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Abstract

In this study, we provide an empirical comparison of methods for sum-product network (SPN)
learning and inference. LearnSPN is a popular algorithm for learning SPNs that utilizes chop and
slice operations. As g-fest is a standard chopping method and Gaussian mixture models (GMM)
using expectation-maximization is a common slicing method, it seems to have been assumed in
the literature that this is the best pair in LearnSPN. On the contrary, our results show that g-test for
chopping and k-means for slicing yields SPNs that are just as accurate. Moreover, it has been shown
that implementing SPN leaf nodes as Chow-Liu Trees (CLTs) yields more accurate SPNs for the
former pair. Our experiments show the same for the latter pair, and that neither pair dominates the
other. Lastly, we report an analysis of SPN topology for unstudied pairs. With respect to inference,
we derive partial propagation (PP), which performs SPN exact inference without requiring a full
propagation over all nodes in the SPN as currently done. Experimental results on SPN datasets
demonstrate that PP has several advantages over full propagation in SPNs, including relative time
savings, absolute time savings in large SPNs, and scalability.

Keywords: sum-product networks, learning, inference

1. Introduction

Deep learning (Goodfellow et al., 2016)) is a powerful and robust framework which represents the
real-world as a nested hierarchy of concepts, with each concept defined in relation to simpler con-
cepts, and more abstract representations computed in terms of less abstract ones. Even though it has
been conjectured that deeper models are more expressive than shallow ones, sum-product networks
(SPNs) (Poon and Domingos, 2011) are the only deep learning model where this is provably the
case (Delalleau and Bengio, [2011; [Martens and Medabalimi, 2014)). [Delalleau and Bengio| (2011)
explicitly write that these results contribute to the motivation of learning deep SPNs. Gens and
Domingos| (2013)) introduced LEARNSPN, which has become the standard unsupervised learning
algorithm for SPNs. LEARNSPN applies two general steps, namely, a “chop” operation for splitting
variables (columns) in a dataset and a “slice” operation for clustering instances (rows) in a dataset.
G-test (Woolf], |1957)) is an established chopping method, while Gaussian mixture models (GMM)
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using expectation-maximization (Duda et al.l 2012) is a standard slicing method. As such, it seems
to have been implicitly assumed in the literature (Rooshenas and Lowd, 2014} |Vergari et al.| 2015,
2018)) that g-test and GMM is the best pair of chop and slice to use in LEARNSPN.

In this paper, we present an empirical study of three other pairs of chop and slice in LEARNSPN.
We include mutual information (Cover and Thomas| [2012) for chopping, and k-means (Hastie et al.,
2009) for slicing. Interestingly, our results show that g-test for chopping and k-means for slicing
tend to produce as accurate SPNs as the pair g-test and GMM. Secondly, we extend the investigation
of (Vergari et al.,|2015)), which showed that implementing SPN leaf nodes as Chow-Liu trees (CLTs)
rather than as univariate distributions tended to yield more accurate SPNs, but which focused on the
g-test and GMM pair. Our results show the same improvement for g-test and k-means, and that
neither of these two pairs dominates the other. Lastly, we report an analysis of SPN topology for
three unstudied pairs both utilizing and not utilizing CLTs. One key finding is that using CLTs tend
to yield shallower and sparser SPNs, for all pairs of chop and slice.

A second main contribution of this paper is a new algorithm, called partial propagation (PP),
for exact inference in SPNs. SPN inference currently requires full propagation over all nodes in
the SPN (Poon and Domingos|, [2011} [Vergari et al., [2018]). Instead, PP only propagates upwards
from the query leaf nodes. Experiments suggest PP has several advantages, including relative time
savings, absolute time savings in large SPNs, and scalability. In particular, time savings are in orders
of magnitude from 23 times faster up to over 63,000 times faster than full propagation.

The rest of this paper is organized as follows. Section [2] contains background knowledge.
Implementing CLTs as leaf nodes is reviewed in Section 3] In Section 4, an empirical study of
LEARNSPN methods and detailed analysis are provided. Section [5|suggests a faster SPN inference
algorithm. Conclusions are drawn in Section|[6]

2. Background Knowledge

We use uppercase letters X to denote variables (features) and lowercase letters x to denote their
values. We denote sets of variables with boldface uppercase letters X and their instantiations with
boldface lowercase letters x. Also, we may use P(x) instead of P(X = z). We assume that the
dataset instances are independent and identically distributed.

Sum-product networks (SPNs) (Poon and Domingos| 2011)) are a class of deep learning models
with tractable probabilistic inference. This is an attractive feature when compared to probabilistic
graphical models in general, including Bayesian networks (Pearl,|1988)), where inference is NP-hard
(Cooper, [1990). The scope (Gens and Domingos|, 2013)) of an SPN is the set of variables that appear
in it. A univariate distribution is tractable if its partition function and its mode can be computed in
O(1) time (Gens and Domingos, [2013)).

Definition 1 (Gens and Domingos, 2013) An SPN is defined as follows: (i) a tractable univariate
distribution is an SPN; (i) a product of SPNs with disjoint scopes is an SPN; (iii) a weighted sum
of SPNs with the same scope is an SPN, provided all weights are positive; and (iv) nothing else is
an SPN.

An SPN can be graphically understood as a rooted directed acyclic graph. Each internal node is

either a sum or product operation. Each leaf node is a univariate distribution over its variable. Each
edge from a sum node to a child has a positive weight.
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The value of an SPN S is the value of its root. The value of a product node v; is the product of
the values of its children. The value of a sum node v; is

Z wijval(v;), €))

v ECh(’L}i)

where C'h(v;) are the children of v;, val(v;) is the value of node v;, and w;; is the weight of the
edge from v; to v;. The value of a leaf node is the value of its univariate distribution.

The depth (Goodfellow et al.| [2016) of an SPN & is the number of nodes in the longest path
in § from the root to a leaf. |Gens and Domingos| (2013)) measure the quality of an SPN S using
likelihood. The likelihood of an SPN § is defined as the product of the values of S, for each
instantiation of the dataset. The higher the product, the better the quality.

Gens and Domingos| (2013)) introduced LEARNSPN, which has become the standard unsuper-
vised learning algorithm for SPNs. LEARNSPN applies two general steps, namely, a “chop” oper-
ation for splitting variables (columns) in the dataset and a “slice” operation for clustering instances
(rows) in the dataset.

The chopping method of LEARNSPN splits a dataset vertically. Here, we consider two chop-
ping methods, namely, g-fest (Woolf], (1957) and mutual information (Cover and Thomas) 2012).
Although the scoring metric is different, both methods adhere to the following scoring procedure.

One variable X; € V is chosen at random. Then the score s(X;, X;) is computed, for all other
variables X ;. If s(X;, X;) is greater than a threshold, then X; is considered to be similar to X; and
they are grouped together. Next, s(X;, X) is computed, for all X}, not previously grouped with
X;. Again, if s(X;, X}) is greater than a threshold, then X, is considered similar to X, which
means X, is similar to X;, and X}, is grouped with X; and X;. This process repeats until no more
variables can be grouped with X;.

G-test tests pairwise independence of variables as follows:

i, Zj)|T
G(Xi X)) =2 3 elwi,z;)l (x )ij(l'])|’ )

T T
where c(-) counts the occurrences of a setting of a variable pair or singleton (Woolf, |1957), |T'| is
the number of dataset instances, and log is the natural logarithm.

The second method we consider for the chopping operation is mutual information. Mutual
information (MI) (Cover and Thomas, 2012) tests pairwise independence of variables as follows:

I(X;, X)) ZZ c(z4, xj)log———F—~ ol@i, ;) 3)

. c(w)elay)

The slicing method of LEARNSPN splits a dataset horizontally. Here, we consider two slic-
ing methods, namely, k-means (Hastie et al., 2009) and Gaussian mixture models (GMM) using
expectation-maximization (Duda et all 2012). As in (Vergari et al.l 2015), here we focus on two
clusters.

K-means is a method for partitioning the rows Iy, ..., I, of a dataset into k clusters. Each I;
is assigned to the cluster £; that minimizes the Euclidean distance to the mean p; of that cluster:
[|1; — p]|. The mean 1  is recalculated as the mean of those I; assigned to cluster ;. Then the
above process is repeated using the recalculated ;. The process stops after 300 iterations or when
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all p; do not change. For each cluster k;, the initial mean y; can be randomly chosen without
affecting the output of k-means.

The second method we consider for the slicing operation is GMM. The process is nearly identi-
cal to that for k-means, except that the representation of each cluster and the assignment of instances
to cluster are more involved. Each cluster is a Gaussian distribution represented by its mean and co-
variance matrix. These can be randomly assigned initially without disturbing the end result. Next,
the probability of each instantiation I; being in each cluster is computed. I; is assigned to the cluster
with the higher probability. Do this for every instance. The mean and covariance matrix are recal-
culated for each cluster by following the expectation-maximization algorithm. This process repeats
100 times or until the clusters do not change. More formally, each cluster k; is represented by a
Gaussian distribution, denoted N (1|, %), where p; is its vector mean and X; is its covariance
matrix. The scoring of each instance /; being in each cluster is the probability p(k;|I;), which can
be computed as:

)

(k) = A %)
z
where wj is a cluster weight and z is a normalization function.
A refinement of LEARNSPN was suggested by [Vergari et al.| (2015)), and is given as Algorithm
[I] There are four input parameters, with chop and slice methods understood. T is the collection of
instances over variables V. The Laplace smoothing parameter is cv. Finally, m denotes the minimum
number of instances needed for a chop operation. Line[]is the focus of the next section.

Algorithm 1 LEARNSPN(T,V, a, m)
Input: a set of instances 1" over variables V'
Output: an SPN S
Main:

1: if |V| == 1 then

2: S <~ UNIVARIATEDISTRIBUTION(T', V, o)

3: elseif |T'| < m then

4: S < CLTFACTORIZATION(T, V, cx) > CLT instead of a naive factorization
5: else

6: {V}-}jcz1 < SPLITVARIABLES(V, T') > Using chop method
7: if C' > 1 then

8: S « TI_, LEARNSPN(T, V, o, m)

9: else

10: {T;}E | + CLUSTERINSTANCES(T, V) > Using slice method
1 S« T[4, Eﬁ" LEARNSPN(T}, V, o, m)

12: return S

3. CLTs and the Pair G-test and GMM

When focusing on g-test for chopping and GMM for slicing, (Vergari et al., [2015) has shown that
LEARNSPN yields more accurate SPNs when leaf nodes are implemented as Chow-Liu trees (CLTs)
rather than as univariate distributions.
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Chow and Liu| (1968) developed an elegant method to approximate an n-dimensional discrete
probability distribution by a product of second-order distributions. The conditional independences
learned by their algorithm are represented by a singly-connected DAG, called a first-order depen-
dence tree in (Chow and Liu, [1968). Here, we use the term Chow-Liu tree (CLT). The important
point is that their method is guaranteed to find an optimal approximation of the joint distribution
under the given scoring metric (a measure of closeness) and the restriction to using second-order
distributions.

A CLT is built as follows (Vergari et al., 2015)). Compute the mutual information M I(X;, X;)
for every pair X;, X; € V4 # j. Construct a complete graph G and assign the edge weight between
X; and X as MI(X;, X;). Find a maximal spanning tree of G. Randomly pick a root node and
direct all edges away from the root. Construct the conditional probability table P(X;|Pa(X;))
using the given dataset, where Pa(X;) denotes the parent node of X in the constructed polytree.

In (Vergari et al., | 2015)), the accuracy of SPNs was improved by implementing leaf nodes with
CLTs rather than with naive factorizations of univariate distributions. CLTs can improve the network
likelihood by capturing finer local dependencies when estimating leaf distributions (Vergari et al.,
20135)). A second advantage of using CLTs is that they admit linear inference (Chow and Liu, |1968)).
Hence, the complexity of inference in SPNs with CLT leaf nodes remains linear (Vergari et al.,
2015)). Thus, CLTs are simple and tractable distributions, yet are able to model more dependencies
than a naive factorization (Vergari et al., 2018)).

4. CLTs and LearnSPN

In this section, we investigate the role of CLT leaf nodes in LEARNSPN for three other combinations
of chop and slice methods.

We empirically evaluate each LEARNSPN combination in 20 benchmark datasets (Lowd and
Davis| [2010; [Van Haaren and Davis| [2012). The dataset characteristics are described in Table[I] We
conduct a grid search over the following hyperparameters taken from (Vergari et al., [2015} |Gogate
et al., |2010). The g-test threshold values are {5, 10, 15, 20}, the « values are {0.1, 0.2, 0.5, 1.0,
2.0}, and the minimum number of instances values are {10, 50, 100, 500}. The MI threshold values
were selected based on the calculated minimum and maximum MI values per dataset with the goal
of learning the most accurate SPN, since the MI threshold does not take into account the number of
instances in the dataset.

Table 2] reports SPN accuracy results after a grid search. SPN leaf nodes are implemented as
univariate distributions in columns 2-5, while columns 6-9 are when leaf nodes are implemented as
CLTs. Here, (g,k) means (g-test,k-means), (MLk) denotes (ML, k-means), and G stands for GMM
in (g,G) and (MI,G). As in (Vergari et al.l 2015), accuracy values are shown to four decimal places,
winners per leaf node implementation are shown in boldface, and overall winners are underlined.

In terms of SPN accuracy, g-test and GMM and the pair g-test and k-means can be seen as being
tied in both univariate and CLT cases. Thus, one key finding of our experiments is that g-test and
k-means is a viable alternative to the common pair of g-test and GMM.

The pair of MI and k-means also warrants some discussion. This pair is the overall winner
in two datasets (Audio and Jester) when using univariate distributions as leaf nodes. And it wins
the univariate setting in a third dataset, Netflix. In general, CLTs improve SPN accuracy in all
combinations of chop and slice in LEARNSPN. CLTs are used in 15 of 20 overall winners.
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Table 1: 20 benchmark datasets used in unsupervised deep learning.

Dataset # variables  # training # validation # testing
NLTCS 16 16181 2157 3236
MSNBC 17 291326 38843 58265
KDDCup2K 65 180092 19907 34955
Plants 69 17412 2321 3482
Audio 100 15000 2000 3000
Jester 100 9000 1000 4116
Netflix 100 15000 2000 3000
Accidents 111 12758 1700 2551
Retail 135 22041 2938 4408
Pumb-star 163 12262 1635 2452
DNA 180 1600 400 1186
Kosarek 190 33375 4450 6675
MSWeb 294 29441 3270 5000
Book 500 8700 1159 1739
EachMovie 500 4525 1002 591
WebKB 839 2803 558 838
Reuters-52 889 6532 1028 1540
20Newsgroup 910 11293 3764 1540
BBC 1058 1670 225 330
Ad 1556 2461 327 491

As done in (Vergari et al.l |2015) for the pair g-test and GMM, we now turn our attention to the
graphical characteristics of the learned SPN.

Table 3| reports the number of edges in the various settings, where the winning pair with the
lowest number of edges is in boldface per leaf node implementation and overall winners are un-
derlined. The use of CLTs never increases the number of edges in the pairs g-test and GMM and
MI and GMM. In general, CLTs tend to lower the number of edges compared to using univariate
distributions.

Table 4| shows the number of layers in the learned SPN, where the winning pair with the greatest
number of layers is in boldface per leaf node implementation and overall winners are underlined.
Our results suggest that g-test yields deeper SPNs whereas MI produces shallower SPNs. The use
of CLTs never increases the number of layers for pair g-test and GMM. Moreover, for the other 3
pairs, the use of CLTs doesn’t increase the number of layers in the majority of cases.

We introduce the edges-per-layer ratio, denoted r, as the number of edges divided by the number
of layers. A higher value of » means the SPN is dense; a lower value means the SPN is sparse. Table
[5] reports this ratio under various settings, where the winning pair with the lowest value of r is in
boldface per leaf node implementation and overall winners are underlined. Although CLTs lower
the number of layers, which would lead to dense SPNs, the lowering in the number of edges is more
pronounced. This is why CLTs yield sparser SPNs. More generally, our results suggest that MI
yields dense SPNs, while g-test produces sparse SPNs.
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Table 2: SPN accuracy after grid search in LearnSPN with and without the use of CLTs.

Univariate Chow-Liu Tree
Dataset (g,k) MLKk) (g,6) MIL,G) (g,k) MLKk) (g,6) MIL,G)
NLTCS -6.0540 -6.0672 -6.0401 -6.0541 -6.0507 -6.0603 -6.0380 -6.0510
MSNBC -6.0439 -6.0436 -6.0398 -6.0403 -6.0436 -6.0458 -6.0398 -6.0428
KDDCup2K -2.1432 -2.1522 -2.1454 -2.1398 -2.1441 -2.1623 -2.1452 -2.1470
Plants -12.8811  -13.0127 -12.8801 -129124 | -12.8023  -12.7737 -12.7194 -12.7290
Audio -40.1169  -40.0530  -40.7407  -40.4305 | -40.1104 -40.1549 -40.4953  -40.4180
Jester -52.9799  -52.9483 -53.9569  -53.5165 | -52.9879  -53.0224 -53.7964  -53.6560
Netflix -56.7965  -56.6903  -58.3797  -57.7690 | -56.6467 -56.6544  -58.1006  -57.9649
Accidents -28.9153  -354896  -28.9551  -35.6297 | -28.8570  -30.2291  -28.8562 -30.1731
Retail -10.9444  -11.1678  -10.9479  -11.0923 | -10.9343 -11.1678 -10.9484  -11.1000
Pumb-star -23.3351  -29.7128  -23.3134  -29.6281 | -23.0648  -24.0734  -22.9298  -24.0073
DNA -81.5530 -98.2353  -81.6295 -97.9827 | -81.4946 -85.7810 -81.6295 -86.6187
Kosarek -10.7942  -11.3216  -10.7297 -11.0351 | -10.7644  -11.1537  -10.7088 -10.8278
MSWeb -9.9942 -10.2431 -9.8477 -10.0384 | -10.0016  -10.2464 -9.8259 -9.8443
Book -34.7721  -354775  -34.2895  -35.1611 | -34.6492  -35.7391  -34.2895  -34.9308
EachMovie -52.2136  -52.5846  -51.5116  -52.2844 | -52.6627 -53.0856 -51.5688 -52.4801
WebKB -154.6667 -156.7409 -154.7319 -156.9452 | -154.2209 -154.6686 -154.5529 -154.7833
Reuters-52 -83.8645  -85.6881  -84.0903 -85.6974 | -83.8598 -85.1386  -84.0099  -84.5777
20Newsgroup | -152.5908 -154.1383 -153.3014 -153.6602 | -153.4568 -156.6570 -153.3028 -155.7261
BBC -247.6164 -250.1484 -248.5855 -251.1441 | -247.3655 -255.5471 -247.5619 -253.3433
Ad -15.7866  -27.5521  -15.7918  -28.3282 | -15.0341 -16.4187 -15.4933 -15.8275

Finally, a few comments regarding the hyperparameter m in LEARNSPN are worthy. We con-
sidered the values 10, 50, 100, and 500 (Vergari et al.,|2015)). When SPN leaf nodes are implemented
as univariate distributions, the grid search selected the lowest values 10 and 50 in the majority of
datasets; the highest value 500 was never chosen. In contrast, when utilizing CLTs, the highest value
500 was selected by the grid search in over half the datasets. And the two highest values 100 and
500 were chosen in the strong majority of cases. These results are consistent with (Vergari et al.,
2015), where the focus was on g-test and GMM.

5. SPN Exact Inference with Partial Propagation

SPN exact inference is conducted by a full propagation (FP) from all leaf nodes to the root (Poon and
Domingos, 2011} |Vergari et al., 2018). Here, we introduce a faster SPN exact inference algorithm,
called Partial Propagation (PP).

First, we define a few pertinent SPN concepts. An SPN is complete if, for every sum node, its
children have the same scope; otherwise, it is incomplete. An SPN is decomposable if, for every
product node, the scopes of its children are pairwise disjoint. An SPN is valid, if it is complete and
decomposable. A valid SPN defines a joint probability distribution and can answer queries in time
linear in its size (number of edges) (Poon and Domingos|, [2011)). For each node N in an SPN S, the
ancestors of N, denoted An(IN), are those variables having a directed path to V. We define An(IN)
for a set N of nodes in the obvious way. Furthermore, without loss of generality, we assume that
the SPNs considered here are normalized (Peharz et al., 2015)).

Given a query P(x) posed to an SPN, we call the nodes in X U An(X) relevant; the rest are
irrelevant. We show that irrelevant nodes do not affect the value of a relevant node.
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Table 3: The number of edges in the learned SPN.

Univariate Chow-Liu Tree

Dataset (gk) (MILk) (e,G) MLG) (g.k) (MLk) (2,G) MLG)
NLTCS 1119 24701 1129 17343 661 1139 1027 3129
MSNBC 5307 53379 4073 39230 5307 18180 3833 17148
KDDCup2K 5128 128830 4446 61555 5065 64805 4446 42770
Plants 13789 171118 15129 72652 9418 27720 6302 9012
Audio 10968 23634 17863 46359 | 10968 4747 4095 4949
Jester 6614 13635 9851 28078 6614 2727 3068 3333
Netflix 14770 22624 30054 46157 4462 4646 4607 5050
Accidents 11746 42446 11977 43456 | 11518 4480 10065 4592
Retail 3222 272 700 54128 3222 272 700 14144
Pumb-star 13336 39625 12728 35840 | 11053 6068 10220 5576
DNA 5199 442 3306 8869 5199 724 3306 905
Kosarek 4676 188028 3481 38060 2462 204752 2232 34380
MSWeb 13338 159005 9065 118258 | 9310 159005 9065 11722
Book 19097 64629 3894 121242 | 18763 63627 3894 22044
EachMovie 22050 63126 24458 41054 | 26690 6396 24458 5674
WebKB 8902 60480 9301 37800 5608 8400 8877 6720
Reuters-52 70272 100570 82084 78801 | 87414 20470 82084 18690
20Newsgroup | 17621 35529 174703 34618 | 172565 38262 174703 33707
BBC 69310 33413 68117 25531 | 69310 5295 68117 5295
Ad 30097 271809 20823 191454 | 23748 39407 20823 14015

Lemma 2 Consider a valid and normalized SPN S on variables U and a query P(x), X C U.
Then all irrelevant nodes have value 1.

Proof Consider an irrelevant node v, where v is a leaf node with univariate distribution P(Y") and
Y N X = (). By definition, value(v) = 1.

Without loss of generality, consider an irrelevant product node v with only leaf nodes as its n
children. By definition, all n children are irrelevant. Hence,

H value(v') = 1. 4)

v'€Ch(v)

Next, again without loss of generality, consider an irrelevant sum node v with only leaf nodes as its
n children. By definition, all n children are irrelevant. Thus,

value(v) = Z w-value(v) =wy -1+ ... 4w, 1=1-(w1+...+w,) =1, (5
since S is normalized. A similar argument holds for all remaining irrelevant nodes. |

Theorem [3| shows that PP is sound.
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Table 4: The number of layers in the learned SPN.

Univariate Chow-Liu Tree
Dataset (gk) MLk (g,G) MLG) | (gk) MLk (g,G) MLG)
NLTCS 15 3 17 5 15 2 15 3
MSNBC 31 31 25 5 31 2 25 21
KDDCup2K 69 3 31 3 77 2 31 2
Plants 29 7 27 21 29 2 22 18
Audio 27 3 27 3 27 2 17 2
Jester 11 3 23 3 11 2 16 2
Netflix 15 3 31 3 8 2 18 2
Accidents 25 15 27 3 25 2 26 2
Retail 27 3 13 3 27 2 13 2
Pumb-star 25 15 27 17 23 2 22 2
DNA 15 5 13 3 15 2 13 2
Kosarek 29 15 19 19 17 2 15 2
MSWeb 33 3 27 19 35 2 27 20
Book 69 3 11 3 55 2 11 2
EachMovie 25 3 29 9 29 4 29 6
WebKB 17 3 17 3 11 2 15 2
Reuters-52 35 3 27 7 33 2 27 2
20Newsgroup | 21 3 31 3 33 2 31 2
BBC 29 9 25 9 29 2 25 2
Ad 75 31 33 9 59 20 33 12

Theorem 3 (Partial Propagation). Consider an SPN S on U and X C U. The value S(x) can be
correctly computed by using only nodes in X U An(X).

Proof The value of all leaf nodes are given. Thus, irrelevant nodes play no role in determining
the value of relevant leaf nodes. Consider a sum node that is relevant. Since S is complete, all its
children have the same scope. Since the sum node is relevant, all of its children are relevant. Thus,
irrelevant nodes do not determine the value of a relevant sum node. Lastly, consider a product node
that is relevant. Since S is decomposable, the scopes of its children are pairwise disjoint. Hence,
some children may be relevant while others are irrelevant. However, the value of each irrelevant
node is 1. Therefore, the irrelevant nodes are immaterial to the value of a relevant product node. B

It is straightforward to establish that PP has linear complexity.

A naive implementation of PP will not lead to any time savings in SPN inference. For instance,
checking whether every node in the network is relevant or irrelevant is wasteful. We implement PP
with a recursive procedure, which begins with a call for the value at the root node. The key is to
check whether the scope of each child contains at least one query variable. A child node is relevant
only if this is true; otherwise, it is irrelevant. Next, recursively call for the value of the relevant
children. Algorithm 2|formalizes this discussion and takes a query P(x) posed to an SPN S.

The experiments are performed using a Python implementation running on a MacBook Pro 2015
with a 2.2 GHz Intel Core i7 Processor and 16 GB RAM. The 9 SPNs used are listed in column 1
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Table 5: The edges-per-layers ratio r (denseness) of the learned SPN.

Univariate Chow-Liu Tree

Dataset (gk) (MLk) (g,G) (MLG) | (gk) MLk (g,G) MILG)
NLTCS 75 8234 66 3469 44 570 68 1043
MSNBC 171 1722 163 7846 171 9090 153 817
KDDCup2K 74 42943 143 20518 66 32403 143 21385
Plants 475 24445 560 3460 325 13860 286 501
Audio 406 7878 662 15453 | 406 2374 241 2475
Jester 601 4545 428 9359 601 1364 192 1667
Netflix 985 7541 969 15386 | 558 2323 256 2525
Accidents 470 2830 444 14485 | 461 2240 387 2296
Retail 119 91 54 18043 | 119 136 54 7072
Pumb-star 533 2642 471 2108 481 3034 465 2788
DNA 347 88 254 2956 347 362 254 453
Kosarek 161 12535 183 2003 145 102376 149 17190
MSWeb 404 53002 336 6224 | 266 79503 336 586
Book 277 21543 354 40414 | 341 31814 354 11022
EachMovie 882 21042 843 4562 920 1599 843 946
WebKB 524 20160 547 12600 | 510 4200 592 3360
Reuters-52 2008 33523 3040 11257 | 2649 10235 3040 9345
20Newsgroup | 839 11843 5636 11539 | 5229 19131 5636 16854
BBC 2390 3713 2725 2837 | 2390 2648 2725 2648
Ad 401 8768 631 21273 | 403 1970 631 1168

Algorithm 2 PARTIAL PROPAGATION(N, x, S)

Input: the root node N, a query P(x), and an SPN S
Output: the value S(x)

Main:
1: if scope(N) N X # () then > Compute only if node [V is relevant
2: if N is a sum then
3 return - cp,(n) W - PARTIAL PROPAGATION(C, x, S)
4: else if C' is a product then
5: return [ [ cp, vy PARTIAL PROPAGATION(C, X, S)
6: else
7: return C' N x

of Table @ Column 2 shows the number of nodes in each SPN. For each SPN, 1000 queries P(x)
were randomly generated and processed by FP and PP. Average times for inference are reported in
seconds in columns 3 and 4.

Table [6is encouraging in several ways. First, it can be seen that PP was always faster than FP.
Second, the time savings in column 5 are in orders of magnitude from 23 times faster up to over
63,000 times faster. Third, the absolute time difference can be worthy. On the two largest SPNs,
FP takes 12 to 37 seconds, while PP requires a small fraction of a second. This will be valuable in
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Table 6: An empirical comparison of FP and PP in SPNs.

SPN # Nodes FP(s) PP(s) FP/PP
cancer 75 0.00602 0.00026 23
earthquake 87 0.00753 0.00026 29
survey 143 0.01235 0.00027 46
asia 172 0.01776  0.00030 59
sachs 933 0.07568 0.00047 161
child 1,953 0.24504 0.00046 533
alarm 4,782 0.64698 0.00058 1,115
hailfinder 99,916 12.69837 0.00154 8,246
insurance | 286,328 37.58020 0.00059 63,695

applications such as recommendation systems, which have millions of online users, each of which
requires an answer in real-time. In these applications, PP can alleviate the total time bottleneck.
Lastly, Table[6] indicates that PP scales. Compare the smallest SPN with the largest SPN. Whereas
FP went from a fraction of a second up to 37 seconds, PP roughly doubled. In fact, the larger the
SPN, the greater the time savings of PP over FP.

6. Conclusions

This empirical study of SPNs has yielded several insights. With respect to learning, our results
show that g-test and k-means is equally effective to the commonly used pair of g-test and GMM.
Similar to the result found in (Vergari et al 2015) for g-test and GMM, our results show that
implementing SPN leaf nodes as CLTs yields more accurate SPNs for 3 other pairs of chop and
slice in LEARNSPN. In fact, CLT utilization occurred in 15 out of 20 overall winners. With respect
to SPN topology, g-test yields sparse SPNs, while MI produces dense SPNs. The use of CLT
leaf nodes never increases the number of edges for the pair g-test and GMM and for the pair MI
and GMM. More generally, CLTs tend to lower the number of edges compared to using univariate
distribution leaf nodes. With respect to the number of layers, g-test yields deeper SPNs than MI
does.

Another main contribution of this manuscript is a new exact inference algorithm for SPNs, called
partial propagation (PP). SPN inference is currently conducted using a full propagation over all
nodes in a SPN. In contrast, PP only propagates upwards from query leaf nodes. The experimental
results in Table 6| are very encouraging. In particular, time savings are in orders of magnitude from
23 times faster up to over 63,000 times faster than full propagation.
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