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Abstract

The best performing Binary Neural Networks
(BNNGs) are usually attained using Adam optimiza-
tion and its multi-step training variants (Rastegari
et al., 2016; Liu et al., 2020). However, to the
best of our knowledge, few studies explore the
fundamental reasons why Adam is superior to
other optimizers like SGD for BNN optimization
or provide analytical explanations that support
specific training strategies. To address this, in
this paper we first investigate the trajectories of
gradients and weights in BNNs during the train-
ing process. We show the regularization effect
of second-order momentum in Adam is crucial
to revitalize the weights that are dead due to
the activation saturation in BNNs. We find that
Adam, through its adaptive learning rate strat-
egy, is better equipped to handle the rugged loss
surface of BNNs and reaches a better optimum
with higher generalization ability. Furthermore,
we inspect the intriguing role of the real-valued
weights in binary networks, and reveal the ef-
fect of weight decay on the stability and slug-
gishness of BNN optimization. Through exten-
sive experiments and analysis, we derive a simple
training scheme, building on existing Adam-based
optimization, which achieves 70.5% top-1 accu-
racy on the ImageNet dataset using the same ar-
chitecture as the state-of-the-art ReActNet (Liu
et al., 2020) while achieving 1.1% higher accu-
racy. Code and models are available at https:
//github.com/liuzechun/AdamBNN.

1. Introduction

Binary Neural Networks (BNNs) have gained increasing
attention in recent years due to the high compression ra-
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(a) real networks

(b) binary networks
Figure 1. The actual optimization landscape from real-valued and

binary networks with the same architecture (ResNet-18). We
follow the method in (Li et al., 2018) to plot the landscape.

tio (Rastegari et al., 2016) and the potential of being accel-
erated with logic computation on hardware (Zhang et al.,
2019). Their applications range from supervised learning,
e.g., classification (Courbariaux et al., 2016), segmenta-
tion (Zhuang et al., 2019), pose estimation (Bulat et al.,
2019) to the self-supervised learning (Shen et al., 2021).

Despite the high compression ratio of BNNs, the discrete na-
ture of the binary weights and activations poses a challenge
for its optimization. It is widely known that conventional
deep neural networks rely heavily on the ability to find good
optima in a highly non-convex optimizing space. Different
from real-valued neural networks, binary neural networks
restrict the weights and activations to discrete values (-1,
+1), which naturally, will limit the representational capacity
of the model and further result in disparate optimization
landscapes compared to real-valued ones. As illustrated
in Figure 1, BNNs are more chaotic and difficult for op-
timization with numerous local minima compared to real-
valued networks. These properties differentiate BNNs from
real-valued networks and impact the optimal optimizer and
training strategy design.

Since Courbariaux et al. (Courbariaux et al., 2016) adopted
Adam as the optimizer for BNNs, multiple researchers in-
dependently observed that better performance could be at-
tained by Adam optimization for BNNs (Bethge et al., 2020;
Liu et al., 2020; Brais Martinez, 2020). However, few of
these works have analyzed the reasons behind Adam’s su-
perior performance over other methods, especially the com-
monly used stochastic gradient descent (SGD) (Robbins &
Monro, 1951) with first momentum.
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Figure 2. The top-1 accuracy curves of the real-valued and bi-
nary network (ResNet-18 based) trained on ImageNet. On the
real-valued network, SGD achieves higher accuracy with better
generalization ability in the final few iterations. Binarization has a
strong regulating effect, resulting in the validation accuracy being
higher than the training accuracy. Adam outperforms SGD under
this circumstance.

Recent theoretical work from Wilson et al. (Wilson et al.,
2017) empirically shows that adaptive learning rate meth-
ods like Adam reach fewer optimal minima than SGD with
momentum, meaning that minima found by SGD generalize
better than those found by Adam. This matches experi-
ence with real-valued neural networks where state-of-the-
art results for many tasks in Computer Vision (Tan & Le,
2019) and Machine Translation (Wu et al., 2016) are still
obtained by plain SGD with momentum. It seems counter-
intuitive considering that Adam comes with better conver-
gence guarantee and should deliver better performance over
SGD. We observe the real-valued networks are fairly pow-
erful to “overfit” on the training data as shown in Figure 2
(a), but as we will demonstrate later, this may be not true
for BNNs. We observe that BNNs are usually under-fitting
on the training set due to the limited model capacity (the
performance on validation is higher than that on training
set), even if we train BNNs thoroughly with a longer budget.
From Figure 2 (b), it is evident that the validation accuracy
of SGD on binary networks fluctuates more compared to
Adam, which indicates that on binary training, SGD easily
gets stuck in the rugged surface of the discrete weight opti-
mization space and fails to find generalizable local optima.

Based on these observations, in this paper, we investigate the
fundamental reasons why Adam is more effective for BNNs
than SGD. During BNN training, a proportion of gradients
tends to be zero due to the activation saturation effect. If us-
ing SGD as the optimizer, the updating step of the individual
weight aligns with the corresponding gradient in the mag-
nitude, making it hard to flip those “dead” weights out of a
bad initialization or local minima. Intuitively, revitalizing
the “dead” weights with appropriate gradients can signif-
icantly improve the accuracy of BNNs, which is further
supported by our visualization results and the final accuracy.
According to our experiments, the normalization effect from
the second momentum of Adam rescales the updating value
element-wisely based on the historical gradients, effectively
resolving the “dead” weights issue.

Besides comparing Adam to SGD, we further explore how
training strategies affect BNN optimization. Previous works
proposed different training strategies: Yang et al. (Yang
et al., 2019) proposed to progressively quantize the weights
from 16 bits to 1 bit. Zhuang et al. (Zhuang et al., 2018)
proposed binarizing weights first and binarizing activations
in the second step. More recently Martinez et al. (Brais Mar-
tinez, 2020) proposed a two-step strategy to binarize activa-
tions first and then binarize weights. These works involve
complex training strategy designs but seldom explain the
reason behind those designs. Instead of proposing a new
training strategy, in the second part of our work, we explain
the mechanisms behind BNN training strategies, from an
important but overlooked angle — weight decay. We quan-
tify the effects of weight decay on the BNN optimization’s
stability and initialization dependency with two metrics, FF
ratio and C2I ratio, respectively. Guided by these metrics,
we identify a better weight decay scheme that promotes
the accuracy of the state-of-the-art ReActNet from 69.4%
to 70.5%, surpassing all previously published studies on
BNNes.

Unlike previous studies that focus on designing network
architectures for BNNs, we focus on the investigation of
optimizers and training strategy, which we think is valuable
for maximizing the potential in a given structure for better
performance. All of our experiments are conducted on the
full ImageNet!, which is more reliable. We believe our
exploratory experiments will be beneficial for the research
on BNNs optimization and may inspire more interesting
ideas along this direction.

Contributions. In summary, we address the following is-
sues and our contributions are as follows:

e We provide thorough and fair comparisons among differ-
ent optimizers for BNN optimization, especially between
Adam and SGD, on the large-scale ImageNet dataset. We
further design several metrics to analyze the patterns be-
neath the binary behavior and present a simple visualization
method based on the alteration of gradients and weights
inside training.

e We explain the difficulties that arise from a non-adaptive
learning rate strategy by visualizing these trajectories and
show that optimization lies in extremely rugged surface
space. We conclude that gradient normalization is crucial
for BNN optimization.

o We further examine the existing practice in BNN optimiza-
tion strategy design and provide in-depth analysis on the
weight decay effect. Based on these analyses, we propose
practical suggestions for optimizing BNNs. These tech-
niques help us to train a model with 1.1% higher accuracy
than the previous state-of-the-art results.

!Several previous works conduct experiments on small datasets
like MNIST and CIFAR-10/100, and sometimes draw conclusions
that are inconsistent with experiments on large-scale/real-world.
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2. Related Work

Research on binary neural network optimization can be
mainly divided into several aspects:

Structure Adjustment Previous attempts to improve BNNs
are mainly paid on network structure design, including
adding real-valued shortcuts (Liu et al., 2018b;a; 2020),
or real-valued attention blocks (Brais Martinez, 2020), ex-
panding the channel width (Mishra et al., 2017; Zhuang
et al., 2019), ensemble more binary networks (Zhu et al.,
2019) or use a circulant convolution (Liu et al., 2019). These
works provide advanced structures that bring breakthroughs
in accuracy. In this work, we are motivated to disambiguate
the binary optimization process, which is orthogonal to the
structural design.

Gradient Error Reduction and Loss function Design
Some studies pay attention to reduce the gradient error of
the BNNs, for example, XNOR-Net (Rastegari et al., 2016)
uses a real-valued scaling factor multiplying with the binary
weights and activations, and ABC-Net (Lin et al., 2017)
adopts more weight bases. IR-Net (Qin et al., 2020) pro-
pose Libra-PB to simultaneously minimize both quantiza-
tion error and information loss. A few works adjust the loss
functions. Hou et al. proposed loss-aware binarization (Hou
et al., 2016) using the proximal Newton algorithm with the
diagonal Hessian approximation to directly minimize the
loss w.r.t. binary weights. Ding et al. proposed activation
regularization loss to improve BNN training (Ding et al.,
2019). These studies also aim to resolve the discreteness-
brought optimization challenge in binary neural networks.
Instead, we scrutinize another important yet less investigated
angle, the optimizer and optimization strategy reasoning.
Optimizer Choice and Design Recently, many binary neu-
ral network choose Adam over SGD, including BNN (Cour-
bariaux et al., 2016), XNOR-Net (Rastegari et al., 2016),
Real-to-Binary Network (Brais Martinez, 2020), Structured
BNN (Zhuang et al., 2019), ReActNet (Liu et al., 2020),
etc. Helwegen et al. proposed a new binary optimizer de-
sign based on Adam (Helwegen et al., 2019). Empirical
studies of binary neural network optimization (Alizadeh
et al., 2018; Tang et al., 2017) also explicitly mention that
Adam is superior to SGD and other optimization methods.
However, the reason why Adam is suitable for binary net-
work optimization is still poorly understood. In this study,
we investigate the behavior of Adam, attempting to bring
attention to the binary optimizer understanding and improv-
ing the binary network performance within a given network
structure, which we hope is valuable for the community.
Training Strategy Multiple works proposed different multi-
step training strategies to enhance the performance of BNNS.
Zhuang et al. (Zhuang et al., 2018) proposed to first quan-
tize the weights then quantize both weights and activations.
Following (Zhuang et al., 2018), Yang et al. (Yang et al.,
2019) proposed to progressively quantize weights and ac-

tivations from higher bit-width to lower bit-width. Recent
studies (Brais Martinez, 2020; Liu et al., 2020) proposed
to binarize activation first, then in the second stage, further
binarize the weights. Those previous work each proposed
their own training techniques, but seldom generalized tech-
niques into the reasons behind, which also brings confusion
to followers in determining which technique they can use
in their circumstance. In this work, we analyze the founda-
tions of choosing optimization strategies beyond providing
a possible solution, in hope of inspiring more interesting
solutions in this area.

3. Methodology

This section begins by introducing several observations from
real-valued networks and binary neural networks (BNNs)
training. We observe the generalization ability of Adam
is better than SGD on BNNs, as shown in Figure 2. This
phenomenon motivates us to ask why SGD works better
for a real-valued classification network, but loses its superi-
ority in binary neural network optimization. Start by this,
we visualize the activation saturation phenomenon during
optimizing an actual binary neural network and deliberate
its effects on gradient magnitude in Section 3.2.1. Then
we observe that activation saturation will cause the unfair
training problem on channel weights as described in Sec-
tion 3.2.2. Further, for clear explanation we construct an
imaginary two-dimensional loss landscape containing sign
functions to mimic a simplified optimization process of
BNNs with activation binarization in Section 3.2.3, and we
analysis how Adam can help conquer the zero-gradient lo-
cal minima. Moreover, we point out that the real-valued
weights in BNNs can be regarded as the confidence score,
as described in Section 3.2.4, making BNN optimization
intricate. Thus, we define several metrics in Section 3.3
to depict the property of BNNs and measure the goodness
of a BNN training strategy. Lastly, we provide practical
suggestions for optimizing BNNS.

3.1. Preliminaries

Binary neural network optimization is challenging because
weights and activations of BNNSs are discrete values in {-1,
+1}. In particular, in the forward pass, real-valued weights
and activations are binarized with the sign function.

) -1 if a, <0
ap = Sign(a,) = { +1 otherwise M
_Welln 500 <0
LIPS B '
- Sign(w,) = @)
+M otherwise

n

Note that, the real-valued activations a, are the outputs of
the previous layers, generated by the binary or real-valued
convolution operations. The real-valued weights w, are
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Figure 3. Activation distributions in binary ResNet-18 structure
from different optimizers on ImageNet. Dotted lines are the up (+1)
and low (-1) bounds. We plot the input activation to the first binary
convolution and we observe that both SGD and Adam optimized
BNNs experienced activation saturation. However, Adam can alle-
viate activation saturation during optimization compared to SGD,
as shown in the zoom-in views in (c) and (d). We further count the
number of activations that are over the bounds for SGD and Adam,
the percentages are 42.54% and 35.45% respectively after the first
epoch, 38.61% and 23.81% after the last epoch. The activation sat-
uration proportion from Adam optimization is significantly lower
than SGD. More details please refer to Section 3.2.1.

stored as latent weights to accumulate the small gradients.
Latent refers to that the weights are not used in the for-
ward pass computation. Instead, the sign of real-valued
latent weights multiplying the channel-wise absolute mean
(% [|W:]|i1) is used for updating binary weights (Rastegari
et al., 2016).

In the backward pass, due to the non-differentiable charac-
teristic of the sign function, the derivative of clip(—1, a,, 1)
function is always adopted as the approximation to the
derivative of the sign function (Rastegari et al., 2016). It is
noteworthy that, because the sign is a function with bounded
range, the approximation to the derivative of the sign func-
tion will encounter a zero (or vanishing) gradient problem
when the activation exceeds the effective gradient range
([-1, 1]), which leads to the optimization difficulties that
will be discussed in Section 3.2.1.

3.2. Observations
3.2.1. ACTIVATION SATURATION ON GRADIENTS

Activation saturation is the phenomenon that the absolute
value of activations exceeds one and the corresponding gra-
dients are suppressed to be zero, according to the definition
of approximation to the derivative of the sign function (Ding
et al., 2019). From our observation, activation saturation
exists in every layer of a binary network and it will critically

affect the magnitude of gradients in different channels. In
Figure 3, we visualize the activation distributions of the
first binary convolution layer. We can observe that many
activations exceed the bounds of -1 and +1, making the gra-
dient passing those nodes become zero-valued. According
to the Chain Rule (Ambrosio & Dal Maso, 1990), the gra-
dients are extremely vulnerable to the activation saturation
in latter layers and thus will vibrate tempestuously in their
corresponding magnitudes.

3.2.2. FAIRNESS IN WEIGHT TRAINING

Unfair training is the phenomenon that the weights in some
channels are not optimized to learn meaningful represen-
tations. Given different batches of images, the activation
saturation usually occurs on different activation channels.
In these channels, the gradient will always stay small in
our observation, which causes unfair training. Note that the
weights refer to the real-valued latent weights in the binary
neural network. The magnitude of these real-valued weights
are regarded as ‘inertial’ (Helwegen et al., 2019), indicating
how likely the corresponding binary weights are going to
change their signs.

To measure the effect of unfair training, we calculate the
Channel-wise Absolute Mean (CAM) to capture the average
magnitude of real-valued weights within a kernel, which is
represented as red hyphens in Figure 4 and Figure 5. The
definition of CAM is as follows:

1 Nin k k
CAM = o — DD lwpeanl @

c=1i=1 j=1

where IV;,, is the number of input channels, w is the weights
in BNNS, c is the channel index, ¢, 7 are the element position
in c-channel, and & is the kernel size. We can see that when
using SGD, the CAM of latent weights in a binary network
are small in their values (Figure 4 (b)) compared with their
real-valued counterparts (Figure 4 (a)) and is also higher
in variance, which reflects the unbalanced weight training
inside the SGD optimized binary network.

To measure the uniformness of the trained latent real-valued
weight magnitude, we propose the Standard Deviation of
the Absolute Mean (SDAM) of the real-valued weight mag-
nitude on each output channel. The statistics of SDAM for
SGD and Adam are shown in Figure 4. It is evident that the
SDAM of Adam is lower than that of SGD, revealing higher
fairness and stability in the Adam training than SGD.

3.2.3. WHY IS ADAM BETTER THAN SGD?

For better illustration, we plot a two-dimensional loss sur-
face of a network with two nodes where each node contains
a sign function binarizing its input. As shown in Figure 6
(a), the sign functions result in a discretized loss landscape
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Figure 4. The weight value distribution in the first binary convolutional layer after training one epoch. For clarity, we use red hyphens to
mark the Channel-wise Absolute Mean (CAM) of real-valued weights in each kernel. The grey dotted line denotes the minimum CAM
value (0.0306) of weights in the Adam optimized binary network. Compared to Adam, SGD optimization leads to much lower CAM
value, and higher Standard Deviation (SDAM), which indicates that the weights optimized with SGD are not as fair (well-trained) as those

with Adam. More detailed analysis can be found in Section 3.2.3.
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Figure 5. The update value distribution of weights in the first binary convolutional layer after trained with one epoch. For clarity, we omit
the original update value distribution and use red hyphens to mark the Channel-wise Absolute Mean (CAM) of the weights’ update values
in each kernel. In this layer, 34.3% of the kernels in SGD have a lower CAM than the minimum CAM in Adam. See also Section 3.2.3.

with zero gradients at almost all input intervals, making the
landscape infeasible to be optimized with gradient descent.

In literature, the derivative of clip(—1,a,, 1) function is
always adopted as the approximation to the derivative of the
sign function. Thus, the actual landscape where gradients
are computed is constructed with clip nodes. In Figure 6 (b),
the approximated gradients of binary activations retain their
values in both direction only when both inputs land in the
interval of [-1, 1], denoted as the slashed area in Figure 6 (b).
Outside this region, the gradient vector either has value in
only one direction or contains zero value in both directions,
which is the so-called flattened region.

During the actual BNN optimization, the activation value
depends on the input images and will vary from batch to
batch, which is likely to exceed [-1, 1]. This activation
saturation effect in turn results in the gradient vanishing
problem. For illustration, on this 2D-loss surface, we denote
the starting point of optimization in grey circles. Started
with the same sequence of gradients, the SGD optimizer
computes the update value with the first momentum by defi-
nition: vy = yv;_1 + g¢, where g; denotes the gradient and
v, denotes the first momentum for weight update. While the
update value in Adam is defined as: u; = ﬁ, vy and

my denote exponential moving averages of the gradient and
the squared gradient, respectively. At the flattened region,
with m, tracing the variance of gradients, the update value
u; 1s normalized to overcome the difference in the gradient
value. In contrast to SGD that only accumulates the first mo-
mentum, the adaptive optimizer, Adam, naturally leverages
the accumulation in the second momentum to amplify the
learning rate regarding the gradients with small historical
values. As shown in Figure 6 (c) and (d), Adam contains
higher proportion in update value of x direction compared
to SGD when the gradient in z direction vanishes. In our
experiments, we found this property crucial for optimizing
BNNs with more rugged surfaces and local flatten regions
due to binarization. Figure 5 also shows the update values
of each iteration with CAM form in training an actual BNN.
It confirms that with Adam training, the update values are
usually larger than a threshold but with SGD, the values
are very close to zero. As a result, “dead” weights from
saturation are easier to be re-activated by Adam than SGD.

3.2.4. PHYSICAL MEANING OF REAL-VALUED WEIGHT

The superiority of Adam for BNNs is also fortified in the
final accuracy. As shown in Figure 7 (a), Adam achieves
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Figure 6. The loss landscape visualization of a network constructed with the summation of two binary nodes. (a) the loss surface of the
binary network in the forward pass, binarization functions sign(z) discretized the landscape, (b) the loss surface for actual optimization
after using the derivative of clip(—1, z, 1) in approximating the derivative of sign(x), (c) the comparison between using SGD optimizer
and Adam optimizer in conquering the zero gradient local minima, (d) the top view of the actual optimization trajectory.

61.49% top-1 accuracy, comparing to 58.98% of SGD in
Figure 7 (b) with a consistent setting imposed on both ex-
periments in terms of hyper-parameters and network struc-
tures. Furthermore, we investigate the weight distribution
in Figure 7 of final models and obtain some interesting
discoveries. We find that the real-valued latent weights of
better-performing models usually emerge to three peaks,
one is around zero and the other two are beyond -1 and 1.
For those poorly optimized models with SGD, the distribu-
tions of real-valued weights only contain one peak center-
ing around zero. The physical significance of real-valued
weights indicates the degree of how easy or difficult the
corresponding binary weights can switch their signs (-1 or
+1) to the opposite direction. If the real-valued weights are
close to the central boundary (0), it will be simple for them
to fall or bias to -1 or +1 through a few steps of gradient
updating, making the whole network unstable. Thus, it is
not far-fetched that real-valued weights can be regarded as
the confidence of a binary value to be -1 or +1, as also being
mentioned in (Helwegen et al., 2019). From this perspective,
the weights learned by Adam are definitely more confident
than those learned by SGD, which consistently verifies the
conclusion that Adam is a better optimizer to use for binary
neural networks.

3.3. Metrics for Understanding BNN Optimization

Given the superiority of Adam over SGD, we take this find-
ing further and investigate the training strategy for BNNs.
Based on the intriguing fact that the BNN optimization re-
lies on real-value weights for gradient accumulation and
their signs for loss computation, BNN optimization is in-
tractable compared to real-valued networks. Thus for better
revealing the mechanism of the perplexing BNN training,
we propose two metrics to depict the training process and
further find that the weight decay added on the real-valued
latent weight plays a non-negligible role in controlling the
binary weights evolving.

3.3.1. WEIGHT DECAY IN BNN OPTIMIZATION

In a real-valued neural network, weight decay is usually
used to regularize the real-valued weights from growing too
large, which prevents over-fitting and helps to improve the
generalization ability (Krogh & Hertz, 1992).

However, for a binary neural network, the effect of weight
decay is less straightforward. As the absolute values of
weights in BNNs are restricted to -1 and +1, the weight
decay is no longer effective to prevent the binary weights
from being extremely large. Moreover, in a binary neural
network, the weight decay is applied to the real-valued la-
tent weights. Recall that in Section 3.2.4, the magnitude
of real-valued weights in BNNs can be viewed as the con-
fidence of corresponding binary weights to their current
values. Adding weight decay on these real-valued weights
is actually attempting to decay the confidence score.

From this perspective, the weight decay will lead to a
dilemma in binary network optimization between the stabil-
ity and the dependency of weight initialization. With high
weight decay, the magnitude of the latent weights is regular-
ized to be small, making the corresponding binary weights
“less confident” in their signs, and further prone to switch
their signs frequently, i.e., reducing the stability in optimiza-
tion. With smaller or even zero weight decay, the latent
weights tend to move towards -1 and +1, the corresponding
binary weights will be more stable to stay in the current
status. However, this is a trade-off since larger gradients
are required to promote the weights to switch their signs in
order to overcome the “dead” parameters issue. That is to
say, with small or zero weight decay, the performance of a
network will be influenced by initialization critically.

3.3.2. QUANTIFICATION METRICS

To quantify these two effects (network stability and initial-
ization dependency), we introduce two metrics: the flip-flop
(FF) ratio for measuring the optimization stability, and the
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Figure 7. The final weight distribution. We found that Adam has
more latent real-valued weights with larger absolute values com-
pared to SGD. Since the real-valued weights can be viewed as
the confidence score of the corresponding binary weights in their
current sign, Adam-optimized binary networks are more confident
in values than that of SGD, and the final accuracy is also higher.

correlation-to-initialization (C2I) ratio for measuring the
dependency on initialization. The FF ratio is defined as:

_ |Sign(w1) — Sign(wy)|abs

Irr 5 , 4
S Y wew, IFF
FFatio = == ~ EIW’ , (5)
total

where Igp is the indicator of whether a weight changes
its sign after the updating at iteration ¢t. Ny, is the total
number of weights in a network with L convolutional layers.
FF.ati0 denotes the ratio of flip-flops, i.e., percentage of
weights that change their signs.

Then we define C21 ratio as:

‘Sign(wﬁnal) _ZSign(winit) |abs’ (6)
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where I 2 is the indicator of whether a weight has different
sign to its initial sign and C21,,¢;, denotes the correlation
between the signs of final weights and the initial values.

Here we study the FF ratio and C2I ratio for different weight
decay values. From Table 1, it is easy to find that the FF ratio
is in negative correlation with C2I ratio. With the increase
of weight decay, the FF ratio increases exponentially while
the C2I ratio decreases linearly. This indicates that some
flip-flops do not contribute to the final weights, but just harm
the training stability.

Table 1. The FF ratio, C2I ratio and Top-1 accuracy by Adam
optimization with different weight decay. Note that the FF ratios
in this table are averaged over the total training iterations.

Weight decay FF ratio C2Iratio Topl-acc
le-5 2.33x1e-3 04810 61.73
One-ste 5e-6 1.62x1e-3 0.4960 61.89
p 0 2.86 xle-4 05243 61.49
-le-4 1.07 x1e-7 0.9740  26.21
Stepl: le-5 Step2: 0 4.89x1e-4 0.6315 62.63
Two-step
Stepl: 5e-6 Step2: 0 4.50x1e-4 0.6636  63.23

In this experiment, we found using the weight decay of 5e-6
produces the highest accuracy. Further, we discover that a
particular two-step training scheme (Brais Martinez, 2020;
Liu et al., 2020) can disentangle the negative correlation
between FF ratio and C2I ratio.

3.3.3. PRACTICAL TRAINING SUGGESTION

Intrinsically, the dilemma of whether adding weight decay
on real-valued latent weights originates from the fact that the
binary weights are discrete in value. For real-valued latent
weights around zero, a slight change in value could result
in a significant change in the corresponding binary weights,
thus making it fairly tricky to encourage real-valued latent
weights to gather around zero.

Interestingly, we found that a good weight decay scheme
for the recent two-step training algorithm (Brais Martinez,
2020; Liu et al., 2020) can disentangle this dilemma. In
Stepl, only activations are binarized and the real-valued
weights with weight decay are used to accumulate small
update values. Since real-valued networks have no worries
about the FF ratio, we can simply add weight decay to har-
vest the benefit of low initialization dependency. Then, in
Step2, we initialize latent real weights in the binary net-
works with weights from Step !, and enforce a weight decay
of 0 on them. With this operation, we can reduce the FF
ratio to improve stability and utilize the good initialization
from Stepl (similar to pre-training) rather than the random
parameters. In this stage, a high C2I ratio will not harm
the optimization. From this perspective, we found that Se-
6 as weight decay performs best for balancing the weight
magnitude for a good initialization in Step2.

As shown in Figure 7 (c), more real-valued weights in two-
step training tend to gather around -1 and +1, indicating that
this strategy is more confident than one-step. By simply
eliminating the undesirable weight decay value just by look-
ing at the FF ratio in the early epochs we can find a good
weight decay with fewer trials and errors. We will see in
Section 4 that our training strategy outperforms the state-of-
the-art ReActNet by 1.1% with identical architectures.
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Table 2. Comparison with state-of-the-art methods that binarize
both weights and activations.

Topl Top5
Acc % Acc %
BNNs (Courbariaux et al., 2016) 422 67.1
ABC-Net (Lin et al., 2017) 427 67.6
DoReFa-Net (Zhou et al., 2016) 43.6 -
XNOR-ResNet-18 (Rastegari et al., 2016) 51.2 69.3
Bi-RealNet-18 (Liu et al., 2018b) 56.4 79.5
CI-BCNN-18 (Wang et al., 2019) 59.9 84.2

Networks

MoBiNet (Phan et al., 2020a) 544 1775
BinarizeMobileNet (Phan et al., 2020b) 51.1 74.2
PCNN (Gu et al., 2019) 57.3 80.0

StrongBaseline (Brais Martinez, 2020)  60.9 83.0
Real-to-Binary Net (Brais Martinez, 2020) 65.4 86.2
MeliusNet29 (Bethge et al., 2020) 65.8 -
ReActNet ResNet-based (Liu et al., 2020) 65.5 86.1
ReActNet-A (Liu et al., 2020) 69.4 88.6
StrongBaseline + Our training strategy ~ 63.2  84.0
ReActNet-A + Our training strategy 70.5 89.1

Table 3. Comparison of computational cost between the state-of-
the-art methods and our method.

BOPs FLOPs OPs
x10° x10% x108
XNOR-ResNet-18 (Rastegari et al., 2016) 1.70 1.41 1.67
Bi-RealNet-18 (Liu et al., 2018b) 1.68 1.39 1.63
CI-BCNN-18 (Wang et al., 2019) - - 1.63
MeliusNet29 (Bethge et al., 2020) 547 1.29 2.14
StrongBaseline (Brais Martinez, 2020) 1.68 1.54 1.63
Real-to-Binary (Brais Martinez, 2020) 1.68 1.56 1.83
ReActNet-A (Liu et al., 2020) 4.82 0.12 0.87
StrongBaseline + Our training strategy 1.68 1.54 1.80
ReActNet-A + Our training strategy ~ 4.82 0.12 0.87

Networks

4. Experiments
4.1. Dataset and Implementation Details

All the analytical experiments are conducted on the Ima-
geNet 2012 classification dataset (Russakovsky et al., 2015).
We train the network for 600K iterations with batch size
set to 512. The initial learning rate is set to 0.1 for SGD
and 0.0025 for Adam, with linear learning rate decay. We
also adopt the same data augmentation in (Brais Martinez,
2020) and the same knowledge distillation scheme as (Liu
et al., 2020) for training ReActNet structures. For a fair com-
parison of optimization effects, we use the same network
structures as StrongBaseline in (Brais Martinez, 2020) for
all the illustrative experiments and compared our training
strategy on two state-of-the-art network structures including
StrongBaseline, and ReActNet (Liu et al., 2020).

4.2. Comparison with State-of-the-Arts

Our training strategies bring constant improvements to both
structures. As shown in Table 2. With the same network

Table 4. Comparison of different binarization orders in two-step
training on the StrongBaseline (Brais Martinez, 2020) structure.

Topl Acc TopS Acc

first binarize weight
then binarize activation (BWBA)
first binarize activation
then binarize weight (BABW)

60.17 82.05

63.23 84.02

Table 5. Comparison between Adam and other adaptive methods.

Adam RMS- Ada- Ada- AMS- Ada-

prop Grad Delta Grad Bound

Topl-acc 61.49 57.90 50.74 56.90 60.71 58.13
Top5-acc 83.09 79.93 74.62 79.47 82.44 80.58

architecture, we achieve 2.3% higher accuracy than the
StrongBaseline (Brais Martinez, 2020). When applying our
training strategy to the state-of-the-art ReActNet (Liu et al.,
2020), it further brings 1.1% enhancement and achieves
70.5% top-1 accuracy, surpassing all previous BNN models.

Our training strategy will not increase the OPs as we
use identical structures as the baselines: StrongBase-
line (Brais Martinez, 2020) and ReActNet (Liu et al., 2020).
Table 3 shows the computational costs of the networks
we utilized in experiments. StrongBaseline is a ResNet-
18 based binary neural network, and it has similar OPs
as Bi-RealNet-18 (Liu et al., 2018b) and Real-to-Binary
Network (Brais Martinez, 2020). ReActNet is a MobileNet-
based BNN, and it contains small overall OPs than other
binary networks.

4.3. Ablation Study

4.3.1. COMPARISON OF ADAM AND SGD UNDER
DIFFERENT LEARNING RATES

In Figure 8, we illustrate the Top-1 accuracy curves with dif-
ferent learning rates. To control variables, experiments are
done with one-step training strategy on the ImageNet dataset
with the StrongBaseline (Brais Martinez, 2020) structure. In
general, Adam can achieve higher accuracy across a variety
of learning rate values and is also more robust than SGD.
Besides, we observe that Adam enjoys small learning rates.
The reason is that Adam adopts the adaptive method to up-
date the gradients, which will amplify the actual learning
rate values during training, so it requires a smaller initial
learning rate to avoid update values being too large.

4.3.2. TWO-STEP TRAINING

To reassure the credibility of choosing the suggested two-
step training algorithm, we make a controlled comparison
between different training schemes. In Table 4, our sug-
gested order which first binarizes activations then weights
(BABW) obtained a 2.93% better accuracy over the reversed
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Figure 8. Accuracy vs. initial learning rate on Adam and SGD.

order (BWBA). In BWBA, binary weights are adopted in both
steps, which are confined to be discrete. So compared to
the real-valued weights in Stepl of BABW, it is harder for
binary weights in Step! of BWBA to be well optimized for
delivering a good initialization for Step2. Thus BWBA can
not achieve the effect of breaking the negative correlation
between FF ratio and C2I ratio.

4.3.3. COMPARISON WITH OTHER ADAPTIVE METHODS

In this experiment, the initial learning rates for different op-
timizers are set to the PyTorch (Paszke et al., 2019) default
values (0.001 for Adam, 0.01 for RMSprop, 0.01 for Ada-
Grad, 1.0 for AdaDelta, and 0.001 for AMSGrad). For Ad-
abound, we adopt the default learning rate schedule in (Luo
et al., 2019) by setting the initial learning rate to 0.001 and
transiting to 0.1. The weight decay is set to 0. For fair
comparison, these experiments are carried out with one-
step training on the ImageNet dataset with the StrongBase-
line (Brais Martinez, 2020) structure.

In Table 5, Adam (Kingma & Ba, 2014) achieves similar
accuracy with its variant AMSGrad (Reddi et al., 2019), and
better results than other adaptive methods. RMSprop (Tiele-
man & Hinton, 2012) and Adadelta (Zeiler, 2012) are adap-
tive methods without using the first momentum of the gra-
dients. In binary neural networks, since the gradients with
respect to the discrete weights are noisy, the first momentum
is also crucial for averaging out the noise and improve the
accuracy. AdaGrad (Duchi et al., 2011) is known that its
accumulation of the squared gradients in the denominator
will keep growing during training, causing the learning rate
to shrink and eventually become infinitesimally small, and
preventing the algorithm to acquire additional knowledge.
Thus the performance of AdaGrad is modest. As a variant
of Adam, AMSGrad uses “long-term memory” of the past
gradients to avoid extreme adaptive learning rate, which
achieves comparable accuracy as Adam on a binary clas-
sification network, while AdaBound (Luo et al., 2019) is
proposed to smoothly transit from Adam to SGD in order
to harvest the good generalization ability of SGD at the end
of training. However, in binary neural network optimiza-
tion, SGD does not show its superiority in improving the

generalization as in real-valued networks. But instead, in
BNNs optimization, transiting to SGD leads to unstable-
ness in training and failure in dealing with extremely small
gradients, which leads to a worse accuracy.

5. Conclusion and Future Work

Many state-of-the-art BNNs are optimized with Adam, but
the essential relations between BNNs and Adam are still not
well-understood. In this work, we made fair comparisons
between Adam and SGD for optimizing BNNs. We explain
how Adam helps to re-activate those “dead” weights for
better generalization. All our explanations are reflected in
the visualization results. Furthermore, we elucidate why
weight decay and initialization are critical for Adam to train
BNNSs and how to set their values. As we have shown, with
the appropriate scheme of two-step training, our method
achieved a competitive result of 70.5% on ImageNet. We
hope these findings and understandings can inspire more
studies in BNN optimization. Our future work will focus on
designing new optimizers specifically for binary networks.
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