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Abstract
A number of imperative Probabilistic Programming Languages (PPLs) have been recently pro-
posed, but the imperative style choice makes it very hard to deduce the dependence structure be-
tween the latent variables, which can also change from iteration to iteration. We propose a new
declarative style PPL, Bean Machine, and demonstrate that in this new language, the dynamic de-
pendence structure is readily available. Although we are not the first to propose a declarative PPL
or to observe the advantages of knowing the dependence structure, we take the idea further by
showing other inference techniques that become feasible or easier in this style. We show that it is
very easy for users to program inference by composition (combining different inference techniques
for different parts of the model), customization (providing a custom hand-written inference method
for specific variables), and blocking (specifying blocks of random variables that should be sampled
together) in a declarative language. A number of empirical results are provided where we backup
these claims modulo the runtime inefficiencies of unvectorized Python. As a fringe benefit, we note
that it is very easy to translate statistical models written in mathematical notation into our language.
Keywords: Probabilistic Programming; Programmable Inference; Declarative Structure.

1. Introduction

Probabilistic Programming Languages (PPLs) provide a formal language for expressing statistical
models and a general-purpose inference engine for performing statistical inference. In a typical
scenario, a user specifies their problem in the PPL as a statistical model P (·), supplies observed
values y for a subset of random variables Y , and queries for the posterior distributions of another
set of variables X , P (X | Y = y). In theory, PPLs should allow users to focus on modeling
their problem rather than implementing and debugging inference algorithms. However, this vision
has not come to fruition because general-purpose inference engines lag far behind model-specific
handwritten inference algorithms.

We propose a new declarative universal PPL, Bean Machine, which offers three inference tech-
niques to help close the performance gap between general-purpose and model-specific handwritten
inference: compositional inference, block inference, and custom proposers. These programmable
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inference techniques can be executed efficiently in Bean Machine due to its declarative paradigm,
which explicitly tracks the model dependency structure.

Specifically, Bean Machine models specify a distribution over possible worlds, where each
world is a graph data structure that consists of the directed graphical model (Pearl and Russell,
2000) over a set of random variables and the assignment of values to these variables. The language
is Universal and allows for the directed acyclic graph (DAG) of the random variables (or model
dependence structure) as well as the number of variables to vary between worlds. Our language
is an extension to BLOG (Milch et al., 2005) and allows much greater flexibility in specifying the
conditional probability distribution of random variables using arbitary Python code.

In contrast, other imperative Universal PPLs, such as Church (Goodman et al., 2008), Pyro
(Bingham et al., 2019), Turing (Ge et al., 2018), and Gen (Cusumano-Towner et al., 2019), represent
the statistical model as a monolithic program that explicitly draws a sample for each random variable
that is encountered in the execution of the program. Imperative models specify the distribution over
possible execution traces of the program, where a trace includes the assignment of values to random
variables as well as the linear control flow, but not the explicit DAG of variables. Now, both styles
of PPLs can specify the same distribution over random variables, but the lack of an explicit DAG
leads to limitations during inference.

In order to understand the benefits of the explicit DAG one must consider the state of the art
implementation of trace-based inference, Lightweight MH (Wingate et al., 2011) (LMH). In this
technique, a variable is chosen at random from the current trace and its value is updated through
some proposal distribution (typically the parent conditional prior as described in Arora et al. (2010)).
The rest of the trace downstream of the updated variable is then re-executed to either sample new
random variables that are needed or to update the probability of variables whose distribution has
changed. The new trace is then accepted or rejected using an MH update rule (Metropolis et al.,
1953). Now, in a world-based MH inference, which we call Single-Site MH (SSMH), the overall
steps are very similar. However, since the world includes the DAG, we have direct knowledge of the
random variables whose distribution would change as a consequence of the proposed update. Hence
we only need to update the distribution of the children of the updated random variable. Overall, the
DAG helps to reduce the cost of each MH update, i.e. the cost of proposing a new value and deciding
to accept or reject it, from O(size of trace) to O(size of the Markov blanket of the updated variable).

Gen circumvents this issue through a user-specified argdiff structure, allowing the inference en-
gine to safely skip parts of execution; however, an incorrect argdiff may cause failures. C3 (Ritchie
et al., 2016) proposes another solution that requires that models be written in a specific style that
allows the DAG to be inferred. This could be considered similar to our approach except that we
are advocating a declarative language rather than an optional modeling style. The classic language,
BUGS (Spiegelhalter et al., 1996), also used a very similar approach of component-wise Gibbs
sampling, but that language is constrained enough that the dynamic DAG is easy to compute.

We note that SSMH was first deployed in BLOG and the runtime advantage of SSMH versus
LMH was previously noted in C3. Our contribution is to develop three techniques for programmable
inference that are applicable to any language or modeling style that supports SSMH, and we demon-
strate these techniques in the context of a new declarative PPL, Bean Machine.

Compositional inference allows different MH proposer algorithms to be used for different vari-
ables in the model, providing two major advantages. The first is the ability to select, compose, and
tune the most efficient set of proposers for the model. The second is that it allows state-of-the-
art gradient-based proposers such as Hamiltonian Monte Carlo (HMC) (Duane et al., 1987; Neal,
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1993), No U-Turn Sampler (Hoffman and Gelman, 2014), and Newtonian Monte Carlo (NMC)
(Arora et al., 2020), to be used on models with mixed discrete and continuous variables, which
otherwise are only applicable to continuous random variables. The imperative Turing language (Ge
et al., 2018) also implements compositional inference; however, it does not have the dynamic graph
structure needed for efficient MH updates.

Block inference allows a set of variables to be specified to undergo MH updates together. Propos-
ing new values for all variables in the model followed by a single accept/reject decision often leads
to low acceptance rates, as a bad proposal for any individual variable may result in a low overall ac-
ceptance probability. Single-site inference can improve this behavior by separately proposing values
for each variable and accepting or rejecting these proposals individually. However, in cases where
a model contains multiple highly-correlated variables, the optimal proposal strategy is to group the
correlated variables and MH update them together.

Custom proposers allow users to incorporate domain knowledge to achieve satisfactory perfor-
mance in models where even state-of-the-art gradient-based proposers are inadequate. Together
with its compositional inference engine, Bean Machine allows for custom proposers to be imple-
mented on a per-variable basis. Customized inference was first deployed in BLOG for the citation
matching problem in Milch and Russell (2006). However, this required wholesale replacement of
the inference algorithm with a custom one, which defeats much of the point of generic inference.

We demonstrate that the combination of these techniques allows the user to obtain efficient
inference performance with a minimal amount of handwritten code.

Finally, the syntax of our PPL, embedded in the Python language, is targeted toward statisticians
who are familiar with conventional mathematical notation for statistical models. We show examples
where statistical models translate very easily—often line by line—into Bean Machine syntax. As an
aside, the name Bean Machine pays homage to a device consisting of pegs arranged in a quincunx
pattern. Beans dropped from the top deflected randomly and collected at the bottom in a manner
consistent with the law of large numbers (Galton, 1894). In effect, that device was the first PPL.

2. Embedding Bean Machine in Python

In Bean Machine, a random variable is declared by adding a @random variable decorator to a
Python function. A decorated function with signature f(a1, · · · , ar) defines a variable for all possi-
ble values of the tuple (a1, · · · , ar). The function body defines the variable’s dependency function,
a code block that specifies how to compute its distribution. This function can be arbitrary Python
code, may reference other random variables, and must return a probability distribution object. A dis-
tribution object is any Python object implementing a method to draw a sample, a method to evaluate
a sample’s log probability, and an attribute describing the distribution’s domain1. The arguments
a1, · · · , ar, represent indices or subscripts for identifying the random variable.

Figure 1 uses the Hidden Markov Model (HMM) to compare three different syntaxes. In
Bean Machine’s syntax in Figure 1b, the function mu(k)defines a variable for each value of k—
analogous to the variable µk in the mathematical notation. The call to Normal returns a distribution
object representing a normal distribution with mean alpha and variance beta. The variable y(i)
depends upon the variables x(i), mu(x(i)), and sigma(x(i)).

Figure 1c shows the imperative version of the same model. The variables mu(k), sigma(k),
and theta(k) are sampled first. Based upon their values, the variables x(i) and y(i) are then

1. Bean Machine currently support, reals, real vectors, half-spaces, sim- plexes, integers, and bounded integer domains.
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µk ∼ Normal(α, β)

σk ∼ Gamma(ν, ρ)

θk ∼ Dirichlet(κ)

xi ∼
{

Categorical(init) if i = 0

Categorical(θxi−1 ) if i > 0

yi ∼ Normal(µxi , σxi )

(a) Mathematical notation

@random variable
def mu(k):

return Normal(alpha, beta)
@random variable
def sigma(k):

return Gamma(nu, rho)
@random variable
def theta(k):

return Dirichlet(kappa)

@random variable
def x(i):

if i == 0:
return Categorical(init)

elif i>0:
return Categorical(theta(x(i−1)))

@random variable
def y(i):

return Normal(mu(x(i)), sigma(x(i)))

(b) Bean Machine

mu, sigma, theta , x, y = {}, {}, {}, {}, {}

with Model():
for k in range(K):

mu[k] = Normal(f‘‘mu[{k}]”, alpha , beta )
sigma[k] = Gamma(f‘‘sigma[{k}]”, nu, rho)
theta [k] = Dirichlet ( f ‘‘ theta [{k}]” , kappa)

x[0] = Categorical (‘‘ x[0]” , init )
for i in range(1, N):

x[ i ] = Categorical ( f ‘‘x[{i}]” , theta [x[ i−1]])
y[ i ] = Normal(f‘‘y[{i}]” , mu[x[i ]], sigma[x[ i ]], observed=data[ i ])

(c) An imperative version.

Figure 1: HMM model in three languages.

sampled. Unlike in Figure 1b, the calls to Normal, Gamma, Dirichlet, and Categorical
directly return a numerical sample from their respective distributions. The strings passed to the
distribution functions are used by the inference engine to identify random variables across different
program executions. Note that the imperative model definition includes many inference-specific
details, such as the order of the sampling of variables and the length of the sequence N , Imperative
models also commonly include the observations, as shown by in the “observed” attribute for y(i).
However, Bean Machine keeps the model specification completely separate from any details of
inference. To perform inference in Bean Machine, the user provides a list of the random variables to
query with the data for the observed random variables. Bean Machine then instantiates the minimal
number of variables necessary to perform inference for the desired query.

Gen also allows for symbolic naming of random variables, and allows for observations to be
bound to the observed variables after specifying the model. However, in Gen, as in other imperative
languages, it is the model writer’s responsibility to explicitly sample all the random variables that
are observed or queried during inference.

The semantics of Bean Machine are very similar to those established in the BLOG paper. We
adapt the Contingent Bayes Net notation in Arora et al. (2010) for a formal description. A Bean
Machine model consists of a set of random variables V and a dependency function TX for each
variable X ∈ V such that TX is a pure function that can only refer to variables in V or other
pure functions in the host language Python and that the return value of TX must be a probability
distribution. A world σ is an assignment of values to a finite subset of variables, vars(σ), such
that σX is the value of variable X in σ. We will refer to σTX , as the assignment of values to the
subset of variables in σ that are referenced in the execution of TX and pX(·|σTX ) as the resulting
distribution. A world σ is self-supporting if it contains vars(σTX ) for all X ∈ σ, i.e. all variables
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referenced in the execution of the dependency function of X are already assigned a value in σ. A
world is well-defined if the parent edges from each variable X to vars(σTX ) induced by the world
form an acyclic graph. A model is well-defined if all self-supporting worlds, σ, that are possible
over the model are well-defined. We further require that the domain of pX(·|σTX ) for all X in V be
the same in all worlds σ. The a-priori probability of any self-supporting world σ is given by,

p(σ) =
∏

X∈vars(σ)

pX(σX |σTX ).

The task of inference is simply to find the posterior distribution over all minimal self-supporting
worlds that are consistent with the observations and that include the queries. Unlike BLOG, we
don’t have an explicit number statement or an origin statement or explicit object types. Number
statements are simply syntactic sugar since we can always introduce a random variable to represent
the number of objects of some type. For example, in the HMM model we could change K from
a constant to a function K() defined as K = random_variable(lambda: Poisson(5)),
where we use the random_variable decorator in the equivalent functional form.

An important advantage of Bean Machine’s declarative syntax is that the dependency function
of each variable is clearly demarcated. In the imperative version, without performing a data flow
analysis on the code, it is not obvious what the parents of the x(i) or y(i) variables are. In Bean
Machine, the parents of a random variable can be identified by simply executing its dependency
function and recording all referenced variables. For example, the parents of x(3) can be computed
by executing its dependency function with the argument i = 3. This will cause execution to go to
the elseif branch and reference x(2). If we suppose that x(2) is sampled to be 7 during that in-
ference iteration, then the next variable to be referenced is theta(7). The @random variable
decorator allows the engine to intercept these references to maintain the dependency graph. Note
that the dependency graph is dynamic and may change from one inference iteration to another.

3. Inference

The goal of Bayesian inference is to compute the posterior distribution conditioned upon observed
values in a given model. Bean Machine’s inference engine is built upon MCMC using the MH rule
and outputs the posterior as a set of samples. We follow the methodology first proposed in BLOG,
where inference is performed over minimal self-supporting worlds. The world is represented using
a graph structure containing the most recently sampled values for all variables, and the DAG model
dependency structure. The fundamental algorithm underlying our inference engine is Single-Site
Metropolis Hastings (SSMH), described in Algorithm 1, which we then extend with compositional
inference, block inference, and custom proposers.

In SSMH, an MH update is performed on a single random variable at a time. This algorithm
is an extension of Pearl (1987) to open universe models. Given a minimal self-supporting world σ,
on each inference iteration, we iterate through the unobserved random variables in shuffled order,
and perform an MH update on each individual variable X in turn. A single MH update consists
of proposing a new value for the variable X , and then making an accept/reject decision using the
standard MH rule. The parent conditional prior distribution, pX(· | σTX ), is typically the default
choice for the proposal distribution.

For gradient-based single-site methods such as Hamiltonian Monte Carlo (HMC) or Newtonian
Monte Carlo (NMC), because of Bean Machine’s single-site nature, when resampling X , we only
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need to consider the term πX(x) given by,

πX(x) = pX(x | σTX )
∏

Y ∈{Y |X∈σTY }
pY (σY |σTY ).

We note that ∂ log πX(x)
∂x = ∂ log p(σ)

∂x , and all of the quantities in the definition of πX(x) can be
computed by executing the dependency function of X and the dependency function of the children
of X . Thus the runtime complexity of computing the proposal distribution for X , QX(·|σ) or of
performing an MH update on one variable is proportional to the size of its Markov blanket (i.e. its
parents, children, and parents of its children) which is typically smaller than the full graph. Be-
cause single-site only requires local updates, second-order gradient-based inference methods such
as NMC are tractable in Bean Machine.

The model dependency structure is dynamic and may change when new values are proposed
for the variables. Thus, an MH proposal consists of the new value for the variable along with the
updated dependency structure. We commit both changes to the world if a proposal is accepted.

Algorithm 1 Single-Site Metropolis Hastings
Input: evidence E and queriesR
Given: a family of proposal distributionsQ·
Create: initial world σ initialized with E and extended to include
R
repeat

assign V = vars(σ)− E
for X in V do

Sample x′ ∼ QX(·|σ)
Clone σ to σ′ and set σ′X = x′

Recompute σ′TY for Y ∈ children of X in σ′

Make σ′ minimal and self-supporting.

α = min
[
1,
p(σ′)QX (σX |σ′)
p(σ)QX (σ′

X
|σ)

]
u ∼ Uniform(0, 1)
if u < α then

σ = σ′

end if
end for
Output sample σR

until Desired number of samples.

Figure 2: Runtime of HMM model with ob-
served θ, µ and σ withK=3 and 1000 single-
site MCMC samples.

HMM Experiment for SSMH The runtime of SSMH is proportional to the number of variables
in the world times the size of the Markov blanket for each variable. Figure 2 shows Bean Machine’s
inference runtime on the HMM implementation in Figure 1 with respect to the length N of the
HMM. As the size of the Markov blanket for each variable is constant, Bean Machine achieves a
constant time MH update per variable, resulting in an overall linear runtime.

For reference, we compare Bean Machine to Gen’s single-site inference performance. Without
an explicit DAG, Gen re-executes its entire imperative model, resulting in a linear single variable
MH update. Therefore, as N increases, the runtime increases quadratically.

4. Programmable Inference

Bean Machine supports three programmable techniques: compositional, block, and custom.
Composition Different variables require different proposal algorithms to explore the space effi-
ciently. For continuous random variables, gradient-based proposers result in improved exploration

6



BEAN MACHINE: A DECLARATIVE PROBABILISTIC PROGRAMMING LANGUAGE

over vanilla MH. For bounded discrete random variables, other techniques such as Uniform sam-
pling, where new samples are drawn with equal probability across all values, may lead to better
performance. Because Bean Machine’s single-site inference engine already MH updates each vari-
able individually, it is straightforward to extend the framework to use a different proposal algorithm
per variable. This is similar to Turing’s approach to compositional inference, except Bean Machine
benefits from a fast single-site implementation due to its declarative syntax.

Blocking Single-site inference is not always suitable for models with highly correlated variables as
no single variable can be accepted individually. Referring back to the HMM example in Figure 1,
if the proposed value for the hidden state x(i) changes from k to k’, then y(i) is no longer a
child of mu(k) or sigma(k), but is now a child of mu(k’) and sigma(k’). The likelihood
of the world with only the change in x(i) will be very low, as mu(k), sigma(k), mu(k’) and
sigma(k’) were all sampled with the assumption that y(i) was observed from hidden state k.

Bean Machine’s solution is to propose new values for mu’s and sigma’s based on the change
for x(i). First, a new value for x(i) is proposed and the world is updated to reflect y(i) as an
observation of hidden state k′. Then, new values are sequentially proposed for the affected mu’s
and sigma’s. Note that the only mu’s and sigma’s impacted by the proposal from k to k′ are within
the Markov blanket of the original value for x(i) or the Markov blanket of the proposed value
for x(i), which is easily available through Bean Machine’s DAG model dependency structure.
Finally, the new proposals for x(i), mu(k), mu(k’), sigma(k), and sigma(k’) are treated
as a single block and accepted/rejected together using Metropolis Hastings.

Block inference allows Bean Machine to overcome the limitations of single-site because highly
correlated variables are updated together, allowing for worlds with higher probabilities. Further-
more, the inference has efficient runtimes because it is limited to resampling variables within the
Markov blanket. In Figure 3, we show the succinct syntax of specifying block inference with the
line mh.add sequential propose([x, mu, sigma]). This line of code specifies that
in addition to the single-site proposers for all variables, an additional block proposer, which first
samples x, and then updates all mu’s and sigma’s in the Markov blankets, will be introduced.

METHOD K nEFF

BLOCK 25 109
NON-BLOCK 25 89
BLOCK 50 93
NON-BLOCK 50 30

Table 1: HMM results (median of 3 tri-
als with N=200 and 100 samples)

mh = SingleSiteCompositionalInference()
mh.add sequential proposer([x, mu, sigma])
queries = [x(N − 1)]

+ [theta(k) for k in range(K)]
+ [mu(k) for k in range(K)]
+ [sigma(k) for k in range(K)]

obs = {y(i): data[i] for i in range(N)}
samples = mh.infer(queries, obs)

Figure 3: Code for invoking block inference and
specifying queries and observations for HMM

In Table 1, the effective sample size (neff) for the HMM model is shown for inference with
and without blocked moves. From the table, it is clear that block inference outperforms inference
without blocking. Additionally, as the number of hidden states K increases, the performance of
non-blocked inference progressively decreases; this is because each hidden state is explaining fewer
observations, so a change in x(i) without a corresponding change in mu leads to a less plausible
world. In Lightweight MH, which does not resample any mu’s after x(i), the inference was com-
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pletely unable to generate any new samples when the number of observations N exceeded 30, even
with only three hidden states K.
Custom Proposers The final programmable inference method provided by Bean Machine allows
users to supply handwritten proposal algorithms for specific random variables. This enables users
to easily incorporate domain knowledge in a targeted and limited manner to inference.

To show the power of custom proposers, we implemented a PPL model for locating seismic
events (Arora et al. (2013); Arora and Russell (2017)). We further simplified it as shown in Figure 4a
to have exactly one event with attributes given by the random variable event_attr(). The
variable is_detected(station) represents whether a given station detects this event. At the
subset of detecting stations, the attributes of the detection are given by det_attr(station).
The inference problem is to find the event attributes given the detection attributes.

This problem is hard even for state-of-the-art gradient-based proposers due to the non-convexity
of its posterior distribution. Luckily, there is domain knowledge within seismology to mathemat-
ically invert the most likely attributes of an event given the detection attributes at a single station.
Due to the noise in the data, this predicted location can be inaccurate. But, with enough stations,
it is likely that one of the predictions will be close to the true values. With this in mind, we used
Bean Machine’s easily implementable proposer interface (Figure 4b) to write a custom proposer for
the event_attr() variable, which inspects the det_attr(s) children variables and uses a
Gaussian mixture model proposer around the inverted locations for each of the detections.

@random variable
def event attr():

return SeismicEventPrior()

@random variable
def is detected(station):

prob = calculate prob(station, event attr())
return Bernoulli(prob)

@random variable
def det attr(station):

det loc = calculate det(station, event attr())
return Laplace(det loc, scale)

(a) Seismic 2D Model

class SeismicProposer(Proposer):
def propose(self, variable, curr world):

# return a new value for variable and log probability of
# proposing the new value in the current world
det attrs = [child.value for child in variable.children

if child.dependency fn = det attr]
event attrs = [seismic invert(det) for det in det attrs]
self.gmm = construct GMM dist(event attrs)
new value = self.gmm.sample()
return new value, self.gmm.log prob(new value)

def post process(self, variable, new world):
# return the log probability of proposing the
# original value of the variable in the new world
return self.gmm.log prob(variable.value)

(b) Custom proposer

Figure 4: Seismic2D model and corresponding custom proposer
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Our experiments in Figure 5 show that the custom proposer converges to the true location
marked with an X much more quickly than other methods, including gradient-based methods such
as HMC. For the first event, Figure 6 reveals its multimodality in longitude and latitude when hold-
ing the time attribute constant at its true value. The custom proposer is able to find the true location
of the event due to the domain knowledge, while HMC, reliant on gradient information, can take
many iterations before moving from one mode to the other.

5. Experiments on Standard Models

5.1 Bayesian Logistic Regression

Bean Machine is implemented using the PyTorch (Paszke et al., 2017) tensor library to speed up
dense numerical operations and avoid Python’s interpreter overhead. These fast tensor operations
are best exploited by inference on vectorized models with a few high dimensional random variables.
Figure 7 demonstrates this for the Bayesian Logistic Regression (BLR) model.

α ∼ N (0, 10) α ∈ R

β ∼ N (0, 2.5) β ∈ RK

σ ∼ LogNormal(0, ρ) σ ∈ RK

xi ∼ N (0, σ) xi ∈ RK

µi = α+ xTi β

yi ∼ Bernoulli(logit = µi)

(a) Mathematical ver-
sion

@random variable
def alpha():

return Normal(0, 10)
@random variable
def beta():

return Normal(0, 2.5, shape=(K,))
@random variable
def sigma():

return LogNormal(0, RHO, shape=(K,))

@random variable
def x(i):

return Normal(0, sigma())
def mu(i):

return alpha() + dot(x(i), beta())
@random variable
def y(i):

return Bernoulli(logit = mu(i))

(b) Bean Machine version

Figure 7: Bayesian Logistic Regression (BLR) Model.

For evaluation purposes, we sample a dataset of N pairs of x and y values from the model
and use half for inference and the other half for evaluating predictive log-likelihood (PLL). Figure
8 plots the growth of PLL versus samples across various inference engines for a small problem
size, N = 20K. Table 2 shows the corresponding inference runtime and neff stats. Bean Machine,
Stan (Carpenter et al., 2017) and NumPyro (Phan et al., 2019) are all using NUTS. Pyro is using
Stochastic Variational Inference, and Bootstrap is using the basic logistic regression module in
SciPy. This experiment demonstrates that Bean Machine and Stan both converge similarly, however,
because it is a small model, the Bean Machine runtime is dominated by Python interpreter overhead.
Note that Pyro does not converge to the same PLL within 1000 samples. Convergence difficulty in
the BLR model is due to the high value of hyper-prior ρ, which introduces differential scaling along
each data dimension.

Figure 9 and Table 3 show the same BLR experiment for a larger problem size, N =2M. Com-
parisons are limited to Stan and Bean Machine. The results show that Bean Machine continues to
scale well on this model and performs better than Stan in runtime due to its use of PyTorch tensor
library.

5.2 Annotation Model

Our final set of experiments is on a classic annotation model previously presented in Passonneau and
Carpenter (2014). The model is specified in Figure 10 and is used to estimate the prevalence, π, of

9



TEHRANI, ARORA, LI, ET AL.

C possible categories of items given noisy labels provided by labelers with an unknown confusion
matrix unique to each labeler. θl is the confusion matrix of the l’th labeler such that θlmj is the
probability that this labeler will label an item with true category m as j. Similar to the BLR model,
we generateN triples of labeler, item, and label with half given to inference to deduce the prevalence
π and confusion matrices θl·.
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Figure 8: BLR predictive log likelihood
with N=20000, K=10, ρ=10.
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Figure 9: BLR predictive log likelihood
with N=2M, K=10, ρ=10.

METHOD RUNTIME(S) nEFF

BOOTSTRAPPING 70 2968
BEAN MACHINE 196 446
NUMPYRO 15.73 381
PYRO(SVI) 4055.7 4
STAN 27.33 1037

Table 2: BLR: N=20000, K=10, ρ=10.

METHOD RUNTIME(S) nEFF

BEAN MACHINE 4293.4 164
STAN 13903 1486

Table 3: BLR: N=2M, K=10, ρ=10.

π ∼ Dirichlet
(

1

C
, . . . ,

1

C

)
zi ∼ Categorical(π)

θlm ∼ Dirichlet(αm)

yli ∼ Categorical(θlzi )

(a) Mathematical version

@random variable
def pi():

return Dirichlet(ones(C) / C)
@random variable
def z(item):

return Categorical(pi())

@random variable
def theta(labeler, true class):

return Dirichlet(ALPHA[true class])
@random variable
def label(labeler, item):

return Categorical(theta(labeler, z(item)))

(b) Bean Machine version

Figure 10: Annotation Model.

Bean Machine’s declarative syntax shines on this example: simultaneously concisely capturing
the model’s complex and dynamic dependency structure, while also making these dependencies ex-
plicitly available to the inference engine. Single-site inference exploits this structure and allows the
use of appropriate inference techniques on each of these variables, including second-order meth-
ods rarely viable in coarse models with high dimensional variables. In this model, Bean Machine
uses NMC for the continuous-valued variables pi() and theta(..) and uniform sampling for
each of the discrete z(..) variables. In contrast, Stan, which doesn’t have single-site inference,
requires the users to manually integrate out z in the model and it concatenates all of the pi and
theta variables into one vector for global inference.

The results comparing the two PPLs are shown in Figure 11 and Table 4. This experiment shows
Bean Machine is able to obtain results comparable to Stan. The coordinate-wise moves in single-site
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inference allows for an effective exploration of the posterior. We acknowledge that un-vectorized
Python is slow, but the methods that we have outlined in this paper are applicable to declarative
PPLs written in Julia or C++ where such performance limitations do not apply.

METHOD RUNTIME(S) neff

SINGLE-SITE 8560 622
GLOBAL 104 487

Table 4: Annotation Model with
N=1000, 50 labelers, and C=3. Global
results are from Stan and Single-Site are
from Bean Machine
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Figure 11: Annotation Model PLL with
N=1000, 50 labelers, and C=3.

6. Conclusion

Our work has highlighted the importance of language style – declarative versus imperative – in PPL
research. We have shown that the the problem of deducing the dynamic dependence graph that
current imperative PPL research is grappling with was previously solved by declarative PPLs. In
addition to inventing a new universal declarative PPL, we have shown that some of the recent work
on composable and programmable inference can be incorporated and extended very easily in our
language. In future, we are working on using information from the dynamic dependence graph to
efficiently vectorize the basic inference operations.
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