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Abstract
The Recurrent Neural Network (RNN) is an ex-
tremely powerful sequence model that is often
difficult to train. The Long Short-Term Memory
(LSTM) is a specific RNN architecture whose
design makes it much easier to train. While
wildly successful in practice, the LSTM’s archi-
tecture appears to be ad-hoc so it is not clear if it
is optimal, and the significance of its individual
components is unclear.

In this work, we aim to determine whether the
LSTM architecture is optimal or whether much
better architectures exist. We conducted a thor-
ough architecture search where we evaluated
over ten thousand different RNN architectures,
and identified an architecture that outperforms
both the LSTM and the recently-introduced
Gated Recurrent Unit (GRU) on some but not all
tasks. We found that adding a bias of 1 to the
LSTM’s forget gate closes the gap between the
LSTM and the GRU.

1. Introduction
The Deep Neural Network (DNN) is an extremely expres-
sive model that can learn highly complex vector-to-vector
mappings. The Recurrent Neural Network (RNN) is a
DNN that is adapted to sequence data, and as a result the
RNN is also extremely expressive. RNNs maintain a vector
of activations for each timestep, which makes the RNN ex-
tremely deep. Their depth, in turn, makes them difficult to
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train due to the exploding and the vanishing gradient prob-
lems (Hochreiter, 1991; Bengio et al., 1994).

There have been a number of attempts to address the diffi-
culty of training RNNs. Vanishing gradients were success-
fully addressed by Hochreiter & Schmidhuber (1997), who
developed the Long Short-Term Memory (LSTM) archi-
tecture, which is resistant to the vanishing gradient prob-
lem. The LSTM turned out to be easy to use, causing it
to become the standard way of dealing with the vanishing
gradient problem. Other attempts to overcome the vanish-
ing gradient problem include the use of powerful second-
order optimization algorithms (Martens, 2010; Martens &
Sutskever, 2011), regularization of the RNN’s weights that
ensures that the gradient does not vanish (Pascanu et al.,
2012), giving up on learning the recurrent weights alto-
gether (Jaeger & Haas, 2004; Jaeger, 2001), and a very
careful initialization of RNN’s parameters (Sutskever et al.,
2013). Unlike the vanishing gradient problem, the explod-
ing gradient problem turned out to be relatively easy to ad-
dress by simply enforcing a hard constraint over the norm
of the gradient (Mikolov, 2012; Pascanu et al., 2012).

A criticism of the LSTM architecture is that it is ad-hoc
and that it has a substantial number of components whose
purpose is not immediately apparent. As a result, it is also
not clear that the LSTM is an optimal architecture, and it is
possible that better architectures exist.

Motivated by this criticism, we attempted to determine
whether the LSTM architecture is optimal by means of
an extensive evolutionary architecture search. We found
specific architectures similar to the Gated Recurrent Unit
(GRU) (Cho et al., 2014) that outperformed the LSTM
and the GRU by on most tasks, although an LSTM vari-
ant achieved the best results whenever dropout was used.
In addition, by adding a bias of 1 to the LSTM’s forget gate
(a practice that has been advocated by Gers et al. (2000)
but that has not been mentioned in recent LSTM papers),
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Figure 1. The LSTM architecture. The value of the cell is in-
creased by it�jt, where� is element-wise product. The LSTM’s
output is typically taken to be ht, and ct is not exposed. The for-
get gate ft allows the LSTM to easily reset the value of the cell.

we can close the gap between the LSTM and the better ar-
chitectures. Thus, we recommend to increase the bias to
the forget gate before attempting to use more sophisticated
approaches.

We also performed ablative experiments to measure the im-
portance of each of the LSTM’s many components. We dis-
covered that the input gate is important, that the output gate
is unimportant, and that the forget gate is extremely signif-
icant on all problems except language modelling. This is
consistent with Mikolov et al. (2014), who showed that a
standard RNN with a hard-coded integrator unit (similar to
an LSTM without a forget gate) can match the LSTM on
language modelling.

2. Long Short-Term Memory
In this section, we briefly explain why RNNs can be dif-
ficult to train and how the LSTM addresses the vanishing
gradient problem.

Standard RNNs suffer from both exploding and vanishing
gradients (Hochreiter, 1991; Bengio et al., 1994). Both
problems are caused by the RNN’s iterative nature, whose
gradient is essentially equal to the recurrent weight matrix
raised to a high power. These iterated matrix powers cause
the gradient to grow or to shrink at a rate that is exponential
in the number of timesteps.

The exploding gradients problem is relatively easy to
handle by simply shrinking gradients whose norms ex-
ceed a threshold, a technique known as gradient clipping
(Mikolov, 2012; Pascanu et al., 2012). While learning
would suffer if the gradient is reduced by a massive fac-

tor too frequently, gradient clipping is extremely effective
whenever the gradient has a small norm the majority of the
time.

The vanishing gradient is more challenging because it does
not cause the gradient itself to be small; while the gradi-
ent’s component in directions that correspond to long-term
dependencies is small, while the gradient’s component in
directions that correspond to short-term dependencies is
large. As a result, RNNs can easily learn the short-term
but not the long-term dependencies.

The LSTM addresses the vanishing gradient problem by
reparameterizing the RNN. Thus, while the LSTM does
not have a representational advantage, its gradient cannot
vanish. In the discussion that follows, let St denote a hid-
den state of an unspecified RNN architecture. The LSTM’s
main idea is that, instead of computing St from St−1 di-
rectly with a matrix-vector product followed by a nonlin-
earity, the LSTM directly computes ∆St, which is then
added to St−1 to obtain St. At first glance, this difference
may appear insignificant since we obtain the same St in
both cases. And it is true that computing ∆St and adding
it to St does not result in a more powerful model. How-
ever, just like a tanh-based network has better-behaved gra-
dients than a sigmoid-based network, the gradients of an
RNN that computes ∆St are nicer as well, since they can-
not vanish.

More concretely, suppose that we run our architecture for
1000 timesteps to compute S1000, and suppose that we wish
to classify the entire sequence into two classes using S1000.
Given that S1000 =

∑1000
t=1 ∆St, every single ∆St (in-

cluding ∆S1) will receive a sizeable contribution from the
gradient at timestep 1000. This immediately implies that
the gradient of the long-term dependencies cannot vanish.
It may become “smeared”, but it will never be negligibly
small.

The full LSTM’s definition includes circuitry for comput-
ing ∆St and circuitry for decoding information from St.
Unfortunately, different practitioners use slightly different
LSTM variants. In this work, we use the LSTM architec-
ture that is precisely specified below. It is similar to the
architecture of Graves (2013) but without peep-hole con-
nections:

it = tanh(Wxixt + Whiht−1 + bi)

jt = sigm(Wxjxt + Whjht−1 + bj)

ft = sigm(Wxfxt + Whfht−1 + bf)

ot = tanh(Wxoxt + Whoht−1 + bo)

ct = ct−1 � ft + it � jt

ht = tanh(ct)� ot

In these equations, the W∗ variables are the weight matri-
ces and the b∗ variables are the biases. The operation �
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denotes the element-wise vector product. The variable ct is
the equivalent of St in the previous discussion, due to the
equation ct = ct−1 � ft + it � jt. The LSTM’s hidden
state is the concatenation (ht, ct). Thus the LSTM has two
kinds of hidden states: a “slow” state ct that fights the van-
ishing gradient problem, and a “fast” state ht that allows
the LSTM to make complex decisions over short periods of
time. It is notable that an LSTM with n memory cells has
a hidden state of dimension 2n.

2.1. Arguments Against Attractors

There is a view that the information processing that takes
place in biological recurrent neural networks is based on
attractors (Amit, 1992; Plaut, 1995; Hinton & Shallice,
1991). It states that the RNN’s state stores information
with stable attractors that are robust to external perturba-
tions. The attractor view is appealing because it allows the
RNN to store a bit of information for an indefinite amount
of time, which is a desirable property of information pro-
cessing systems.

Bengio et al. (1994) showed that any RNN that stores one
bit of information with a stable attractor must necessarily
exhibit a vanishing gradient. As Theorem 4 of Bengio et al.
(1994) does not make assumptions on the model architec-
ture, it follows that an LSTM would also suffer from van-
ishing gradients had it stored information using attractors.
But since LSTMs do not suffer from vanishing gradients,
they should not be compatible with attractor-based mem-
ory systems.

2.2. Forget Gates Bias

There is an important technical detail that is rarely men-
tioned in discussions of the LSTM, and that is the initializa-
tion of the forget gate bias bf . Most applications of LSTMs
simply initialize the LSTMs with small random weights
which works well on many problems. But this initializa-
tion effectively sets the forget gate to 0.5. This introduces a
vanishing gradient with a factor of 0.5 per timestep, which
can cause problems whenever the long term dependencies
are particularly severe (such as the problems in Hochreiter
& Schmidhuber (1997) and Martens & Sutskever (2011)).

This problem is addressed by simply initializing the forget
gates bf to a large value such as 1 or 2. By doing so, the
forget gate will be initialized to a value that is close to 1,
enabling gradient flow. This idea was present in Gers et al.
(2000), but we reemphasize it since we found many practi-
tioners to not be familiar with it.

If the bias of the forget gate is not properly initialized, we
may erroneously conclude that the LSTM is incapable of
learning to solve problems with long-range dependencies,
which is not the case.

Figure 2. The Gated Recurrent Unit. Like the LSTM, it is hard to
tell, at a glance, which part of the GRU is essential for its func-
tioning.

2.3. LSTM Alternatives

It is easy to see that the LSTM’s cell is essential since it
is mechanism that prevents the vanishing gradient problem
in the LSTM. However, the LSTM has many other com-
ponents whose presence may be harder to justify, and they
may not be needed for good results.

Recently, Cho et al. (2014) introduced the Gated Recurrent
Unit (GRU), which is an architecture that is similar to the
LSTM, and Chung et al. (2014) found the GRU to outper-
form the LSTM on a suite of tasks. The GRU is defined by
the following equations:

rt = sigm (Wxrxt + Whrht−1 + br)

zt = sigm(Wxzxt + Whzht−1 + bz)

h̃t = tanh(Wxhxt + Whh(rt � ht−1) + bh)

ht = zt � ht−1 + (1− zt)� h̃t

The GRU is an alternative to the LSTM which is similarly
difficult to justify. We compared the GRU to the LSTM
and its variants, and found that the GRU outperformed
the LSTM on nearly all tasks except language modelling
with the naive initialization, but also that the LSTM nearly
matched the GRU’s performance once its forget gate bias
was initialized to 1.

3. Methods
Our main experiment is an extensive architecture search.
Our goal was to find a single architecture that outper-
forms the LSTM on three tasks (sec. 3.5) simultaneously.
We succeeded in finding an architecture that outperformed
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the LSTM on all tasks; the same architecture also outper-
formed the GRU on all tasks though by a small margin. To
outperform the GRU by a significant margin we needed to
use different architectures on for different tasks.

3.1. The Search Procedure

Our search procedure is straightforward. We maintain a
list of the 100 best architectures that we encountered so
far, and estimate the quality of each architecture which is
the performance of its best hyperparameter setting up to
the current point. This top-100 list is initialized with only
the LSTM and the GRU, which been evaluated for every
allowable hyperparameter setting (sec. 3.7).

At each step of its execution the algorithm performs one of
the following three steps:

1. It selects a random architecture from the list of its 100
best architectures, evaluates it on an 20 randomly cho-
sen hyperparameter settings (see sec. 3.3 for the hy-
perparameter distribution) for each of the three tasks,
and updates its performance estimate. We maintained
a list of the evaluated hyperparameters to avoid eval-
uating the same hyperparameter configuration more
than once. Each task is evaluated on an independent
set of 20 hyperparameters, and the architecture’s per-
formance estimate is updated to

min
task

architecture’s best accuracy on task
GRU’s best accuracy on task

(1)

For a given task, this expression represents the per-
formance of the best known hyperparameter setting
over the performance of the best GRU (which has been
evaluated on all allowable hyperparameter settings).
By selecting the minimum over all tasks, we make
sure that our search procedure will look for an archi-
tecture that works well on every task (as opposed to
merely on most tasks).

2. Alternatively, it can propose a new architecture by
choosing an architecture from the list of 100 best ar-
chitectures mutating it (see sec. 3.2).

First, we use the architecture to solve a simple memo-
rization problem, where 5 symbols in sequence (with
26 possibilities) are to be read in sequence and then
reproduced in the same order. This task is exceed-
ingly easy for the LSTM, which can solve it with 25K
parameters under four minutes with all but the most
extreme settings of its hyperparameters. We evaluated
the candidate architecture on one random setting of its
hyperparameters. We would discard the architecture if
its performance was below 95% with teacher forcing
(Zaremba & Sutskever, 2014). The algorithm is al-
lowed to re-examine a discarded architecture in future

rounds, but it is not allowed to run it with a previously-
run hyperparameter configuration.

If an architecture passes the first stage, we evaluate
the architecture on the first task on a set of 20 ran-
dom hyperparameter settings from the distribution de-
scribed in sec. 3.3. If the architecture’s best perfor-
mance exceeds 90% of the GRU’s best performance,
then the same procedure is applied to the second, and
then to the third task, after which the architecture may
be added to the list of the 100 best architectures (so
it will displace one of the architectures in the top-100
list). If the architecture does not make it to the top-
100 list after this stage, then the hyperparameters that
it has been evauated on are stored, and if the architec-
ture is randomly chosen again then it will not need to
pass the memorization task and it will only be evalu-
ated on fresh hyperparameter settings.

3.2. Mutation Generation

A candidate architecture is represented with a computa-
tional graph, similar to ones that are easily expressed in
Theano (Bergstra et al., 2010) or Torch (Collobert et al.,
2011). Each layer is represented with a node, where all
nodes have the same dimensionality. Each architecture re-
ceives M + 1 nodes as inputs, and outputs M nodes as in-
put, so the first M inputs are the RNN’s hidden state at the
previous timestep, while the M + 1th input is the external
input to the RNN. So for example, the LSTM architecture
has three inputs (x, h and c) and two outputs (h and c).

We mutate a given architecture by choosing a probability
p uniformly at random from [0, 1] and independently apply
a randomly chosen transformations from the below with
probability p to each node in the graph. The value of p de-
termines the magnitude of the mutation — this way, most
of the mutations are small while some are large. The trans-
formations below are anchored to a “current node”.

1. If the current node is an activation function, re-
place it with a randomly chosen activation function.
The set of permissible nonlinearities is {tanh(x),
sigmoid(x), ReLU(x),Linear(0, x), Linear(1, x),
Linear(0.9, x), Linear(1.1, x)}. Here the operator
Linear(a, x) introduced a new square parameter ma-
trix W and a bias b which replaces x by W · x + b.
The new matrix is initialized to small random values
whose magnitude is determined by the scale param-
eter, and the scalar value a is added to its diagonal
entries.

2. If the current node is an elementwise operation, re-
place it with a different randomly-chosen elementwise
operation (multiplication, addition, subtraction) .
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3. Insert a random activation function between the cur-
rent node and one of its parents.

4. Remove the current node if it has one input and one
output.

5. Replace the current node with a randomly chosen
node from the current node’s ancestors (i.e., all nodes
that A depends on). This allows us to reduce the size
of the graph.

6. Randomly select a node (node A). Replace the cur-
rent node with either the sum, product, or difference
of a random ancestor of the current node and a ran-
dom ancestor of A. This guarantees that the resulting
computation graph will remain well-defined.

We apply 1-3 of these transformations to mutate an archi-
tecture. We reject architectures whose number of output
vectors is incompatible with the number of its input vec-
tors. If an architecture is rejected we try again, until we
find an architecture that is accepted.

3.3. Hyperparameter Selection for New Architectures

The random hyperparameters of a candidate architecture
are chosen as follows. If the parent architecture has been
evaluated on more than 420 different hyperparameters, then
80% of the hyperparameters for the child (i.e., candidate)
would come from best 100 hyperparameter settings of the
parent, and the remaining 20% would be generated com-
pletely randomly. If its parent had fewer than 420 hyperpa-
rameter evaluations, then 33% of the hyperparameters are
generated completely randomly, 33% of the hyperparame-
ters would are selected from the best 100 hyperparameters
of the LSTM and the GRU (which have been evaluated with
a full hyperparameter search and thus have known settings
of good hyperparameters), and 33% of the hyperparameters
are selected from the hyperparameter that have been tried
on the parent architecture.

3.4. Some Statistics

We evaluated 10,000 different architectures and 1,000 of
them made it past the initial filtering stage on the memo-
rization problem. Each such architecture has been evalu-
ated on 220 hyperparameter settings on average. These fig-
ures suggest that every architecture that we evaluated had
a reasonable chance at achieving its highest performance.
Thus we evaluated 230,000 hyperparameter configurations
in total.

3.5. The Problems

We applied our architecture search to find an architec-
ture that achieves good performance on the following three
problems simultaneously.

• Arithmetic In this problem, the RNN is required to
compute the digits of the sum or difference of two
numbers, where it first reads the sequence which has
the two arguments, and then emits their sum, one char-
acter at a time (as in Sutskever et al. (2014); Zaremba
& Sutskever (2014)). The numbers can have up to 8
digits, and the numbers can be both positive and nega-
tive. To make the task more difficult, we introduced a
random number of distractor symbols between succes-
sive input characters. Thus a typical instance would
be 3e36d9-h1h39f94eeh43keg3c= -13991064, which
represents 3369-13994433= -13991064. The RNN
reads the input sequence until it observes the “=” sign,
after which it is to output the answer, one digit at a
time. We used a next step prediction formulation, so
the LSTM observes the correct value of the past dig-
its when predicting a present digit. The total number
of different symbols was 40: 26 lowercase characters,
the 10 digits, and “+”, “-”,“=”, and “.” (the latter rep-
resents the end of the output).

• XML modelling. The goal of this problem is to pre-
dict the next character in synthetic XML dataset. We
would create an XML tag consisting of a random num-
ber (between 2 and 10) of lowercase characters. The
generation procedure is as follows:

– With 50% probability or after 50 iterations, we
either close the most recently opened tag, or stop
if no open tags remain

– Otherwise, open a new random tag

A short random sample is the following: “〈etdomp〉
〈pegshmnaj〉 〈zbhbmg〉 〈/zbhbmg〉 〈/pegshmnaj〉
〈autmh〉 〈/autmh〉 〈/etdomp〉”

• Penn Tree-Bank (PTB). We also included a word-
level language modelling task on the Penn TreeBank
(Marcus et al., 1993) following the precise setup of
Mikolov et al. (2010), which has 1M words with a vo-
cabulary of size 10,000. We did not use dropout in
the search procedure since the dropout models were
too large and too expensive to properly evaluate, al-
though we did evaluate our candidate architectures
with dropout later.

Although we optimized our architectures on only the pre-
vious three tasks, we added the following Music datasets
to measure the generalization ability of our architecture
search procedure.

• Music. We used the polyphonic music datasets from
Boulanger-Lewandowski et al. (2012). Each timestep
is a binary vector representing the notes played at a
given timestep. We evaluated the Nottingham and the
Piano-midi datasets. Unlike the previous task, where
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we needed to predict discrete symbols and therefore
used the softmax nonlinearity, we were required to
predict binary vectors so we used the sigmoid. We
did not use the music datasets in the search procedure.

For all problems, we used a minibatch of size 20, and un-
rolled the RNNs for 35 timesteps. We trained on sequences
of length greater than 35 by moving the minibatch sequen-
tially through the sequence, and ensuring that the hidden
state of the RNN is initialized by the last hidden state of
the RNN in the previous minibatch.

3.6. The RNN Training Procedure

We used a simple training procedure for each task. We
trained a model with a fixed learning rate, and once its
validation error stopped improving, we would lower the
learning rate by a constant factor. The precise learning rate
schedules are as follows:

• Schedule for Architecture Search. If we would ob-
serve no improvement in three consecutive epochs on
the validation set, we would start lowering the learn-
ing rate by a factor of 2 at each epoch, for four ad-
ditional epochs. Learning would then stop. We used
this learning-rate schedule in the architecture search
procedure, and all the results presented in table 1 are
obtained with this schedule. We used this schedule in
the architecture search because it was more aggressive
and would therefore converge faster.

• MUSIC Schedule for Evaluation. If we observed
no improvement over 10 consecutive epochs, we re-
duced the learning rate by a factor of 0.8. We would
then “reset the counter”, and reduce the learning rate
by another factor 0.8 only after observing another 10
consecutive epochs of no improvement. We stopped
learning once the learning rate became smaller than
10−3, or when learning would progress beyond 800
epochs. The results in table 2 were produced with this
learning rate schedule.

• PTB Schedule for Evaluation. We used the learning
rate schedule of Zaremba et al. (2014). Specifically,
we added an additional hyperparameter of “max-
epoch” that determined the number of epochs with a
constant learning rate. After training for this number
of epochs, we begin to lower the learning rate by a
factor of decay each epoch for a total of 30 training
epochs in total. We introduced three additional hyper-
parameters:

1. max-epoch in {4, 7, 11}
2. decay in {0.5, 0.65, 0.8}
3. dropout in {0.0, 0.1, 0.3, 0.5}

Arch. Arith. XML PTB
Tanh 0.29493 0.32050 0.08782
LSTM 0.89228 0.42470 0.08912
LSTM-f 0.29292 0.23356 0.08808
LSTM-i 0.75109 0.41371 0.08662
LSTM-o 0.86747 0.42117 0.08933
LSTM-b 0.90163 0.44434 0.08952
GRU 0.89565 0.45963 0.09069
MUT1 0.92135 0.47483 0.08968
MUT2 0.89735 0.47324 0.09036
MUT3 0.90728 0.46478 0.09161

Table 1. Best next-step-prediction accuracies achieved by the
various architectures (so larger numbers are better). LSTM-
{f,i,o} refers to the LSTM without the forget, input, and output
gates, respectively. LSTM-b refers to the LSTM with the addi-
tional bias to the forget gate.

Although this increased the size of the hyperparameter
space, we did not increase the number of random hy-
perparameter evaluations in this setting. This schedule
was used for all results in table 3.

3.7. Hyperparameter Ranges

We used the following ranges for the hyperparameter
search.

• The initialization scale is in {0.3, 0.7, 1, 1.4, 2, 2.8},
where the neural network was initialized with the
uniform distribution in U [−x, x], where x =
scale/

√
number-of-units-in-layer

• The learning rate was chosen from
{0.1, 0.2, 0.3, 0.5, 1, 2, 5}, where the gradient
was divided by the size of the minibatch

• The maximal permissible norm of the gradient was set
to {1, 2.5, 5, 10, 20}

• The number of layers was chosen from {1, 2, 3, 4}

• The number of parameters is also a hyperparameter,
although the range was task-dependent, as the differ-
ent tasks required models of widely different sizes; We
used binary search to select the appropriate number of
units for a given number of parameters. For ARITH
and XML the number of parameters was 250K or
1M; for Music it was 100K or 1M; and for PTB it
was 5M. Surprisingly, we observed only slight perfor-
mance gains for the larger models.

4. Results
We present the three best architectures that our search has
discovered. While these architectures are similar to the
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GRU, they outperform it on the tasks we considered.

MUT1:

z = sigm(Wxzxt + bz)

r = sigm(Wxrxt + Whrht + br)

ht+1 = tanh(Whh(r � ht) + tanh(xt) + bh)� z

+ ht � (1− z)

MUT2:

z = sigm(Wxzxt + Whzht + bz)

r = sigm(xt + Whrht + br)

ht+1 = tanh(Whh(r � ht) + Wxhxt + bh)� z

+ ht � (1− z)

MUT3:

z = sigm(Wxzxt + Whz tanh(ht) + bz)

r = sigm(Wxrxt + Whrht + br)

ht+1 = tanh(Whh(r � ht) + Wxhxt + bh)� z

+ ht � (1− z)

We report the performance of a baseline Tanh RNN, the
GRU, the LSTM, the LSTM where the forget gate bias is
set to 1 (LSTM-b), and the three best architectures discov-
ered by the search procedure (named MUT1, MUT2, and
MUT3). We also evaluated an LSTM without input gates
(LSTM-i), an LSTM without output gates (LSTM-o), and
an LSTM without forget gates (LSTM-f).

Our findings are summarized below:

• The GRU outperformed the LSTM on all tasks with
the exception of language modelling

• MUT1 matched the GRU’s performance on language
modelling and outperformed it on all other tasks

• The LSTM significantly outperformed all other archi-
tectures on PTB language modelling when dropout
was allowed

• The LSTM with the large forget bias outperformed
both the LSTM and the GRU on almost all atsks

• While MUT1 is the best performer on two of the mu-
sic datasets, it is notable that the LSTM-i and LSTM-
o achieve the best results on the music dataset when
dropout is used.

Results from the Music datasets are shown in table 2. We
report the negative log probabilities of the various architec-
tures on the PTB dataset in table 3.

Arch. N N-dropout P
Tanh 3.612 3.267 6.809
LSTM 3.492 3.403 6.866
LSTM-f 3.732 3.420 6.813
LSTM-i 3.426 3.252 6.856
LSTM-o 3.406 3.253 6.870
LSTM-b 3.419 3.345 6.820
GRU 3.410 3.427 6.876
MUT1 3.254 3.376 6.792
MUT2 3.372 3.429 6.852
MUT3 3.337 3.505 6.840

Table 2. Negative Log Likelihood on the music datasets. N stands
for Nottingham, N-dropout stands for Nottingham with nonzero
dropout, and P stands for Piano-Midi.

Arch. 5M-tst 10M-v 20M-v 20M-tst
Tanh 4.811 4.729 4.635 4.582 (97.7)
LSTM 4.699 4.511 4.437 4.399 (81.4)
LSTM-f 4.785 4.752 4.658 4.606 (100.8)
LSTM-i 4.755 4.558 4.480 4.444 (85.1)
LSTM-o 4.708 4.496 4.447 4.411 (82.3)
LSTM-b 4.698 4.437 4.423 4.380 (79.83)
GRU 4.684 4.554 4.559 4.519 (91.7)
MUT1 4.699 4.605 4.594 4.550 (94.6)
MUT2 4.707 4.539 4.538 4.503 (90.2)
MUT3 4.692 4.523 4.530 4.494 (89.47)

Table 3. Perplexities on the PTB. The prefix (e.g., 5M) denotes
the number of parameters in the model. The suffix “v” denotes
validation negative log likelihood, the suffix“tst” refers to the test
set. The perplexity for select architectures is reported in paren-
theses. We used dropout only on models that have 10M or 20M
parameters, since the 5M models did not benefit from dropout at
all, and most dropout-free models achieved a test perplexity of
108, and never greater than 120. In particular, the perplexity of
the best models without dropout is below 110, which outperforms
the results of Mikolov et al. (2014).
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Our results also shed light on the significance of the various
LSTM gates. The forget gate turns out to be of the greatest
importance. When the forget gate is removed, the LSTM
exhibits drastically inferior performance on the ARITH and
the XML problems, although it is relatively unimportant in
language modelling, consistent with Mikolov et al. (2014).
The second most significant gate turns out to be the input
gate. The output gate was the least important for the perfor-
mance of the LSTM. When removed, ht simply becomes
tanh(ct) which was sufficient for retaining most of the
LSTM’s performance. However, the results on the music
dataset with dropout do not conform to this pattern, since
there LSTM-i and LSTM-o achieved the best performance.

But most importantly, we determined that adding a positive
bias to the forget gate greatly improves the performance of
the LSTM. Given that this technique the simplest to imple-
ment, we recommend it for every LSTM implementation.
Interestingly, this idea has already been stated in the paper
that introduced the forget gate to the LSTM (Gers et al.,
2000).

5. Discussion and Related Work
Architecture search for RNNs has been previously con-
ducted by Bayer et al. (2009). They attempted to address
the same problem, but they have done many fewer exper-
iments, with small models (5 units). They only consid-
ered synthetic problems with long term dependencies, and
they were able to find architectures that outperformed the
LSTM on these tasks. The simultaneous work of Greff
et al. (2015) have reached similar conclusions regarding the
importance of the different gates of the LSTM.

We have evaluated a variety of recurrent neural network ar-
chitectures in order to find an architecture that reliably out-
performs the LSTM. Though there were architectures that
outperformed the LSTM on some problems, we were un-
able to find an architecture that consistently beat the LSTM
and the GRU in all experimental conditions.

The main criticism of this work is that our search procedure
failed to find architectures that were significantly different
from their parents. Indeed, reviewing the three highest per-
forming architectures, we see that they are all similar to the
GRU. While a much longer search procedure would have
found more diverse architectures, the high cost of evalu-
ating new candidates greatly reduces the feasibility of do-
ing so. Nonetheless, the fact a reasonable search proce-
dure failed to dramatically improve over the LSTM sug-
gests that, at the very least, if there are architectures that
are much better than the LSTM, then they are not trivial to
find.

Importantly, adding a bias of size 1 significantly improved
the performance of the LSTM on tasks where it fell behind

the GRU and MUT1. Thus we recommend adding a bias
of 1 to the forget gate of every LSTM in every application;
it is easy to do often results in better performance on our
tasks. This adjustment is the simple improvement over the
LSTM that we set out to discover.
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