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Abstract
We consider a new unsupervised learning task of
inferring parameters of a multiobjective decision
making model, based on a set of observed deci-
sions from the human expert. This setting is im-
portant in applications (such as the task of portfo-
lio management) where it may be difficult to ob-
tain the human expert’s intrinsic decision making
model. We formulate such a learning problem as
an inverse multiobjective optimization problem
(IMOP) and propose its first sophisticated model
with statistical guarantees. Then, we reveal sev-
eral fundamental connections between IMOP, K-
means clustering, and manifold learning. Lever-
aging these critical insights and connections, we
propose two algorithms to solve IMOP through
manifold learning and clustering. Numerical re-
sults confirm the effectiveness of our model and
the computational efficacy of algorithms.

1. Introduction
Human decision makers are often confronted with multi-
ple objectives when making decisions. For example, com-
fort and cost are two often conflicting criteria when cus-
tomers make purchases (Greco et al., 2016). Actually,
in economics, science, and engineering, the multiobjec-
tive decision making problem (DMP) is quite common and
many decision making processes naturally involve multi-
ple conflicting objectives (Hwang & Masud, 2012). These
underlying multiobjective decision making schemes, once
learned by artificial intelligence (AI) system, would pre-
sumably assist and accelerate the human expert’s decision
making process, such as supporting organizations in de-
signing products or in providing services to customers.

Nevertheless, as in most scenarios, one can only observe
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the human decision maker’s decisions while cannot directly
access her underlying decision making schemes. Consider
the recommender system used by retailers to support cus-
tomers for online shopping. The customer’s historical pur-
chasing behaviors (Aggarwal et al.) are known to the sys-
tem. To make personalized recommendations, it is espe-
cially crucial for the system to quickly learn the customer’s
needs and desires from these observed decisions.

In this paper, we investigate learning the parameters, e.g.,
objectives functions or constraints, from an expert by ob-
serving her decisions. Specifically, the learner observes a
set of decisions {yi}i∈[N ] and each yi with i ∈ [N ] is an
observation of the Pareto optimal solution of the multiob-
jective optimization problem (MOP):

min
x∈Rn

{f1(x, θ), f2(x, θ), . . . , fp(x, θ)}
s.t. x ∈ X(θ),

where θ is the true but unknown parameter for the ex-
pert’s multiobjective decision making problem. Formally,
we seek to answer the following fundamental question

how do we learn θ given {yi}i∈[N ]?

This question naturally occurs in many settings. For exam-
ple, a portfolio manager typically uses the Markovitz mean-
variance model to make investment decisions (Markowitz,
1952). One analyst might be interested in learning the key
parameter of this model, e.g., the expected returns of the as-
sets, by observing the portfolio manager’s historical invest-
ment records. To learn the parameter θ, we formulate an
inverse multiobjective optimization problem (IMOP), as-
suming that the human expert is rational or bounded ratio-
nal. Given the fact that the learner often only has access to
human expert’s decisions and no other data, we show that
IMOP essentially is an unsupervised learning task.

Subsequently, we reveal connections between IMOP and
two seemingly unrelated unsupervised learning problems.
The first one is the K-means clustering problem (Mac-
Queen, 1967; Lloyd, 1982; Arthur & Vassilvitskii, 2007).
Specifically, we prove that every K-means clustering prob-
lem can be transformed equivalently to an IMOP. As solv-
ing K-means clustering problem is NP-hard (Aloise et al.,
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Table 1. Comparisons between IOP and IMOP from the machine learning point of view.

Task # of obj Signal Supervised learning Paper

IOP single yes yes
(Keshavarz et al., 2011; Bertsimas et al., 2015; Aswani et al., 2018)

(Esfahani et al., 2018; Bärmann et al., 2017; Dong et al., 2018)
IMOP multiple no no this paper

2009; Mahajan et al., 2012) even when n = 2, we thus
show the NP-hardness of IMOP. Furthermore, we note that
solving IMOP will automatically assign the observations to
different clusters, while the centroids of these clusters are
restricted to be Pareto optimal solutions of the estimated
DMP. Hence, IMOP can be interpreted as a constrained K-
means clustering problem (Wagstaff et al., 2001).

The second one is the manifold learning problem, which
seeks to construct low-dimensional manifolds from data
points embedded in high-dimensional spaces (Roweis &
Saul, 2000; Tenenbaum et al., 2000). We note that the
Pareto optimal set is a continuous manifold with an intrin-
sic dimension of p − 1 (p is the number of objective func-
tions) under suitable smoothness conditions, regardless of
the dimension of the decision space. Since the dimension
of the decision space is usually much larger than p, the
Pareto optimal set is a low-dimensional manifold embed-
ded in the ambient decision space. Moreover, given that
solving IMOP is to construct a DMP whose Pareto optimal
set closely matches observations, IMOP can also be inter-
preted as a manifold learning problem.

Related works Inverse mutiobjective optimization is rather
new and rarely investigated. Most existing works merely
focus on the optimization perspective. (Roland et al., 2013)
considers a binary integer DMP with a set of linear objec-
tive functions. They develop algorithms to find minimal
adjustment of the objective functions such that a given set
of feasible solutions becomes Pareto optimal. (Chan et al.,
2014; Chan & Lee, 2018) study another situation where
preferences or weights of several known (linear) criteria in
the DMP will be inferred based on a single noiseless ob-
servation. Different from those studies, our study follows
the data-driven approach and take a learning perspective
to build an IMOP framework that directly considers many
noisy observations to infer multiple objective functions or
constraints of a convex DMP from an expert with a solid
statistical significance.

Our work is most related to the inverse optimization prob-
lem (IOP), in which the decision making problem has
only one objective function (Ahuja & Orlin, 2001). IOP
has been extensively investigated (Ahuja & Orlin, 2001;
Iyengar & Kang, 2005; Schaefer, 2009; Wang, 2009).
Note that data for IOP typically consists of clear signal-
response pairs (Keshavarz et al., 2011; Bertsimas et al.,
2015; Aswani et al., 2018; Esfahani et al., 2018; Bärmann
et al., 2017; Dong et al., 2018), where the signal is the in-

put data and the response is the output. Consequently, IOP
essentially can be seen as a supervised learning problem.
In contrast, the IMOP we study is of unsupervised learning
type because the data available to the learner is only the de-
cision makers’ decisions, not including any information on
their preferences used to generate these decisions. In other
words, the weight information associated with the decision
is a “hidden variable”. This fundamental difference high-
lights the main reason why IMOP is much more complex
than IOP. In this paper, an unconventional framework for
IMOP is developed to address this challenge. We summa-
rize the comparisons between IOP and IMOP in Table 1.

Another relevant line of research is the inverse reinforce-
ment learning (IRL) which seeks to extract the reward func-
tion given observed optimal behavior (Ng & Russell, 2000;
Abbeel & Ng, 2004). In this case, the underlying deci-
sion making problem is a Markov decision process instead
of a multiobjective optimization making problem. There
have been many exciting contributions to the IRL litera-
ture since the seminar work (Ng & Russell, 2000). Some
standouts are (Ratliff et al., 2006; Ramachandran & Amir;
Ziebart et al., 2008; Hadfield-Menell et al., 2016; Pirotta &
Restelli, 2016; Finn et al., 2016; Amin et al., 2017; Metelli
et al., 2017), which are developed to handle its limitations.
Others are (Abbeel & Ng, 2004; Syed et al., 2008; Ziebart
et al., 2008; Ratliff et al., 2009; Ho et al., 2016) which are
applied to more complex and realistic situations in design-
ing AI systems and modeling nature learning.

Our contributions Our contributions for expert learning
through IMOP are threefold: models, insights, and algo-
rithms. To the best of the authors’ knowledge, we propose
the first general model for the unsupervised learning task
of inferring parameters of the multiobjective decision mak-
ing model, based on a set of observed decisions from the
human expert. This model can learn general convex objec-
tive functions or constraints of the expert’s multiobjective
decision making problem from observed decisions. More-
over, we provide extensive statistical analysis of our model,
and also show its generalization to the unseen data. Fur-
thermore, we reveal hidden connections between IMOP,
K-means clustering, and manifold learning. Leveraging
these connections and insights, we propose two algorithms
to solve IMOP through manifold learning and clustering.
Numerical results on both synthetic and real datasets con-
firm the effectiveness of our model and the computational
efficacy of algorithms to attack large-scale IMOP.
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2. Problem Setting
2.1. Multiobjective Decision Making Problem

Consider the following parameterized decision making
problem with p (≥ 2) objective functions,

min
x∈Rn

{f1(x, θ), f2(x, θ), . . . , fp(x, θ)}
s.t. x ∈ X(θ),

DMP

where θ is the parameter for the expert’s multiobjec-
tive decision making problem. For easy exposition,
we use f(x, θ) to denote the vector valued function
(f1(x, θ), f2(x, θ), . . . , fp(x, θ))

T . Also, the feasible set
X(θ) is characterized as X(θ) = {x ∈ Rn : g(x, θ) ≤
0}, where g(x, θ) = (g1(x, θ), . . . , gq(x, θ))

T is another
vector-valued function.

In this paper, we focus on a convex DMP where all objec-
tive functions and constraints are convex in x for each θ.

Definition 2.1 (Pareto optimality). For a fixed θ, a decision
x∗ ∈ X(θ) is said to be Pareto optimal if there exists no
other decision x ∈ X(θ) such that fi(x, θ) ≤ fi(x∗, θ) for
all i ∈ [p], and fj(x, θ) < fj(x

∗, θ) for at least one j ∈ [p].

In the study of multiobjective optimization, the set of all
Pareto optimal solutions is denoted by XP (θ) and called
the Pareto optimal set. One common way to derive a Pareto
optimal solution is to solve a problem with a single objec-
tive function constructed by the weighted sum of original
objective functions (Gass & Saaty, 1955), i.e.,

min wT f(x, θ)
s.t. x ∈ X(θ),

WP

where w = (w1, . . . , wp)T is the nonnegative weight vec-
tor in the (p − 1)-simplex Wp ≡ {w ∈ Rp+ : 1Tw = 1}.
When all weight components are required to be positive,
such set is denoted by W +

p . Denote S(w, θ) the set of op-
timal solutions of WP, i.e.,

S(w, θ) = arg min
x

{
wT f(x, θ) : x ∈ X(θ)

}
.

Then, we have the next theoretical results of WP following
from (Miettinen, 2012).

Proposition 2.1. For convex DMP,
⋃

w∈W +
p

S(w, θ) ⊆

XP (θ) ⊆ ⋃
w∈Wp

S(w, θ).

Remark 2.1. Results in Proposition 2.1 provide us a the-
oretical basis to make use of the weighted sum method to
derive all Pareto optimal solutions. Actually, when DMP is
convex and the objective functions are strictly convex, we
have XP (θ) =

⋃
w∈Wp

S(w, θ).

2.2. Inverse Multiobjective Optimization

In this section, given a set of observed decisions that are
noisy Pareto optimal solutions collected from an expert, we
construct an inverse multiobjective optimization model to
infer the parameter θ in DMP.

Let y denote one observed decision from an expert that is
distributed according to an unknown distribution Py and
supported on Y . We first construct our loss function with
respect to a hypothesis θ. Note that if weights over objec-
tive functions, i.e., the weight vector w, are known, IMOP
degenerates into IOP, and the conventional loss function in
(Aswani et al., 2018; Dong et al., 2018) can be directly ap-
plied with respect to y and S(w, θ). Nevertheless, w is
often missing and the Pareto optimal set should be adopted
instead as follows

l(y, θ) = min
x∈XP (θ)

‖y − x‖22, (1)

where XP (θ) denotes the Pareto optimal set of DMP for
a given θ. Then, our inverse multiobjective optimization
problem can be formulated with its distribution Py as

min
θ∈Θ

M(θ) ≡ Ey∼Py

(
l(y, θ)

)
, IMOP

whereM(θ) is also called the risk of the loss l(y, θ) for the
hypothesis θ.

Nevertheless, one challenge of using (1) is that there is no
general approach to comprehensively and explicitly char-
acterize Pareto optimal set XP (θ). According to Proposi-
tion 2.1, we adopt a sampling approach to generate a set of
{wk}k∈[K] ∈ Wp and approximate XP (θ) as the union of
{S(wk, θ)}k∈[K]. That is,⋃

k∈[K]

S(wk, θ) ≈ XP (θ).

Then, we get the surrogate loss function in the following:

lK(y, θ) = min
xk,zk∈{0,1}

‖y − ∑
k∈[K]

zkxk‖22

s.t.
∑

k∈[K]

zk = 1, xk ∈ S(wk, θ).
(2)

Remark 2.2. (i) Constraint
∑

k∈[K]

zk = 1 ensures that only

one of Pareto optimal solutions will be selected to measure
the distance to the expert decision y. Hence, solving this
problem identifies some wk with k ∈ [K] such that one
Pareto optimal solution from S(wk, θ) is closest to y. (ii)
As it is practically infeasible to sample all weight vectors
in Wp , we can control K to achieve a desired tradeoff be-
tween approximation accuracy and computational efficacy.
In practice, for general convex DMP, we evenly sample
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Figure 1. (a) Blue dots indicate the evenly sampled weights from the 3-dimensional simplex W3. Here, w1 + w2 + w3 = 1. (b)
Yellow dots are the Pareto optimal solutions sampled from XP (θ). Red and blue arrows indicate l(y, θ) and lK(y, θ), respectively. (c)
Graphical plate model of IMOP. The unshaded nodes are hidden variables and the shaded nodes represent observed variables.

{wk}k∈[K] from W +
p to ensure that S(wk, θ) ∈ XP (θ). If

f(x, θ) is known to be strictly convex, we can evenly sam-
ple {wk}k∈[K] from Wp as S(wk, θ) ∈ XP (θ) by Propo-
sition 2.1. As an example, we show the evenly sampled
weights when p = 3 in Figure 1a.

Moreover, as Py is not known a priori, we next provide an
empirical formulation of IMOP. Specifically, given obser-
vations {yi}i∈[N ] from an expert, θ will instead be inferred
through solving the following empirical risk minimizing
problem with weight samples {wk}k∈[K] (i.e., using (2)):

min
θ∈Θ

MN
K (θ) ≡ 1

N

∑
i∈[N ]

‖yi −
∑

k∈[K]

zikxk‖22,

s.t. xk ∈ S(wk, θ), ∀k ∈ [K],∑
k∈[K]

zik = 1, ∀i ∈ [N ],

zik ∈ {0, 1}, ∀i ∈ [N ], k ∈ [K],

(3)

where S(wk, θ) can be replaced by optimality conditions,
e.g., KKT conditions, in computation.
Remark 2.3. Differences between (1) and (2) are illus-
trated in Figure 1b. The convergence rate of lK(y, θ)

to l(y, θ) is of O(1/K
1

p−1 ). Details are provided in the
supplementary material. As p increases, we might re-
quire (approximately) exponentially more weight samples
{wK}k∈[K] to achieve a certain approximation accuracy.
In fact, this phenomenon is a reflection of curse of dimen-
sionality (Hastie et al., 2001), a principle that estimation of
the parameter becomes exponentially harder as the number
of dimension increases.
Remark 2.4. We highlight that the learner only has access
to the expert’s decisions without any weight information.
In fact, this is often the case in real world applications.
For example, it is impractical for the analyst to have ac-
cess to the portfolio manager’s preference on each asset
when learning the expected returns of the assets. There-
fore, IMOP is an unsupervised learning task and the goal
is to recover the structure of the Pareto optimal set from
which these decisions are generated. However, this does

not mean that the weight w disappears in our setting. In
contrast, w appears in IMOP as a hidden variable and gen-
erates the decision y together with θ as shown in Figure 1c.
Just like any other machine learning tasks involving hidden
variables (Dempster et al., 1977), we also need to learn w
in order to infer the model parameter θ.

3. Consistency and generalization bound
3.1. Consistency of (3)
We show that the estimator obtained by solving (3) asymp-
totically predict as well as the best possible result that this
type of model can achieve. Specifically, we demonstrate
that the estimator is risk consistent.

Before proving the consistency of the estimator, we first
need to prove the uniform convergence of the empirical
risk. Next, a few assumptions are typically adopted to de-
fine a friendly structure.

Assumption 3.1. (i) The parameter set Θ is convex and
compact. (ii) For each θ ∈ Θ, X(θ) is compact, and
has a nonempty relatively interior. X(θ) is also uniformly
bounded, that is, there exists B > 0 such that ‖x‖2 ≤ B
for all x ∈ X(θ) and θ ∈ Θ. (iii) Functions f(x, θ) and
g(x, θ) are continuous on Rn×Θ, and convex in x for each
θ ∈ Θ. (iv) The support Y of the decisions y is contained
within a ball of radius R almost surely, where R <∞.

Those assumptions are practically mild and often adopted
in IOP literature, e.g., (Aswani et al., 2018; Dong et al.,
2018). We note that (ii) and (iii) are important for the
continuity of XE(θ). Also, (iv), which is ensured once
variance of the noise is finite, is fundamental to apply the
uniform law of large numbers (ULLN) (Jennrich, 1969),
the most common tools in performing consistency analysis.

We next introduce one definition to support the conver-
gence proof with respect to both N and K.

Definition 3.1 (Double index convergence). Let {Xmn}
be an array of double-index random variables. Let X be a
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random variable. If ∀δ > 0,∀ε > 0, ∃N , s.t. ∀m,n ≥ N ,
P(|Xmn −X| > ε) < δ. Then Xmn is said to converge in

probability to X (denoted by Xmn
P
99K X).

Proposition 3.1. Suppose Assumption 3.1 holds. If f(x, θ)
is strongly convex in x for each θ ∈ Θ, then MN

K (θ) uni-
formly converges to M(θ) in N and K for θ ∈ Θ. That
is,

sup
θ∈Θ
|MN

K (θ)−M(θ)| P
99K 0.

Denote Θ∗ the set of parameters that minimize the risk and
refer to it as the optimal set, i.e., Θ∗ = {θ∗ ∈ Θ : M(θ∗) =

minθ∈ΘM(θ)}. Denote θ̂NK the optimal solution for (3).
We are now ready to state the result of risk consistency.

Theorem 3.2 (Consistency of (3)). Under the same as-

sumptions as Proposition 3.1, M(θ̂NK)
P
99KM(θ∗).

The above result implies that θ̂NK will asymptotically pre-
dict as well as the best possible result that this type of
model can achieve.

3.2. Generalization bound for (3)
Let MK(θ) be the risk for the hypothesis θ using (2). For
fixed weight samples {wk}k∈[K], we really want to esti-
mate the risk MK(θ̂NK) as it quantifies how well the perfor-
mance of our estimator θ̂NK generalizes to the unseen data.
However, this quantity cannot be obtained since the distri-
bution Py is unknown, and thus is a random variable. One
way to make a statement about this quantity is to say how it
relates to an estimate such as the empirical risk MN

K (θ̂NK).

Theorem 3.3. Suppose Assumption 3.1 holds. For any 0 <
δ < 1, with probability at least 1− δ, for each K

MK(θ̂NK) ≤MN
K (θ̂NK)

+
1√
N

(
2K(B2 + 2BR) + (B +R)2

√
log(1/δ)/2

)
.

The key step in proving the theorem is to bound the
Rademacher complexity of (2). We emphasize that the
proof needs more subtle analyses in IMOP than that
of one similar generalization bound in IOP (Bertsimas
et al., 2015). Due to the introduction of K weight sam-
ples, one needs to first establish the relationship between
Rademacher complexity of the space of minimizing K
functions and Rademacher complexity of the space of a
single function, which is non-trivial. Essentially, this theo-
rem indicates that the true risk for the estimator θ̂NK , which
can be seen as the test error for fixed weight samples
{wk}k∈[K], is no worse than the empirical risk, which can
be seen as the training error, by an additional term that is
of O(1/

√
N).

4. Connections between IMOP, clustering,
and manifold Learning

In section 2.2, we show that IMOP in essence is an unsu-
pervised learning task. Subsequently, we study connections
between IMOP and two unsupervised learning tasks. The
first one is the K-means clustering problem (MacQueen,
1967; Lloyd, 1982). The second one is the manifold learn-
ing problem, which seeks to construct low-dimensional
manifolds from data points embedded in high-dimensional
spaces (Roweis & Saul, 2000; Tenenbaum et al., 2000).

4.1. Connection bewteen IMOP and clustering

K-means clustering aims to partition the observations into
K clusters such that the average squared distance between
each observation and its closest cluster centroid is mini-
mized. Given observations {yi}i∈[N ], a mathematical for-
mulation of K-means clustering is presented in the follow-
ing (Bagirov, 2008; Aloise & Hansen, 2009):

min
xk,zik

1
N

∑
i∈[N ]

‖yi −
∑

k∈[K]

zikxk‖22

s.t. xk ∈ Rn, ∀k ∈ [K],∑
k∈[K]

zik = 1, ∀i ∈ [N ],

zik ∈ {0, 1}, ∀i ∈ [N ], k ∈ [K],

(4)

where K is the number of clusters, and {xk}k∈[K] are the
centroids of the clusters.

Proposition 4.1. Given any (4), we can construct an in-
stance of (3), such that solving (4) is equivalent to solving
the corresponding (3).

The key step for the proof in Proposition 4.1 is to construct
a DMP whose objective functions are quadratic and feasi-
ble region is a ball. Details of the proof are given in the
supplementary material.

Theorem 4.2. (3) is NP-hard to solve.

Note that K-means clustering problem is NP-hard even for
instances in the plane (Mahajan et al., 2012), or with two
clusters in the general dimension (Aloise et al., 2009). This
suggests that (3) is also difficult to solve even for instances
in the plane, or K = 2 in general dimension.

Remark 4.1. As (3) belongs to the bi-level optimization
problem, it is not unexpected that solving (3) is NP-hard
as the bi-level optimization problem is NP-hard in general.
However, one still needs to construct a polynomial reduc-
tion from one NP-hard problem to (3) in order to show the
NP-hardness.

Now, we explain why we can interpret (3) as a Constrained
K-means clustering problem. Here, the meaning of Con-
strained in our paper is slightly different from that of
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(Wagstaff et al., 2001). While both emphasize the incor-
poration of background knowledge into the clustering pro-
cess, their Constrained means more about which instances
should or should not be grouped together. One can observe
that (3) has one more type of constraints than (4), i.e., the
constraints xk ∈ S(wk, θ),∀k ∈ [K]. All the other com-
ponents are the same. These constraints require that the
centroids of the clusters are restricted to be Pareto optimal
solutions of the estimated DMP.

4.2. Connection between IMOP and manifold learning

Given a set of high-dimensional observations {yi}i∈[N ] in
Rn, manifold learning attempts to find an embedding set
{xi}i∈[N ] in a low-dimensional space Rd (d < n), and the
local manifold structure formed by {yi}i∈[N ] is preserved
in the embedded space (Tenenbaum et al., 2000; Roweis &
Saul, 2000; Saul & Roweis, 2003; Smith et al., 2009).

Formally, given a set of data points {yi}i∈[N ], we are re-
quired to find a mapping f : Rd → Rn and another set of
points {xi}i∈[N ] in Rd such that yi = f(xi) + εi, i ∈ [N ],
where εi represents random noise.

In this paper, we assume that the dimension of the decision
space is larger than the number of objectives: n ≥ p.

Theorem 4.3 (Pareto manifold). Under the same assump-
tions as Theorem 3.2, if ∀w1, w2 ∈ Wp, w1 6= w2 implies
S(w1, θ) 6= S(w2, θ) for each θ ∈ Θ, we have that the
Pareto optimal set of DMP is a (p − 1)-dimensional mani-
fold.

Here, we would like to highlight that the manifold men-
tioned in Theorem 4.3 is a topology manifold with bound-
ary (Milnor & Weaver, 1997). Therefore, the Pareto opti-
mal set of a DMP with two objectives is a piecewise con-
tinuous curve, and the Pareto optimal set of a DMP with
three objectives is a piecewise continuous surface, etc.

Theorem 4.4. Suppose that both f(x, θ) and g(x, θ) are
linear functions in x for all θ ∈ Θ. Then, XP (θ) is a piece-
wise linear manifold that has dimension not exceeding p−1
for all θ ∈ Θ.

Note that the feasible set for a multiobjective linear pro-
gram is a polyhedron. Thus, one way to interpret Theorem
4.4 is that the Pareto optimal set of such a program consists
of Pareto optimal faces of the polyhedron that are arc-wise
connected. Therefore, the Pareto optimal set naturally has a
piecewise linear structure and forms a manifold. Note that
each piece might have different dimensions. In this case,
the Pareto optimal set of a linear program is a special man-
ifold that is the disjoint union of topological manifolds with
different dimensions.

Now, we explain why we can interpret IMOP as a mani-
fold learning problem. One can show that {xk}k∈[K] in (3)

are Pareto optimal points on the XP (θ) to be estimated. In
addition, we note that (3) is solved by minimizing the aver-
age distance between {yi}i∈[N ] and {xk}k∈[K]. Therefore,
IMOP essentially seeks to find the DMP whose Pareto op-
timal set matches best the true Pareto optimal set where
{yi}i∈[N ] are sampled from.
Remark 4.2. Manifold learning methods typically returns
a set of points in the dimension-reduced space (Roweis &
Saul, 2000; Tenenbaum et al., 2000). By solving (3), how-
ever, we obtain a set of representative points {xk}k∈[K] of
a manifold in the decision space, instead of the (p − 1)-
dimensional space. Thus, the manifold recovered by solv-
ing IMOP is more like the Principal manifold introduced
by (Hastie & Stuetzle, 1989) as lines or surfaces passing
through“the middle” of the data distribution.

5. Algorithms for solving IMOP
Leveraging the connections between IMOP, clustering, and
manifold learning, we propose two algorithms to solve
IMOP through manifold learning and clustering.

5.1. A Clustering-type Algorithm

For each k ∈ [K], we denote Ck the set of noisy decisions
with zik = 1 after solving (3) to optimal. Consequently, we
partition {yi}i∈[N ] into K clusters {Ck}k∈[K]. Let yk =

1
|Ck|

∑
yi∈Ck

yi be the centroid of cluster Ck, and denote
V ar(Ck) the variance of Ck. Algebraically, we get

MN
K (θ) =

1

N

∑
i∈[N ]

‖yi −
∑
k∈[K]

zikxk‖22

=
1

N

∑
k∈[K]

|Ck|
(
‖yk − xk‖22 + V ar(Ck)

)
.

Note that {V ar(Ck)}k∈[K] is fixed when clusters
{Ck}k∈[K] are given. However, similar to K-means cluster-
ing, {Ck}k∈[K] are not known a priori. In K-means clus-
tering algorithm (Lloyd, 1982), this problem is solved by
initializing the clusters, and then iteratively updating the
clusters until convergence. Similarly, we propose a proce-
dure that alternately clusters the noisy decisions (assign-
ment step) and find θ and {xk}k∈[K] (update step) until
convergence. Specifically, the update step can be estab-
lished by solving the following problem

min
θ,xk′

1
N

∑
k∈[K]

|Ck|‖yk −
∑

k′∈[K]

zkk′xk′‖22

s.t. xk′ ∈ S(wk′ , θ), ∀k′ ∈ [K],∑
k′∈[K]

zkk′ = 1, ∀k ∈ [K],

zkk′ ∈ {0, 1}, ∀k ∈ [K], k′ ∈ [K].

(5)

The expectation-maximization (EM)-style algorithm is for-
mally presented in Algorithm 1.
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Figure 2. Tri-objective linear program. (a) The light blue dots indicate the N = 10000 observations in the data set. (b) Orange dots
indicate the centroids using K-means clustering. (c) Orange dots indicate the centroids after using Kernel PCA and K-means clustering.

Algorithm 1 Solving IMOP through clustering

1: Input: Noisy decisions {yi}i∈[N ], evenly sampled
weights {wk}k∈[K].

2: Initialization: Group {yi}i∈[N ] into K clusters
through K-means clustering.
Find the clusters {Ck}k∈[K] and centroids {yk}k∈[K].
Solve (5) and get θ̂ and {xk}k∈[K].

3: while Stopping criterion is not satisfied do
4: Assignment step: Assign each yi to the closest xk

and get {Ck}k∈[K]. Calculate centroids {yk}k∈[K].
5: Update step: Update θ and {xk}k∈[K] by (5).
6: end while

Although (3) is non-convex, Algorithm 1 converges in fi-
nite steps as shown below.

Theorem 5.1. Suppose there is an oracle to solve (5). Al-
gorithm 1 converges to a (local) optimal solution of (3) in
a finite number of iterations.

In practice, Algorithm 1 converges pretty fast, typically
within several iterations. The main reason is that the Ini-
tialization step often provides a good estimation of the
true parameter, since the K centroids returned by K-means
clustering represent the observations quite well in general.

5.2. An Enhanced Algorithm with Manifold Learning

We provide another algorithm leveraging the connection
that the Pareto optimal set is a continuous manifold with
intrinsic dimension of p − 1, where p is the number of ob-
jectives, regardless of the dimension of the decision space.

Linear manifold learning methods, such as PCA and Linear
Discriminant Analysis, perform well when there exists a
linear structure in the data. However, applying them in step
2 might not be appropriate since our data has a non-linear
structure by Theorem 4.3, even for the simplest linear case
stated in Corollary 4.4.

Algorithm 2 Initialization with manifold learning

1: Input: Noisy decision {yi}i∈[N ], evenly sampled
weights {wk}k∈[K].

2: Apply any nonlinear manifold learning algorithm:
yi ∈ Rn → xi ∈ Rp−1,∀i ∈ [N ].

3: Group {xi}i∈[N ] into K clusters by K-means cluster-
ing.
Denote IK the set of labels of {xi}i∈[N ].
Find the clusters {Ck}k∈[K] and centroids {yk}k∈[K]

of {yi}i∈[N ] according to IK .
4: Solve (5) and get θ̂ and {xk}k∈[K].
5: Run Step 3 - 6 in Algorithm 1.

Theorem 5.2. Suppose there is an oracle to solve (5). Al-
gorithm 2 converges to a (local) optimal solution of (3) in
a finite number of iterations.

6. Experiments
We provide preliminary results to illustrate the perfor-
mance of the proposed Algorithms 1 and 2 on both syn-
thetic and real datasets. Advanced optimization techniques,
e.g., ADMM, are applied to enhance the efficiency of our
algorithms. Details of the experiments and the associated
techniques can be seen in the supplementary material.

6.1. Learning the Objective Functions of a LP

Consider the following tri-objective linear program

min
x∈R3

+

{
cT1 x, c

T
2 x, c

T
3 x
}

s.t. Ax ≤ b.

In this example, there are two Pareto optimal faces, one is
the triangle defined by vertices (2, 4, 5), the other one is
the tetragon defined by vertices (1, 3, 5, 4). As is shown
by Figure 2a, the dimension of the Pareto optimal set is 2,
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Figure 3. Learning objective functions of an MQP. (a) Normalized prediction error for differentN andK. (b) Change of the assignments
in 5 iterations over 10 repetitions for different N and K. (c) Estimation results with N = 1000,K = 6. Left: Algorithm 1. Right:
Algorithm 2 using tSNE for manifold learning.

which equals to p− 1. Here, p = 3 since there are 3 objec-
tive functions. We seek to learn the objective functions, i.e.
{c1, c2, c3}, given the Pareto optimal solutions corrupted
by noise.

Our results show that both Algorithm 1 and Algorithm 2
are able to learn objective functions that recover the true
Pareto optimal set even with the initial estimation of the
parameter in the Initialization step. Thus, we won’t run the
later steps in Algorithm 1. However, as illustrated in Figure
2b - 2c, the initialization step with manifold learning almost
projects the noisy observations onto the true Pareto optimal
set and thus accelerates the learning process.

6.2. Learning the Objective Functions of an MQP

We consider the following multiobjective quadratic pro-
gramming problem (MQP)

min
x∈R2

+

(
f1(x) =

1
2
xTQ1x+ cT1 x

f2(x) =
1
2
xTQ2x+ cT2 x

)
s.t. Ax ≥ b.

We seek to learn c1 and c2 in this experiment. Estimation
results are illustrated in Figure 3.

6.3. Experiments with Real Data: Learning the
Expected Returns

We consider various decisions arising from different in-
vestors in a stock market. Specifically, we consider a port-
folio selection problem. The classical Markovitz mean-
variance portfolio selection (Markowitz, 1952) is

min
x

(
f1(x) = −rTx
f2(x) = xTQx

)
s.t. 0 ≤ xi ≤ bi,∀i ∈ [n],

n∑
i=1

xi = 1,

where r ∈ Rn+ is a vector of individual security expected
returns, Q ∈ Rn×n is the covariance matrix of securities

returns, x is a portfolio specifying the proportions of capital
to be invested in the different securities, and bi is an upper
bound put on the proportion of security i ∈ [n].

Dataset: Stock price data is scraped from S&P 500 In-
dex. Quarterly portfolio data is scraped from the mutual
fund VHCAX (Vanguard Capital Opportunity Fund Ad-
miral Shares) and SWPPX (Schwab S&P 500 Stock In-
dex) from March 2010 to December 2019. The assets are
grouped into 11 sectors as listed in Table 2.

We first learn the average quarterly returns r for the 11 sec-
tors from the portfolio data. We treat the learned returns
as the market equilibrium returns. Note that the Black-
Litterman model is an asset allocation approach that allows
investment analysts to incorporate subjective views (based
on investment analyst estimates) into market equilibrium
returns. By blending analyst views and equilibrium re-
turns instead of relying only on historical asset returns, the
Black-Litterman model provides a systematic way to esti-
mate the mean of asset returns. Our market views of the 11
sectors: Energy, Healthcare, Technology and Utilities have
higher returns than the equilibrium returns. We therefore
add an additional return that follows the uniform distribu-
tion U(0, 0.1) to each of the 4 sectors to reflect our market
views. We then seek to learn the blended expected return
for each of the 4 sectors.

As we can see from Figure 4, the estimated efficient fron-
tier becomes closer and closer to the true efficient frontier
as we sample more and more weights, which shows the
consistency of our model. Moreover, this also suggests that
the capability of our model for IMOP has the potential to
be scaled up with more computational resources.

7. Conclusion
We consider in this paper the problem of learning param-
eters of an expert’s multiobjective decision making model,
based on a set of observed decisions. Specifically, we for-
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Table 2. 11 sectors for the assets
Materials Communication Consumer Cyclical Consumer Defensive Energy Financial Services
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Figure 4. The efficient frontier and estimated efficient frontier.

mulate such a learning task as an inverse multiobjective op-
timization problem, and provide a deep analysis to establish
the statistical significance of the inference results from the
presented model. We also reveal several fundamental con-
nections between IMOP, K-means clustering, and manifold
learning. We show the effectiveness of our model and the
computational efficacy of algorithms to solve large-scale
IMOP by extensive numerical experiments.
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