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Abstract

The problem of imbalanced domains, framed within predictive tasks, is relevant in many
practical applications. When dealing with imbalanced domains a performance degradation
is usually observed on the most rare and relevant cases for the user. This problem has been
thoroughly studied within a classification setting where the target variable is nominal. The
exploration of this problem in other contexts is more recent within the research commu-
nity. For regression tasks, where the target variable is continuous, only a few solutions
exist. Pre-processing strategies are among the most successful proposals for tackling this
problem. In this paper we propose a new pre-processing approach for dealing with imbal-
anced regression. Our algorithm, SMOGN, incorporates two existing proposals trying to
solve problems detected in both of them. We show that SMOGN has advantages in com-
parison to other approaches. We also show that our method has a different impact on the
learners used, displaying more advantages for Random Forest and Multivariate Adaptive
Regression Splines learners.

Keywords: Imbalanced domains, Regression, Pre-processing

1. Introduction

Imbalanced domains are a relevant problem that has been studied mostly in the context
of classification tasks (He and Garcia, 2009; López et al., 2013). This is an important
problem with applications in a diversity of real world domains. Several proposals were
put forward for dealing with imbalanced classification tasks. However, imbalanced domains
also occur in other predictive contexts, such as regression tasks, data streams or time
series forecasting (Branco et al., 2016b; Krawczyk, 2016). Still, the exploration of new
strategies suitable for these tasks is scarce. Imbalanced domains represent a problem due
to the concurrence of two factors: i) the non-uniform preferences of the user across the
target variable domain; and ii) the scarce representation, in the available data, of the
most relevant cases to the user. The conjugation of these two factors hinders the learners
predictive performance on the cases that are most important to the user.

The problem of imbalanced domains in regression presents an increased difficulty when
compared to classification. In fact, in regression data sets the continuous nature of the
target variable adds complexity to the task because there is a potentially infinite number
of values to deal with, and the specification of the more/less relevant values of the target
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is also not straightforward. For tackling imbalanced regression problems, which is the
focus of this paper, only a few proposals were made. In this paper we propose a new
method for addressing the problem of imbalanced regression. This method, which we named
SMOGN, combines an under-sampling strategy with two over-sampling strategies. The main
motivation for the use of two over-sampling procedures is to alleviate some of the problems
inherent to those procedures.

This paper is organized as follows. Section 2 presents the definition of the problem of
imbalanced regression. In Section 3 an overview of the existing related work is presented.
Our SMOGN algorithm is described in Section 4 and the results of an extensive experimental
evaluation are discussed in Section 5. Finally, Section 6 presents the main conclusions.

2. Problem Definition

The problem of imbalanced domains occurs in the context of predictive tasks. The main
goal in these tasks is to obtain a model that approximates an unknown function Y = f(x).
In order to find this model, a training set D = {〈xi, yi〉}Ni=1 with N examples is used. The
predictive task is named regression when the target variable Y is continuous, and is named
classification when Y is nominal.

Imbalanced regression tasks are a particular class of regression problems that can be
characterized by two properties: i) the user has non-uniform preferences across the
target variable domain and ii) the most important ranges are poorly represented.
This means that in imbalanced regression the user assigns more importance to the predictive
performance achieved in some poorly represented ranges of the target variable in comparison
with other more frequent ranges. The conjugation of these two factors cause a performance
degradation on the most important cases for the user. If the user preferences are biased
towards ranges of the target variable domain which are well represented, then the learning
algorithms will not have difficulty in learning those cases and we do not have a problem of
imbalanced domains. On the other hand, if there are ranges of the target variable domain
poorly represented but the user is uniformly interested in all the domain values, then we
also do not face a problem of imbalanced domains because all the cases are equally relevant
to the user.

The problem of imbalanced regression implies an increased level of difficulty in compar-
ison to the class imbalance problem because the target variable has a potentially infinite
number of values. Therefore, the definition of the important/unimportant values of the tar-
get variable is an issue that must be considered. To address this issue, Torgo and Ribeiro
(2007) and Ribeiro (2011) proposed the definition of a relevance function. The rele-
vance function, φ : Y → [0, 1], maps the target variable domain into a scale of relevance,
where 1 corresponds to the maximal relevance and 0 to the minimum relevance. Still, the
task of deriving this relevance can be hard in regression. Moreover, this information is
domain dependent and ideally should be provided by domain experts. To overcome this is-
sue, Ribeiro (2011) proposed an automatic way for estimating the relevance function, φ(y),
from the target variable sample distribution. The method proposed to obtain this estimate
assumes the frequent setting where the rare and most extreme cases are the most relevant
to the user. With a relevance function defined we can determine the sets of normal and rare
values. To achieve this, the user is required to set a threshold tR on the relevance values.
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Given this threshold we can formally define the set of rare and relevant cases, DR, and the
set of normal and uninteresting cases, DN , as follows: DR = {〈x, y〉 ∈ D : φ(y) ≥ tR} and
DN = {〈x, y〉 ∈ D : φ(y) < tR}.

To deal with imbalanced regression problems we need to take into account both the per-
formance assessment issue and the problem of biasing the learning algorithm towards the
relevant cases. Regarding the performance assessment issue, the use of standard evaluation
measures is not a suitable option (Ribeiro, 2011; Branco et al., 2016b). Special purpose eval-
uation measures are required in this context. A suitable framework was proposed by Torgo
and Ribeiro (2009) and Ribeiro (2011) for obtaining precision and recall for imbalanced

regression tasks. In this paper we use the F1-measure (F φ1 ) proposed by Branco (2014) that
is based on the mentioned framework. In this paper we are focused on the second issue and
propose a new pre-processing solution for improving the learners capability in imbalanced
regression tasks.

3. Related Work

The problem of imbalanced domains has been addressed mainly in a classification context.
Therefore, a diversity of strategies exist to tackle this problem when the predictive tasks
involve a nominal target variable. However, other predictive tasks that also suffer from the
problem of imbalanced domains still remain scarcely studied (Branco et al., 2016b). This
is the case of regression tasks, where the target variable is numeric.

The approaches for dealing with imbalanced domains may be clustered according to the
moment where an intervention is made in the learning process. These approaches can be
categorized as: i) pre-processing; ii) special purpose algorithm; iii) post-processing; or iv)
hybrid. In this paper we focus on the first of these approaches. Pre-processing solutions
change the original data distribution before the learning algorithm is applied. The goal is
to change the target variable distribution to force the learning algorithm to focus on the
rare and interesting cases. These solutions are among the most commonly used due to their
flexibility regarding the use of any learning algorithm and their simplicity because they
only involve manipulating the original data set distribution. However, we highlight that
the efficiency of these methods is dependent on how the change in the data distribution is
carried out, which is still an open issue.

An extensive set of proposals exist for tackling class imbalance problems. Regarding
imbalanced regression tasks, only a few pre-processing methods were proposed. We will
briefly describe the three following strategies: random under-sampling (Torgo et al., 2013,
2015), SmoteR (Torgo et al., 2013) and introduction of Gaussian Noise (Branco et al.,
2016a). These methods were initially proposed for dealing with class imbalance and were
later adapted to a regression context. In all these methods, to achieve this adaptation, the
user must provide both a relevance function and a threshold on the relevance that are used
to determine the DR and DN sets.

Random under-sampling is a straightforward strategy that randomly removes examples
belonging to the normal and less interesting ranges of the target variable. This allows
to achieve a better balance between the interesting/rare an uninteresting/normal cases.
The user is also required to set the amount of reduction to be carried out in the normal
cases. SmoteR (Torgo et al., 2013) is an adaption for regression of the well-known Smote
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(Chawla et al., 2002) algorithm. This proposal applies random under-sampling in the normal
cases and generates new synthetic “smoted” examples from the rare cases. The synthetic
cases are generated through an interpolation strategy. This interpolation is carried out
using two rare cases (one is a seed case and the other is randomly selected from the k-
nearest neighbours of the seed). The features of the two cases are interpolated, and the
new target variable value is determined as a weighted average of the target variable values
of the two rare cases used. All rare cases are used in turn as seed examples. The user is
also required to define the percentage of over and under-sampling to be carried out1. The
introduction of Gaussian Noise (Branco et al., 2016a) is an adaptation to regression of the
method proposed by Lee (1999, 2000) for classification tasks. This method also combines
random under-sampling of the normal cases with the generation of synthetic rare examples.
However, the new cases are generated using the addition of normally distributed noise to
existing rare cases. The user is required to set the amount of over-/under-sampling to be
carried out and the amount of noise that can be used in the synthetic cases generation.

4. SMOGN Algorithm

In this section we describe our proposal for dealing with imbalanced regression problems
where the most important cases to the user are poorly represented in the available data. The
algorithm we present is framed within the pre-processing approaches for tackling imbalanced
domains which act before the learning process stage.

Our method is named SMOGN and combines random under-sampling with two over-
sampling techniques: SmoteR and introduction of Gaussian Noise. The key idea of
SMOGN algorithm is to combine both strategies for generating synthetic examples with
the goal of simultaneously limiting the risks that SmoteR can incur into by using the more
conservative strategy of introducing Gaussian Noise, and allow an increase of the diver-
sity in examples generation, which is not possible to achieve using only the introduction of
Gaussian Noise. SMOGN will generate new synthetic examples with SmoteR only when
the seed example and the k-nearest neighbour selected are “close enough” and will use the
introduction of Gaussian Noise when the two examples are “more distant”. SMOGN is mo-
tivated by: i) the limitation of the risks incurred when using SmoteR because it will not
use the most distant examples in the interpolation process; and ii) allowing the expansion
of the decision boundaries for the rare cases increasing the generalization capability, which
is more difficult to achieve with the introduction of Gaussian Noise because it is a more
conservative approach.

Algorithm 1 describes our proposed SMOGN strategy. SMOGN algorithm begins by
building data partitions containing consecutive examples considering the target variable
value. These partitions are clustered into two types: BinsR - the rare and important
partitions, and BinsN - the normal and less important partitions. This means that the
data partitions inBinsR contain the higher relevance examples, i.e., examples with relevance
above a pre-defined threshold, while the partitions included in BinsN have examples less
interesting to the user because they have a lower relevance, i.e., the relevance score of
the examples target variable value is below the threshold set. To the partitions included in
BinsN a random under-sampling procedure is applied. On the other hand, the partitions in

1. Further details regarding SmoteR algorithm can be obtained in Torgo et al. (2013).
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BinsR will be targeted with an over-sampling procedure. For each case (the seed example)
in a partition belonging to BinsR a number of synthetic cases is generated. The over-
sampling will use either SmoteR or the introduction of Gaussian Noise strategy to generate
new cases depending on the distance between the seed example and the selected k-nearest
neighbour. The main idea is that if the selected neighbour is “safe” then he is in a distance
considered to be suitable to perform interpolation through the SmoteR strategy. On the
other hand, if the selected neighbour is not in the safe range, then he is too far away to
be used to perform interpolation which means that, in this case, it is better to generate a
new example by introducing Gaussian Noise on the seed case. The threshold that is used
to decide if the neighbour is at a safe or unsafe distance depends on the distance between
the seed example and all the remaining cases in the partition under consideration. We used
half of the median of the distances between the seed example and the other examples in the
same partition.

Figure 1 shows a synthetic example with the 5-nearest neighbours of a seed case, where
some are within a safe distance and others are at an unsafe distance. Examples marked
with bullets are from a relevant bin, while examples marked with crosses are from a normal
bin. In this example we show thatexamples belonging to the normal bin are more likely to
overlap with the examples of the relevant bin at an unsafe distance.

case

Tgt

X1

X2

5-NN

Safe

Unsafe

Figure 1: Synthetic example of the application of SMOGN algorithm.

5. Experimental Evaluation

We designed an experimental setup with the goal of assessing the effectiveness of SMOGN
strategy in the context of imbalanced regression tasks. For this purpose we selected 20
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Algorithm 1: SMOGN Algorithm.

Input: D - data set with target continuous variable Y
tR - threshold for relevance on Y values
%u - percentage of under-sampling
%o - percentage of over-sampling
k - number of nearest neighbours
dist - distance metric

Output: newD - a new modified data set
OrdD ← order D by ascending value of Y
φ()← relevance function obtained from Y distribution
BinsN ← partitions of consecutive examples 〈xi, yi〉 ∈ OrdD, such that φ(yi) < tR
BinsR ← partitions of consecutive examples 〈xi, yi〉 ∈ OrdD, such that φ(yi) ≥ tR
newD ← BinsR
foreach B ∈ BinsN do // random under-sampling procedure

selNormCases← randomly sample %u× |B| cases from B
newD ← newD

⋃
selNormCases

end
foreach B ∈ BinsR do // over-sampling procedure

ng ← %o× |B| // nr of synthetic cases to generate for each case in B
foreach case ∈ B do // generate synthetic examples

nns← kNN(k, case,B, dist) // k-Nearest Neighbours of case

DistM ← distances between the case and the examples in B
maxD ← median(DistM)/2
for i← 1 to ng do

x← randomly choose one of the nns
if DistM(x) < maxD then // safe kNN selected

new ← use SmoteR to interpolate x and case
else // non-safe kNN selected

pert← min(maxD, 0.02)
new ← introduce Gaussian Noise in case with a perturbation pert

end
newD ← newD

⋃
{new} // add synthetic case to newD

end

end

end
return newD

regression data sets from different imbalanced domains. Table 1 shows the main charac-
teristics of the used data sets. We obtained a relevance function for each data set through
the automatic method proposed by Ribeiro (2011). In this method the quartiles and inter-
quartile range of the target variable distribution are used for assigning a higher relevance
to both high and low extreme values of the target variable2. Therefore, the considered data
sets will have either one extreme (on the high or low values of the target variable) or two

2. Further details available in Ribeiro (2011).
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Table 1: Data sets information by descending order of rare cases percentage. (N : nr of

cases; p.total: nr predictors; p.nom: nr nominal predictors; p.num: nr numeric predictors;

nRare: nr. cases with φ(y) > 0.8; %Rare: 100× nRare/N).

Data Set N p.total p.nom p.num nRare % Rare
servo 167 4 2 2 34 20.4
a6 198 11 3 8 33 16.7
Abalone 4177 8 1 7 679 16.3
machineCpu 209 6 0 6 34 16.3
a3 198 11 3 8 32 16.2
a4 198 11 3 8 31 15.7
a1 198 11 3 8 28 14.1
a7 198 11 3 8 27 13.6
boston 506 13 0 13 65 12.8
a2 198 11 3 8 22 11.1
a5 198 11 3 8 21 10.6
fuelCons 1764 38 12 26 164 9.3
availPwr 1802 16 7 9 157 8.7
cpuSm 8192 13 0 13 713 8.7
maxTorq 1802 33 13 20 129 7.2
bank8FM 4499 9 0 9 288 6.4
dAiler 7129 5 0 5 450 6.3
ConcrStr 1030 8 0 8 55 5.3
Accel 1732 15 3 12 89 5.1
airfoild 1503 5 0 5 62 4.1

Learner Parameter Variants R package

MARS nk = {10, 17}, degree = {1, 2}, thresh = {0.01, 0.001} earth (Milborrow, 2012)
SVM cost = {10, 150, 300}, gamma = {0.01, 0.001} e1071 (Dimitriadou et al., 2011)
RF mtry = {5, 7}, ntree = {500, 750, 1500} randomForest (Liaw and Wiener, 2002)
NNET size = {1, 2, 5, 10}, decay = {0, 0.01} nnet (Venables and Ripley, 2002)

Table 2: Regression algorithms, parameter variants, and respective R packages used.

extremes (high and low extremes of the target variable). We considered a threshold of 0.8
on the relevance values in all data sets to obtain the set of rare/important cases, DR and the
set of normal/unimportant cases, DN . We can observe on Table 1 that this method allows
us to obtain different percentages of rarity on the 20 used data sets, with values ranging
between 4% and 20%. To ensure the reproducibility of our results, all code, data sets and
results obtained are available in https://github.com/paobranco/SMOGN-LIDTA17.

All our experiments were carried out in the R environment. To ensure the diversity
of the learning algorithms, we selected the four following types: Multivariate Adaptive
Regression Splines (MARS), Support Vector Machines (SVM), Random Forests (RF) and
Neural Networks (NNET). The learning algorithms, respective R packages and the used
parameter variants are displayed in Table 2.

We applied each of the 28 learning approaches (8 MARS variants + 6 SVM variants +
6 RF variants + 8 NNET variants) to each of the 20 regression problems using 5 different
resampling strategies. The resampling strategies that we tested were as follows: i) carrying
out no sampling, i.e., using the original imbalanced data set (None); ii) random under-
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Figure 2: Wins (left) and losses (right) of each learner (top left: MARS, top right: SVM,
bottom left: RF and bottom right: NNET) against None, i.e., the baseline of
using the original imbalanced data sets.

sampling (RU); iii) SmoteR method (SMT); iv) introduction of Gaussian Noise (GN);
and v) SMOGN algorithm (SMOGN). All the resampling strategies were applied with
the goal of balancing the number of rare and normal cases and roughly maintain the same
total number of examples in each data set, with the exception of random under-sampling
strategy which is only able to reduce the data set size. Overall, we tested 2800 combinations
(28× 20× 5).

As mentioned in Section 2, in imbalanced regression problems it is necessary to use a
suitable evaluation measure. In all the experiments conducted we used the F φ1 measure
for regression (Branco, 2014). We used β = 1, which means that the same importance is

given to both precision and recall scores. The F φ1 values were estimated through a 2× 10 -
fold stratified cross validation process and the statistical significance of the observed paired
differences was measured using the non-parametric Wilcoxon paired test for a significance
level of 95%. The R packages used in our experiments were: performanceEstimation (Torgo,
2014) for the experimental infra-structure; uba3 for obtaining the relevance function and

F φ1 metric evaluation; and UBL (Branco et al., 2016a) for the implementation of random
under-sampling, SmoteR and introduction of Gaussian Noise resampling strategies.

The main results are summarized in Figures 2, 3 and 4. The detailed results, used code
and data sets are provided in https://github.com/paobranco/SMOGN-LIDTA17. Figure 2
shows the total number of wins/losses and significant wins/losses obtained against the

baseline of using the original data set through the Wilcoxon paired comparison for the F φ1
measure. Darker bars indicate significant wins/losses while lighter bars represent wins/losses

3. Available at http://www.dcc.fc.up.pt/~rpribeiro/uba/.
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Figure 3: Wins (left) and losses (right) of each learner (top left: MARS, top right: SVM,
bottom left: RF and bottom right: NNET) against the baseline of using the
introduction of Gaussian Noise strategy.
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without statistical significance. The results are detailed by learning algorithm. Figures 3
and 4 display a similar comparison changing only the baseline against which the comparisons
are made: introduction of Gaussian Noise is used on Figure 3 and SmoteR algorithm is
used on Figure 4. A total of 120 (20 data sets × 6 learner variants) comparisons are made
for the SVM and RF learners while 160 (20 data sets × 8 learner variants) comparisons are
made for the MARS and NNET learners.

Generally, SMOGN algorithm has a performance comparable to SmoteR and to the
introduction of Gaussian Noise. However, there is a clear difference in the results obtained
for different learners. In fact, we observe that SMOGN has better results than the remaining
algorithms for MARS and RF learners. The results are less favourable to SMOGN when an
SVM is used, and the performance is similar to the SmoteR and introduction of Gaussian
Noise strategies when NNET is applied. This means that our proposed method presents
clear advantages when compared against None, introduction of Gaussian Noise and SmoteR
when then learner used is MARS or RF.

Figures 5, 6 and 7 show the aggregated results obtained through the Wilcoxon paired
comparison test for the resampling strategies tested against using respectively: the original
data set (None), the SmoteR algorithm (SMT) and the introduction of Gaussian Noise
strategy (GN). Each resampling strategy was compared against the baseline a total of 560
(20 data sets × 28 learners) times. The results presented show that globally the performance
of SMOGN algorithm has advantages. For instance, the global number of wins of SMOGN
is always larger than the alternative resampling strategies against all the baselines. Also
for the global number of losses, SMOGN has always a lower number than the remaining
strategies against all baselines. Moreover, all the strategies tested have more losses than
wins against SmoteR strategy with the exception of SMOGN which displays more wins
than losses. Against the introduction of Gaussian Noise, both SmoteR and SMOGN have
more wins than losses.

The results show that our proposed algorithm has advantages when compared with the
baseline of not using any resampling and also in comparison to the random under-sampling,
SmoteR and introduction of Gaussian Noise resampling strategies. SMOGN algorithm
achieves results close to the ones obtained through SmoteR and introduction of Gaussian
Noise. We believe that this happens because the algorithm was build to deal with specific
problems that can occur due to some data characteristics. When these problems are not
present our method will have a behaviour similar to the SmoteR or the introduction of
Gaussian Noise strategies. We believe that our method could stand out more when tested
on data sets containing different regions of the features space with relevant cases. Due to
space constraints, this exploration will be left for future work.

To provide a better understanding of the F φ1 results, we show a brief analysis of the precφ

and recφ metrics. This may be relevant because frequently, when dealing with the problem
of imbalance domains in classification, the gains observed in terms of F1 are achieved by
considerably improving the recall while having some deterioration of performance on pre-
cision. Figures 8 and 9 show the Wilcoxon paired test results of precφ and recφ metrics in
all learners, against the baseline of using the original imbalanced data sets. In this case,
SMOGN method has a performance similar to the remaining methods.

Figures 10 and 11 show the results of Wilcoxon paired test against the baseline of
introducing Gaussian Noise considering the precφ and recφ metrics. In this case results
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Figure 5: Overall wins (left) and losses (right) against the baseline of using the original
imbalanced data sets.

show that random-undersampling method has a poor performance on precφ. Still, we should
note that all the methods with exception of the strategy that uses the original data sets
show smaller significant wins. On the other hand, when considering recφ metric, all the
pre-processing methods display higher wins and lower losses in comparison to the strategy
of not applying any resampling. This confirms in the imbalanced regression context, what
was already observed in imbalanced classification: pre-processing methods achieve an higher
recall at the cost of worsening the precision results.

Figure 12 and 13 show the results of Wilcoxon paired test against the baseline of using
SmoteR strategy. The same tendency is displayed in these figures. We highlight that
random under-sampling method has generally less wins on precφ metric in comparison to
the other methods when considering as baseline either the SmoteR or the introduction of
Gaussian Noise method. Still, regarding the recφ this method has a similar performance.
We also notice that SMOGN performance on both precφ and recφ stands out more when
using the SmoteR as baseline. Further results of precφ and recφ, namely the metrics results
by each learner, are available at https://github.com/paobranco/SMOGN-LIDTA17.

6. Conclusions

In this paper we presented a new pre-processing method, SMOGN, for tackling imbalanced
regression problems. Being a pre-processing method, it has the advantage of being versatile
because it allows the use of any standard learning algorithm. The method proposed tries
to overcome difficulties in SmoteR strategy and in the introduction of Gaussian Noise
strategy. It uses the interpolation method of SmoteR for interpolating examples that are
closer. This way we tried to eliminate the risk of interpolating examples that, although
being among the nearest neighbours of the seed example, are too distant. On the other
hand, the use of SmoteR allows to expand the decision boundaries which is only achieved
in a limited way with the more conservative method that generates synthetic cases by
introducing Gaussian Noise.
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using the original imbalanced
data sets considering the precφ

metric.
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Figure 9: Overall wins (left) and losses
(right) against the baseline of
using original imbalanced data
sets considering the recφ met-
ric.
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Figure 10: Overall wins (left) and losses
(right) against the baseline of
using introduction of Gaus-
sian Noise strategy, consider-
ing the precφ metric.
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Figure 11: Overall wins (left) and losses
(right) against the baseline of
using introduction of Gaus-
sian Noise strategy, consider-
ing the recφ metric.
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Figure 12: Overall wins (left) and losses
(right) against the baseline of
using SmoteR strategy, con-
sidering the precφ metric.
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Figure 13: Overall wins (left) and losses
(right) against the baseline of
using SmoteR strategy, con-
sidering the recφ metric.
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We show that our method has advantages in comparison to the SmoteR and the intro-
duction of Gaussian Noise strategies. We also show that the change in the data distribution
achieved with SMOGN has a different impact on the learners tested, displaying more ad-
vantages in RF and MARS learners and less in SVM and NNET. The key contributions of
this paper are: i) the proposal of a new pre-processing method that is able to incorporate
two over-sampling strategies; ii) test and compare our proposal against the baseline of using
the original data and against the strategies SmoteR and introduction of Gaussian Noise.

As future work we plan to extend these approaches to imbalanced classification tasks,
comparing the impact of SMOGN strategy in different domains. We would also like to
explore: why this strategy has a different impact on the different learners, and which data
characteristics may be related with a better performance in SMOGN strategy. Another
important aspect to consider is the application of SMOGN proposal on data sets with
different percentages of rare cases. To achieve this, different thresholds on the relevance
values could be used on the data sets.
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