Conservative Objective Models for Effective Offline Model-Based Optimization

Brandon Trabucco! Aviral Kumar

Abstract

In this paper, we aim to solve data-driven model-
based optimization (MBO) problems, where the
goal is to find a design input that maximizes an un-
known objective function provided access to only
a static dataset of inputs and their corresponding
objective values. Such data-driven optimization
procedures are the only practical methods in many
real-world domains where active data collection
is expensive (e.g., when optimizing over proteins)
or dangerous (e.g., when optimizing over aircraft
designs, actively evaluating malformed aircraft
designs is unsafe). Typical methods for MBO
that optimize the input against a learned model
of the unknown score function are affected by
erroneous overestimation in the learned model
caused due to distributional shift, that drives the
optimizer to low-scoring or invalid inputs. To
overcome this, we propose conservative objective
models (COMs), a method that learns a model
of the objective function which lower bounds the
actual value of the ground-truth objective on out-
of-distribution inputs and uses it for optimization.
In practice, COMs outperform a number existing
methods on a wide range of MBO problems, in-
cluding optimizing controller parameters, robot
morphologies, and superconducting materials.

1. Introduction

Black-box model-based optimization (MBO) problems
are ubiquitous in a wide range of domains, such as pro-
tein (Brookes et al., 2019) or molecule design (Gaulton
etal., 2012), designing controllers (Berkenkamp et al., 2016)
or robot morphologies (Liao et al., 2019), optimizing neu-
ral network designs (Zoph & Le, 2017) and aircraft de-
sign (Hoburg & Abbeel, 2012). Existing methods to solve
such model-based optimization problems typically learn a

"Department of Electrical Engineering and Computer Sciences,
University of California Berkeley.. Correspondence to: Bran-
don Trabucco <btrabucco@berkeley.edu>, Aviral Kumar <avi-
ralk @berkeley.edu>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

! Xinyang Geng! Sergey Levine '

@
>

el ”2

” 0 - yla
A

(? Loss
[M] Learned

Model

folz)

Designs

Supervised
Regression

Adversarial Example
() Generation

Figure 1. Overview of COMs. Our method trains a model of
the objective function by training a neural net with supervised
regression on the training data augmented two additional loss terms
to obtian conservative predictions. These additional terms aim to
maximize the predictions of the neural net model on the training
data, and minimize the predictions on adversarially generated
designs. This principle prevents the optimizer from producing bad
designs with erroneously high values at unseen and poor designs.

proxy function to represent the unknown objective land-
scape based on the data and optimize the design against this
learned objective function. In order to prevent errors in the
learned proxy function from affecting optimization, these
methods often critically rely on a tight interaction loop be-
tween optimization and active data collection (Snoek et al.,
2012). Active data collection can be expensive or even
dangerous: evaluating a real design might involve a com-
plex real-world procedure such as synthesizing candidate
protein structures for protein optimization or building the
robot for robot design optimization. While these problems
can potentially be solved via computer simulation, a high
fidelity simulator often requires considerable effort from
experts across multiple domains to build, making it imprac-
tical for most problems. Therefore, a favorable alternative
approach for a broad range of MBO problems is to develop
data-driven methods that can obtain optimized designs by
training highly generalizable and expressive deep neural
network models on previously collected datasets of inputs
(x) and their corresponding objective values (y), without
access to the true function or any form of active data col-
lection (Kumar & Levine, 2019). Moreover, in a number of
these practical domains, such as protein (Sarkisyan et al.,
2016) or molecule design (Gaulton et al., 2012), plenty of
prior data already exists and can be utilized for completely
offline model-based optimization.

Conservative Objective Models for Offline MBO

Typical approaches for addressing MBO problems learn a
model of the unknown objective function f that maps an
input x (Snoek et al., 2012) (or a representation of the in-
put (Gémez-Bombarelli et al., 2018)) to its objective value
f(x) via supervised regression, and then optimize the in-
put against this learned model via, for instance, gradient
ascent. For MBO problems where the space of valid inputs
forms a narrow manifold in a high-dimensional space, any
overestimation errors in the learned model will drive the
optimization procedure towards off-manifold, invalid, and
low-scoring inputs (Kumar & Levine, 2019), as these will
falsely appear optimistic under the learned model. Since
the offline MBO problem statement does not allow for any
active data collection, it is unable to recover from poor
solutions which it erroneously predicts high values.

If we can instead learn a conservative model of the objective
function that does not overestimate the objective value on
off-manifold out-of-distribution inputs, optimizing against
this conservative model would produce the best solutions
for which we are confident in the value, thus avoiding going
off-manifold or far away from the training data In this paper,
we propose a method to learn such conservative objective
models (COMs), and then optimize the design against this
conservative model using a trust-region constrained gradient-
ascent procedure. Building on recent advances in offline
reinforcement learning (Levine et al., 2020; Kumar et al.,
2020), the key idea behind our method is to train the learned
objective function model with an additional objective that
minimizes its predictions on out-of-distribution inputs, thus
ensuring it does not overestimate the objective value. We
show that our approach mitigates overestimation near the
manifold of the dataset in theory, and empirically, we find
that this leads to good performance across a range of offline
model-based optimization tasks.

The primary contribution of this paper is a novel approach
for addressing data-driven model-based optimization prob-
lems by learning a conservative model of the unknown ob-
jective function that lower-bounds the groundtruth function
on out-of-distribution inputs, and then optimizing the input
against this conservative model via a simple gradient-ascent
style procedure. COMs are simple to implement: they only
require training a model for the objective function, as op-
posed to other recent approaches that also train generative
models either for generating optimized designs or for esti-
mating the support of the data distribution. We theoretically
analyze COMs and show that they never overestimate the
values at out-of-distribution inputs close to the dataset man-
ifold and we empirically demonstrate the efficacy of COMs
on six complex MBO tasks that span a wide range of real-
world tasks including molecule substructure design, neural
network parameter optimization, and superconducting ma-
terial design. On some tasks, COMs outperform the best
existing method on that task by a factor of 1.3-2x.

2. Preliminaries

The goal in data-driven, offline model-based optimiza-
tion (Kumar & Levine, 2019) is to find best possible so-
lution, x*, to optimization problems of the form

x* + argmax f(x), (D

where f(x) is an unknown (possibly stochastic) objective
function. An offline MBO algorithm is provided access
to a static dataset D of inputs and their objective values,
D = {(x1,91), -, (Xn,yn)}. While a variety of MBO
methods have been developed (Gémez-Bombarelli et al.,
2018; Brookes et al., 2019; Kumar & Levine, 2019; Fan-
njiang & Listgarten, 2020), most methods for tackling MBO
problems fit a parametric model to the samples of the true
objective function in D, fg (x), via supervised training:
fa(x) + argming 3. (fa(x;) — y;)% and find x* in Equa-
tion 1 by optimizing x against this learned model fj(x),
typically with some mechanism to additionally minimize
distribution shift. One choice for optimizing x in Equation 1
is gradient descent on the learned function, as given by

Xit1 ¢ Xp+aV, fo(X)|z=x,, for k€ [1,T], x*=xr.

2)
The fixed point of the above procedure x7 is then the out-
put of the MBO procedure. In high-dimensional input
spaces, where valid x values lie on a thin manifold in a
high-dimensional space, such an optimization procedure is
prone to producing low-scoring inputs, which may not even
be valid. This is because f may erroneously overestimate
objective values at out-of-distribution points, which would
naturally lead the optimization to such invalid points. Prior
methods have sought to address this issue via generative
modeling or explicit density estimation, so as to avoid out-
of-distribution inputs. In the next section, we will describe
how our method, COMs, instead trains the objective model
in such a way that overestimation is prevented directly.

3. Conservative Objective Models for Offline
Model-Based Optimization

In this section, we present our approach, conservative ob-
jective models (COMs). COMs learn estimates of the true
function that do not overestimate the value of the ground
truth objective on out-of distribution inputs in the vicinity
of the training dataset. As a result, COMs prevent erroneous
overestimation that would drive the optimizer (Equation 2)
to produce out-of-distribution and low-scoring inputs. We
first discuss a procedure for learning such conservative esti-
mates and then explain how these conservative models can
be used for MBO.

3.1. Learning conservative objective models (COMs)

The key idea behind our approach is to augment the train-
ing of a objective model, fyp(x), typically trained using

Conservative Objective Models for Offline MBO

Offline Data Collection.

=
—

N I

Inputs

‘%M

Objective values

Static
dataset

Optimization.

Refine with
gradient

Optimized Estimated
inputs objective
_| Conservative
Training
Batch of m T
data

Figure 2. Training and optimization using COMs. The section on the left indicates that each task provides a static dataset that is
collected offline without ayn MBO algorithm in-the-loop. The section on the right shows how a conservative objective model is used to
produce promising optimized designs using gradient ascent, and how these designs are inputs to a conservative regularizer.

supervised regression, with a regularizer that minimizes
the expected value of this function under an automatically
chosen adversarial distribution p(x). We will cover the con-
struction of this adversarial distribution p(x) formally, but
intuitively it represents out-of-distribution inputs that are
likely to be obtained during optimization and hence their
values should be pushed down. While simply minimizing
the function values under this adversarial distribution should
effectively reduce the learned objective value at these in-
puts, our approach also additionally maximizes the expected
value of this function under D(x) = > x,eD Ox=x;, the em-
pirical distribution of the inputs x in the dataset D. This
maximization term prevents excessive underestimation of
the learned objective function that can arise uniformly over
the entire input space when implementing COMs in prac-
tice with deep neural network function approximators. In
Section 4, we will show that this objective learns a func-
tion fp(x) that is a lower bound on the true function f(x)
for inputs that are encountered during the optimization pro-
cess, under several assumptions. This design is inspired
by recent work in offline RL (Kumar et al., 2020), where a
similar approach is used to learn conservative value func-
tions, though it has never been applied to MBO to the best
of our knowledge. We will elaborate on this connection in
Section 5. We will discuss the choice of y(x) in the next
paragraph. Formally, our training objective is given by the
following equation, where « is a parameter that trades off
conservatism for regression:

fg +— arg 5%%1 @ (Exrvp,(x) [fg(x)} — Ex~p [fg(x)})

+ %E(x,y)ND {(fe(x) - :U) 2} , (3

The value of « and the choice of distribution u(x) play a
crucial role in determining the utility of this bound. If p(x)
is not chosen carefully, then the learned function fe* may
not be a lower-bound on the inputs x of interest, which is
the design actually found by the optimizer. Similarly, if the

chosen « is very small, then the resulting f;‘ (x) may not be
a conservative estimate of the actual function f(x), whereas
if the chosen « is too large, then the learned function will
be too conservative, and not allow the optimizer to deviate
away from the dataset at all.

Choosing /:(x). Our choice of ;1(x) specifically focuses on
points that the optimizer is likely to encounter while opti-
mizing the input. While there are a number of ways to find
such points, the approach we employ is to simply sample a
starting point X from the dataset D, and then perform sev-
eral steps of gradient ascent on fg starting from this point.
Since the choice of p(x) depends on 6, we reformulate the
optimization over 6 as an adversarial optimization problem,
as shown below:

fg +— arg géiél ml;ax e (]EXNN(X) [f@(x)} —Exp [fg(x)D

3.2. Using COMs for offline model-based optimization

Once we have a trained conservative model from Equa-
tion 3, we must use this learned model for finding the best
possible input, x*. Prior works (Kumar & Levine, 2019;
Brookes et al., 2019) use fg in conjunction with generative
models or density estimators to restrict the optimization to
in-distribution values of x*. However, since our conser-
vative training method trains fg* to explicitly assign low
values to out-of-distribution inputs, we can use a simple
gradient-ascent style procedure. Specifically, our optimizer
runs gradient-ascent for 7" iterations starting from an input
in the dataset (xo € D), in each iteration trying to move
the design in the direction of the gradient of the learned
model f;‘ . However, since our method only prevents overes-
timation in a given region (specifically, for x values drawn
from p(x)), we must make sure that the optimizer doesn’t
“outrun” this region, since conventional gradient ascent can
move very far in even a few steps when gradients are large.

Conservative Objective Models for Offline MBO

Algorithm 1 COM: Training Conservative Models

1: Initialize fg. Pick 7, a and initialize dataset D.
2: for ¢ = 1 to training_steps do

3: Sample (x0,y) ~ D

4: Find x7(x0) via gradient ascent from xo:

Xer1 =X +Vxfo ()| _ 5 #(X) = Xy cp Sxmxr (x0)-

5: Minimize £(6;) with respect to 6.

L(0; &) =Exyun(fo(x0)—y) > —aFxq [fo (x0)] + aE,) [fo (X)]

0+ 60— AVoL(6;)
6: end for

Algorithm 2 COM: Finding x*
1: Initialize optimizer at the optimum in D:
X = arg maX(x,y)ep Y
2: Find x* via trust-region gradient ascent from X:
Xe41 = X + VLo (X)|
where Lop(x) := f (%) = 5 (x + nVxf§ (x)).
3: Return the solution x* = x7.

We therefore incorporate a “trust-region” constraint into
our optimizer. Starting from the best point in the dataset,
xo € D, our optimizer performs the following update (also
shown in Algorithm 2, Line 2):

Vte[T],xo €D; _—
where Lop(x) = f5(x) — Bf5(x +1Vxfy(x)). (&)

Equation 4 ensures that the value of the learned function
fg (x¢41) is larger than the value at its previous iterate x;
and it additionally penalizes the value at a hallucinated,
lookahead gradient-ascent iterate beyond x;,; weighted
by 8. This S-weighted penalty ensures that the function
fo(x) is relatively constant near the obtained x;1, and is
expected to decrease the rate at which naive gradient ascent
can outrun the region defined by p(x) in Equation 3, that
the conservative model was trained on.

Xi+1 = X¢ + NV Lop(x)|

Equation 4 is theoretically equivalent (upto second order)
to standard gradient ascent on learned f* (x), with an addi-
tional regularizer on the norm of the gradient V. f*(x) (to
observe this note the Taylor expansion of Ly (x) in Equa-
tion 4). Thus, it implements a “slow” version of gradient
ascent such that x* doesn’t outrun the region during opti-
mization. A detailed discussion of this constraint along with
how it is implemented in practice is provided in Appendix A.

3.3. Additional Design Decisions for COMs

Next we discuss other design decisions that appear in COMs
training (Equation 3) or when optimizing the input against
a learned conservative model (Equation 4).

Choosing . The hyperparameter « in Equation 3 plays
an important role in weighting conservatism against accu-
racy. Without access to additional active data collection
for evaluation, tuning this hyperparameter for each task can
be challenging. Therefore, in order to turn COMs into a
task-agnostic algorithm for offline MBO, we devise an auto-
mated procedure for selecting o.. As discussed previously,
if o is too large, fg* is expected to be too conservative, since
it would assign higher values to points in the dataset, and
low values to all other points. Selecting a single value of
« that works for many problems is difficult, since its effect

depends strongly on the magnitude of the objective function.
Instead, we use a modified training procedure that poses
Equation 3 as a constrained optimization problem, with «
assuming the role of a Lagrange dual variable for satisfy-
ing a constraint that controls the difference in values of the
learned objective under p(x) and D(x). This corresponds
to solving the following optimization problem:

~ 1 ~ 2
fo « arg ’éréiél §]E(x’y)ND {(fg(x) - y) }
s.t. (IEXNH(X) [fg(x)} —Exp [fg(x)D <7. ()

While Equation 5 introduces a new hyperparameter 7 in
place of «, this parameter is easier to select by hand, since
its optimal value does not depend on the magnitude of the
objective function (as objective values are normalized before
use in Equation 5), and therefore a single choice works well
across a range of tasks. We find that a single value of
7 = 0.05 is effective on every task and empirically ablate
the choice of 7 in Appendix A.

Selecting optimized designs x*. So far we have discussed
how COMs can be trained and used for optimization; how-
ever, we have not established a way to determine which
x; (Equation 4) encountered in the optimization trajectory
should be used as our final solution x*. The most natural
choice is to pick the final x7 found by the optimizer as the
solution. On all of our tasks, we choose 7' to be a large
value equal to 450 steps. While the choice of 7" should, in
principle, affect the solution found by any gradient-ascent
style optimizer, we found COMs to be quite stable to dif-
ferent values of T, as we will elaborate empirically on in
Section 6.2, Figure 3. Of course, there are many other pos-
sible ways of selecting 7', including ideas inspired from
offline model-selection methods in offline reinforcement
learning (Thomas et al., 2015), but our simple procedure,
which is also popular in offline RL (Fu et al., 2020), is
sufficient to obtain good optimization performance.

Choice of ;1(x). By default, we compute p(x) via multiple
steps of gradient ascent on the learned f (x) during training,
which is different from the procedure for computing x* in
Equation 4, we find that a version of COMs that also uti-

Conservative Objective Models for Offline MBO

lizes the trust-region procedure in Equation 4 for computing
1(x) in Equation 3 also performs similarly to this default
version of COMs. We present empirical evidence for this
observation in Appendix A.

3.4. Overall Algorithm and Practical Implementation

Finally, we combine the individual components discussed so
far to obtain a complete algorithm for offline model-based
optimization. Pseudocode for our algorithm is shown in Al-
gorithm 1. COMs parameterize the objective model, f(x),
via a feed-forward neural network with parameters 6. Our
method then alternates between approximately generating
samples p(x) via gradient ascent (Line 4), and optimizing
parameters 6 using Equation 4 (Line 5). Finally, at the end
of training, we run the trust-region gradient ascent proce-
dure over the learned objective model f# (x) for a large T
number of ascent steps and return the final design x7 as x*.

Implementation details. Elaborate implementation details
for our method can be found in Appendix A. Briefly, for
all of our experiments, the conservative objective model fg
is modeled as a neural network with two hidden layers of
size 2048 each and leaky ReLU activations. More details
on the network structure can be found in Appendix C. In
order to train this conservative objective model, we use the
Adam optimizer (Kingma & Ba, 2015) with a learning rate
of 10~3. Empirically, we found larger values of 7 to pro-
duce inputs x7 that do not maximize the values of fe* (x7),
and we select the largest 7 such that successive x; follow
the gradient vector field of fe* (x¢). For computing samples
1(x), we used one gradient ascent step starting from a given
design in the dataset, xg € D. While it appears limiting at
first, we show in Appendix A that this is sufficient to ensure
the conservatism constraint in Equation 5. During optimiza-
tion, we utilized the trust-region gradient-ascent optimizer
with § = 0.9. As we will also show in our experiments
(Section 6.2), this value of 8 universally produces stable
optimization behavior. Finally, in order to choose the time
step 1" in Equation 4 that is supposed to provide us with the
final solution x* = xp, we pick a large and universal time
step of T' = 450.

4. Theoretical Analysis of COMs

We will now theoretically analyze conservative objective
models, and show that the conservative training procedure
(Equation 3) indeed learns a conservative model of the objec-
tive function. To do so, we will show that under Equation 3,
the values of all inputs in regions found within 7" steps of
gradient ascent starting from any input xo € D are lower-
bounds on their actual value. For analysis, we shall denote
D(x) as the smoothed density of x in the dataset D (see
Appendix B for a formal definition). We will express Equa-
tion 3 in an equivalent form that factorizes the distribution

p(x) as p(x) = 3, p D(xo0)p(xr|x0):
it @ (B, 5y r oy [fo30)] — B [fo()])
+ %E(x,y)@ {(fe(x) - yﬂ O

While p(x7|x0) is a Dirac-delta distribution in practice
(Section 3), for our analysis, we will assume that it is a
distribution centered at xr and p(x7|x9) > 0V xp € X.
This condition can be easily satisfied by adding random
noise during gradient ascent while computing x7. We will
train fg using gradient descent and denote k = 1,2, --- as
the iterations of this training procedure for fg.

We first summarize some assumptions used in our analy-
sis. We assume that the true function f(x) is L-Lipschitz
over the input space x. We also assume that the learned
function fy(x) is L-Lipschitz and L is sufficiently larger
than L. For analysis purposes, we will define a conditional
distribution, D(x’|x), to be a Gaussian distribution centered
at x: N'(x’|x,0?). We will not assume a specific parame-
terization for the objective model, fg, but operate under the
neural tangent kernel (NTK) (Jacot et al., 2018) model of
neural nets. The neural tangent kernel of the function f(x)
be defined as: G (x;,%;) := Vo fo(x:)T Vo fo(x,). Under
these assumptions, we build on the analysis of conservative
Q-learning (Kumar et al., 2020) to prove our theoretical
result in Theorem 1, shown below:

Proposition 1 (Conservative training lower-bounds the true
function). Assume that f¢(x) is trained with conservative
training by performing gradient descent on 0 with respect
to the objective in Equation 6 with a learning rate 1. The
parameters in step k of gradient descent are denoted by 6%,
and let the corresponding conservative model be denoted as
fé“. LetG, i, L, L, D be defined as discussed above. Then,
under assumptions listed above, ¥ x € D,x" € X, the
conservative model at iteration k + 1 of training satisfies:

FEFH) = max { £ 00) = LIX” = xa,

~é€+1 (X”) _ UOZE [GI} (X//7 X/)}

x~D,x'~p

+ naExwﬁ,x’Nﬁ[G? (x",x")] },

where fg“(x”) is the resulting (k+1)-th iterate of fo if
conservative training were not used. Thus, if o is sufficiently
large, the expected value of the asymptotic function, fg =
limg_ 0o fé“, on inputs xp found by the optimizer, lower-
bounds the value of the true function f(xr):

EXOND,xTwu(xT|xo) [f@ (XT)] < ExowD,xTN,u(xT|xo) [f(X)]

A proof for Proposition 1 including a complete formal state-
ment can be found in Appendix B. The intuition behind

Conservative Objective Models for Offline MBO

the proof is that inducing conservatism in the function fg
at each gradient step of optimizing Equation 6 makes the
asymptotic function be conservative. Moreover, the larger
the value of «, the more conservative the function fg is on
points x’ found via gradient ascent, i.e., points with high
density under p(x7|Xp), in expectation. Finally, when gra-
dient ascent is used to find x* on the learned conservative
model, fg, and the number of steps of gradient ascent steps
is less than 7', this bound with an offset to account for the
fact that the bound in Proposition 1 is computed in expec-
tation over xr while we want to bound the point x*, will
hold for the point x*, and therefore the estimated value of
this point will not overestimate its true value. This offset de-
pends on the Lipschitz constant L and the distance between
x* and the the optimized solutions x7 found for other data
points, xg € D.

5. Related Work

We now briefly discuss prior works in MBO, including prior
work on active model-based optimization and work that
utilizes offline datasets for data-driven MBO.

Bayesian optimization. Most prior work on model-based
optimization has focused on the active setting, where deriva-
tive free methods such as the cross-entropy method (Rubin-
stein & Kroese, 2004) and other methods derived from the
REINFORCE trick (Williams, 1992b; Rubinstein, 1996),
reward-weighted regression (Peters & Schaal, 2007), and
Gaussian processes (Snoek et al., 2015; Shahriari et al.,
2016; Snoek et al., 2012) have been utilized. Most of these
methods focus mainly on low-dimensional tasks with ac-
tive data collection. Practical approaches have combined
these methods with Bayesian neural networks (Snoek et al.,
2015; 2012), latent variable models (Kim et al., 2019; Gar-
nelo et al., 2018b;a), and ensembles of learned score mod-
els (Angermueller et al., 2020a;b; Mirhoseini et al., 2020).
These methods still require actively querying the true func-
tion f(x). Further, as shown by (Brookes et al., 2019; Fan-
njiang & Listgarten, 2020; Kumar & Levine, 2019), these
Bayesian optimization methods are susceptible to produc-
ing invalid out-of-distribution inputs in the offline setting.
Unlike these methods, COMs are specifically designed for
the offline setting with high-dimensional inputs, and avoid
out-of-distribution inputs.

Offline model-based optimization. Recent works have
also focused on optimization in the completely offline
setting. Typically these methods utilize a generative
model (Kingma & Welling, 2013; Goodfellow et al., 2014a)
that models the manifold of inputs. (Brookes et al., 2019;
Fannjiang & Listgarten, 2020) use a variational autoen-
coder (Kingma & Welling, 2013) to model the space of
x and use it alongside a learned objective function. (Kumar
& Levine, 2019) use a generative model to parameterize

an inverse map from the scalar objective y to input x and
search for the optimal one-dimensional y during optimiza-
tion. Modeling the manifold of valid inputs globally can be
extremely challenging (see Ant, Hopper, and DKitty results
in Section 6), and as a result these generative models often
need to be tuned for each domain (Trabucco et al., 2021). In
contrast, COMs do not require any generative model, and fit
an approximate objective function with a simple regularizer,
providing both a simpler, easier-to-use algorithm and better
empirical performance.

Adversarial examples. As discussed in Section 2, MBO
methods based on learned objective models naturally query
the learned function on “adversarial” inputs, where the
learned function erroneously overestimates the true func-
tion. This is superficially similar to adversarial examples
in supervised learning (Goodfellow et al., 2014b), which
can be generated by maximizing the input against the loss
function. While adversarial examples have been formalized
as out-of-distribution inputs lying in the vicinity of the data
distribution and prior works have attempted to correct for
them by encouraging smoothness (Tramer et al., 2018) of
the learned function, and there is evidence that robust objec-
tive models help mitigate over estimation (Santurkar et al.,
2019), these solutions may be ineffective in MBO settings
when the true function is itself non-smooth. Instead making
conservative predictions on such adversarially generated
inputs may prevent poor performance.

6. Experimental Evaluation

To evaluate the efficacy of COMs for offline model-based
optimization, we first perform a comparative evaluation
of COMs on four continuous offline MBO tasks based on
problems in physical sciences, neural network design, and
robotics, proposed in the design-bench benchmark (Tra-
bucco et al., 2021). In addition, we perform an empirical
analysis on COMs that aims to answer the following ques-
tions: (1) Is conservative training essential for improved
performance and stability of COMs? How do COMs com-
pare to a naive objective model in terms of stability?, (2)
How does the trust-region optimizer improve the stabil-
ity of optimizing COMs?, (3) Are COMs robust to hy-
perparameter choices and consistent to evaluation condi-
tions? We answer these questions by studying the behavior
of COMs under controlled conditions by using visualiza-
tions for our analysis. Code for reproducing our experi-
mental results is available at https://github.com/
brandontrabucco/design-baselines.

6.1. Empirical Performance on Benchmark Tasks

We first compare COMs to a range of recently proposed
methods for offline MBO in high-dimensional input spaces:
CbAS (Brookes et al., 2019), MINs (Kumar & Levine,

https://github.com/brandontrabucco/design-baselines
https://github.com/brandontrabucco/design-baselines

Conservative Objective Models for Offline MBO

Superconductor-v0 | HopperController-v0 | AntMorphology-v0 | DKittyMorphology-v0
D (best) 73.90 1361.6 108.5 2159
MINs 80.23 £+ 10.67 746.1 + 636.8 388.5 +9.085 352.9 4+ 38.65
CbAS 72.17 £ 8.652 547.1 £4239 393.0 £ 3.750 369.1 £+ 60.65
Autofocus 77.07 £ 11.11 443.8 +£142.9 386.9 + 10.58 376.3 + 47.47
Grad. Ascent 89.64 £ 9.201 1050.8 4 284.5 399.9 + 4.941 390.7 £ 49.24
REINFORCE 86.58 + 4.270 553.0 £ 296.0 446.3 + 8.669 334.5 £ 38.22
CMA-ES 98.59 + 5.271 676.5 + 344.5 921.3 + 1383. -0.9 + 2.350
BO-qEI 89.73 4+ 0.000 759.4 +142.3 348.6 + 4.229 265.5 £+ 0.000
COMs (ours) \ 114.47 + 6.400 \ 2149.5 + 400.3 442.4 + 9.651 \ 333.4 £ 32.16

Table 1. Comparative evaluation of COMs against prior methods in terms of the mean 100th-percentile score and its standard deviation
over 16 trials. Tasks include Superconductor-v0, HopperController-v0, AntMorphology-v0, and DkittyMorphology-v0, which is the set
of continuous tasks provided by (Trabucco et al., 2021). COMs perform strictly better on high-dimensional tasks, obtaining about 2x
gains on HopperController-v0, and compelling gains on Superconductor-v0 and AntMorphology-v0 tasks. In addition, COMs is the only
method that is able to consistently find solutions that outperform the best training point for each task, given by D (best). For each task,
algorithms within one standard deviation of having the highest performance are bolded.

HopperController-v0

Superconductor-v0

30007+ 12045+

2000 100 1+ sheeiason s bifbuiionnsdin S s

10007+ eeaes

-3

Average return

0 100 200 300 400
Gradient ascent steps

Critical temperature

-

0 100 200 300 400
Gradient ascent steps

= Naive Objective Model === COMs (ours)

Figure 3. Stability of COMs versus naive gradient ascent. The
x-axis shows the number of gradient ascent steps taken on the
design x*, and the y-axis shows the 100th percentile of the ground
truth task objective function evaluated at every gradient step, which
is used only for analysis only and is unavailable to the algorithm.
In both cases, COMs reach solutions that remain at higher perfor-
mance stably, indicating that COMs are less sensitive to varying
numbers of gradient ascent steps performed during optimization.

2019), REINFORCE (Williams, 1992a), CMA-ES (Hansen,
2006) and autofocused CbAS (Fannjiang & Listgarten,
2020), that augments CbAS with a re-weighted objective
model, and BO-gEI, Bayesian Optimization with the quasi-
expected improvement acquisition function (Wilson et al.,
2017). CbAS and MINs train generative models such as
VAE:s (Kingma & Welling, 2013) and GANs (Goodfellow
et al., 2014a), which generally require task-specific neural
net architectures, as compared to the substantially simpler
discriminative models used for COMs. In fact, we use the
same architecture for COMs in all experiments and for all
tasks. We also compare to a naive gradient ascent baseline
that simply learns a non-conservative model of the objective
and optimizes against it via gradient ascent.

Our evaluation protocol follows prior work (Brookes et al.,
2019; Trabucco et al., 2021): we query each method to ob-
tain the top N = 128 most promising optimized samples
X7, -+, X} according to the model, and then report the
100 percentile ground truth objective values on this set of

samples, max(x7, - -+ ,x%), as well as the 50" percentile
objective value, averaged over 16 trials. We would argue
that such an evaluation scheme is reasonable as it is typi-
cally followed in real-world MBO problems, where a set of
optimized inputs are produced by the model, and the best
performing one of them is finally used for deployment.

Our results for different domains are shown in Table 1:
(A) Superconductor-vO (Fannjiang & Listgarten, 2020),
where the goal is to optimize over 81-dimensional supercon-
ductor designs to maximize the critical temperature using
16953 points, (B) HopperController-v0O (Kumar & Levine,
2019), where the goal is to optimize over 5126-dimensional
weights of a neural network policy on the Hopper-v2 gym
domain using a dataset of 3200 points, and (C) Ant and (D)
DKittyMorphology-v0, where the goal is to design the 60
and 56-dimensional morphology, respectively, of robots to
maximize policy performance using datasets of size 12300
and 9546, respectively. Results for baseline methods are
based on numbers reported by Trabucco et al. (2021). Ad-
ditional details for the setup of these tasks is provided in
Appendix Section D. On three out of four tasks, COMs
attain the best results, in some cases (e.g. (B) HopperCon-
troller) attaining the performance of over twice the best prior
method. In addition, COMs are shown to be the only method
to attain higher performance that the best training point on
every task. While COMs performs within a standard devia-
tion margin of CbAS and MINs on DKittyMorphology-vO0, it
substantially outperforms prior methods on Superconductor-
v0 and the high-dimensional HopperController-v0 tasks, by
a factor of 1.3-2x. A naive objective model without the con-
servative term, which is prone to falling off-the-manifold of
valid inputs, struggles in especially high-dimensional tasks.
These results indicate that COMs can serve as simple yet
powerful method for offline MBO across a variety of do-
mains. Furthermore, note that COMs only require training

Conservative Objective Models for Offline MBO

HopperController-v0

Superconductor-v0

: : 12045
3000 d

200014+ - TS 100 4+ 3eeeee il 8

1000742

SAre ey
T ey

Average return
®

0 100 200 300 100
Gradient ascent steps

0 100 200 300 100
Gradient ascent steps

Critical temperature

— =09

— =10

Figure 4. Ablation of stability and universality of 5. In each of
the two plots, we instantiate COMs on the HopperController-v0
and Superconductor-v0 tasks, and vary /3 that controls the strength
of the trust-region (Equation 4). The x-axis denotes the number
of gradient ascent steps taken on the design x™ with respect to fg,
and the y-axis indicates the 100th percentile of the ground truth
function x, which remains unobserved by the COMs algorithm,
and only serves as an ablative visualization. The results demon-
strate that increasing /3 results in improved stability of COMs, and
universally, f = 0.9 results in consistent high performance.

a parametric model y = fy(x) of the objective function
with a regularizer, without any need for training a generative
model, which may be harder in practice to tune.

6.2. Ablation Studies

In this section, we perform an ablative experimental analy-
sis of COMs to answer questions posed at the beginning of
Section 6. First, we evaluate the efficacy of using conserva-
tive training for learning a model of the objective function
by comparing COMs to a naive gradient ascent baseline
and show that COMs are more stable, i.e., the optimization
performance of COMs is much less sensitive to the number
of gradient ascent steps used for optimization. Second, we
evaluate the effect of the value of 3 (Equation 4) that con-
trols the strength of the trust-region constraint and show that
a single /3 is uniformly optimal on a wide-variety of MBO
tasks over input spaces with very distinct properties. Finally,
we demonstrate the consistency of COMs by evaluating the
sensitivity of the optimization performance with respect to
the number of samples NV, that are used to compute the
evaluation metric max(xj, - , X%).

COMs are more stable than naive gradient ascent. In
order to better compare COMs and a naive objective model
optimized using gradient ascent, we visualize the true ob-
jective value for each x; encountered during optimization
(¢ in Line 2, Algorithm 2) in Figure 3. Observe that a naive
objective model can attain good performance for a “hand-
tuned” number of gradient ascent steps, but it soon degrades
in performance with more steps. This indicates that COMs
are much more stable to the choice of number of gradient
ascent steps performed than a naive objective model.

Trust-region gradient-ascent (Equation 4) improves sta-
bility and COMs are robust to 5. Next we evaluate the

HopperController-v0

Superconductor-v0

IV E IE] [T SOTTPTU SURTUPR ORI S P

Average return

50 7 100 125

25
Evaluation budget

0 25 50 K 100 125

Evaluation budget

= Naive Objective Model =~ === COMs (ours)

Figure 5. Ablation of consistency of COMs by visualizing sen-
sitivity to the post-optimization evaluation budget. How does
the performance of COMs and naive gradient ascent vary as the
evaluation budget is reduced? In our standard evaluation, we allow
each offline MBO algorithm a “budget” of 128 evaluations for
determining 100th and 50th percentile performance. The x-axis
indicates the number IV of allowed evaluations, and the y-axis
indicates the 100th percentile performance of the chosen /N points.
As this evaluation budget is reduced, COMs is resilient, and re-
mains superior to the naive objective trained via supervised regres-
sion and optimized via standard gradient ascent. In the case of
HopperController-v0, COMs is nearly invariant to budgets down to
size 55. This indicates that COMs consistently produce optimized
inputs x* that attain high values under the true function.

stability of COMs to the various values of the hyperpa-
rameter /3 that appears in the trust-region gradient-ascent
optimization (Equation 4). Note that this 8 was chosen uni-
versally across tasks. In Figure 4, we evaluate the sensitivity
of the performance of COMs with respect to 8 on two tasks:
HopperController-v0, and Superconductor-v0. Note that in
both cases, COMs becomes increasingly stable and perfor-
mance improves as 3 approaches an upper limit of 1, and
appears optimal in both tasks for 8 = 0.9. While COMs do
not completely eliminate this hyperparameter, our empirical
results in Table 1 across a wide-array of input types (both
the weights of a neural network in HopperController and
the morphology of a robot in AntMorphology; 60 dimen-
sions vs 5126 dimensional input spaces; etc.) with 3 = 0.9
suggest this value is universal and can be fixed to a constant.

COMs consistently produce well-performing inputs. Fi-
nally, we evaluate the sensitivity of COMs to the evaluation
procedure itself. Standard evaluation practice in offline
MBO dictates evaluating a batch of N most promising can-
didate inputs produced by the algorithm with the ground
truth objective, where N remains constant across all algo-
rithms (Trabucco et al., 2021; Brookes et al., 2019), and
using the maximum value attained over these inputs as the
performance of the algorithm, i.e., max(x},--- ,x}). This
measures if the algorithm performs well within a provided
“evaluation budget” of NV evaluations. An algorithm is more
consistent if it attains higher values of the groundtruth func-
tion with a smaller value of the evaluation budget, N. We
used N = 128 for evaluating all methods in Table 1, but the
value of NV is technically a hyperparameter and an effective

Conservative Objective Models for Offline MBO

offline MBO method should be resilient to this value, ide-
ally. COMs are resilient to N: as we vary N from 1 to 128
in Figure 5, COMs not only perform well at larger values
of N, but are also effective with smaller budgets, reaching
near-optimal performance on HopperController-v0 in with a
budget of 55, while a naive objective model needs a budget
twice as large to reach its own optimal performance, which
is lower than that of COMs.

7. Discussion and Conclusion

We proposed conservative objective models (COM), a sim-
ple method for offline model-based optimization, that learns
a conservative estimate of the actual objective function and
optimizes the input against this estimate. Empirically, we
find that COMs give rise to good offline optimization per-
formance and are considerably more stable than prior MBO
methods, returning solutions that are comparable to and
even better than the best existing MBO algorithms on four
benchmark tasks. In this evaluation, COMs are consistently
high performing, and in the most high-dimensional cases,
COMs improves on the next best method by a factor of
1.3-2x. The simplicity of COMs combined with their empir-
ical strength make them a promising optimization backbone
to find solutions to challenging and high-dimensional of-
fline MBO problems. In contrast to certain prior methods,
COMs are designed to mitigate overestimation of out-of-
distribution inputs close to the input manifold, and show
improved stability once good solutions are found.

While our results suggest that COMs are effective on a num-
ber of MBO problems, there exists room for improvement.
The somewhat naive gradient-ascent optimization procedure
employed by COMs can likely be improved by combining
it with manifold modelling techniques, which can acceler-
ate optimization by alleviating the need to traverse the raw
input space. Similar to offline RL and supervised learning,
learned objective models in MBO are prone to overfitting,
especially in limited data settings. Understanding different
mechanisms by which overfitting can happen and correcting
for it is likely to greatly amplify the applicability of COMs
to a large set of practical MBO problems that only come
with small datasets. Understanding why and how samples
found by gradient ascent become off-manifold could result
in a more powerful gradient-ascent optimization procedure
that does not require a model-selection scheme.

Acknowledgements

We thank anonymous reviewers and all other members from
RAIL at UC Berkeley for their suggestions, feedback and
support. This work was supported by National Science
Foundation and the DARPA Assured Autonomy Program,
and compute support from Google and Intel.

References

Angermueller, C., Belanger, D., Gane, A., Mariet, Z.,
Dohan, D., Murphy, K., Colwell, L., and Sculley, D.
Population-based black-box optimization for biologi-
cal sequence design. arXiv preprint arXiv:2006.03227,
2020a.

Angermueller, C., Dohan, D., Belanger, D., Deshpande,
R., Murphy, K., and Colwell, L. Model-based rein-
forcement learning for biological sequence design. In
International Conference on Learning Representations,
2020b. URL https://openreview.net/forum?
id=HklxbgBKvr.

Berkenkamp, F., Schoellig, A. P., and Krause, A. Safe
controller optimization for quadrotors with gaussian pro-
cesses. In 2016 IEEE International Conference on
Robotics and Automation (ICRA), pp. 491-496. IEEE,
2016.

Brookes, D., Park, H., and Listgarten, J. Conditioning by
adaptive sampling for robust design. In Proceedings of
the 36th International Conference on Machine Learning.
PMLR, 2019. URL http://proceedings.mlr.
press/v97/brookesl9a.html.

Fannjiang, C. and Listgarten, J. Autofocused oracles for
model-based design. arXiv preprint arXiv:2006.08052,
2020.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning, 2020.

Garnelo, M., Rosenbaum, D., Maddison, C., Ramalho, T.,
Saxton, D., Shanahan, M., Teh, Y. W., Rezende, D., and
Eslami, S. M. A. Conditional neural processes. In Pro-

ceedings of the 35th International Conference on Ma-
chine Learning. PMLR, 2018a.

Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F.,
Rezende, D. J., Eslami, S. M. A., and Teh, Y. W. Neu-
ral processes. CoRR, abs/1807.01622, 2018b. URL
http://arxiv.org/abs/1807.01622.

Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies,
M., Hersey, A., Light, Y., McGlinchey, S., Michalovich,
D., Al-Lazikani, B., et al. Chembl: a large-scale bioactiv-
ity database for drug discovery. Nucleic acids research,
40(D1):D1100-D1107, 2012.

Gomez-Bombarelli, R., Duvenaud, D., Hernandez-Lobato,
J. M., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams,
R. P, and Aspuru-Guzik, A. Automatic chemical de-
sign using a data-driven continuous representation of
molecules. In ACS central science, 2018.

https://openreview.net/forum?id=HklxbgBKvr
https://openreview.net/forum?id=HklxbgBKvr
http://proceedings.mlr.press/v97/brookes19a.html
http://proceedings.mlr.press/v97/brookes19a.html
http://arxiv.org/abs/1807.01622

Conservative Objective Models for Offline MBO

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial nets. NIPS’14, 2014a.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014b.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. In ICML, 2018.

Hamidieh, K. A data-driven statistical model for
predicting the critical temperature of a super-
conductor. Computational Materials Science,

154:346 — 354, 2018. ISSN 0927-0256. doi:
https://doi.org/10.1016/j.commatsci.2018.07.052. URL
http://www.sciencedirect.com/science/
article/pii/S0927025618304877.

Hansen, N. The CMA evolution strategy: A compar-
ing review. In Lozano, J. A., Larrafiaga, P., Inza, L.,
and Bengoetxea, E. (eds.), Towards a New Evolution-
ary Computation - Advances in the Estimation of Dis-
tribution Algorithms, volume 192 of Studies in Fuzzi-
ness and Soft Computing, pp. 75-102. Springer, 2006.
doi: 10.1007/3-540-32494-1\ 4. URL https://doi.
0rg/10.1007/3-540-32494-1_4.

Hill, A., Raffin, A., Ernestus, M., Gleave, A., Kanervisto, A.,
Traore, R., Dhariwal, P., Hesse, C., Klimov, O., Nichol,
A., Plappert, M., Radford, A., Schulman, J., Sidor, S.,
and Wu, Y. Stable baselines. https://github.com/
hill-a/stable-baselines, 2018.

Hoburg, W. and Abbeel, P. Geometric programming for
aircraft design optimization. volume 52, 04 2012. ISBN
978-1-60086-937-2. doi: 10.2514/6.2012-1680.

Jacot, A., Gabriel, F.,, and Hongler, C. Neural tangent kernel:
Convergence and generalization in neural networks. arXiv
preprint arXiv:1806.07572, 2018.

Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami,
A., Rosenbaum, D., Vinyals, O., and Teh, Y. W. At-
tentive neural processes. In International Conference
on Learning Representations, 2019. URL https://
openreview.net/forum?id=SkE6P JCIKX.

Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. In Bengio, Y. and LeCun, Y. (eds.),
3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes, 2013. URL http://arxiv.org/abs/1312.
6114. cite arxiv:1312.6114.

Kumar, A. and Levine, S. Model inversion net-
works for model-based optimization. arXiv preprint
arXiv:1912.13464, 2019.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Conserva-
tive g-learning for offline reinforcement learning. arXiv
preprint arXiv:2006.04779, 2020.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643, 2020.

Liao, T., Wang, G., Yang, B., Lee, R., Pister, K., Levine, S.,
and Calandra, R. Data-efficient learning of morphology
and controller for a microrobot. In 2019 IEEE Interna-
tional Conference on Robotics and Automation, 2019.
URL https://arxiv.org/abs/1905.01334.

Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J., Songhori,
E., Wang, S., Lee, Y.-J., Johnson, E., Pathak, O., Bae, S.,
et al. Chip placement with deep reinforcement learning.
arXiv preprint arXiv:2004.10746, 2020.

Peters, J. and Schaal, S. Reinforcement learning by reward-
weighted regression for operational space control. In
Proceedings of the 24th International Conference on Ma-
chine Learning, ICML °07, 2007.

Rubinstein, R. Y. Optimization of computer simulation
models with rare events. European Journal of Operations
Research, 99:89-112, 1996.

Rubinstein, R. Y. and Kroese, D. P. The Cross Entropy
Method: A Unified Approach To Combinatorial Optimiza-
tion, Monte-carlo Simulation (Information Science and
Statistics). Springer-Verlag, Berlin, Heidelberg, 2004.
ISBN 038721240X.

Santurkar, S., Ilyas, A., Tsipras, D., Engstrom, L., Tran,
B., and Madry, A. Image synthesis with a single (robust)
classifier. In Wallach, H. M., Larochelle, H., Beygelzimer,
A., d’Alché-Buc, F., Fox, E. B., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, 8-14 December 2019, Van-
couver, BC, Canada, pp. 1260-1271, 2019.

Sarkisyan, K. S., Bolotin, D. A., Meer, M. V., Usmanova,
D. R., Mishin, A. S., Sharonov, G. V., Ivankov, D. N.,
Bozhanova, N. G., Baranov, M. S., Soylemez, O., Bo-
gatyreva, N. S., Vlasov, P. K., Egorov, E. S., Logacheva,
M. D., Kondrashov, A. S., Chudakov, D. M., Putint-
seva, E. V., Mamedov, 1. Z., Tawfik, D. S., Lukyanov,
K. A., and Kondrashov, F. A. Local fitness land-
scape of the green fluorescent protein. Nature, 533
(7603):397-401, May 2016. ISSN 1476-4687. doi:
10.1038/nature17995. URL https://doi.org/10.
1038/naturel7995.

http://www.sciencedirect.com/science/article/pii/S0927025618304877
http://www.sciencedirect.com/science/article/pii/S0927025618304877
https://doi.org/10.1007/3-540-32494-1_4
https://doi.org/10.1007/3-540-32494-1_4
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://openreview.net/forum?id=SkE6PjC9KX
https://openreview.net/forum?id=SkE6PjC9KX
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1905.01334
https://doi.org/10.1038/nature17995
https://doi.org/10.1038/nature17995

Conservative Objective Models for Offline MBO

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
CoRR, abs/1707.06347, 2017. URL http://arxiv.
org/abs/1707.06347.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and
de Freitas, N. Taking the human out of the loop: A review
of bayesian optimization. Proceedings of the IEEE, 104:
148-175, 2016.

Snoek, J., Larochelle, H., and Adams, R. P. Practical
bayesian optimization of machine learning algorithms.
In Proceedings of the 25th International Conference
on Neural Information Processing Systems - Volume
2, NIPS’12, 2012. URL http://dl.acm.org/
citation.cfm?id=2999325.2999464.

Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N.,
Sundaram, N., Patwary, M., Prabhat, M., and Adams,
R. Scalable bayesian optimization using deep neural
networks. In Proceedings of the 32nd International Con-
ference on Machine Learning. PMLR, 2015.

Thomas, P., Theocharous, G., and Ghavamzadeh, M. High-
confidence off-policy evaluation. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 29,
2015.

Trabucco, B., Geng, X., Kumar, A., and Levine, S. Design-
bench: Benchmarks for data-driven offline model-based
optimization, 2021. URL https://github.com/
brandontrabucco/design-bench.

Tramer, F., Kurakin, A., Papernot, N., Goodfellow, I. J.,
Boneh, D., and McDaniel, P. D. Ensemble adversarial
training: Attacks and defenses. In 6th International Con-
ference on Learning Representations, ICLR 2018, Van-
couver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net, 2018. URL https:
//openreview.net/forum?id=rkzZvSe—-RZ.

Williams, R. J. Simple statistical gradient-following
algorithms for connectionist reinforcement learning.
Mach. Learn., 8:229-256, 1992a. doi: 10.1007/
BF00992696. URL https://doi.org/10.1007/
BF00992696.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
Learning, 8(3-4):229-256, May 1992b.

Wilson, J. T., Moriconi, R., Hutter, F., and Deisenroth, M. P.
The reparameterization trick for acquisition functions.
CoRR, abs/1712.00424, 2017. URL http://arxiv.
org/abs/1712.00424.

Zoph, B. and Le, Q. V. Neural architecture search with
reinforcement learning. 2017. URL https://arxiv.
org/abs/1611.01578.

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://dl.acm.org/citation.cfm?id=2999325.2999464
http://dl.acm.org/citation.cfm?id=2999325.2999464
https://github.com/brandontrabucco/design-bench
https://github.com/brandontrabucco/design-bench
https://openreview.net/forum?id=rkZvSe-RZ
https://openreview.net/forum?id=rkZvSe-RZ
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
http://arxiv.org/abs/1712.00424
http://arxiv.org/abs/1712.00424
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.01578

