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Abstract

Interacting systems are prevalent in nature, from
dynamical systems in physics to complex societal
dynamics. The interplay of components can give
rise to complex behavior, which can often be ex-
plained using a simple model of the system’s con-
stituent parts. In this work, we introduce the neu-
ral relational inference (NRI) model: an unsuper-
vised model that learns to infer interactions while
simultaneously learning the dynamics purely from
observational data. Our model takes the form of
a variational auto-encoder, in which the latent
code represents the underlying interaction graph
and the reconstruction is based on graph neural
networks. In experiments on simulated physical
systems, we show that our NRI model can ac-
curately recover ground-truth interactions in an
unsupervised manner. We further demonstrate
that we can find an interpretable structure and pre-
dict complex dynamics in real motion capture and
sports tracking data.

1. Introduction

A wide range of dynamical systems in physics, biology,
sports, and other areas can be seen as groups of interacting
components, giving rise to complex dynamics at the level of
individual constituents and in the system as a whole. Mod-
eling these type of dynamics is challenging: often, we only
have access to individual trajectories, without knowledge of
the underlying interactions or dynamical model.

As a motivating example, let us take the movement of bas-
ketball players on the court. It is clear that the dynamics
of a single basketball player are influenced by the other
players, and observing these dynamics as a human, we are
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Figure 1. Physical simulation of 2D particles coupled by invisible
springs (left) according to a latent interaction graph (right). In this
example, solid lines between two particle nodes denote connections
via springs whereas dashed lines denote the absence of a coupling.
In general, multiple, directed edge types — each with a different
associated relation — are possible.

able to reason about the different types of interactions that
might arise, e.g. defending a player or setting a screen for a
teammate. It might be feasible, though tedious, to manually
annotate certain interactions given a task of interest. It is
more promising to learn the underlying interactions, perhaps
shared across many tasks, in an unsupervised fashion.

Recently there has been a considerable amount of work
on learning the dynamical model of interacting systems
using implicit interaction models (Sukhbaatar et al., 2016;
Guttenberg et al., 2016; Santoro et al., 2017; Watters et al.,
2017; Hoshen, 2017; van Steenkiste et al., 2018). These
models can be seen as graph neural networks (GNNs) that
send messages over the fully-connected graph, where the
interactions are modeled implicitly by the message passing
function (Sukhbaatar et al., 2016; Guttenberg et al., 2016;
Santoro et al., 2017; Watters et al., 2017) or with the help
of an attention mechanism (Hoshen, 2017; van Steenkiste
etal., 2018).

In this work, we address the problem of inferring an explicit
interaction structure while simultaneously learning the dy-
namical model of the interacting system in an unsupervised
way. Our neural relational inference (NRI) model learns the
dynamics with a GNN over a discrete latent graph, and we
perform inference over these latent variables. The inferred
edge types correspond to a clustering of the interactions.
Using a probabilistic model allows us to incorporate prior
beliefs about the graph structure, such as sparsity, in a prin-
cipled manner.



Neural Relational Inference for Interacting Systems

In a range of experiments on physical simulations, we show
that our NRI model possesses a favorable inductive bias that
allows it to discover ground-truth physical interactions with
high accuracy in a completely unsupervised way. We further
show on real motion capture and NBA basketball data that
our model can learn a very small number of edge types that
enable it to accurately predict the dynamics many time steps
into the future.

2. Background: Graph Neural Networks

We start by giving a brief introduction to a recent class of
neural networks that operate directly on graph-structured
data by passing local messages (Scarselli et al., 2009; Li
etal., 2016; Gilmer et al., 2017). We refer to these models as
graph neural networks (GNN). Variants of GNNs have been
shown to be highly effective at relational reasoning tasks
(Santoro et al., 2017), modeling interacting or multi-agent
systems (Sukhbaatar et al., 2016; Battaglia et al., 2016),
classification of graphs (Bruna et al., 2014; Duvenaud et al.,
2015; Dai et al., 2016; Niepert et al., 2016; Defferrard et al.,
2016; Kearnes et al., 2016) and classification of nodes in
large graphs (Kipf & Welling, 2017; Hamilton et al., 2017).
The expressive power of GNNSs has also been studied theo-
retically in (Zaheer et al., 2017; Herzig et al., 2018).

Given a graph G = (V, £) with vertices v € V and edges
e = (v,v') € £, we define a single node-to-node message
passing operation in a GNN as follows, similar to Gilmer
et al. (2017):

v—e: hl(i)j) = fé([hé’hé"x(ivj)]) M

h?rl = le)([ZzeN] hl(i,j)axj]) (2)

where h! is the embedding of node v; in layer I, hl( i) is an
embedding of the edge e(; j, and x; and x(; ;) summarize
initial (or auxiliary) node and edge features, respectively
(e.g. node input and edge type). N; denotes the set of indices
of neighbor nodes connected by an incoming edge and [-, -
denotes concatenation of vectors. The functions f, and
fe are node- and edge-specific neural networks (e.g. small
MLPs) respectively (see Figure 2). Egs. (1)—(2) allow for
the composition of models that map from edge to node
representations or vice-versa via multiple rounds of message
passing.

e—v

In the original GNN formulation from Scarselli et al. (2009)
the node embedding hl(i ;) depends only on h!, the embed-

ding of the sending node, and the edge type, but not on h',
the embedding of the receiving node. This is of course a spe-
cial case of this formulation, and more recent works such as
interaction networks (Battaglia et al., 2016) or message pass-
ing neural networks (Gilmer et al., 2017) are in line with our

"Undirected graphs can be modeled by explicitly assigning two
directed edges in opposite direction for each undirected edge.

( Legend: [: Node embedding [[IH: Edge embedding = : MLPJ

Node-to-edge (v—e)

Edge-to-node (e —v)

Figure 2. Node-to-edge (v—e) and edge-to-node (e—v) opera-
tions for moving between node and edge representations in a GNN.
v—e represents concatenation of node embeddings connected by
an edge, whereas e—v denotes the aggregation of edge embed-
dings from all incoming edges. In our notation in Egs. (1)—(2),
every such operation is followed by a small neural network (e.g. a
2-layer MLP), here denoted by a black arrow. For clarity, we high-
light which node embeddings are combined to form a specific edge
embedding (v—¢) and which edge embeddings are aggregated to
a specific node embedding (e—v).

more general formulation. We further note that some recent
works factor f!(-) into a product of two separate functions,
one of which acts as a gating or attention mechanism (Monti
et al., 2017; Duan et al., 2017; Hoshen, 2017; Velickovi¢
et al., 2018; Garcia & Bruna, 2018; van Steenkiste et al.,
2018) which in some cases can have computational benefits
or introduce favorable inductive biases.

3. Neural Relational Inference Model

Our NRI model consists of two parts trained jointly: An
encoder that predicts the interactions given the trajectories,
and a decoder that learns the dynamical model given the
interaction graph.

More formally, our input consists of trajectories of N
objects. We denote by x! the feature vector of object
v; at time ¢, e.g. location and velocity. We denote by
xt = {x!,...,x4} the set of features of all N objects at
time ¢, and we denote by x; = (x},...,x} ) the trajectory of
object ¢, where 7' is the total number of time steps. Lastly,
we mark the whole trajectories by x = (x!,...,x7). We
assume that the dynamics can be modeled by a GNN given
an unknown graph z where z;; represents the discrete edge
type between objects v; and v;. The task is to simultane-
ously learn to predict the edge types and learn the dynamical
model in an unsupervised way.

We formalize our model as a variational autoencoder (VAE)
(Kingma & Welling, 2014; Rezende et al., 2014) that maxi-
mizes the ELBO:

L =B, (ax) [l0g po(x|2)] — KL{gy(2[x)|lpe(2)]  (3)
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Figure 3. The NRI model consists of two jointly trained parts: An encoder that predicts a probability distribution g4 (z|x) over the latent
interactions given input trajectories; and a decoder that generates trajectory predictions conditioned on both the latent code of the encoder
and the previous time step of the trajectory. The encoder takes the form of a GNN with multiple rounds of node-to-edge (v—e) and
edge-to-node (e—v) message passing, whereas the decoder runs multiple GNNs in parallel, one for each edge type supplied by the latent

code of the encoder g4 (z|x).

The encoder ¢4(z|x) returns a factorized distribution of
z;;, where z;; is a discrete categorical variable representing
the edge type between object v; and v;. We use a one-hot
representation of the K interaction types for z;;.

The decoder

po(x|z) = Hz;l po(xtHxt, ..., x, 2) 4)

models pp(x'Tt|x!, ...,x!, z) with a GNN given the latent
graph structure z.

The prior pg(z) = [],.; po(2i;) is a factorized uniform dis-
tribution over edges types. If one edge type is “hard coded”
to represent “non-edge” (no messages being passed along
this edge type), we can use an alternative prior with higher
probability on the “non-edge” label. This will encourage
sparser graphs.

There are some notable differences between our model and
the original formulation of the VAE (Kingma & Welling,
2014). First, in order to avoid the common issue in VAEs of
the decoder ignoring the latent code z (Chen et al., 2017),
we train the decoder to predict multiple time steps and not a
single step as the VAE formulation requires. This is neces-
sary since interactions often only have a small effect in the
time scale of a single time step. Second, the latent distribu-
tion is discrete, so we use a continuous relaxation in order
to use the reparameterization trick. Lastly, we note that we
do not learn the probability p(x!) (i.e. for t = 1) as we are
interested in the dynamics and interactions, and this does
not have any effect on either (but would be easy to include
if there was a need).

The overall model is schematically depicted in Figure 3. In
the following, we describe the encoder and decoder compo-
nents of the model in detail.

3.1. Encoder

At a high level, the goal of the encoder is to infer pair-
wise interaction types z;; given observed trajectories x =
(x',...,xT). Since we do not know the underlying graph,
we can use a GNN on the fully-connected graph to predict

the latent graph structure.

More formally, we model the encoder as g4(z;;|x) =
softmax( fenc,¢(X)ij1:x), Where fene ¢(x) is a GNN act-
ing on the fully-connected graph (without self-loops). Given
input trajectories Xy, ..., Xy our encoder computes the fol-
lowing message passing operations:

h! = fomb(x;) %)
v—e: h%i,j) = fel([hzlvhﬂ) (6)
e—v hi = f, (3 b ;) (7)
v—e:  hi = f2([hf h]) ®)

Finally, we model the edge type posterior as gy (z;;|x) =
softmax(h?i, ‘)) where ¢ summarizes the parameters of the
neural networks in Egs. (5)—(8). The use of multiple passes,
two in the model presented here, allows the model to “dis-
entangle” multiple interactions while still using only binary
terms. In a single pass, Egs. (5)—(6), the embedding hb’ )
only depends on x; and x; ignoring interactions with other

nodes, while h? uses information from the whole graph.

The functions f .y are neural networks that map between
the respective representations. In our experiments we used
either fully-connected networks (MLPs) or 1D convolu-
tional networks (CNNs) with attentive pooling similar to
(Lin et al., 2017) for the f . ) functions. See supplementary
material for further details.

While this model falls into the general framework presented
in Sec. 3, there is a conceptual difference in how hl(l. i)
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are interpreted. Unlike in a typical GNN, the messages
hl( ;) are no longer considered just a transient part of the
computation, but an integral part of the model that represents
the edge embedding used to perform edge classification.

3.2. Sampling

It is straightforward to sample from ¢4(z;;|x), however
we cannot use the reparametrization trick to backpropagate
though the sampling as our latent variables are discrete.
A recently popular approach to handle this difficulty is to
sample from a continuous approximation of the discrete
distribution (Maddison et al., 2017; Jang et al., 2017) and
use the repramatrization trick to get (biased) gradients from
this approximation. We used the concrete distribution (Mad-
dison et al., 2017) where samples are drawn as:

Z;j = softmax((h%m») +g)/7) 9)

where g € R¥ is a vector of i.i.d. samples drawn from a
Gumbel(0, 1) distribution and 7 (softmax temperature) is
a parameter that controls the “smoothness” of the samples.
This distribution converges to one-hot samples from our
categorical distribution when 7 — 0.

3.3. Decoder

The task of the decoder is to predict the future continuation
of the interacting system’s dynamics pg (x‘1[x!, ..., x!, z).
Since the decoder is conditioned on the graph z we can in
general use any GNN algorithm as our decoder.

For physics simulations the dynamics is Markovian
po(xttlxt ... x1, z) = py(x!TL|xt, z), if the state is lo-
cation and velocity and z is the ground-truth graph. For this
reason we use a GNN similar to interaction networks; unlike
interaction networks we have a separate neural network for
each edge type. More formally:

v—e flfi’j) = Z Zz;kfj([xfaxﬂ) (10)
k

emvspt =X+ fu(Si,hf ) AD

p(x;+1|xt, z) = N(u§+17 a?1) (12)

Note that z;;, denotes the k-th element of the vector z;;
and o is a fixed variance. When z;; . is a discrete one-hot
sample the messages hy, . are ff ([x,x4]) foF the selected
edge type k, and for the continuous relaxation we get a
weighted sum. Also note that since in Eq. 11 we add the

present state xg our model only learns the change in state
sz-.

3.4. Avoiding degenerate decoders

If we look at the ELBO, Eq. 3, the reconstruction loss term
has the form 3", log[p(x|x'~, z)] which involves only

single step predictions. One issue with optimizing this ob-
jective is that the interactions can have a small effect on
short-term dynamics. For example, in physics simulations
a fixed velocity assumption can be a good approximation
for a short time period. This leads to a sub-optimal decoder
that ignores the latent edges completely and achieves only a
marginally worse reconstruction loss.

We address this issue in two ways: First, we predict multiple
steps into the future, where a “degenerate” decoder (which
ignores the latent edges) would perform much worse. Sec-
ond, instead of having one neural network that computes
the messages given [x!, xg., z;;], as was done in (Battaglia
et al., 2016), we have a separate MLP for each edge type.
This makes the dependence on the edge type more explicit

and harder to be ignored by the model.

Predicting multiple steps is implemented by replacing the
correct input x¢, with the predicted mean ! for M steps
(we used M = 10 in our experiments), then feed in the
correct previous step and reiterate. More formally, if we

denote our decoder as p’ ! = fdec(x}) then we have:

J

/J’j'+1 = fdec

We are backpropagating through this whole process, and
since the errors accumulate for M steps the degenerate
decoder is now highly suboptimal.

3.5. Recurrent decoder

In many applications the Markovian assumption used in
Sec. 3.3 does not hold. To handle such applications we use
a recurrent decoder that can model py(x!*|x!, ..., x1, 7).
Our recurrent decoder adds a GRU (Cho et al., 2014) unit
to the GNN message passing operation. More formally:

v—e: flfi’j) = Z Zz]kfj([flfa fl;]) (13)
k

e—v: MSG) =3, ﬁgi,j) (14)
h'*t! = GRU(IMSG!,x!],h!) (15

BT =+ o (REH) (16)
p(x'Tx!, z) = N(p!'h, 0?1) (17)

The input to the message passing operation is the recurrent
hidden state at the previous time step. fo,+ denotes an output
transformation, modeled by a small MLP. For each node
v; the input to the GRU update is the concatenation of the
aggregated messages MSG§+1, the current input X;H, and
the previous hidden state fl;-.
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If we wish to predict multiple time steps in the recurrent
setting, the method suggested in Sec. 3.4 will be problematic.
Feeding in the predicted (potentially incorrect) path and
then periodically jumping back to the true path will generate
artifacts in the learned trajectories. In order to avoid this
issue we provide the correct input x’ in the first (7' — M)
steps, and only utilize our predicted mean u§. as input at the
last M time steps.

3.6. Training

Now that we have described all the elements, the train-
ing goes as follows: Given training example x we first
run the encoder and compute g4 (z;;|x), then we sample
z;; from the concrete reparameterizable approximation of
q¢(2;;|x). We then run the decoder to compute 2, ..., p”'.
The ELBO objective, Eq. 3, has two terms: the recon-
struction error Ey_ (x)[log pe(x|z)] and KL divergence
KL[ge(2|x)||pe(z)]. The reconstruction error is estimated
by:

202

T t L2

xbt — .

—Z I J uj“ + const (18)
j t=2

while the KL term for a uniform prior is just the sum of
entropies (plus a constant):

ZH(q¢(zij|x)) + const. (19)
i#£j

As we use a reparameterizable approximation, we can com-
pute gradients by backpropagation and optimize.

4. Related Work

Several recent works have studied the problem of learning
the dynamics of a physical system from simulated trajecto-
ries (Battaglia et al., 2016; Guttenberg et al., 2016; Chang
et al., 2017) and from generated video data (Watters et al.,
2017; van Steenkiste et al., 2018) with a graph neural net-
work. Unlike our work they either assume a known graph
structure or infer interactions implicitly.

Recent related works on graph-based methods for human
motion prediction include (Alahi et al., 2016) where the
graph is not learned but is based on proximity and (Le et al.,
2017) tries to cluster agents into roles.

A number of recent works (Monti et al., 2017; Duan et al.,
2017; Hoshen, 2017; Velickovi¢ et al., 2018; Garcia &
Bruna, 2018; van Steenkiste et al., 2018) parameterize mes-
sages in GNNs with a soft attention mechanism (Luong
et al., 2015; Bahdanau et al., 2015). This equips these mod-
els with the ability to focus on specific interactions with
neighbors when aggregating messages. Our work is dif-
ferent from this line of research, as we explicitly perform
inference over the latent graph structure. This allows for the
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Figure 4. Examples of trajectories used in our experiments from
simulations of particles connected by springs (left), charged parti-
cles (middle), and phase-coupled oscillators (right).

incorporation of prior beliefs (such as sparsity) and for an
interpretable discrete structure with multiple relation types.

The problem of inferring interactions or latent graph struc-
ture has been investigated in other settings in different
fields. For example, in causal reasoning Granger causality
(Granger, 1969) infers causal relations. Another example
from computational neuroscience is (Linderman et al., 2016;
Linderman & Adams, 2014) where they infer interactions
between neural spike trains.

5. Experiments

Our encoder implementation uses fully-connected networks
(MLPs) or 1D CNNs with attentive pooling as our message
passing function. For our decoder we used fully-connected
networks or alternatively a recurrent decoder. Optimiza-
tion was performed using the Adam algorithm (Kingma &
Ba, 2015). We provide full implementation details in the
supplementary material. Our implementation uses PyTorch
(Paszke et al., 2017) and is available online?.

5.1. Physics simulations

We experimented with three simulated systems: particles
connected by springs, charged particles and phase-coupled
oscillators (Kuramoto model) (Kuramoto, 1975). These
settings allow us to attempt to learn the dynamics and in-
teractions when the interactions are known. These systems,
controlled by simple rules, can exhibit complex dynamics.
For the springs and Kuramoto experiments the objects do
or do not interact with equal probability. For the charged
particles experiment they attract or repel with equal prob-
ability. Example trajectories can be seen in Fig. 4. We
generate 50k training examples, and 10k validation and test
examples for all tasks. Further details on the data generation
and implementation are in the supplementary material.

‘We note that the simulations are differentiable and so we can
use it as a ground-truth decoder to train the encoder. The
charged particles simulation, however, suffers from instabil-

https://github.com/ethanfetaya/nri
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Figure 5. Trajectory predictions from a trained NRI model (unsupervised). Semi-transparent paths denote the first 49 time steps of
ground-truth input to the model, from which the interaction graph is estimated. Solid paths denote self-conditioned model predictions.

Table 1. Accuracy (in %) of unsupervised interaction recovery.

Model Springs Charged Kuramoto
5 objects
Corr. (path) 52.4+00  55.8+00 62.8+00
Corr. (LSTM) 52.7+09  54.2420 54.4+05
NRI (sim.) 99.8+100  59.6x08 -
NRI (learned) 99.9+00 82.1+06 96.0+0.1
Supervised 99.9+00  95.0+03 99.7+00
10 objects
Corr. (path) 50.4+00  51.4+00 59.3+00
Corr. (LSTM) 54.9+10  52.7+02 56.2+07
NRI (sim.) 98.2+00  53.T+o0s -
NRI (learned) 98.4100 70.8+04 75.7+03
Supervised 98.8+00  94.6+02 97.1+0.1

ity which led to some performance issues when calculating
gradients; see supplementary material for further details.
We used an external code base (Laszuk, 2017) for stable
integration of the Kuramoto ODE and therefore do not have
access to gradient information in this particular simulation.

Results We ran our NRI model on all three simulated
physical systems and compared our performance, both in
future state prediction and in accuracy of estimating the
edge type in an unsupervised manner.

For edge prediction, we compare to the “gold standard”
i.e. training our encoder in a supervised way given the
ground-truth labels. We also compare to the following base-
lines: Our NRI model with the ground-truth simulation
decoder, NRI (sim.), and two correlation based baselines,

Corr. (path) and Corr. (LSTM). Corr. (path) estimates the
interaction graph by thresholding the matrix of correlations
between trajectory feature vectors. Corr. (LSTM) trains
an LSTM (Hochreiter & Schmidhuber, 1997) with shared
parameters to model each trajectory individually and calcu-
lates correlations between the final hidden states to arrive at
an interaction matrix after thresholding. We provide further
details on these baselines in the supplementary material.

Results for the unsupervised interaction recovery task are
summarized in Table 1 (average over 5 runs and standard
error). As can be seen, the unsupervised NRI model, NRI
(learned), greatly surpasses the baselines and recovers the
ground-truth interaction graph with high accuracy on most
tasks. For the springs model our unsupervised method is
comparable to the supervised “gold standard” benchmark.
We note that our supervised baseline is similar to the work
by (Santoro et al., 2017), with the difference that we perform
multiple rounds of message passing in the graph. Additional
results on experiments with more than two edge types and
non-interacting particles are described in the supplementary
material.

For future state prediction we compare to the static baseline,
ie. x't1 = x*, two LSTM baselines, and a full graph
baseline. One LSTM baseline, marked as ““single”, runs a
separate LSTM (with shared weights) for each object. The
second, marked as “joint” concatenates all state vectors and
feeds it into one LSTM that is trained to predict all future
states simultaneously. Note that the latter will only be able
to operate on a fixed number of objects (in contrast to the
other models).

In the full graph baseline, we use our message passing
decoder on the fully-connected graph without edge types,
i.e. without inferring edges. This is similar to the model
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Table 2. Mean squared error (MSE) in predicting future states for simulations with 5 interacting objects.

\ Springs Charged Kuramoto

Prediction steps | 1 10 20 | 10 20 1 10 20

Static 7.93e-5 7.59e-3 2.82e-2 | 5.09¢-3 2.26e-2 5.42e-2 | 5.75¢-2 3.79e-1 3.39-1
LSTM (single) 227e-6  4.69¢-4 4.90e-3 | 2.71e-3 7.05e-3 1.65e-2 | 7.8le-4 3.80e-2 8.08e-2
LSTM (joint) 4.13e-8  2.19e-5 7.02e-4 | 1.68e-3 6.45¢e-3 1.49e-2 | 3.44e-4 1.29e-2 4.74e-2
NRI (full graph) | 1.66e-5 1.64e-3 6.31e-3 | 1.09e-3 3.78e-3 9.24e-3 | 2.15e-2 5.19e-2  8.96e-2
NRI (learned) 3.12e-8  3.29e-6 2.13e-5 | 1.05e-3 3.21e-3 7.06e-3 | 1.40e-2 2.0le-2 3.26e-2
NRI (true graph) ‘ 1.69e-11 1.32e-9 7.06e-6 | 1.04e-3 3.03e-3 5.71e-3 | 1.35e-2 1.54e-2 2.19e-2

@ 0.0154 — NRI(learned dynamic) —— NRI (learned graph)
g ’ —— NRI (learned static) 0.006 1 —&— NRI (full graph)
< —— NRI (full graph) —¥— LSTM (joint)
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Figure 6. Test MSE comparison for motion capture (walking) data
(left) and sports tracking (SportVU) data (right).

used in (Watters et al., 2017). We also compare to the “gold
standard” model, denoted as NRI (true graph), which is
training only a decoder using the ground-truth graph as
input. The latter baseline is comparable to previous works
such as interaction networks (Battaglia et al., 2016).

In order to have a fair comparison, we generate longer test
trajectories and only evaluate on the last part unseen by the
encoder. Specifically, we run the encoder on the first 49 time
steps (same as in training and validation), then predict with
our decoder the following 20 unseen time steps. For the
LSTM baselines, we first have a “burn-in” phase where we
feed the LSTM the first 49 time steps, and then predict the
next 20 time steps. This way both algorithms have access
to the first 49 steps when predicting the next 20 steps. We
show mean squared error (MSE) results in Table 2, and
note that our results are better than using LSTM for long
term prediction. Example trajectories predicted by our NRI
(learned) model for up to 50 time steps are shown in Fig. 5.

For the Kuramoto model, we observe that the LSTM base-
lines excel at smoothly continuing the shape of the wave-
form for short time frames, but fail to model the long-term
dynamics of the interacting system. We provide further
qualitative analysis for these results in the supplementary
material.

It is interesting to note that the charged particles experiment
achieves an MSE score which is on par with the NRI model

given the true graph, while only predicting 82.6% of the
edges accurately. This is explained by the fact that far away
particles have weak interactions, which have only small
effects on future prediction. An example can be seen in Fig.
5 in the top row where the blue particle is repelled instead
of being attracted.

5.2. Motion capture data

The CMU Motion Capture Database (CMU, 2003) is a large
collection of motion capture recordings for various tasks
(such as walking, running, and dancing) performed by hu-
man subjects. We here focus on recorded walking motion
data of a single subject (subject #35). The data is in the form
of 31 3D trajectories, each tracking a single joint. We split
the different walking trials into non-overlapping training (11
trials), validation (4 trials) and test sets (7 trials). We provide
both position and velocity data. See supplementary material
for further details. We train our NRI model with an MLP
encoder and RNN decoder on this data using 2 or 4 edge
types where one edge type is “hard-coded” as non-edge,
i.e. messages are only passed on the other edge types. We
found that experiments with 2 and 4 edge types give almost
identical results, with two edge types being comparable in
capacity to the fully connected graph baseline while four
edge types (with sparsity prior) are more interpretable and
allow for easier visualization.

Dynamic graph re-evaluation We find that the learned
graph depends on the particular phase of the motion (Fig. 7),
which indicates that the ideal underlying graph is dynamic.
To account for this, we dynamically re-evaluate the NRI
encoder for every time step during testing, effectively result-
ing in a dynamically changing latent graph that the decoder
can utilize for more accurate predictions.

Results The qualitative results for our method and the
same baselines used in Sec. 5.1 can be seen in Fig. 6. As one
can see, we outperform the fully-connected graph setting
in long-term predictions, and both models outperform the
LSTM baselines. Dynamic graph re-evaluation significantly
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(a) Right hand focus

(b) Left hand focus

Figure 7. Learned latent graphs on motion capture data (4 edge
types)*. Skeleton shown for reference. Red arrowheads denote
directionality of a learned edge. The edge type shown favors a
specific hand depending on the state of the movement and gathers
information mostly from other extremities.

improves predictive performance for this dataset compared
to a static baseline. One interesting observation is that the
skeleton graph is quite suboptimal, which is surprising as
the skeleton is the “natural” graph. When examining the
edges found by our model (trained with 4 edge types and a
sparsity prior) we see an edge type that mostly connects a
hand to other extremities, especially the opposite hand, as
seen in Fig. 7. This can seem counter-intuitive as one might
assume that the important connections are local, however
we note that some leading approaches for modeling motion
capture data (Jain et al., 2016) do indeed include hand to
hand interactions.

5.3. Pick and Roll NBA data

The National Basketball Association (NBA) uses the
SportVU tracking system to collect player tracking data,
where each frame contains the location of all ten players
and the ball. Similar to our previous experiments, we test
our model on the task of future trajectory prediction. Since
the interactions between players are dynamic, and our cur-
rent formulation assumes fixed interactions during training,
we focus on the short Pick and Roll (PnR) instances of the
games. PnR is one of the most common offensive tactics in
the NBA where an offensive player sets a screen for the ball
handler, attempting to create separation between the ball
handler and his matchup.

We extracted 12k segments from the 2016 season and used
10k, 1k, 1k for training, validation, and testing respectively.
The segments are 25 frames long (i.e. 4 seconds) and con-
sist of only 5 nodes: the ball, ball hander, screener, and
defensive matchup for each of the players.

“The first edge type is “hard-coded” as non-edge and was
trained with a prior probability of 0.91. All other edge types
received a prior of 0.03 to favor sparse graphs that are easier to
visualize. We visualize test data not seen during training.

edge type 1 edge type 2
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Figure 8. Distribution of learned edges between players (and the
ball) in the basketball sports tracking (SportVU) data.

We trained a CNN encoder and a RNN decoder with 2
edge types. For fair comparison, and because the trajectory
continuation is not PnR anymore, the encoder is trained on
only the first 17 time steps (as deployed in testing). Further
details are in the supplementary material. Results for test
MSE are shown in Figure 6. Our model outperforms a
baseline LSTM model, and is on par with the full graph.

To understand the latent edge types we show in Fig. 8 how
they are distributed between the players and the ball. As we
can see, one edge type mostly connects ball and ball handler
(off-ball) to all other players, while the other is mostly inner
connections between the other three players. As the ball and
ball handler are the key elements in the PnR play, we see
that our model does learn an important semantic structure
by separating them from the rest.

6. Conclusion

In this work we introduced NRI, a method to simultaneously
infer relational structure while learning the dynamical model
of an interacting system. In a range of experiments with
physical simulations we demonstrate that our NRI model is
highly effective at unsupervised recovery of ground-truth
interaction graphs. We further found that it can model the
dynamics of interacting physical systems, of real motion
tracking and of sports analytics data at a high precision,
while learning reasonably interpretable edge types.

Many real-world examples, in particular multi-agent sys-
tems such as traffic, can be understood as an interacting sys-
tem where the interactions are dynamic. While our model
is trained to discover static interaction graphs, we demon-
strate that it is possible to apply a trained NRI model to this
evolving case by dynamically re-estimating the latent graph.
Nonetheless, our solution is limited to static graphs during
training and future work will investigate an extension of the
NRI model that can explicitly account for dynamic latent
interactions even at training time.
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