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Abstract

Entropic regularization of policies in Rein-
forcement Learning (RL) is a commonly used
heuristic to ensure that the learned policy ex-
plores the state-space sufficiently before over-
fitting to a local optimal policy. The pri-
mary motivation for using entropy is for ex-
ploration and disambiguating optimal poli-
cies; however, the theoretical effects are not
entirely understood. In this work, we study
the more general regularized RL objective
and using Fenchel duality; we derive the dual
problem which takes the form of an adver-
sarial reward problem. In particular, we find
that the optimal policy found by a regular-
ized objective is precisely an optimal policy
of a reinforcement learning problem under a
worst-case adversarial reward. Our result al-
lows us to reinterpret the popular entropic
regularization scheme as a form of robustifi-
cation. Furthermore, due to the generality of
our results, we apply to other existing reg-
ularization schemes. Our results thus give
insights into the effects of regularization of
policies and deepen our understanding of ex-
ploration through robust rewards at large.

1 Introduction

Reinforcement Learning (RL) is a paradigm of al-
gorithms which learn policies that maximize the ex-
pected discounted reward specified by a Markov De-
cision Process (MDP) (Sutton and Barto, 2018). The
formulation of an MDP is well-posed with links in util-
ity theory (Russell and Norvig, 2002) and specifies a
reward function where the solution can be found pre-
cisely in a deterministic form. However, in practice,
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the reward function is typically an idealization, and it
turns out that an optimal policy in this model will cope
terribly when presented to unseen or uncertain situa-
tions. Intuitively, it is anticipated that there exist mul-
tiple policies that are near-optimal to this reward yet
exhibit more robust and diversified behaviour. In par-
ticular, having multiple solutions of this form would
be preferred since they can help the practitioner in
understanding the environment and problem better.

Finding near-optimal policies in this sense requires
balancing between ensuring that the policy is optimal
for the given reward and demonstrates some form of
robustness or diversity. This is commonly recollected
as the exploration vs exploitation trade-off1. One of
the most effective ways in ensuring this balance is by
altering the objective of the MDP to include a form of
penalty so that the resulting policy reflects characteris-
tics of diversified behaviour. Causal entropy (Ziebart,
2010) is a popular example of this, where the policy
is penalized for being deterministic in favour of ex-
ploration and disambiguating optimal policies. This
has lead to the MaxEnt framework (Haarnoja et al.,
2018c) and shown compelling relations to probabilistic
inference (Dayan and Hinton, 1997; Neumann et al.,
2011; Todorov, 2007; Kappen, 2005; Toussaint, 2009;
Rawlik et al., 2013; Theodorou et al., 2010; Ziebart,
2010) whilst maintaining empirically superior perfor-
mance on several tasks (Haarnoja et al., 2018c,b), in-
cluding robustness in the face of uncertainty (Haarnoja
et al., 2018a). In the case where the reward function is
not specified, the entropy alone as an objective is also
prevalent to ensure exploration (Hazan et al., 2019).
Similar forms of regularization have appeared in Wu
et al. (2019), which ensure that the policy is stabi-
lized in accordance with a pre-determined behaviour
and other forms of diversifying schemes using policy
regularization have been developed in (Hong et al.,
2018). Furthermore, the benefits of regularizers have
also been observed in adversarial imitation learning

(*) Work done while at Microsoft Research Cambridge.
1Traditionally, this refers to the sequential behavior

where one is interested in finding better policies at each
timestep.
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Figure 1: Our main is to provide a unified view of existing objectives in Reinforcement Learning and relate them
to a reward robustness problem as highlighted above through Theorem 1. Additionally, we show another link
between regularized policies and Q-learning in Theorem 4.

methods (Ho and Ermon, 2016; Li et al., 2017).

While the empirical success should rejoice, it is some-
what unsettling that changing the objective deviates
from the MDP set-up, which was initially motivated
through the axioms of utility theory (Russell and
Norvig, 2002). In particular, it is not clear what
kind of policy these regularized objectives are learn-
ing from the perspective of the original reward maxi-
mization problems, especially since it is apparent that
regularized policies pose successfully in these schemes.
On this front, there exists work that shows entropic
regularization smoothens the optimization landspace
(Ahmed et al., 2019) and induces sparse policies when
considering a larger class of policy regularizers (Yang
et al., 2019). While these works advocate the effects
of policy regularization, the benefits of regularization
from an accuracy or robustness perspective and not
very well understood. This is especially relevant since
in machine learning more generally, regularization has
shown strong links to generalization and robustness
(Duchi et al., 2016; Sinha et al., 2017; Husain, 2020).
The first attempt is (Eysenbach and Levine, 2019),
which shows that MaxEnt performs explicitly well on
a robust reward problem. This approach however, is
limited to only the MaxEnt and cannot apply to other
schemes such as regularized imitation learning.

In this work, we tackle this precisely and focus on
the problem specified by finding a policy that maxi-
mizes an objective R that is concave in the space of
state-action visitation distributions. This objective in-
cludes the standard reward objective and subsumes
other popular objectives such as the MaxEnt frame-
work and imitation learning. Our main insight is that
the policy learned using a concave objective R is robust
against rewards chosen by an adversary, where R de-
termines the nature of the adversary. We find that the
policy is precisely a maximizer against the worst-case
reward r′. Moreover, we characterize the analytic form
of r′ (using a technical assumption on R), which de-
livers more insight onto the nature of robustness. Our
results thus allow us to reinterpret entropic regulariza-
tion and exploration more generally as a robustifying
mechanism and add to the advocation for using such
methods in practice. In summary, our contributions
are

1. A duality result linking generalized RL objec-
tives as adversarial reward problems2, which al-
lows us to reinterpret the extant MaxEnt frame-
work, among others, as a robustifying mechanism.

2We remark that this is not the same as conventional
adversarial training, as found in supervised learning.
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2. Characterization of the adversarial reward solved
by these regularized policy objectives. In doing
so, we derive a generalized value function inter-
pretation of entropic regularization.

3. A primal-dual link between the regularized policy
objective and Q-learning loss. This allows us to
reinterpret the mean-squared error Q-learning as
a form regularization of policies and robustifica-
tion against rewards in light of our main result.

4. Deriving the robust-reward problem for other
popular frameworks such as imitation learning
and model-free entropic optimization. This allows
us to compare and unify these separate problems
under reward-robustness. We illustrate this dia-
grammatically in Figure 1.

2 Preliminaries

Reinforcement Learning We use a compact set
S to denote the state space, A the action space and
set X = S × A. We assume these spaces are Pol-
ish and furthermore use P(S), P(A) and P(X ) to
denote the set of Borel probability measures. Sim-
ilarly, we use Fb(S), Fb(A) and Fb(X ) to denote
the set of bounded and measurable functions on the
sets S,A and X respectively. A reward function is
a mapping r : X → R, a transition kernel is spec-
ified as P : X → P(S) and a policy is a mapping
π : S → P(A). Let γ > 0 be an implicit fixed dis-
count parameter. It can be shown that each S, A,
P , initial distribution µ0 and policy π uniquely define
a Markov chain {(St, At)}∞t=1 ⊆ X . We denote the
underlying probability space as (X ,T , Pµ0,π) where
Pµ0,π ∈ P(X ) is referred to as the state-action visi-
tation distribution. We refer the reader to (Meyn and
Tweedie, 2012, Chapter 3) and (Revuz, 2008, Chap-
ter 2) for more detailed constructions. The goal in RL
is to find a policy that maximizes expected return over
the state-action pairs visited, which can be concretely
summarized in the optimization problem:

sup
π:S→P(A)

EPµ0,π(s,a) [r(s, a)] . (1)

This objective is linear in the space of state-action visi-
tation distributions and thus is equivalent to the linear
program maxµ∈KP,γ

∫
X r(s, a)dµ(s, a) where

KP,γ =

{
µ ∈P(X ) :

∫
A
µ(s, a)da = (1− γ)µ0(s)

+ γ

∫
X
P (s | s′, a′)dµ(s′, a′)

}
.

In particular, for any policy π, we have that Pµ0,π ∈
KP,γ and that for any element µ ∈ KP,γ , we

can construct the corresponding policy πµ(s) =
µ(s, a)/

∫
A µ(s, a)da. We will now introduce notation

to formally write the reinforcement learning problem
described in 1 since it will serve useful for the remain-
der of the paper.

Definition 1 For a reward function r : X → R, we
define

RLP,γ(r) := sup
µ∈KP,γ

∫
X
r(s, a)dµ(s, a)

MP,γ(r) := arg sup
µ∈KP,γ

∫
X
r(s, a)dµ(s, a)

In the above, RLP,γ(r) is the same as (1) and repre-
sents the maximum expected reward possible under an
environment P , discount factor γ and reward function
r. The set MP,γ(r) ⊆ P(X ) represent the solutions
that achieve maximal expected reward.

Convex Analysis and Legendre-Fenchel Duality
We use B(X ) to denote the set of finitely-additive
measures and denote its topological dual to be Fb(X ),
the set of measurable and bounded functions mapping
from X to R. For any functional F : B(X ) → R, we
define the Legendre-Fenchel dual, for any h ∈ Fb(X )
as

F ?(h) = sup
µ∈B(X )

(∫
X
h(x)dµ(x)− F (µ)

)
.

For a set of functions F ⊆ Fb(X ), we use ιF (h) to
denote the convex indicator function defined which is
0 if h ∈ F and +∞ otherwise. For any two measures
µ, ν ∈ B(X ), we define the f -divergence between µ
and ν to be Df (µ, ν) =

∫
X f(dµ/dν)dν −

∫
X dν + 1

where f : R → (−∞,∞] is a lower semicontinuous
convex function with f(1) = 0. In particular, the set-
ting of f(t) = t log t is the popular Kullback-Leiber
divergence, which we denote by KL(µ, ν) = Df (µ, ν).

3 Related Work

Our main contribution is a reinterpretation of regular-
ized policy maximization as robustifying mechanisms
and so we discuss developments at understanding these
methods along with similar results existing in machine
learning at large. The idea of using causal entropy
(Ziebart, 2010) is guided by the intuition of encour-
aging curious and diversified behavior. Further devel-
oped in (Haarnoja et al., 2018c), empirical success of
using this penalty has been apparent. In particular,
regularized policies unlike standard policies have illus-
trated robust behavior in the face of uncertainty and
diversified behavior in finite sample schemes. Despite
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the empirical success, there is not much work studying
these benefits from a formal perspective. The main ex-
isting results show that regularized objectives include
smoothen the optimization landscape (Ahmed et al.,
2019) and yield sparse policies (Yang et al., 2019).
(Eysenbach and Levine, 2019) focuses on the MaxEnt
framework and relates the optimal policy to solving a
variable reward problem, which is line with our find-
ings. Their results in contrast to ours, cannot be ap-
plied to other policy regularizers or other schemes that
use causal entropy in the absence of reward functions
such as adversarial imitation learning (Li et al., 2017).

In the realm of machine learning more generally, regu-
larization has been principally established as a robusti-
fying strategy. In supervised learning, various forms of
robustness have shown connections to a number of reg-
ularization penalties such as Lipschitzness (Blanchet
and Murthy, 2019; Sinha et al., 2017; Cranko et al.,
2020; Husain, 2020), variance (Duchi et al., 2016) and
Hilbert space norms (Staib and Jegelka, 2019). In Op-
timal Transport (OT), it has also been shown that
entropic regularization is linked to ground cost robust-
ness (Paty and Cuturi, 2020). Our result thus extends
and develops these narratives for RL. (Zhang et al.,
2020) also uses technical tools similar to our work such
as Fenchel duality however for their purposes and find-
ings are for quite different purposes.

4 Reward Robust Reinforcement
Learning

We will be focusing on the problem specified by

sup
µ∈KP,γ

R(µ),

where R : B(X ) → R is a concave upper semicon-
tinuous function. Note that when a reward function
r : X → R is given, setting R(µ) =

∫
X r(x)dµ(x) re-

covers the standard maximum expected reward prob-
lem. Furthermore, the above subsumes other devel-
opments of RL in the case where the reward is un-
known and R is chosen to be the entropy (Hazan et al.,
2019) or imitation learning when R(µ) = −D(µ, µE)
where µE is some expert demonstration and D is a di-
vergence between probability measures (Ghasemipour
et al., 2019). We present the main result which shows
the above as a reward robust RL problem.

Theorem 1 For any concave upper semicontinuous
function R : B(X )→ R, we have

sup
µ∈KP,γ

R(µ) = inf
r′∈Fb(X )

(RLP,γ (r′) + (−R)? (−r′))

Proof (Sketch) The key part of the proof is to rewrite
R in terms of the convex conjugate of −R, which is

well-defined since −R is lower semicontinuous and con-
vex, by assumptions on R. The proof then concludes
by moving the supremum over µ inside by an applica-
tion of a generalized minimax theorem.

The key point from the above is that the value of the
maximal policy over R is exactly equal to the problem
of finding an adversarial reward. In particular, the
adversarial reward problem seeks to find a reward r′

that makes the maximally achievable reward RLP,γ as
small as possible while paying the penalty (−R)?(−r′),
where (−R)? is a convex function. We remark that
this is a one-party problem involving only an adver-
sary. The conventional notion of robustness would re-
late this to the optimal model µ. We do this precisely
by presenting a result that links the optimal µ and
adversarial reward r′:

Theorem 2 Let µ∗ and r∗ be the optimal solution to
the problems specified in Theorem 1, then we have that
µ∗ ∈MP,γ (r∗).

This result tell us that an optimal policy found by solv-
ing the regularized objective is precisely an optimal
policy of the Reinforcement Learning problem speci-
fied by the adversarial reward r∗. This is particularly
striking since it tells us that though we are maximiz-
ing some concave R, which may be motivated for sepa-
rate purposes, we can always guarantee that the policy
learned is optimal for some reward r′ in the axiomatic
utility theory sense. In particular, this reward r∗ is
chosen to be the worst-case for this environment. The
strength of robustness and nature of the adversarial
reward clearly depends on the choice of R, as this is
what budgets the adversarial reward r′. We will show
that under a technical assumption on R, we can char-
acterize the form r∗ takes, which happens to depend
on a single state-dependent mapping V ∈ Fb(S). The
particular technical assumption on (−R)? is that it is
increasing by which we mean r(x) ≥ r′(x) for every
x ∈ X implies (−R)?(r) ≥ (−R)?(r′). We first intro-
duce a result.

Theorem 3 Suppose R is concave upper semicontinu-
ous and let I be the value of the optimization problem

inf
V ∈Fb(S),r∈Fb(X )

(
(1− γ)

∫
S
V (s)dµ0(s) + (−R)?(−r)

)
,

(2)

s. t. V (s) ≥ r(s, a) + γ

∫
S
V (s′)dP (s′ | s, a).

It then holds that I = supµ∈KP,γ R(µ).

It should be first noted that the above is a strong du-
ality Theorem and indeed is a generalized version of
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the standard linear programming duality between pol-
icy maximization and value function minimization as
described in (Agarwal et al., 2019), which is recovered
when R(µ) =

∫
X r(x)dµ(x) for some reward r. We

will now show that the optimal value function of this
objective gives the optimal reward. In particular, note
that by solving the above constraint for the reward
yields

rV (s, a) := V (s)− γ ·
∫
S
V (s′)dP (s′ | s, a). (3)

We then have the following result

Lemma 1 Suppose (−R)? is increasing and V ∗ is the
optimal solution of (2) then rV ∗ is the optimal adver-
sarial reward.

The main consequence of the above Lemma is that it
characterizes the shape of the adversarial reward cho-
sen. In particular, it tells us that as long as as R
satisfies the technical assumption ((−R)? is increas-
ing), the adversarial reward will be of the form rV
for some V . This is insightful since it tells us that
the adversarial reward relates rewards between states
through the dynamics of P . For example, note that
if a particular state-action pair (s, a) yields the same
state s then rV (s, a) = (1 − γ)V (s). This technical
condition on R can be satisfied for any R with a sim-
ple reparametrization, which we lay out in Lemma 1 in
the supplementary material, and exploit when deriving
(−R)? for Soft-Actor-Critic. Moreover, we will show
that the common choices of R which are motivated for
smoothing or other empirical benefits naturally satisfy
this technical assumption.

Generalized Soft-Actor-Critic Regularization
Consider the case of having an available reward and
using a convex penalty Ω : B(X )×B(X )→ R for the
policy so we select R = RΩ of the form

RΩ(µ) =

∫
X
r(s, a)dµ(s, a)− ε · Ω(µ),

for some ε > 0. It can easily be shown (see Appendix)

that (−R)?(−r′) = εΩ?
(
r−r′
ε

)
, so that we have the

following.

Corollary 1 Let Ω : B(X ) → R be a convex penalty
then for any ε > 0 we have

sup
µ∈KP,γ

RΩ(µ) = inf
r′∈Fb(X )

(
RLP,γ (r′) + εΩ?

(
r − r′

ε

))
.

The above tells us that the adversarial reward prob-
lem pays a price for deviating from the given re-

ward r due to the second term εΩ?
(
r−r′
ε

)
. In

the Soft-Actor-Critic (SAC) method, this corre-
sponds to selecting (upto some constant) ΩSAC(µ) =
Eµ(s,a) [KL(πµ(· | s), U)], where πµ is the policy in-
duced by µ and U is the uniform distribution over
A. We presented Corollary 1 with a general Ω, which
we believe will be useful for future developments. In
this work, we consider the causal policy entropy along
with 2-Tsallis entropy in the next next section. For
the SAC case, we have the following result

Lemma 2 (Soft-Actor-Critic) For any ε > 0 and
r, r′ ∈ F(X ), we have

εΩ?SAC

(
r − r′

ε

)
= ε · sup

s∈S

(∫
X

exp

(
r(s, a)− r′(s, a)

ε

)
dU(a)− 1

)

If one reasons about how the adversary behaves, the
first incentive is to make RLP,γ(r′) small by selecting
very small rewards across the environment. However,
we can see that for the case of entropic regularization,
the adversary pays a big price for selecting r′ to be far
from the original reward r for any given state. Note
that in this case, we have (−R)? is increasing and so
in light of the concrete insight found in Lemma 1, we
are able to reason about the SAC policy maximizing a
reward of the worst-case reward of the form (3). This
is striking since it tells us that the adversarial reward
r′ will respect the environment dynamics across the
action space even if the ground reward r does not.

Derivation of Q-learning through robust learn-
ing In this subsection, we derive Q-learning through
the reward-robust RL framework. In this context,
learning a policy that is robust to a small variation in
the reward corresponds to allowing a small violation
of the Bellman equation with respect to the original
reward function. For any Q-function Q ∈ Fb(X ), we
define the bellman operator Tr : Fb(X )→ Fb(X ) as

TrQ(s, a) = r(s, a) + γ

∫
X

sup
a′∈A

Q(s′, a′)dP (s′ | s, a)

The maximum reward problem can be restated as

RLP,γ(r) = inf
Q≥TrQ

∫
S

sup
a∈A

Q(s, a)dµ0(s), (4)

where the optimal Q∗ ∈ Fb(X ) from the above is a
contraction of Tr meaning that TrQ∗ = Q∗. As it is
difficult to find this contraction, one method known as
deep Q-learning tackles this by parametrizing Q with
a deep neural network and uses regression in the su-
pervised learning sense to match TrQ to Q (Sutton
and Barto, 2018). This will deviate from the original
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objective since it relaxes this constraint Q = TrQ into
the term appearing in the objective, which will natu-
rally introduce bias. We now show quite a remarkable
connection that doing so is related to policy regular-
ization and by virtue of Corollary 1, linked to reward
robustness.

Theorem 4 For any ε > 0 and convex Ω such that
Ω? is increasing, we have

sup
µ∈KP,γ

RΩ(µ) = inf
Q∈Fb(X )

(
εΩ?

(
TrQ−Q

ε

)

+

∫
S

sup
a∈A

Q(s, a)dµ0(s)

)
.

We remark that the above is an inequality if Ω? is
not increasing which results in weak duality. First
note that the Theorem is precisely a relaxed uncon-
strained version of constraint objective appearing in
(4). The most notable aspect of this result is that it
links the regularized objective to finding a Q-function
that minimizes the difference in the Bellman update

εΩ?
(
TrQ−Q

ε

)
, depending on the choice of Ω. There

exists work that show a relationship between gradi-
ents in entropy regularization and Q-learning (Schul-
man et al., 2017), however we state a more generalized
result and bridge it to reward robustness. To see how
this relates to the existing losses used in Q-learning,
let us consider both the finite and continuous case. In
the finite case, we can pick Ω(µ) =

∑
x∈X µ(x)2, which

is the 2-Tsallis entropy. One can easily derive the dual
Ω?(r) = 1

4

∑
x∈X r(x)2 and thus the right side of The-

orem 4 becomes (setting ε = 1)

inf
Q∈Fb(X )

(
1

4

∑
(s,a)∈X

(TrQ(s, a)−Q(s, a))
2

+

∫
S

sup
a∈A

Q(s, a)dµ0(s)

)
.

The variational problem above is a regression problem
betweenQ and TrQ using the squared loss, which is the
typical objective in deep Q-learning. The consequence
of our result is that using this particular choice of loss
to learn the Q function is related to learning a pol-
icy with the 2-Tsallis entropy, which is rather striking.
Furthermore, the 2-Tsallis entropy behaves similar to
the Shannon entropy in the sense that it is maximized
when µ is uniform and minimized when µ is degen-
erate. In the continuous case, a buffer distribution
ν ∈ P(X ) is used for the loss by defining the mean-
squared error as L2 norm with respect to ν between
TrQ and Q: given by ‖TrQ−Q‖2L2(ν). In this case,

it can be shown that if Ω(µ) = 1
4

∫
X

(
dµ
dν

)2

dν when

µ� ν and +∞ otherwise then Ω?(h) = ‖h‖2L2(ν).

Imitation Learning One method of learning a pol-
icy is to imitate expert data which comes in the
form of a given distribution µE ∈ P(X ). Unlike
the regularized schemes above, there is no specified
reward function. Using the unified perspective pro-
vided in (Ghasemipour et al., 2019), where imitation
learning is cast as divergence minimization, we can
write these methods into our framework by select-
ing R(µ) = −D(µ, µE) (for each corresponding diver-
gence). In particular, our goal is to not only derive the
corresponding robust-reward problem but also show
that (−R)? will be increasing for these cases. We del-
egate the technical derivations to the Supplementary
Section 1.8 and only present the results here. First, we
focus on Adversarial Inverse Reinforcement Learning
(AIRL) (Fu et al., 2017) selecting R(µ) = −KL(µ, µE)
in which case we have

sup
µ∈KP,γ

R(µ)

= inf
r′∈Fb(X )

(
RLP,γ(r′) +

∫
X

exp (−r′(x)) dµE(x)− 1

)
,

noting that (−R)? is increasing. We show the more
general result that when R(µ) = −Df (µ, µE) where
Df is an f -divergence then (−R)? will be increas-
ing. Using this choice of R corresponds to f -MAX
(Ghasemipour et al., 2019). Another method for imita-
tion learning is to use a discriminator based divergence
as employed in InfoGAIL (Li et al., 2017). In this set-
ting we assume we have a distance d : X × X → R
and denoting the Lipschitz constant of a function h ∈
Fb(X ) as Lipd(h) := supx,x′∈X |h(x)− h(x′)| /d(x, x′),
we set

R(µ) = − sup
h:Lipd(h)≤L

(∫
X
h(x)dµ(x)−

∫
X
h(x)dµE(x)

)
,

where L > 0 is chosen as a hyperparameter. In this
case, we have

sup
µ∈KP,γ

R(µ) = inf
r′:Lipd(r′)≤L

(
RLP,γ(r′)−

∫
X
r′dµE

)
.

It is clear from the above that the adversarial reward
seeks to ensure RLP,γ is as low as possible while main-
taining that r′ is large around the expert trajectory
due to the second term. It should also be noted that
the choice of L reflects as the budget of the adversary.
We do not have (−R)? increasing for this choice of R.
On the other hand, it is typical in practice that an
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Figure 2: Expected reward over 1000 episodes of policies returned by SAC trained on an adversarial reward radv

and tested on the true reward using different weighting ε for entropy.

entropy term is included in this term:

R(µ) =− sup
h:Lipd(h)≤L

(∫
X
h(x)dµ(x)−

∫
X
h(x)dµE(x)

)
− εEµ(s,a) [KL(πµ(· | s), UA)] ,

for some ε > 0 where UA is the uniform distribution
over A. Under this setting, it turns out that (−R)? is
now increasing, in which case Lemma 1 applies. It is
rather intriguing that the role of entropy here ensures
that the reward that the InfoGAIL policy maximizes
is worst-case, of high value around trajectories from
the expert, and attains the familiar shape in Equa-
tion (3). This further advocates for the use of entropy
regularization.

Entropic Exploration We now consider the case
where there is no reward function or expert distribu-
tion specified and the only objective to maximize is
entropy. For such a scheme, there exists efficient al-
gorithms (Hazan et al., 2019). More specifically, we
have R(µ) = −KL(µ,UX ) where UX is the uniform
distribution over X . We then have that

sup
µ∈KP,γ

R(µ)

= inf
r′∈Fb(X )

(
RLP,γ(r′) +

∫
X

exp (−r′(x)) dUX (x)− 1

)
,

and similar to the other choices of R, we have that
(−R)? is increasing. We would like to remark that if
one defines KL to be +∞ when µ is not a probabil-
ity measure then (−R)?(r) = log

∫
X exp(r(x))dUX (x)

(Ruderman et al., 2012).

5 Experiments

The main practical ramification of our work is to advo-
cate the use of regularized policies by highlighting the

robustification aspect, for which we derived a strong
theoretical link. There exists extensive empirical ev-
idence for which our work provides foundation for.
However, we will show some brief yet illustrative ex-
amples which focus on the reward adversarial aspect of
regularized policies, as illustrated by our main result
Theorem 1. Our goal is thus to see the performance
of regularized policies on rewards they are not trained
on and analyze their behavior based on the robust-
ness parameter ε. First we consider the Pendulum-
v0 environment and train the Soft-Actor-Critic (SAC)
method on a reward that has been altered with. We
do so by constructing an adversarial reward radv using

radv =

{
r(s, a) + δ if r(s, a) ≤ −5

r(s, a) otherwise

where δ is drawn from a normal distribution centered
at 5 with variance 0.1. In doing so, initial states of
the pendulum will be favored and easier to reach how-
ever the maximal reward will still be attained at the
inverted position. We train SAC for various values of
ε and test their performance on the true reward in
Figure 2 (left). We find that the effect of increasing
ε yields better performance than no entropy however
adding too much entropy (in the case of ε = 1) dam-
ages performance. We repeat a similar experiment for
HalfCheetah-v2 however using an adversarial reward
specified by

radv =

{
r(s, a) + δ if r(s, a) ≤ 0

r(s, a) otherwise

where δ is drawn from a normal distribution centered
at 3 with variance 0.1. We plot the performance under
the expected reward in Figure 2 (right). It can also be
seen that adding entropy surpasses the non-regularized
policy ε = 0 and that increasing ε higher will worsen
performance (as seen by ε = 2.5).
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6 Conclusion

Our results allow us to reason about regularization of
policies and the regression Q-learning objective from
the perspective of robustness. This is not surprising
given the advancements in machine learning more gen-
erally pointing at the link between regularization and
robustness along with the impressive empirical evi-
dence of these schemes. Regularized objectives, how-
ever, offer other benefits that are inherently sample
based phenomenon such as smoothened objectives or
stable training. While our results do not directly tar-
get this, we have built a connection between two ob-
jectives which will pose modular for future develop-
ments.
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