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Abstract
Learning models that gracefully handle distribu-
tion shifts is central to research on domain gen-
eralization, robust optimization, and fairness. A
promising formulation is domain-invariant learn-
ing, which identifies the key issue of learning
which features are domain-specific versus domain-
invariant. An important assumption in this area
is that the training examples are partitioned into
“domains” or “environments”. Our focus is on
the more common setting where such partitions
are not provided. We propose EIIL, a general
framework for domain-invariant learning that in-
corporates Environment Inference to directly in-
fer partitions that are maximally informative for
downstream Invariant Learning. We show that
EIIL outperforms invariant learning methods on
the CMNIST benchmark without using environ-
ment labels, and significantly outperforms ERM
on worst-group performance in the Waterbirds
and CivilComments datasets. Finally, we estab-
lish connections between EIIL and algorithmic
fairness, which enables EIIL to improve accuracy
and calibration in a fair prediction problem.

1. Introduction
Machine learning achieves super-human performance on
many tasks when the test data is drawn from the same distri-
bution as the training data. However, when the two distribu-
tions differ, model performance can severely degrade, even
to below-chance predictions (Geirhos et al., 2020). Tiny
perturbations can derail classifiers, as shown by adversarial
examples (Szegedy et al., 2014) and common image corrup-
tions (Hendrycks & Dietterich, 2019). Even new test sets
collected from the same data acquisition pipeline induce dis-
tribution shifts that significantly harm performance (Recht
et al., 2019; Engstrom et al., 2020). Many approaches have
been proposed to overcome the brittleness of supervised
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(a) Inferred environment 1
(mostly) landbirds on land, and
waterbirds on water

(b) Inferred environment 2
(mostly) landbirds on water,
and waterbirds on land

Figure 1. In the Waterbirds dataset (Sagawa et al., 2020), the two
target labels (landbirds and waterbirds) are correlated with their
respective typical background habitats (land and water). This
spurious correlation causes sub-par performance on the smallest
subgroups (e.g. waterbirds on land). Environment Inference for
Invariant Learning (EIIL) organizes the training data into two
environments that are maximally informative for use by a down-
stream invariant learner, enabling the use of invariant learning in
situations where environment labels are not readily available. By
grouping examples where class and background disagree into the
same environment, EIIL encourages learning an invariance w.r.t.
background features, which improves worst-group test accuracy
by 18% relative to standard supervised learning.

learning—e.g. Empirical Risk Minimization (ERM)—in
the face of distribution shifts. Robust optimization aims to
achieve good performance on any distribution close to the
training distribution (Goodfellow et al., 2015; Duchi et al.,
2021; Madry et al., 2018). Invariant learning on the other
hand tries to go one step further, to generalize to distribu-
tions potentially far away from the training distribution.

However, common invariant learning methods typically
come at a serious disadvantage: they require datasets to
be partitioned into multiple domains or environments.1 En-
vironment assignments should implicitly define variation
the algorithm should become invariant or robust to, but of-
ten such environment labels are unavailable at training time,
either because they are difficult to obtain or due to privacy

1We use “domains”, “environments” and “groups”/“subgroups”
interchangeably.
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limitations. In some cases, relevant side-information or
metadata, e.g., human annotations, or device ID used to take
a medical image, hospital or department ID, etc., may be
abundant, but it remains unclear how best to specify envi-
ronments based on this information (Srivastava et al., 2020).
A similar issue arises in mitigating algorithmic unfairness,
where so-called sensitive attributes may be difficult to de-
fine in practice (Hanna et al., 2020), or their values may be
impossible to collect. We aim to overcome the difficulty
of manual environment specification by developing a new
method inspired by fairness approaches for unknown group
memberships (Kim et al., 2019; Lahoti et al., 2020).

The core idea is to leverage the bias of an ERM-trained
reference model to discover useful environment partitions
directly from the training data. We derive an environment
inference objective that maximizes variability across en-
vironments, and is differentiable w.r.t. a distribution over
environment assignments. After performing environment in-
ference given a fixed reference classifier, we use the inferred
environments to train an invariant learner from scratch.

Our method, Environment Inference for Invariant
Learning (EIIL), discovers environment labels that can
then be used to train any off-the-shelf invariant learning
algorithm in applications where environment labels are un-
available. This approach can outperform ERM in settings
where standard learning tends to focus on spurious features
or exhibit performance discrepancies between subgroups
of the training data (which need not be specified ahead of
time). EIIL discovers environments capturing spurious cor-
relations hidden in the dataset (see Figure 1), making them
readily available for invariant learning. Surprisingly, even
when manual specification of environments is available (e.g.
the CMNIST benchmark), inferring environments directly
from aggregated data may improve the quality of invariant
learning.

Our main contributions are as follows:

• We propose a general framework for inferring envi-
ronments from data based on the bias of a reference
classifier;

• we provide a theoretical characterization of the depen-
dence on the reference classifier, and when we can
expect the method to do well;

• we derive a specific instance of environment inference
in this framework using gradients w.r.t. soft environ-
ment assignments, which outperforms invariant learn-
ing (using environment labels) on the CMNIST bench-
mark and outperforms ERM on Waterbirds;

• we establish a connection to similar themes in the fair-
ness literature, and show that our method can improve
accuracy and calibration in a fair prediction problem.

2. Invariant Learning
This section discusses the problem setting and presents back-
ground materials that will be used to formulate our proposed
method. Our approach is primarily motivated by recent
approaches to learning domain- or environment-invariant
representations—which we simply refer to as “invariant
learning”—that have been applied to domain adaptation and
generalization tasks.

Notation LetX be the input space, Eobs the set of training
environments (a.k.a. “domains”), Y the target space. Let
x, y, e ∼ pobs(x, y, e) be observational data, with x ∈ X ,
y ∈ Y , and e ∈ Eobs. H denotes a representation space,
from which a classifier w◦Φ (that maps to the logit space of
Y via a linear map w) can be applied. Φ : X → H denotes
the parameterized mapping or “model” that we optimize.
We refer to Φ(x) ∈ H as the “representation” of example x.
ŷ ∈ Y denotes a hard prediction derived from the classifier
by stochastic sampling or probability thresholding. ` : H×
Y → R denotes a scalar loss, which guides the learning.

The empirical risk minimization (ERM) solution is found
by minimizing the global risk, expressed as the expected
loss over the observational distribution:

CERM (Φ) = Epobs(x,y,e)[`(Φ(x), y)]. (1)

Representation Learning with Environment Labels
Domain generalization is concerned with achieving low
error rates on unseen test distributions p(x, y|etest) for
etest /∈ Eobs. Domain adaption is a related problem where
model parameters can be adapted at test time using unla-
beled data. Recently, Invariant Learning approaches such as
Invariant Risk Minimization (IRM) (Arjovsky et al., 2019)
and Risk Extrapolation (REx) (Krueger et al., 2021) were
proposed to overcome the limitations of adversarial domain-
invariant representation learning (Zhao et al., 2019) by dis-
covering invariant relationships between inputs and targets
across domains. Invariance serves as a proxy for causal-
ity, as features representing “causes” of target labels rather
than effects will generalize well under intervention. In IRM,
a representation Φ(x) is learned that performs optimally
within each environment—and is thus invariant to the choice
of environment e ∈ Eobs—with the ultimate goal of gener-
alizing to an unknown test dataset p(x, y|etest). Because
optimal classifiers under standard loss functions can be real-
ized via a conditional label distribution (f∗(x) = E[y|x]),
an invariant representation Φ(x) must satisfy the following
Environment Invariance Constraint:

E[y|Φ(x) = h, e1] = E[y|Φ(x) = h, e2]

∀h ∈ H ∀ e1, e2 ∈ Eobs. (EIC)

Intuitively, the representation Φ(x) encodes features of the
input x that induce the same conditional distribution over
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labels across each environment. This is closely related to
the notion of “group sufficiency” studied in the fairness
literature (Liu et al., 2019) (see Appendix C).

Because trivial representations such as mapping all x onto
the same value may satisfy environment invariance, other
objectives must be introduced to encourage the predictive
utility of Φ. Arjovsky et al. (2019) propose IRM as a way
to satisfy (EIC) while achieving a good overall risk. As a
practical instantiation, the authors introduce IRMv1, a regu-
larized objective enforcing simultaneous optimality of the
same classifier w ◦ Φ in all environments;2 here w.l.o.g.
w = w̄ is a constant scalar multiplier of 1.0 for each
output dimension. Denoting by Re = Epobs(x,y|e)[`] the
per-environment risk, the objective to be minimized is

CIRM (Φ) =
∑
e∈Eobs

Re(Φ) + λ||∇w̄Re(w̄ ◦ Φ)||.

(IRMv1)

Robust Optimization Another approach at generalizing
beyond the training distribution is robust optimization (Ben-
Tal et al., 2009), where one aims to minimize the worst-
case loss for every subset of the training set, or other well-
defined perturbation sets around the data (Duchi et al.,
2021; Madry et al., 2018). Rather than optimizing a no-
tion of invariance, Distributionally Robust Optimization
(DRO) (Duchi et al., 2021) seeks good performance for
all nearby distributions by minimizing the worst-case loss:
maxq Eq[`] s.t. D(q||p) < ε, where D denotes similarity
between two distributions (e.g., χ2 divergence) and ε is
a hyperparameter. The objective can be computed as an
expectation over p via per-example importance weights
γi = q(xi,yi)

p(xi,yi)
. GroupDRO operationalizes this principle by

sharing importance weights across training examples, using
environment labels to define relevant groups for this parame-
ter sharing. This can be expressed as an expected risk under
a worst-case distribution over group proportions:

CGroupDRO(Φ) = max
g

Eg(e)[Re(Φ)]

This is a promising approach towards tackling distribution
shift with deep nets (Sagawa et al., 2020), and we show
in our experiments how environment inference enables ap-
plication of GroupDRO to improve over standard learning
without requiring group labels.

Limitations of Invariant Learning While the use of in-
variant learning to tackle domain generalization is still rela-
tively nascent, several known limitations merit discussion.
IRM can provably find an invariant predictor that gener-
alizes OOD, but only under restrictive assumptions, such

2 w ◦ Φ yields a classification decision via linear weighting on
the representation features.

as linearity of the data generative process and access to
many environments (Arjovsky et al., 2019). However, most
benchmark datasets are in the non-linear regime; Rosen-
feld et al. (2021) demonstrated that for some non-linear
datasets, the IRMv1 penalty term induces multiple optima,
not all of which yield invariant predictors. Nevertheless,
IRM has found empirical success in some high dimensional
non-linear classification tasks (e.g. CMNIST) using just a
few environments (Arjovsky et al., 2019; Koh et al., 2021).
On the other hand, it was recently shown that, using careful
and fair model selection strategies across a suite of image
classification tasks, neither IRM nor other invariant learners
consistently beat ERM in OOD generalization (Gulrajani
& Lopez-Paz, 2021). This last study underscores the im-
portance of model selection in any domain generalization
approach, which we discuss further below.

3. Invariance Without Environment Labels
In this section we propose a novel invariant learning frame-
work that does not require a priori domain/environment
knowledge. This framework is useful in algorithmic fair-
ness scenarios when demographic makeup is not directly
observed; it is also applicable in standard machine learn-
ing settings when relevant environment information is ei-
ther unavailable or not clearly identified. In both cases, a
method that sorts training examples D into environments
that maximally separate the spurious features—i.e. inferring
populationsD1∪D2 = D—can facilitate effective invariant
learning.

3.1. Environment Inference for Invariant Learning

Our aim is to find environments that maximally violate
the invariant learning principle. We can then evaluate the
quality of these inferred environments by utilizing them in
an invariant learning method. Our overall algorithm EIIL is
a two-stage process: (1) Environment Inference (EI): infer
the environment assignments; and (2) Invariant Learning
(IL): run invariant learning given these assignments.

The primary goal of invariant-learning is to find features
that are domain-invariant, i.e, that reliably predict the true
class regardless of the domain. The EI phase aims to iden-
tify domains that help uncover these features. This phase
depends on a reference classifier Φ̃; which maps inputs X
to outputs Y , and defines a putative set of invariant features.
This model could be found using ERM on pobs(x, y), for
example. Environments are then derived that partition the
mapping of the reference model which maximally violate
the invariance principle, i.e., where for the reference classi-
fier the same feature vector is associated with examples of
different classes. While any of the aforementioned invariant
learning objectives can be incorporated into the EI phase,
the invariance principle or group-sufficiency—as expressed
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in (EIC)—is a natural fit, since it explicitly depends on
learned feature representations Φ.

To realize an EI phase focused on the invariance principle,
we utilize the IRM objective (IRMv1). We begin by noting
that the per-environment risk Re depends implicitly on the
manual environment labels from the dataset. For a given
environment e′, we denote 1(ei = e′) as an indicator that
example i is assigned to that environment, and re-express
the per-environment risk as:

Re(Φ) =
1∑

i′ 1(ei′ = e)

∑
i

1(ei = e)`(Φ(xi), yi) (2)

Now we relax this risk measure to search over the space of
environment assignments. We replace the manual assign-
ment indicator 1(ei = e′), with a probability distribution
qi(e

′) := q(e′|xi, yi), representing a soft assignment of
the i-th example to the e′-th environment. To infer envi-
ronments, we optimize q(e|xi, yi) so that it captures the
worst-case environments for a fixed classifier Φ. This corre-
sponds to maximizing w.r.t. q the following soft relaxation
of the regularizer3 from CIRM :

CEI(Φ,q) = ||∇w̄R̃e(w̄ ◦ Φ,q)||, (3)

R̃e(Φ,q) =
1∑

i′ qi′(e)

∑
i

qi(e)`(Φ(xi), yi) (4)

where R̃e represents a soft per-environment risk that can
pass gradients to the environment assignments q. See Algo-
rithm 1 in Appendix A for pseudocode.

To summarize, EIIL involves the following sequential4 ap-
proach:

1. Input reference model Φ̃;

2. Fix Φ ← Φ̃ and optimize the EI objective to infer
environments: q∗ = arg maxq C

EI(Φ̃,q);

3. Fix q̃← q∗ and optimize the IL objective to yield the
new model: Φ∗ = arg minΦ C

IL(Φ, q̃)

In our experiments we consider binary environments and
parameterize the q as a vector of probabilities for each exam-
ple in the training data.5 EIIL is applicable more broadly to

3 We omit the average risk term as we are focused on maximally
violating (EIC) regardless of the risk.

4 We also tried jointly training Φ and q using alternating up-
dates, as in GAN training, but did not find empirical benefits. This
formulation introduces optimization and conceptual difficulties,
e.g. ensuring that invariances apply to all environments discovered
throughout learning.

5Note that under this parameterization, when optimizing the
inner loop with fixed Φ the number of parameters equals the num-
ber of data points (which is small relative to standard neural net
training). We leave amortization of q to future work.

any environment-based invariant learning objective through
the choice of CIL in Step 3. We present experiments using
CIL ∈ {CIRM , CGroupDRO}, and leave a more complete
exploration to future work.

3.2. Analyzing the Inferred Environments

To characterize the ability of EIIL to generalize to unseen
test data, we now examine the inductive bias for generaliza-
tion provided by the reference model Φ̃. We state the main
result here and defer the proofs to Appendix B. Consider
a dataset with some feature(s) z which are spurious, and
other(s) v which are valuable/invariant/causal w.r.t. the la-
bel y. Our proof considers binary features/labels and two
environments, but the same argument extends to other cases.
Our goal is to find a model Φ whose representation Φ(v, z)
is invariant w.r.t. z and focuses solely on v.

Proposition 1 Consider environments that differ in the de-
gree to which the label y agrees with the spurious features z:
P(1(y = z)|e1) 6= P(1(y = z)|e2): then a reference model
Φ̃ = ΦSpurious that is invariant to valuable features v and
solely focuses on spurious features z maximally violates the
invariance principle (EIC). Likewise, consider the case with
fixed representation Φ that focuses on the spurious features:
then a choice of environments that maximally violates (EIC)
is e1 = {v, z, y|1(y = z)} and e2 = {v, z, y|1(y 6= z)}.

If environments are split according to agreement of y and
z, then the constraint from (EIC) is satisfied by a repre-
sentation that ignores z: Φ(x) ⊥ z. Unfortunately this
requires a priori knowledge of either the spurious feature z
or a reference model Φ̃ = ΦSpurious that extracts it. When
the suboptimal solution ΦSpurious is not a priori known, it
will sometimes be recovered directly from the training data;
for example in CMNIST we find that ΦERM approximates
ΦColor. This allows EIIL to find environment partitions pro-
viding the starkest possible contrast for invariant learning.

Even if environment partitions are available, it may be pos-
sible to improve performance by inferring new partitions
from scratch. It can be shown (see Appendix B.3) that the
environments provided in the CMNIST dataset (Arjovsky
et al., 2019) do not maximally violate (EIC) for a reference
model Φ̃ = ΦColor, and are thus not maximally informative
for learning to ignore color. Accordingly, EIIL improves
test accuracy for IRM compared with the hand-crafted envi-
ronments (Table 2).

If Φ̃ = ΦERM focuses on a mix of z and v, EIIL may still
find environment partitions that enable effective invariant
learning, as we find in the Waterbirds dataset, but they are
not guaranteed to maximally violate (EIC).
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3.3. Binned Environment Invariance

We can derive a heuristic algorithm for EI that maximizes
violations of the invariance principle by stratifying examples
into discrete bins (i.e. confidence bins for 1-D representa-
tions), then sorting them into environments within each bin.
This algorithm provides insight into both the EI task and the
relationship between the IRMv1 regularizer and the invari-
ance principle. We define bins in the space of the learned
representation Φ(x), indexed by b; sib indicates whether
example i is in bin b. The intuition behind the algorithm is
that a simple approach can separate the examples in a bin to
achieve the maximal value of the (EIC).

The degree to which the environment assignments violate
(EIC) can be expressed as follows, which can then be ap-
proximated in terms of the bins:

∆EIC = (E[y|Φ(x), e1]− E[y|Φ(x), e2])2

≈
∑
b

(
∑
i

sibyiqi(e = e1)−
∑
i

sibyiqi(e = e2))2

Inspection of this objective leads to a simple algorithm:
assign all the y = 1 examples to one environment, and y =
−1 examples to the other. This results in the expected values
of y equal to ±1, which achieves the maximum possible
value of ∆EIC per bin. 6

This binning leads to an important insight into the relation-
ship between the IRMv1 regularizer and (EIC). Despite the
analysis in Arjovsky et al. (2019), this link is not completely
clear (Kamath et al., 2021; Rosenfeld et al., 2021). However,
in the situation considered here, with binary classes, we can
use this binning approach to show a tight link between the
two objectives: finding an environment assignment that
maximizes the violation of our softened IRMv1 regularizer
(Equation 3) also maximizes the violation of the softened
Environment Invariance Constraint (∆EIC); see Appendix
B.2 for the proof. This binning approach highlights the
dependence on the reference model, as the bins are defined
in its learned Φ space; the reference model also played a
key role in the analysis above. We analyze it empirically in
Section 5.3.

4. Related Work
Domain adaptation and generalization Beyond the
methods discussed above, a variety of recent works have
approached the domain generalization problem from the
lens of learning invariances in the training data. Adversarial
training is a popular approach for learning representations
invariant (Zhang et al., 2017; Hoffman et al., 2018; Ganin
et al., 2016) or conditionally invariant (Li et al., 2018) to

6Multiple global optima exist, this heuristic is not the only
possible solution. For very confident reference models, where few
confidence bins are populated, this relates to partitioning based on
the error cases.

the environment. However, this approach has limitations in
settings where distribution shift affects the marginal distri-
bution over labels (Zhao et al., 2019).

Arjovsky et al. (2019) proposed IRM to mitigate the effect
of test-time label shift, which was inspired by applications
of causal inference to select invariant features (Peters et al.,
2016). Krueger et al. (2021) proposed the related Risk Ex-
trapolation (REx) principle, which dictates a stronger prefer-
ence to exactly equalize Re ∀ e (e.g. by penalizing variance
across e as in their practical algorithm V-REx), which is
shown to improve generalization in several settings.7

Recently, Ahmed et al. (2021) proposed a new invariance
regularizer based on matching class-conditioned average
predictive distributions across environments, which we note
is closely related to the equalized odds criterion commonly
used in fair classification (Hardt et al., 2016). Moreover,
they deploy this training on top of environments inferred by
our EI method, showing that the overall EIIL approach can
effectively handle “systematic” generalization (Bahdanau
et al., 2019) on a semi-synthetic foreground/background
task similar to the Waterbirds dataset that we study.

Several large-scale benchmarks have recently been proposed
to highlight difficult open problems in this field, including
the use of real-world data (Koh et al., 2021), handling sub-
population shift (Santurkar et al., 2021), and model selection
(Gulrajani & Lopez-Paz, 2021).

Leveraging a reference classifier A number of methods
have recently been proposed that improve performance by
exploiting the mistakes of a pre-trained auxiliary model,
as we do when inferring environments for the invariant
learner using Φ̃. Nam et al. (2020) jointly train a “biased”
model fB and a “debiased” model fD, where the relative
cross-entropy losses of fB and fD on each training example
determine their importance weights in the overall training
objective for fD. Sohoni et al. (2020) infer a different set of
“hidden subclasses“ for each class label y ∈ Y , Subclasses
computed in this way are then used as group labels for
training a GroupDRO model, so the overall two-step process
corresponds to certain choices of EI and IL objectives.

Liu et al. (2021) and Dagaev et al. (2021) concurrently
proposed to compute importance weights for the primary
model using an ERM reference, which can be seen as a form
of distributionally robust optimization where the worst-case
distribution only updates once. Dagaev et al. (2021) use
the confidence of the reference model to assign importance
weights to each training example. Liu et al. (2021) split
the training examples into two disjoint groups based on
the errors of ERM, akin to our EI step, with the per-group

7 Analogous to V-REx, Williamson & Menon (2019) adapt
Conditional Variance at Risk (CVaR) (Rockafellar & Uryasev,
2002) to equalize risk across demographic groups.
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Statistic to match/optimize e known? Dom-Gen method Fairness method

match E[`|e] ∀e yes REx (Krueger et al., 2021), CVaR Fairness (Williamson & Menon, 2019)

min maxe E[`|e] yes Group DRO (Sagawa et al., 2020)

min maxq Eq[`] no DRO (Duchi et al., 2021) Fairness without Demographics
(Hashimoto et al., 2018; Lahoti et al., 2020)

match E[y|Φ(x), e] ∀ e yes IRM (Arjovsky et al., 2019) Group Sufficiency
(Chouldechova, 2017; Liu et al., 2019)

match E[y|Φ(x), e] ∀ e no EIIL (ours) EIIL (ours)

match E[ŷ|Φ(x), e, y = y′] ∀ e yes C-DANN (Li et al., 2018) Equalized Odds (Hardt et al., 2016)
PGI (Ahmed et al., 2021)

Table 1. Domain Generalization (Dom-Gen) and Fairness methods can be understood as matching or optimizing some statistic across
conditioning variable e, representing “environment” or “domains” in Dom-Gen and “sensitive” group membership in the Fairness.

importance weights treated as a hyperparameter for model
selection (which requires a subgroup-labeled validation set).
We note that the implementation of EIIL using binning
heuristic, discussed in 3.3, can also realize an error splitting
behavior when the reference classifier is very confident. In
this case, both methods use the same disjoint groups of
training examples towards slightly different ends: we train
an invariant learner, whereas Liu et al. (2021) train a cross-
entropy classifier with fixed per-group importance weights.

Algorithmic fairness Our work draws inspiration from a
rich body of recent work on learning fair classifiers in the
absence of demographic labels (Hébert-Johnson et al., 2018;
Kearns et al., 2018; Hashimoto et al., 2018; Kim et al., 2019;
Lahoti et al., 2020). Generally speaking, these works seek
a model that performs well for group assignments that are
the worst case according to some fairness criterion. Table
1 enumerates several of these criteria, and draw analogies
to domain generalization methods that match or optimize
similar statistics.8 Environment inference serves a similar
purpose for our method, but with a slightly different motiva-
tion: rather than learn an fair model in an online way that
provides favorable in-distribution predictions, we learn dis-
crete data partitions as an intermediary step, which enables
use of invariant learning methods to tackle distribution shift.

Adversarially Reweighted Learning (ARL) (Lahoti et al.,
2020) is most closely related to ours, since they emphasize
subpopulation shift as a key motivation. Whereas ARL uses
a DRO objective that prioritizes stability in the loss space,
we explore environment inference to encourage invariance
in the learned representation space. We see these as comple-
mentary approaches that are each suited to different types
of distribution shift, as we discuss in the experiments.

8 We refer the interested reader to Appendix C for a more
in-depth discussion of the relationships between domain general-
ization and fairness methods.

5. Experiments
For lack of space we defer a proof-of-concept synthetic
regression experiment to Appendix F.1. We proceed by
describing the remaining datasets under study in Section
5.1. We then present the main results measuring the abil-
ity of EIIL to handle distribution shift in Section 5.2, and
offer a more detailed analysis of the EIIL solution and its
dependence on the reference model in Section 5.3. See
https://github.com/ecreager/eiil for code.

Model selection Tuning hyperparameters when train and
test distributions differ is a difficult open problem (Krueger
et al., 2021; Gulrajani & Lopez-Paz, 2021). Where possible,
we reuse effective hyperparameters for IRM and GroupDRO
found by previous authors. Because these works allowed
limited validation samples for hyperparameter tuning (all
baseline methods benefit fairly from this strategy), these
results represent an optimistic view on the ability for invari-
ant learning. As discussed above, the choice of reference
classifier is of crucial importance when deploying EIIL; if
worst-group performance can be measured on a validation
set, this could be used to tune the hyperparameters of the
reference model (i.e. model selection subsumes reference
model selection). See Appendix E for further discussion.

5.1. Datasets

CMNIST CMNIST is a noisy digit recognition task9

where color is a spurious feature that correlates with the
label at train time but anti-correlates at test time, with the
correlation strength at train time varying across environ-
ments (Arjovsky et al., 2019). In particular, the two training
environments have Corr(color, label) ∈ {0.8, 0.9} while
the test environment has Corr(color, label) = 0.1. Cru-

9MNIST digits are grouped into {0, 1, 2, 3, 4} and
{5, 6, 7, 8, 9} so the CMNIST target label y is binary.

https://github.com/ecreager/eiil
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cially, label noise is applied by flipping y with probability
θy = 0.25. This implies that shape (the invariant feature)
is marginally less reliable than color in the training data,
so ERM ignores shape to focus on color and suffers from
below-chance test performance.

Waterbirds To evaluate whether EIIL can infer useful
environments in a more challenging setting with high-
dimensional images, we turn to the Waterbirds dataset
(Sagawa et al., 2020). Waterbirds is a composite dataset that
combines 4, 795 bird images from the CUB dataset (Welin-
der et al., 2010) with background images from the Places
dataset (Zhou et al., 2017). It examines the proposition
(which frequently motivates invariant learning approaches)
that modern networks often learn spurious background fea-
tures (e.g. green grass in pictures of cows) that are predictive
of the label at train time but fail to generalize in new contexts
(Beery et al., 2018; Geirhos et al., 2020). The target labels
are two classes of birds—“landbirds” and “waterbirds” re-
spectively coming from dry or wet habitats—superimposed
on land and water backgrounds. At training time, landbirds
and waterbirds are most frequently paired with land and wa-
ter backgrounds, respectively, but at test time the 4 subgroup
combinations are uniformly sampled. To mitigate failure
under distribution shift, a robust representation should learn
primarily features of the bird itself, since these are invariant,
rather than features of the background. Beyond the increase
in dimensionality, this task differs from CMNIST in that the
ERM solution does not fail catastrophically at test time, and
in fact can achieve 97.3% average accuracy. However, be-
cause ERM optimizes average loss, it suffers in performance
on the worst-case subgroup (waterbirds on land, which has
only 56 training examples).

Adult-Confounded To assess the ability of EIIL to ad-
dress worst-case group performance without group labels,
we construct a variant of the UCI Adult dataset,10 which
comprises 48, 842 census records collected from the USA
in 1994. The task commonly used as an algorithmic fairness
benchmark is to predict a binarized income indicator (thresh-
olded at $50, 000) as the target label, possibly considering
sensitive attributes such as age, sex, and race.

Lahoti et al. (2020) demonstrate the benefit of per-example
loss reweighting on Adult using their method ARL to im-
prove predictive performance for undersampled subgroups.
Following Lahoti et al. (2020), we consider the effect of
four sensitive subgroups—defined by composing binarized
race and sex labels—on model performance, assuming the
model does not know a priori which features are sensitive.
However, we focus on a distinct generalization problem
where a pernicious dataset bias confounds the training data,

10https://archive.ics.uci.edu/ml/datasets/
adult

making subgroup membership predictive of the label on the
training data. At test time these correlations are reversed,
so a predictor that infers subgroup membership to make
predictions will perform poorly at test time (see Appendix
D for details). This large test-time distribution shift can be
understood as a controlled audit to determine if the classifier
uses subgroup information to predict the target label. We
call our dataset variant Adult-Confounded.

CivilComments-WILDS We apply EIIL to a large and
challenging comment toxicity prediction task with impor-
tant fairness implications (Borkan et al., 2019), where ERM
performs poorly on comments associated with certain iden-
tity groups. We follow the procedure and data splits of
Koh et al. (2021) to finetune DistilBERT embeddings (Sanh
et al., 2019). EIIL uses an ERM reference classifier and
its inferred environments are fed to a GroupDRO invariant
learner. Because the large training set (Ntrain = 269, 038)
increases the convergence time for gradient-based EI, we
deploy the binning heuristic discussed in Section 3.3, which
in this instance finds environments that correspond to the
error and non-error cases of the reference classifier. While
ERM and EIIL do not have access to the sensitive group
labels, we note that worst-group validation accuracy is used
to tune hyperparameters for all methods. See Appendix E
for details. We also compare against a GroupDRO (oracle)
learner that has access to group labels.

5.2. Results

Method Handcrafted Train Test
Environments

ERM 7 86.3 ± 0.1 13.8 ± 0.6
IRM 3 71.1 ± 0.8 65.5 ± 2.3
EIIL 7 73.7 ± 0.5 68.4 ± 2.7

Table 2. Accuracy (%) on CMNIST, a digit classification task
where color is a spurious feature correlated with the label during
training but anti-correlated at test time. EIIL exceeds test-time
performance of IRM without knowledge of pre-specified environ-
ment labels, by instead finding worst-case environments using
aggregated data and a reference classifier.

CMNIST IRM was previously shown to learn an invari-
ant representation on this dataset, allowing it to generalize
relatively well to the held-out test set whereas ERM fails
dramatically (Arjovsky et al., 2019). It is worth noting
that label noise makes the problem challenging, so even
an oracle classifier can achieve at most 75% test accuracy
on this binary classification task. To realize EIIL in our
experiments, we discard the environment labels, and run
the procedure described in Section 3.1 with ERM as the
reference model and IRM as the invariant learner used in
the final stage. We find that EIIL’s environment labels are

https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
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very effective for invariant learning, ultimately outperform-
ing standard IRM using the environment labels provided
in the dataset (Table 2). This suggests that in this case the
EIIL solution approaches the maximally informative set of
environments discussed in Proposition 1.

Waterbirds Sagawa et al. (2020) demonstrated that ERM
suffers from poor worst-group performance on this dataset,
and that GroupDRO can mitigate this performance gap if
group labels are available. In this dataset, group labels
should be considered as oracle information, meaning that
the relevant baseline for EIIL is standard ERM. The main
contribution of Sagawa et al. (2020) was to show how deep
nets can be optimized for the GroupDRO objective using
their online algorithm that adaptively adjusts per-group im-
portance weights. In our experiment, we combine this in-
sight with our EIIL framework to show that distributionally
robust neural nets can be realized without access to oracle in-
formation. We follow the same basic procedure as above,11

in this case using GroupDRO as the downstream invariant
learner for which EIIL’s inferred labels will be used.

Method Train (avg) Test (avg) Test (worst group)

ERM 100.0 97.3 60.3
EIIL 99.6 96.9 78.7

GroupDRO (oracle) 99.1 96.6 84.6

Table 3. Accuracy (%) on the Waterbirds dataset. EIIL strongly
outperforms ERM on worst-group performance, approaching the
performance of the GroupDRO algorithm proposed by Sagawa
et al. (2020), which requires oracle access to group labels. In
this experiment we feed environments inferred by EIIL into a
GroupDRO learner.

EIIL is significantly more robust than the ERM baseline (Ta-
ble 3), raising worst-group test accuracy by 18% with only a
1% drop in average accuracy. In Figure 2 we plot the distri-
bution of subgroups for each inferred environment, showing
that the minority subgroups (landbirds on water and water-
birds on land) are mostly organized in the same inferred
environment. This suggests the possibility of leveraging
environment inference for interpretability to automatically
discover a model’s performance discrepancies on subgroups,
which we leave for future work.

Adult-Confounded Using EIIL—to first infer worst-case
environments then ensure invariance across them—performs
favorably on the audit test set, compared with ARL and an
ERM baseline (Table 4). We also find that, without access

11For this dataset, environment inference worked better with
reference models that were not fully trained. We suspect this
is because ERM focuses on the easy-to-compute features like
background color early in training, precisely the type of bias EIIL
can exploit to learn informative environments.

Figure 2. After using EIIL to directly infer two environments from
the Waterbirds dataset, we examine the proportion of each sub-
group (available in the original dataset but not used by EIIL)
present in the inferred environment.

to sensitive group information, the solution found by EIIL
achieves significantly better calibration on the test distri-
bution (Figure 3). Because the train and test distributions
differ based on the correlation pattern of small subgroups to
the target label, this suggests that EIIL has achieved favor-
able group sufficiency (Liu et al., 2019) in this setting. See
Appendix F.3 for a discussion of this point, as well as an
ablation showing that all components of the EIIL approach
are needed to achieve the best performance.

CivilComments-WILDS Without knowledge of which
comments are associated with which groups, EIIL improves
worst-group accuracy over ERM with only a modest cost
in average accuracy, approaching the oracle GroupDRO
solution (which requires group labels).

5.3. Influence of the reference model

As discussed in Section 3.2, the ability of EIIL to find useful
environments—partitions yielding an invariant representa-
tion when used by an invariant learner—depends on its
ability to exploit variation in the predictive distribution of
a reference classifier. Here we study the influence of the
reference classifier on the final EIIL solution. We return to

Method Train accs Test accs

ERM 92.7 ± 0.5 31.1 ± 4.4
ARL (Lahoti et al., 2020) 72.1 ± 3.6 61.3 ± 1.7
EIIL 69.7 ± 1.6 78.8 ± 1.4

Table 4. Accuracy on Adult-Confounded, a variant of the UCI
Adult dataset where some sensitive subgroups correlate to the label
at train time, and this correlation pattern is reversed at test time.
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Figure 3. By inferring environments that maximally violate the
invariance principle, and then applying invariant learning across the
inferred environments, EIIL finds a solution that is well calibrated
on the test set (right), compared with ARL (left).

the CMNIST dataset, which provides a controlled sampling
setup where particular ERM solutions can be induced to
serve as reference for EIIL. In Appendix F.1, we discuss a
similar experiment in a synthetic regression setting.

EIIL was shown to outperform IRM without access to
environment labels in the standard CMNIST dataset (Ta-
ble 2), which has label noise of θy = 0.25. Because
Corr(color, label) is 0.85 (on average) for the train set,
this amount of label noise implies that color is the most
predictive feature on aggregated training set (although its
predictive power varies across environments). ERM, even
with access to infinite data, will focus on color given this
amount of label noise to achieve an average train accuracy
of 85%. However we can implicitly control the ERM solu-
tion ΦERM by tuning θy , an insight that we use to study the
dependence of EIIL on the reference model Φ̃ = ΦERM .

Figure 4 shows the results of our study. We find that EIIL
generalizes better than IRM with sufficiently high label
noise θy > .2, but generalizes poorly under low label noise.
This is precisely because ERM learns the color feature under
high label noise, and the shape feature under low label
noise. We verify this conclusion by evaluating EIIL when
Φ̃ = ΦColor, i.e. a hand-coded color-based predictor as
reference, which does well across all settings of θy .

We saw in the Waterbirds experiment that it is not a strict
requirement that ERM fail completely in order for EIIL to

Method Train (avg) Test (avg) Test (worst group)

ERM 96.0 ± 1.5 92.0 ± 0.4 61.6 ± 1.3
EIIL 97.0 ± 0.8 90.5 ± 0.2 67.0 ± 2.4

GroupDRO (oracle) 93.6 ± 1.3 89.0 ± 0.3 69.8 ± 2.4

Table 5. EIIL improves worst-group accuracy in the
CivilComments-WILDS toxicity prediction task, without
access to group labels.
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Figure 4. CMNIST with varying label noise θy . Under high label
noise (θy > .2), where the spurious feature color correlates to label
more than shape on the train data, EIIL matches or exceeds the test
performance of IRM without relying on hand-crafted environments.
Under medium label noise (.1 < θy < .2), EIIL is worse than IRM
but better than ERM, the logical approach if environments are not
available. Under low label noise (θy < .1), where color is less
predictive than shape at train time, ERM performs well and EIIL
fails. The vertical dashed black line indicates the default setting of
θy = 0.25, which we report in Table 2.

succeed. However, this controlled study highlights the im-
portance of the reference model in the ability of EIIL to find
environments that emphasize the right invariances, which
leaves open the question of how to effectively choose a ref-
erence model for EIIL in general. One possible way forward
is by using validation data that captures the kind of distribu-
tion shift we expect at test time, without exactly producing
the test distribution, e.g. as in the WILDS benchmark (Koh
et al., 2021). In this case we could choose to run EIIL with
a reference model that exhibits a large generalization gap
between the training and validation distributions.

6. Conclusion
We introduced EIIL, a new method that infers environment
partitions of aggregated training data for invariant learning.
Without access to environment labels, EIIL can outperform
or approach invariant learning methods that require environ-
ment labels. EIIL has implications for domain generaliza-
tion and fairness alike, because in both cases it can be hard
to specify meaningful environments or sensitive subgroups.

Acknowledgements
We are grateful to David Madras, Robert Adragna, Sil-
viu Pitis, Will Grathwohl, Jesse Bettencourt, and Eleni
Triantafillou for their feedback on this manuscript. Re-
sources used in preparing this research were provided, in
part, by the Province of Ontario, the Government of Canada
through CIFAR, and companies sponsoring the Vector Insti-
tute (www.vectorinstitute.ai/partners).

www.vectorinstitute.ai/partners


Environment Inference for Invariant Learning

References
Ahmed, F., Bengio, Y., van Seijen, H., and Courville, A. Sys-

tematic generalisation with group invariant predictions.
In International Conference on Learning Representations,
2021.

Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-
Paz, D. Invariant risk minimization. arXiv preprint
arXiv:1907.02893, 2019.

Bahdanau, D., Murty, S., Noukhovitch, M., Nguyen, T. H.,
de Vries, H., and Courville, A. Systematic generalization:
what is required and can it be learned? In International
Conference of Machine Learning, 2019.

Beery, S., Van Horn, G., and Perona, P. Recognition in terra
incognita. In Proceedings of the European Conference
on Computer Vision, pp. 456–473, 2018.

Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A.,
Pereira, F., and Vaughan, J. W. A theory of learning from
different domains. Machine Learning, 79(1-2):151–175,
2010.

Ben-Tal, A., El Ghaoui, L., and Nemirovski, A. Robust
Optimization, volume 28. Princeton University Press,
2009.

Borkan, D., Dixon, L., Sorensen, J., Thain, N., and Vasser-
man, L. Nuanced metrics for measuring unintended bias
with real data for text classification. In Companion pro-
ceedings of the 2019 world wide web conference, pp.
491–500, 2019.

Chouldechova, A. Fair prediction with disparate impact: A
study of bias in recidivism prediction instruments. Big
Data, 5(2):153–163, 2017.

Chouldechova, A. and Roth, A. The frontiers of fairness in
machine learning. Communications of the ACM, 63(5):
82–89, 2020.

Dagaev, N., Roads, B. D., Luo, X., Barry, D. N., Patil, K. R.,
and Love, B. C. A too-good-to-be-true prior to reduce
shortcut reliance. arXiv preprint arXiv:2102.06406, 2021.

Duchi, J. C., Glynn, P. W., and Namkoong, H. Statistics of
robust optimization: A generalized empirical likelihood
approach. Mathematics of Operations Research, 2021.

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel,
R. Fairness through awareness. In Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference,
pp. 214–226, 2012.

Edwards, H. and Storkey, A. Censoring representations with
an adversary. In International Conference for Machine
Learning, 2016.

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Stein-
hardt, J., and Madry, A. Identifying statistical bias in
dataset replication. In International Conference on Ma-
chine Learning, 2020.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle,
H., Laviolette, F., Marchand, M., and Lempitsky, V.
Domain-adversarial training of neural networks. The
Journal of Machine Learning Research, 17(1):2096–2030,
2016.

Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Bren-
del, W., Bethge, M., and Wichmann, F. A. Shortcut learn-
ing in deep neural networks. Nature Machine Intelligence,
2(11):665–673, 2020.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. In International
Conference on Learning Representations, 2015.

Gulrajani, I. and Lopez-Paz, D. In search of lost domain
generalization. In International Conference on Learning
Representations, 2021.

Hanna, A., Denton, E., Smart, A., and Smith-Loud, J. To-
wards a critical race methodology in algorithmic fairness.
In Proceedings of the 2020 conference on Fairness, Ac-
countability, and Transparency, pp. 501–512, 2020.

Hardt, M., Price, E., and Srebro, N. Equality of opportunity
in supervised learning. In Advances in Neural Informa-
tion Processing Systems, pp. 3315–3323, 2016.

Hashimoto, T. B., Srivastava, M., Namkoong, H., and Liang,
P. Fairness without demographics in repeated loss mini-
mization. In International Conference on Machine Learn-
ing, 2018.
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