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Abstract

We develop an adapted version of the Bayesian Personalized Ranking (BPR) optimiza-
tion criterion (Rendle et al., 2009) that takes the non-uniform sampling of negative test
items — as in track 2 of the KDD Cup 2011 — into account. Furthermore, we present a
modified version of the generic BPR learning algorithm that maximizes the new criterion.
We use it to train ranking matrix factorization models as components of an ensemble. Ad-
ditionally, we combine the ranking predictions with rating prediction models to also take
into account rating data.

With an ensemble of such combined models, we ranked 8th (out of more than 300 teams)
in track 2 of the KDD Cup 2011, without using the additional taxonomic information offered
by the competition organizers.

Keywords: matrix factorization, collaborative filtering, personalization, ranking, music
recommendation

1. Introduction

Recommender systems are information systems that learn user preferences from past user
actions (ratings, votes, ranked lists, mouse clicks, page views, product purchases, etc.) and
suggest items (pages on the web, news articles, jokes, movies, products of any kind, music
albums, individual songs, etc.) according to those user preferences.

While rating prediction — How much will a user like/rate a given item? — has gained
more attention in the recommender systems literature in the past, the task of item prediction
— Which items will a user like/buy? — (Deshpande and Karypis, 2004; Hu et al., 2008)
is actually more relevant for practical recommender system applications. One approach to
item prediction is to treat it as a (per-user) ranking problem, and to suggest the top ranked
items.

Bayesian Personalized Ranking (BPR) (section 3.1) is a per-user ranking approach
that optimizes a smooth approximation of the area under the ROC curve (AUC; section
2.3) for each user. BPR has seen successful applications in item prediction from implicit
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positive-only feedback (Rendle et al., 2009) – even though the framework is not limited to
positive-only data – and tag prediction (Rendle and Schmidt-Thieme, 2010).

Models optimized for BPR are suitable when the items to be ranked are sampled uni-
formly from the set of all items. Yet, this is not always the case, for example when the
items to be ranked are sampled according to their general popularity, like in track 2 of the
KDD Cup 2011.

To deal with such scenarios, we extend the BPR criterion to a probabilistic ranking cri-
terion that assumes the candidate items (those items that should be ranked by the model)
to be sampled from a given distribution (section 3.2). Using this new, more general opti-
mization criterion, we derive an extension of the generic BPR learning algorithm (which is
a variant of stochastic gradient ascent) that samples its training examples according to the
probability distribution used for the candidate sampling, and thus optimizes the model for
the new criterion.

One instance of such a ranking scenario is track 2 of the KDD Cup 2011: There, the
task was to predict which 3 out of 6 candidate songs were positively rated (higher than a
certain threshold) – instead of not rated at all – by a user. The candidate items were not
sampled uniformly, but according to their general popularity, i.e. the number of users who
gave a positive rating to them. It turns out that the evaluation criterion, the number of
correct predictions, can be approximated by our adapted optimization criterion.

Matrix factorization models are suitable prediction models for recommender systems,
and are known to work well for item prediction when trained using the BPR framework.
Thus, we used matrix factorization for the KDD Cup (section 3.4).

The main contributions of this article are:

1. We show that for the task of track 2 of the KDD Cup 2011, maximizing the area
under the ROC curve (AUC) is equivalent to minimizing the error (for single users).

2. We adapt the Bayesian Personalized Ranking (BPR) framework, which relies on maxi-
mizing a smooth approximation of AUC, to scenarios where negative items are sampled
non-uniformly.

3. We develop a scalable matrix factorization model that is trained using the adapted
BPR framework.

4. We integrate rating information into the predictions with two different multiplicative
schemes, combining the probability of a rating happening with the estimated rating,
and the probability of a rating of 80 or more, respectively.

2. Problem Statement

The task of track 2 of the 2011 KDD Cup was to predict which 3 songs1 out of 6 candidates
a user will like – rate with a score of 80 or higher on a scale from 0 to 100 – for a set of
users, given the past ratings of a superset of the users. Additionally, an item taxonomy
expressing relations between songs, albums, artists, and genres was provided by the contest
organizers. We did not use this additional data in our approach.

1. A song is called “track” in the competition description. We will use the term “song” to avoid confusion
with track 1 and 2 of KDD Cup.
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rating >= 80 no rating?

Figure 1: Task of KDD Cup 2011 track 2: Distinguish between songs a user liked and songs
the user has not rated. Items that have been rated below 80 by the user are not
present in the test dataset.

rating >= 80

rating < 80

no rating

liked?

Figure 2: The “liked” contrast: We say that a user likes an item if they rated it with 80 or
higher.

The 3 candidate songs that have not been rated highly by the user have not been rated
at all by the user. They were not sampled uniformly, but according to how often they are
rated highly in the overall dataset.

To put it briefly, the task was to distinguish items (in this case songs) that were likely
to be rated with a score of 80 or higher by the user from items that were generally popular,
but not rated by the user (Figure 1). This is similar to the task of distinguishing the highly
rated items from generally popular ones, which we call the “liked” contrast (Figure 2).
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2.1. Notation

Scalar variables are set in the default math font, e.g. a, b, c, while matrices (upper case)
and vectors (lower case) are in bold face, e.g. A,B,x,y.

Let U be the set of users and I be the set of items (songs, albums, artists, genres).
Without loss of generality, we will refer to users and items using natural numbers between
1 and |U| or |I|, respectively.

Generally, the training and testing sets in track 2 of the KDD Cup 2011 have the
following structure:

Dtrain ⊂ U × I × [0, 100] (1)

Dtest ⊂ U × I × {0, 1}. (2)

with ∀(u, i, pu,i) ∈ Dtest : ¬∃(u, i, ru,i) ∈ Dtrain. The training set Dtrain contains ratings,
and the testing set Dtest contains binary variables that represent whether a user has rated
an item with a score of at least 80 or not.

For convenience, we use I+
u for positive items and I−u for negative similarly to the

notation used by Rendle et al. (2009). Depending on the context, I+
u and I−u may refer to

the positive and negative items in the training or test set. What determines whether an
item is positive or negative may differ (see below section 2.2).

We will use the letter p for assignments to 0, 1 or their probabilities, and s for arbitrary
scores ∈ R. pu,i says whether item i was rated (highly) by user u. p̂u,i(Θ), usually simplified
to p̂u,i, is the decision (estimation) of a model Θ for the true assignment pu,i. Output scores
ŝu,i(Θ) = ŝu,i refer to arbitrary numerical predictions of recommendation models Θ, where
higher scores refer to higher positions in the ranking. Such estimated rankings can then be
used to make decisions p̂u,i.

2.2. Contrasts

Depending on the exact contrast we wish to learn, there are certain different conditions for
what is in the set of positive (I+

u ) and negative (I−u ) items for each user.

Track 2 Contrast The contrast to be learned for the KDD Cup 2011 ignores all ratings
below a score of 80: Such ratings are not used for sampling the negative candidate items –
only items that are not rated by users are potential candidates (Figure 1).

I+(t2)
u := {i|∃ru,i ≥ 80 : (u, i, ru,i) ∈ Dtrain} (3)

I−(t2)
u := I \ {i|∃ru,i : (u, i, ru,i) ∈ Dtrain} (4)

Note that all items i with ru,i < 80 do not belong to either of the two sets.

“Liked” Contrast The “liked” contrast differentiates between what users have rated
highly (80 or more), and what they have not rated or rated with a score below 80 (Figure
2):

I+(liked)
u := {i|∃ru,i ≥ 80 : (u, i, ru,i) ∈ Dtrain} (5)

I−(liked)
u := I \ I+(liked)

u (6)

As can easily be seen from the definition of I−(liked)
u , the split between positive and negative

items is exhaustive for each user.
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rating >= 80

rating < 80

no ratingrated?

Figure 3: The “rated” contrast: The question is not how a user has rated an item, but if.

“Rated” Contrast Finally, the “rated” contrast differentiates what users have rated vs.
not rated (Figure 3):

I+(rated)
u := {i|∃ru,i : (u, i, ru,i) ∈ Dtrain} (7)

I−(rated)
u := I \ I+(rated)

u (8)

Again, this split is exhaustive for each user.

2.3. Error Measure

The evaluation criterion is the error rate, which is just the relative number of wrong pre-
dictions:

e = 1− 1

|Dtest|
∑

(u,i,pu,i)

δ(pu,i = p̂u,i), (9)

where δ(x = y) is 1 if the condition (in this case: x = y) holds, and 0 otherwise, and p̂u,i is
the prediction whether item i is rated 80 or higher by user u. For a single user, the error
rate is

eu = 1− 1

|I+
u |+ |I−u |

∑
(u,i,pu,i)

δ(pu,i = p̂u,i). (10)

For the KDD Cup 2011, we have the additional constraints that for every highly rated item
of each user, there is an item that has not been rated in the evaluation set Dtest, and that
exactly half of the candidate items must be given a prediction of p̂u,i = 1. We call this the
1-vs.-1 evaluation scheme.

The area under the ROC curve (AUC) is a ranking measure that can also be computed
for the KDD Cup scenario. The per-user AUC on the test set can be defined as follows:

AUC(u) =
1

|I+
u ||I−u |

∑
i∈I+u

∑
j∈I−u

δ(p̂u,i > p̂u,j) (11)

The average AUC over all relevant users is

AUC =
1

|U test|
∑

u∈Utest

AUC(u), (12)
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where U test = {u|(u, i, pu,i) ∈ Dtest} is the set of users that are taken into account in the
evaluation.

Lemma 1 In the 1-vs.-1 evaluation scheme the per-user accuracy 1 − eu grows strictly
monotonically with the per-user area under the ROC curve (AUC) and vice versa.

Proof Items are ordered according to their scores ŝu,i. Be ntp and ntn the number of
true positives and true negatives, respectively. Given I+

u , I−u , AUC(u) =
ntp·ntn

|I+u ||I−u |
< 1

and 1 − eu =
ntp+ntn

|I+u |+|I−u |
< 1. If the scores change s.t. p̂′u,i 6= p̂u,i for exactly two items

that have been wrongly classified before, then AUC′(u) =
(ntp+1)·(ntn+1)

|I+u ||I−u |
> AUC(u) and

1− e′u =
ntp+1+ntn+1

|I+u |+|I−u |
> 1− eu.

This means that maximizing the user-wise AUC on the training data (while preventing
overfitting) is a viable strategy for learning models that perform well under 1-vs.-1 evaluation
scheme.

Data: Dtrain, α, λ
Result: Θ̂

1 initialize Θ̂ repeat

2 draw (u, i) from Dtrain draw j uniformly from I−u Θ̂ ← Θ̂ +

α
(

e−ŝu,i,j

1+e−ŝu,i,j
· ∂
∂Θ̂
ŝu,i,j − λ · Θ̂

)
3 until convergence

Algorithm 1: LearnBPR: Optimizing BPR-Opt using stochastic gradient ascent.

Data: Dtrain, α, λ
Result: Θ̂

1 initialize Θ̂ repeat

2 draw (u, i) from Dtrain draw j from I−u proportionally to wj Θ̂ ← Θ̂ +

α
(

e−ŝu,i,j

1+e−ŝu,i,j
· ∂
∂Θ̂
ŝu,i,j − λ · Θ̂

)
3 until convergence

Algorithm 2: LearnWBPR: Optimizing WBPR using stochastic gradient ascent. The
difference to LearnBPR is the sampling in line 2.

236



Personalized Ranking for Non-Uniformly Sampled Items

3. Methods

One approach to solve the task of track 2 of KDD Cup 2011 is to assign scores to the 6
candidate items of each user, and then to pick the 3 highest-scoring candidates. This is
similar to classical top-N item recommendation. The decision function is

p̂u,i =

{
1, |{j|(u, j) ∈ Dtest ∧ ŝu,i > ŝu,j}| ≥ 3

0, else
. (13)

3.1. Bayesian Personalized Ranking (BPR)

The Bayesian Personalized Ranking (BPR) framework (Rendle et al., 2009) consists of
an optimization criterion and a gradient-based learning algorithm for personalized item
recommendations. BPR is based on the idea of reducing ranking to pairwise classification
(Balcan et al., 2008).

The BPR optimization criterion is

BPR-Opt(DS) = argmax
Θ

∑
(u,i,j)∈DS

ln σ(ŝu,i,j)− λ‖Θ‖2, (14)

where DS ∈
⋃

u∈U I+
u × I−u are the item pairs to sample from, σ(x) = 1

1+e−x is the logistic

function, ŝu,i,j is the pairwise prediction for user u and items i, j, and λ‖Θ‖2 is a regular-
ization term to prevent overfitting. Because the size of the training data DS is quadratic in
the number of items, the BPR learning algorithm (Algorithm 1) samples from DS instead
of going over the complete set of item pairs.

Note that maximizing BPR-Opt is similar to maximizing the AUC (eq. 12), by ap-
proximating the non-differentiable δ(x) by the differentiable logistic function σ(x):

σ(x) :=
1

1 + e−x
. (15)

See Rendle et al. (2009) for a more detailed explanation.

BPR and CofiRank

BPR is similar in spirit to CofiRank (Weimer et al., 2007). BPR uses stochastic gradient
ascent for learning. CofiRank has a learning method that alternates between optimizing
the user and item factors with bundle methods. Both have ranking losses – pairwise logistic
loss vs. pairwise soft-margin loss. There is also a variant of CofiRank that is optimized
for normalized discounted cumulative gain (NDCG). While both approaches can be used
in principle to handle any kind of ranking, BPR has been used for “ranking” positive-only
feedback (observed vs. missing/not observed), and CofiRank has been used for ordinal
ranking (ranking of known ratings). The trick used by Weimer et al. (2008) for computing
the ranking loss in O(n log n) instead of O(n2) (where n is the length of the ranked list) is
particularly useful for ordinal ranking, where n is seldom as large as |I|, and for exact (as a
opposed to stochastic) optimization, where the complete loss/gradient has to be computed.
Still, we will look at ways to exploit this trick for our method in the future.
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3.2. Weighted BPR (WBPR)

Because the negative items in the training data are all weighted identically – and not
according to their global popularity – optimizing a predictive model for BPR-Opt does
not lead to good results in track 2 of the KDD Cup 2011.

The sampling probability for an item is proportional to its global popularity, i.e.

wj =
∑
u∈U

δ(j ∈ I+
u ). (16)

Taking into account the sampling probability of the negative items, the modified opti-
mization criterion is

WBPR(DS) = argmax
Θ

∑
(u,i,j)∈DS

wuwiwj ln σ(ŝu,i,j)− λ‖Θ‖2, (17)

where wu = 1
|I+u |

is a weight that balances the contribution of each user to the criterion,

and wi = 1 (positive items are sampled uniformly).
Note that WBPR is not limited to the task of the KDD Cup 2011: The weights

wu, wi, wj can be adapted to other scenarios (sampling probabilities).

3.3. Learning by Adapted Sampling

To train a model according to the modified optimization criterion, we adapted the original
learning algorithm (Algorithm 1); instead of sampling negative items uniformly, we sample
them according to their overall popularity wj (line 5 in Algorithm 2).

3.4. Matrix Factorization Optimized for WBPR

In the BPR framework, the pairwise prediction ŝu,i,j is often expressed as the difference of
two single predictions:

ŝu,i,j := ŝu,i − ŝu,j . (18)

We use the BPR framework and its adapted sampling extension to learn matrix factor-
ization models with item biases:

ŝu,i := bi + 〈wu,hi〉, (19)

where bi ∈ R is a bias value for item i, wu ∈ Rk is the latent factor vector representing the
preferences of user u, and hi ∈ Rk is the latent factor vector representing item i.

The optimization problem is then

max
W,H,b

∑
(u,i,j)∈DS

wuwiwj ln σ(bi − bj + 〈wu,hi − hj〉)

− λu‖W‖2 − λi‖H‖2 − λb‖b‖2. (20)

The training algorithm LearnWBPR-MF (Algorithm 3) (approximately) optimizes this
problem using stochastic gradient ascent. It is an instance of the generic LearnWBPR
algorithm. The parameter updates make use of the partial derivatives of the local error
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with respect to the current parameter. The matrix entries must be initialized to non-
zero values because otherwise all gradients and regularization updates for them would be
zero, and thus no learning would take place. The item bias vector b does not have this
problem. Note that the λ constants in the learning algorithm are not exactly equivalent to
their counterparts in the optimization criterion. We also have two different regularization
constants λi and λj which lead to different regularization updates for positive and negative
items.

Data: Dtrain, α, λu, λi, λj , λb
Result: W,H,b

1 set entries of W and H to small random values b← 0 repeat
2 draw (u, i) from Dtrain draw j from I−u proportionally to wj ŝu,i,j ← bi− bj + 〈wu,hi−

hj〉 x ← e−ŝu,i,j

1+e−ŝu,i,j
bi ← bi + α (x− λbbi) bj ← bj + α (−x− λbbj) wu ← wu +

α (x · (hi − hj)− λuwu) hi ← hi + α (x ·wu − λihi) hj ← hj + α (x · (−wu)− λjhj)

3 until convergence
Algorithm 3: Optimizing a matrix factorization model for WBPR using stochastic gradi-
ent ascent.

3.5. Ensembles

To get more accurate predictions, we trained models for different numbers of factors k and
using different regularization settings. We combined the results of the different models, and
of the same models at different training stages.

We used two different combination schemes, score averaging and vote averaging.

Score Averaging If models have similar output ranges, for example the same model at
different training stages, we can achieve more accurate predictions by averaging the scores
predicted by the models:

ŝscore-ens
u,i =

∑
m

ŝ
(m)
u,i . (21)

Vote Averaging If we do not know whether the scale of the scores is comparable, we
can still average the voting decisions of different models:

ŝvote-ens
u,i =

∑
m

p̂
(m)
u,i . (22)

Other possible combination schemes would be ranking ensembles (Rendle and Schmidt-
Thieme, 2009), and of course weighted variants of all schemes discussed here.

Greedy Forward Selection of Models Because selecting the optimal set of models to
use in an ensemble is not feasible if the number of models is high, we perform a greedy
forward search to find a good set of ensemble components: This search procedure tries all
candidate components sorted by their validation set accuracy, and adds the candidate to
the ensemble if it improves the current mix. When searching a large number (e.g. > 2, 000)
of models, we ignored candidates above a given error threshold.
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Data: Dtrain,Dtest, n
Result: Dtrain-val, Dtest-val

1 Dtrain-val ← Dtrain U test ← {u|(u, i, pu,i) ∈ Dtest} forall the u ∈ U test do

2 I+ ← {n random items from I+(t2)
u } Dtest-val ← Dtest-val∪̇{u} × I+ × {1} I− ←

{n items from I−(t2)
u sampled prop. to popul.} Dtest-val ← Dtest-val∪̇{u} × I− × {0}

forall the i ∈ I+∪̇I− do
3 Dtrain-val ← Dtrain-val − {(u, i, ru,i)}
4 end

5 end
Algorithm 4: Sampling procedure for the validation split.

3.6. Integrating Rating Information

Except for the rating threshold of 80, the methods presented so far in this paper do not
take into account the actual rating values. We suggest two different schemes of combining
probabilities of whether an item has been rated by a user with rating predictions produced
by a matrix factorization model that incorporates user and item biases (Koren et al., 2009;
Rendle and Schmidt-Thieme, 2008):

min
W,H,bU,bI

∑
(u,i,ru,i)∈Dtrain

(rmin + σ(µ+ bUu + bIi + 〈wu,hi〉) · (rmax − rmin)− ru,i)2

+ λb(‖bU‖2 + ‖bI‖2) (23)

+ λu‖W‖2 + λi‖H‖2,

where µ is the global rating average, and [rmin, rmax] is the rating range. The model is
trained using stochastic gradient descent with the bold-driver heuristic that dynamically
adapts the learn rate. Using this heuristic for learning matrix factorizations was suggested
by Gemulla et al. (2011).

Estimating Probabilities First, we describe how we compute probabilities from predic-
tion scores of models that were trained to decide whether an item has been rated or not
(Figure 3).

p̂rated
u,i =

5∑
k=1

5∑
l=k+1

5∑
m=l+1

σ(ŝrated
u,i,jk

)σ(ŝrated
u,i,jl

)σ(ŝrated
u,i,jm), (24)

where ŝrated
u,i,j1

. . . ŝrated
u,i,j5

refer to the score estimates of the other 5 candidates. Note that the

models for ŝrated are trained using all ratings as input, not just the ones of 80 or higher. The
intuition behind this way of probability estimation is as follows: σ(ŝrated

u,i,jk
) ∈ (0, 1) can be

interpreted, similar to the case of logistic regression (e.g. Bishop (2006)) as the probability
that item i is ranked higher (more likely to be rated) than item j by user u. We know that
exactly 3 items are rated by the user, which means we need to estimate how probable it is
that a given item is ranked higher than 3 other items. Eq. 24 sums up the probabilities for
the different cases where this holds.
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Scheme 1: Multiply with Rating Prediction The first scheme takes a “rated” prob-
ability and multiplies it with a rating prediction from a model trained on the rating data:

ŝone
u,i = p̂rated

u,i · r̂u,i, (25)

where r̂u,i is the predicted rating.

Scheme 2: Multiply with Rating Probability The second scheme takes a “rated”
probability and multiplies it with the probability that the item, if rated, gets a rating of 80
or more by the user:

ŝtwo
u,i = p̂rated

u,i · p̂≥80
u,i , (26)

where p̂≥80
u,i is the estimated probability of ru,i ≥ 80. We estimate p̂≥80

u,i using several different
rating prediction models:

p̂≥80
u,i =

∑
k

δ(r̂
(k)
u,i ≥ 80). (27)

4. Experiments

4.1. Datasets

The Yahoo! Music dataset used for KDD Cup 2011 is described in Dror et al. (2011). We
created a validation split from the training set so that we could estimate the accuracy of
different models, and use those estimates to drive the composition of ensemble models. The
procedure to create the split, based on the task description of track 22, is described in Figure
4. In the case of the KDD Cup data, the number of positive items per user in the test set
is n = 3. Table 1 shows the characteristics of the datasets.

4.2. Rating Prediction

Table 2 contains the rating prediction accuracy in terms of root mean square error (RMSE)
and mean absolute error (MAE) on the validation split for different hyperparameter com-
binations.

4.3. Track 2 Results

We trained all models on both splits. Some results for the validation splits, and from the
leaderboard (the “Test1” set) are in Table 3.

4.4. Final Submission

For our final submission (see Table 3), we used the second rating integration scheme (eq.
26). To estimate p̂rated

u,i , we created a score ensemble (section 3.5) from candidate models
described in Table 4, with a candidate error threshold of 5.2% – models with a higher
validation error were not considered for the ensemble. We estimated the probabilities for a
high rating p̂≥80

u,i according to eq. 27, from the models listed in Table 5.

2. http://kddcup.yahoo.com/datasets.php
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Ratings
validation split competition split

# users 249,012 249,012
# items 296,111 296,111
# ratings 61,640,890 61,944,406
# sparsity 0.999164 0.9991599

# test users 101,172 101,172
# test items 128,114 118,363

Ratings ≥ 80
validation split competition split

# users 248,502 248,529
# items 289,234 289,303
# ratings 22,395,798 22,699,314
# sparsity 0.9996884 0.9996843

# test users 101,172 101,172
# test items 128,114 118,363

Table 1: Characteristics of the validation and competition splits when considering all rat-
ings (Figure 3) and the ratings of 80 or more (Figure 2), respectively.

4.5. Reproducibility

The algorithms described here are part of the MyMediaLite3 recommender system library
(Gantner et al., 2011). http://ismll.de/mymedialite/examples/kddcup2011.html de-
scribes all steps needed to reproduce the experiments presented in this paper.

5. Summary and Outlook

We described how to adapt the Bayesian Personalized Ranking (BPR) framework to sce-
narios where negative items are sampled non-uniformly, like in track 2 of the KDD Cup
2011, yielding the optimization criterion WBPR. This criterion can for instance be used
to learn scalable matrix factorization models, which we used for our participation in the
KDD Cup 2011. In addition to ensembles of different WBPR matrix factorization models,
we enhanced the predictions by integrating additional rating information. The experiments
presented in this paper, and the ranking on the KDD Cup leaderboard4, suggest that our
methods are suitable for such recommendation tasks.

This article is merely a description of the methods we developed and used for this
competition. There are several aspects worth further investigation.

First of all, we reduce a classification problem (optimization for the error rate) to a
ranking problem, which we again solve using a reduction to pairwise classification. While in

3. http://ismll.de/mymedialite
4. Note that we did not make use of the additional hierarchical information.
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Model Hyperparameters RMSE MAE

MF k = 40, λu = 2.3, λi = 1.4, λb = 0.009, α = 0.00002, i = 30 25.37 16.88
MF k = 60, λu = 3.9, λi = 1.7, λb = 0.00005, α = 0.00005, i = 55 25.35 16.67

Table 2: Rating prediction accuracy on the validation split for different matrix factorization
models (eq. 23).

general item recommendation scenarios ranking is the problem we want to solve, it would
be still interesting to see whether improvements are possible by directly training a classifier.

We have not used the item taxonomy, so a next step will be to make use of this additional
information, as well as trying other ways of integrating the rating information (see section
3.6). A fully Bayesian treatment of the WBPR framework, i.e. by estimating parameter
distributions, could yield models that have less hyperparameters, while having accuracies
comparable to ensembles of the current models.

For the competition, we performed all training on the “liked” (Figure 2) and “rated”
(Figure 3) contrasts, but not on the proper contrast (Figure 1) that was used for evaluation
the KDD Cup. We will investigate the benefits of learning that correct contrast. Using a
soft-margin loss instead of a logistic loss could allow us to speed up learning (see section
3.1).
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