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Abstract

This paper investigates domain generaliza-
tion: How to take knowledge acquired from
an arbitrary number of related domains and
apply it to previously unseen domains? We
propose Domain-Invariant Component Anal-
ysis (DICA), a kernel-based optimization al-
gorithm that learns an invariant transforma-
tion by minimizing the dissimilarity across
domains, whilst preserving the functional re-
lationship between input and output vari-
ables. A learning-theoretic analysis shows
that reducing dissimilarity improves the ex-
pected generalization ability of classifiers on
new domains, motivating the proposed algo-
rithm. Experimental results on synthetic and
real-world datasets demonstrate that DICA
successfully learns invariant features and im-
proves classifier performance in practice.

1. Introduction

Domain generalization considers how to take knowl-
edge acquired from an arbitrary number of related do-
mains, and apply it to previously unseen domains. To
illustrate the problem, consider an example taken from
Blanchard et al. (2011) which studied automatic gat-
ing of flow cytometry data. For each of N patients, a
set of ni cells are obtained from peripheral blood sam-
ples using a flow cytometer. The cells are then labeled
by an expert into different subpopulations, e.g., as a
lymphocyte or not. Correctly identifying cell subpop-
ulations is vital for diagnosing the health of patients.
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However, manual gating is very time consuming. To
automate gating, we need to construct a classifier that
generalizes well to previously unseen patients, where
the distribution of cell types may differ dramatically
from the training data.

Unfortunately, we cannot apply standard machine
learning techniques directly because the data violates
the basic assumption that training data and test data
come from the same distribution. Moreover, the train-
ing set consists of heterogeneous samples from several
distributions, i.e., gated cells from several patients. In
this case, the data exhibits covariate (or dataset) shift
(Widmer and Kurat, 1996; Quionero-Candela et al.,
2009; Bickel et al., 2009): although the marginal dis-
tributions PX on cell attributes vary due to biologi-
cal or technical variations, the functional relationship
P(Y |X) across different domains is largely stable (cell
type is a stable function of a cell’s chemical attributes).

A considerable effort has been made in domain adap-
tation and transfer learning to remedy this problem,
see Pan and Yang (2010); Ben-David et al. (2010) and
references therein. Given a test domain, e.g., a cell
population from a new patient, the idea of domain
adaptation is to adapt a classifier trained on the train-
ing domain, e.g., a cell population from another pa-
tient, such that the generalization error on the test
domain is minimized. The main drawback of this ap-
proach is that one has to repeat this process for every
new patient, which can be time-consuming – especially
in medical diagnosis where time is a valuable asset.
In this work, across-domain information, which may
be more informative than the domain-specific infor-
mation, is extracted from the training data and used
to generalize the classifier to new patients without re-
training.
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Figure 1. A simplified schematic diagram of the domain
generalization framework. A major difference between our
framework and most previous work in domain adaptation
is that we do not observe the test domains during training
time. See text for detailed description on how the data are
generated.

Overview. The goal of (supervised) domain gener-
alization is to estimate a functional relationship that
handles changes in the marginal P(X) or conditional
P(Y |X) well, see Figure 1. We assume that the condi-
tional probability P(Y |X) is stable or varies smoothly
with the marginal P(X). Even if the conditional is
stable, learning algorithms may still suffer from model

misspecification due to variation in the marginal P(X).
That is, if the learning algorithm cannot find a solu-
tion that perfectly captures the functional relationship
between X and Y then its approximate solution will
be sensitive to changes in P(X).

In this paper, we introduce Domain Invariant Compo-
nent Analysis (DICA), a kernel-based algorithm that
finds a transformation of the data that (i) minimizes
the difference between marginal distributions PX of
domains as much as possible while (ii) preserving the
functional relationship P(Y |X).

The novelty of this work is twofold. First, DICA ex-
tracts invariants : features that transfer across do-
mains. It not only minimizes the divergence be-
tween marginal distributions P(X), but also preserves
the functional relationship encoded in the posterior
P(Y |X). The resulting learning algorithm is very sim-
ple. Second, while prior work in domain adaptation
focused on using data from many different domains
to specifically improve the performance on the target
task, which is observed during the training time (the
classifier is adapted to the specific target task), we
assume access to abundant training data and are in-
terested in the generalization ability of the invariant
subspace to previously unseen domains (the classifier
generalizes to new domains without retraining).

Moreover, we show that DICA generalizes or is closely
related to many well-known dimension reduction al-
gorithms including kernel principal component analy-
sis (KPCA) (Schölkopf et al., 1998; Fukumizu et al.,
2004), transfer component analysis (TCA) (Pan et al.,
2011), and covariance operator inverse regression
(COIR) (Kim and Pavlovic, 2011), see §2.4. The per-
formance of DICA is analyzed theoretically §2.5 and
demonstrated empirically §3.

Related work. Domain generalization is a form of
transfer learning, which applies expertise acquired in
source domains to improve learning of target domains
(cf. Pan and Yang (2010) and references therein).
Most previous work assumes the availability of the tar-
get domain to which the knowledge will be transferred.
In contrast, domain generalization focuses on the gen-
eralization ability on previously unseen domains. That
is, the test data comes from domains that are not avail-
able during training.

Recently, Blanchard et al. (2011) proposed an aug-
mented SVM that incorporates empirical marginal dis-
tributions into the kernel. A detailed error analysis
showed universal consistency of the approach. We ap-
ply methods from Blanchard et al. (2011) to derive the-
oretical guarantees on the finite sample performance of
DICA.

Learning a shared subspace is a common approach in
settings where there is distribution mismatch. For ex-
ample, a typical approach in multitask learning is to
uncover a joint (latent) feature/subspace that bene-
fits tasks individually (Argyriou et al., 2007; Gu and
Zhou, 2009; Passos et al., 2012). A similar idea has
been adopted in domain adaptation, where the learned
subspace reduces mismatch between source and tar-
get domains (Gretton et al., 2009; Pan et al., 2011).
Although these approaches have proven successful in
various applications, no previous work has fully in-
vestigated the generalization ability of a subspace to
unseen domains.

2. Domain-Invariant Component

Analysis

Let X denote a nonempty input space and Y an arbi-
trary output space. We define a domain to be a joint
distribution PXY on X ×Y, and let PX×Y denote the
set of all domains. Let PX and PY|X denote the set
of probability distributions PX on X and PY |X on Y
given X respectively.

We assume domains are sampled from probability dis-
tribution P on PX×Y which has a bounded second
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moment, i.e., the variance is well-defined. Domains are
not observed directly. Instead, we observe N samples

S = {Si}Ni=1, where Si = {(x
(i)
k , y

(i)
k )}ni

k=1 is sampled
from P

i
XY and each P

1
XY , . . . ,P

N
XY is sampled from P.

Since in general Pi
XY 6= P

j
XY , the samples in S are not

i.i.d. Let P̂
i denote empirical distribution associated

with each sample Si. For brevity, we use P and PX

interchangeably to denote the marginal distribution.

Let H and F denote reproducing kernel Hilbert spaces
(RKHSes) on X and Y with kernels k : X × X → R

and l : Y × Y → R, respectively. Associated with H
and F are mappings x→ φ(x) ∈ H and y → ϕ(y) ∈ F
induced by the kernels k(·, ·) and l(·, ·). Without loss
of generality, we assume the feature maps of X and Y
have zero means, i.e.,

∑n
k=1 φ(xk) = 0 =

∑n
k=1 ϕ(yk).

Let Σxx, Σyy, Σxy, and Σyx be the covariance operators
in and between the RKHSes of X and Y .

Objective. Using the samples S, our goal is to pro-
duce an estimate f : PX × X → R that generalizes

well to test samples St = {x
(t)
k }

nt

k=1 drawn according
to some unknown distribution P

t ∈ PX (Blanchard
et al., 2011). Since the performance of f depends in
part on how dissimilar the test distribution P

t is from
those in the training samples, we propose to preprocess
the data to actively reduce the dissimilarity between
domains. Intuitively, we want to find transformation
B in H that (i) minimizes the distance between em-
pirical distributions of the transformed samples B(Si)
and (ii) preserves the functional relationship between
X and Y , i.e., Y ⊥ X | B(X). We formulate an opti-
mization problem capturing these constraints below.

2.1. Distributional Variance

First, we define the distributional variance, which mea-
sures the dissimilarity across domains. It is convenient
to represent distributions as elements in an RKHS
(Berlinet and Agnan, 2004; Smola et al., 2007; Sripe-
rumbudur et al., 2010) using the mean map

µ : PX → H : P 7→

∫

X

k(x, ·) dP(x) =: µP . (1)

We assume that k(x, x) is bounded for any x ∈ X such
that Ex∼P[k(x, ·)] < ∞. If k is characteristic then (1)
is injective, i.e., all the information about the distribu-
tion is preserved (Sriperumbudur et al., 2010). It also
holds that EP[f ] = 〈µP, f〉H for all f ∈ H and any P.

We decompose P into PX , which generates the
marginal distribution PX , and PY |X , which generates
posteriors PY |X . The data generating process begins
by generating the marginal PX according to PX . Con-
ditioned on PX , it then generate conditional PY |X ac-

cording to PY |X . The data point (x, y) is generated
according to PX and PY |X , respectively. Given set of
distributions P = {P1,P2 . . . ,PN} drawn according to
PX , define N ×N Gram matrix G with entries

Gij := 〈µPi , µPj 〉H =

∫∫
k(x, z) dPi(x) dPj(z), (2)

for i, j = 1, . . . , N . Note that Gij is the inner product
between kernel mean embeddings of Pi and P

j in H.
Based on (2), we define the distributional variance,
which estimates the variance of the distribution PX :

Definition 1. Introduce probability distribution P on

H with P(µPi) = 1
N

and center G to obtain the co-

variance operator of P, denoted as Σ := G − 1NG −
G1N + 1NG1N . The distributional variance is

VH(P) :=
1

N
tr(Σ) =

1

N
tr(G)−

1

N2

N∑

i,j=1

Gij . (3)

The following theorem shows that the distributional
variance is suitable as a measure of divergence between
domains.

Theorem 1. Let P̄ = 1
N

∑N
i=1 P

i. If k is a character-

istic kernel, then VH(P) = 1
N

∑N
i=1‖µPi −µP̄‖

2
H = 0 if

and only if P1 = P
2 = · · · = P

N .

To estimate VH(P) from N sample sets S = {Si}Ni=1

drawn from P
1, . . . ,PN , we define block kernel and co-

efficient matrices

K =




K1,1 · · · K1,N

...
. . .

...
KN,1 · · · KN,N


 ∈ R

n×n ,

Q =




Q1,1 · · · Q1,N

...
. . .

...
QN,1 · · · QN,N


 ∈ R

n×n ,

where n =
∑N

i=1 ni and [Ki,j ]k,l = k(x
(i)
k , x

(j)
l ) is the

Gram matrix evaluated between the sample Si and
Sj . Following (3), elements of the coefficient matrix
Qi,j ∈ R

ni×nj equal (N − 1)/(N2n2
i ) if i = j, and

−1/(N2ninj) otherwise. Hence, the empirical distri-
butional variance is

V̂H(S) =
1

N
tr(Σ̂) = tr(KQ) . (4)

Theorem 2. The empirical estimator V̂H(S) =
1
N
tr(Σ̂) = tr(KQ) obtained from Gram matrix

Ĝij :=
1

ni · nj

ni∑

k=1

nj∑

l=1

k(x
(i)
k , x

(j)
l )

is a consistent estimator of VH(P).
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2.2. Formulation of DICA

DICA finds an orthogonal transform B onto a low-
dimensional subspace (m≪ n) that minimizes the dis-
tributional variance VH(S) between samples from S,
i.e. the dissimilarity across domains. Simultaneously,
we require that B preserves the functional relationship
between X and Y , i.e. Y ⊥ X | B(X).

Minimizing distributional variance. To sim-

plify notation, we “flatten” {(x
(i)
k , y

(i)
k )ni

k=1}
N
i=1 to

{(xk, yk)}nk=1 where n =
∑N

i=1 ni. Let bk =∑n
i=1 β

i
kφ(xi) = Φxβk be the kth basis function

of B where Φx = [φ(x1), φ(x2), . . . , φ(xn)] and βk

are n-dimensional coefficient vectors. Let B =
[β1,β2, . . . ,βm] and Φ̃x denote the projection of Φx

onto bk, i.e., Φ̃x = b⊤
k Φx = β⊤

k Φ
⊤
x Φx = β⊤

k K. The
kernel on the B-projection of X is

K̃ := Φ̃⊤
x Φ̃x = KBB⊤K . (5)

After applying transformation B, the empirical distri-
butional variance between sample distributions is

V̂H(BS) = tr(K̃Q) = tr(B⊤KQKB) . (6)

Preserving the functional relationship. The
central subspace C is the minimal subspace that cap-
tures the functional relationship between X and Y , i.e.
Y ⊥ X|C⊤X. Note that in this work we generalize a
linear transformation C⊤X to nonlinear one B(X). To
find the central subspace we use the inverse regression
framework, (Li, 1991):

Theorem 3. If there exists a central subspace

C = [c1, . . . , cm] satisfying Y ⊥ X|C⊤X, and for any

a ∈ R
d, E[a⊤X|C⊤X] is linear in {c⊤i X}

m
i=1, then

E[X|Y ] ⊂ span{Σxxci}mi=1.

It follows that the bases C of the central subspace
coincide with the m largest eigenvectors of V(E[X|Y ])
premultiplied by Σ−1

xx . Thus, the basis c is the solution
to the eigenvalue problem V(E[X|Y ])Σxxc = γΣxxc.
Alternatively, for each ck one may solve

max
ck∈Rd

c⊤k Σ
−1
xx V(E[X|Y ])Σxxck

c⊤k ck

under the condition that ck is chosen to not be in the
span of the previously chosen ck. In our case, x is
mapped to φ(x) ∈ H induced by the kernel k and B
has nonlinear basis functions ck ∈ H, k = 1, . . . ,m.
This nonlinear extension implies that E[X|Y ] lies on
a function space spanned by {Σxxck}

m
k=1, which coin-

cide with the eigenfunctions of the operator V(E[X|Y ])
(Wu, 2008; Kim and Pavlovic, 2011). Since we always
work in H, we drop φ from the notation below.

To avoid slicing the output space explicitly (Li, 1991;
Wu, 2008), we exploit its kernel structure when esti-
mating the covariance of the inverse regressor. The
following result from Kim and Pavlovic (2011) states
that, under a mild assumption, V(E[X|Y ]) can be ex-
pressed in terms of covariance operators:

Theorem 4. If for all f ∈ H, there exists g ∈ F such

that E[f(X)|y] = g(y) for almost every y, then

V(E[X|Y ]) = ΣxyΣ
−1
yy Σyx . (7)

Let Φy = [ϕ(y1), . . . , ϕ(yn)] and L = Φ⊤
y Φy. The co-

variance of inverse regressor (7) is estimated from the

samples S as V̂(E[X|Y ]) = Σ̂xyΣ̂
−1
yy Σ̂yx = 1

n
ΦxL(L +

nεIn)
−1Φ⊤

x where Σ̂xy = 1
n
ΦxΦ

⊤
y and Σ̂yy = 1

n
ΦyΦ

⊤
y .

Assuming inverses Σ̂−1
yy and Σ̂−1

xx exist, a straightfor-
ward computation (see Supplementary) shows

b⊤
k Σ̂

−1
xx V̂(E[X|Y ])Σ̂xxbk =

1

n
β⊤
k L(L+ nεI)−1K2βk

b⊤
k bk = β⊤

k Kβk, (8)

where ε smoothes the affinity structure of the output
space Y , thus acting as a kernel regularizer. Since
we are interested in the projection of φ(x) onto the
basis functions bk, we formulate the optimization in
terms of βk. For a new test sample xt, the pro-
jection onto basis function bk is ktβk, where kt =
[k(x1, xt), . . . , k(xn, xt)].

The optimization problem. Combining (6) and
(8), DICA finds B = [β1,β2, . . . ,βm] that solves

max
B∈Rn×m

1
n
tr
(
B⊤L(L+ nεIn)

−1K2B
)

tr (B⊤KQKB +BKB)
(9)

The numerator requires that B aligns with the bases
of the central subspace. The denominator forces both
dissimilarity across domains and the complexity of B
to be small, thereby tightening generalization bounds,
see §2.5. Rewriting (9) as a constrained optimization
(see Supplementary) yields Lagrangian

L =
1

n
tr
(
B⊤L(L+ nεIn)

−1K2B
)

− tr
((
B⊤KQKB +BKB − Im

)
Γ
)

, (10)

where Γ is a diagonal matrix containing the Lagrange
multipliers. Setting the derivative of (10) w.r.t. B to
zero yields the generalized eigenvalue problem:

1

n
L(L+ nεIn)

−1K2B = (KQK +K)BΓ . (11)
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Algorithm 1 Domain-Invariant Component Analysis

Input: Parameters λ, ε, and m≪ n.

Sample S = {Si = {(x
(i)
k , y

(i)
k )}ni

k=1}
N
i=1.

Output: Projection Bn×m and kernel K̃n×n.

1: Calculate gram matrix [Kij ]kl = k(x
(i)
k , x

(j)
l ) and

[Lij ]kl = l(y
(i)
k , y

(j)
l ).

2: Supervised: C = L(L+ nεI)−1K2.
3: Unsupervised: C = K2.
4: Solve 1

n
CB = (KQK +K + λI)BΓ for B.

5: Output B and K̃ ← KBB⊤K.
6: The test kernel K̃t ← KtBB⊤K where Kt

nt×n is
the joint kernel between test and training data.

Transformation B corresponds to the m leading eigen-
vectors of the generalized eigenvalue problem (11)1.

The inverse regression framework based on covariance
operators has two benefits. First, it avoids explicitly
slicing the output space, which makes it suitable for
high-dimensional output. Second, it allows for struc-
tured outputs on which explicit slicing may be impos-
sible, e.g., trees and sequences. Since our framework is
based entirely on kernels, it is applicable to any type of
input and output variables, as long as the correspond-
ing kernels can be defined.

2.3. Unsupervised DICA

In some application domains, such as image denois-
ing, information about the target may not be available.
We therefore derive an unsupervised version of DICA.
Instead of preserving the central subspace, unsuper-
vised DICA (UDICA) maximizes the variance of X in
the feature space, which is estimated as 1

n
tr(B⊤K2B).

Thus, UDICA solves

max
B∈Rn×m

1
n
tr(B⊤K2B)

tr(B⊤KQKB +B⊤KB)
. (12)

Similar to DICA, the solution of (12) is obtained by
solving the generalized eigenvalue problem

1

n
K2B = (KQK +K)BΓ . (13)

UDICA is a special case of DICA where L = 1
n
I and

ε→ 0. Algorithm 1 summarizes supervised and unsu-
pervised domain-invariant component analysis.

1In practice, it is more numerically stable to solve the
generalized eigenvalue problem 1

n
L(L + nεIn)

−1K2B =
(KQK +K + λI)BΓ, where λ is a small constant.

2.4. Relations to Other Methods

The DICA and UDICA algorithms generalize many
well-known dimension reduction techniques. In the su-
pervised setting, if dataset S contains samples drawn
from a single distribution PXY then we have KQK =
0. Substituting α := KB gives the eigenvalue problem
1
n
L(L + nεI)−1Kα = KαΓ, which corresponds to co-

variance operator inverse regression (COIR) (Kim and
Pavlovic, 2011).

If there is only a single distribution then unsupervised
DICA reduces to KPCA since KQK = 0 and find-
ing B requires solving the eigensystem KB = BΓ
which recovers KPCA (Schölkopf et al., 1998). If
there are two domains, source PS and target PT , then
UDICA is closely related – though not identical to –
Transfer Component Analysis (Pan et al., 2011). This
follows from the observation that VH({PS ,PT }) =
‖µPS

− µPT
‖2, see proof of Theorem 1.

2.5. A Learning-Theoretic Bound

We bound the generalization error of a classifier
trained after DICA-preprocessing. The main compli-
cation is that samples are not identically distributed.
We adapt an approach to this problem developed in
Blanchard et al. (2011) to prove a generalization bound
that applies after transforming the empirical sample
using B. Recall that B = ΦxB.

Define kernel k̄ on P × X as k̄((P, x), (P′, x′)) :=
kP(P,P′) ·kX (x, x′). Here, kX is the kernel on HX and
the kernel on distributions is kP(P,P′) := κ(µP, µP′)
where κ is a positive definite kernel (Christmann and
Steinwart, 2010; Muandet et al., 2012). Let ΨP denote
the corresponding feature map.

Theorem 5. Under reasonable technical assumptions,

see Supplementary, it holds with probability at least

1− δ that,

sup
‖f‖H≤1

∣∣∣E∗
PEPℓ(f(X̃ijB), Yi)− E

P̂
ℓ(f(X̃ijB), Yi)

∣∣∣
2

≤ c1
1

N
tr(B⊺KQKB)

+tr(B⊤KB)

(
c2

N(log 1
δ
+ 2 logN)

n
+

c3 log
1
δ
+ c4

N

)
.

The LHS is the difference between the training error
and expected error (with respect to the distribution
on domains P∗) after applying B.

The first term in the bound, involving tr(B⊺KQKB),
quantifies the distributional variance after applying
the transform: the higher the distributional variance,
the worse the guarantee, tying in with analogous re-
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KPCA COIR

UDICA DICA

Figure 2. Projections of a synthetic dataset onto the first two eigenvectors obtained from the KPCA, UDICA, COIR, and
DICA. The colors of data points corresponds to the output values. The shaded boxes depict the projection of training
data, whereas the unshaded boxes show projections of unseen test datasets. The feature representations learnt by UDICA
and DICA are more stable across test domains than those learnt by KPCA and COIR.

sults in Ben-David et al. (2007; 2010). The second
term in the bound depends on the size of the distortion
tr(B⊺KB) introduced by B: the more complicated the
transform, the worse the guarantee.

The bound reveals a tradeoff between reducing the dis-
tributional variance and the complexity or size of the
transform used to do so. The denominator of (9) is a
sum of these terms, so that DICA tightens the bound
in Theorem 5.

Preserving the functional relationship (i.e. central sub-
space) by maximizing the numerator in (9) should re-
duce the empirical risk E

P̂
ℓ(f(X̃ijB), Yi). However, a

rigorous demonstration has yet to be found.

3. Experiments

We illustrate the difference between the proposed al-
gorithms and their single-domain counterparts using a
synthetic dataset. Furthermore, we evaluate DICA in
two tasks: a classification task on flow cytometry data
and a regression task for Parkinson’s telemonitoring.

3.1. Toy Experiments

We generate 10 collections of ni ∼ Poisson(200)
data points. The data in each collection is gener-
ated according to a five-dimensional zero-mean Gaus-
sian distribution. For each collection, the covariance
of the distribution is generated from Wishart distribu-
tion W(0.2 × I5, 10). This step is to simulate differ-
ent marginal distributions. The output value is y =
sign(b⊤1 x+ ǫ1) · log(|b⊤2 x+ c+ ǫ2|), where b1, b2 are the
weight vectors, c is a constant, and ǫ1, ǫ2 ∼ N (0, 1).
Note that b1 and b2 form a low-dimensional subspace
that captures the functional relationship between X
and Y . We then apply the KPCA, UDICA, COIR,

and DICA algorithms on the dataset with Gaussian
RBF kernels for both X and Y with bandwidth pa-
rameters σx = σy = 1, λ = 0.1, and ε = 10−4.

Fig. 2 shows projections of the training and three pre-
viously unseen test datasets onto the first two eigenvec-
tors. The subspaces obtained from UDICA and DICA
are more stable than for KPCA and COIR. In par-
ticular, COIR shows a substantial difference between
training and test data, suggesting overfitting.

3.2. Gating of Flow Cytometry Data

Graft-versus-host disease (GvHD) occurs in allogeneic
hematopoietic stem cell transplant recipients when
donor-immune cells in the graft recognize the recip-
ient as “foreign” and initiate an attack on the skin,
gut, liver, and other tissues. It is a significant clinical
problem in the field of allogeneic blood and marrow
transplantation. The GvHD dataset (Brinkman et al.,
2007) consists of weekly peripheral blood samples ob-
tained from 31 patients following allogenic blood and
marrow transplant. The goal of gating is to identify
CD3+CD4+CD8β+ cells, which were found to have
a high correlation with the development of GvHD
(Brinkman et al., 2007). We expect to find a subspace
of cells that is consistent to the biological variation be-
tween patients, and is indicative of the GvHD develop-
ment. For each patient, we select a dataset that con-
tains sufficient numbers of the target cell populations.
As a result, we omit one patient due to insufficient
data. The corresponding flow cytometry datasets from
30 patients have sample sizes ranging from 1,000 to
10,000, and the proportion of the CD3+CD4+CD8β+

cells in each dataset ranges from 10% to 30%, depend-
ing on the development of the GvHD.

To evaluate the performance of the proposed algo-
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Table 1. Average accuracies over 30 random subsamples of GvHD datasets. Pooling SVM applies standard kernel function
on the pooled data from multiple domains, whereas distributional SVM also considers similarity between domains using
kernel (14). With sufficiently many samples, DICA outperforms other methods in both pooling and distributional settings.
The performance of pooling SVM and distributional SVM are comparable in this case.

Methods
Pooling SVM Distributional SVM

ni = 100 ni = 500 ni = 1000 ni = 100 ni = 500 ni = 1000

Input 91.68±.91 92.11±1.14 93.57±.77 91.53±.76 92.81±.93 92.41±.98
KPCA 91.65±.93 92.06±1.15 93.59±.77 91.83±.60 90.86±1.98 92.61±1.12
COIR 91.71±.88 92.00±1.05 92.57±.97 91.42±.95 91.54±1.14 92.61±.89
UDICA 91.20±.81 92.21±.19 93.02±.77 91.51±.79 91.74±1.08 93.02±.77
DICA 91.37±.91 92.71±.82 94.16±.73 91.51±.89 93.42±.73 93.33±.86

Table 2. The average leave-one-out accuracies over 30 sub-
jects on GvHD data. The distributional SVM outperforms
the pooling SVM. DICA improves classifier accuracy.

Methods Pooling Distributional

Input 92.03±8.21 93.19±7.20
KPCA 91.99±9.02 93.11±6.83
COIR 92.40±8.63 92.92±8.20
UDICA 92.51±5.09 92.74±5.01
DICA 92.72±6.41 94.80±3.81

rithms, we took data from N = 10 patients for train-
ing, and the remaining 20 patients for testing. We
subsample the training sets and test sets to have 100,
500, and 1,000 data points (cells) each. We compare
the SVM classifiers under two settings, namely, a pool-
ing SVM and a distributional SVM. The pooling SVM
disregards the inter-patient variation by combining all
datasets from different patients, whereas the distribu-
tional SVM also takes the inter-patient variation into
account via the kernel function (Blanchard et al., 2011)

K(x̃
(i)
k , x̃

(j)
l ) = k1(P

i,Pj) · k2(x
(i)
k , x

(j)
l ) (14)

where x̃
(i)
k = (Pi, x

(i)
k ) and k1 is the kernel on distribu-

tions. We use k1(P
i,Pj) = exp

(
−‖µPi − µPj‖2H/2σ2

1

)

and k2(x
(i)
k , x

(j)
l ) = exp(−‖x

(i)
k − x

(j)
l ‖

2/2σ2
2), where

µPi is computed using k2. For pooling SVM, the ker-
nel k1(P

i,Pj) is constant for any i and j. Moreover, we

use the output kernel l(y
(i)
k , y

(j)
l ) = δ(y

(i)
k , y

(j)
l ) where

δ(a, b) is 1 if a = b, and 0 otherwise. We compare
the performance of the SVMs trained on the prepro-
cessed datasets using the KPCA, COIR, UDICA, and
DICA algorithms. It is important to note that we
are not defining another kernel on top of the prepro-
cessed data. That is, the kernel k2 for KPCA, COIR,
UDICA, and DICA is exactly (5). We perform 10-fold
cross validation on the parameter grids to optimize for
accuracy.

Table 1 reports average accuracies and their standard

deviation over 30 repetitions of the experiments. For
sufficiently large number of samples, DICA outper-
forms other approaches. The pooling SVM and dis-
tributional SVM achieve comparable accuracies. The
average leave-one-out accuracies over 30 subjects are
reported in Table 2 (see supplementary for more de-
tail).

3.3. Parkinson’s Telemonitoring

To evaluate DICA in a regression setting, we apply it
to a Parkinson’s telemonitoring dataset2. The dataset
consists of biomedical voice measurements from 42
people with early-stage Parkinson’s disease recruited
for a six-month trial of a telemonitoring device for re-
mote symptom progression monitoring. The aim is to
predict the clinician’s motor and total UPDRS scoring
of Parkinson’s disease symptoms from 16 voice mea-
sures. There are around 200 recordings per patient.

We adopt the same experimental settings as in §3.2,
except that we employ two independent Gaussian Pro-
cess (GP) regression to predict motor and total UP-
DRS scores. For COIR and DICA, we consider the

output kernel l(y
(i)
k , y

(j)
l ) = exp(−‖y

(i)
k − y

(j)
l ‖

2/2σ2
3)

to fully account for the affinity structure of the output
variable. We set σ3 to be the median of motor and to-
tal UPDRS scores. The voice measurements from 30
patients are used for training and the rest for testing.

Fig. 3 depicts the results. DICA consistently, though
not statistically significantly, outperforms other ap-
proaches, see Table 3. Inter-patient (i.e. across do-
main) variation worsens prediction accuracy on new
patients. Reducing this variation with DICA improves
the accuracy on new patients. Moreover, incorporat-
ing the inter-subject variation via distributional GP
regression further improves the generalization ability,
see Fig. 3.

2http://archive.ics.uci.edu/ml/
datasets/Parkinson’s+Telemonitoring

http://archive.ics.uci.edu/ml/datasets/Parkinson's+Telemonitoring
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Table 3. Root mean square error (RMSE) of the independent Gaussian Process regression (GPR) applied to the Parkin-
son’s telemonitoring dataset. DICA outperforms other approaches in both settings; and the distributional SVM outper-
forms the pooling SVM.

Methods
Pooling GP Regression Distributional GP Regression

motor score total score motor score total score
LLS 8.82 ± 0.77 11.80 ± 1.54 8.82 ± 0.77 11.80 ± 1.54
Input 9.58 ± 1.06 12.67 ± 1.40 8.57 ± 0.77 11.50 ± 1.56
KPCA 8.54 ± 0.89 11.20 ± 1.47 8.50 ± 0.87 11.22 ± 1.49
UDICA 8.67 ± 0.83 11.36 ± 1.43 8.75 ± 0.97 11.55 ± 1.52
COIR 9.25 ± 0.75 12.41 ± 1.63 9.23 ± 0.90 11.97 ± 2.09
DICA 8.40 ± 0.76 11.05 ± 1.50 8.35 ± 0.82 10.02 ± 1.01
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Figure 3. The root mean square error (RMSE) of motor
and total UPDRS scores predicted by GP regression after
different preprocessing methods on Parkinson’s telemoni-
toring dataset. The top and middle rows depicts the pool-
ing and distributional settings; the bottom row compares
the two settings. Results of linear least square (LLS) are
given as a baseline.

4. Conclusion and Discussion

To conclude, we proposed a simple algorithm called
Domain-Invariant Component Analysis (DICA) for
learning an invariant transformation of the data which
has proven significant for domain generalization both
theoretically and empirically. Theorem 5 shows the
generalization error on previously unseen domains
grows with the distributional variance. We also
showed that DICA generalizes KPCA and COIR, and
is closely related to TCA. Finally, experimental results
on both synthetic and real-world datasets show DICA

performs well in practice. Interestingly, the results
also suggest that the distributional SVM, which takes
into account inter-domain variation, outperforms the
pooling SVM which ignores it.

The motivating assumption in this work is that the
functional relationship is stable or varies smoothly
across domains. This is a reasonable assumption for
automatic gating of flow cytometry data because the
inter-subject variation of cell population makes it im-
possible for domain expert to apply the same gating
on all subjects, and similarly makes sense for Parkin-
son’s telemonitoring data. Nevertheless, the assump-
tion does not hold in many applications where the con-
ditional distributions are substantially different. It re-
mains unclear how to develop techniques that gener-
alize to previously unseen domains in these scenarios.

DICA can be adapted to novel applications by equip-
ping the optimization problem with appropriate con-
straints. For example, one can formulate a semi-
supervised extension of DICA by forcing the invari-
ant basis functions to lie on a manifold or preserve a
neighborhood structure. Moreover, by incorporating
the distributional variance as a regularizer in the ob-
jective function, the invariant features and classifier
can be optimized simultaneously.
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