Non-stochastic Best Arm Identification and Hyperparameter
Optimization

Kevin Jamieson
Electrical Engineering and Computer Science
University of California, Berkeley
kjamieson@eecs.berkeley.edu

Abstract

Motivated by the task of hyperparameter op-
timization, we introduce the nomn-stochastic
best-arm identification problem. We iden-
tify an attractive algorithm for this setting
that makes no assumptions on the conver-
gence behavior of the arms’ losses, has no
free-parameters to adjust, provably outper-
forms the uniform allocation baseline in fa-
vorable conditions, and performs compara-
bly (up to log factors) otherwise. Next, by
leveraging the iterative nature of many learn-
ing algorithms, we cast hyperparameter op-
timization as an instance of non-stochastic
best-arm identification. Our empirical re-
sults show that, by allocating more resources
to promising hyperparameter settings, our
approach achieves comparable test accuracies
an order of magnitude faster than the uni-
form strategy. The robustness and simplicity
of our approach makes it well-suited to ulti-
mately replace the uniform strategy currently
used in most machine learning software pack-
ages.

1 Introduction

As supervised learning methods are becoming more
widely adopted, hyperparameter optimization has be-
come increasingly important to simplify and speed up
the development of data processing pipelines while si-
multaneously yielding more accurate models. In hy-
perparameter optimization for supervised learning, we
are given labeled training data, a set of hyperparame-
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ters associated with our supervised learning task, e.g.,
kernel bandwidth, regularization constant, etc., and
a search space over these hyperparameters. We aim
to find a particular configuration of hyperparameters
that optimizes some evaluation criterion, e.g., loss on
a validation dataset.

Since many learning algorithms are iterative in nature,
particularly when working at scale, we can evaluate the
quality of intermediate results, i.e., partially trained
models, resulting in a sequence of losses that converges
to the final loss value at convergence. Figure 1 shows
the sequence of validation losses for various hyperpa-
rameter settings for kernel SVM models trained via
stochastic gradient descent. The figure shows high
variability in model quality across hyperparameter set-
tings, and it is natural to ask the question: Can we
identify and terminate poor-performing hyperparame-
ter settings early in a principled online fashion to speed
up hyperparameter optimization?
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Figure 1: Validation error for various hyperparameter
configurations for a classification task trained using
stochastic gradient descent.

Although several hyperparameter optimization meth-
ods have been proposed recently, e.g., [2, 3, 4, 5, 6],
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Best Arm Problem for Multi-armed Bandits

input: n arms where ¢; j; denotes the loss observed on
the kth pull of the ith arm

initialize: T; =1 for all ¢ € [n]
for t =1,2,3,. ..
Algorithm chooses an index I; € [n]

Loss £1,,1,, is revealed, T7, =17, +1

Algorithm outputs a recommendation J; € [n]

Receive external stop signal, otherwise continue

Figure 2: A generalization of the best arm problem
for multi-armed bandits [1] that applies to both the
stochastic and non-stochastic settings.

the vast majority of them consider model training to
be a black-box procedure, and only evaluate models
after they are fully trained to convergence. A few re-
cent works have made attempts to exploit intermedi-
ate results. However, these works either require ex-
plicit forms for the convergence rate behavior of the
iterates which is difficult to accurately characterize for
all but the simplest cases [7, 8], or focus on heuris-
tics lacking theoretical underpinnings [9]. We build
upon these previous works, and in particular study the
multi-armed bandit formulation proposed in [7] and
[9], where each arm corresponds to a fixed hyperpa-
rameter setting, pulling an arm corresponds to a fixed
number of training iterations, and the loss corresponds
to an intermediate loss on some hold-out set.

We aim to provide a robust, general-purpose, and
widely applicable bandit-based solution to hyperpa-
rameter optimization. Remarkably, the existing multi-
armed bandits literature fails to address this natural
problem setting: a mon-stochastic best arm identifica-
tion problem. Indeed, existing work fails to adequately
address the two main challenges in this setting: (i)
We know that each arm’s sequence of losses eventu-
ally converges, but we have no information about the
rate of convergence, and the sequence of losses, like
those in Figure 1, may exhibit a high degree of non-
monotonicity and non-smoothness; (ii) The cost of ob-
taining the loss of an arm can be disproportionately
more costly than pulling it, as in the case of hyperpa-
rameter optimization where computing the validation
loss is often drastically more expensive than perform-
ing a single training iteration.

We note that the non-stochastic best arm setting is
quite generally applicable, encompassing many prob-
lems including the stochastic best arm identification
problem [1], less-well-behaved stochastic sources like
max-bandits [10], exhaustive subset selection for fea-
ture extraction, and many optimization problems that
“feel” like stochastic best arm problems but lack the
i.i.d. assumptions necessary in that setting. For ex-

ample, when minimizing a non-convex objective using
gradient descent or some other iterative algorithm, it
is common to perform random restarts. Instead of
executing these restarts sequentially, it is natural to
run several instances of the optimization procedure
with different starting conditions in parallel, allocat-
ing resources dynamically across the instances based
on their incremental performance as is done in [11].
However, while our work requires no knowledge of the
rate at which each arm converges to its final limit, [11]
assumes that the convergence rate is known up to an
unknown constant common to all arms. For this rea-
son, although [11] can be viewed as a relaxation of the
settings of [7, 8], it is not a general-purpose solution
like our work.

While there are several interesting applications of the
non-stochastic best arm identification setting, we focus
on the application of hyperparameter tuning. We first
identify and analyze an algorithm particularly well-
suited for this bandit setting due to its generality, ro-
bustness, and simplicity. We show theoretically that
our adaptive allocation approach outperforms the uni-
form allocation baseline in favorable conditions, and
performs comparably (up to log factors) otherwise. We
then confirm our theory with empirical hyperparame-
ter optimization studies that demonstrate an order of
magnitude speedups relative to natural baselines on a
number of supervised learning problems and datasets.

2 Non-stochastic best arm
identification

While the multi-armed bandit objective of minimiz-
ing cumulative regret has been analyzed in both the
stochastic and non-stochastic settings, to the best of
our knowledge, the best arm objective has only been
analyzed in the stochastic setting. In this section we
present a formulation for the non-stochastic setting.
Figure 2 presents a general form of the best arm prob-
lem for multi-armed bandits. Intuitively, at each time
t the goal is to choose J; such that the arm associ-
ated with J; has the lowest loss in some sense. Note
that while the algorithm gets to observe the value for
an arbitrary arm I;, the algorithm is only evaluated
on its recommendation J;, that it also chooses arbi-
trarily. We now consider the following two best arm
identification settings:

Stochastic : For all ¢ € [n], k > 1, let ¢; ;, be an i.i.d.
sample from a probability distribution on [0, 1] such
that E[¢; ] = p;. The goal is to identify argmin; p;
while minimizing Y. | T;.

Non-stochastic (proposed in this work) : For
all i € [n], k > 1, let £;, € R be generated by an
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oblivious adversary, i.e., the loss sequences are in-

dependent of the algorithm’s actions. Further, as-

sume v; = lim /; . exists. The goal is to identify
T—00

arg min; v; while minimizing Y, 7;.

These two settings are related in that we can al-
ways turn the stochastic setting into the non-stochastic
setting by defining ¢, r, = %Zf;l ¢, 7, where £} .
are the losses from the stochastic problem; by the
law of large numbers lim, ,o. ¢;, = E[f},]. We
could also take the minimum of the stochastic re-
turns of an arm, as considered in [10], since ¢; p, =
min{¢; 1,0} 5,...,0; 1.} is a bounded, monotonically
decreasing sequence, and consequently has a limit.

However, the generality of the non-stochastic setting
introduces novel challenges. In the stochastic setting,
if we set [, %Zle Ui then g1, — pi] <
Vlog(4nT?/8)/2T; for all i € [n] and T; > 0 with
probability at least 1 — § by applying Hoeffding’s in-
equality and a union bound. In contrast, the non-
stochastic setting’s assumption that lim,_,. ¢; ; ex-
ists implies that there exists a non-increasing func-
tion 7; such that |¢;; —lim, o €; -| < 7:(t) and that
lim;_, o 75(t) = 0, but we know nothing about how
quickly ~;(t) approaches 0 as a function of ¢. The
lack of a convergence rate means that even the tight-
est v;(t) could decay arbitrarily slowly and we would
never know it.

This observation has two consequences. First, we can
never reject the possibility that an arm is the “best”
arm. Second, we can never verify that an arm is the
“best” arm or even within € > 0 of the best arm. With-
out the possibility of these certificates, the problem is
naturally one of a fixed budget: if a user has an hour
to return an answer, she should run an algorithm for
an hour and pick its recommendation. If she reaches
the hour and has more time, she should run the algo-
rithm longer. In this setting, the question is not if the
algorithm will identify the best arm, but how fast it
does so relative to a baseline method.

The natural baseline to compare to in our setting
of interest is the default algorithm implemented in
most software packages today, namely a uniform al-
location strategy. Indeed, most packages including
LibSVM [12], scikit-learn [13], and MLIib [14] train
each hyperparameter setting to convergence. We are
interested in comparing the performance of different
hyperparameter settings throughout the training pro-
cess and discarding poorly performing settings before
convergence, thereby saving CPU-cycles and time. We
propose a simple and intuitive algorithm that makes
no assumptions on the convergence behavior of the
losses, requires no inputs or free-parameters to adjust,

provably outperforms the baseline method in favor-
able conditions and performs comparably (up to log
factors) otherwise, and empirically identifies good hy-
perparameters an order of magnitude faster than the
baseline method on a variety of problems. Given the
generality of our approach, some problems may bene-
fit from more special purpose solutions, however these
approaches typically rely on strong assumptions that
must be specified by an expert user, and even an expert
may incorrectly specify them. In contrast, our goal is
to design a general purpose algorithm that is robust
and simple enough to ultimately replace the uniform
allocation baseline in most popular software packages.

2.1 Related work

Despite dating back to the late 1950’s, the best arm
identification problem for the stochastic setting has ex-
perienced a surge of activity in the last decade. The
work has two major branches: the fixed budget setting
and the fixed confidence setting. In the fixed budget
setting, the algorithm is given a set of arms and a bud-
get B and is tasked with maximizing the probability of
identifying the best arm by pulling arms without ex-
ceeding the total budget. While these algorithms were
developed for and analyzed in the stochastic setting,
they exhibit attributes that are amenable to the non-
stochastic setting. In fact, the algorithm we propose to
use in this paper is the Successive Halving algorithm
of [15], though the non-stochastic setting requires its
own novel analysis that we present in Section 3. Suc-
cessive Rejects [16] is another fixed budget algorithm
that we empirically evaluate.

In contrast, the fixed confidence setting takes an input
9 € (0,1) and guarantees to output the best arm with
probability at least 1 —¢§ while attempting to minimize
the number of total arm pulls. These algorithms, e.g.,
Successive Elimination [17], Exponential Gap Elimina-
tion [15], LUCB [18], and Lil’'UCB [19], are ill-suited
for the non-stochastic best arm identification problem
because they rely on statistical bounds that are gen-
erally not applicable in the non-stochastic case.

Exploration algorithm # observed losses
Uniform (baseline) (B) n

Successive Halving (B) 2n+1

Successive Rejects (B) (n+1)n/2
Successive Elimination (C) nlog,(2B)
LUCB (C), LI'UCB (C), | 5

EXP3 (R)

Table 1: Number of observed losses by the algorithm
after B time steps and n number of arms. (B), (C), or
(R) indicate fixed budget, fixed confidence, or cumu-
lative regret, respectfully.
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Successive Halving Algorithm

input: Budget B, n arms where /¢; ; denotes the
kth loss from the ith arm
Initialize: Sy = [n].
For k=0,1,...,[logy(n)] — 1
Pull each arm in Sy for ry = Lmj ad-

ditional times and set Ry = Z?:o

rj.

Let or be a bijection on Sy such that
o(1).R < Lop@),R), <70 <oy (I5i). R

Sk1 = {i € Sk Loy (i), ry < Loy (LISk1/20) R }-
output : Singleton element of Stiog,(n)]

Figure 3: The Successive Halving algorithm of [15].

In addition to the total number of arm pulls, we also
consider the required number of observed losses. This
is a natural cost to consider when ¢; 1, for any ¢ is the
result of an expensive computation, e.g., computing
validation error on a partially trained classifier. As-
suming a known time horizon (or budget) B, Table 1
describes the total number of times various algorithms
observe a loss as a function of B and the number of
arms n. The EXP3 algorithm [20], a popular approach
for minimizing cumulative regret in the non-stochastic
setting, is also included. In practice B > n, and thus
Successive Halving is a particularly attractive option,
as along with the baseline, it is the only algorithm that
observes losses proportional to the number of arms and
independent of the budget. As shown in Section 5, em-
pirical performance is quite dependent on the number
of observed losses.

3 Proposed algorithm and analysis

The proposed Successive Halving algorithm of Figure 3
was originally introduced for stochastic best arm iden-
tification by [15]. However, our novel analysis shows
that it is also effective in the non-stochastic setting.
The idea behind the algorithm is simple: given an in-
put budget, uniformly allocate the budget to a set of
arms for a predefined amount of iterations, evaluate
their performance, throw out the worst half, and re-
peat until just one arm remains.

The budget as an input is easily removed by
the “doubling trick.” This procedure sets B < n,
runs the algorithm to completion with B, then sets
B < 2B, and repeats ad infinitum. This method can
reuse existing progress from round to round and effec-
tively makes the algorithm parameter-free. Notably,
if a budget of B’ is necessary to find the best arm,
then by using the doubling trick we can find the best
arm with a budget of 2B’ in the worst case without
knowing B’ in the first place.

3.1 Analysis of Successive Halving

For ¢ = 1,...,n define v; = lim,_, o ¢; » which exists
by assumption. Without loss of generality, assume
v1 < vg < --- < v,. We next introduce functions
that bound the approximation error of ¢;; with re-
spect to v; as a function of ¢. For each i € [n] let
~i(t) be the point-wise smallest, non-increasing func-
tion of ¢ with |¢;  —v;| < 7;(t) Vt.In addition, define
v (@) = min{t € N : y;(t) < a} for all i € [n]. With
this definition, if ¢; > 7; ' (45%) and t; > ~; T(454)
then

= (lig, —vi) + (11 — L1,) +2(252)
> —7i(t:) —(t) +2(%52) >0

so that ¢; ;, > ¢1;,. That is, comparing the intermedi-
ate values at t; and ¢; suffices to determine the order-
ing of the final values v; and v;. Intuitively, this con-
dition holds because the envelopes at the given times,
namely v;(t;) and 1 (¢1), are small relative to the gap
between v; and vq. This line of reasoning is at the
heart of the proof of our main result, and the theorem
is stated in terms of these quantities. All proofs can
be found in the appendix.

liy, — Oty

Theorem 1 Let v; = lim ¢, ;, ¥(t) = max (1),
T—00

i=1,...,n
and

zsu = 2[logy(n)] _max i (147571 (152)

< 2Mlog,(n)] (n + 7 (4F4)).

1=2,...,n

If the Successive Halving algorithm is run with any
budget B > zgpy then the best arm is guaranteed to
be returned. Moreover, if the Successive Halving algo-
rithm is bootstrapped by the “doubling trick” that takes
no arguments as input, then this procedure returns the
best arm once the total number of iterations taken ex-
ceeds just 225 -

Remark 1 Without additional assumptions on the ~y;
functions, it is impossible for any algorithm to know
with certainty that an arm is the best arm, and thus
when it can stop and output an arm with any con-
fidence. Consequently, among the set of algorithms
that are guaranteed to identify the best arm eventually,
our burden is to characterize situations in which the
Successive Halving algorithm identifies the best-arm
significantly faster than natural baselines, and show
that it is never much slower. In other words, for any
amount of time allotted to a search process, we must
show that Successive Halving is the preferred algorithm
in hindsight with respect to natural baselines. Note that
any heuristic optimization convergence criteria (e.g. a
lack of progress in the last several iterations) can be
applied here just as is often done in practice.
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The representation of zgy on the right-hand-side of
the inequality is intuitive: if ¥(¢) = ~;(¢t) Vi and an
oracle gave us an explicit form for ¥(¢), then to merely
verify that the ith arm’s final value is higher than the
best arm’s value, one must pull each of the two arms
at least a number of times equal to the ith term in
the sum (this becomes clear by inspecting the proof
of Theorem 3). Repeating this argument for all ¢ =
2,...,n explains the sum over all n — 1 arms.

Example 1 Consider a feature-selection problem in-
volving a dataset {(xi,y;)}?_, where each z; € RP,
with the goal of identifying the best subset of d fea-
tures that linearly predicts y; in terms of the least-
squares metric. Defining each d-subset is an arm
we have n = (g) arms. The least squares problem
can be efficiently solved with stochastic gradient de-
scent. Using known bounds for the rates of conver-
gence [21] one can show that v,(t) < %(nt/&) for
all a = 1,...,n arms and all t > 1 with probability
at least 1 — & where o, is a constant that depends on
the condition number of the quadratic defined by the d-
subset. Then in Theorem 1, F(t) = %g(m/é) with

Omax = MaXq—1,...n Oq 50 after inverting ¥ we find that

40 max log (452(303";’1{) )
ZSH = 4|—1Og2(n)—| maxg=2,..,na z/a—ula

sufficient budget to identify the best arm.

s a

In this example we computed upper bounds on ~; in
terms of problem dependent parameters and plugged
them into our theorem to obtain a sample complexity.
However, we stress that constructing tight bounds for
the ~; functions is very difficult outside of simple prob-
lems, and even then we have unspecified constants that
require expert knowledge to approximate. Although
such special purpose approaches could yield more effi-
cient algorithms, they often require the careful tuning
of additional hyperparameters and can be challenging
for non-experts to deploy.

In contrast, our algorithm does not explicitly rely on
these v; functions, and is in some sense adaptive to
them: the faster the arms’ losses converge, the faster
the best arm is discovered, without ever changing the
algorithm. This behavior is in contrast to the hyper-
parameter tuning work of [8] and [7], in which the
algorithms explicitly take upper bounds on these ~;
functions as input, meaning their accuracy and perfor-
mance is only as good as the tightness of these difficult
to calculate bounds.

3.2 Comparison to a uniform allocation
strategy

We next derive a result for the uniform allocation
strategy that pulls arms in a round-robin fashion.

Theorem 2 (Uniform strategy — sufficiency) Let v; =
TILHOIO b, 7(t) = max;=1,.. nv(t) and

— ~—1 (vi—
w = max ny(43%).
The uniform strategy takes mo input arguments and
returns the best arm at timestep t for allt > zy.

Theorem 2 is a sufficiency statement so it is unclear
how it actually compares to the Successive Halving
result of Theorem 1. The next theorem says that the
above result is tight in a worst-case sense, exposing
the real gap between Successive Halving and uniform
allocation.

Theorem 3 (Uniform strateqgy — necessity) For any
timestep t and final values vy < vy < -+ < v, there ex-
ists a sequence of losses {€;1}52,, 1 =1,2,...,n such
that if

t < ~—1 (v;—11

e (434
then the uniform strategy does not return the best arm
at timestep t.

Remark 2 If we consider the second, looser repre-
sentation of zsy on the right-hand-side of the in-
equality in Theorem 1 and multiply this quantity by
Z—j we see that the sufficient number of pulls for
the Successive Halving algorithm with doubling essen-
tially behaves like (n — 1)logy(n) times the average
ﬁ Zi:%“’n 1 (LQ’“) whereas the necessary result
of the uniform strategy of Theorem & behaves like n
times the maximum max;—s . n 1 (”;2”1) The next
example shows that the difference between this average

and mazx can be significant.

Example 2 Recall Ezample 1 and now assume that

Ou = Omax for all a = 1,...,n. Then Theo-

rem 8 says that the uniform strategy budget must
40 max 10g(52(:;bo'inzx) )

2 to identify the best

be at least n p—
arm. To see how this result compares with that of
Successive Halving with doubling, let us parameter-
ize the v, limiting values such that v, = a/n for
a =1,...,n. Then a sufficient budget for the Suc-
cessive Halving algorithm with doubling to identify the

2
N~ Omax
0

best arm is just 16n[logy(n)]omax log while

the uniform strategy would require a budget of at least
% This is a difference of essen-

tially 8nlogy(n) versus n?.

2120 max log

3.3 Anytime fallback guarantee

It was just shown that Successive Halving can poten-
tially identify the best arm well before the uniform
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procedure, i.e., zgy < zy. However, zgy is in terms
of ;(t) and is usually not available. It is natural to
ask what happens if we stop Successive Halving be-
fore these results apply, i.e., when ¢t < zgy. Our
next result, an anytime performance guarantee, an-
swers this question by showing that in such cases Suc-
cessive Halving is comparable to the baseline method
modulo log factors.

Theorem 4 Let?sH be the output of Successive Halv-
ing with doubling at timestep t. Then

Viey — V1 < [logy(n)]25 (Lvﬂ%j(nﬂj) '

Moreover, ?U, the output of the uniform strategy at
time t, satisfies

V{U -1 < E’i\,B/n - gl,B/n + 2:)/(|_t/nj) < 2’7(|_t/nj)

Applying Theorem 4 to the specific problem studied in
Examples 1 and 2 shows that both Successive Halving
and uniform allocation satisfy 7; — v1 < O (n/B) in
this particular setting, where 7 is the output of either
algorithm and O suppresses poly log factors. However,
we stress that this result is merely a fall-back guaran-
tee and it does not rule out the possibility of Successive
Halving far outperforming uniform allocation in prac-
tice, as is suggested by Remark 2 and is observed in
our experimental results.

4 Hyperparameter optimization and
best arm identification

In supervised learning we are given a dataset of pairs
(xi,y;) € X x Y for i = 1,...,n sampled i.id.
from some unknown distribution Pxy, and we aim
to find a map (or model) f : X — Y that minimizes
E(x,y)~Px.y [Loss(f(X),Y)] for some known loss func-
tion loss : Y x Y — R. We consider mappings that
are the output of some fixed, possibly randomized, al-
gorithm A that takes a dataset and algorithm-specific
parameters 6 € © as input and outputs fy : X — ).
For a fixed dataset {(z;,y;)}7, the parameters § € ©
index the different models fy, and will henceforth be
referred to as hyperparameters. We adopt the train-
validate-test framework for choosing hyperparameters
[22], whereby we partition the full dataset into TRAIN,
VAL , and TEST sets; use TRAIN to train a model
fo = A{(x,y:) }ietraty, 0) for each 6 € O; choose the
hyperparameters that minimize the validation error;
and report the test error. We note that the selection
of 0 is the minimization of a function that in general
is not necessarily even continuous, much less convex.

Example 3 Consider a linear support vector ma-
chine (SVM) classification ezample where X x Y =

R? x {-1,1}, © C Ry, fo = A({(xi,vi)}ictram, 0)
where  fo(x) = sign{{wg,x)} with wy =
arg mlnw |TR}1IN‘ ZiETEAINmaX(()’ 1_yl<w7 xl>)+9|‘w||%’
and finally 0 = arg mingeceg \T}ILl Y e Wy # fo(x)}.
While fg for each 8 € © can be efficiently computed
using an iterative algorithm due to convexity [23], the
selection of 0 is the minimization of a function that is
not even continuous, much less convex.

Now assume that the algorithm A is iterative so
that for a given {(x;,¥:)}ietrary and 6, the algo-
rithm outputs a function fy; every iteration ¢t >
1. Define fg; as the validation error of fp,. We
assume that lim:_,oo fg+ exists! and is equal to
ﬁ > icvar 1oss(fo(),y:). Under these conditions,
we can cast hyperparameter optimization as an in-
stance of non-stochastic best arm identification. We
generate the arms (hyperparameter settings) uni-
formly at random (possibly on a log scale) from within
the region of valid hyperparameters (i.e. all hyperpa-
rameters within some minimum and maximum range)
and sample enough arms to ensure a sufficient cover
of the space [6]. Alternatively, one could input a fixed
set of parameters of interest. We note that random or
grid search remain the default choices for many open
source machine learning packages such as LibSVM [12],
scikit-learn [13] and MLIib [14]. As described in Fig-
ure 2, the bandit algorithm will choose I;, and we will
use the convention that J; = argming ¢y 1,,. The final
quality of the arm selected by J; will be evaluated via
test error as described above.

4.1 Related work

We aim to leverage the iterative nature of standard
learning algorithms to speed up hyperparameter op-
timization in a robust and principled fashion. It is
clear that no algorithm can provably identify a hyper-
parameter with a value within e of the optimal with-
out known, explicit functions ;, which means no al-
gorithm can reject a hyperparameter setting with ab-
solute confidence without making potentially strong
assumptions. In [8], 7; functions are defined in an
ad-hoc, algorithm-specific, and data-specific fashion
which leads to strong e-good claims. A related line of
work defines ;-like functions for optimizing the com-
putational efficiency of structural risk minimization,
yielding bounds [7]. We stress that these results are
only as good as the tightness and correctness of the ~;
bounds. If the v; functions are chosen to decrease too
rapidly, a procedure might throw out good arms too
early, and if chosen to decrease too slowly, a procedure

'We note that fo = lim¢o fo,+ pointwise on X is not

enough to conclude that lim; . fg + exists but we ignore
this technicality in our experiments.
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will be overly conservative. Moreover, properly tuning
these special-purpose approaches can be an onerous
task for non-experts. We view our work as an empiri-
cal, data~driven driven approach to the pursuits of [7].
Also, [9] empirically studies an early stopping heuristic
similar in spirit to Successive Halving.

We also note that we fix the hyperparameter settings
(or arms) under consideration and adaptively allocate
our budget to each arm. In contrast, Bayesian opti-
mization advocates choosing hyperparameter settings
adaptively, but with the exception of [8], allocates
a fixed budget to each selected hyperparameter set-
ting [2, 3, 4, 5, 6]. These methods, though heuristic in
nature as they attempt to simultaneously fit and op-
timize a non-convex and potentially high-dimensional
function, yield promising empirical results. We view
our approach as complementary and, as formulated,
incomparable to Bayesian methods since our core in-
terest is in exploiting the iterative nature of learning
algorithms while these Bayesian methods treat these
algorithms as black boxes. We discuss extensions of
this work that would allow for a direct comparison to
Bayesian methods in Section 6.

5 Experiment results

In this section we compare the proposed algorithm to
a number of other algorithms, including the baseline
uniform allocation strategy, on a number of hyperpa-
rameter optimization problems using the experimental
setup outlined in Section 4. Each experiment was im-
plemented in Python on an Amazon EC2 c3.8xlarge
instance with 32 cores and 60 GB of memory. All
datasets were partitioned into a 72-18-10 TRAIN-VAL-
TEST split, and all plots report test error. To evaluate
search algorithms, we fix a total budget of iterations
and allow the search algorithms to allocate this budget
amongst the different arms. The curves are produced
by implementing the doubling trick by doubling the
measurement budget each time. For the purpose of
interpretability we do not warm start upon doubling.
All datasets, aside from the collaborative filtering ex-
periments, are normalized so that each dimension has
mean 0 and variance 1.

Ridge Regression We first consider using stochastic
gradient descent on the ridge regression objective func-
tion with step size .01/y/2 + T. The ¢5 penalty hyper-
parameter A € [1075,10°] was chosen uniformly at ran-
dom on a log scale per trial, with 10 values (i.e., arms)
selected per trial. We use the Million Song Dataset
year prediction task [24] where we have downsampled
the dataset by a factor of 10. The experiment was
repeated for 32 trials using mean-squared error as the
loss function. In the top panel of Figure 4 we note that
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Figure 4: Ridge Regression. Test error with respect
to both the number of iterations (top) and wall-clock
time (bottom). Note that in the top plot, uniform,
EXP3, and Successive Elimination coincide.

li'UCB achieves a small test error two to four times
faster in terms of iterations than most other methods.
However, in the bottom panel the same data is plot-
ted but with respect to wall-clock time rather than
iterations and we observe that Successive Halving and
Successive Rejects are the top performers. This re-
sults follows from Table 1, as li'UCB must evaluate
the validation loss on every iteration requiring much
greater compute time. This pattern is observed in all
experiments so in the sequel we only consider uniform
allocation, Successive Halving, and Successive Rejects.

Collaborative filtering We next consider a matrix
completion problem using the Movielens 100k dataset
trained with stochastic gradient descent on the bi-
convex objective with step sizes as described in [25].
We initialize the user and item variables with en-
tries drawn from a normal distribution with variance
02/d, hence each arm has hyperparameters d (rank),
A (Frobenius norm regularization), and o (initial con-
ditions which may yield different locally optimal solu-
tions). We chose d € [2,50] and o € [.01, 3] uniformly
at random from a linear scale, and A € [1075,10°] uni-
formly at random on a log scale. Each hyperparameter
is given 4 samples resulting in 43 = 64 total arms. We
performed 32 trials and used mean-squared error as
the loss function. Figure 5 shows that uniform alloca-
tion takes two to eight times longer in both wall-clock
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time and iterations to achieve a particular error rate
than Successive Halving or Successive Rejects.
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Figure 5: Matrix Completion (bi-convex formulation).
Test error with respect to both the number of itera-
tions (top) and wall-clock time (bottom). Successive
Halving is roughly 4x faster than uniform in terms of
both iterations and wall-clock time.

Kernel SVM We now consider learning a RBF-kernel
SVM using Pegasos [23], with ¢5 penalty hyperparam-
eter A € [107%,10° and kernel width v € [10°,103]
both chosen uniformly at random on a log scale per
trial. Each hyperparameter was allocated 10 samples
resulting in 102 = 100 total arms. The experiment
was repeated for 64 trials using 0/1 loss. Kernel eval-
uations were computed online (i.e. not precomputed
and stored). We observe in Figure 6 that Successive
Halving obtains the same low error more than an order
of magnitude faster than both uniform and Successive
Rejects with respect to wall-clock time.

6 Future directions

We see many future interesting theoretical, algorith-
mic, and empirical extensions of our work. First, we
conjecture that a matching lower bound to Theorem 1
can be derived by considering a stochastic adversary
and appealing to the methods of [26]. Since Theorem 1
is in terms of max; ;(t), such a lower bound would be
in stark contrast to the stochastic setting, where arms
with smaller variances have smaller envelopes and ex-
isting algorithms exploit this fact [27]. Second, we plan
to incorporate pairwise switching costs into our frame-
work to model the degree to which resources are shared
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Figure 6: Kernel SVM. While Successive Halving and
Successive Rejects perform similarly with respect to
iteration count (not shown), they are separated by an
order of magnitude in terms of wall-clock time.

across models (resulting in lower switching costs) on a
single core machine. Exploring different ways of par-
allelizing the Successive Halving algorithm is also of
considerable interest. Finally, we aim to extend our
framework to work with black box solvers that return
fully trained models. In such a setting, arms would
still correspond to hyperparameter settings, while the
number of pulls would correspond to the number of
training examples provided to the solver. Enabling
the use of subsampling to speed up hyperparameter
tuning would be particularly attractive when working
with solvers that have superlinear runtime complexity.
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