Distribution Augmentation for Generative Modeling

Heewoo Jun®'! Rewon Child“' Mark Chen' John Schulman' Aditya Ramesh' Alec Radford'
Ilya Sutskever '

Abstract

We present distribution augmentation (DistAug),
a simple and powerful method of regularizing
generative models. Our approach applies augmen-
tation functions to data and, importantly, condi-
tions the generative model on the specific function
used. Unlike typical data augmentation, DistAug
allows usage of functions which modify the target
density, enabling aggressive augmentations more
commonly seen in supervised and self-supervised
learning. We demonstrate this is a more effective
regularizer than standard methods, and use it to
train a 152M parameter autoregressive model on
CIFAR-10 to 2.56 bits per dim (relative to the
state-of-the-art 2.80). Samples from this model
attain FID 12.75 and IS 8.40, outperforming the
majority of GANs. We further demonstrate the
technique is broadly applicable across model ar-
chitectures and problem domains.

1. Introduction

Data augmentation is an indispensable tool in the training of
deep neural networks, especially for discriminative (Cubuk
et al., 2019), semi-supervised (Xie et al., 2019a;b), and
self-supervised (Hénaff et al., 2019; He et al., 2019) vision
tasks. However, data augmentation has not played a role
in many of the recent advances on pixel-level generative
modeling (Salimans et al., 2017; Chen et al., 2018; Menick
& Kalchbrenner, 2018; Kingma & Dhariwal, 2018; Ho et al.,
2019; Parmar et al., 2018; Child et al., 2019). This is partly
caused by the difficulty of applying data augmentation to
generative modeling: aggressive augmentation functions
can change the data distribution the model learns, distorting
its samples and incurring a penalty to its log-likelihood.

“Equal contribution 'OpenAl, San Francisco, California, USA.
Correspondence to: Heewoo Jun <heewoo@openai.com>, Rewon
Child <rewon@openai.com>>.

Proceedings of the 37" International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

Figure 1. Unconditional samples from a large autoregressive model
trained on CIFAR-10 with DistAug. In addition to attaining state-
of-the-art likelihoods, at temperature 0.94 this model generates
samples competitive with or superior to many GANs (FID 12.75,
IS 8.40).

To illustrate, consider a supervised learning setting where
the distribution of interest is over a small number of class
variables y given a high-dimensional image z. In this case,
many transformations ¢(z) can be applied to = such that
the conditional distribution p(y|¢t(z)) remains unchanged.
Generative models, in contrast, seek to learn the distribu-
tion p(x) itself, and as such any ¢(x) we use must result in
images which are also likely under the original distribution.
Even mild augmentation functions, however, (like adding
Gaussian noise, shifting/rotating and padding with null pix-
els, or cutting out portions of the image), result in images
very unlikely under the original distribution. Models trained
with these augmentations may fit the original distribution
poorly and generate distorted samples.

This work introduces distribution augmentation (DistAug),
a method of regularizing generative models even under
augmentations which distort the data distribution. The

Distribution Augmentation for Generative Modeling

,t1(x), 12 (), t3(2), .. Py ()
\5@; ,f‘m;{ po(t1 ()
K4l T2 0 po(t2())
\&\a;; 3“‘5’, po(ts(x))

(a) Data augmentation

(@, 1), (t (ﬂf)’tl)y(tZ(Z)vtz)»(ts(I)ats)»~~~ oz | D)
- YRE- 1 polto(z) |to)
—— 0 po(ti(z) | t1)
(S ’f?&;f po(t2(z) | t2)

(b) DistAug

Figure 2. Illustration of the main differences between data augmentation and distribution augmentation (DistAug). DistAug can use more
aggressive transformations than data augmentation because it conditions the generative model on the transformation type.

idea is to simply learn a density py(t(x)|t) of the data
under some transformation ¢, conditioned on the transfor-
mation itself. The function ¢ can be drawn from a large
family of transformations, including state-of-the-art aggres-
sive data augmentations from supervised learning (Cubuk
et al., 2019) and self-supervised transformation functions
(Gidaris et al., 2018; Kolesnikov et al., 2019). To estimate
the un-transformed density and draw samples from it, the
transformation ¢ is simply set to the identity function.

This can be interpreted as a unique data-dependent and
model-dependent regularizer similar to multi-task learning.
We find it substantially outperforms standard methods, al-
lowing us to train an autoregressive CIFAR-10 model to
2.56 bits per dim (versus the previous 2.80 state-of-the-art)
and attain sample quality on par with most GANs. We show
evidence that this increased performance is both due to the
scalability of the method relative to standard regularization,
and also to the beneficial inductive biases received from
well-chosen augmentation functions.

We also examine the applicability of DistAug to other sce-
narios by testing different domains (language modeling
and neural machine translation), different models (autore-
gressive models and invertible flows) and different archi-
tectures (self-attention based and convolution-based). We
find our technique, with proper dropout tuning, yields im-
provements in most cases we test. We release our model
weights and code at https://github.com/openai/
distribution_augmentation.

2. Background
2.1. Density estimation

We consider the task of estimating a parametric density
pe(x) under the negative log-likelihood objective:

L(pe, D) == E [—logps()] ¢))

z~Dy
The model # can be any likelihood-based generative model,
including autoregressive models, invertible flows, varia-
tional autoencoders, and more.

2.2. Data augmentation

Standard data augmentation introduces a family of trans-
formation functions 7" where each t ~ T transforms the
data in a particular way, except for the identity transforma-
tion I. The objective is to maximize the likelihood over
transformed samples:

Laaa(po, Dn, T) := E | E [=logpe(t(z))]| ()
x~D, [t~T

The specifics of the distribution over 7" are determined on a
case-by-case basis, typically with regard to the performance
of the model when evaluating non-transformed data on a
held-out validation set. In the case of images, the types of
transformations are usually significantly more conservative
than those used in supervised learning, and are commonly
limited to just horizontal flipping. In the case of natural lan-
guage, transformations might include mild augmentations
like replacing words with their synonyms.

This is because using more aggressive transforms will distort
the distribution the model learns, often resulting in higher
loss on the validation set. Additionally, model samples will
include the augmentations, which is usually not desired.

3. DistAug

Distribution augmentation (DistAug), similar to data aug-
mentation, introduces a family of transformations 7" to the
training process. Unlike data augmentation, however, the
model learns the density of a transformed data sample, con-
ditioned on the specific transformation:

Laisi(po, Dn, T) := E | E [~logpe(t(x)|t)]| (3)
x~Dy, | t~T

A graphical depiction of this process appears in Figure 2.
DistAug allows the model to adapt its density estimate of
the sample based off which transformation is being applied.
In practice, this means that regardless of how radically a
transformation distorts a sample, adding it to the training
process need not affect the model’s estimate of the original
samples as long as the model has enough capacity.

https://github.com/openai/distribution_augmentation
https://github.com/openai/distribution_augmentation

Distribution Augmentation for Generative Modeling

In principle, any number and type of transformations can
be applied, regardless of whether they preserve the in-
formation in the data and regardless of how similar the
transformed samples are to the original. However, if
| det(0t/dz)| > 0, it is possible to invert the transformed
density. For permutation-motivated transforms like rotation,
jigsaw, and reordering of words, it is possible to estimate
and sample from the density in non-canonical order.

As a varied and wide family of transformations can be used
with DistAug, we hypothesize that it can be used to train
more powerful models without overfitting than is possible
with standard regularization methods. In section 4.1, we
provide experimental evidence supporting this claim.

3.1. DistAug as a data-dependent regularizer

A helpful way of rewriting the objective of a generative
model trained with DistAug is as follows:

Ldist(peaDan) = ED [_ IOgPG(I(x)lj)]

x~D,

.4, LLET [‘ log (mm o)
— L(po, D) + Qpe, Dy, T). (5)

In other words, the objective under DistAug is equivalent to
the original objective, plus some data and model-dependent
regularizer €2 whose difficulty is dependent on 7". The model
incurs a penalty if it models the original distribution much
better than any of the transformed distributions.

3.2. DistAug as multi-task learning

The objective in Eq. 3 can also be interpreted in the frame-
work of multi-task learning, where the separate tasks in this
case are to learn the transformed distributions. We specu-
late that, in a similar nature to multi-task learning, when
the family of transformations 7" is chosen with knowledge
of the original distribution and model class, DistAug may
lead to better generalization than techniques which penalize
complexity uniformly.

In section 4.2, we provide evidence that even small models
trained with DistAug achieve gains in validation perfor-
mance relative to standard training methods, suggesting that
gains are not only due to the scale of augmentations ap-
plied, but also due to the helpful inductive bias of certain
transformations.

4. Experiments

In this section, we provide evidence supporting our main
claims that 1) DistAug scales to larger model sizes than
standard regularization techniques, 2) specific choices of
distributions can lead to improved performance even for

small models, and 3) the conditioning signal leads to lower
error and improved samples.

In this section, we primarily study an autoregressive model
(the Sparse Transformer (Child et al., 2019)) and its perfor-
mance on the natural image benchmark datasets CIFAR-10
and ImageNet-64. In section 5, we test whether it applies to
other data types, model architectures, and generative objec-
tives.

In all image experiments, models using DistAug were tuned
to find the best subset of augmentation functions from rota-
tion (Gidaris et al., 2018), spatial transposition, color swap-
ping, jigsaw shuffling (Noroozi & Favaro, 2016), and an
ensemble of data augmentations from supervised learning
called RandAugment (Cubuk et al., 2019). To condition
the model on these transformations, we replace the start
of sequence embedding vector with the sum of augmen-
tation embeddings. For example, if we ask the model to
generate images with rotation and transposition, we choose
one each from four rotation embeddings and two transpo-
sition embeddings. Each option is selected uniformly at
random. For rotation, spatial transposition, color swapping,
and jigsaw recordering, we also permute the positional em-
beddings supplied to the Transformer, which results in a
smoother learning and an increase of around 0.01 BPD at
convergence.

Baseline regularization methods include just model regu-
larization (dropout and weight decay), as well as model
regularization and limited data augmentation (horizontal
flipping). Also, all DistAug runs were tuned for the best
value of dropout, which was typically much lower than the
corresponding baseline run.

Detailed hyperparameter settings for experiments are avail-
able in the Supplementary Material.

4.1. Scalability of DistAug

Here, we assessed the performance of DistAug relative
to standard regularization methods when both increasing
model size and data size.

4.1.1. CIFAR-10

We took a CIFAR-10 model with three different capacities:
15M parameters (smaller than typically used), 58M parame-
ters (the previous state-of-art), and 152M parameters (more
than is typically used), and assessed their performance when
trained with DistAug and with standard regularization meth-
ods.

The results are presented in Figure 3. Without DistAug, the
larger 152M parameter models perform worse than their
58M parameter counterparts, suggesting that a good regular-
ization technique would be to simply reduce the number of

Distribution Augmentation for Generative Modeling

— / DistAug type Dropout BPD
2.8 o
— -— - 60% 2.88
57 horizontal flipping 40% 2.79
' “Q’ randaugment 25% 2.66
2.6 4 —*Dbaseline rot rot 40% 2.59
. - —— \.
—o—hor. flipping rot, tr rot, tr 40% 2.56
—e—randaugment rot, tr, col, js rot, tr, col 10% 2.58
25 1 . . — rot, tr, col, js 5% 2.53

1
107
(b) CIFAR-10 test bits per dim using a 152M Sparse Transformer.
Increasing levels of DistAug and less dropout yields increased
performance.

(a) CIFAR-10 validation bits per dim of different augmentation
strategies across model sizes (in millions of parameters). Baseline
and horizontal flipping do not use DistAug.

Figure 3. Using large models with increasing DistAug strength can improve generalization to an extent that is not possible with standard

regularization methods. Dropout and traditional data augmentation plateau at lower parameter count.

parameters in the model. With DistAug, on the other hand,
performance continues to improve as we increase model
capacity. The model with the most augmentations and the
lowest dropout rate performs the best, attaining 2.53 bits per
dim on the test set, compared to 2.79 for a similarly-sized
model with tuned dropout and standard data augmentation.

It should be noted that this improved performance is not just
with models with greater numbers of parameters—in fact,
the 15M model trained with rotation and transposition, at
2.67 bits per dim, also improves upon the previous S8M
state-of-the-art model by 0.13 bits per dim. We attribute this
gain to a useful inductive bias from DistAug, and further
elaborate on this phenomenon in section 4.2.

4.1.2. IMAGENET-64

We also evaluated models trained with DistAug on the larger
and more complex ImageNet-64 dataset. We trained 152M
and 303M parameter models for comparison with previ-
ous works. DistAug with rotation showed modest gains in
performance, as seen in Table 1. We suspect that, as the
baseline models do not require training with dropout, that
their capacity is still insufficient to benefit fully from Dis-
tAug. Larger models will be needed for more substantial
gains.

4.2. DistAug on small models

We observe that even relatively small models can benefit
from DistAug, which is difficult to explain if it acts purely
as a regularizer on the model’s capacity. Drawing from
DistAug’s connections to multi-task learning explored in
section 3.2, we hypothesize that the specific inductive bias
of the transformations may aid in learning a generalizable
solution as opposed to merely regularizing the model.

To test this, we apply single augmentation types to a 15M

Table 1. Validation bits per dim on the ImageNet-64 dataset. We
found gains to be modest relative to CIFAR-10, suggesting that
model capacity may still be too limited to fully take advantage of
DistAug. DistAug still shows some improvement, however, which
we discuss in section 4.2

Parameters DistAug type Validation BPD
152M - 3.432
152M rot 3.427
303M - 3.425
303M rot 3.419

parameter CIFAR-10 model, reporting results in Table 2.
Although each variation provides exactly one auxiliary task
for the model to complete, the validation performance varies
widely, from an increase of 0.13 bits per dim over the base-
line (rotation) to a decrease of 0.06 bits per dim (with a
set of fixed random orderings). Thus, we conclude that the
task type is important and can lead to wide variations in
performance.

It is unclear why certain augmentation types are so much
stronger than others in improving density estimation. Take,
for example, jigsaw, which effectively amplifies the amount
of training data by a factor of (2 x 2)! = 24 — larger than
the factor of 4x for rotation. In line with results from self-
supervision literature (Kolesnikov et al., 2019), however,
jigsaw turns out to be weaker than rotation. We speculate
that rotation may just happen to provide a useful inductive
bias for the specific model and datasets we use, and posit
this as the reason it helps even for models which are not
prone to overfitting.

Another interpretation is that the model is encouraged to
learn the original data distribution and a neural circuit to
generate augmented distributions from it. It is possible that
certain augmentation types such as rotation are a simple

Distribution Augmentation for Generative Modeling

Table 2. CIFAR-10 performance for a relatively small 15M param-
eter models, trained with varying choices of a single augmentation
function. Rotation and RandAugment (Cubuk et al., 2019) per-
form remarkably well, even outperforming larger state-of-the-art
models, whereas random orderings or excess data decrease perfor-
mance. The specific inductive biases of transformations thus can
aid model learning, independent of their regularizing effect.

Augmentation Validation BPD
Baseline 2.82
RandAugment 2.73
Jigsaw 2.78
Color 2.75
Transposition 2.73
Rotation 2.69
75% Fixed random order 2.88
75% ImageNet data 2.80

enough function to implement, and facilitate in learning
the original data distribution in the process of jointly com-
pressing the data and the corruption process. We found
tiny models with 2M parameters plateaued to a worse like-
lihood than the baseline when DistAug was used. Because
the model does not have enough capacity to learn this joint
representation let alone all distributions, it does not learn
any one distribution well. This is contrasted by sufficiently
larger models that could eventually learn a more compact
representation.

Such mechanics may lead the model to avoid rote mem-
orization and improve generalization. We leave detailed
examination of this mechanism to future work.

4.3. Importance of the conditioning signal

For a 32 x 32 image, 1 bit of conditioning signal provides
only about 0.0003 BPD of information. But, the presence
of this bit allows the model to estimate and sample from
the original distribution much more effectively, as shown in
Figure 4. While models trained without conditioning can
still put significant probability mass on unaugmented data,
during sampling augmented samples are drawn frequently
and appear visually distorted, a phenomenon introduced in
(Theis et al., 2015).

We provide quantitative evaluations of this behavior in
Table 3 where heavy RandAugment normally used for
larger images is applied 99% of the time. In the case of
a RandAugment-conditioned model, the conditioning signal
provides a gain of only 0.007 bits per dim likelihood yet
improves the FID evaluation by over 20 points. We find
that the model can still sample plausible objects and ob-
tains a comparable FID to GAN models, whereas the model
trained with traditional data augmentation rarely produces
unaugmented samples, as shown in Figure 8b.

Moreover, the corruption process internalized by an un-
conditional augmentation model often can not be fixed by
finetuning on the original data. For the above example with
heavy RandAugment, we further finetune for 10 to 100
epochs with a varying amount of model regularization and
find that the sample quality and the rate of unaugmented
samples do not change much.

It is interesting, however, that when the unconditional model
generates a sample from the original distribution, the sample
quality is often quite high. There are clearly object-like
images, demonstrating that augmentation can still help with
sample quality of the original distribution, even without
conditioning. But to ensure that the model can reliably
sample from the original distribution instead of following
its adjusted training distribution, conditioning must be used.

Table 3. Ablation on the conditioning signal

Augmentation Conditioning? BPD FID IS
RandAugment no 2715 420 6.36
RandAugment yes 2708 21.1 7.52

-_—

EE!HIQ
. Sl

S [e

= B IEIE

(b) Without conditioning

(a) With conditioning

Figure 4. Even though the log-likelihood of unconditional and con-
ditional augmented models can be similar, samples from DistAug
are much improved visually and have a lower incidence of artifacts.

5. Comparison across architectures, domains,
and other existing work

We tested whether the same technique applies to different
model architectures, problem domains, and generative mod-
eling objectives. We also attempted to contextualize our
work in the body of existing generative modeling literature.
Our results are summarized in Tables 4, 5, and 6.

5.1. Comparison with existing autoregressive models

We compare the best Sparse Transformer (Child et al., 2019)
we could train with DistAug with the previous state-of-the-
art self-attention based generative models. With an equal
amount of parameters, simply adding rotation leads to a
gain of 0.18 bits per dim (BPD) over the state-of-the-art, to
2.62. Larger models benefit even more: a 152M parameter

Distribution Augmentation for Generative Modeling

Table 4. Performance on the CIFAR-10 natural image density estimation benchmark. Well-tuned distribution augmentation leads
to significant gains across model architectures, generative objectives, and datasets when compared with standard augmentation or
regularization techniques. “rot, tr” corresponds to augmenting by spatially rotating images and transposing them which creates 8
left-right-aware reorientations of the image.

Model Parameters Regularization DistAug BPD
Autoregressive, Self-Attention

PixelSNAIL (Chen et al., 2018) - 2.85
Sparse Transformer (Child et al., 2019) 58M dropout 25% - 2.80
Sparse Transformer 58M dropout 1% rot 2.62
Sparse Transformer 152M dropout 40%,hflip - 2.78
Sparse Transformer 152M dropout 40% rot,tr 2.56
Sparse Transformer 152M dropout 5% rottrjs,c 2.53
Autoregressive, Convolutional

PixelCNN (van den Oord et al., 2016b) 3.14
Gated PixelCNN (van den Oord et al., 2016a) 3.03
Pixel CNN++ (Salimans et al., 2017) 53M 50% - 2.93
Pixel CNN++ 53M 50% rot, tr 2.88
Pixel CNN++ 53M 5% rot, tr, col 2.84
Invertible flow

Glow (Kingma & Dhariwal, 2018) - 3.35
Flow++ (Ho et al., 2019) 32M 20% - 3.08
Flow++ 32M 1% rot, tr 2.98

Table 5. Frechet Inception Distance (FID) and Inception Scores (IS) for models trained with DistAug on CIFAR-10, relative to existing
state-of-the-art. We find that better sample quality tends to correlate with fewer augmentations, and only loosely follows likelihoods.
When the sampling temperature is varied, moreover, networks trained with DistAug can generate samples with similar or better quality
than GAN-based networks, despite not incorporating any optimization objective for sample quality.

Model Parameters Regularization DistAug BPD Temperature FID IS
Sparse Transformer 58M Dropout 1% rot 2.62 1.0 37.5 641
Sparse Transformer 152M Dropout 5% rot,tr,js,c 2.53 1.0 429 6.85
Sparse Transformer 152M Dropout 40%, hflip - 2.78 1.0 278 7.16
Sparse Transformer 152M Dropout 25% randaugment 2.66 1.0 14.7 8.18
Sparse Transformer 152M Dropout 40% rot,tr 2.56 1.0 21.8 7.81
Sparse Transformer 152M Dropout 40% rot,tr 0.98 17.0 8.00
Sparse Transformer 152M Dropout 40% rot,tr 0.94 127 8.40
Sparse Transformer 152M Dropout 40% rot,tr 0.90 152 836
Sparse Transformer 152M Dropout 25% randaugment - 0.94 10.57 8.93
PGGAN (Karras et al., 2017) 8.80
AutoGAN (Gong et al., 2019) 1242 8.55
CR-GAN (Tian et al., 2018) 1456 8.40
SN-GAN (Miyato et al., 2018) 21.7 822
WGAN-GP (Gulrajani et al., 2017) 293 7.86

Table 6. Performance on natural language generation benchmarks. Enwik8 is unconditional generation, whereas Neural Machine
Translation (NMT) is conditional generation. DistAug increases performance on the tasks we studied.

Model Parameters Dropout DistAug

Enwik8 Bits per byte
Sparse Transformer (Child et al., 2019) 95M 20% - 0.99
Sparse Transformer 95M 10% document, sentence, word reversal 0.968 £ 0.001
En-De Neural Machine Translation BLEU
Transformer (Vaswani et al., 2017) 210M 30% - 26.23 +0.77

Transformer 210M 15% sentence reversal 26.82 +£0.24

Distribution Augmentation for Generative Modeling

Sparse Transformer attains 2.78 BPD using traditional data
augmentation, but with aggressive DistAug gets 2.53 BPD,
a relative gain of 0.25 BPD.

5.2. Comparison across architectures
5.2.1. PIXELCNN++

We also compare with a model architecture variant which
incorporates no self-attention, the Pixel CNN++ (Salimans
et al., 2017). The relative gain from introducing DistAug
appears to be more limited than in the self-attention case,
gaining 0.09 bits per dim to a total of 2.84. The reason for
this difference is unclear, although we speculate that self-
attention may be more capable of learning flexible routing
patterns than a purely convolutional approach.

5.2.2. FLOW++

Additionally, to test whether it may be just the quirks of
the autoregressive objective which lead to gains from Dis-
tAug, we also test on a state-of-the-art invertible flow with
variational dequantization, Flow++ (Ho et al., 2019). We
added a conditioning embedding to every coupling network
in order to allow the model to incorporate transformation
information.

We find that the model trained with rotation and tranposition
gains 0.1 bits per dim over the baseline, to a total of 2.98.
When we inspected the learned conditioning embeddings,
however, we found that many of them had similar values,
and samples generated with different orientations looked
visually similar. Thus, we conclude that the network did not
learn to use our conditioning, and that similar gains would
be seen with an unconditional model.

5.3. Comparison of sample quality relative to other
generative models

We also compare the sample quality relative to existing
work by calculating Frechet Inception Distance (FID) and
Inception Scores (IS). We draw 10,000 samples and report
scores in Table 5. Inception scores are calculated in 10
batches, and we report the mean.

We notice only a loose correlation between bits per dim
and sample quality metrics, a phenomenon observed to be
possible in (Theis et al., 2015). Instead, we notice that ap-
plying fewer augmentations tends to result in better sample
quality for the model size considered in this work, with both
conditional RandAugment and rot,tr performing similarly
well.

The model trained with rot,tr,js,col, on the other hand,
achieves high FID and low IS despite achieving the lowest
bits-per-dim of any model. Samples of this model are shown
in 8a. The reason for this disparity is unknown, but may be

uﬂtu S _H'Fﬂ
-ﬁﬂ!*” .

el
u'ﬂﬁﬂ*ﬂmf ﬁﬂﬁ

7 g 9 A =T

Figure 5. The top row is cherry-picked samples from a DistAug
model where the augmentation is RandAugment (Cubuk et al.,
2019). More representative samples are shown in Figure 7b. Sub-
sequent rows are the nearest training data in the Inception embed-
ding space. We found none of the generated samples were clearly
copied pixel-by-pixel, although numerous, near identical copies of
the white sedan are found in the training set.

due to the limited capacity of the model to condition on a
wide number of transformations.

When samples are generated by tempering the output distri-
bution, as in common practice with autoregressive models,
we find that sample quality matches or exceeds the best
GANS in the literature. This is despite the fact that ours is
a likelihood-based model that must cover all modes of the
data, and incorporates no objective specifically tailored to
promote sample quality. In Figure 5, we cherry-pick some
of the best samples and show the nearest neighbors in the
Inception embedding space. We found little evidence to
suggest the model is merely memorizing data. One case
of a white sedan did appear to be very similar to training
examples, but the same car appears numerous times in the
training data. Additionally, the sampled image has many
differences on a pixel-by-pixel level.

5.4. Comparison on text domain

In principle, the benefits of DistAug need not be limited
to images. Here, we explore augmentation for generative
modeling of text on two tasks: neural language modeling
and neural machine translation.

For language modeling, we factorize the prose probability in
various ways. Namely, we consider independently reversing
the order of sentences, words, and letters within a word. For
example, for the last two options, "the cat sat on
the mat" becomes "mat the on sat cat the"
and "eht tac tas no eht tam" respectively. In
general, this idea is equivalent to progressively factoriz-
ing a string x into (s)entences, (w)ords, and (c)haracters:
po(e) = ILpo(selsec,). po(s) = TLpo(wnwa_,).
po(w) = [, po(ce,|cv.,) With shared orderings ¢, u, v at
each level. On Enwiks8, these augmentations lead to a gain
of 0.022 bits per dim. We note that because fp16 training

Distribution Augmentation for Generative Modeling

and augmentation introduces a bit of variance in training,
the reported result is an average over the best three runs out
of ten selected based on validation error.

For Neural Machine Translation (NMT), we took the same
Transformer as used by Vaswani et al. (2017) for the En-
De translation task. As byte-pair encoding (BPE) (Gage,
1994) is used in these models, we only experimented with
reversing the word order of a sentence (and not the charac-
ters within words) as to avoid changing the tokenization of
normal sentences. Also, as NMT is a conditional generation
task, augmentations can be applied to either the source or
target sentence. We found augmenting the target with re-
versals increased BLEU from 26.2 to 26.9, as measured by
the average of 5 runs. Augmenting the source we found to
provide no additional value over augmenting the target.

While a number of strong augmentations exist for images, it
is unclear how to best augment text, especially with the more
recent frontends like BPE. Admittedly, improvement on text
is modest compared to the image domain. Because DistAug
depends on the availability of relevant transformations for
the task, the effectiveness of this algorithm is limited to
those data-limited domains where prior knowledge can be
encoded as augmentation functions.

6. Related work

Distribution augmentation is situated in a large number of
existing works on self-supervision, order-agnostic autore-
gressive training, and multi-task learning.

Self-supervised learning in computer vision is a relatively
recent paradigm in representation learning where the super-
vision signal comes from the data and a pretext task. In
this class of approaches, a classifier is trained to predict
the transformation applied to the input data. Past works
introduced rotation prediction (Gidaris et al., 2018), jigsaw
puzzle solving (Noroozi & Favaro, 2016), color prediction
(Zhang et al., 2016), and context prediction (Doersch et al.,
2015; van den Oord et al., 2018) to build up a useful rep-
resentation for downstream tasks. DistAug can be thought
of as learning the inverse generative processes of those dif-
ferent tasks. It is perhaps unsurprising then that we see the
same relative rank ordering of pretasks in effectiveness, for
example, between rotation and Jigsaw in this work.

Many transformations in our work can be interpreted as
some reordering of the raw data, such as rotation and rever-
sal of words. In this case, the task ¢ becomes a permutation
operator, which has a rich history in the literature, starting
with the very general orderless NADE (Uria et al., 2014),
whose objective looks identical to Eq. (3). XLNet (Yang
et al., 2019) is a modern reincarnation of this idea that uses
the inherently orderless Transformer architecture to learn
the density in different orderings. This work also introduced

the idea of swapping positional embeddings which we found
to be crucial when the model is asked to generate a large
number of permutations. Both approaches differ from our
method in that they attempt to learn over randomly sampled
permutations. We saw that some orderings, however, impart
much more useful inductive biases than others. In spirit,
this is closer to matching the densities of fixed orderings,
for example, of forward and backward models for better
sequence generation (Serdyuk et al., 2017), although we
propose to train one model for all of them.

Sharing of weights to learn multiple tasks is a common strat-
egy used to better regularize the model. Training on multiple
tasks in NLP (Collobert & Weston, 2008), computer vision
(Torralba et al., 2007), and across multiple modalities or
datasets (Ngiam et al., 2011) is known to provide helpful
inductive biases and improve generalization. More similar
in spirit to our approach is priming the generator network
to control what it generates. For example, (Eslami et al.,
2018) shows the model images of a scene and asks it to
generate the scene from a different view. (Johnson et al.,
2016) trains a neural machine translation model with one
decoder that, when conditioned on a certain language token
translates to that target language. Although we did not try
in this work, we could also use fill-in-the-blank style pre-
text task like BERT (Devlin et al., 2019) as distributions to
augment. This works for any arbitrary data types including
text and is related to cutout (Devries & Taylor, 2017) used
in RandAugment (Cubuk et al., 2019).

7. Conclusion

We present DistAug, a simple and effective method for
regularizing generative models. We show that it improves
upon data augmentation by allowing transformations that
modify the target density, by scaling to larger model sizes,
and by providing useful inductive biases to aid learning. We
train autoregressive models that set a new state-of-the-art
for density estimation of CIFAR-10 and beat the sample
quality of most GANs without explicitly training to do so.
In general, the effectiveness of our method depends on the
strength of inductive bias encoded by the augmentation
function as well as the capacity and expressivity of the
model. With less powerful models and in domains like text,
where the choice of augmentation is less clear, the gains are
modest.

8. Acknowledgements

We would like to thank Jakub Pachocki, Johannes Otter-
bach, Prafulla Dhariwal, Pranav Shyam, and Nick Ryder
for helpful discussions and feedback on early drafts of this
work.

Distribution Augmentation for Generative Modeling

References

Chen, X., Mishra, N., Rohaninejad, M., and Abbeel, P. Pix-
elSNAIL: An improved autoregressive generative model.
In Dy, J. and Krause, A. (eds.), Proceedings of the 35th In-
ternational Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 864—
872, Stockholmsmassan, Stockholm Sweden, 10-15 Jul

2018. PMLR. URL http://proceedings.mlr.

press/v80/chenl8h.html.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gener-
ating long sequences with sparse transformers. CoRR,
abs/1904.10509, 2019. URL http://arxiv.org/
abs/1904.105009.

Collobert, R. and Weston, J. A unified architecture for natu-
ral language processing: Deep neural networks with mul-
titask learning. In Proceedings of the 25th international
conference on Machine learning, pp. 160167, 2008.

Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. V. Ran-
daugment: Practical automated data augmentation with a
reduced search space, 2019.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp.
4171-4186, Minneapolis, Minnesota, June 2019. Asso-
ciation for Computational Linguistics. doi: 10.18653/
v1/N19-1423. URL https://www.aclweb.org/
anthology/N19-1423.

Devries, T. and Taylor, G. W. Improved regularization
of convolutional neural networks with cutout. ArXiv,
abs/1708.04552, 2017.

Doersch, C., Gupta, A., and Efros, A. A. Unsupervised
visual representation learning by context prediction. In
Proceedings of the IEEE International Conference on
Computer Vision, pp. 1422-1430, 2015.

Eslami, S. M. A., Jimenez Rezende, D., Besse, F., Viola,
F., Morcos, A. S., Garnelo, M., Ruderman, A., Rusu,
A. A., Danihelka, I., Gregor, K., Reichert, D. P., Buesing,
L., Weber, T., Vinyals, O., Rosenbaum, D., Rabinowitz,
N., King, H., Hillier, C., Botvinick, M., Wierstra, D.,
Kavukcuoglu, K., and Hassabis, D. Neural scene rep-
resentation and rendering. Science, 360(6394):1204—
1210, 2018. ISSN 0036-8075. doi: 10.1126/science.
aar6170. URL https://science.sciencemag.
org/content/360/6394/1204.

Gage, P. A new algorithm for data compression. C Users J.,
12(2):23-38, February 1994. ISSN 0898-9788.

Gidaris, S., Singh, P., and Komodakis, N. Unsupervised rep-
resentation learning by predicting image rotations. CoRR,
abs/1803.07728, 2018. URL http://arxiv.org/
abs/1803.07728.

Gong, X., Chang, S., Jiang, Y., and Wang, Z. Autogan: Neu-
ral architecture search for generative adversarial networks.
ArXiv, abs/1908.03835, 2019.

Gulrajani, 1., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. C. Improved training of wasserstein gans.
CoRR, abs/1704.00028, 2017. URL http://arxiv.
org/abs/1704.00028.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. B. Mo-
mentum contrast for unsupervised visual representation
learning. ArXiv, abs/1911.05722, 2019.

Hénaff, O. J., Razavi, A., Doersch, C., Eslami, S.
M. A., and van den Oord, A. Data-efficient image
recognition with contrastive predictive coding. CoRR,
abs/1905.09272, 2019. URL http://arxiv.org/
abs/1905.09272.

Ho, J., Chen, X., Srinivas, A., Duan, Y., and Abbeel, P.
Flow++: Improving flow-based generative models with
variational dequantization and architecture design. CoRR,
abs/1902.00275, 2019. URL http://arxiv.org/
abs/1902.00275.

Johnson, M., Schuster, M., Le, Q. V., Krikun, M., Wu,
Y., Chen, Z., Thorat, N., Viégas, F. B., Wattenberg, M.,
Corrado, G., Hughes, M., and Dean, J. Google’s mul-
tilingual neural machine translation system: Enabling
zero-shot translation. CoRR, abs/1611.04558, 2016. URL
http://arxiv.org/abs/1611.04558.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progres-
sive growing of gans for improved quality, stability, and
variation. ArXiv, abs/1710.10196, 2017.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow
with invertible 1x1 convolutions. In Bengio, S., Wal-
lach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 31, pp. 10215-10224. 2018.

Kolesnikov, A., Zhai, X., and Beyer, L. Revisiting
self-supervised visual representation learning. CoRR,
abs/1901.09005, 2019. URL http://arxiv.org/
abs/1901.09005.

Menick, J. and Kalchbrenner, N. Generating high fidelity
images with subscale pixel networks and multidimen-
sional upscaling. CoRR, abs/1812.01608, 2018. URL
http://arxiv.org/abs/1812.01608.

http://proceedings.mlr.press/v80/chen18h.html
http://proceedings.mlr.press/v80/chen18h.html
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1904.10509
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://science.sciencemag.org/content/360/6394/1204
https://science.sciencemag.org/content/360/6394/1204
http://arxiv.org/abs/1803.07728
http://arxiv.org/abs/1803.07728
http://arxiv.org/abs/1704.00028
http://arxiv.org/abs/1704.00028
http://arxiv.org/abs/1905.09272
http://arxiv.org/abs/1905.09272
http://arxiv.org/abs/1902.00275
http://arxiv.org/abs/1902.00275
http://arxiv.org/abs/1611.04558
http://arxiv.org/abs/1901.09005
http://arxiv.org/abs/1901.09005
http://arxiv.org/abs/1812.01608

Distribution Augmentation for Generative Modeling

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spec-
tral normalization for generative adversarial networks.
ArXiv, abs/1802.05957, 2018.

Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., and Ng,
A.Y. Multimodal deep learning. 2011.

Noroozi, M. and Favaro, P. Unsupervised learning of visual
representations by solving jigsaw puzzles. In European
Conference on Computer Vision, pp. 69—84. Springer,
2016.

Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L.,
Shazeer, N., and Ku, A. Image transformer. CoRR,
abs/1802.05751, 2018. URL http://arxiv.org/
abs/1802.05751.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever,
I. Improving language understanding by generative pre-
training. 2018.

Salimans, T., Karpathy, A., Chen, X., and Kingma, D. P.
Pixelenn++: Improving the pixelcnn with discretized lo-
gistic mixture likelihood and other modifications. CoRR,
abs/1701.05517, 2017. URL http://arxiv.org/
abs/1701.05517.

Serdyuk, D., Ke, N. R., Sordoni, A., Pal, C., and Bengio, Y.
Twin networks: Using the future as a regularizer. CoRR,
abs/1708.06742, 2017. URL http://arxiv.org/
abs/1708.06742.

Theis, L., van den Oord, A., and Bethge, M. A note on the
evaluation of generative models. CoRR, abs/1511.01844,
2015.

Tian, Y., Peng, X., Zhao, L., Zhang, S., and Metaxas, D. N.
Cr-gan: Learning complete representations for multi-view
generation. In IJCAI, 2018.

Torralba, A., Murphy, K. P, and Freeman, W. T. Sharing
visual features for multiclass and multiview object detec-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29(5):854-869, 2007.

Uria, B., Murray, L., and Larochelle, H. A deep and tractable
density estimator. In International Conference on Ma-
chine Learning, pp. 467475, 2014.

van den Oord, A., Kalchbrenner, N., Vinyals, O., Es-
peholt, L., Graves, A., and Kavukcuoglu, K. Condi-
tional image generation with pixelcnn decoders. CoRR,
abs/1606.05328, 2016a. URL http://arxiv.org/
abs/1606.05328.

van den Oord, A., Kalchbrenner, N., Vinyals, O., Es-
peholt, L., Graves, A., and Kavukcuoglu, K. Condi-
tional image generation with pixelcnn decoders. CoRR,

abs/1606.05328, 2016b. URL http://arxiv.org/
abs/1606.05328.

van den Oord, A., Li, Y., and Vinyals, O. Representa-
tion learning with contrastive predictive coding. CoRR,
abs/1807.03748, 2018. URL http://arxiv.org/
abs/1807.03748.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. CoRR, abs/1706.03762, 2017. URL
http://arxiv.org/abs/1706.03762.

Xie, Q., Dai, Z., Hovy, E. H., Luong, M., and Le,
Q. V. Unsupervised data augmentation. CoRR,
abs/1904.12848, 2019a. URL http://arxiv.org/
abs/1904.12848.

Xie, Q., Hovy, E., Luong, M.-T., and Le, Q. V. Self-
training with noisy student improves imagenet classifica-
tion, 2019b. URL http://arxiv.org/abs/1911.
04252. cite arxiv:1911.04252.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J. G., Salakhut-
dinov, R., and Le, Q. V. Xlnet: Generalized autore-
gressive pretraining for language understanding. CoRR,
abs/1906.08237, 2019. URL http://arxiv.org/
abs/1906.08237.

Zhang, R., Isola, P., and Efros, A. A. Colorful image col-
orization. In European conference on computer vision,
pp. 649-666. Springer, 2016.

http://arxiv.org/abs/1802.05751
http://arxiv.org/abs/1802.05751
http://arxiv.org/abs/1701.05517
http://arxiv.org/abs/1701.05517
http://arxiv.org/abs/1708.06742
http://arxiv.org/abs/1708.06742
http://arxiv.org/abs/1606.05328
http://arxiv.org/abs/1606.05328
http://arxiv.org/abs/1606.05328
http://arxiv.org/abs/1606.05328
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1904.12848
http://arxiv.org/abs/1904.12848
http://arxiv.org/abs/1911.04252
http://arxiv.org/abs/1911.04252
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237

Distribution Augmentation for Generative Modeling

A. Experimental details
A.1. CIFAR-10 (Sparse Transformer)

For CIFAR-10, 58M and 152M models use the same hy-
perparameters as the ones in (Child et al., 2019) except
they are trained with a learning rate of 0.00015 for 1000 —
1500 epochs with a cosine decay (Radford et al., 2018) over
10000 epochs. When the validation loss stops decreasing,
typically around 1000 epochs, we further linearly decay the
learning rate to 0 over 300 epochs.

The 15M model has one-fourth the layers of the 58M model.
Since it was hard to gauge the optimal learning schedule
for this model, we anneal the learning rate by half manu-
ally based on the validation loss after 2048 epochs. Some
permutation runs at this scale show instability before 2048
epochs when various conditioning information is removed.
In these cases, learning rate is annealed manually sooner.
We stopped the 15M runs at 4000 epochs, even though they
continue to improve marginally after this, as the magnitude
of increase is typically less than 0.001 BPD.

Batch size for all CIFAR-10 experiments was 16.

A.2. CIFAR-10 (Flow++)

The Flow++ experiments in the paper use the same hyperpa-
rameters and codebase as the state-of-the-art model in Ho
et al. (2019). All results are reported for 4000 importance
weighted samples. We tested with and without augmenta-
tions of rotation and transposition, and tested dropout rates
of 20% and 1%. Conditioning is applied by concatenating
an embedding to the input of each coupling neural network.
We share embedding parameters for all coupling networks
of equal input resolution.

The baseline model achieves 3.08 bits per dim with 20%
dropout and 3.22 bits per dim with 1% dropout. The aug-
mented model achieves 3.03 bits per dim with dropout of
20% and 2.98 bits per dim with a dropout of 1%.

As noted in the main text, however, the embeddings for
the augmented model tended to converge to highly similar
values and samples from the model look visually similar
regardless of which conditioning signal is supplied. This
suggests the network did not learn to condition on the aug-
mentation type. Thus we expect that future work incorporat-
ing better conditioning techniques for flows will benefit to a
greater extent from our technique.

A.3. CIFAR-10 (PixelCNN++)

Our PixelCNN++ experiments used the codebase from Sal-
imans et al. (2017), and our baseline with dropout 0.5
achieved 2.926 bits per dim, closely matching the 2.92 bits
per dim reported in the paper. We tested three configura-

tions consisting of the following augmentations: rotation,
rotation followed by transposition, and rotation followed by
transposition followed by color swapping.

We re-purposed the class conditioning mechanism from
PixelCNN++, which learns a class-dependent bias for each
convolutional unit, by changing it into an augmentation-
dependent bias. When stacking multiple augmentations,
we learned a separate bias for each augmentation type, and
added the bias vectors.

We trained for 2000 CIFAR-10 epochs, allowing each con-
figuration to converge. Augmenting with rotation improved
bits per dim to 2.89 and adding transposition improved bits
per dim to 2.88. Adding color swapping resulted in 2.91
bits per dim, but by lowering the dropout rate to 0.05, we
achieved our highest performing 2.84 bits per dim.

The importance of conditioning is evident with the Pixel-
CNN++ architecture as well. When we trained the configu-
rations without conditioning, rotation and rotation + transpo-
sition both performed about 0.005 bits per dim worse than
their conditional counterparts, and rotation + transposition +
color swapping performed 0.02 bits per dim worse than its
conditional counterpart.

A.4. Jigsaw shuffling and color swapping

For jigsaw shuffling, an image is broken into 2 x 2 tiles.
The tiles are reordered in (2 x 2)! = 24 ways. For color
swapping, all 3! = 6 permutations of the RGB channels are
used. A start-of-sequence embedding is learned for each
of the 24 and 6 permutations respectively. When we stack
different transformations motivated from self-supervision,
we use the sum as the start-of-sequence embedding.

A.5. RandAugment parameters

When applying RandAugment (Cubuk et al., 2019) to 32x32
images, we found reducing the cutout and translation con-
stants to 20 and 50 resulted in lower BPD and less corrupted
samples than with the original values of 40 and 100.

A.6. FID and Inception Score

FID was calculated with 10,000 samples. Inception score
was calculated in 10 batches and using 10,000 samples.

A.7. ImageNet-64 (Sparse Transformer)

We use the same 152M Sparse Transformer model from
(Child et al., 2019), and double the depth for the 303M
model. Both models are trained with a batch size of 128
with a learning rate of 0.00015 cosine decayed over 10000
epochs. However, ImageNet runs typically converge within
100 to 200 epochs. Because a high learning rate is used
throughout training, the baseline likelihood is slightly bet-

Distribution Augmentation for Generative Modeling

ter than was originally reported in (Child et al., 2019) but
exhibits instability around 60 epochs. When training be-
comes unstable, we first try linearly decaying the learning
rate to 0 over 50 epochs. If this still results in divergence,
we decrease the learning rate by a constant factor. We found
near convergence, the learning rate had to be decreased by a
factor of 10-15 when linear decay was not an option.

A.8. Enwik8

The Enwik8 experiment uses the same hyperparameters as
the 95M Sparse Transformer baseline with fixed attention.
There are six priming embeddings in total, consisting of
two for each decision of whether to apply one of the three
reversal augmentations. All options are chosen uniformly
at random, so the model is presented with the unaugmented
ordering one-eighth of the time. When the model is trained
with distribution augmentation, the dropout rate is decreased
to 10%. During evaluation, we use the same approach of
increasing minimum context length to 12,160 to make our
results comparable to (Child et al., 2019). However, it’s
worth noting that the model gets 0.969 4 0.001 test bits-per-
byte even when evaluated with 6,144 context tokens.

A.9. Dropout tuning

Distribution augmentation is quite effective when paired
with properly tuned dropout. In Figure 6, we see that model
regularization or DistAug alone is not enough to consider-
ably improve the validation loss. However, DistAug with
a well-tuned dropout rate induces the model to train much
longer without overfitting. Alternatively, we could increase
augmentation strength to use less dropout, but as noted in
the main text, we sometimes found that more augmentations
impaired sample quality even as they improved likelihood.
In either case, we found that choosing an appropriate level
of dropout was important for good performance, and suggest
that other practitioners tune the dropout level for a given set
of augmentations they apply.

3.1
--=-- 40% (train)
—— 40% (valid)
3.0 -=== 25% (train)
— 25% (valid)
2.9 1 0.5% (train)
RS . 0.5% (valid)
2.8 T T - l\ T T
0 20 40 60 80 100
(a) Model regularization alone
‘i}‘ ---= 40% (train)
2.8 A —— 40% (valid)
\ ~——= 25% (train)
— 25% (valid)
2.7 A .
0.5% (train)
~~~~~~~~ 0.5% (valid)
T
T T T T
0 500 1000 1500
(b) Rotation DistAug.

Figure 6. Tuning dropout is important for distribution augmenta-
tion. The x and y axes are epochs and (smoothed) CIFAR-10 nega-
tive log-likelihood in BPD, respectively. All experiments are with
152M Sparse Transformer. Here, we see that even 40% dropout
with rotation DistAug was not enough to prevent overfitting.



Distribution Augmentation for Generative Modeling

PRS2 ¢ W BV mlls e E
EaEaacs ¢ AalalfaEwHs

T e gt B Lok
I Sl Es SREEE”

luh .
B . P
gap = (E Ewbi_Ea

1

< nd
&i I'-—IIIEII&E

(a) Temperature 1 samples obtain 14.74 FID and 8.18 IS.

(b) Temperature 0.94 samples obtain 10.57 FID and 8.93 IS.

Figure 7. Models trained with heavy distribution augmentation can still generate plausible samples from the original distribution, even
though the model has seen unaugmented images a small fraction of the time. We show samples at two different temperatures from the
same RandAugment-conditional model trained to 2.66 BPD. When lowering the temperature, we reuse the same initial seeds as those
used for temperature 1. While many samples look object-like, there are still some occasional corrupted images



Distribution Augmentation for Generative Modeling

(a) 2.53 BPD trained with distribution augmentation (b) 2.72 BPD trained with data augmentation

Figure 8. While the model does assign a higher probability mass on the test examples with augmentation, improved likelihood does not
necessarily mean that the model can produce plausible samples (Theis et al., 2015). Samples on the left are drawn from our DistAug
model with the best test likelihood of 2.53 BPD. This model is trained with rotation, transposition, color channel swapping, and jigsaw
puzzle distribution augmentation. In this setup, the original images are shown once every 1152 times on average. Even with conditioning,
we see noticeable artifacts. Samples on the right are from a model trained with regular data augmentation where RandAugment is applied
to 99% of the input images. This model obtains 2.72 test BPD compared to 2.80 BPD of Sparse Transformer (Child et al., 2019), but
almost all samples are heavily distorted. Finetuning on the original dataset does not improve the sample quality.



