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Abstract
We provide theoretical investigations into off-
policy evaluation in reinforcement learning using
function approximators for (marginalized) impor-
tance weights and value functions. Our contribu-
tions include:
(1) A new estimator, MWL, that directly estimates
importance ratios over the state-action distribu-
tions, removing the reliance on knowledge of the
behavior policy as in prior work (Liu et al., 2018).
(2) Another new estimator, MQL, obtained by
swapping the roles of importance weights and
value-functions in MWL. MQL has an intuitive
interpretation of minimizing average Bellman er-
rors and can be combined with MWL in a doubly
robust manner.
(3) Several additional results that offer further
insights, including the sample complexities of
MWL and MQL, their asymptotic optimality in
the tabular setting, how the learned importance
weights depend the choice of the discriminator
class, and how our methods provide a unified view
of some old and new algorithms in RL.

1. Introduction
In reinforcement learning (RL), off-policy evaluation (OPE)
refers to the problem of estimating the performance of a
new policy using historical data collected from a different
policy, which is of crucial importance to the real-world
applications of RL. The problem is genuinely hard as any
unbiased estimator has to suffer a variance exponential in
horizon in the worst case (Li et al., 2015; Jiang and Li,
2016), known as the curse of horizon.

Recently, a new family of estimators based on marginalized
importance sampling (MIS) receive significant attention
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from the community (Liu et al., 2018; Xie et al., 2019),
as they overcome the curse of horizon with relatively mild
representation assumptions. The basic idea is to learn the
marginalized importance weight that converts the state distri-
bution in the data to that induced by the target policy, which
sometimes has much smaller variance than the importance
weight on action sequences used by standard sequential IS.
Among these works, Liu et al. (2018) learn the importance
weights by solving a minimax optimization problem defined
with the help of a discriminator value-function class.

In this work, we investigate more deeply the space of algo-
rithms that utilize a value-function class and an importance
weight class for OPE. Our main contributions are:

• (Section 4) A new estimator, MWL, that directly esti-
mates importance ratios over the state-action distributions,
removing the reliance on knowledge of the behavior pol-
icy as in prior work (Liu et al., 2018).

• (Section 5) By swapping the roles of importance weights
and Q-functions in MWL, we obtain a new estimator
that learns a Q-function using importance weights as
discriminators. The procedure and the guarantees of MQL
exhibit an interesting symmetry w.r.t. MWL. We also
combine MWL and MQL in a doubly robust manner and
provide their sample complexity guarantees (Section 6).

• (Section 7) We examine the statistical efficiency of MWL
and MQL, and show that by modeling state-action func-
tions, MWL and MQL are able to achieve the semipara-
metric lower bound of OPE in the tabular setting while
their state-function variants fail to do so.

• Our work provides a unified view of many old and new
algorithms in RL. For example, when both importance
weights and value functions are modeled using the same
linear class, we recover LSTDQ (Lagoudakis and Parr,
2004) and off-policy LSTD (Bertsekas and Yu, 2009;
Dann et al., 2014) as special cases of MWL/MQL and
their state-function variants. This gives LSTD algorithms
a novel interpretation that is very different from the stan-
dard TD intuition. As another example, (tabular) model-
based OPE and step-wise importance sampling—two al-
gorithms that are so different that we seldom connect
them to each other—are both special cases of MWL.
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2. Preliminaries
An infinite-horizon discounted MDP is often specified by
a tuple (S,A, P,R, γ) where S is the state space, A is the
action space, P : S ×A → ∆(S) is the transition function,
R : S × A → ∆([0, Rmax]) is the reward function, and
γ ∈ [0, 1) is the discount factor. We also use X := S × A
to denote the space of state-action pairs. Given an MDP,
a (stochastic) policy π : S → ∆(A) and a starting state
distribution d0 ∈ ∆(S) together determine a distribution
over trajectories of the form s0, a0, r0, s1, a1, r1, . . ., where
s0 ∼ d0, at ∼ π(st), rt ∼ R(st, at), and st+1 ∼ P (st, at)
for t ≥ 0. The ultimate measure of the a policy’s perfor-
mance is the (normalized) expected discounted return:

Rπ := (1− γ)Ed0,π [
∑∞
t=0 γ

trt] , (1)

where the expectation is taken over the randomness of the
trajectory determined by the initial distribution and the pol-
icy on the subscript, and (1− γ) is the normalization factor.

A concept central to this paper is the notion of (normalized)
discounted occupancy:

dπ,γ := (1− γ)
∑∞
t=0 γ

tdπ,t,

where dπ,t ∈ ∆(X ) is the distribution of (st, at) under
policy π. (The dependence on d0 is made implicit.) We
will sometimes also write s ∼ dπ,γ for sampling from its
marginal distribution over states. An important property of
discounted occupancy, which we will make heavy use of, is

Rπ = E(s,a)∼dπ,γ , r∼R(s,a)[r]. (2)

It will be useful to define the policy-specific Q-function:

Qπ(s, a) := E[
∑∞
t=0 γ

trt|s0 = s, a0 = a; at ∼ π(st) ∀t > 0].

The corresponding state-value function is V π(s) :=
Qπ(s, π), where for any function f , f(s, π) is the short-
hand for Ea∼π(s)[f(s, a)].

Off-Policy Evaluation (OPE) We are concerned with
estimating the expected discounted return of an evaluation
policy πe under a given initial distribution d0, using data
collected from a different behavior policy πb. For our meth-
ods, we will consider the following data generation proto-
col, where we have a dataset consisting of n i.i.d. tuples
(s, a, r, s′) generated according to the distribution:

s ∼ dπb , a ∼ πb(s), r ∼ R(s, a), s′ ∼ P (s, a).

Here dπb is some exploratory state distribution that well
covers the state space,1 and the technical assumptions re-
quired on this distribution will be discussed in later sections.

1Unlike Liu et al. (2018), we do not need to assume that dπb is
πb’s discounted occupancy; see Footnote 15 in Appendix A.5 for
the reason, where we also simplify Liu et al. (2018)’s loss so that
it does not rely on this assumption.

With a slight abuse of notation we will also refer to the joint
distribution over (s, a, r, s′) or its marginal on (s, a) as dπb ,
e.g., whenever we write (s, a, r, s′) ∼ dπb or (s, a) ∼ dπb ,
the variables are always distributed according to the above
generative process. We will use E[·] to denote the exact
expectation, and use En[·] as its empirical approximation
using the n data points.

On the i.i.d. assumption Although we assume i.i.d. data
for concreteness and the ease of exposition, the actual re-
quirement on the data is much milder: our method works as
long as the empirical expectation (over n data points) con-
centrates around the exact expectation w.r.t. (s, a, r, s′) ∼
dπb for some dπb .

2 This holds, for example, when the
Markov chain induced by πb is ergodic, and our data is
a single long trajectory generated by πb without resetting.
As long as the induced chain mixes nicely, it is well known
that the empirical expectation over the single trajectory will
concentrate, and in this case dπb(s) corresponds to the sta-
tionary distribution of the Markov chain.3

3. Overview of OPE Methods
Direct Methods A straightforward approach to OPE is
to estimate an MDP model from data, and then compute
the quantity of interest from the estimated model. An al-
ternative but closely related approach is to fit Qπe directly
from data using standard approximate dynamic program-
ming (ADP) techniques, e.g., the policy evaluation analog of
Fitted Q-Iteration (Ernst et al., 2005; Le et al., 2019). While
these methods overcome the curse of dimensionality and
are agnostic to the knowledge of πb, they often require very
strong representation assumptions to succeed: for example,
in the case of fitting a Q-value function from data, not only
one needs to assume realizability, that the Q-function class
(approximately) captures Qπe , but the class also needs to be
closed under Bellman update Bπe (Antos et al., 2008), oth-
erwise ADP can diverge in discounted problems (Tsitsiklis
and Van Roy, 1997) or suffer exponential sample complexity
in finite-horizon problems (Dann et al., 2018, Theorem 45);
we refer the readers to Chen and Jiang (2019) for further dis-
cussions on this condition. When the function approximator
fails to satisfy these strong assumptions, the estimator can
potentially incur a high bias.

Importance Sampling (IS) IS forms an unbiased esti-
mate of the expected return by collecting full-trajectory

2We assume a ∼ πb(s) throughout the paper since this is
required by previous methods which we would like to compare
to. However, most of our derivations do not require that the data
is generated from a single behavior policy (which is a common
characteristic of behavior-agnostic OPE methods).

3We consider precisely this setting in Appendix C.1 to solidify
the claim that we do not really need i.i.d.ness.
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πb known? Target object Func. approx.
Tabular

optimality
MSWL (Liu et al., 2018) Yes wSπe/πb (Eq.(3)) wSπe/πb ∈ W

S , V πe ∈ FS (*) No
MWL (Sec 4) No wπe/πb (Eq.(4)) wπe/πb ∈ W , Qπe ∈ conv(F) Yes
MQL (Sec 5) No Qπe Qπe ∈ Q, wπe/πb ∈ conv(G) Yes

Fitted-Q No Qπe Q closed under Bπe Yes

Table 1. Summary of some of the OPE Methods. For methods that require knowledge of πb, the policy can be estimated from data to form
a “plug-in” estimator (e.g., Hanna et al., 2019). In the function approximation column, we use blue color to mark the conditions for the
discriminator classes for minimax-style methods. For Liu et al. (2018), we useWS and FS for the function classes to emphasize that
their functions are over the state space (ours are over the state-action space). Although they assumed V πe ∈ FS (*), this assumption can
also be relaxed to V πe ∈ conv(FS) as in our analyses. Also note that the assumption for the main function classes (WS ,W , andQ) can
be relaxed as discussed in Examples 1 and 3, and we put realizability conditions here only for simplicity.

behavioral data and reweighting each trajectory according
to its likelihood under πe over πb (Precup et al., 2000). Such
a ratio can be computed as the cumulative product of the
importance weight over action (πe(a|s)πb(a|s) ) for each time step,
which is the cause of high variance in IS: even if πe and
πb only has constant divergence per step, the divergence
will be amplified over the horizon, causing the cumulative
importance weight to have exponential variance, thus the
“curse of horizon”. Although techniques that combine IS
and direct methods can partially reduce the variance, the
exponential variance of IS simply cannot be improved when
the MDP has significant stochasticity (Jiang and Li, 2016).

Marginalized Importance Sampling (MIS) MIS im-
proves over IS by observing that, if πb and πe in-
duces marginal distributions over states that have substan-
tial overlap—which is often the case in many practical
scenarios—then reweighting the reward r in each data point
(s, a, r, s′) with the following ratio

wSπe/πb(s) ·
πe(a|s)
πb(a|s)

, where wSπe/πb(s) :=
dπe,γ(s)

dπb(s)
(3)

can potentially have much lower variance than reweight-
ing the entire trajectory (Liu et al., 2018). The difference
between IS and MIS is essentially performing importance
sampling using Eq.(1) vs. Eq.(2). However, the weight
wSπe/πb is not directly available and has to be estimated
from data. Liu et al. (2018) proposes an estimation pro-
cedure that requires two function approximators, one for
modeling the weighting function wSπe/πb(s), and the other
for modeling V πb which is used as a discriminator class
for distribution learning. Compared to the direct methods,
MIS only requires standard realizability conditions for the
two function classes, though it also needs the knowledge of
πb. A related method for finite horizon problems has been
developed by Xie et al. (2019).

4. Minimax Weight Learning (MWL)
In this section we propose a simple extension to Liu et al.
(2018) that is agnostic to the knowledge of πb. The estima-
tor in the prior work uses a discriminator class that contains
V πe to learn the marginalized importance weight on state
distributions (see Eq.(3)). We show that as long as the dis-
criminator class is slightly more powerful—in particular, it
is a Q-function class that realizes Qπe—then we are able to
learn the importance weight over state-action pairs directly:

wπe/πb(s, a) :=
dπe,γ(s, a)

dπb(s, a)
. (4)

We can use it to directly re-weight the rewards with-
out having to know πb, as Rπe = Rw[wπe/πb ] :=
Eπb [wπe/πb(s, a) · r]. It will be also useful to define
Rw,n[w] := En[w(s, a) · r] as the empirical approximation
of Rw[·] based on n data points.

Before giving the estimator and its theoretical properties,
we start with two assumptions that we will use throughout
the paper, most notably that the state-action distribution in
data well covers the discounted occupancy induced by πb.
Assumption 1. Assume X = S × A is a compact space.
Let ν be its Lebesgue measure. 4

Assumption 2. There exists Cw < +∞ such that
wπe/πb(s, a) ≤ Cw ∀(s, a) ∈ X .

In the rest of this section, we derive the new estimator and
provide its theoretical guarantee. Our derivation (Eqs.(5)–
(7)) provides the high-level intuitions for the method while
only invoking basic and familiar concepts in MDPs (essen-
tially, just Bellman equations). The estimator of Liu et al.
(2018) can be also derived in a similar manner.

Derivation Recall that it suffices to learn w : X → R
such that Rw[w] = Rπe . This is equivalent to

Eπb [w(s, a) · r] = (1− γ)Es∼d0 [Qπe(s, πe)]. (5)

4When ν is the counting measure for finite X , all the results
hold with minor modifications.
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By Bellman equation, we have E[r|s, a] = E[Qπe(s, a)−
γQπe(s′, πe)|s, a]. We use the RHS to replace r in Eq.(5),

Eπb [w(s, a) · (Qπe(s, a)− γQπe(s′, πe))]
= (1− γ)Es∼d0 [Qπe(s, πe)]. (6)

To recap, it suffices to find any w that satisfies the above
equation. Since we do not knowQπe , we will use a function
class F that (hopefully) captures Qπe , and find w that mini-
mizes (the absolute value of) the following objective func-
tion that measures the violation of Eq.(6) over all f ∈ F :

Lw(w, f) := E(s,a,r,s′)∼dπb [{γw(s, a) · f(s′, πe) (7)

−w(s, a)f(s, a)}] + (1− γ)Es∼d0 [f(s, πe)]. (8)

The loss is always zero when w = wπe/πb , so adding func-
tions to F does not hurt its validity. Such a solution is also
unique if we require Lw(w, f) = 0 for a rich set of func-
tions and dπb is supported on the entire X , formalized as
the following lemma:5

Lemma 1. Lw(wπe/πb , f) = 0 ∀f ∈ L2(X , ν) := {f :∫
f(s, a)2dν <∞}. Moreover, under additional technical

assumptions,6 wπe/πb is the only function that satisfies this.

This motivates the following estimator, which uses two
function classes: a classW : X → R to model the wπe/πb
function, and another class F : X → R to serve as the
discriminators:

ŵ(s, a) = arg min
w∈W

max
f∈F

Lw(w, f)2. (9)

Note that this is the ideal estimator that assumes exact expec-
tations (or equivalently, infinite amount of data). In reality,
we will only have access to a finite sample, and the real esti-
mator replaces Lw(w, f) with its sample-based estimation,
defined as

Lw,n(w, f) := En[{γw(s, a)f(s′, πe)− w(s, a)f(s, a)}]
+ (1− γ)Ed0 [f(s, πe)]. (10)

So the sample-based estimator is ŵn(s, a) :=
arg minw∈W maxf∈F Lw,n(w, f)2. We call this esti-
mation procedure MWL (minimax weight learning), and
provide its main theorem below.

Theorem 2. For any given w : X → R, define Rw[w] =
Edπb [w(s, a)·r]. IfQπe ∈ conv(F), where conv(·) denotes
the convex hull of a function class,

|Rπe −Rw[w]| ≤ max
f∈F
|Lw(w, f)|,

|Rπe −Rw[ŵ]| ≤ min
w∈W

max
f∈F
|Lw(w, f)|.

5All proofs of this paper can be found in the appendices.
6As we will see, the identifiability of wπe/πb is not crucial to

the OPE goal, so we defer the technical assumptions to a formal
version of the lemma in Appendix A, where we also show that the
same statement holds when F is an ISPD kernel; see Theorem 15.

A few comments are in order:

1. To guarantee that the estimation is accurate, all we need
isQπe ∈ conv(F), and minw maxf |Lw(w, f)| is small.
While the latter can be guaranteed by realizability ofW ,
i.e., wπe/πb ∈ W , we show in an example below that
realizability is sufficient but not always necessary: in
the extreme case where F only contains Qπe , even a
constant w function can satisfy maxf |Lw(w, f)| = 0
and hence provide accurate OPE estimation.

Example 1 (Realizability ofW can be relaxed). When
F = {Qπe}, as long as w0 ∈ W where w0 is a constant
function that always evaluates to Rπe/Rπb , we have
Rw[ŵ] = Rπe . See Appendix A.1 for a detailed proof.

2. For the condition that Qπe ∈ conv(F), we can further
relax the convex hull to the linear span, though we will
need to pay the `1 norm of the combination coefficients in
the later sample complexity analysis. It is also straightfor-
ward to incorporate approximation errors (see Remark 2
in Appendix A) and we do not further consider these
relaxations for simplicity.

3. Although Eq.(9) uses Lw(w, f)2 in the objective func-
tion, the square is mostly for optimization convenience
and is not vital in determining the statistical properties of
the estimator. In later sample complexity analysis, it will
be much more convenient to work with the equivalent
objective function that uses |Lw(w, f)| instead.

4. When the behavior policy πb is known, we can incorpo-
rate this knowledge by settingW = {s 7→ w(s)πe(a|s)πb(a|s) :

w ∈ WS}, whereWS is some function class over the
state space. The resulting estimator is still different from
(Liu et al., 2018) since our discriminator class is still
over the state-action space.

4.1. Case Studies

The estimator in Eq.(10) requires solving a minimax opti-
mization problem, which can be computationally challeng-
ing. Following Liu et al. (2018) we show that the inner
maximization has a closed form solution when we choose F
to correspond to a reproducing kernel Hilbert space (RKHS)
HK be a RKHS associated with kernel K(·, ·). We include
an informal statement below and defer the detailed expres-
sion to Appendix A.2 due to space limit.

Lemma 3 (Informal). When F = {f ∈ (X → R) :
〈f, f〉HK ≤ 1}, the term maxf∈F Lw(w, f)2 has a closed
form expression.

As a further special case when both W and F are linear
classes under the same state-action features φ : X → Rd.
The resulting algorithm has a close connection to LSTDQ
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(Lagoudakis and Parr, 2004), which we will discuss more
explicitly later in Section 5, Example 7.
Example 2. Let w(s, a;α) = φ(s, a)>α where φ(s, a) ∈
Rd is some basis function and α is the parameters. If we use
the same linear function space as F , i.e., F = {(s, a) 7→
φ(s, a)>β : β ∈ Rd}, then the estimation of α given by
MWL is (assuming the matrix being inverted is full-rank)

α̂ = En[−γφ(s′, πe)φ(s, a)> + φ(s, a)φ(s, a)>]−1

(1− γ)Es∼d0 [φ(s, πe)]. (11)

The sample-based estimator for the OPE problem is there-
fore Rw,n[ŵn] = En[rφ(s, a)>]α̂; see Appendix A.3 for a
full derivation.

Just as our method corresponds to LSTDQ in the linear
setting, it is worth pointing out that the method of Liu et al.
(2018)—which we will call MSWL (minimax state weight
learning) for distinction and easy reference—corresponds
to off-policy LSTD (Bertsekas and Yu, 2009; Dann et al.,
2014); see Appendix A.5 for details.

4.2. Connections to related work

Nachum et al. (2019a) has recently proposed a version of
MIS with a similar goal of being agnostic to the knowl-
edge of πb. In fact, their estimator and ours have an in-
teresting connection, as our Lemma 1 can be obtained
by taking the functional derivative of their loss function;
we refer interested readers to Appendix A.4 for details.
That said, there are also important differences between
our methods. First, our loss function can be reduced to
single-stage optimization when using an RKHS discrim-
inator, just as in Liu et al. (2018). In comparison, the
estimator of Nachum et al. (2019a) cannot avoid two-
stage optimization. Second, they do not directly esti-
mate wπe/πb(s, a), and instead estimate ν∗(s, a) such that
ν∗(s, a)−γEs′∼P (s,a) a′∼πe(s′)[ν

∗(s′, a′)] = wπe/πb(s, a),
which is more indirect.

In the special case of γ = 0, i.e., when the problem is a
contextual bandit, our method essentially becomes kernel
mean matching when using an RKHS discriminator (Gretton
et al., 2012), so MWL can be viewed as a natural extension
of kernel mean matching in MDPs.

5. Minimax Q-Function Learning (MQL)
In Section 4, we show how to use value-function class as
discriminators to learn the importance weight function. In
this section, by swapping the roles of w and f , we derive a
new estimator that learns Qπe from data using importance
weights as discriminators. The resulting objective function
has an intuitive interpretation of average Bellman errors,
which has many nice properties and interesting connections
to prior works in other areas of RL.

Setup We assume that we have a class of state-action im-
portance weighting functions G ⊂ (X → R) and a class of
state-action value functions Q ⊂ (X → R). To avoid con-
fusion we do not reuse the symbolsW and F in Section 4,
but when we apply both estimators on the same dataset (and
possibly combine them via doubly robust), it can be rea-
sonable to choose Q = F and G =W . For now it will be
instructive to assume that Qπe is captured by Q (we will
relax this assumption later), and the goal is to find q ∈ Q
such that

Rq[q] := (1− γ)Es∼d0 [q(s, πe)] (12)

(i.e., the estimation of Rπe as if q were Qπe ) is an accurate
estimate of Rπe .7

Loss Function The loss function of MQL is

Lq(q, g) = Edπb [g(s, a)(r + γq(s′, πe)− q(s, a))].

As we alluded to earlier, if g is the importance weight that
converts the data distribution (over (s, a)) dπb to some other
distribution µ, then the loss becomes Eµ[r + γq(s′, πe)−
q(s, a)], which is essentially the average Bellman error de-
fined by Jiang et al. (2017). An important property of this
quantity is that, if µ = dπe,γ , then by (a variant of) Lemma 1
of Jiang et al. (2017), we immediately have Rπe −Rq[q] =

Edπe,γ [r + γq(s′, πe)− q(s, a)](= Lq(q, wπe/πb)).

Similar to the situation of MWL, we can use a rich function
class G to model wπe/πb , and find q that minimizes the RHS
of the above equation for all g ∈ G, which gives rise to the
following estimator:

q̂ = arg min
q∈Q

max
g∈G

Lq(q, g)2.

We call this method MQL (minimax Q-function learning).
Similar to Section 4, we use q̂n to denote the estimator based
on a finite sample of size n (which replaces Lq(q, g) with
its empirical approximation Lq,n(q, g)), and develop the
formal results that parallel those in Section 4 for MWL. All
proofs and additional results can be found in Appendix B.

Lemma 4. Lq(Qπe , g) = 0 for ∀g ∈ L2(X , ν). Moreover,
if we further assume that dπb(s, a) > 0 ∀(s, a), then Qπe is
the only function that satisfies such a property.

Similar to the case of MWL, we show that under certain rep-
resentation conditions, the estimator will provide accurate
estimation to Rπe .

7Note that Rq[·] only requires knowledge of d0 and can be
computed directly. This is different from the situation in MWL,
whereRw[·] still requires knowledge of dπb even if the importance
weights are known, and the actual estimator needs to use the
empirical approximation Rw,n[·].
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Theorem 5. The following holds if wπe/πb ∈ conv(G):

|Rπe −Rq[q]| ≤ max
g∈G
|Lq(q, g)|,

|Rπe −Rq[q̂]| ≤ min
q∈Q

max
g∈G
|Lq(q, g)|.

5.1. Case Studies

We proceed to give several special cases of this estima-
tor corresponding to different choices of G to illustrate
its properties. In the first example, we show the analogy
of Example 1 for MWL, which demonstrates that requir-
ing minq maxg Lq(q, g) = 0 is weaker than realizability
Qπe ∈ Q:
Example 3 (Realizability of Q can be relaxed). When
G = {wπe/πb}, as long as q0 ∈ Q, where q0 is a con-
stant function that always evaluates to Rπe/(1 − γ), we
have Rq[q̂] = Rπe . See Appendix B.1 for details.

Next, we show a simple and intuitive example where
wπe/πb /∈ G but wπe/πb ∈ conv(G), i.e., there are cases
where relaxing G to its convex hull yields stronger repre-
sentation power and the corresponding theoretical results
provide a better description of the algorithm’s behavior.
Example 4. Suppose X is finite. Let Q be the tabular
function class, and G is the set of state-action indicator
functions.8 Then wπe/πb /∈ G but wπe/πb ∈ conv(G), and
Rq[q̂] = 0. Furthermore, the sample-based estimator q̂n
coincides with the model-based solution, as Lq,n(q, g) =
0 for each g is essentially the Bellman equation on the
corresponding state-action pair in the estimated MDP model.
(In fact, the solution remains the same if we replace G with
the tabular function class.)

In the next example, we choose G to be a rich L2-class with
bounded norm, and recover the usual (squared) Bellman
error as a special case. A similar example has been given by
Feng et al. (2019).
Example 5 (L2-class). When G = {g : Edπb [g2] ≤ 1},

max
g∈G

Lq(q, g)2 = Edπb [((Bπeq)(s, a)− q(s, a))
2
],

where Bπ is the Bellman update operator (Bπq)(s, a) :=
Er∼R(s,a),s′∼P (s,a)[r + γq(s′, π)].

Note that the standard Bellman error cannot be directly esti-
mated from data when the state space is large, even if the Q
class is realizable (Szepesvari and Munos, 2005; Sutton and
Barto, 2018; Chen and Jiang, 2019). From our perspective,
this difficulty can be explained by the fact that squared Bell-
man error corresponds to an overly rich discriminator class
that demands an unaffordable sample complexity.

8Strictly speaking we need to multiply these indicator functions
byCw to guaranteewπe/πb ∈ conv(G); see the comment on linear
span after Theorem 2.

The next example is RKHS class which yields a closed-form
solution to the inner maximization as usual.

Example 6 (RKHS class). When G =
{g(s, a); 〈g, g〉HK ≤ 1}, we have the following:

Lemma 6. Let G = {g(s, a); 〈g, g〉HK ≤
1}. Then, maxg∈G Lq(q, g)2 =
Edπb [∆q(q; s, a, r, s′)∆q(q; s̃, ã, r̃, s̃′)K((s, a), (s̃, ã))],
where ∆q(q; s, a, r, s′) = g(s, a)(r+γq(s′, πe)− q(s, a)).

Finally, the linear case.

Example 7. Let q(s, a;α) = φ(s, a)>α where φ(s, a) ∈
Rd is some basis function and α is the parameters. If we
use the same linear function space as G, i.e., G = {(s, a) 7→
φ(s, a)>β : β ∈ Rd}, then MQL yields α̂:

En[−γφ(s, a)φ(s′, πe)
> + φ(s, a)φ(s, a)>]−1En[rφ(s, a)].

The derivation is similar to that of Example 2 (Ap-
pendix A.3) and omitted. )The resulting q(s, a; α̂) as an
estimation of Qπe is precisely LSTDQ (Lagoudakis and
Parr, 2004). In addition, the final OPE estimator Rq[q̂n] =
(1−γ)Es∼d0 [q(s, πe; α̂)] is the same asRw,n[ŵn] whenW
and F are the same linear class (Example 2).

5.2. Connection to Kernel Loss (Feng et al., 2019)

Feng et al. (2019) has recently proposed a method for value-
based RL. By some transformations, we may rewrite their
loss over state-value function v : S → R as

max
g∈GS

(Eπe [{r + γv(s′)− v(s)}g(s)])
2
, (13)

where GS is an RKHS over the state space. While their
method is very similar to MQL when written as the above
expression, they focus on learning a state-value function
and need to be on-policy for policy evaluation. In contrast,
our goal is OPE (i.e., estimating the expected return instead
of the value function), and we learn a Q-function as an inter-
mediate object and hence are able to learn from off-policy
data. More importantly, the importance weight interpreta-
tion of g has eluded their paper and they interpret this loss
purely from a kernel perspective. In contrast, by leveraging
the importance weight interpretation, we are able to estab-
lish approximation error bounds based on representation
assumptions that are fully expressed in quantities directly
defined in the MDP. We also note that their loss for pol-
icy optimization can be similarly interpreted as minimizing
average Bellman errors under a set of distributions.

Furthermore, it is easy to extend their estimator to the OPE
task using knowledge of πb, which we call MVL; see Ap-
pendix B.2 for details. Again, just as we discussed in Ap-
pendix A.5 on MSWL, when we use linear classes for both
value functions and importance weights, these two estima-
tors become two variants of off-policy LSTD (Dann et al.,
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2014; Bertsekas and Yu, 2009) and coincide with MSWL
and its variant.

6. Doubly Robust Extension and Sample
Complexity of MWL & MQL

In the previous sections we have seen two different ways of
using a value-function class and an importance-weight class
for OPE. Which one should we choose?

In this section we show that there is no need to make a
choice. In fact, we can combine the two estimates naturally
through the doubly robust trick (Kallus and Uehara, 2019b)
(see also (Tang et al., 2020)), whose population version is:

R[w, q] = (1− γ)Ed0 [q(s, πe)]

+ Edπb [w(s, a){r + γq(s′, πe)− q(s, a)}]. (14)

As before, we write Rn[w, q] as the empirical analogue of
R[w, q]. While w and q are supposed to be the MWL and
MQL estimators in practice, in this section we will some-
times treat w and q as arbitrary functions from theW and
Q classes to keep our results general. By combining the
two estimators, we obtain the usual doubly robust prop-
erty, that when either w = wπe/πb or q = Qπe , we have
R[w, q] = Rπe , that is, as long as either one of the models
works well, the final estimator behaves well.9

Besides being useful as an estimator, Eq.(14) also provides a
unified framework to analyze the previous estimators, which
are all its special cases: Note that R[w,0] = Rw[w] and
R[0, q] = Rq[q], where 0 means a constant function that
always evaluates to 0. Below we first prove a set of results
that unify and generalize the results in Sections 4 and 5,
and then state the sample complexity guarantees for the
proposed estimators.

Lemma 7. R[w, q] − Rπe = Edπb [{w(s, a) −
wπe/πb(s, a)}{γV πe(s′)− γv(s′) + q(s, a)−Qπe(s, a)}].
Theorem 8. Fixing any q′ ∈ Q, if [Qπe − q′] ∈ conv(F),

|R[w, q′]−Rπe | ≤ max
f∈F
|Lw(w, f)|,

|R[ŵ, q′]−Rπe | ≤ min
w∈W

max
f∈F
|Lw(w, f)|.

Similarly, fixing any w′ ∈ W , if [wπe/πb − w′] ∈ conv(G),

|R[w′, q]−Rπe | ≤ max
g∈G
|Lq(q, g)|,

|R[w′, q̂]−Rπe | ≤ min
q∈Q

max
g∈G
|Lq(q, g)|.

Remark 1. When q′ = 0, the first statement is reduced to
Theorem 2. When w′ = 0, the second statement is reduced
to Theorem 5.

9See Kallus and Uehara (2019b, Theorem 11,12) for formal
statements.

Theorem 9 (Double robust inequality for discriminators
(i.i.d case)). Recall that

ŵn = arg min
w∈W

max
f∈F

Lw,n(w, f)2,

q̂n = arg min
q∈Q

max
g∈G

Lq,n(q, g)2,

where Lw,n and Lq,n are the empirical losses based on a
set of n i.i.d samples. We have the following two statements.

(1) Assume [Qπe − q′] ∈ conv(F) for some q′, and ∀f ∈
F , ‖f‖∞ < Cf . Then, with probability at least 1− δ,

|R[ŵn, q
′]−Rπe | � min

w∈W
max
f∈F
|Lw(w, f)|

+Rn(F ,W) + CfCw

√
log(1/δ)

n

where Rn(W,F) is the Rademacher complexity 10 of
the function class {(s, a, s′) 7→ w(s, a)(γf(s′, πe) −
f(s, a)) : w ∈ W, f ∈ F}.

(2) Assume [wπe/πb − w′] ∈ conv(G) for some w′, and
∀g ∈ G, ‖g‖∞ < Cg . Then, with probability at least 1− δ,

|R[w′, q̂n]−Rπe | � min
q∈Q

max
g∈G
|Lq(q, g)|

+ Rn(Q,G) + Cg
Rmax

(1− γ)

√
log(1/δ)

n
,

where Rn(Q,G) is the Rademacher complexity of the
function class {(s, a, r, s′) 7→ g(s, a){r + γq(s′, πe) −
q(s, a)} : q ∈ Q, g ∈ G}.

Here A � B means inequality without an (absolute) con-
stant. Note that we can immediately extract the sample
complexity guarantees for the MWL and the MQL estima-
tors as the corollaries of this general guarantee by letting
q′ = 0 and w′ = 0.11 In Appendix C.1 we also extend the
analysis to the non-i.i.d. case and show that similar results
can be established for β-mixing data.

7. Statistical Efficiency in the Tabular Setting
As we have discussed earlier, both MWL and MQL are
equivalent to LSTDQ when we use the same linear class for
all function approximators. Here we show that in the tabular
setting, which is a special case of the linear setting, MWL
and MQL can achieve the semiparametric lower bound of
OPE (Kallus and Uehara, 2019a), because they coincide

10See Bartlett and Mendelson (2003) for the definition.
11Strictly speaking, when q′ = 0, R[ŵn, q′] = Rw[ŵn] is

very close to but slightly different from the sample-based MWL
estimator Rw,n[ŵn], but their difference can be bounded by a
uniform deviation bound over the W class in a straightforward
manner. The MQL analysis does not have this issue as Rq[·] does
not require empirical approximation.
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with the model-based solution. This is a desired property
that many OPE estimators fail to obtain, including MSWL
and MVL.
Theorem 10. Assume the whole data set {(s, a, r, s′)}
is geometrically ergodic 12. Then, in the tabular setting,√
n(Rw,n[ŵn]−Rπe) and

√
n(Rq[q̂n]−Rπe) weakly con-

verge to the normal distribution with mean 0 and variance

Edπb [w2
πe/πb

(s, a)(r + γV πe(s′)−Qπe(s, a))2].

This variance matches the semiparametric lower bound for
OPE given by Kallus and Uehara (2019a, Theorem 5).

The details of this theorem and further discussions can be
found in Appendix D, where we also show that MSWL
and MVL have an asymptotic variance greater than this
lower bound. To back up this theoretical finding, we also
conduct experiments in the Taxi environment (Dietterich,
2000) following Liu et al. (2018, Section 5), and show that
MWL performs significantly better than MSWL in the tabu-
lar setting; see Appendix D.3 for details. It should be noted,
however, that our optimal claim is asymptotic, whereas
explicit importance weighting of MSWL and MVL may
provide strong regularization effects and hence preferred in
the regime of insufficient data; we leave the investigation to
future work.

8. Experiments
We empirically demonstrate the effectiveness of our meth-
ods and compare them to baseline algorithms in CartPole
with function approximation. We compare MWL & MQL
to MSWL (Liu et al., 2018, with estimated behavior policy)
and DualDICE (Nachum et al., 2019a). We use neural net-
works with 2 hidden layers as function approximators for the
main function classes for all methods, and use an RBF ker-
nel for the discriminator classes (except for DualDICE); due
to space limit we defer the detailed settings to Appendix E.
Figure 1 shows the log MSE of relative errors of different
methods, where MQL appears to the best among all meth-
ods. Despite that these methods require different function
approximation capabilities and it is difficult to compare
them apple-to-apple, the results still show that MWL/MQL
can achieve similar performance to related algorithms and
sometimes outperform them significantly.

9. Discussions
We conclude the paper with further discussions.

On the dependence of ŵ on F In Example 1, we have
shown that with some special choice of the discriminator
class, MWL can pick up very simple weighting functions—
such as constant functions—that are very different from

12Regarding the definition, refer to (Meyn and Tweedie, 2009)

Figure 1. Accuracy of OPE methods as a function of sample size.
Error bars show 95% confidence intervals.

the “true” wπe/πb and nevertheless produce accurate OPE
estimates with very low variances. Therefore, the function
w that satisfies Lw(w, f) = 0 ∀f ∈ F may not be unique,
and the set of feasible w highly depends on the choice of
F . This leads to several further questions, such as how to
choose F to allow for these simple solutions, and how regu-
larization can yield simple functions for better bias-variance
trade-off. 13 In case it is not clear that the set of feasible
w generally depends on F , we provide two additional ex-
amples which are also of independent interest themselves.
The first example shows that standard step-wise IS can be
viewed as a special case of MWL, when we choose a very
rich discriminator class of history-dependent functions.
Example 8 (Step-wise IS as a Special Case of MWL). Ev-
ery episodic MDP can be viewed as an equivalent MDP
whose state is the history of the original MDP. The marginal
density ratio in this history-based MDP is essentially the
cumulative product of importance weight used in step-wise
IS, and from Lemma 11 we know that such a function is the
unique minimizer of MWL’s population loss if F is chosen
to be a sufficiently rich class of functions over histories. See
Appendix F for more details on this example.
Example 9 (Bisimulation). Let φ be a bisimulation state
abstraction (see Li et al. (2006) for definition). If πe and πb
only depend on s through φ(s), and F only contains func-
tions that are piece-wise constant under φ, then w(s, a) =
dπe,γ(φ(s),a)
dπb (φ(s),a)

also satisfies Lw(w, f) = 0, ∀f ∈ F .

Duality between MWL and MQL From Sections 4 and
5, one can observe an obvious symmetry between MWL
and MQL from the estimation procedures to the guarantees,
which reminds us a lot about the duality between value
functions and distributions in linear programming for MDPs.
Formalizing this intuition is an interesting direction.14

13Such a trade-off is relatively well understood in contextual
bandits (Kallus, 2020; Hirshberg and Wager, 2017), though exten-
sion to sequential decision-making is not obvious.

14See the parallel work by Nachum et al. (2019) and the follow-
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