this case, imagine that the institution’s primary goal is to
aid the disadvantaged group, subject to a limited profit loss
compared to the maximum possible expected profit UMaxUtil.
The corresponding problem is as follows.

max
τA

∆µA(τA) s.t. UMaxUtil
A − U(τ ) < δ . (5)

Unlike the fairness constrained objective, this objective no
longer depends on group B and instead depends on our
model of the mean score change in group A, ∆µA.

Proposition 4.2 (Outcome-based solution). In the above
setting, the optimal bank policy τA is a threshold policy
with selection rate β = min{β∗, βmax}, where β∗ is the
outcome-optimal loan rate and βmax is the maximum loan
rate under the bank’s “budget”.

The above formulation’s advantage over fairness constraints
is that it directly optimizes the outcome of A and can be
approximately implemented given reasonable ability to pre-
dict outcomes. Importantly, this objective shifts the focus to
outcome modeling, highlighting the importance of domain
specific knowledge. Future work can consider strategies
that are robust to outcome model errors.

5. Simulations
We examine the outcomes induced by fairness constraints
in the context of FICO scores for two race groups. FICO
scores are a proprietary classifier widely used in the United
States to predict credit worthiness. Our FICO data is based
on a sample of 301,536 TransUnion TransRisk scores from
2003 (US Federal Reserve, 2007), preprocessed by Hardt
et al. (2016). These scores, corresponding to x in our model,
range from 300 to 850 and are meant to predict credit risk.
Empirical data labeled by race allows us to estimate the dis-
tributions πj, where j represents race, which is restricted to
two values: white non-Hispanic (labeled “white” in figures),
and black. Using national demographic data, we set the
population proportions to be 18% and 82%.

Individuals were labeled as defaulted if they failed to pay
a debt for at least 90 days on at least one account in the
ensuing 18-24 month period; we use this data to estimate
the success probability given score, ρj(x), which we allow
to vary by group to match the empirical data. Our outcome
curve framework allows for this relaxation; however, this
discrepancy can also be attributed to group-dependent mis-
measurement of score, and adjusting the scores accordingly
would allow for a single ρ(x). We use the success probabil-
ities to define the affine utility and score change functions
defined in Example 2.1. We model individual penalties as
a score drop of c− = −150 in the case of a default, and in
increase of c+ = 75 in the case of successful repayment.
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Figure 3. The empirical CDFs of both groups are plotted along
with the decision thresholds resulting from MaxUtil, DemParity,
and EqOpt for a model with bank utilities set to (a) u−

u+
= −4 and

(b) u−
u+

= −10. The threshold for active harm is displayed; in (a)
DemParity causes active harm while in (b) it does not. EqOpt and
MaxUtil never cause active harm.
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Figure 4. The outcome and utility curves are plotted for both
groups against the group selection rates. The relative positions
of the utility maxima determine the position of the decision rule
thresholds. We hold u−

u+
= −4 as fixed.

In Figure 3, we display the empirical CDFs along with
selection rates resulting from different loaning strategies
for two different settings of bank utilities. In the case that
the bank experiences a loss/profit ratio of u−

u+
= −10, no

fairness criteria surpass the active harm rate β0; however, in
the case of u−

u+
= −4, DemParity overloans, in line with

the statement in Theorem 3.3.

These results are further examined in Figure 4, which dis-
plays the normalized outcome curves and the utility curves
for both the white and the black group. To plot the MaxUtil
utility curves, the group that is not on display has selection
rate fixed at βMaxUtil. In this figure, the top panel corre-
sponds to the average change in credit scores for each group
under different loaning rates β; the bottom panels shows the
corresponding total utility U (summed over both groups and
weighted by group population sizes) for the bank.

Figure 4 highlights that the position of the utility optima
in the lower panel determines the loan (selection) rates. In
this specific instance, the utility and change ratios are fairly
close, u−

u+
= −4 and c−

c+
= −2, meaning that the bank’s

profit motivations align with individual outcomes to some
extent. Here, we can see that EqOpt loans much closer to
optimal than DemParity, similar to the setting suggested
by Theorem 3.2.

Although one might hope for decisions made under fairness
constraints to positively affect the black group, we observe

the opposite behavior. The MaxUtil policy (solid orange
line) and the EqOpt policy result in similar expected credit
score change for the black group. However, DemParity
(dashed green line) causes a negative expected credit score
change in the black group, corresponding to active harm. For
the white group, the bank utility curve has almost the same
shape under the fairness criteria as it does under MaxUtil,
the main difference being that fairness criteria lowers the
total expected profit from this group.

This behavior stems from a discrepancy in the outcome
and profit curves for each population. While incentives for
the bank and positive results for individuals are somewhat
aligned for the majority group, under fairness constraints,
they are more heavily misaligned in the minority group,
as seen in graphs (left) in Figure 4. We remark that in
other settings where the unconstrained profit maximization
is misaligned with individual outcomes (e.g., when u−

u+
=

−10), fairness criteria may perform more favorably for the
minority group by pulling the utility curve into a shape
consistent with the outcome curve.

By analyzing the resulting effects of MaxUtil, DemParity,
and EqOpt on actual credit score lending data, we show the
applicability of our model to real-world applications. In
particular, results shown in Section 3 hold empirically for
the FICO TransUnion TransRisk scores.

6. Conclusion and Future Work
We argue that without a careful model of delayed outcomes,
we cannot foresee the impact a fairness criterion would
have if enforced as a constraint on a classification system.
However, if such an accurate outcome model is available,
we show that there are more direct ways to optimize for
positive outcomes than via existing fairness criteria.

Our formal framework exposes a concise, yet expressive
way to model outcomes via the expected change in a vari-
able of interest caused by an institutional decision. This
leads to the natural concept of an outcome curve that al-
lows us to interpret and compare solutions effectively. In
essence, the formalism we propose requires us to understand
the two-variable causal mechanism that translates decisions
to outcomes. Depending on the application, such an un-
derstanding might necessitate greater domain knowledge
and additional research into the specifics of the application.
This is consistent with much scholarship that points to the
context-sensitive nature of fairness in machine learning.

An interesting direction for future work is to consider other
characteristics of impact beyond the change in population
mean. Variance and individual-level outcomes are natural
and important considerations. Moreover, it would be inter-
esting to understand the robustness of outcome optimization
to modeling and measurement errors.
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