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Abstract

In this work, we investigate the application of
Taylor expansions in reinforcement learning. In
particular, we propose Taylor expansion policy op-
timization, a policy optimization formalism that
generalizes prior work (e.g., TRPO) as a first-
order special case. We also show that Taylor ex-
pansions intimately relate to off-policy evaluation.
Finally, we show that this new formulation entails
modifications which improve the performance of
several state-of-the-art distributed algorithms.

1. Introduction

Policy optimization is a major framework in model-free
reinforcement learning (RL), with successful applications in
challenging domains (Silver et al., 2016; Berner et al., 2019;
Vinyals et al., 2019). Along with scaling up to powerful
computational architectures (Mnih et al., 2016; Espeholt
et al., 2018), significant algorithmic performance gains are
driven by insights into the drawbacks of naive policy gradi-
ent algorithms (Sutton et al., 2000). Among all algorithmic
improvements, two of the most prominent are: trust-region
policy search (Schulman et al., 2015; 2017; Abdolmaleki
et al., 2018; Song et al., 2020) and off-policy corrections
(Munos et al., 2016; Wang et al., 2017; Gruslys et al., 2018;
Espeholt et al., 2018).

At the first glance, these two streams of ideas focus on or-
thogonal aspects of policy optimization. For trust-region
policy search, the idea is to constrain the size of policy
updates. This limits the deviations between consecutive
policies and lower-bounds the performance of the new pol-
icy (Kakade and Langford, 2002; Schulman et al., 2015).
On the other hand, off-policy corrections require that we ac-
count for the discrepancy between target policy and behavior
policy. Espeholt et al. (2018) has observed that the correc-
tions are especially useful for distributed algorithms, where
behavior policy and target policy typically differ. Both al-
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gorithmic ideas have contributed significantly to stabilizing
policy optimization.

In this work, we partially unify both algorithmic ideas into a
single framework. In particular, we noticed that as a ubiqui-
tous approximation method, Taylor expansions share high-
level similarities with both trust region policy search and
off-policy corrections. To get high-level intuitions of such
similarities, consider a simple 1D example of Taylor expan-
sions. Given a sufficiently smooth real-valued function on
the real line f : R — R, the k-th order Taylor expansion of
fx)atagis fiu(w) £ f(wo)+ iy [F D (w0)/il)(z—0)’
where f() () are the i-th order derivatives at xo. First,
a common feature shared by Taylor expansions and trust-
region policy search is the inherent notion of a trust region
constraint. Indeed, in order for convergence to take place,
a trust-region constraint is required |x — x| < R(f,z0)".
Second, when using the truncation as an approximation to
the original function fx(z) =~ f(x), Taylor expansions
satisfy the requirement of off-policy evaluations: evaluate
target policy with behavior data. Indeed, to evaluate the
truncation fx (x) at any x (farget policy), we only require
the behavior policy “data” at z (i.e., derivatives () (z)).

Our paper proceeds as follows. In Section 2, we start with a
general result of applying Taylor expansions to Q-functions.
When we apply the same technique to the RL objective,
we reuse the general result and derive a higher-order pol-
icy optimization objective. This leads to Section 3, where
we formally present the Taylor Expansion Policy Optimiza-
tion (TayPO) and generalize prior work (Schulman et al.,
2015; 2017) as a first-order special case. In Section , we
make clear connection between Taylor expansions and Q(\)
(Harutyunyan et al., 2016), a common return-based off-
policy evaluation operator. Finally, in Section 5, we show
the performance gains due to the higher-order objectives
across a range of state-of-the-art distributed deep RL agents.

2. Taylor expansion for reinforcement
learning

Consider a Markov Decision Process (MDP) with state
space X and action space A. Let policy 7 (-|z) be a dis-

"Here, R(f, o) is the convergence radius of the expansions,
which in general depends on the function f and origin zo.
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tribution over actions give state x. At a discrete time
t > 0, the agent in state x; takes action a; ~ m(-|x¢), re-
ceives reward r; £ r(z, a;), and transitions to a next state
Zer1 ~ p(-|xs, ar). We assume a discount factor v € [0, 1).
Let Q™(x,a) be the action value function (Q-function)
from state x, taking action a, and following policy 7. For
convenience, we use d7 (-, |Zo,ao,7) to denote the dis-
counted visitation distribution starting from state-action pair
(z0,a0) and following m, such that d7(z, alzg, ap, 7) =
(T =77 25V P2 = 2|20, a0, m)7(alz). We thus
have Qﬂ(l‘7 a’) = (1 - 7)71E(x’,a’)~d,’y'(-,~|w7a70) [T(xlv a‘/)]'
We focus on the RL objective of optimizing max, J(7) =
Er w0207 7 starting from a fixed initial state z.

We define some useful matrix notation. For ease of analysis,
we assume that X’ and A are both finite. Let R € RI¥ >[4l
denote the reward function and P™ € RIXIAIXIXIA|
denote the transition matrix such that P™(z,a,y,b) =
p(ylz,a)m(bly). We also define Q™ € RI¥I*Il as the
vector Q-function. This matrix notation facilitates compact
derivations, for example, the Bellman equation writes as
QT =R+~P"Q".

2.1. Taylor Expansion of Q-functions.

In this part, we state the Taylor expansion of Q-functions.
Our motivation for the expansion is the following: Assume
we aim to estimate Q™ (z, a) for target policy 7, and we
only have access to data collected under a behavior policy .
Since Q*(z, a) can be readily estimated with the collected
data, how do we approximate Q™ (x, a) with Q" (z, a)?

Clearly, when m = p, then Q™ = Q*. Whenever © # p,
Q™ starts to deviate from Q*. Therefore, we apply Taylor
expansion to describe the deviation Q™ — @* in the orders
of P™ — P, We provide the following result.

Theorem 1. (proved in Appendix B) For any policies m
and p, and any K > 1, we have

K

Q" - Q" =Y _(y(I — 4P (P — P)Qr

k=1
+ (1 =P NPT = P

In addition, if ||m — pl|1 £ max, Y, |r(alz) — plalz)| <
(1 — )/, then the limit for K — oo exists and we have

Q" - Q" =" (vI PP - P Qr. (1)

k=1

2U

The constraint between 7 and p is a result of the con-
vergence radius of the Taylor expansion. The derivation
follows by recursively applying the following equality:
Q" = Q" + (I — yP*)~Y(P™ — P*)QT. Please refer

to the Appendix B for a proof. For ease of notation, denote
the k-th term on the RHS of Eq. 1 as Uj. This gives rise to

QT —Q" =372, Uk

To represent Q™ — Q" explicitly with the deviation between
m and pu, consider a diagonal matrix D,r/ﬂ(x, a,y,b) =
m(alx)/pu(bly) - Op=yq=p Where z,y € X,a,b € A and
where ¢ is the Dirac delta function; we restrict to the case
where i(alx) > 0,Vx,a. This diagonal matrix D/, — I
is a measure of the deviation between 7 and . The above
expression can be rewritten as

oo

Q" —Q" = (YI—~P") "' PX(Dyyp—D)FQ". (2)

k=1

We will see that the expansion in Eq. 2 is useful in Section3
when we derive the Taylor expansion of the difference be-
tween the performances of two policies, J(7) — J(u). In
Section 4, we also provide the connection between Taylor
expansion and off-policy evaluation.

2.2. Taylor expansion of reinforcement learning
objective

When searching for a better policy, we are often interested
in the difference J(7) — J(u). With Eq. 2, we can derive
a similar Taylor expansion result for J(w) — J(u). Let
7 (resp., 1) be the shorthand notation for 7(a:|x;) (resp.,
w(at|xy)). Here, we formalize the orders of the expansion
as the number of times that ratios m;/u; — 1 appear in
the expression, e.g., the first-order expansion should only
involve m;/us — 1 up to the first order, without higher or-
der terms, e.g., cross product (m/p; — 1)(mp [y — 1).
We denote the k-th order as Ly (7, ) and by construction
J(m)=J (1) = > pey Li(m, ). Next, we derive practically
useful expressions for Ly (m, ).

We provide a derivation sketch below and give the details in
Appendix F. Let 7o, j19 € RI*1*I41 be the joint distribution
of policies and state at time ¢ = 0 such that 7o(z,a) =
7(a|z)dy=z,. Note that the RL objective equivalently writes
as J(m) = V7 (xg) = >, m(a]zg)Q™ (x0,a) and can be
expressed as an inner product J(7) = 7jQ™. This allows
us to import results from Eq. 2,

J(m) = J(p) = Q" — po@" 3)

= (mo—po) | Q"+ Y Uk | + 15| DUk

k>1 k>1

By reading off different orders of the expansion from the
RHS of Eq. 3, we derive

Ly(m, ) = (m0 — o) Q" + poUt, “4)
Li(m, 1) = (m0 — o) "Up—1 + poUx, Yk > 2.
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It is worth noting that the k-th order expansion of the RL
objective Ly (m, 1) is a mixture of the (k — 1)-th and k-th or-
der Q-function expansions. This is because J(7) integrates
Q™ over the initial 7y and the initial difference my — g
contributes one order of difference in Ly (7, p).

Below, we illustrate the results for £ = 1,2, and k£ > 3.
To make the results more intuitive, we convert the matrix
notation of Eq. 3 into explicit expectations under .

First-order expansion. By converting L; (7, ) from
Eq. 4 into expectations, we get

[(W(a|l‘)
E
z,a~db (-, |20,a0,0), ,LL(G|$)

ao~pu(-|wo)

“)ewal.

To be precise Ly (7, 1) = (1 —~)~!x (Eq.5) to account for
the normalization of the distribution d%. Note that Ly (7, f1)
is exactly the same as surrogate objective proposed in prior
work on scalable policy optimization (Kakade and Lang-
ford, 2002; Schulman et al., 2015; 2017). Indeed, these
works proposed to estimate and optimize such a surrogate
objective at each iteration while enforcing a trust region.
In the following, we generalize this objective with Taylor
expansions.

Second-order expansion. By converting Lo (7, 1) from
Eq. 4 into expectations, we get

E Kw(ah:) 1) <7r
,and (-,-|z0,a0,0), [\ (@] T) H

ao~pu(-|zo)
@' a0’ ~db (-, |z,a,1)

(a/]2")
(a]2")

(6)

Again, accounting for the normalization, Lo (7, 1) = (1 —
7)~2x(Eq.6). To calculate the above expectation, we
first start from (zg,ag), and sample a pair (z,a) from
the discounted distribution d% (-, -|zo, ag, 0). Then, we use
(z,a) as the starting point and sample another pair from
di(-,-|w,a,1). This implies that the second-order expan-
sion can be estimated only via samples under x4, which will
be essential for policy optimization in practice.

It is worth noting that the second state-action pair (z’, a’) ~
di (-, |z, a,1) with the argument 7 = 1 instead of 7 =
0. This is because Ly (7, 1),k > 2 only contains terms
m¢ /e — 1 sampled across strictly different time steps.

Higher-order expansions. Similarly to the first-order
and second-order expansions, higher-order expansions are
also possible by including proper higher-order terms in
m¢ /s — 1. For general K > 1, L (7, 1) can be expressed

o).

as (omitting the normalization constants)

>Q“( a”“)]-

(7

ﬁ( @)@
LA\ (a2 )

E(w(i)ﬂ(i))lgigk l

Here, (29, a(?),1 < i < K are sampled sequentially, each
following a discounted visitation distribution conditional
on the previous state-action pair. We show their detailed
derivations in Appendix F. Furthermore, we discuss the
trade-off of different orders K in Section 3.

Interpretation & intuition. Evaluating J(7) with data
under g requires importance sampling (IS) J(w) =
E, 2 [(Ht>0 L) (X0 r)]. In general, since 7 can dif-
fer from p at all | X'||.A| state-action pairs, computing J ()
exactly with full IS requires corrections at all steps along
generated trajectories. First-order expansion (Eq.5) cor-
responds to carrying out only one single correction at
sampled state-action pair along the trajectories: Indeed,
in computing Eq. 5, we sample a state-action pair (x,a)
along the trajectory and calculate one single IS correction
(m(alz)/p(alz) —1). Similarly, the second-order expansion
(Eq. 6) goes one step further and considers the IS correction
at two different steps (x,a) and (2’,a’). As such, Taylor
expansions of the RL objective can be interpreted as increas-
ingly tight approximations of the full IS correction.

3. Taylor expansion for policy optimization

In high-dimensional policy optimization, where exact algo-
rithms such as dynamic programming are not feasible, it is
necessary to learn from sampled data. In general, the sam-
pled data are collected under a behavior policy p different
from the target policy 7. For example, in trust-region policy
search (e.g., TRPO, Schulman et al., 2015; PPO, Schulman
etal., 2017), 7 is the new policy while p is a previous policy;
in asynchronous distributed algorithms (Mnih et al., 2016;
Espeholt et al., 2018; Horgan et al., 2018; Kapturowski et al.,
2019), 7 is the learner policy while y is delayed actor policy.
In this section, we show the fundamental connection be-
tween trust-region policy search and Taylor expansions, and
propose the general framework of Taylor expansion policy
optimization (TayPO).

3.1. Generalized trust-region policy optimization

For policy optimization, it is necessary that the update func-
tion (e.g., policy gradients or surrogate objectives) can be
estimated with sampled data under behavior policy . Taylor
expansions are a natural paradigm to satisfy this require-
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ment. Indeed, to optimize .J (), consider optimizing?

max J(m)

=max J(u) + Y Li(mp).  ®)

k=1
Though we have shown that for all k, L (7, u) are expec-
tations under u, it is not feasible to unbiasedly estimate
the RHS of Eq. 8 because it involves an infinite number of
terms. In I?ractice, we can truncate the objective up to K-th
order ", ; Ly(m, 1) and drop J(u) because it does not
involve 7.

However, for any fixed K, optimizing the truncated ob-
jective 2211 L (7, 1) in an unconstrained way is risky:
As 7, i become increasingly different, the approximation
J(u) + S5, Li(m, ) ~ J() becomes more inaccurate
and we stray away from optimizing J (), the objective of
interest. The approximation error comes from the residual
Ex & Z;OZ K41 Uy — to control the magnitude of the
residual, it is natural to constrain ||7 — p||; < € with some
€ > 0. Indeed, it is straightforward to show that
Rmax

K+1 —1
1Exlloc s( il ) (1— )
1—7 1—7 1—7

where Rpax = max, , |r(x, a)|. Please see Appendix A.1
for more detailed derivations. We formalize the entire lo-
cal optimization problem as generalized trust-region policy
optimization (generalized TRPO),

E

K
WKE:MWM%|W—MMS€ )

k=1

Monotonic improvement. While maximizing the surro-
gate objective under trust-region constraints (Eq.9), it is
desirable to have performance guarantee on the true objec-
tive J (7). Below, Theorem 2 gives such a result.

Theorem 2. (proved in Appendix C) When the policy
is optimized based on the trust-region objective Eq. 9 and
€< 1_77, the performance J () is lower bounded as

K
J(r) > J(n) + > Ly — Gk,
k=1

(10)

e

1 gl
where G £ (1 —
(1 =) -y

Note that if ¢ < (1 — )/, then as K — oo, the gap
G — 0. Therefore, when optimizing 7 based on Eq.9,
the performance J(7) is always lower-bounded according
to Eq. 10.

*Once again, the equality J(7) = J(u) + >oo, Li(m, p)
holds under certain conditions, detailed in Section 4.
*Here we define || E||co £ max, q |E(z,a)|.

-1 K41
) (5)

Connections to prior work on trust-region policy search.
The generalized TRPO extends the formulation of prior
work, e.g., TRPO/PPO of Schulman et al. (2015; 2017). In-
deed, idealized forms of these algorithms are a special case
for K = 1, though for practical purposes the ¢; constraint
is replaced by averaged KL constraints.*

3.2. TayPO-k: Optimizing with k-th order expansion

Though there is a theoretical motivation to use trust-region
constraints for policy optimization (Schulman et al., 2015;
Abdolmaleki et al., 2018), such constraints are rarely explic-
itly enforced in practice in its most standard form (Eq.9).
Instead, trust regions are implicitly encouraged via e.g., ra-
tio clipping (Schulman et al., 2017) or parameter averaging
(Wang et al., 2017). In large-scale distributed settings, al-
gorithms already benefit from diverse sample collections
for variance reduction of the parameter updates (Mnih et al.,
2016; Espeholt et al., 2018), which brings the desired sta-
bility for learning and makes trust-region constraints less
necessary (either explicit or implicit). Therefore, we focus
on the setting where no trust region is explicitly enforced.
We introduce a new family of algorithm TayPO-k, which
applies the k-th order Taylor expansions for policy optimiza-
tion.

Unbiased estimations with variance reduction. In prac-
tice, Ly (g, ) as expectations under 1 can be estimated as
Ly, (g, 1) over a single trajectory. Take K = 2 as an exam-
ple: Given a trajectory (x4, as, 7¢)52, by p, assume we have
access to some estimates of Q*(x, a), e.g., cumulative re-
turns. To generate a sample from (x, a) ~ d4 (o, ao,0), we
can first sample a random time from a geometric distribution
with success probability 1 — v, i.e., t ~ Geometric(1 — ).
Second, we sample another random time ¢’ with geometric
distribution Geometric(1 — «y) but conditional on ¢’ > 1.
Then, a single sample estimate of Eq. 6 is given by

(W(W«“t) _ 1) (ﬂ(amixm)
mlatlze) (@it |Terer)

Further, the following shows the effect of replacing Q-values
Q"(z,a) by advantages A*(z,a) = Q*(z,a) — V*(x).

Theorem 3. (proved in Appendix D) The computation of
Ly (7, 1) based on Eq. 7 is exact when replacing Q*(x, a)
by A¥(z,a), i.e. Li(m, 1),k > 1 can be expressed as

- 1) Q“(%th', Cbt+t')-

K . .
7r(a(z)|x(z>) )
Epi o). DT L q)ar@® oK)
(z(,aD)1<i< ke ( )
sts ln (o)

“Instead of forming the constraints explicitly, PPO (Schulman
et al., 2017) enforces the constraints implicitly by clipping IS
ratios.

3 As explained in Section 2.2, since L (m, ) contains IS ratios
at strictly different time steps, it is required that £’ > 1.
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Figure 1. Experiments on a small MDP. The z-axis measures |7 —
1)1 and the y-axis shows the relative errors in off-policy estimates.
All errors are computed analytically. Solid lines are computed with
ground-truth rewards R while dashed lines with estimates R.

In practice, when computing Ly (m, 1), replacing Q¥ (x, a)
by A*(z, a) still produces an unbiased estimate and poten-
tially reduces variance. This naturally recovers the result in
prior work for K = 1 (Schulman et al., 2016).

Higher-order objectives and trade-offs. When K > 3,
we can construct objectives with hiﬁher—order terms. The
motivation is that with high K, >, | Li(mg, ) forms a
closer approximation to the objective of interest: J(mw) —
J(1). Why not then have K as large as possible? This
comes at a trade-off. For example, let us compare L1 (g, i)
and Ly (mg, 1) + Lo(mg, pt): Though Ly (g, p) + Lo (g, 1)
forms a closer approximation to J(7) — J () than Ly (7) in
expectation, it could have higher variance during estimation
when e.g., Li(mg, 1) and Lo(mg, ) have a non-negative
correlation. Indeed, as K — oo, Zszl Ly (mg, pt) approxi-
mates the full IS correction, which is known to have high
variance (Munos et al., 2016).

How many orders to take in practice? Though the
higher-order policy optimization formulation generalizes
previous results (Schulman et al., 2015; 2017) as an first-
order special case, does it suffice to only include first-order
terms in practice?

To assess the effects of Taylor expansions, consider a policy
evaluation problem on a random MDP (see Appendix H.1
for the detailed setup): Given a target policy 7 and a be-
havior policy p, the approximation error of the K -th order
expansion is ex £ Q™ — (Q* + S, Uy). In Figure 1,
We show the relative errors ||ex||1/]|Q7||1 as a function of
€ = ||m — p||1. Ground-truth quantities such as Q™ are al-
ways computed analytically. Solid lines show results where
all estimates are also computed analytically, e.g., Q" is com-
puted as (I — yP*)~1R. Observe that the errors decrease

drastically as the expansion order K € {0, 1,2} increases.
To quantify how sample estimates impact the quality of
approximations, we re-compute the estimates but with R
replaced by empirical estimates R. Results are shown in
dashed curves. Now comparing K = 1, 2, observe that both
errors go up compared to their fully analytic counterparts -
both become more similar when ¢ is small.

This provides motivations for second-order expansions.
While first-orders are a default choice for common deep
RL algorithms (Schulman et al., 2015; 2017), from the sim-
ple MDP example we see that the second-order expansions
could potentially improve upon the first-order, even with
sample estimates.

Algorithm 1 TayPO-2: Second-order policy optimization
Require: policy 7wy with parameter 6 and o, 7 > 0
while not converged do
1. Collect partial trajectories (z¢, as, 7¢)7._; under be-
havior policy p.
2. Estimate on-policy advantage from the trajectories
A“ (It, at).
3. Construct first-order/second-order surrogate objec-
tive function L, (o, 1), Lo (g, 1) according to Eq. 5,
Eq. 6 respectively, replacing Q" (x, a) by A*(z, a).
4. The full objective Lg < Ly (g, 1) + Lo (g, 1)
5. Gradient update 6 < 6 + aVeﬁg.
end while

3.3. TayPO-2 — Second-order policy optimization

From here onwards, we focus on TayPO-2. At any iteration,
the data are collected under behavior policy p in the form of
partial trajectories (z¢, a¢,7¢)L_; of length T. The learner
maintains a parametric policy 7 to be optimized. First,
we carry out advantage estimation A# (z, a) for state-action
pairs on the partial trajectories. This could be naively es-
timated as A" (x4, a;) = Y52y rey? ~t + Vi (ap)y Tt —
V,(x;) where V,,(z) are value function baselines. One
could also adopt more advanced estimation techniques such
as generalized advantage estimation (GAE, Schulman et al.,
2016). Then, we construct surrogate objectives for optimiza-
tion: the first-order component Ly (mg, 1) as well as second-
order component Lo (mo, 1) — ﬁl(wg, ), based on Eq.5
and Eq. 6 respectively. Note that we replace all Q*(x, a) by
A¥(z, a) for variance reduction.

Therefore, our final objective function becomes

Lo & Ly(mg, p) + La(mg, ). (11)

The parameter is updated via gradient ascent § < 0+aV L.
Similar ideas can be applied to value-based algorithms, for
which we provide details in Appendix G.
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4. Unifying the concepts: Taylor expansion as
return-based off-policy evaluation

So far we have made the connection between Taylor ex-
pansions and TRPO. On the other hand, as introduced in
Section 1, Taylor expansions can also be intimately related
to off-policy evaluation. Below, we formalize their connec-
tions. With Taylor expansions, we provide a consistent and
unified view of TRPO and off-policy evaluation.

4.1. Taylor expansion as off-policy evaluation

In the general setting of off-policy evaluation, the data
is collected under a behavior policy p while the objec-
tive is to evaluate Q™. Return-based off-policy evaluation
operators (Munos et al., 2016) are a family of operators
REH - RIFIAL 5 RIXIAIL indexed by (per state-action)
trace-cutting coefficients ¢(x, a), a behavior policy x and a
target policy ,

RIMQ = Q+ (I —yP*)~H(r+9P"Q - Q),

where P is the (sub)-probability transition kernel for pol-
icy c(a’,a’)u(a’|2"). Starting from any Q-function @), re-
peated applications of the operator will result in convergence
to Q7, i.e.,

(REM Q- QT,

as K — oo, subject to certain conditions on ¢(x,a). To
state the main results, recall that Eq. 2 rewrites as Q™ =
limg o0 (Q* + 2211 Uy). In practice, we take a finite K
and use the approximation Q" + Zszl U~ Q".

Next, we state the following result establishing a connection
between K -th order Taylor expansion and the return-based
off-policy operator applied K times.

Theorem 4. (proved in Appendix E) For any K > 1, any
policies  and p,

K
Q"+ > Ux = (RT*)XQH, (12)
k=1

where RT" is short for ¢(z,a) = 1.

Theorem 4 shows that when we approximate Q)™ by the
Taylor expansion up to the K-th order, Q* + Zle Uk, it
is equivalent to generating an approximation by K times
applying the off-policy evaluation operator R7* on Q*.
We also note that the off-policy evaluation operator in Theo-
rem 4 is the Q(\) operator (Harutyunyan et al., 2016) with
A=15°

%As a side note, we also show that the advatnage estimation

method GAE (Schulman et al., 2016) is highly related to the Q(\)
operator in Appendix F.1.

Alternative proof for Q()\) convergence for A = 1.
Since Taylor expansions converge within a convergence
radius, which in this case corresponds to ||m — pll1 <
(1 —~)/~, it implies that Q(\) with A = 1 converges when
this condition holds. In fact, this coincides with the condi-
tion deduced by Harutyunyan et al. (2016).”

4.2. An operator view of trust-region policy
optimization

With the connection between Taylor expansion and off-
policy evaluation, along with the connection between Taylor
expansion and TRPO (Section 3) we give a novel inter-
pretation of TRPO: The K-th order generalized TRPO is
approximately equivalent to iterating K times the off-policy
evaluation operator R]"".

To make our claim explicit, recall the RL objective in ma-
trix form is J(7) = 7jQ™. Now consider approximating
Q™ by applying the evaluation operator R7"" to Q" it-
erating K times. This produces the surrogate objective
T (RTMEQH =~ J(p) + Sor, Li(m, i), approximately
equivalent to that of the generalized TRPO (Eq.9). Asa
result, the generalized TRPO (including TRPO; Schulman
et al., 2015) can be interpreted as approximating the exact
RL objective J(7), by K times iterating the evaluation op-
erator RT"" on Q* to approximate Q™. When does this
evaluation operator converge? Recall that R7"* converges
when ||T — pll1 < (1 —7)/7, i.e., there is a trust region
constraint on m, . This is consistent with the motivation
of generalized TRPO discussed in Section 3, where a trust
region is required for monotonic improvements.

5. Experiments

We evaluate the potential benefits of applying second-order
expansions in a diverse set of scenarios. In particular, we test
if the second-order correction helps with (1) policy-based
and (2) value-based algorithms.

In large-scale experiments, to take advantage of computa-
tional architectures, actors (x) and learners (7r) are not per-
fectly synchronized. For case (1), in Section 5.1, we show
that even in cases where they almost synchronize (7 =~ ),
higher-order corrections are still helpful. Then, in Section
5.2, we study how the performance of a general distributed
policy-based agent (e.g., IMPALA, Espeholt et al., 2018) is
influenced by the discrepancy between actors and learners.
For case (2), in Section 5.3, we show the benefits of second-
order expansions in with a state-of-the-art value-based agent

"Note that this alternative proof only works for the case where
the initial Qi = Q*.

8The k-th order Taylor expansion of Q™ is slightly different
from that of the RL objective J(7) by construction; see Ap-
pendix B for details.
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R2D2 (Kapturowski et al., 2019).

Evaluation. All evaluation environments are done on the
entire suite of Atari games (Bellemare et al., 2013). We
report human-normalized scores for each level, calculated
as z; = (r; — 0;)/(h; — 0;), where h; and o; are the per-
formances of human and a random policy on level ¢ respec-
tively; with details in Appendix H.2.

Architecture for distributed agents. Distributed agents
generally consist of a central learner and multiple actors
(Nair et al., 2015; Mnih et al., 2016; Babaeizadeh et al.,
2017; Barth-Maron et al., 2018; Horgan et al., 2018). We
focus on two main setups: Type I includes agents such as
IMPALA (Espeholt et al., 2018) (see blue arrows in Fig-
ure 5 in Appendix H.3). See Section 5.1 and Section 5.2;
Type II includes agents such as R2D2 (Kapturowski et al.,
2019; see orange arrows in Figure 5 in Appendix H.3). See
Section 5.3. We provide details on hyper-parameters of
experiment setups in respective subsections in Appendix H.

Practical considerations. We can extend the TayPO-2
objective (Eq.11) to Ly = Ly (g, i) + nLa(mg, 1) with
1 > 0. By choosing 7, one achieves bias-variance trade-offs
of the final objective and hence the update. We found n = 1
(exact TayPO-2) working reasonably well. See Appendix
H.4 for the ablation study on 1 and further details.

5.1. Near on-policy policy optimization

The policy-based agent maintains a target policy network
m = mp for the learner and a set of behavior policy net-
works p = mg for the actors. The actor parameters 6’ are
delayed copies of the learner parameter 6. To emulate a near
on-policy situation 7 ~ u, we minimize the delay of the
parameter passage between the central learner and actors,
by hosting both learner/actors on the same machine.

We compare second-order expansions with two base-
lines: first-order and zero-order. For the first-order
baseline, we also adopt the PPO technique of clipping:
clip(w(alz)/p(alz),1 —e,1 + €) in Eq.5 with ¢ = 0.2.
Clipping the ratio enforces an implicit trust region with the
goal of increased stability (Schulman et al., 2017). This
technique has been shown to generally outperform a naive
explicit constraint, as done in the original TRPO (Schul-
man et al., 2015). In Appendix H.5, we detail how we
implemented PPO on the asynchronous architecture. Each
baseline trains on the entire Atari suite for 400M frames and
we compare the mean/median human-normalized scores.

The comparison results are shown in Figure 2. Please see the
median score curves in Figure 6 in Appendix H.5. We make
several observations: (1) Off-policy corrections are very
critical. Going from zero-order (no correction) to first-order

5
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Figure 2. Near on-policy optimization. The x-axis is the number
of frames (millions) and y-axis shows the mean human-normalized
scores averaged across 57 Atari levels. The plot shows the mean
curve averaged across 3 random seeds. We observe that second-
order expansions allow for faster learning and better asymptotic
performance given the fixed budget on actor steps.

improves the performance most significantly, even when
the delays between actors and the learner are minimized as
much as possible; (2) Second-order correction significantly
improves on the first-order baseline. This might be surpris-
ing, because when near on-policy, one should expect the
difference between additional second-order correction to
be less important. This implies that in fully asynchronous
architecture, it is challenging to obtain sufficiently on-policy
data and additional corrections can be helpful.

5.2. Distributed off-policy policy optimization

We adopt the same setup as in Section 5.1. To maximize
the overall throughput of the agent, the central learner and
actors are distributed on different host machines. As a result,
both parameter passage from the learner to actors and data
passage from actors to the learner could be severely delayed.
This creates a natural off-policy scenario with 7 # p.

We compare second-order with two baselines: first-order
and V-trace. The V-trace is used in the original IMPALA
agent (Espeholt et al., 2018) and we present its details in
Appendix H.6. We are interested in how the agent’s perfor-
mance changes as the level of off-policy increases. In prac-
tice, the level of off-policy can be controlled and measured
as the delay (measured in milliseconds) of the parameter
passage from the learner to actors. Results are shown in
Figure 3, where x-axis shows the artificial delays (in log
scale) and y-axis shows the mean human-normalized scores
after training for 400M frames. Note that the total delay
consists of both artificial delays and inherent delays in the
distributed system.

‘We make several observations: (1) All baseline variants’
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Figure 3. Distributed off-policy policy optimization. The x-axis
is the controlled delays between the actors and learner (in log scale)
and y-axis shows the mean human-normalized scores averaged
across 57 Atari levels after training for 400M frames. Each curve
averages across 3 random seeds. Solid curves are results trained
with resnets while dashed curves are trained with shallow nets
second-order expansions make little difference compared to base-
lines (V-trace and first-order) when the delays are small. When
delays increase, the performance of second-order expansions decay
more slowly.

performance degrades as the delays increase. All baseline
off-policy corrections are subject to failures as the level
of off-policines increases. (2) While all baselines perform
rather similarly when delays are small, as the level of off-
policy increases, second-order correction degrades slightly
more gracefully than the other baselines. This implies that
second-order is a more robust off-policy correction method
than other current alternatives.

5.3. Distributed value-based learning

The value-based agent maintains a Q-function network Qg
for the learner and a set of delayed Q-function networks
Qg for the actors. Let £ be an operator such that £(Q, ¢)
returns the e-greedy policy with respect to Q. The actors
generate partial trajectories by executing an pu = £(Qy/, €)
and send data to a replay buffer. The target policy is greedy
with respect to the current Q-function 7 = £(Qs, 0). The
learner samples partial trajectories from the replay buffer
and updates parameters by minimizing Bellman errors com-
puted along sampled trajectories. Here we focus on R2D2,
a special instance of distributed value-based agent. Please
refer to Kapturowski et al. (2019) for a complete review of
all algorithmic details of value-based agents such as R2D2.

Across all baseline variants, the learner computes regression
targets Qureet (%, @) =~ Q7 (x, a) for the network to approx-
imate Qg(x,a) ~ Qureet(2,a). The targets Qurget(, @)
are calculated based on partial trajectories under p which
require off-policy corrections. We compare several correc-

second-order
first-order
zero-order
retrace
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Figure 4. Value-based learning with distributed architecture
(R2D2). The x-axis is number of frames (millions) and y-axis
shows the mean human-normalized scores averaged across 57
Atari levels over the training of 2000M frames. Each curve aver-
ages across 2 random seeds. The second-order correction performs
marginally better than first-order correction and retrace, and sig-
nificantly better than zero-order. See Appendix G for detailed
descriptions of these baseline variants.

tion variants: zero-order, first-order, Retrace (Munos et al.,
2016; Rowland et al., 2020) and second-order. Please see
algorithmic details in Appendix G.

The comparison results are in Figure 4 where we show the
mean scores. We make several observations: (1) second-
order correction leads to marginally better performance than
first-order and retrace, and significantly better than zero-
order. (2) In general, unbiased (or slightly biased) off-policy
corrections do not yet perform as well as radically biased
off-policy variants, such as uncorrected-nstep (Kapturowski
et al., 2019; Rowland et al., 2020). (3) Zero-order per-
forms the worst — though it is able to reach super human
performance on most games as other variants but then the
performance quickly plateaus. See Appendix H.7 for more
results.

6. Discussion and conclusion

The idea of IS is the core of most off-policy evaluation
techniques (Precup et al., 2000; Harutyunyan et al., 2016;
Munos et al., 2016). We showed that Taylor expansions con-
struct approximations to the full IS corrections and hence
intimately relate to established off-policy evaluation tech-
niques.

However, the connection between IS and policy optimiza-
tion is less straightforward. Prior work focuses on applying
off-policy corrections directly to policy gradient estimators
(Jie and Abbeel, 2010; Espeholt et al., 2018) instead of the
surrogate objectives which generate the gradients. Though
standard policy optimization objectives (Schulman et al.,
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2015; 2017) involve IS weights, their link with IS is not
made explicit. Closely related to our work is that of Tom-
czak et al. (2019), where they identified such optimization
objectives as biased approximations to the full IS objective
(Metelli et al., 2018). We characterized such approxima-
tions as the first-order special case of Taylor expansions and
derived their natural generalizations.

In summary, we showed that Taylor expansions naturally
connect trust-region policy search with off-policy evalua-
tions. This new formulation unifies previous results, opens
doors to new algorithms and bring significant gains to cer-
tain state-of-the-art deep RL agents.
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