
Reward-Free Exploration for Reinforcement Learning

Chi Jin 1 Akshay Krishnamurthy 2 Max Simchowitz 3 Tiancheng Yu 4

Abstract
Exploration is widely regarded as one of the
most challenging aspects of reinforcement learn-
ing (RL), with many naive approaches succumb-
ing to exponential sample complexity. To isolate
the challenges of exploration, we propose a new
“reward-free RL” framework. In the exploration
phase, the agent first collects trajectories from
an MDPM without a pre-specified reward func-
tion. After exploration, it is tasked with com-
puting near-optimal policies under for M for a
collection of given reward functions. This frame-
work is particularly suitable when there are many
reward functions of interest, or when the reward
function is shaped by an external agent to elicit
desired behavior.

We give an efficient algorithm that conducts
Õ(S2Apoly(H)/ε2) episodes of exploration and
returns ε-suboptimal policies for an arbitrary
number of reward functions. We achieve this by
finding exploratory policies that visit each “sig-
nificant” state with probability proportional to its
maximum visitation probability under any pos-
sible policy. Moreover, our planning procedure
can be instantiated by any black-box approxi-
mate planner, such as value iteration or natural
policy gradient. We also give a nearly-matching
Ω(S2AH2/ε2) lower bound, demonstrating the
near-optimality of our algorithm in this setting.

1. Introduction
In reinforcement learning (RL), an agent repeatedly inter-
acts with an unknown environment with the goal of max-
imizing its cumulative reward. To do so, the agent must
engage in exploration, learning to visit states in order to
investigate whether they hold high reward.

1Princeton University 2Microsoft Research, New York
3University of California, Berkeley 4Massachusetts Institute of
Technology. Correspondence to: Chi Jin <chij@princeton.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Exploration is widely regarded as the most significant chal-
lenge in RL, because the agent may have to take precise se-
quences of actions to reach states with high reward. Here,
simple randomized exploration strategies provably fail: for
example, a random walk can take exponential time to reach
the corner of the environment where the agent can accum-
mulate high reward (Li, 2012). While reinforcement learn-
ing has seen a tremendous surge of recent research activ-
ity, essentially all of the standard algorithms deployed in
practice employ simple randomization or its variants, and
consequently incur extremely high sample complexity.

On the other hand, sophisticated exploration strategies
which deliberately incentivize the agent to visit new states
are provably sample-efficient (c.f., Kearns & Singh (2002);
Brafman & Tennenholtz (2002); Azar et al. (2017); Dann
et al. (2017); Jin et al. (2018)), with recent work providing a
nearly-complete theoretical understanding for maximizing
a single prespecified reward function (Dann & Brunskill,
2015; Azar et al., 2017; Zanette & Brunskill, 2019; Sim-
chowitz & Jamieson, 2019). In practice, however, reward
functions are often iteratively engineered to encourage de-
sired behavior via trial and error (e.g. in constrained RL
formulations (Altman, 1999; Achiam et al., 2017; Tessler
et al., 2018; Miryoosefi et al., 2019)). In such cases, re-
peatedly invoking the same reinforcement learning algo-
rithm with different reward functions can be quite sample
inefficient.

One solution to avoid excessive data collection in such
settings is to first collect a dataset with good coverage
over all possible scenarios in the environment, and then
apply a “Batch-RL” algorithm. Indeed many algorithms
are known for computing near optimal policies from pre-
viously collected data, provided that the dataset has good
coverage (Munos & Szepesvári, 2008; Antos et al., 2008;
Chen & Jiang, 2019; Agarwal et al., 2019). However, prior
work provides little guidance into how to obtain such good
coverage.

In this paper, we aim to develop an end-to-end instantiation
of this proposal. To this end we ask:

How can we efficiently explore an environment with-
out using any reward information?

In particular, by exploring the environment, we aim to



Reward-Free Exploration for RL

gather sufficient information so that we can compute the
near-optimal policies for any reward function after-the-fact.

Our Contributions. In this paper, we present the first
near-optimal upper and lower bounds which characterize
the sample complexity of achieving provably sufficient
coverage for Batch-RL. We do so by adopting a novel
“reward-free RL” paradigm: During an exploration phase,
the agent collects trajectories from an MDP M without a
pre-specified reward function. Then, in a planning phase, it
is tasked with computing near-optimal policies under the
transitions of M for a large collection of given reward
functions.

Letting S denote the number of states, A the number
of actions, H the horizon, and ε the desired accuracy,
we give an efficient algorithm which, after conducting
Õ(S2Apoly(H)/ε2) episodes of exploration, collects a
data set with sufficiently good coverage to enable applica-
tion of standard Batch-RL solvers. Specifically, we show
that when given a reward function r we can find an ε-
suboptimal policy for the true MDPM with reward r, us-
ing the dataset alone and no additional data collection. This
guarantee holds for all possible reward functions simulta-
neously, without needing to collect more data to ensure sta-
tistical correctness as new reward functions are considered.

Our exploration phase is conceptually simple, using an
existing RL algorithm as a black-box (Zanette & Brun-
skill, 2019), and our planning phase accommodates arbi-
trary Batch-RL solvers. We instantiate our result with value
iteration and natural policy gradient as special cases. By
decoupling exploration and planning, our work sheds light
on the algorithmic mechanisms required for sample effi-
cient reinforcement learning. We hope that this insight will
be useful in the design of provably efficient algorithms for
more practically relevant RL settings, such as those where
function approximation is required.

In addition to our algorithmic results, we establish a nearly-
matching Ω(S2AH2/ε2) lower bound, demonstrating the
near-optimality of our algorithm in this paradigm. Notably,
this lower bound quantifies a price of “good-coverage” in
the reward-free setting: while RL with a pre-specified re-
ward has sample complexity of only Θ̃(SAH2/ε2) (Dann
& Brunskill, 2015), the reward-free sample complexity is a
factor of S larger.

Technical Novelty. The main technical challenge in our
work involves handling environments with states that are
difficult to reach. In such cases, we cannot learn the tran-
sition operator to high accuracy uniformly over the envi-
ronment, simply because we cannot reach these states to
collect enough data. With λ(s) denoting the maximal prob-
ability of visiting state s under any policy, our key observa-

tion is that we can partition the state space into two groups:
the states with λ(s) so small that they have negligible con-
tribution to reward optimization, and the rest. We intro-
duce a rigorous analysis which enables us to “ignore” the
difficult-to-visit states altogether and only requires that we
visit the remaining states with probability proportional to
λ(s). To achieve this latter guarantee, we conduct our ex-
ploration with the EULER algorithm (Zanette & Brunskill,
2019), which in our context yields refined sample complex-
ity guarantees in terms of λ(s). We believe that this decom-
position of states into their ease of being reached may be of
broader interest. Our lower bound also adopts a novel and
sophisticated construction, detailed in Section 4.

Related work. For reward-free exploration in the tabular
setting, we are aware of only a few prior approaches. First,
when one runs a PAC-RL algorithm like RMAX with no
reward function (Brafman & Tennenholtz, 2002), it does
visit the entire state space and can be shown to provide a
coverage guarantee. However, for RMAX in particular the
resulting sample complexity is quite poor, and significantly
worse than our near-optimal guarantee (See Appendix A
for a detailed calculation). We expect similar behavior from
other PAC algorithms, because reward-dependent explo-
ration is typically suboptimal for the reward-free setting.

Second, one can extract the exploration component of re-
cent results for RL with function approximation (Du et al.,
2019; Misra et al., 2019). Specifically, the former employs
a model based approach where a model is iteratively refined
by planning to visit unexplored states, while the latter uses
model free dynamic programming to identify and reach all
states. While these papers address a more difficult setting,
it is relatively straightforward to specialize their results to
the tabular setting. In this case, both methods guarantee
coverage, but they have suboptimal sample complexity and
require that all states can be visited with significant proba-
bility. In contrast, our approach requires no visitation prob-
ability assumptions and achieves the optimal sample com-
plexity.

The last point of comparison is a recent result of Hazan
et al. (2019), that gives an efficient algorithm for finding a
certain exploratory policy. They use a Frank-Wolfe style
algorithm to find a policy whose state occupancy measure
has maximum entropy. One can show that an exact opti-
mizer for their objective has a similar coverage property to
our exploratory policy, but the Frank-Wolfe style algorithm
can only guarantee an approximate optimizer. They do not
analyze how the optimization error enters in the coverage
guarantee, but we are able to show that setting the error to
O(1/S) suffices (see Appendix B). Unfortunately, this im-
plies that their sample complexity scales with S5, which is
much worse than ours. (Lim & Auer, 2012; Tarbouriech
& Lazaric, 2019) focus on a similar formulation using dif-



Reward-Free Exploration for RL

ferent optimization criterion. More generally, their result
is not end-to-end in that they do not show how to use their
policy for planning, and they do not establish a final sample
complexity bound, both of which we do here.

Finally, the main source of motivation for our work is
recent and classical results on batch reinforcement learn-
ing (Munos & Szepesvári, 2008; Antos et al., 2008; Chen
& Jiang, 2019; Agarwal et al., 2019), a setting where the
goal is to find a near optimal policy, given an a priori
dataset collected by some logging policy that satisfies cer-
tain coverage properties. In this paper, we show how to
find such a logging policy for the tabular setting, which en-
ables straightforward application of these batch RL results.
As an example, we show how to apply both value itera-
tion and natural policy gradient to optimize the policy given
any reward function. More generally, these works typically
also consider the function approximation setting, and we
believe our modular approach will facilitate development
of provably efficient algorithms for these challenging set-
tings.

2. Preliminaries
We consider the setting of a tabular episodic Markov de-
cision process, MDP(S,A,H,P, r), where S is the set of
states with |S| = S, A is the set of actions with |A| = A,
H is the number of steps in each episode, P is the time-
dependent transition matrix so that Ph(·|s, a) gives the dis-
tribution over the next state if action a is taken from state s
at step h ∈ [H], and rh : S×A → [0, 1] is the deterministic
reward function at step h.1 Note that we are assuming that
rewards are in [0, 1] for normalization.

In each episode of a standard MDP, an initial state s1 is
picked from an unknown initial distribution P1(·). Then, at
each step h ∈ [H], the agent observes state sh ∈ S , picks
an action ah ∈ A, receives reward rh(sh, ah), and then
transitions to the next state sh+1, which is drawn from the
distribution Ph(·|sh, ah). The episode ends after the H th

reward is collected.

A (non-stationary, stochastic) policy π is a collection of H
functions

{
πh : S → ∆A

}
h∈[H]

, where ∆A is the proba-
bility simplex over action setA. As notation, we use π(·|s)
to denote the action distribution for policy π in state s. We
use V πh : S → R to denote the value function at step h un-
der policy π, which gives the expected sum of remaining
rewards received under policy π, starting from sh = s, un-
til the end of the episode. That is,

V πh (s) := Eπ

[
H∑

h′=h

rh′(sh′ , ah′)|sh = s

]
.

1While we study deterministic reward functions for notational
simplicity, our results generalize to randomized reward functions.

Protocol 1 Reward-Free Exploration

for k = 1 to K do
learner decides a policy πk
environment samples the initial state s0 ∼ P1.
for h = 1 to H do

learner selects action ah ∼ πh(·|sh)
environment transitions to sh+1 ∼ Ph(·|sh, ah)
learner observes the next state sh+1

end for
end for

Accordingly, we also define Qπh : S × A → R to de-
note action-value function at step h, so that Qπh(s, a) gives
the expected sum of remaining rewards received under pol-
icy π, starting from sh = s, ah = a, until the end of the
episode. Formally:

Qπh(s, a) := Eπ

[
H∑

h′=h

rh′(sh′ , ah′)|sh = s, ah = a

]
.

Since the state and action spaces, and the horizon, are all
finite, there always exists (see, e.g., (Azar et al., 2017)) an
optimal policy π? which gives the optimal value V ?h (s) =
supπ V

π
h (s) for all s ∈ S and h ∈ [H]. As notation, define

[PhVh+1](s, a) := Es′∼P(·|s,a)Vh+1(s′). Recall the Bell-
man equation

V πh (s) = Qπh(s, πh(s)), Qπh(s, a) = (rh + PhV πh+1)(s, a)
(1)

and the Bellman optimality equation:

V ?h (s) = max
a∈A

Q?h(s, a), Q?h(s, a) := (rh + PhV ?h+1)(s, a).

(2)

where we define V πH+1(s) = V ?H+1(s) = 0 for any s ∈ S.

The RL objective is to find an ε-optimal policy π, satisfying

Es1∼P1
[V ?1 (s1)− V π1 (s1)] ≤ ε

Reward-free Exploration. In the reward-free setting, we
would like to design algorithms that efficiently explore the
state space without the guidance of reward information.
Formally, the agent interacts with the environment through
Protocol 1—a reward-free version of the MDP, where the
agent can transit as usual but does not collect any rewards.
Over the course of K episodes following Protocol 1, the
agent collects a dataset of visited states, actions, and transi-
tions D = {s(k)

h , a
(k)
h }(k,h)∈[K]×[H], which is the outcome

of the exploration phase.

The effectiveness of the exploration strategy is evaluated in
the next phase—the planning phase—in which the agent is



Reward-Free Exploration for RL

no longer allowed to interact with the MDP. In this phase,
the agent is given a reward function r(·, ·) that can be po-
tentially adversarially designed, and the objective here is to
compute a near optimal policy for this reward function us-
ing the datasetD. Performance is measured in terms of how
many episodes K are required in the exploration phase so
that the agent can reliably achieve the objective above. As
notation, we use V (·; r) to emphasize that the value func-
tion depends on the reward r.

We remark that providing the reward function after the ex-
ploration phase (as opposed to before) makes the setting
more challenging, and so our algorithm applies to the eas-
ier setting. We also note that our results address the set-
ting where the reward is observed through interaction with
the environment, as learning the reward is typically not the
statistical barrier to efficient RL. Indeed, a provably ef-
fective reward-free exploration strategy must visit all “sig-
nificant” state-action pairs (see Definition 3.2) sufficiently
many times anyway, and this experience is sufficient to
learn the reward function.

3. Main Results
We are now ready to state our main theorem. It asserts
that our algorithm, which we will describe in the subse-
quent sections, is a reward-free exploration algorithm with
sample complexity Õ(H5S2A/ε2), ignoring lower order
terms. In other words, after this many episodes interacting
with the MDP via Protocol 1, our algorithm can compute
ε-optimal policies for arbitrarily many reward functions.
The theorem demonstrates that the sample complexity of
reward-free exploration is at most Õ(H5S2A/ε2), which
we will show to be near-optimal with our lower bound in
the next section.

Theorem 3.1. Ther exists an absolute constant c > 0 and
a reward-free exploration algorithm such that, for any p ∈
(0, 1), with probability at least 1−p, the algorithm outputs
ε-optimal policies for an arbitrary number of adaptively
chosen reward functions. The number of episodes collected
in the exploration phase is bounded by

c ·
[
H5S2Aι

ε2
+
S4AH7ι3

ε

]
, (3)

where ι := log(SAH/(pε)).

Notice when ε is small, Õ(S4AH7/ε) is a lower order
term. This term comes from the burn-in term in EULER,
which is the current state of the art for the standard episodic
RL formulation. Any improvements there would transfer to
our guarantees, but whether the burn-in term is required re-
mains an intriguing open problem.

We emphasize that the correctness guarantee here is quite
strong: the datasetD collected by the algorithm is such that

any number of adaptively chosen reward functions can be
optimized with no further data collection. In contrast, if
we naı̈vely deployed a reward-sensitive RL algorithm, we
would have to collect additional trajectories for each re-
ward function, which could be quite sample inefficient. We
emphasize that requiring near-optimal policies for many re-
ward functions is quite common in applications, especially
when we design reward functions by trial and error to elicit
specific behaviors.

Algorithm overview. Our algorithm proceeds with fol-
lowing high level steps:

1. learn a set of policies Ψ which allow us to visit all
“significant” states with reasonable probability.

2. collect a sufficient amount of data by executing poli-
cies in Ψ.

3. compute the empirical transition matrix P̂ using the
collected data.

4. for each reward function r, find a near-optimal policy
by invoking a planning algorithm with transitions P̂
and reward r.

The first two steps are performed in the exploration phase,
while the latter two steps are performed in the planning
phase. In Section 3.1 and Section 3.2, we will present our
formal algorithms and the corresponding theoretical guar-
antees for two phases separately. One important feature of
our algorithm is that we can use existing approximate MDP
solvers or batch-RL algorithms in the last step. We demon-
strate with two examples, namely Value Iteration (VI) and
Natural Policy Gradient (NPG), in Section 3.3.

3.1. Exploration Phase

The goal of exploration is to visit all possible states so that
the agent can gather sufficient information in order to find
the optimal policy eventually. However, rather different
from the bandit setting where agent can select an arbitrary
arm to pull, it is possible that certain state in the MDP is
very difficult to reach no matter what policy the agent is
taking. Therefore, we first introduce the concept of the state
being “significant”. See Figure 1 for illustrations.

Definition 3.2. A state s in step h is δ-significant if there
exists a policy π, so that the probability to reach s following
policy π is greater than δ. In symbol:

max
π

Pπh (s) ≥ δ

Intuitively, with limited budget of samples and runtime,
one can only hope to visit all significant states. On the
other hand, since insignificant states can be rarely visited



Reward-Free Exploration for RL

Algorithm 2 Reward-free RL-Explore

1: Input: iteration number N0, N .
2: set policy class Ψ← ∅, and dataset D ← ∅.
3: for all (s, h) ∈ S × [H] do
4: rh′(s

′, a′) ← 1[s′ = s and h′ = h] for all
(s′, a′, h′) ∈ S ×A× [H].

5: Φ(s,h) ← EULER(r,N0).
6: πh(·|s)← Uniform(A) for all π ∈ Φ(s,h).
7: Ψ← Ψ ∪ Φ(s,h).
8: end for
9: for n = 1 . . . N do

10: sample policy π ∼ Uniform(Ψ).
11: play M using policy π, and observe the trajectory

zn = (s1, a1, . . . , sH , aH , sH+1).
12: D ← D ∪ {zn}
13: end for
14: Return: dataset D.

no matter what policy is used, they will not significantly
change the value from the initial states. Thus, for the sake
of finding near-optimal policies, it is sufficient to visit all
significant states with proper significance level ε. Indeed,
Algorithm 2 is able to provide such a guarantee as follows.

Theorem 3.3. There exists absolute constant c > 0 such
that for any ε > 0 and p ∈ (0, 1), if we set N0 ≥
cS2AH4ι30/δ where ι0 := log(SAH/(pδ)), then with
probability at least 1−p, that Algorithm 2 returns a dataset
D consisting of N trajectories {zn}Nn=1, which are i.i.d
sampled from a distribution µ satisfying:

∀ δ-significant (s, h), max
a,π

Pπh (s, a)

µh(s, a)
≤ 2SAH. (4)

Theorem 3.3 claims that using Algorithm 2, we can col-
lect data from a underlying distribution µ, which ensures
that for policy π, the ratio Pπh (s, a)/µh(s, a) will be up-
per bounded for any significant state and action. That is,
all significant state and action will be visited by distribu-
tion µ with reasonable amount of probability. Notice as δ
becomes smaller, there will be more significant states and
the condition (4) becomes stronger. As a result we need to
take larger N0. As we will see later, the δ we take eventu-
ally will be ε/

(
2SH2

)
, where ε is the suboptimality of the

policy we find in the planning phase.

Algorithm 2 can be decomposed into two parts, where Line
3-8 learns a set of exploration policies Ψ and Line 9-13
simply collects data by uniformly executing policies in Ψ.
Therefore, the key mechanism lies in how to learn the set
of exploration policies Ψ. Our strategy is to first learn the
best policies that maximize the probability to research each
state s at step h individually, and then combine them.

Concretely, for each state s at step h, algorithm 2 first cre-

s0

s1 s2

s3s4

a2, 10
−6

a2, 1− 10−6

a1, 1

Figure 1: Illustration of significant states (Definition 3.2)
v.s. insignificant states. In this toy example we have 5
states, where s0 is the initial state. Only from state s0 the
agent can transit to other states and the other states are ab-
sorbing whatever action the agent takes. For state s0, we
use red arrows to represent transition if action a1 is taken
and blue ones if action a2 is taken. The numbers on the
arrows following the actions are the transition probability.
In this example, s4 is insignificant, because it can never be
reached. For δ = 10−5, s2 is also δ-insignificant, because
the best policy to reach s2 is by taking action a2 at ini-
tial state s0, which gives the maximum probability 10−6 to
reach s2. The remaining states s1, s3 are all δ-significant.

ates a reward function r that is always zero except for the
state s at step h. Then we can simulate a standard MDP by
properly feeding this designed reward r when an agent in-
teracts with the environment using protocol 1. It is easy to
verify that the optimal policy for the MDP with this reward
r is precisely the policy that maximizes the probability to
reach (s, h). Thus, any RL algorithms with PAC or regret
guarantees (Azar et al., 2017; Jin et al., 2018) can be used
here to approximately find this optimal policy. In particu-
lar, we use EULER algorithm (Zanette & Brunskill, 2019),
whose theoretical guarantee in our setting is presented as
follows 2

Lemma 3.4. There exists absolute constant c > 0 such
that for any N0 > 0 and p ∈ (0, 1), with probability at
least 1− p, if we run EULER algorithm for N0 episodes, it
will output a policy set Φ with |Φ| = N0 that satisfies:

Es1∼P1

[
V ?1 (s1)− 1

N0

∑
π∈Φ

V π1 (s1)

]

≤ c ·


√
SAHι0 · Es1∼P1

V ?1 (s1)

N0
+
S2AH4ι30

N0


where ι0 = log (SAHN0/p).

We comment that one unique feature of EULER algorithm
is that its suboptimality scales with the value of the opti-

2In (Zanette & Brunskill, 2019), EULER is studied under sta-
tionary setting, where P and r does not depend on h. A stationary
MDP can simulate a non-stationary MDP by augmenting state s
to (s, h). Therefore, the effective number of states becomes SH
when we apply the results in (Zanette & Brunskill, 2019).



Reward-Free Exploration for RL

Algorithm 3 Reward-free RL-Plan

1: Input: a dataset of transition D, reward function r,
accuracy ε.

2: for all (s, a, s′, h) ∈ S ×A× S × [H] do
3: Nh(s, a, s′) ←

∑
(sh,ah,sh+1)∈D 1[sh = s, ah =

a, sh+1 = s′].
4: Nh(s, a)←

∑
s′ Nh(s, a, s′).

5: P̂h(s′|s, a) = Nh(s, a, s′)/Nh(s, a).
6: end for
7: π̂ ← APPROXIMATE-MDP-SOLVER(P̂, r, ε).
8: Return: policy π̂.

mal policy Es1∼P1V
?
1 (s1). This is key in obtaining a sharp

result, and is especially helpful in dealing with those states
that are still significant but their maximum reaching proba-
bility is low. Finally, since the best policy to reach (s, h) is
only meaningful at steps before h, algorithm 2 then alters
the policy for state s at step h to be Uniform(A) to ensure
good probability of choosing all actions for this state.

3.2. Planning Phase

In planning phase, the agent is given the reward function
r, and aims to find a near-optimal policy based on r and
dataset D collected in the exploration phase. Algorithm
3 proceeds with two steps. Line 2-6 use counts based on
dataset D to estimate the empirical transition matrix P̂.
Then, algorithm 3 calls a approximate MDP solver. Sub-
routine APPROXIMATE-MDP-SOLVER(P̂, r, ε) can be
any algorithm that finds ε-suboptimal policy π̂ for MDP
with known transition matrix and reward (they are P̂, r in
this case). See Section 3.3 for examples of such approxi-
mate MDP solvers.

Now we are ready to state the guarantee for Algorithm 3,
which asserts that as long as the number of data collected in
the exploration phase is sufficiently large, the output policy
π̂ is not only a near-optimal policy for the estimated MDP
with transition P̂, but also a near-optimal policy for the true
MDP.

Theorem 3.5. There exists absolute constant c > 0, for
any ε > 0, p ∈ (0, 1), assume dataset D has N i.i.d.
samples from distribution µ which satisfies Eq.(4) with
δ = ε/

(
2SH2

)
, and N ≥ cH5S2Aι/ε2, then with prob-

ability at least 1− p, for any reward function r simultane-
ously, the output policy π̂ of Algorithm 3 is 3ε-suboptimal.
That is:

Es1∼P1
[V ?1 (s1; r)− V π̂1 (s1; r)] ≤ 3ε

The mechanism behind Theorem 3.5 is that: by sampling
sufficient number of exploring data, we ensure that the em-
pirical transition P̂ and the true transition P are close so that

the near-optimal policy for the estimated MDP with transi-
tion P̂ is also near optimal for the true MDP. We note that
the closeness of P̂ and P can not be established in the usual
sense of the TV-distance (or other distributional distance)
between P̂h(·|s, a) and Ph(·|s, a) is small for any (s, a, h),
due to the existence of insignificant states. The key obser-
vation is that, nevertheless, we can establish the closeness
of P̂ and P in the sense that for any policy π, the value func-
tions starting from initial states are close. That is, the dif-
ference in policy evaluations of two MDPs is small, which
is summarized in the following lemma.

Lemma 3.6. Under the preconditions of Theorem 3.5, with
probability at least 1−p, for any reward function r and any
policy π, we have:

|Es1∼P1
[V̂ π1 (s1; r)− V π1 (s1; r)]| ≤ ε (5)

where V̂ is the value function of MDP with the transition
P̂.

The establishment of Lemma 3.6 is a natural consequence
of the following: (1) the total contribution from all insignif-
icant states is small; (2) P̂ is reasonably accurate for all sig-
nificant states; and (3) a new sharp concentration inequality
(see Lemma C.2 in Appendix). With Lemma 3.6, now we
are ready to prove Theorem 3.5.

Proof of Theorem 3.5. We denote the optimal policy of
MDP(P, r) and MDP(P̂, r) by π? and π̂? respectively. The
theorem is a direct consequence of the following decompo-
sition

Es1∼P1{V π
?

1 (s1; r)− V π̂1 (s1; r)}
≤|Es1∼P1

{V π
?

1 (s1; r)− V̂ π
?

1 (s1; r)}|︸ ︷︷ ︸
Evaluation error 1

+ Es1∼P1{V̂ π
?

1 (s1; r)− V̂ π̂
?

1 (s1; r)}︸ ︷︷ ︸
≤0 by definition

+Es1∼P1{V̂ π̂
?

1 (s1; r)− V̂ π̂1 (s1; r)}︸ ︷︷ ︸
Optimization error

+ |Es1∼P1
{V̂ π̂1 (s1; r)− V π̂1 (s1; r)}|︸ ︷︷ ︸

Evaluation error 2

where evaluation errors are bounded by ε by Lemma 3.6
and optimization error is bounded by ε by assumption.

3.3. Approximate MDP Solvers

Approximate MDP solvers aim to find a near-optimal pol-
icy when the exact transition matrix P and reward r are
known. The simplest way to achieve this is by Value Iter-
ation (VI) algorithm, which solves the Bellman optimality
equation Eq.(2) in a dynamical programming fashion. Then



Reward-Free Exploration for RL

Algorithm 4 Natural Policy Gradient (NPG)

1: Input: transition matrix P, reward function r, stepsize
η, iteration number T .

2: initialize π(0)
h (·|s)← Uniform(A) for all (s, h)

3: for t = 0, · · · , T − 1 do
4: evaluate Qπ

(t)

h (s, a) using Bellman equation Eq.(1)
for all (s, a, h).

5: update π(t+1)
h (a|s) ∝ π

(t)
h (a|s) · exp(ηQπ

(t)

h (s, a))
for all (s, a, h).

6: end for
7: Return: policy π(T ).

the greedy policy induced by the result Q? gives precisely
the optimal policy without error.

Another popular approach frequently used in practice is
the Natural Policy Gradient (NPG) algorithm as shown
in Algorithm 4. In each iteration, the algorithm first evalu-
ates the value of policy π(t) using Bellman equation Eq.(1).
Then it updates the policy by first scale it with the expo-
nential of learning η times value Qπ

(t)

, and then performs
a normalization. For completeness, we provides its guar-
antee here, which resembles the infinite horizon analysis in
(Agarwal et al., 2019)3.
Proposition 3.7. for any learning rate η and iteration num-
ber T , the output policy π(T ) of Algorithm 4 satisfies the
following:

Es1∼P1
[V ?1 (s1)− V π

(T )

1 (s1)] ≤ H logA

ηT
+
H2

T

Therefore, it is easy to verify, by choosing η ≥ logA/H
and T = 2H2/ε, the policy π(T ) returned by NPG is ε-
optimal. When η →∞, NPG reduces to policy iteration.

4. Lower Bound
In this section, we establish that Ω(H2S2A/ε2) trajectories
are necessary to satisfy the guarantee from Theorem 3.1.
Theorem 4.1. Let C > 0 be a universal constant. Then
for A ≥ 2, S ≥ C log2A, H ≥ C log2 S, and any
ε ≤ min{1/4, H/48}, any reward-free exploration algo-
rithm Alg which statisfies the guarantee of Theorem 3.1
with p = 1/2 and accuracy parameter ε must collect
Ω(S2AH2/ε2) trajectories in expectation. This is true
even if Alg can return randomized or history-dependent
(non-Markov) policies, and holds even if the rewards and
transitions are identical across stages h.

In particular, Theorem 4.1 shows that our upper bound

3The guarantee here is slightly different from (Agarwal et al.,
2019) because of difference choice of η. The η here is essential
η/(1− γ) in (Agarwal et al., 2019).

(0, 1)

(1, 1)

(1, 2)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

‘left’

’right’

Figure 2: The “left” (blue) instance and “right” (red) in-
stance embed two copies of the instance from Lemma 4.2.
In each copy, the agent begins in stage s = 0, and moves to
states s ∈ [2n], n = 2. Different actions correspond to dif-
ferent probability distributions over next states s ∈ [2n].
States s ∈ [2n] are absording, and rewards are action-
independent. Lemma 4.2 shows that this construction re-
quires the learner to learn Ω(n) bits about the transition
probabilities p(·|0, a). By embedding this construction into
a large MDP, this construction forces the learner to learn the
transition probabilities at n = 2 states, {(x, log2 n) : x ∈
[n]}. The learner can determinstically access these states
by appropriate choice of “left” and “right” actions.

(Theorem 3.1) is tight in S,A, ε, up to logarithmic factors
and lower-order terms. Note that lower bound holds against
querying an unlimited number of reward vectors. It is left
as an open question whether such a lower bound holds
when the algorithm is only required to ensure correctness
over a smaller number of reward vectors pre-determined
in advance. In what follows, we sketch a proof of Theo-
rem 4.1; a formal proof is given in Appendix D.

4.1. Reward Free Exploration at a Single State

The core of our construction is a simple instance with a
single initial state x1 = 0 and 2n absorbing states s ∈ [2n];
the transition from states 0 → s is described by a vector
q ∈ R[2n]×[A], where q(s, a) is the transition probability to
state s if action a is taken at state 0. We shall also restrict
to vectors q are close to uniform, i.e.,

∀s, a,
∣∣∣∣q(s, a)− 1

2n

∣∣∣∣ ≤ ε

2n
(6)

The learner is then tasked with learning near optimal poli-
cies for reward vectors rν parametrized by ν ∈ [0, 1]2n,
which assigns a state-dependent but action-independent re-
ward ν(s) to states s ∈ [2n], and no reward to x1 = 0.



Reward-Free Exploration for RL

The blue (“left”) transitions or red (“right”) transition in
Figure 2 mirror this construction, which we formalize in
Definition D.1. We show that reward-free exploration es-
sentially forces the learner to learn the probability vectors
q(·, a) in total-variation distance for each a ∈ [A], yield-
ing an Ω(nA/ε2) lower bound for this construction. A
formal statement is of the following Lemma is given in
Lemma D.2 in the appendix.

Lemma 4.2 (Informal). Suppose S ≥ C log2(A) for a uni-
versal constant C > 0. Suppose Alg, when faced with
the instances described above (with q satisfying Eq. (6))
successfully returns ε-suboptimal policies for exponentially
many reward vectors with total failure probability 1/2.
Then Alg requires Ω(SA/ε2) trajectories in expectation.

Proof Sketch. Unfortunately, we cannot show a direct re-
duction from estimating q in total variation to learning
near optimal-policies. Instead, by selecting appropriate re-
ward vectors rν , the algorithm can decode a packing of
exp(Ω(n)) transition vectors q(·, a) for each action a ∈
[A]. By a variant of Fano’s inequality, this leads to the same
Ω(nA/ε2) lower bound that would be obtained by a direct
reduction.

Lemma 4.2 differs from existing Ω(SA/ε2) lower bounds
in that the only quantities unknown to the learner are the
transition probabilities associated with the single state 0.
This is in contrast to most existing lower bounds where the
learner needs to collect transition information at multiple
states. In particular, here the factor of S arises because the
transition is to Θ(S) states, while in most constructions this
factor arises because transitions from Θ(S) states must be
estimated.

4.2. Lower Bound for Multiple States

To obtain an Ω(S2H2A/ε2) lower bound, we embed n =
Ω(S) instances from above as the second-to-last layer of a
binary tree of depth 1 + log2 n. All n such instances share
the same 2n-terminal leaves (assume n is a power of 2). We
index states by pairs (x, `), where ` denotes the layer. From
the binary tree construction, there are at most 4n states, so
n = Ω(S). We assume that the MDP begins in stage (0, 1),
and for layers ` < log2 n, action 1 always moves “left”
in the tree, and actions 2, . . . , A always moves “right” in
the tree. Moreover, the leaf-states are all absorbing. The
construction is given in Figure 2.

The only part unknown to the learner are the transition vec-
tors {qx}x∈[n], where qx(s, a) describes the probability of
transitioning to leaf (s, 1 + log2 n) when taking action a
from state (x, log2 n). We now index rewards by (x, ν) ∈
[n]× [0, 1]2n, where rx,ν places action-independent reward
1 on state (x, log2 n), action-independent reward ν(s) on

states (s, 1 + log2 n), and reward 0 everywhere.

Assume that the transitions qx satisfy the near-uniformity
condition of (6) for ε = 1/4H . Then, for reward rx,ν ,
the high reward of 1 at (x, log2 n) forces any near-optimal
policy to visit (x, log2 n) and subsequently play near op-
timal actions at this state. However, playing optimally
at (x, log2 n) under reward rx,ν for all ν is equivalent to
reward-free learning of a single instance of the construc-
tion from Lemma 4.2. By varying x ∈ [n] for the reward
vectors rx,ν , the learner is forced to learn n such instances,
yielding the Ω(n·nA/ε2) = Ω(S2A/ε2) lower bound. This
can be improved to Ω(H2S2A/ε2) by using the absorbing
states to create a chain of Ω(H) rewards.

5. Conclusion
In this paper, we propose a new “reward-free RL” frame-
work, comprising of two phases. In the exploration phase,
the learner first collects trajectories from an MDPM with-
out receiving any reward information. After the explo-
ration phase, the learner is no longer allowed to interact
with the MDP and she is instead tasked with computing
near-optimal policies under forM for a collection of given
reward functions. This framework is particularly suitable
when there are many reward functions of interest, or when
we are interested in learning the transition operator directly.

This paper provides an efficient algorithm that conducts
Õ(S2Apoly(H)/ε2) episodes of exploration and returns ε-
suboptimal policies for an arbitrary number of adaptively
chosen reward functions. Our planning procedure can be
instantiated by any black-box approximate planner, such as
value iteration or natural policy gradient. We also give a
nearly-matching Ω(S2AH2/ε2) lower bound, demonstrat-
ing the near-optimality of our algorithm in this setting.

We close with some directions for future work. On the
technical level, an interesting direction is to understand the
sample complexity for reward-free RL with a pre-specified
reward function that is unobserved during the exploration
phase. Our lower bound proofs requires the agent to be
able to optimize all possible reward functions, so it does
not directly apply to this potentially easier setting. Can we
use Õ(SApoly(H)/ε2) samples in the exploration phase
to achieve this goal?

Another interesting direction is to design reward-free RL
algorithms for settings with function approximation or in-
finite horizon. We believe our work highlights and intro-
duces some mechanisms that may be useful in the these
settings, such as the concept of significant states (Defini-
tion 3.2) and the coverage guarantee (4). How do we gen-
eralize these concepts?

We hope to pursue these directions in future work.



Reward-Free Exploration for RL

Acknowledgments
TY is partially supported by NSF BIGDATA grant IIS-
1741341. MS is supported by an Open Philanthropy AI
Fellowship, funded by the Good Ventures foundation.

References
Achiam, J., Held, D., Tamar, A., and Abbeel, P. Con-

strained policy optimization. In Proceedings of the 34th
International Conference on Machine Learning-Volume
70, pp. 22–31. JMLR. org, 2017.

Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan,
G. Optimality and approximation with policy gradient
methods in markov decision processes. arXiv preprint
arXiv:1908.00261, 2019.

Altman, E. Constrained Markov decision processes, vol-
ume 7. CRC Press, 1999.

Antos, A., Szepesvári, C., and Munos, R. Learning
near-optimal policies with bellman-residual minimiza-
tion based fitted policy iteration and a single sample
path. Machine Learning, 71(1):89–129, 2008.

Azar, M. G., Osband, I., and Munos, R. Minimax regret
bounds for reinforcement learning. In Proceedings of
the 34th International Conference on Machine Learning-
Volume 70, pp. 263–272. JMLR. org, 2017.

Brafman, R. I. and Tennenholtz, M. R-max-a general
polynomial time algorithm for near-optimal reinforce-
ment learning. Journal of Machine Learning Research,
3(Oct):213–231, 2002.

Cai, Q., Yang, Z., Jin, C., and Wang, Z. Provably effi-
cient exploration in policy optimization. arXiv preprint
arXiv:1912.05830, 2019.

Chen, J. and Jiang, N. Information-theoretic considera-
tions in batch reinforcement learning. In 36th Interna-
tional Conference on Machine Learning, ICML 2019,
pp. 1792–1817. International Machine Learning Society
(IMLS), 2019.

Chen, X., Guntuboyina, A., and Zhang, Y. On bayes risk
lower bounds. The Journal of Machine Learning Re-
search, 17(1):7687–7744, 2016.

Dann, C. and Brunskill, E. Sample complexity of episodic
fixed-horizon reinforcement learning. In Advances in
Neural Information Processing Systems, pp. 2818–2826,
2015.

Dann, C., Lattimore, T., and Brunskill, E. Unifying pac and
regret: Uniform pac bounds for episodic reinforcement
learning. In Advances in Neural Information Processing
Systems, pp. 5713–5723, 2017.

Du, S., Krishnamurthy, A., Jiang, N., Agarwal, A., Dudik,
M., and Langford, J. Provably efficient rl with rich obser-
vations via latent state decoding. In International Con-
ference on Machine Learning, pp. 1665–1674, 2019.

Hazan, E., Kakade, S., Singh, K., and Van Soest, A. Prov-
ably efficient maximum entropy exploration. In Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, number 97, 2019.

Jiang, N. UIUC CS598 statistical reinforcement learning
lecture notes. 2019.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. Is
q-learning provably efficient? In Advances in Neural
Information Processing Systems, pp. 4863–4873, 2018.

Kakade, S. and Langford, J. Approximately optimal ap-
proximate reinforcement learning. In ICML, volume 2,
pp. 267–274, 2002.

Kakade, S. M. On the sample complexity of reinforcement
learning. PhD thesis, University of London, London,
England, 2003.

Kaufmann, E., Cappé, O., and Garivier, A. On the com-
plexity of best-arm identification in multi-armed bandit
models. The Journal of Machine Learning Research, 17
(1):1–42, 2016.

Kearns, M. and Singh, S. Near-optimal reinforcement
learning in polynomial time. Machine learning, 49(2-
3):209–232, 2002.

Li, L. Sample complexity bounds of exploration. In Rein-
forcement Learning, pp. 175–204. Springer, 2012.

Lim, S. H. and Auer, P. Autonomous exploration for navi-
gating in mdps. In Conference on Learning Theory, pp.
40–1, 2012.

Miryoosefi, S., Brantley, K., Daume III, H., Dudik, M.,
and Schapire, R. E. Reinforcement learning with convex
constraints. In Advances in Neural Information Process-
ing Systems, pp. 14093–14102, 2019.

Misra, D., Henaff, M., Krishnamurthy, A., and Langford,
J. Kinematic state abstraction and provably efficient
rich-observation reinforcement learning. arXiv preprint
arXiv:1911.05815, 2019.

Munos, R. and Szepesvári, C. Finite-time bounds for fitted
value iteration. Journal of Machine Learning Research,
9(May):815–857, 2008.

Simchowitz, M. and Jamieson, K. G. Non-asymptotic gap-
dependent regret bounds for tabular mdps. In Advances
in Neural Information Processing Systems, pp. 1151–
1160, 2019.



Reward-Free Exploration for RL

Tarbouriech, J. and Lazaric, A. Active exploration in
markov decision processes. In The 22nd International
Conference on Artificial Intelligence and Statistics, pp.
974–982, 2019.

Tessler, C., Mankowitz, D. J., and Mannor, S. Reward con-
strained policy optimization. In International Confer-
ence on Learning Representations, 2018.

Zanette, A. and Brunskill, E. Tighter problem-dependent
regret bounds in reinforcement learning without domain
knowledge using value function bounds. In International
Conference on Machine Learning, pp. 7304–7312, 2019.


