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Abstract

I introduce Forecastable Component
Analysis (ForeCA), a novel dimension re-
duction technique for temporally dependent
signals. Based on a new forecastability
measure, ForeCA finds an optimal transfor-
mation to separate a multivariate time series
into a forecastable and an orthogonal white
noise space. I present a converging algorithm
with a fast eigenvector solution. Applica-
tions to financial and macro-economic time
series show that ForeCA can successfully
discover informative structure, which can be
used for forecasting as well as classification.

The R package ForeCA accompanies this
work and is publicly available on CRAN.

1. Introduction

With the rise of high-dimensional datasets it has be-
come important to perform dimension reduction (DR)
to a lower dimensional representation of the data. For
simplicity we consider linear transformations W €&
R’”", which map an n-dimensional X to a k < n di-
mensional S = WX. Typically, the transformed data
should be somewhat “interesting”; there is no point in
transforming X to an arbitrary S that is less useful,
meaningful, etc. Let ¢ (S) measure “interestingness” of
S. DR can then be set up as an optimization problem

W, = argmax¢ (WTX), i=1...,k (1)

WER"’ X1

subject to W;—X L{w/X,... 7w;r71X}, (2)

where (2) is a common DR constraint, which makes
S; = W;I—X orthogonal (uncorrelated) to previously
obtained signals.

For example, principal component analysis (PCA)
keeps large variance signals (Jolliffe, 2002) — ¢ (X) =
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E(X — EX)? in (1); independent component anal-
ysis (ICA) recovers statistically independent signals
(Hyvéarinen and Oja, 2000); slow feature analysis
(SFA) (Wiskott and Sejnowski, 2002) finds “slow” sig-
nals and is equivalent to maximizing the lag 1 auto-
correlation coefficient.

DR techniques are often applied to multivariate time
series X;, hoping that forecasting on the lower-
dimensional space S; is more accurate, simpler, more
efficient, etc. Standard DR techniques such as PCA or
ICA, however, do not explicitly address forecastability
of the sources. For example, just because a signal has
high variance does not mean it is easy to forecast.

Thus let’s define interesting as being predictable. Fore-
casting is not only good for its own sake (finance, eco-
nomics), but even when future values are not immedi-
ately interesting, signals that do have predictive power
exhibit non-trivial structure by definition — and are
thus easier to interpret. For example, the time series
in Fig. 1 are ordered from least (S&P500 daily returns)
to most forecastable (monthly temperature in Notting-
ham) according to the ForeCA forecastability measure
Q(x;) I propose in Definition 3.1 below. And indeed
moving from left to right they exhibit more structure.

The main contributions of this work are i) a model-
free, comparable measure of forecastability for (sta-
tionary) time series (Section 3), ii) a novel data-driven
DR technique, ForeCA, that finds forecastable signals,
iii) an iterative algorithm that provably converges to
(local) optima using fast eigenvector solutions (Sec-
tion 4), and iv) applications showing that ForeCA
outperforms traditional DR techniques in finding low-
dimensional, forecastable subspaces, and that it can
also be used for time series classification (Section 5).
Related work will be reviewed in Section 6.

All computations and simulations were done in R (R
Development Core Team, 2010).

2. Time Series Preliminaries

Let y; be a univariate, second-order stationary time

series with mean Ey; = p,, < oo, variance Vy, = 03,
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Figure 1.

Observations (top); sample ACF p(k) (middle); smoothed WOSA spectral density estimate (bottom).

@j @

From

left to right: i) S&P 500 daily returns; ii) Mount Campito tree ring series; iii) monthly mean temperatures in Nottingham.
Data publicly available in R packages: SP500 in MASS; camp in tseries; nottem in datasets.

and autocovariance function (ACVF)

’Yy(k)

The ACVF for univariate processes is symmetric in k,
(k) = (k). Let p(k) = 7(k)/7(0) be the auto-
correlation function (ACF). A large p(k) means that
the process k time steps ago is highly correlated with
the present y;. The sample ACFs p(k) in Fig. 1 show
that, e.g., S&P 500 daily returns are uncorrelated with
their own past (stock market efficiency); yearly tree
ring growth is highly correlated over time with sig-
nificant lags even for k > 100 years; and intuitively
temperature in month ¢ is highly correlated with the
temperature k = 6 (cold <» warm) and k = 12 (cold
— cold; warm — warm) months ago (or in the future).

=E(y: — py) We—r —1y), k€L (3)

The building block of time series models is white noise
€¢, which has zero mean, finite variance, and is un-
correlated over time: g, ~ WN(0,02) iff' i) Ee, = 0,
ii) Ve, = 7.(0) = 02, and iii) 7.(k) = 0 if k # 0. Only
if £, is a Gaussian process, then it is also independent.

For multivariate second-order stationary X; with
mean? p € R™ and covariance matrix Yx the ACVF

—p) (Xp—p — N)T ) (4)

is a matrix-valued function of £ € Z. In particu-
lar, I'x(0) = ¥x. The diagonal of I'x (k) contains
the ACVF of each X;(t); the off-diagonal element

R™ " 5 Tx (k) = E (X,

LIff will be used as an abbreviation for if and only if.
*Without loss of generality (WLOG) assume g = 0.

T'x (k) () is the cross-covariance between the ith and
jth series at lag k:

ij (k)

Contrary to v, (k), I'x (k) is not symmetric, but

=E (X — pi) (Xj—k — 1) €R. (5)

Ix (k) =Tx(—k)". (6)

2.1. Spectrum and Spectral Density

The spectrum of a univariate stationary process can
be defined as the Fourier transform of its ACVF,

oo

1
2

j=—o0

’Yy(]) ”/\ A€ [—7‘(,7‘(], (7)

Sy(A) =

where i = y/—1 is the imaginary unit. Since 7, (k) is
symmetric, the spectrum is a real-valued, non-negative
function, S, : [-7, 7] — R*. For white noise &; all
ve(k) = 0 if k # 0, thus S.(\) = % is constant for
all A € [—-m,7]. When (k) > 0 for k¥ # 0 the spec-
trum has peaks at the corresponding frequencies. For
example, the spectral density of monthly temperature
series (right in Fig. 1) has large peaks at A =~ /6 and
7/12, which represent the half- and one-year cycle.?

Vice versa, the ACVF can be recovered from the spec-

3Frequencies X are often scaled by , A= A/m. This
does not change results qualitatively, but simplifies inter-
pretation since the corresponding cycle length equals A ™.
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trum using the inverse Fourier transform

Wk = [ 8,(Ne ™,

—T

ke Z. (8)

In particular, [* S, (A\)d\ = o2 for k = 0. Let

Sy(A JR y
£, = ;%):%j__wpyu)e”% Q

be the spectral density of y,. As fy,(A\) > 0 and
ffﬂ fy(A)dX = 1, the spectral density can be inter-
preted as a probability density function (pdf) of an
(unobserved) random variable (RV) A that “lives” on
the unit circle. For white noise f-(A\) = 5=, which
represents the uniform distribution U(—m, 7).

Remark 2.1 (Spectrum and spectral density). In the
time series literature “spectrum” and “spectral den-
sity” are often used interchangeably. Here I reserve
“spectral density” for f,(X) in (9), as it integrates to
one such as standard probability density functions.

3. Measuring Forecastability

Forecasting is inherently tied to the time domain. Yet,
since Eqs. (7) & (8) provide a one-to-one mapping be-
tween the time and frequency domain, we can use fre-
quency domain properties to measure forecastability.

The intuition for the proposed measure of forecasta-
bility is as follows. Consider

Y, = V2cos (2rYt + ),

0 ~U(—m7,m), (10)

Y ~ p,(y) independent of 6.

One can show that Sy(\) = p,(A\) (Gibson, 1994).

If we have to predict the future of y;, then uncertainty
about ysyp, h > 0, is only manifested in uncertainty
about Y, since cos (27 Yt + 0) is a deterministic func-
tion of ¢: less uncertainty about ) means less uncer-
tainty about yy4+5. We can measure this uncertainty
using the Shannon entropy of p,(y) (Shannon, 1948).
It is thus natural to measure uncertainty about the
future as (differential) entropy of f,(A),

Hoalw)i=— [ Hlog, VA, (1)

where a > 0 is the logarithm base.

On a finite support [b, ¢] the maximum entropy occurs
for the uniform distribution U (b, ¢); thus a flat spec-
trum should indicate the least predictable sequence.
And indeed, a flat spectrum corresponds to white

noise, which is unpredictable by definition (using lin-
ear predictors). Consequently, for any stationary y;

H; o(y:) < Hs o(white noise)

1 1
= —/ — log, —d\ = log, 27,
2m

2T

with equality iff y; is white noise.

Definition 3.1 (Forecastability of a stationary pro-
cess). For a second-order stationary process yz, let

Q:y — [0, 00],
t 12
Qye) =1 M i Ho), P

be the forecastability of y;.

Contrary to other measures in the signal processing
and time series literature, Q(y;) does not require actual
forecasts, but is a characteristic of the process y;. It
is therefore not biased to a particular — perhaps sub-
optimal — model, forecast horizon, or loss function; as
used in e.g., Box and Tiao (1977); Stone (2001).

Properties 3.2. Q(y:) satisfies:

a) Qy:) = 0 iff y; is white noise.

b) invariant to scaling and shifting:

Qay; +b) = Qyz) for a,b e R a #0.
¢) maz sub-additivity for uncorrelated processes:

Qazs + V1 — a2y;) < max{Q(x:), 2ye)}, (13)

if Bxyys = 0 for all s,t € Z; equality iff a € {0, 1}.

The three series in Fig. 1 are ordered (left to right)
by increasing forecastability and indeed larger Q cor-
respond to intuitively more predictable real-world
events: stock returns are in general not predictable;
average monthly temperature is.

We can thus use (12) to guide the search for optimal
w that make y, = w' X, as forecastable as possible.

3.1. Plug-in Estimator for 2

To estimate Q(y;), we first estimate S, (), normalize
it, and then plug it in (11).

An unbiased estimator of S, ()) is the periodogram

1 T-1
IT7yr1p(wj) = ‘ﬁ Y —2miw;t
=0

+€ (].4)
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where w; = j/T, j = 0,1,...,T — 1 are the (scaled)
Fourier frequencies, and y7 = {y1,...,yr} is a sample
of y; . It is well known that (14) is not a good estimate
(e.g., periodograms are not consistent). In the numer-
ical examples we therefore use weighted overlapping
segment averaging (WOSA) (Nuttal and Carter, 1982)

~

Sy(w;) from the R package sapa: SDF(y, ’’wosa’’).

The bottom row of Figure 1 shows the normalized
§y("~’j)

J?J}y =S5 @) along with the plug-in estimate
j=0 PylWj

T-1

) =1+ Fiylogar (Fiw) - (15)

Jj=0

Remark 3.3. Typically, to estimate Eg(X) for X ~
p(z) (here: ¢g(X) = logp(X)) the sample aver-
age 1is solely over g(x;) without multiplicative p(x;)
terms. This however assumes that each x; is sam-
pled from p(z) (and thus 237" | g(z;) — Epg(X) =
[ g(z)p(z)dz by the strong law of large numbers).
While this is true in a standard sampling framework,
here the “data” are the Fourier frequencies w; and the
fast Fourier transform (FFT) samples them uniformly
(and deterministically) from [—m, 7] and not according
to the “true” spectral density f()\).*

Eq. (15) can be improved by a better spectral den-
sity (Fryzlewicz, Nason, and von Sachs, 2008; Lees and
Park, 1995; Trobs and Heinzel, 2006) and entropy es-
timation (Paninski, 2003). Future research can also
address direct estimation of (11) — as is common for
classic entropy estimates (Sricharan, Raich, and Hero,
2011; Stowell and Plumbley, 2009). However, since
neither spectrum nor entropy estimation are the pri-
mary focus of this work, we use standard estimators
for Sy (A\) and then the plug-in estimator of (15).

It must be noted though that @(yf) in (15) is based on
discrete rather than differential entropy. It still has the
intuitive property that white noise has zero estimated
forecastability, but now Q(y?) € [0,1]; Q(yT) = 1 iff
the sample is a perfect sinusoid. Applications show
that (15) yields reasonable estimates and we do not
expect the results to change qualitatively for other es-
timators. We leave differential entropy estimates of {2
to future work.

Notice that Q(y;) relies on Gaussianity as only then
fy(A) captures all the temporal dependence structure
of y;. While time series are often non-Gaussian, (-) is
a computationally and algebraically manageable fore-
castability measure — similarly to the importance of

4 Advances in “compressed sensing” (Jacques and Van-
dergheynst, 2010) might improve estimates; see also “non-
uniform FFT” (Fessler and Sutton, 2003).

variance in PCA for iid data, even though they are
rarely Gaussian.

4. ForeCA: Maximizing Forecastability

Recall from Eq. (1) that we want to find a linear com-
bination of a multivariate X; that makes v, = w ' X,
as forecastable as possible. Based on the forecastabil-
ity measure in Section 3, we can now formally define
the ForeCA optimization problem:

" f,(N)1o A)dA
maxQ(wTXt) —max | 1+ f—w fy(N)log, fy(A) ’
w w log,, (27)
(16)
subject to WTEXW =1, (17)

where (17) must hold since (11) uses the spectral den-
sity of yy, i.e. we need Vi, = w' Uxw = 1.

Property 3.2c seems to let (16) only have a trivial
boundary solution. However, it is intuitively clear
that combining uncorrelated series makes forecasting
(in general) more difficult, e.g., signal + noise. But if
Ez,ys # 0 for some s,t € Z then combining them
can make it simpler: for some a € (0,1) it holds

Qaz: + V1 — a?y:) > max{Q(x:), Qyz) }

To optimize the right hand side of (16) we need to
evaluate f,(\) = fy7x,(A) for various w and do this
efficiently. We now show how to obtain f,(\) by simple
matrix-vector multiplication from fx ().

4.1. Spectrum of Multivariate Time Series and
Their Linear Combinations

For multivariate X; the spectrum equals

x (k)™ *r X e [—m,m]. (18)

Contrary to the univariate case, (18) is in general
complex-valued. ~ Yet, since I'x(k) = TI'x(—k)T,
Sx(A) € C**" is Hermitian for every A, Sx(\) =
Sx(A\)T, where z = a — ib is the complex conjugate
of z=a+ib € C (Brockwell and Davis, 1991, p. 436).

For dimension reduction we consider linear combina-
tions i, = w'X;, w € R". By assumption Ey; =
w'EX; = 0 and Y(k) = Eyeye—r = w ' T'x(k)w.
In particular, 7,(0) = o2 = w'YXxw. The spec-
trum of w'X; can be quickly computed via S, (\) =
w ' Sx(\)w and consequently

w!Sx(\)w

fy(N) = - A € [—m, 7). (19)
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Since f,(\) > 0 for every y;, w' Sx(A\)w > 0 for all
w € R”; thus Sx(A) is positive semi-definite.

4.2. Solving the Optimization Problem

Since (2 is invariant to shift and scale (Property 3.2b),
we shall not only assume zero mean, but also contem-
poraneously uncorrelated observed signals with unit
variance in each component. WLOG consider U, =
5% /?Xy; thus EU, U] = I,. Given Wy for Uy,

the transformation for X; becomes \'4 x = WUE_l/ 2
Problem (16) is then equivalent to

w* = argmin h(w) (20)

w[[wl2=1

! w ! Sp(Nw - £ (w; \) dA, (21)

—T

is the spectral entropy (Eq. (11)) of w'X; as a func-
tion of w. We use £(w;)\) = logw'Sp(\w =
log fwTu(A) for better readability.

In practice we approximate (21) with Sy (w;) € Cxm
and thus obtain®

w* = argmin hp(w). (22)
w,[lw(l2=1
Here
N 1 B! N N
hr(w) = —— (wTsU(wj)w) T(wiw;)  (23)
J=1

is the discretized version of (20), where Z(W;Wj) =
log WT§U(wj)w. Notice that §U(wj) € C™*" varies
with w; while w € R" is fixed over all frequencies,
which makes it difficult to obtain an analytic, closed-
form solution. However, (22) can be solved iteratively
borrowing ideas from the expectation maximization
(EM) algorithm (Dempster, Laird, and Rubin, 1977).

4.2.1. A CONVERGENT EM-LIKE ALGORITHM

For every w € R", |w|2 = 1, h(w) has the
form of a mixture model with weights (g | w) =
TSU(wj)w > 0 and “log-likelihood” 7 (w; w;). Since
fﬂr fotu(N)dX =1,7(j | w) is indeed a discrete prob-
ability distribution over {w; |0 =1,...,T —1}.

Just as in an EM algorithm, the objective h(w) can
be optimized iteratively by first fixing w + w(® in

®We use ‘ ‘wosa’’ estimates (sapa R package). How-

ever, any other estimate of Sy (\) can be used.

ET( ) = )\( 1) > O where lim;_,oo W; = W* and A

Z(W;wj), and then minimizing the quadratic form

W;y1 = argmin WTS'\I(;)W, (24)
w,[[wll2=1

where S’\[(}) =—7 ZJT;OI §U(wj) (Wi wj).
Proposition 4.1. §((]Z) is positive semi-definite.

Thus (24) can be solved analytically by the last eigen-

vector of §[(}) — automatically guaranteeing ||w||z = 1.
The procedure iterates until ||w;y1 — w;|| < tol for
some tolerance level tol. For initialization we sam-
ple wg from an n-dimensional uniform hyper-cube,
Un(—1,1), and normalize to wo = wq/ Z?:l wio.

Theorem 4.2 (Convergence). The sequence {w;}i>o

obtained wvia (24) converges to a local minimum
(*)

min

is the smallest eigenvalue of S[(J* .
Corollary 4.3. The transformed data yip’(*) =
w) TXT satisfies

Q(y1') = 1= N (25)

Proof of Theorem 4.2. The entropy of a RV taking
values in a finite alphabet {wo,...,wr_1} is bounded:
0< ET(W) <log, T for all w € R™. For convergence
it remains to be shown that TLT(Wi) > ET(le) with

equality iff w;11 = w; = w*. First,
hr(w;) = —= Z W, S’U (wj)w; - (Wi wj)
] 1
= W;—gg)wi > Wngg)Wi+1 (26)

since w;41 is the last eigenvector of §I(;) Second,

_ T—
WZFIS\((Ji)WiJrl T Z z+ISU(wJ)Wz+1 E(Wszj)
o ) i
= W 150 (W) Witr - 6(Wit1;w5)
= (27)
= hr(Wit1),

where (27) holds as E, — logg = — Z;;lpj loggq; >
— Z;—;l pjlogp; = E, — logp for any g # p. O
To lower the chance of landing in local optima we re-

peat (24) for several random starting positions wq and
then select the best solution.
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Figure 2. Equity fund returns analyzed with PCA, SFA, and ForeCA. (Dataset equityFunds in R package fEcofin.)

4.3. Obtaining a K-dimensional Subspace

To obtain all K loadings W1, g = [w1,..., W] that
give uncorrelated series y; ¢, we iteratively (starting at
k = 1) i) compute wy, ii) project U onto the null space
of Wi — Uk = Wi’ U < RE=F iii) apply
the EM-type algorithm on U®) to obtain Wy, and
finally iv) transform Wy ; back to loadings w*) of U.

Doing this for £ = 1,.
Loadings for X, are given by W X = WUZ

K glves K loadlngs WU
$-1/2

5. Applications

Here we demonstrate the usefulness of ForeCA to find
informative, forecastable signals, but also as a tool for
time series classification.

5.1. Improving Portfolio Forecasts

Figure 2a shows daily returns of eight equity funds
from 2002/01/01 to 2007/05/31 (T = 1413). In the
financial context finding forecastable series is an im-
portant goal by itself, not just for structure discovery.
In particular, we can interpret a linear combination w
as a portfolio of stocks. The w* with the highest
gives the most forecastable portfolio.

Figure 2b shows a bi-plot for PCA and ForeCA for
(w1, ws) and (w3, wy4). As PC 1 weighs all funds al-
most equally, it represents the average market move-
ment; the second component contrasts Gold & Mining
with the rest and we can therefore label PC 2 as the
“commodity” index. The third and fourth PC indicate
energy /infrastructure and geographic regions.

However, even though PC 1 is also the most pre-
dictable PC, it has only a slightly larger (2 than the
most forecastable fund, India (Fig. 2c¢). On the other
hand, combining Water (weight wyqter1 = 0.72) with

Energy (0.58) is almost twice as forecastable as India
(weights are from ForeC 1 in Fig. 2b). ForeC 2 also has
high forecastability by selling Energy & Water (—0.53
& —0.47) and buying Mining & Eastern Europe (0.55
& 0.38). The third and fourth ForeCs seem to be hedg-
ing strategies (ForeC 3: Water vs. Energy; ForeC 4:
Latin America & Gold vs. China & Mining).

As financial data only has very small autocorrelation
—and usually at lag 1, if any —, SFA and ForeCA yield
overall very similar results, except for a “wrong” rank-
ing by SFA (Fig. 2¢): SF 8 is the fastest feature (large,
but negative lag 1 autocorrelation), yet it is the sec-
ond most forecastable component. While it is true that
white noise is slower than an auto-regressive process of
order 1 (AR(1)) with negative autocorrelation, the lat-
ter is still more forecastable. Since we want to reveal
intertemporal structure, white noise must be ranked
lowest; and ForeCA indeed does so (Fig. 2d).

ForeC 5 and 8 detect the 20 day lag (one trading
month), but correlations are too low to achieve much
higher forecastability than — simpler and faster — SFA.

In the next example I study quarterly income data,
where ForeCA can leverage its nonparametric power
and detect important dependencies at various frequen-
cies automatically from the data.

5.2. Classification of US State Economies

I consider quarterly per-capita income growth rates of
the “lower 48” from 1982/1 to 2011/4 (last 30 years)

git ="t —Tuse, JE€{AL, ..., WY},

where 7;; is the annual growth rate of region j .5 Inter-
ested in finding similar state economies within the US,
we subtract the US baseline. Clustering states with
similar economic dynamics can help to decide where to

SPublicly available at www.bea.gov/itable.
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Figure 3. Summary statistics of quarterly income growth rates (in %) from 1982/1 — 2011 /4 with respect to US baseline
w(rus:) = 1.32%, o(rus,:) = 0.92% per quarter; Q(rus,:) = 4.86%, pi(rus,t) = 0.42, pa(rus,) = 0.13.

provide support when facing difficult economic times.
For example, if certain states do not show any impor-
tant dynamics on a 7-8 year scale — also known as the
“business cycle” (Hughes Hallett and Richter, 2008)
— then it might be better to support states that are
affected by these global economy swings.

The first row of Fig. 3 displays basic summary statis-
tics: sample average, standard deviation, and first and
fourth order autocorrelation. The second row give
statistics related to forecastability: Fig. 3e shows ()
based on the spectra in Fig. 3f; Fig. 3g shows the ab-
solute lag 1 correlation (analogously for lag 4 in Fig.
3h), since two AR(1)s with a +¢ lag 1 coefficient are
equivalent in terms of forecasting (compare to SFA
ranking in the portfolio example).

The spectral densities of Nevada and Nebraska illus-
trate the intuitive derivation of Q(z;) from Eq. (10):
for Nebraska all frequencies are equally important and
it is thus difficult to forecast any better than the sam-
ple mean; contrary, Nevada’s income growth rates are
mainly driven by a yearly cycle (w; ~ 0.25) and low
frequencies, thus Nevada is much easier to forecast.

A similar dataset (but annually and for different years)
has been analyzed in Dhiral, Kalpakis, Gada, and Put-
tagunta (2001), who fit AR(1) models to the non-
adjusted growth rates r;; for 25 pre-selected states,
and then cluster them in the model space. Although
they obtain interpretable results, it is unlikely that US
state economies only differ in their lag 1 coefficient. In
particular, simple AR(1) models cannot capture the
business cycle, which is clearly visible in Fig. 3f (even
for the adjusted rates).

Similarly, as SFA maximizes lag 1 correlation, it misses
the quarterly cycle. ForeCA does not face this model
selection bias, but can find forecastability across all
frequencies. In particular, only ForeC 4 detects in-
teresting high frequency signals (Fig. 4b). The most
forecastable PCs are PC 5, 4, and 1; interestingly PC
3 is least important for forecasting among all 48 PCs.
Also note that ForeCs are more interpretable than SFs
or PCs (Figs. 4b - 4d). Particularly, ForeC 1 shows a
clear =~ 25 year period (generation cycle), whereas PC
1 looks somewhat arbitrary. Yet, the associated load-
ings in Fig. 4a are quite similar.

6. Related Work

Using predictability to separate signals is not new.

In the classic time series literature Box and Tiao
(1977) introduced canonical analysis and measure pre-
dictive power by the residual variance of fitting vec-
tor auto-regression (VAR) models. Recently Matteson
and Tsay (2011) propose another DR technique that
blends PCA and ICA by separating signals to the ex-
tent of fourth moments (but not higher).

Stone (2001) use predictability as a contrast function
for blind source separation (BSS). While their ap-
proach is similar to ours, it relies on subjective mea-
sures of “short” and “long” term moving averages,
which are then used to produce actual forecasts.

Much work in BSS (Gomez-Herrero, Rutanen, and
Egiazarian, 2010; Li and Adali, 2010), especially ICA,
focuses on minimizing entropy rate. The entropy rate
H(y) = limgoo H(y: | Yt—1,Yt—2,...) of a Gaus-



Forecastable Component Analysis

ForeC 1

.

00 02 04
ForeC 2

ForeC 3
-04 -01 -0.1 041 -0.2 0.0 0.2
ForeC 4 SF 4 PC 4

;

0.0 02 04 -0 00 03
(a) First 4 loadings.

04 é)Fﬂz 04
Be 22

-0.6

Fe8Cs
53

Pc3 et

LYY WM
el Joadndy

TZge§

1985 1995 005 ' 985 1995 005 1985 1995 005

(b) ForeCs (¢) SFs (d) PCs
o | —— orig
N —— PCA
—— SFA
o | —e— ForeCA
N
9
£ 2
5
I ol
0 -
o
T T T T T T
0 10 20 30 40 50
Component

(e) scree-plot of ().

Figure 4. PCA, SFA, and ForeCA on US income data.

sian process is related to the spectrum via (Cover and

Thomas, 1991, p. 417)

1 1 (7
H(y) = = log2me + —/ log Sy, (A)dA. (28)
2 i J_ .
However, these approaches require VAR model fits
and/or numerical optimization.

On the contrary, the ForeCA measure Q(y;) is based on
information-theoretic uncertainty and is an inherent
property of the stochastic process y;. We believe that
this makes Q(y;) a more principled measure of fore-
castability than model-dependent measures. Further-
more, it can be estimated quickly using data-driven,
nonparametric techniques.

It is important to point out that spectral entropy, i.e.,
differential entropy of (11), is neither equal nor pro-
portional to the entropy rate in (28). For particular
processes they coincide (e.g., for an AR(1); Gibson
(1994)), but in general they don’t. They measure dif-
ferent properties of the signal. Thus ICA algorithms
based on entropy rate minimization do not yield the
same results as ForeCA. In fact, the ForeCA measure
can be used to rank ICs by decreasing forecastability.

Cardoso (2004) gives an excellent account of the inter-
twined relations between Gaussianity, autocorrelation,
and dependence in multivariate time series and their
effect on objective functions for BSS. Exactly because
of this tangle, we only consider frequency properties of
the signal and not entropy rate — since for forecasting
the distribution itself is of minor importance compared
to the temporal dependence.

7. Discussion

I introduce Forecastable Component Analysis
(ForeCA), a new dimension reduction technique for
multivariate time series. Contrary to other popular
methods — such as PCA or ICA — ForeCA takes tem-
poral dependence into account and actively searches
for the most forecastable subspace. ForeCA minimizes
the entropy of the spectral density: lower entropy
implies a more forecastable signal. The optimization
problem has an iterative, yet fast analytic solution,
and provably leads to a (local) optimum.

While SFA is a good approximation (maximizing lag
1 correlation), real world signals often have more com-
plex correlation structure. The here proposed ForeCA
can automatically detect arbitrary autocorrelation
structure using nonparametric estimators. Applica-
tions to financial and macro-economic data demon-
strate that ForeCA is better than PCA and SFA at
finding the most predictable signals, and can also be
used for time series classifications.
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