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Abstract

Annotating datasets is one of the main costs in
nowadays supervised learning. The goal of weak
supervision is to enable models to learn using only
forms of labelling which are cheaper to collect,
as partial labelling. This is a type of incomplete
annotation where, for each datapoint, supervision
is cast as a set of labels containing the real one.
The problem of supervised learning with partial
labelling has been studied for specific instances
such as classification, multi-label, ranking or seg-
mentation, but a general framework is still miss-
ing. This paper provides a unified framework
based on structured prediction and on the concept
of infimum loss to deal with partial labelling over
a wide family of learning problems and loss func-
tions. The framework leads naturally to explicit
algorithms that can be easily implemented and
for which proved statistical consistency and learn-
ing rates. Experiments confirm the superiority
of the proposed approach over commonly used
baselines.

1. Introduction

Fully supervised learning demands tight supervision of large
amounts of data, a supervision that can be quite costly to
acquire and constrains the scope of applications. To over-
come this bottleneck, the machine learning community is
seeking to incorporate weaker sources of information in
the learning framework. In this paper, we address those
limitations through partial labelling: e.g., giving only par-
tial ordering when learning user preferences over items, or
providing the label “flower" for a picture of Arum Lilies',
instead of spending a consequent amount of time to find the
exact taxonomy.
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Partial labelling has been studied in the context of classifi-
cation (Cour et al., 2011; Nguyen & Caruana, 2008), multil-
abelling (Yu et al., 2014), ranking (Hiillermeier et al., 2008;
Korba et al., 2018), as well as segmentation (Verbeek &
Triggs, 2008; Papandreou et al., 2015), or natural language
processing tasks (Fernandes & Brefeld, 2011; Mayhew et al.,
2019), however a generic framework is still missing. Such
a framework is a crucial step towards understanding how
to learn from weaker sources of information, and widening
the spectrum of machine learning beyond rigid applications
of supervised learning. Some interesting directions are pro-
vided by Cid-Sueiro et al. (2014); van Rooyen & Williamson
(2017), to recover the information lost in a corrupt acquisi-
tion of labels. Yet, they assume that the corruption process
is known, which is a strong requirement that we want to
relax.

In this paper, we make the following contributions:

— We provide a principled framework to solve the prob-
lem of learning with partial labelling, via structured
prediction. This approach naturally leads to a varia-
tional framework built on the infimum loss.

— We prove that the proposed framework is able to re-
cover the original solution of the supervised learning
problem under identifiability assumptions on the la-
belling process.

— We derive an explicit algorithm which is easy to train
and with strong theoretical guarantees. In particular,
we prove that it is consistent and we provide general-
ization error rates.

— Finally, we test our method against some simple base-
lines, on synthetic and real examples. We show that for
certain partial labelling scenarios with symmetries, our
infimum loss performs similarly to a simple baseline.
However in scenarios where the acquisition process of
the labels is more adversarial in nature, the proposed
algorithm performs consistently better.

2. Partial labelling with infimum loss

In this section, we introduce a statistical framework for par-
tial labelling, and we show that it is characterized naturally
in terms of risk minimization with the infimum loss. First,
let’s recall some elements of fully supervised and weakly
supervised learning.
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Fully supervised learning consists in learning a func-
tion f € V¥ between a input space X" and a output space ),
given a joint distribution p € Ayxyxy on X x Y, and a loss
function £ € RY*Y that minimizes the risk

R(f;p) = Ex,y)p [E(f(X), Y], (1)

given observations (z;,y;)i<n ~ p®". We will assume that
the loss ¢ is proper, i.e. it is continuous non-negative and
is zero on, and only on, the diagonal of ) x ), and strictly
positive outside. We will also assume that ) is compact.

In weakly supervised learning, given (z;);<y., one does not
have direct observations of (y;);<, but weaker informa-
tion. The goal is still to recover the solution f € Y of the
fully supervised problem Eq. (1). In partial labelling, also
known as superset learning or as learning with ambiguous
labels, which is an instance of weak supervision, informa-
tion is cast as closed sets (S;)i<, in S, where S C 2Y is
the space of closed subsets of )/, containing the true labels
(y; € S;). In this paper, we model this scenario by con-
sidering a data distribution 7 € A y s, that generates the
samples (z;,S;). We will denote T as weak distribution
to distinguish it from p. Capturing the dependence on the
original problem, 7 must be compatible with p, a matching
property that we formalize with the concept of eligibility.

Definition 1 (Eligibility). Given a probability measure T
on X x S, a probability measure p on X x ) is said to be
eligible for T (denoted by p = 7), if there exists a probability
measure w over X X Y x S such that p is the marginal of
mover X X Y, T is the marginal of ™ over X x S, and, for

yE€Yand S €S

y¢esS = P(S|Y=y)=0.

We will alternatively say that T is a weakening of p, or that
p and T are compatible.

2.1. Disambiguation principle

According to the setting described above, the problem of
partial labelling is completely defined by a loss and a weak
distribution (¢, 7). The goal is to recover the solution of the
original supervised learning problem in Eq. (1) assuming
that the original distribution verifies p - 7. Since more than
one p may be eligible for 7, we would like to introduce a
guiding principle to identify a p* among them. With this
goal we define the concept of non-ambiguity for 7, a setting
in which a natural choice for p* appears.

Definition 2 (Non-ambiguity). For any x € X, denote by
7|, the conditional probability of T given x, and define the
set Sy as

S= () S
Sesupp(t|z)

The weak distribution T is said non-ambiguous if, for every
x € X, S, is a singleton. Moreover, we say that T is

strictly non-ambiguous if it is non-ambiguous and there
exists ) € (0, 1) such that, forall x € X and z ¢ S,

]P)S~7'|m(z € S) <1l-—n.

This concept is similar to the one by Cour et al. (2011), but
more subtle because this quantity only depends on 7, and
makes no assumption on the original distribution p describ-
ing the fully supervised process that we can not access. In
this sense, it is also more general.

When 7 is non-ambiguous, we can write S, = {y,} for
any z, where vy, is the only element of S,. In this case it
is natural to identify p* as the one satisfying p*|, = d,, .
Actually, such a p* is characterized without S, as the only
deterministic distribution that is eligible for 7. Because
deterministic distributions are characterized as minimizing
the minimum risk of Eq. (1), we introduce the following
minimum variability principle to disambiguate between all
eligible p’s, and identify p*,

*e in€(p), Elp)= inf R(f;p). @
P ar%:r:m () () sint (f;p). @

The quantity £ can be identified as a variance, since if
f, is the minimizer of R(f;p), f,(x) can be seen as the
mean of pl|, and ¢ the natural distance in ). Indeed, when
{ = {5 is the mean square loss, this is exactly the case. The
principle above recovers exactly p*|, = d,,, when 7 is non-
ambiguous, as stated by Prop. 1, proven in Appendix A.1.

Proposition 1 (Non-ambiguity determinism). When 7 is
non-ambiguous, the solution p* of Eq. (2) exists and satisfies
that, for any x € X, p*|, = §,,, where y, is the only
element of S,.

Prop. 1 provides a justification for the usage of the min-
imum variability principle. Indeed, under non-ambiguity
assumption, following this principle will allow us to build
an algorithm that recover the original fully supervised dis-
tribution. Therefore, given samples (z;, S;), it is of interest
to test if 7 is non-ambiguous. Such tests should leverage
other regularity hypothesis on 7, which we will not address
in this work.

Now, we characterize the minimum variability principle in
terms of a variational optimization problem that we can
tackle in Sec. 3 via empirical risk minimization.

2.2. Variational formulation via the infimum loss

Given a partial labelling problem (¢, 7), define the solutions
based on the minimum variablity principle as the functions
minimizing the recovered risk

f* €argminR(f; p*). 3)
f:X=Y
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for p* a distribution solving Eq. (2). As shown in Thm. 1
below, proven in Appendix A.2, the proposed disambigua-
tion paradigm naturally leads to a variational framework
involving the infimum loss.

Theorem 1 (Infimum loss (IL)). The functions f* defined
in Eq. (3) are characterized as

f* € argminRs(f),

f:xX=Y
where the risk Rg is defined as
Rs(f) = Ex,s)~r [L(f(X), S)] )
and L is the infimum loss
L(2,5) = inf /¢ . 5
(2,5) = inf £(z,y) (5)

The infimum loss, also known as the ambiguous loss (Luo
& Orabona, 2010; Cour et al., 2011), or as the optimistic
superset loss (Hiillermeier, 2014), captures the idea that,
when given a set .S, this set contains the good label y but
also a lot of bad ones, that should not be taken into account
when retrieving f. In other terms, f should only match the
best guess in .S. Indeed, if ¢ is seen as a distance, L is its
natural extension to sets.

2.3. Recovery of the fully supervised solutions

In this subsection, we investigate the setting where an origi-
nal fully supervised learning problem pg has been weakened
due to incomplete labelling, leading to a weak distribution 7.
The goal here is to understand under which conditions on 7
and / it is possible to recover the original fully supervised
solution based with the infimum loss framework. Denote
fo the function minimizing R(f; po). The theorem below,
proven in Appendix A.3, shows that under non-ambiguity
and deterministic conditions, it is possible to fully recover
the function f; also from 7.

Theorem 2 (Supervision recovery). For an instance
(4, po, T) of the weakened supervised problem, if we de-
note by fo the minimizer of Eq. (1), we have the under the
conditions that (1) T is not ambiguous (2) for all x € X,
Sz = {fo(x)}; the infimum loss recovers the original fully
supervised solution, i.e. the * defined in Eq. (3) verifies

= fo

Futhermore, when py is deterministic and T not ambiguous,
the p* defined in Eq. (2) verifies p* = po.

At a comprehensive levels, this theorem states that under
non-ambiguity of the partial labelling process, if the labels
are a deterministic function of the inputs, the infimum loss
framework make it possible to recover the solution of the
original fully supervised problem while only accessing weak
labels. In the next subsection, we will investigate which is
the relation between the two problems when dealing with
an estimator f of f*.

2.4. Comparison inequality

In the following, we want to characterize the error performed
by R(f; p*) with respect to the error performed by Rs(f).
This will be useful since, in the next section, we will provide
an estimator for f* based on structured prediction, that
minimize the risk Rg. First, we introduce a measure of
discrepancy for the loss function.

Definition 3 (Discrepancy of the loss £). Given a loss func-
tion {, the discrepancy degree v of ¢ is defined as

v =log sup £z, y) )
y,2' #z E(Z,Z/)

Y will be said discrete for { when v < 400, which is always
the case when Y is finite.

Now we are ready to state the comparison inequality that
generalizes to arbitrary losses and output spaces a result on
0 — 1 loss on classification from Cour et al. (2011).

Proposition 2 (Comparison inequality). When ) is discrete
and T is strictly non-ambiguous for a given n € (0, 1), then
the following holds

R(f;p") = R(f%507) < C(Rs(f) = Rs(f7)),  (©)

for any measurable function f € Y, where C does not
depend on 7, f, and is defined as follows and always finite

C=nte.

When py is deterministic, since we know from Thm. 2 that
p* = po, this theorem allows to bound the error made on the
original fully supervised problem with the error measured
with the infimum loss on the weakly supervised one.

Note that the constant presented above is the product of
two independent terms, the first measuring the ambiguity of
the weak distribution 7, and the second measuring a form
of discrepancy for the loss. In the appendix, we provide a
more refined bound for C, that is C = C(¢, 7), that shows
a more elaborated interaction between ¢ and 7. This may be
interesting in situations where it is possible to control the
labelling process and may suggest strategies to active partial
labelling, with the goal of minimizing the costs of labelling
while preserving the properties presented in this section
and reducing the impact of the constant C in the learning
process. An example is provided in the Appendix A.5.

3. Consistent algorithm for partial labelling

In this section, we provide an algorithmic approach based on
structured prediction to solve the weak supervised learning
problem expressed in terms of infimum loss from Thm. 1.
From this viewpoint, we could consider different structured
prediction frameworks as structured SVM (Tsochantaridis
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et al., 2005), conditional random fields (Lafferty et al., 2001)
or surrogate mean estimation (Ciliberto et al., 2016). For
example, Luo & Orabona (2010) used a margin maximiza-
tion formulation in a structured SVM fashion, Hiillermeier
& Cheng (2015) went for nearest neighbors, and Cour et al.
(2011) design a surrogate method specific to the 0-1 loss, for
which they show consistency based on Bartlett et al. (2006).

In the following, we will use the structured prediction
method of Ciliberto et al. (2016); Nowak-Vila et al. (2019),
which allows us to derive an explicit estimator, easy to train
and with strong theoretical properties, in particular, consis-
tency and finite sample bounds for the generalization error.
The estimator is based on the pointwise characterization of

f*as

[*(z) € argminEg..,|, [inf Z(z,y)] ,
zeY yeSs

and weights «; () that are trained on the dataset such that
Tlo = D1y a;(x)ds, is a good approximation of 7|,. Plug-
ging this approximation in the precedent equation leads to
our estimator, that is defined explicity as follows

fn(x) € argmin inf Zai(x)ﬁ(z,yi). (7
i=1

2€Y  Yi€Si

Among possible choices for o, we will consider the fol-
lowing kernel ridge regression estimator to be learned at
training time

a(z) = (K +n\) " to(x),

with A > 0 a regularizer parameter and K =
(k(zs,25))i; € R v(z) = (k(x,2;)); € R™ where
k e X x X — R is a positive-definite kernel (Scholkopf
& Smola, 2001) that defines a similarity function between
input points (e.g., if X = R? for some d € N a commonly
used kernel is the Gaussian kernel k(xz,2) = e~ llz=='I%),
Other choices can be done to learn o, beyond kernel meth-
ods, a particularly appealing one is harmonic functions,
incorporating a prior on low density separation to boost
learning (Zhu et al., 2003; Zhou et al., 2003; Bengio et al.,
2006). Here we use the kernel estimator since it allows to
derive strong theoretical results, based on kernel conditional
mean estimation (Muandet et al., 2017).

3.1. Theoretical guarantees

In this following, we want to prove that f,, converges to
f* as n goes to infinity and we want to quantify it with
finite sample bounds. The intuition behind this result is
that as the number of data points tends toward infinity, 7
concentrates towards 7, making our algorithm in Eq. (7)
converging to a minimizer of Eq. (4) as explained more in
detail in Appendix A.6.

Theorem 3 (Consistency). Let Y be finite and T be a non-
ambiguous probability. Let k be a bounded continuous
universal kernel, e.g. the Gaussian kernel (see Micchelli
et al., 20006, for details), and f, the estimator in Eq. (7)
trained on n € N examples and with A = n~'/2. Then,
holds with probability 1

Jim R(fn; p") = RS p7)-

In the next theorem, instead we want to quantify how fast
fn converges to f* depending on the number of examples.
To obtain this result, we need a finer characterization of the
infimum loss L as:

L(z,5) = (¥(2),¢(9)),

where H is a Hilbert space and ¢ : ) — H,p : 2¥ — H
are suitable maps. Such a decomposition always exists
in finite case (as for the infimum loss over ) finite) and
many explicit examples for losses of interest are presented
by Nowak-Vila et al. (2019). We now introduce the condi-
tional expectation of (.S) given x, defined as

g: X = H
x = E;[p(S8)|X =q].

The idea behind the proof is that the distance between f,
and f is bounded by the distance of g,, an estimator of
g that is implicitly computed via «.. If g has some form
of regularity, e.g. g € G, with G the space of functions
representable by the chosen kernel (see Scholkopf & Smola,
2001), then it is possible to derive explicit rates, as stated in
the following theorem.

Theorem 4 (Convergence rates). In the setting of Thm. 3,
if T is n-strictly non ambiguous forn € (0,1), and if g € G,
then there exists a C, such that, for any 6 € (0,1) and
n € N, holds with probability at least 1 — 6,

~ ]\ 2
R{fns ) = R(f7;p7) < Clog <5) n U (@®)

Those last two theorem are proven in Appendix A.6 and
combines the consistency and learning results for kernel
ridge regression (Caponnetto & De Vito, 2006; Smale &
Zhou, 2007), with a comparison inequality of Ciliberto et al.
(2016) which relates the excess risk of the structured predic-
tion problem with the one of the surrogate loss R s, together
with our Prop. 2, which relates the error R to Rg.

Thoses results make our algorithm the first algorithm for par-
tial labelling, that to our knowledge is applicable to a generic
loss ¢ and has strong theoretical guarantees as consistency
and learning rates. In the next section we will compare with
the state of the art and other variational principles.
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4. Previous works and baselines

Partial labelling was first approached through discriminative
models, proposing to learn (Y | X') among a family of pa-
rameterized distributions by maximizing the log likelihood
based on expectation-maximization scheme (Jin & Ghahra-
mani, 2002), eventually integrating knowledge on the par-
tial labelling process (Grandvalet, 2002; Papandreou et al.,
2015). In the meanwhile, some applications of clustering
methods have involved special instances of partial labelling,
like segmentation approached with spectral method (Weiss,
1999), semi-supervision approached with max-margin (Xu
et al., 2004). Also initially geared towards clustering, Bach
& Harchaoui (2007) consider the infimum principle on the
mean square loss, and this was generalized to weakly super-
vised problems (Joulin et al., 2010). The infimum loss as
an objective to minimize when learning from partial labels
was introduced by Cour et al. (2011) for the classification
instance and used by Luo & Orabona (2010); Hiillermeier
(2014) in generic cases. Comparing to those last two, we
provide a framework that derives the use of infimum loss
from first principles and from which we derive an explicit
and easy to train algorithm with strong statistical guaran-
tees, which were missing in previous work. In the rest of
the section, we will compare the infimum loss with other
variational principles that have been considered in the lit-
erature, in particular the supremum loss (Guillaume et al.,
2017) and the average loss (Denoeux, 2013).

Average loss (AC). A simple loss to deal with uncertainty
is to average over all potential candidates, assuming S dis-
crete,

It is equivalent to a fully supervised distribution p,. by
sampling Y uniformly at random among S

pLIL /|S| yeSdT )

This directly follows from the definition of L, and of the
risk R(z; pac). However, as soon as the loss £ has discrep-
ancy, i.e. v > 0, the average loss will implicitly advantage
some labels, which can lead to inconsistency, even in the
deterministic not ambiguous setting of Prop. 2 (see Ap-
pendix A.7 for more details).

Supremum loss (SP). Another loss that have been consid-
ered is the supremum loss (Wald, 1945; Madry et al., 2018),
bounding from above the fully supervised risk in Eq. (1).
It is widely used in the context of robust risk minimization
and reads

Ryp(£) = sup Eix vy [U(F (@), )]

Similarly to the infimum loss in Thm. 1, this risk can be
written from the loss function

Ly (2,5) =sup(z,vy).
yes
Yet, this adversarial approach is not consistent for partial
labelling, even in the deterministic non ambiguous setting
of Prop. 2, since it finds the solution that best agrees with
all the elements in S and not only the true one (see Ap-
pendix A.7 for more details).

4.1. Instance showcasing superiority of our method

In the rest of this section, we consider a pointwise exam-
ple to showcase the underlying dynamics of the different
methods. It is illustrated in Fig. 1. Consider Y = {a, b, ¢}
and a proper symmetric loss function such that £(a,b) =
l(a,c) =1, £(b,c) = 2. The simplex Ay is naturally split
into decision regions, fore € ),

e € argminE,[¢(z, Y)}} .
zeY

Both /L and AC solutions can be understood geometrically
by looking at where p* and p,. fall in the partition of the
simplex (Re¢)ecy. Consider a fully supervised problem
with distribution J., and a weakening 7 of p defined by
7({a,b,c}) = 3 and r({c}) = 7({a.c}) = 7({b,c}) =
%. This distribution can be represented on the simplex
in terms of the region R, = {p € Ay |pF 7}. Finding
p* correspond to minimizing the piecewise linear function
E(p) (Eq. (2)) inside R,. On this example, it is minimized
for p* = 4., which we know from Prop. 2. Now note that
if we use the average loss, it disambiguates p as

11 15 1 11 13

Pac(€) = 57 = 33t gt 255 Peelb) = pacla) = 3

This distribution falls in the decision region of a, which
is inconsistent with the real label y = c. For the supre-
mum loss, one can show, based on Ry,(a) = £(a,c) = 1,
Ryp(b) = £(b,c) = 2 and Ryp(c) = 3/2, that the supremum
loss is minimized for z = a, which is also inconsistent. In-
stead, by using the infimum loss, we have f* = f; = ¢, and
moreover that p* = pg that is the optimal one.

Re{pEA)}

4.2. Algorithmic considerations for AC, SP

The averaging candidates principle, approached with the
framework of quadratic surrogates (Ciliberto et al., 2016),
leads to the following algorithm

fac(z) € argmanal

z€y T4

B |Z€zy

yES;

= argmmz (Z lyes |S| >£(Zay)'

z€Y yey
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Figure 1. Simplex Ay. (Left) Decision frontiers. (Middle left) Full
and weak distributions. (Middle right) Level curves of the piece-
wise linear objective £ (Eq. (2)), to optimize when disambiguating
T into p*. (Right) Disambiguation of AC and IL.

This estimator is computationally attractive because the
inference complexity is the same as the inference complexity
of the original problem when approached with the same
structured prediction estimator. Therefore, one can directly
reuse algorithms developed to solve the original inference
problem (Nowak-Vila et al., 2019). Finally, with a similar
approach to the one in Sec. 3, we can derive the following
algorithm for the supremum loss

n
fop(x) € argmin sup Zai(x)ﬁ(z,yi).
z€Y  yi€Si ;7

In the next section, we will use the average candidates as
baseline to compare with the algorithm proposed in this
paper, as the supremum loss consistently performs worth,
as it is not fitted for partial labelling.

5. Applications and experiments

In this section, we will apply Eq. (7) to some synthetic
and real datasets from different prediction problems and
compared with the average estimator presented in the section
above, used as a baseline. Code is available online.?

5.1. Classification

Classification consists in recognizing the most relevant item
among m items. The output space is isomorphic to the set
of indices ) = [1, m], and the usual loss function is the 0-1
loss

E(Z, y) = 1y;£z-

Mttps://github.com/VivienCabannes/
partial_labelling

It has already been widely studied with several approaches
that are calibrated in non ambiguous deterministic setting,
notably by Cour et al. (2011). The infimum loss reads
L(z,S) = 1,¢g, and its risk in Eq. (4) is minimized for

f(z) € argmaxP(z € S| X =x).
z€Y

Based on data (z;, S;)i<n. our estimator Eq. (7) reads

fn(x) = argmax Z a;(z).
z€y 1;2€8;
For this instance, the supremum loss is really conserva-
tive, only learning from set that are singletons Ly, (2, S) =
o223 while the average loss is similar to the infimum

one, adding an evidence weight depending on the size of S,
Lac(za S) =~ 1Z¢S/ ‘S|

dna
0.4 1 IL == AC
z
3 0.2 1
0 20 40 60 80

Corruption (in %)

svmguide2

Loss

Corruption (in %)

Figure 2. Classification. Testing risks (from Eq. (1)) achieved by
AC and IL on the “dna” and “svmguide2” datasets from LIBSVM
as a function of corruption parameter ¢, when the corruption is as
follows: for y being the most present labels of the dataset, and
2 # 2, P(z€S|Y =2) =c-1.—,. Plotted intervals show
the standard deviation on eight-fold cross-validation. Experiments
were done with the Gaussian kernel. See all experimental details
in Appendix B.

Real data experiment. To compare /L and AC, we used
LIBSVM datasets (Chang & Lin, 2011) on which we cor-
rupted labels to simulate partial labelling. When the cor-
ruption is uniform, the two methods perform the same.
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Yet, when labels are unbalanced, such as in the “dna” and
“svmguide2” datasets, and we only corrupt the most fre-
quent label y € ), the infimum loss performs better as
shown in Fig. 2.

5.2. Ranking

Ranking consists in ordering m items based on an input z
that is often the conjunction of a user v and a query g,
(x = (u,q)). An ordering can be thought as a permuta-
tion, that is, ) = G,,. While designing a loss for ranking
is intrinsincally linked to a voting system (Arrow, 1950),
making it a fundamentally hard problem; Kemeny (1959)
suggested to approach it through pairwise disagreement,
which is current machine learning standard (Duchi et al.,
2010), leading to the Kendall embedding

e(y) = (sign (¥i = Yj))icjm »
and the Kendall loss (Kendall, 1938), with C' = m(m—1)/2

Uy, z) = C —o(y)"e(2).

Supervision often comes as partial order on items, e.g.,

S={yeSnl|yi>y; > Uk, Y1 > Yn}-

It corresponds to fixing some coordinates in the Kendall em-
bedding. In this setting, AC and SP are not consistent, as one
can recreate a similar situation to the one in Sec. 4, consid-
eringm = 3,a = (1,2,3),b = (2,1,3) and ¢ = (1, 3,2)
(permutations being represented with (071 (7));<), and
supervision being most often S = (1 > 3) = {a, b, ¢} and
sometimes S = (1 > 3 > 2) = {c}.

Minimum feedback arc set. Dealing with Kendall’s loss
requires to solve problem of the form,

arg min (c, p(y)) ,
yeSs

for c € R™", and constraints due to partial ordering encoded
in S C Y. This problem is an instance of the constrained
minimum feedback arc set problem.We provide a simple
heuristic to solve it in Appendix B.5, which consists of
approaching it as an integer linear program. Such heuristics
are analyzed and refined for analysis purposes by Ailon et al.
(2005); van Zuylen et al. (2007).

Algorithm specification. At inference, the infimum loss
requires to solve:

fule) = argmax sup 3 ailw) (=), o). (D)

z2€Y  (yi)€Si ;1

It can be approached with alternate minimization, initializ-
ing p(y;) € Conv(p(S;)), by putting 0 on unseen observed

pairwise comparisons, then, iteratively, solving a minimum
feedback arc set problem in z, then solving several mini-
mum feedback arc set problems with the same objective, but
different constraints in (y;). This is done efficiently using
warmstart on the dual simplex algorithm.

Underlying scores Ground truth

8
Q
=

» e

: :

2| 3]
2}
g
=

X X

Figure 3. Ranking, experimental setting. Colors represent four
different items to rank. Each item is associate to a utility function
of x shown on the left figure. From those scores, is retrieved an
ordering y of the items as represented on the right.
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Figure 4. Ranking, results. Testing risks (from Eq. (1)) achieved
by AC and IL as a function of corruption parameter c. When
c = 1, both risks are similar at 0.5. The simulation setting is the
same as in Fig. 2. The error bars are defined as for Fig. 2, after
cross-validation over eight folds. /L clearly outperforms AC.

Synthetic experiments. Let us consider X = [0, 1] em-
bodying some input features. Let {1,...,m}, m € Nbe
abstract items to order, each item being linked to a util-
ity function v; € R¥, that characterizes the value of i
for x as v;(x). Labels y(z) € ) are retrieved by sorting
(vi(x))i<m-. To simulate a problem instance, we set v; as
v;(x) = a;-x+b;, where a; and b; follow a standard normal
distribution. Such a setting is illustrated in Fig. 3.

After sampling 2 uniformly on [0, 1] and retrieving the or-
dering y based on scores, we simulate partial labelling by
randomly loosing pairwise comparisons. The comparisons
are formally defined as coordinates of the Kendall’s embed-
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Figure 5. Partial regression on R. In this setting we aim at recovering a signal y(z) given upper and lower bounds on it amplitude, and in
thirty percent of case, information on its phase, or equivalently in R, its sign. IL clearly outperforms the baseline. Indeed AC is a particular
ill-fitted method on such a problem, since it regresses on the barycenters of the resulting sets.

ding (¢(y) &) jk<m. To create non symmetric perturbations
we corrupt more often items whose scores differ a lot. In
other words, we suppose that the partial labelling focuses
on pairs that are hard to discriminate. The corruption is
set upon a parameter ¢ € [0, 1]. In fact, for m = 10, until
¢ = 0.5, our corruption is fruitless since it can most often be
inverted based on transitivity constraint in ordering, while
the problem becomes non-trivial with ¢ > 0.5. In the latter
setting, IL clearly outperforms AC on Fig. 4.

5.3. Partial regression

Partial regression is an example of non discrete partial la-
belling problem, where )V = R™ and the usual loss is the
Euclidean distance

Uy, z) = lly = =II”.

This partial labelling problem consists of regression where
observation are sets S C R™ that contains the true output
y instead that y. Among others, it arises for example in
economical models, where bounds are preferred over ap-
proximation when acquiring training labels (Tobin, 1958).
As an example, we will illustrate how partial regression
could appear for some phase problems arising with phys-
ical measurements. Suppose a physicist want to measure
the law between a vectorial quantity Y and some input pa-
rameters X. Suppose that, while she can record the input
parameters x, her sensors do not exactly measure y but ren-
der an interval in which the amplitude ||y|| lays and only
occasionally render its phase y/ ||y||, in a fashion that leads
to a set of candidates S for y. The geometry over /2> makes
it a perfect example to showcase superiority of the infimum
loss as illustrated in Fig. 5.

In this figure, we consider ) = R and suppose that Y
is a deterministic function of X as shown by the dotted
blue line signal. If, for a given x;, measurements only
provides that |y;| € [1, 2] without the sign of y;, a situation
where the phase is lost, this correspond to the set S; =

[—2, —1] U [1, 2], explaining the shape of observed sets that
are symmetric around the origin. Whenever the acquired
data has no phase, which happen seventy percent of the time
in our simulation, AC will target the set centers, explaining
the green curve. On the other hand, IL is aiming at passing
by each set, which explains the orange curve, crossing all
blue bars.

6. Conclusions

In this paper, we deal with the problem of weakly supervised
learning, beyond standard regression and classification, fo-
cusing on the more general case of arbitrary loss functions
and structured prediction. We provide a principled frame-
work to solve the problem of learning with partial labelling,
from which a natural variational approach based on the
infimum loss is derived. We prove that under some identifi-
ability assumptions on the labelling process the framework
is able to recover the solution of the original supervised
learning problem. The resulting algorithm is easy to train
and with strong theoretical guarantees. In particular we
prove that it is consistent and we provide generalization
error rates. Finally the algorithm is tested on simulated and
real datasets, showing that when the acquisition process
of the labels is more adversarial in nature, the proposed
algorithm performs consistently better than baselines. This
paper focuses on the problem of partial labelling, however
the resulting mathematical framework is quite flexible in
nature and it is interesting to explore the possibility to ex-
tend it to tackle also other weakly supervised problems, as
imprecise labels from non-experts (Dawid & Skene, 1979),
more general constraints over the set (y;);<, (Quadrianto
et al., 2009) or semi-supervision (Chapelle et al., 2006).
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