
Proceedings of Machine Learning Research vol 144:1–10, 2021

Nonlinear state-space identification using deep encoder networks

Gerben Beintema G.I.BEINTEMA@TUE.NL

Roland Toth R.TOTH@TUE.NL

Maarten Schoukens M.SCHOUKENS@TUE.NL

Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB, The Netherlands

Abstract
Nonlinear state-space identification for dynamical systems is most often performed by minimizing
the simulation error to reduce the effect of model errors. This optimization problem becomes com-
putationally expensive for large datasets. Moreover, the problem is also strongly non-convex, often
leading to sub-optimal parameter estimates. This paper introduces a method that approximates the
simulation loss by splitting the data set into multiple independent sections similar to the multiple
shooting method. This splitting operation allows for the use of stochastic gradient optimization
methods which scale well with data set size and has a smoothing effect on the non-convex cost
function. The main contribution of this paper is the introduction of an encoder function to estimate
the initial state at the start of each section. The encoder function estimates the initial states using
a feed-forward neural network starting from historical input and output samples. The efficiency
and performance of the proposed state-space encoder method is illustrated on two well-known
benchmarks where, for instance, the method achieves the lowest known simulation error on the
Wiener–Hammerstein benchmark.
Keywords: Nonlinear System Identification, Deep Learning, State-Space, Multiple Shooting.

1. Introduction

Linear system identification is already well developed, in both a theoretical and a practical sense.
However, due to increasing performance demands, the use of light-weight materials and/or increased
demand for energy efficiency, linear identification and control falls short of meeting these demands
and hence, nonlinear system identification and control has become increasingly important. This pa-
per introduces a novel nonlinear state-space identification approach that reduces the computational
cost by combining techniques and insights of machine learning and dynamical system identification.

Computational tractability is often hard to achieve while estimating nonlinear (state-space) mod-
els when minimizing the simulation error. Nevertheless, the use of simulation error is essential in
practise to increase model reliability when model errors are present (Schoukens and Ljung, 2019).
However, the simulation error objective is commonly computationally intractable often caused by
the lack of smoothness of the loss function and/or the gradients of the loss function (Ribeiro et al.,
2020). Furthermore, the computational cost of calculating the loss scales linearly with the length of
the measured time-series. This limits the applications to relatively small datasets and is a serious
detriment in the age of big data. Moreover, it has been shown that artificial neural network are
powerful function approximators when large datasets are applied (Chiroma et al., 2018).

Multiple methods exist which aim to negate these causes of intractability: (i) Careful initial-
ization of the model parameters (Schoukens and Toth, 2020), resulting in an initial estimate which
is expected to be close to the global minimum of the loss function and avoids gradient and system
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instability, and (ii) the multiple shooting method (Bock, 1981) which splits the time series into mul-
tiple sections where each section has its own independent loss function. This splitting operation has
recently been shown to have a smoothing effect on the loss function and its gradient (Ribeiro et al.,
2020) making gradient based optimization method easier to apply.

How to estimate the initial state at the start of each section remains one of the main issues
in successfully applying the multiple shooting method. Two approaches are commonly used: (i)
Setup the initial states as parameters of the optimization (Bock, 1981), this however scales the
model complexity with the number of sections, and (ii) estimate the initial state by using equality
constrains to the final state of the previous section (Ribeiro et al., 2020), this constraint optimization
is considerably more involved.

This paper proposes a new approach to the initialization problem by using an encoder func-
tion. This function estimates the current state based on historical inputs and outputs. The use of
an encoder function in combination with a multi-step ahead prediction loss can be viewed as an
extension of sub-space identification approaches such as CCA (Katayama, 2006). The proposed ap-
proach reduces the transient errors and does not increase the model complexity with the number of
sections and, moreover, it provides generalization to other unseen datasets as the encoder allows one
to jump start the simulation at the correct model state. Furthermore, in this paper we demonstrate
that the state-space encoder method with artificial neural network achieves state-of-the-art perfor-
mance on the Wiener–Hammerstein benchmark (Schoukens et al., 2009) and obtains a competitive
performance on the Silverbox benchmark (Wigren and Schoukens, 2013) significantly exceeding
previously proposed deep learning methods on these benchmarks.1

The remainder of this paper first discusses and motivates the state-space encoder method in
Section 2. Next, the method is applied to two well-known benchmarks and the results are com-
pared quantitatively with other results from literature in Section 3 followed by a discussion of the
presented approach in Section 4.

2. Encoder-Based nonlinear state-space identification

2.1. State-space model structure

The following discrete-time model structure is considered:
x̂t+1 = fθ(x̂t, ut), (1a)

ŷt = hθ(x̂t, ut), (1b)

where t ∈ Z is the discrete time index, x ∈ Rnx the internal state vector, ut ∈ Rnu and yt ∈ Rny

are the model input and output respectively, θ the model parameters, and fθ, hθ are the nonlinear
dynamics of the state-space model. We assume that the measured data is generated by a system
contained within this model class: yt = hθ0(xt, ut)+ vt and xt+1 = fθ0(xt, ut), where vt ∈ Rny is
zero-mean (possibly coloured) noise with finite variance.

2.2. Classical simulation error identification

A common approach to estimate the model parameters is to minimize the simulation error as

Vsimulation(θ) =
1

Nsamples

Nsamples∑
t=1

||hθ(xt, ut)− yt||22. (2)

1. Code available at https://github.com/GerbenBeintema/SS-encoder-WH-Silver
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Figure 1: The state-space encoder method applied on a section of a time series starting at ti where
the initial state x̂ti−→ti is estimated using the encoder function e using the historical inputs
and outputs.

where xt dependent on fθ. For convenience of writing use a single parameter vector θ for both
functions, however, in practise they are independently parameterized. However, using this expres-
sion directly is often challenging. Each evaluation of Vsimulation(θ) requires O(Nsamples) operations
in series which makes it intractable for large data sets. Moreover, it is known empirically and shown
theoretically that this expression can result in many local minima and in unstable behaviour of the
optimization for gradient based techniques (Ribeiro et al., 2020).

2.3. Encoder networks for nonlinear identification

To negate the problems observed for the simulation loss we employ a loss function that sums overN
independent sections of the data with starting index ti and length T + k0 +1 similar to the multiple
shooting method which is known to have a stabilizing and smoothing effect (Ribeiro et al., 2020).
The full formulation of the proposed state-space encoder method is given by:

Vencoder(θ) =
1

2N(T + 1)

N∑
i=1

T+k0∑
k=k0

||ŷti−→ti+k − yti+k||
2
2, (3a)

ŷti−→ti+k := hθ(x̂ti−→ti+k, uti+k), (3b)

x̂ti−→ti+k+1 := fθ(x̂ti−→ti+k, uti+k), (3c)

x̂ti−→ti := eθ(yti−na:ti−1, uti−nb:ti−1), (3d)

where ti −→ ti + k reads as “The simulated state at ti + k starting at ti with initial state x̂ti−→ti”.
Furthermore, the choice of k0 ≥ 0 allows for an initial transient time to be excluded from the loss
calculation. Finally, to close this expression, an encoder function eθ is introduced to estimate the
initial state starting from historical input and output samples ut−nb:t−1 ∈ Rnu·nb and yt−na:t−1 ∈
Rnu·na . A graphic representation of the state-space encoder method is shown in Figure 1.

This approach and multiple shooting is related to Truncated Backpropagation Through Time
(TBTT) (Tallec and Ollivier, 2017) which is a gradient computation method which truncates the
gradient calculations after a few backwards steps. This, however, requires a initial pass over the
entire dataset length which similarly to simulation error loss (Equation (2)) scales the computational
complexity with dataset length. Moreover, Our approach and multiple shooting works on the level
of the cost function whereas TBTT is a gradient computation method.
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This expression can be interpreted as a trade-off between simulation error with N = 1, T =
Nsamples and prediction error with T = 0, N = Nsamples, k0 = 0 under the right assumptions.
Note that sections can overlap. This is normally excluded in multiple shooting approaches, but is
allowed in the approach presented in this paper. Neural network structures (e.g. fully connected
neural networks, convolutional neural networks) are used to represent the encoder function due to
their excellent function approximation abilities for large data sets (Poggio et al., 2017).

This approach has a few computational advantages over the two existing state initialization
methods when considering the multiple shooting method context. As mentioned in the introduction,
a first method is to initialize as x̂ti−→ti = 0 (Bock, 1981) which often requires a system-specific
burn time k0 such that the transient is sufficiently suppressed. This burn time can significantly
increase the computational cost when a long or even infinite transient (e.g. resonating and chaotic
systems) is present. The second method includes x̂ti−→ti as a model parameter (Ribeiro et al., 2020).
However, this significantly increases the model complexity by addingN ·nx parameters. Moreover,
this method also provides no generalization to other datasets. The proposed encoder method negates
the above mentioned computational hindrances and potentially generalizes to new data sets.

The state-space encoder method also connects with the sub-space identification literature. Sub-
space identification uses an encoder and a decoder map to identify a sub-space for a dynamical
system such as CCA (Katayama, 2006). This approach can be extended to the proposed method
by choosing the structure of the decoder map to an unrolled state-space model as in Figure 1. This
connection will be further explored in future research. Moreover, the proposed method is also
arguably simpler than the closely related auto-encoder approach (Masti and Bemporad, 2018) for it
only employs a single loss function and it allows for the minimization of a multi-step criterion.

2.4. Batch optimization

Adapting the cost framework proposed in Equation (3d) allows the loss to be calculated indepen-
dently on each section. Firstly, this independence allows for close to trivial parallelization, resulting
in a reduced computational cost on modern hardware. Secondly, one can choose to sum not over
all sections but only a subset of possible sections. This results in a batch loss formulation of the
multiple shooting method as:

Vbatch(θ) =
1

2Nbatch(T + 1)

∑
i∈B

T+k0∑
k=k0

||ŷti−→ti+k − yti+k||
2, (4a)

B ⊂ {1, 2, ..., N}. (4b)

The batch loss formulation allows one to utilize modern powerful batch optimization algorithms
developed by the machine learning community (e.g. Adam (Kingma and Ba, 2014)) that scales well
for increasing data set size.

3. Numerical experiments

In this section, the real-world modeling performance of the state-space encoder method is ana-
lyzed by applying the proposed method to two well-known system identification benchmarks: The
Wiener–Hammerstein and the Silverbox benchmark.2 The obtained results are compared quantita-
tively with other results listed in the literature.

2. Data obtained from https://sites.google.com/view/nonlinear-benchmark/
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3.1. The Wiener–Hammerstein benchmark

The Wiener–Hammerstein benchmark (Schoukens et al., 2009) is implemented as an electronic cir-
cuit with a diode-resistor nonlinearity (SISO). This benchmark consists of 80,000 training samples,
20,000 validation samples and 78000 test samples.

The encoder function eθ and both dynamics function fθ and hθ are all represented using a single
hidden layer neural network with 15 hidden nodes and tanh activation functions. Furthermore, this
structure also includes a parallel linear function that goes directly from the input of the neural
network to the output of the network without any nonlinear activation functions similar to a residual
layer (He et al., 2016):

zout = A1 tanh(A2zin + b2) +A3zin + b3 (5)

with zin being the network input in vector form, zout the network output and Ai and bi the param-
eters of the network. These parameters are initialized by sampling from the uniform distribution
U(−
√
k,
√
k) with k = 1/

√
nin where nin are the number of inputs (i.e. number of elements in zin)

The Wiener–Hammerstein benchmark encoder state-space model structure has the following
settings nx = 6 (equal to the underlying system order), k0 = 0 (no transient corrections required),
T = 80 (taken approximately four times the time scale of the system which is approximately 20
steps), na = nb = 50 (larger than nx and a few time the time scale). Furthermore, a 32-bit floating-
point accuracy is used for the parameter estimation. The multiple shooting starting points ti can
be any possible starting point within the range of the training set to maximally use the available
data. This allows for overlapping training sections. Furthermore, the Adam batch optimization
method (Kingma and Ba, 2014) is utilized with a learning rate of α = 10−3 and a batch size of
1024 which adjusts the learning rate based on the variance of the gradient. During optimization
the performance of the estimated model is evaluated by monitoring the simulation error on the
validation set after each epoch. The estimated model is saved if a new lowest simulation error
on the validation set has been achieved (i.e. early stopping). Furthermore, both the input and the
output are normalized by subtracting the mean and dividing by standard deviation to improve the
performance and training time. Lastly, after the batch training converged, a local minimum search
using all training data is performed. However, this has only improved the final result marginally
(i.e. 0.101% test NRMS without final search).

The model performance is reported in both Root Mean Square (RMS) and the Normalized Root
Mean Square (NRMS) of the simulation error:

NRMS =

√
1/N

∑N+t0
t=t0

||ŷt − yt||22
σy

=
RMS
σy

(6)

with σy = 244.7 mV the standard deviation of the measured test output.
The results obtained on the Wiener–Hammerstein benchmark are reported in Table 1. The ta-

ble shows that the proposed encoder method has, to the author’s knowledge, the best known RMS
simulation error reported in the literature for this benchmark. Furthermore, one can see in Figure 2
that the remaining error in the time domain is visually a straight line and the remaining error in the
frequency domain is reduced significantly compared to error obtained by the best linear approxima-
tion. Also note that other models with larger neural networks and higher state dimension nx resulted
in a similar model performance (e.g. with nx = 8 and two hidden layer neural networks yielded a
test NRMS simulation of 0.1011%). This insensitivity to the model structure setting indicates that
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Table 1: Performance of the state-space encoder on the Wiener–Hammerstein benchmark compared
to the results reported in the literature.

Identification Method
Test RMS
Simulation (mV)

Test NRMS
Simulation

State-space Encoder (this work) 0.241 0.0987%
QBLA (Schoukens et al., 2014) 0.279 0.113%
Pole-zero splitting (Sjöberg et al., 2012) 0.30 0.123%
NL-LFR (Schoukens and Toth, 2020) 0.30 0.123%
PNLSS (Paduart et al., 2012) 0.42 0.172%
Generalized WH (Wills and Ninness, 2009) 0.49 0.200%
LS-SVM (Falck et al., 2009) 4.07 1.663%
Bio-social evolution (Naitali and Giri, 2016) 8.55 3.494%
Auto-encoder (reproduction) (Masti and Bemporad, 2018) 12.01 4.907%
Genetic Programming (Khandelwal, 2020) 23.50 9.605%
SVM (Marconato and Schoukens, 2009) 47.40 19.373%
BLA (Lauwers et al., 2009) 56.20 22.969%

(a) Time domain (b) Frequency domain

Figure 2: The simulation error of the state-space encoder method evaluated on the test set of the
Wiener–Hammerstein benchmark in both time and frequency domain.

the importance of careful model structure selection is reduced for the state-space encoder method
when being used in combination with large data sets. Note that the generalization gap (i.e. the gap
between training error and test error) is negligible. The NRMS simulation error on the training set
is 0.09789% and on the test set is 0.09870%. This indicates that virtually no overfitting is taking
place. Also observe that these results are obtained using random initial parameters while many of
the approaches listed in Table 1 require a linear model estimate or other parameter initialization
schemes to obtain competitive results.

The NRMS error during optimization is shown in Figure 3. It can be observed that the intro-
duction of encoder-based batch optimalization does not only improve the training time, but also
significantly improves the model quality. Though, even with the improvements in training speed in-
troduced by utilizing multiple shooting, the encoder and batch optimization, the training still takes
considerable time. The optimization took 4 · 104 epochs and 4 · 106 batch updates. However, a
high-quality model is already obtained, before the optimization method fully converges, with only
a tenth of the time budget. This can possibly be further improved in the future by using more ap-
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Figure 4: The n-step NRMS as in Equation
(7) on the test set of the Wiener–
Hammerstein benchmark.

propriate optimization algorithms such as the recently proposed quasi-Newton methods (Wills and
Schön, 2019).

The n-step NRMS error is introduced to get some insight into how well the encoder can estimate
the initial state and to validate the choice of hyper-parameters k0 = 0 and T = 80. The n-step
NRMS error is introduced as the normalized error you expect so find after taking n steps as in:

NRMSn =

√
1/M

∑M
i=1(ŷti−→ti+n − yti+n)2

σy
. (7)

This quantity is shown in Figure 4. The average is taken over all the possible starting ti of the test
set. In the figure, one can see that the encoder does not provide a perfect estimate of the initial state
as indicated by a bump that is seen for n < 30 with the peak being at n = 7. Nevertheless, this does
validate the choice of T = 80 and k0 = 0 as the transient does not dominate the loss function.

3.2. The Silverbox benchmark

The Silverbox system benchmark (Wigren and Schoukens, 2013) is an electronic implementation of
a mass-spring-damper system with a nonlinear spring, i.e. a forced Duffing oscillator. The Silver-
box system can be modeled by a second-order nonlinear state-space model. The data set consists of
test section of 40000 samples consisting of a filtered Gaussian excitation with slowly increasing am-
plitude whereas the train section of 87000 samples consists of the same filtered Gaussian excitation
with constant amplitude where the last 30000 samples are also used to monitor the performance.
The remaining 21000 samples composes the validation set. Note that the constant amplitude of
the train and validation sections is smaller than the highest amplitude present in the test section
requiring good extrapolation properties during testing.

The state-space encoder setup for the Silverbox benchmark is similar to the setup for the Wiener–
Hammerstein benchmark. A 2 hidden layer neural network with 64 nodes per layer, tanh activa-
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Table 2: Performance of the state-space encoder method on the Silverbox benchmark compared
with literature. The numbers in parentheses indicate test set evaluation excluding extrapo-
lation.

Identification
Method

Val. RMS
simulation

(mV)

Test RMS
simulation

(mV)
PNLSS (Paduart et al., 2010) – 0.26
Sigmoidal network models (Ljung et al., 2004) – 0.3
LS-SVM (Espinoza et al., 2004) 0.23 0.32
Poly-LFR (Van Mulders et al., 2013) – 0.35
Genetic Programming (Khandelwal, 2020) 0.09 0.36
Direct Identification (Hjalmarsson and Schoukens, 2004) 1.4 0.96
Local linear models (Verdult, 2004) 1.1 1.3
State-space Encoder with nx = 4 (this work) 0.36 1.4 (0.32)
State-space Encoder with nx = 2 (this work) 1.0 2.4 (0.83)
Best Linear Approximation (Marconato et al., 2012) 6.9 13.5

Figure 5: The remaining simulation er-
ror obtained using the encoder
method (nx = 4) on the test
set of the Silverbox benchmark.
When the output exceeds the
training values (i.e. extrapo-
lation) the simulation error in-
creases significantly.

tions, and a linear bypass for eθ, fθ and hθ is used. The encoder hyperparameters are set as: k0 = 0,
T = 100, na = nb = 50, a batch size of 256, and using the Adam optimizer with the learning rate
α = 10−3. The multiple shooting starting point can again be any possible starting point within the
range of the training set.

A summary of the results is reported in Table 2. An observation is that taking the number of
internal states equal to the number of real internal states nx = 2 performs almost 3 times worse
then taking nx = 4. This could be due to the local minima being more pronounced at low state
orders. The performance of the state-space encoder method is significantly worse on the test set
when comparing to the other methods. However, this can be almost entirely be attributed to the
extrapolation errors as can be observed in Figure 5. Furthermore, observe that almost all the state-
of-the-art models use a polynomial representation of the nonlinearity, which matches with the true
system structure. However, the method presented used a neural network to model the nonlinear
function which introduced larger extrapolation errors. When the region of extrapolation is excluded
from the test set the error drops in the range of state-of-the-art performance.
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4. Discussion

This paper presented a novel nonlinear system identification approach realized by combining ideas
and methods from machine learning, multiple shooting and subspace identification. The intro-
duction of an encoder function that estimates the internal state based on the historical input and
output data, together with multiple computational improvements, such as batch optimization, re-
sults in a computationally efficient nonlinear identification method that scales well to large datasets.
Without requiring specific parameter initialization approaches (random parameter initialization has
been used), the method was able to obtain the best known performance on the Wiener–Hammerstein
benchmark. However, currently a known drawback of the encoder method is that the hyper-parameters
are system dependent and require manual tuning. A detailed theoretical analysis and further com-
putational improvements of the proposed identification method are the subject of future work.
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