Model-Based Reinforcement Learning with Value-Targeted Regression

Alex Ayoub! Zeyu Jia? Csaba Szepesvari'?> Mengdi Wang*? Lin F. Yang?>

Abstract

This paper studies model-based reinforcement
learning (RL) for regret minimization. We focus
on finite-horizon episodic RL where the transition
model P belongs to a known family of models P,
a special case of which is when models in P take
the form of linear mixtures: Py = Zle 0;P;.
We propose a model based RL algorithm that is
based on the optimism principle: In each episode,
the set of models that are ‘consistent’ with the
data collected is constructed. The criterion of con-
sistency is based on the total squared error that the
model incurs on the task of predicting state values
as determined by the last value estimate along the
transitions. The next value function is then chosen
by solving the optimistic planning problem with
the constructed set of models. We derive a bound
on the regret, which, in the special case of linear
mixtures, takes the form @(d\/ H3T), where H,
T and d are the horizon, the total number of steps
and the dimension of #, respectively. In particu-
lar, this regret bound is independent of the total
number of states or actions, and is close to a lower
bound (v HdT). For a general model family P,
the regret bound is derived based on the Eluder
dimension.

1. Introduction

In reinforcement learning (RL), a core problem in artifi-
cial intelligence (Russel & Norvig, 2003; Sutton & Barto,
2018), an agent learns to control a possibly complex, ini-
tially unknown environment in a sequential trial and error
process. The application of RL algorithms to various do-
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mains, such as games, robotics and science, has witnessed
phenomenal empirical advances during the last few years
(e.g., Mnih et al. 2015; Silver et al. 2017; AlQuraishi 2019;
Arulkumaran et al. 2019). In online RL, an agent has to
learn to act in an unknown environment “from scratch”, col-
lect data as she acts, and adapt her policy to maximize the
reward collected, or, equivalently, to minimize her regret.
Designing RL algorithms that provably achieve sublinear
regret in some class of environments has been the subject
of much research, mainly focusing on the so-called tabular,
and linear-factored MDP settings (e.g., Jaksch et al. 2010;
Osband et al. 2014; Azar et al. 2017; Dann et al. 2017;
2018; Agrawal & Jia 2017; Osband et al. 2017; Jin et al.
2018; Yang & Wang 2019a; Jin et al. 2019). An appealing
alternative to studying these structured cases is to consider
learning and acting when the environment is described by a
general model class, the topic of the current paper. Despite
its appeal, as it appears, prior work, considered this option
exclusively in a Bayesian setting. In particular, (Strens,
2000) introduced posterior sampling to RL, which was later
analyzed by (Osband & Van Roy, 2014; Abbasi-Yadkori
& Szepesviri, 2015; Theocharous et al., 2017) (for a more
in-depth discussion of related work, the reader is referred to
Section 5). As opposed to these works, in the present paper
we are interested in developing algorithms for bounding the
worst-case expected regret.

The specific setting that we adopt is that of episodic re-
inforcement learning in an environment where the un-
known transition probability model that describes the en-
vironment’s stochastic dynamics belongs to a family of
models that is given to the learner. The model family P
is a general set of models, and it may be either finitely
parametrized or nonparametric. In particular, our approach
accommodates working with smoothly parameterized mod-
els (e.g., Abbasi-Yadkori & Szepesvari, 2015), and can
find use in both robotics (Kober et al., 2013) and queue-
ing systems (Kovalenko, 1968). An illuminating special
case is when elements of P take the form Py = >, 6; P;
where Py, Ps, ..., P; are fixed, known basis models and
6 = (61,...,04) are unknown, real-valued parameters.
Model Py can be viewed as a linear mixture model that
aggregates a finite family of known basic dynamical models
(Modi et al., 2019). As an important special case, linear
mixture models include the linear-factor MDP model of
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(Yang & Wang, 2019a).

The main contribution of this paper is a new model-based
upper confidence RL algorithm. The main novelty is the
criterion to select models that are deemed consistent with
past data. As opposed to the most common approach where
the models are selected based on their ability to predict next
states or raw observations (cf. Jaksch et al. 2010; Yang
& Wang 2019a or Strens 2000; Osband & Van Roy 2014;
Abbasi-Yadkori & Szepesvari 2015; Ouyang et al. 2017;
Agrawal & Jia 2017 in a Bayesian setting), we propose to
evaluate models based on their ability to predict the values
of a value function at next states, where the value function
used is an estimate of the optimal that our algorithm pro-
duces based on past information. In essence, our algorithm
selects models based on their ability to produce small pre-
diction errors in an appropriately constructed value-targeted
regression (VTR) problem. Our algorithm combines VTR
for constructing sets of plausible models with (standard)
optimistic planning. The idea of using a value function es-
timate to “fit” models has been explored in the context of
batch RL by Farahmand (2018).

VTR is attractive for multiple reasons: (i) Firstly, VTR per-
mits model learning to focus on task-relevant aspects of
the transition dynamics. This is important as the dynam-
ics can be quite complicated and in a resource bounded
setting, modelling irrelevant aspects of the dynamics can
draw valuable resources away from modelling task-relevant
aspects. (ii) Secondly, VTR poses model learning as a real-
valued regression problem, which should be easier than the
usual approaches to build probabilistic models. In particular,
when state-representation available to the agent takes values
in a high-dimensional space then building a faithful proba-
bility model can be highly demanding. (iii) Thirdly, VTR
aims to control directly what matters in terms of controlling
the regret. Specifically the objective used in value-targeted
is obtained from an expression that upper bounds the regret,
hence it is natural to expect that minimizing value prediction
errors will lead to a small regret.

An additional attractive feature of our algorithm is its mod-
ular structure. As a result, advances on the components
(faster optimistic planning, tighter confidence sets for VTR)
are directly translated into an improved algorithm. On the
skeptical side, one may question whether VTR is going “too
far” in ignoring details of the dynamics. In particular, since
the value functions used in defining the regression targets
are derived based on imperfect knowledge, the model may
never get sufficiently refined in a way that would keep the
regret small. Similarly, one may be worried about that by ig-
noring details of the observations (i.e., the identity of states),
the approach advocated is ignoring information available
in the data, which may slow down learning. This leads to
central question of our article:

Is value-targeted regression sufficient and efficient for
model-based online RL?

The main contribution of this paper is a positive answer
to this question. In particular, the regret bounds we derive
conclusively show that the despite the imperfection and
non-stationarity of the value targets, our algorithm will not
get “stuck” (i.e., it enjoys sublinear regret). Our results
further suggest that in the worst case sense, for common
settings, there may be no performance penalty associated
with using value-targeted regression. We are careful here
as this conclusion is based on comparing worst-case upper
bounds, which cannot provide a definitive answer. Finally,
it is worth noting that the regret bound does not depend on
the size of either the state or the action space.

To complement the theoretical findings, results from a num-
ber of small-scale, synthetic experiments confirm that our
algorithm is competitive in terms of its regret. The exper-
iments also allow us to conclude that it is value-targeted
regression fogether with optimistic planning that is effective.
In particular, if optimism is taken away (i.e., e-greedy for
exploration), value-targeted regression performs worse than
using a canonical approach to estimate the model. Similarly,
if value-targeted regression is taken away, optimism together
with the canonical model-estimation approach is less effec-
tive. Note that our results do not rule out that certain com-
binations of value-targeted regression and canonical model
building are more effective than value-targeted regression.
In fact, given the vast number of possibilities, we find this
to be quite probable. While our proofs can be adjusted to
deal with adding simultaneous alternative targets, sadly, our
current theoretical tools are unable to capture the tradeoffs
that one expects to arise as a result of such modifications.

It is interesting to note that, in an independent and concur-
rent work, value-targeted regression has also been suggested
as the main model building tool of the MuZero algorithm
(Schrittwieser et al., 2019), which was empirically evalu-
ated on a number of RL benchmarks, such as the 57 Atari
“games”, the game of “Go”, chess and shogi, and was found
to be highly competitive with its state-of-the-art alternatives.
This reinforces the conclusion that training models using
value-targeted regression is indeed a good approach to build
effective model-based RL algorithms. Since MuZero does
not implement optimistic planning and our results show
that optimism is not optional in a worst case sense, the
good results of MuZero on these benchmark may seem
to contradict our experimental findings that value-targeted
regression is ineffective without an appropriate, ‘smart’ ex-
ploration component. However, there is no contradiction:
Smart exploration may be optional in some environments;
our experiments show that it is not optional on some envi-
ronments. In short, for robust performance across a wide
range of environments, smart exploration is necessary but
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smart exploration may be optional in some environments.

2. Problem Formulation

We study learning to control episodic Markov decision
processes (MDPs, for short), described by a tuple M =
(S, A, P,r,H,s,). Here, S is the state space, A is the ac-
tion space, P is the transition kernel, r is a reward function,
H > 0is the episode length, or horizon, and s, € § is the
initial state. In the online RL problem, the learning agent
is given S, A, H and r but does not know P.! The agent
interacts with its environment in a number of episodes. Each
episode begins at state s, and ends after the agent made H
decisions. At state s € S, the agent, after observing the
state s, can choose an action a € A. As a result, the immedi-
ate reward 7 (s, a) is incurred. Then the process transitions
to a random next state s’ € S according to the transition
law P(-|s,a).? The agent’s goal is to maximize the total
expected reward received over time.

If P is known, the behavior that achieves maximum ex-
pected reward over any number of episodes can be described
by applying a deterministic policy 7. Such a policy is a
mapping from S x [H] into A (note for a natural number
n, [n] = {1,...,n}). Following the policy means that the
agent upon encountering state s in stage h will choose action
(s, h). In what follows, we will use 7, (s) as an alternate
notation, as this makes some of the formulae more readable.
(We will follow the same convention of moving & to the
subindex position when it comes to other functions whose
domainis S x [H].)

The value function V7™
defined via

: 8§ x [H] — R of a policy 7 is

H

Z r(s;,m si))|sh:5,

i=h

ses§,

where s; is the state encountered at stage i € [H| and the
subscript 7 (which we will often suppress) signifies that the
probabilities underlying the expectation are jointly governed
by 7 and P (P is suppressed for clarity). An optimal policy
7* and the optimal value function V* are defined to be a
policy and its value function such that V;™ (s) with 7 = 7*
achieves the maximum value among all possible policies
for any s € S and h € [H]. Note that this is well-defined
and in fact, as noted above, there is no loss of generality
in restricting the search of optimal policies to deterministic
policies.

'Our results are easy to extend to the case when 7 is not known.

>The precise definitions require measure-theoretic concepts
(Bertsekas & Shreve, 1978), i.e., P is a Markov kernel, mapping
from S x A to distributions over S, hence, all these spaces need to
be properly equipped with a measurability structure. For the sake
of readability and also because they are well understood, we omit
these technical details.

In online RL, a learning agent will use all past observations
to come up with its decisions. The performance of such an
agent is measured by its regret, which is the total reward the
agent misses because she did not follow the optimal policy
from the beginning. In particular, the total expected regret
of an agent A across K episodes is given by

K
R(T)=E Z(Vl sb) Z r(sk, ak )] .
k=1 h=1
where 77 = KH is the total number of time steps

that the agent interacts with its environment, s’f = S5
is the initial state at the start of the k-th episode, and
styab, ... sh,ak s ad L sy a2, s K el s S
are the T' = K H state-action pairs in the order that they
are encountered by the agent. The regret is sublinear if
R(T)/T — 0asT — oo. As is well known, the worst-case
value of R(T") over a set of sufficiently large model class,
grows at least as fast as /T regardless of the algorithm
used (e.g., Jaksch et al., 2010).

In this paper, we aim to design a general model-based rein-
forcement learning algorithm, with a guaranteed sublinear
regret, for any (not too large) family of transition models:

Assumption 1 (Known Transition Model Family). The un-
known transition model P belongs to a family of models P
which is available to the learning agent. The elements of P
are transition kernels mapping state-action pairs to signed
distributions over S.

That we allow signed distributions only increases general-
ity; this may be important when one is given a model class
that can be compactly represented but only when it also
includes non-probability kernels (see Pires & Szepesvdri
2016 for a discussion of this). Parametric and nonparamet-
ric transition models are common in modelling complex
stochastic controlled systems. For example, robotic systems
are often smoothly parameterized by unknown mechanical
parameters such as friction and parameters that describe the
geometry of the robot.

An important special case is the class of linear mixture
models:

Definition 1 (Linear Mixture Models). We say that P is
the class of linear mixture models with component models
Pi,...,Pyif P1,..., Py are transition kernels that map
state-action pairs to signed measures and P € P if and
only if there exists 0 € R? such that for all (s,a) € S x A,

ZHP (ds'|s,a) =

P(ds'|s,a) P.(ds|s,a)" 0. (2)

The linear mixture model can be viewed as a way of aggre-
gating a number of known basis models as considered by
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(Modi et al., 2019). We can view each P;(-|-) as a basis
latent “mode”. When € is restricted to lie in the (d — 1) sim-
plex, the actual transition is a probabilistic mixture of these
latent modes. As an example of when mixture models arise,
consider large-scale queueing networks where the arrival
rate and job processing speed for each queue is not known.
By using a discrete-time Bernoulli approximation, the tran-
sition probability matrix from time ¢ to ¢t + At becomes
increasingly close to linear with respect to the unknown
arrival/processing rates as At — 0. In this case, it is com-
mon to model the discrete-time state transition as a linear
aggregation of arrival/processing processes with unknown
parameters (Kovalenko, 1968).

Another interesting special case is the linear-factored MDP
model of (Yang & Wang, 2019a) where, assuming a discrete
state space for a moment, P takes the form

P(s’\s,a) = QS(S,G,)TM'L/J(S/)
di da

=375 My [45(5) bus, )],

i=1 j=1

where ¢(s,a) € R% 4(s’) € R? are given features for
every s,s’ € S and a € A (when the state space is con-
tinuous, 1) becomes an R?2-valued measure over S). The
matrix M € R%*% jig an unknown matrix and is to be
learned. It is easy to see that the factored MDP model is
a special case of the linear mixture model (19) with each
1;(s")pi(s, a) being a basis model (this should be replaced
by 1, (ds")¢;(s,a) when the state space is continuous). In
this case, the number of unknown parameters in the transi-
tion model is d = dy X ds. In this setting, without additional
assumptions, our regret bound will match that of (Yang &
Wang, 2019a).

3. Upper Confidence RL with Value-Targeted
Model Regression

Our algorithm (Alg 1) can be viewed as a generalization of
UCRL (Jaksch et al., 2010), following ideas of (Osband &
Van Roy, 2014). In particular, at the beginning of episode
k=1,2,..., K, the algorithm first computes a subset B,
of the model class P that contains the set of models that
are deemed to be consistent with all the data that has been
collected in the past. The new idea, value-targeted regres-
sion is used in the construction of By,. The details of how
this is done are postponed to a later section. Given By, the
algorithm needs to find the model that maximizes the opti-
mal value, and the corresponding optimal policy. Denoting
by V7 the optimal value function under a model P, this
amounts to finding the model P € By, that maximizes the
value V;71(s’f ). Given the model P, that maximizes this
value, an optimal policy is extracted from the model as in
standard dynamic programming, detailed in the next section.

Algorithm 1 UCRL-VTR
1: Input: Family of MDP models P, d, H,T = KH,
sequence { Oy }k=12,....
2: B1 == P
3: fork=1,2,...,K do
4:  Observe the initial state s¥ of episode &
5. Optimistic planning:

* k
Py = argmaxpicp, Vi 1(s7)

Compute Q1 k, . . . Qm  for Py, using (3)

6: forh=1,2,...,Hdo

7: Choose the next action greedily with respect to

Qn k: . .

ap = argmax Qp 1 (sy, a)
acA
8: Observe state sy, |
9: Compute and store value predictions: yp 1 <
k

Vh+1,k(5h+1)

10:  end for

11:  Construct confidence set using value-targeted re-
gression as described in Section 3.2:

Biy1 = {P' € P|Lgs1(P', Pry1) < Br}

12: end for

At the end of the episode, the data collected is used to refine
the confidence set By.

3.1. Model-Based Optimistic Planning

Upper confidence methods are prominent in sequential on-
line learning. As noted before, we let

* k
Py = argmaxp/cp, Vi 1(s7).

Given model Py, the optimal policy for Pj, can be computed
using dynamic programming. In particular, for 1 < h <
H + 1, define

QH+1,I€(87 a) = 07
Vhk(s) = max Qn,k(s,a), (3)

Qh,k(sa a’) = T(Sﬂl) + <Pk(|5a a)» Vh+1,k>a

where for a measure p and function f that share a common
domain, (u, f) denotes the integral of f with respect to p.
It follows that, taking the action at state s and stage h that
maximizes @y, x (s, -) gives an optimal policy for model P.
As long as P € By, with high probability, the preceding
calculation gives an optimistic (that is, upper) estimate of
value of an episode. Next, we show how to construct the
confidence set Bj,.
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3.2. Value-Targeted Regression for Confidence Set
Construction

Every time we observe a transition (s,a,s’) with s’ ~
P(-|s,a), we receive information about the model P. A
standard approach to use this information would be either
using a maximum likelihood approach, or regressing “onto”
s’. As our goal is not to find the best model, we propose an
alternate approach where we set up a regression problem
where the model is used to predict the value assigned to s’
by our more recent value function estimate:

k H

Pyy1 = argming, p Z ZL’(P'),
k'=1h=1

L(P') = ((P'CIsk s af), Vi) = )
Yng = Virrw(shyn), b€ [H]LK € [k].

In the above regression procedure, the regret target keeps
changing as the algorithm refines the value estimates. This
is in contrast to typical supervised learning for building mod-
els, where the regression targets are often fixed objects (such
as raw observations, features or keypoints; e.g. (Jaksch
et al., 2010; Osband & Van Roy, 2014; Abbasi-Yadkori &
Szepesviri, 2015; Xie et al., 2016; Agrawal & Jia, 2017;
Yang & Wang, 2019a; Kaiser et al., 2019)). For a confidence
set construction, we get inspiration from Proposition 5 in
the paper of (Osband & Van Roy, 2014). The set is centered
at Pk+1. Defining

Lit1(P, Pry1)
H

k
’ ’ A ’ ’ 2
=2, (<P('|S';§ say ) = Py (|sh  aj, )7Vh+1,k'>)
k’'=1h=1

“4)

2

we let
Biy1 = {P' €P | Lys1(P', Pey1) < Braa},

where the value of [, is obtained using a calculation similar
to that done in Proposition 5 of the paper of (Osband &
Van Roy, 2014). In turn, this calculation is based on the
nonlinear least-squares confidence set construction from
Russo & Van Roy (2014), which we describe and refine in
the appendix. It is not hard to see that the confidence set
can also be written in the alternative form

Bii1 ={P' €P | Ly1(P) < Bri1}

with a suitably defined BkJrl and where

k H
- . 2
Len(P) =33 (P Clst o) Virrw) = )

k'=1h=1
Note that the above formulation strongly exploits that the
MDP is time-homogeneous: The same transition model is
used at all stages of an episode. When the MDP is time-
inhomogeneous, the construction can be easily modified to
accommodate this.

3.3. Implementation of UCRL-VTR

Algorithm 1 gives a general and modular template for
model-based RL that is compatible with regression meth-
ods/optimistic planners. While the algorithm is conceptu-
ally simple, and the optimization and evaluation of the loss
in value-targeted regression appears to be at advantage in
terms of computation as compared to standard approaches
typically used in model-based RL, the implementation of
UCRL-VTR is nontrivial in general and for now it requires
a case-by-base design.

Computation efficiency of the algorithm depends on the
specific family of models chosen. For the linear-factor MDP
model considered by Yang & Wang (2019a), the regres-
sion is linear and admits efficient implementation; further,
optimistic planning for this model can be implemented in
poly(d) time by using Monte-Carlo simulation and sketch-
ing as argued in the cited paper. Other ideas include loos-
ening the confidence set to come up with computationally
tractable methods, or relaxing the requirement that the same
model is used in all stages. This latter idea is what we use
in our experiments. In the general case, optimistic plan-
ning is computationally intractable. However, we expect
that randomized (e.g. (Osband et al., 2017; 2014; Lu &
Van Roy, 2017)) and approximate dynamic programming
methods (tree search, roll out, see e.g., (Bertsekas & Tsitsik-
lis, 1996)) will often lead to tractable and good approxima-
tions. As was mentioned above, in some special cases these
have been rigorously shown to work. In similar settings,
the approximation errors are known to mildly impact the
regret (Abbasi-Yadkori & Szepesvari, 2015) and we expect
the same to hold in our setting. If we look beyond methods
with rigorous guarantees, there are practical deep RL algo-
rithms that implement parts of UCRL-VTR. As mentioned
earlier, the MuZero algorithm of Schrittwieser et al. (2019)
is a state-of-the-art algorithm on multiple domains and this
algorithm implements value-targeted-regression to learn a
model which is fed to a planner that uses Monte Carlo tree
search, although the planner does not implement optimistic
planning.

4. Theoretical Analysis

We will need the concept of Eluder dimension due to (Russo
& Van Roy, 2014). Let F be a set of real-valued functions
with domain X. For f € F, x1,...,z; € X, introduce
the notation f|(;, . »,) = (f(x1),..., f(x¢)). We say that
x € X is e-independent of z1,. ..,z € X given F if there
exists f, f’ € F such that ||(f — f')|(z,,....z)ll2 < € while
flx) = f(x) > e

Definition 2 (Eluder dimension, Russo & Van Roy 2014).
The Eluder dimension dimg(F,€) of F at scale € is the
length of the longest sequence (z1, ..., z,) in X" such that
for some € > ¢, for any 2 < t < n, x; is €’-independent of

.....
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(z1,...,24—1) given F.

Let V be the set of optimal value functions under some
model in P: V = {Vj3, : P’ € P}. Note that V C
B(S, H), where B(S, H) denotes the set of real-valued
measurable functions with domain S that are bounded by
H. Welet ¥ =S8 x A x V. Choose F to be the collection
of functions f : X — R as follows:

3P € P s.t. forany (s,a,v) € S x A xV
{f‘fsav des’\sa)()

4)
Note that F C B(X, H). Foranorm || - || on F and o > 0
let N(F,a, | - ||) denote the (e, || - ||)-covering number of
JF. That is, this if m = N (F, a, || - ||) then one can find m
elements of F such that any element in JF is at most o away
from one of these elements in norm || - ||. Denote by || - ||
the supremum norm: || f||oc = sup,cx |f()|.

Define the K -episode pseudo-regret as

Z — V™ (sh)) .

Clearly, R(K H) = ERk holds for any K > 0 where R(T")
is the expected regret after 1" steps of interaction as defined
in (1). Thus, to study the expected regret, it suffices to study
R . Our main result is as follows.

Theorem 1 (Regret of Algorithm 1). Let Assumption I hold
and let o € (0,1). For k > 0 let B, be

B = 2H? log <2N<f, . oo>>
+2H(KH — 1)a {2 + \/1og (Z”“H(kfl)) } .

(6)
Then, for any K > 0, with probability 1 — 29,

— 1))+ 4\/dBr K (H — 1)
— 1) log(1/9),

where d = dimg(F, «) is the Eluder dimension with F
given by (5).

Ry <Oé+H(d/\K
+ H\/2K(H

A typical choice of o is @« = 1/(KH). In the special
case of linear transition model, Theorem 1 implies a worst-
case regret bound that depends linearly on the number of
parameters.

Corollary 2 (Regret of Algorithm 1 for Linearly—
Parametrized Transition Model). Let P, ..., Py be d tran-
sition models, © C R? a nonempty set with diameter R
measured in || - |1 and let P = {3_;0;P; : 0 € O}. Then,
for any 0 < § < 1, with probability at least 1 — 0, the

pseudo-regret Ry of Algorithm 1 when it uses the confi-
dence sets given in Theorem 1 satisfies

Ry = O(d\/H3K log(1/4)) .

We also provide a lower bound for the regret in our model.
The proof is by reduction to a known lower bound and is
left to Appendix B.

Theorem 3 (Regret Lower Bound). For any H > 1 and
d > 8, there exist a state space S and action set A, a
reward function r : S x A — [0,1], d transition models
Pi,...,Pjand a set © C R? of diameter of at most one
such that for any algorithm there exists 0 € © such that for
sufficiently large number of episodes K, the expected regret
of the algorithm on the H-horizon MDP with reward r and
transition model P =3~ 0; P; is at least Q(HVIK).

Rusmevichientong & Tsitsiklis (2010) gave a regret lower
bound of Q(dv/T) for linearly parameterized bandit with
actions on the unit sphere (see also Section 24.2 of Latti-
more & Szepesvari 2020). Our regret upper bound matches
this bandit lower bound in d, T'. Whether the upper or lower
bound is tight (or none of them) remains to be seen. The the-
orems validate that, in the setting we consider, it is sufficient
to use the predicted value functions as regression targets.
That for the special case of linear mixture models the lower
bound is close to the upper bound appears to suggest that
little benefit if any can be derived from fitting the transition
model to predict future observations. We conjecture that this
is in fact true when considering the worst-case regret. Of
course, a conclusion that is concerned with the worst-case
regret has no implication for the behavior of the respective
methods on particular MDP instances. We note in passing
that by appropriately increasing y, the regret upper bounds
can be extended to the so-called misspecified case when P
can be outside of P (for related results, see, e.g., Jin et al.
2019; Lattimore & Szepesvari 2019). However, the details
of this are left for future work.

Further, our method applies to handle the case where the
linearly parameterized transition model is sparse. Suppose
that model parameter 6 is known to have at most s nonzero
entries. In this case, the class of sparse linear models has
a much smaller covering number, and the regret would im-
prove and depend on both d,s. Details of this are left for
future work.

4.1. Regret Bound with Model Misspecification

Next, we consider the case where the model family P does
not exactly realize the true transition model P:

Assumption 2 (Model with misspecification error). The
model family P c-approximates P in the sense that there
exists P* € ‘P such that

sup ||P(|s,a) - P*("Saa)HTV <eg, )
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where || - || v denotes the total variation distance.

This assumption indicates that the true transition model
P of the MDP is close to the family P, and £ measures
the worst-case deviation. We handle the misspecification
error by slightly enlarging the confidence set. This allows
us to obtain a regret bound similar to our previous result
with an additional linear term that is proportional to the
misspecification error and slightly larger constants:

Theorem 4. Let Assumption 2 hold, «,5 € (0,1). We
choose By, be

Br = SH> log (W)
AH(kH ~ 1)a {z N %og <8kH<k5H—1>>}
+ 8H%ke?.

Then, for any K > 0, with probability 1 — 20, the K -episode
pseudo-regret Ry of Algorithm 1 satisfies

Rk <a+ H(AANK(H —1))+4\/dxK(H — 1)
+ H\/2K(H — 1)1og(1/8) + H?Kce,

where d = dimg (F, ) with F given by (5).

The proof of this theorem is given in Appendix D.

5. Related Work

A number of prior efforts have established efficient RL meth-
ods with provable regret bounds. For tabular H-horizon
MDP with S states and A actions, there have been results
on model-based methods (e.g., Jaksch et al. 2010; Osband
et al. 2014; Azar et al. 2017; Dann et al. 2017; Agrawal
& Jia 2017; Dann et al. 2018; Kakade et al. 2018), and
on model-free methods (e.g., Osband et al. 2017; Jin et al.
2018; Zhang et al. 2020). Both model-based and model-free
methods are known to achieve a regret of O(v H2SAT),
where O(-) hides log factors, T" denotes the total number of
timesteps and the bound applies to the non-stationary setting
(when the transition models are not shared across stages).
Moreover, apart from logarithmic factors, this bound is
known to be unimprovable Jaksch et al. (2010); Osband
et al. (2017); Jin et al. (2018); Zhang et al. (2020). There
have been significant theoretical and empirical advances on
RL with function approximation, including but not limited
to (Baird, 1995; Tsitsiklis & Van Roy, 1997; Parr et al.,
2008; Mnih et al., 2013; 2015; Silver et al., 2017; Yang &
Wang, 2019b; Bradtke & Barto, 1996). Under the assump-
tion that the optimal action-value function is captured by
linear features, Zanette et al. (2019) considers the case when
the features are “extrapolation friendly” and a simulation

oracle is available, Wen & Van Roy (2013; 2017) tackle
problems where the transition model is deterministic, Du
et al. (2019) deals with a relaxation of the deterministic case
when the transition model has low variance. Yang & Wang
(2019b) considers the case of linear factor models, while
Lattimore & Szepesvéri (2019) considers the case when
all the action-value functions of all deterministic policies
are well-approximated using a linear function approximator.
These latter works handle problems when the algorithm has
access to a simulation oracle of the MDP. As for regret min-
imization in RL using linear function approximation, Yang
& Wang (2019a) assumed the transition model admits a ma-
trix embedding of the form P(s'|s,a) = ¢(s,a) " M(s'),
and proposed a model-based MatrixRL method with re-
gret bounds O(H?2d/T) with stronger assumptions and
O(H?d?\/T) in general, where d is the dimension of state
representation ¢(s,a). Jin et al. (2019) studied the set-
ting of linear-factor MDP and constructed a model-free
least-squares action-value iteration algorithm, which was
proved to achieve the regret bound O(v/H3d3T). Modi
et al. (2019) considered a related setting where the transi-
tion model is an ensemble involving state-action-dependent
features and basis models and proved a sample complexity
@ where d is the feature dimension, K is the number
of basis models and d - K is their total model complexity.
As for RL with a general model class, in their seminal work,
Osband & Van Roy (2014) provided a general posterior
sampling RL method that works for any given classes of
reward and transition functions. It established a Bayesian
regret upper bound O(v/dxdgT), where di and dg are
the Kolmogorov and the Eluder dimensions of the model
class. In the case of linearly parametrized transition model
(Assumption 1 of this paper), this Bayesian regret becomes
O(dv/T), and our worst-case regret result matches with
the Bayesian one. Abbasi-Yadkori & Szepesvéri (2015);
Theocharous et al. (2017) also considered the Bayesian re-
gret and, in particular, Abbasi-Yadkori & Szepesvari (2015)
considered a smooth parameterization. To the authors’ best
knowledge, there are no prior works addressing the problem
of designing low-regret algorithms for MDPs with linearly
or non-linearly parameterized transition models. Model
based PAC RL algorithms have been studied by Sun et al.
(2019), who essentially adopt the value-aware loss of Farah-
mand et al. (2017), who considered this loss in the batch
setting. Farahmand (2018) refines the work of Farahmand
et al. (2017) by changing the algorithm to be similar to
what we use here: In every iteration of fitted Q-iteration,
first a model is obtained by minimizing the value prediction
loss measured with the last value function, after which this
model is used to obtain the next action-value function. The
main result bounds the suboptimality of the policy that is
greedy with respect to the last action-value function. A
preliminary version of our paper was presented at L4DC.
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E:fgl:::twn/ Optimism Dithering
Next states UC-MatrixRL | EG-Freq
Values UCRL-VTR EG-VTR
Mixed UCRL-Mixed | EG-Mixed

Table 1. Legend to the algorithms compared. Note that UC-
MatrixRL of Yang & Wang (2019a) in the tabular case essentially
becomes UCRL of Jaksch et al. (2010).

6. Numerical Experiments

The goal of our experiments is to provide insight into the
benefits and/or pitfalls of using value-targets for fitting
models, both with and without optimistic planning. We
run our experiments in the tabular setting as it is easy to
keep aspects of the test environments under control while
avoiding approximate computations. Note that tabular en-
vironments are a special case of the linear model where
P;i(s'|s,a) =1(j = f(s,a,s")), where j € [S?A] and f is
a bijection that maps its arguments to the set [S? 4], making
d = S?A. The objective is either to minimize mean-squared
error of predicting next states (alternatively, maximize log-
likelihood of observed data), which leads to frequency based
model estimates, or it is to minimize the value targets as pro-
posed in our paper. The other component of the algorithms
is whether they implement optimistic planning, or planning
with the nominal model and then implementing an e-greedy
policy with respect to the estimated model (“dithering”).
In the case of optimistic planning, the algorithm that uses
mixed targets uses a union bound and takes the smallest
value upper confidence bounds amongst the two bounds
obtained with the two model-estimation methods. These
leads to six algorithms, as shown in Table 1. Results for
the “mixed” variants are very similar to the variant that uses
VTR and can be found in Appendix G In the experiments
we use confidence bounds that are specialized to the linear
case. For details of these, see Appendix F. For e-greedy, we
optimize the value of € in each environment to get the best
results. This gives e-greedy an “unfair advantage”. As we
shall see it soon, despite this advantage, e-greedy will not
fair particularly well in our experiments.

6.1. Measurements

We report the cumulative regret as a function of the number
of episodes and the weighted model error to indicate how
well the model is learned. The results are obtained from
30 independent runs for the e-greedy algorithms and 10
independent runs for the UC algorithms. The weighted
model error reported is as follows. Given the model estimate

0.4 0.6 0.6 0.6 0.6

0.35
(0.6,r =1)

Figure 1. The “RiverSwim” environment with 6 states. State s1 has
a small associated reward, state s¢ has a large associated reward.
The action whose effect is shown with the dashed arrow determin-
istically “moves the agent” left. The other action is stochastic, and
with relatively high probability moves the agent towards state s¢:
This represents swimming “against the current”.

P, we compute

EP) =% W@(s’ 5,0) — P*(s | 5,a)|,
¥

where N’ is the observation-count of the state-action pair
(s,a), N is the count of transitioning to s’ from (s, a), and
P* is the true dynamics model. The weighting is introduced
so that an algorithm that discards a state-action pair is not
(unduly) penalized.

s,a s’

6.2. Results for RiverSwim

The schematic diagram of the RiverSwim environment is
shown in Figure 1. RiverSwim consists of .S’ states arranged
in a chain. The agent begins on the far left and has the choice
of swimming left or right at each state. There is a current
that makes swimming left much easier than swimming right.
Swimming left with the current always succeeds in mov-
ing the agent left, but swimming right against the current
sometimes moves the agent right (with a small probabil-
ity of moving left as well), but more often than not leaves
the agent in the current state. Thus smart exploration is a
necessity to learn a good policy in this environment. We
experiment with small environments with S = 5 and set
the horizon to H = 20. The optimal value of the initial
state is 5.6 for our five-state RiverSwim. The initial state
is the leftmost state (s; in the diagram). The value that we
found to work the best for EGRL-VTR is € = 0.2 and the
value that we found to work best for EG-Freq is € = 0.12.
The results are shown in Figure 2. The regret per episode
for an algorithm that “does not learn” is expected to be in
the same range as the respective optimal values. Based on
this we see that 10° episodes is barely sufficient for the
algorithms other than UCRL-VTR to learn a good policy.
Looking at the model errors we see that EGRL-VTR is do-
ing quite poorly, EG-Freq is also lacking, the others are
doing reasonably well. However, this is because EG-Freq
visits more uniformly than the other methods the various
state-action pairs. The results clearly indicate that (i) fit-
ting to the state-value function alone provides enough of
a signal for learning as evident by UCRL-VTR obtaining
low regret as predicted by our theoretical results, and that
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1e5 Cumulative Regret for a 5 state RiverSwim
30
— UCRLVIR
25 === UCMatrixRL
—:- EGRLVIR o
----- EG-Freq pred

Episode Ted

Model Error on a 5 state RiverSwim

§
22
2

0 1 2 3 4 5
Episode ted

Figure 2. The results for the e-greedy algorithms are averaged over
thirty runs and error bars are reported for the regret plots.

Figure 3. An eleven state WideTree MDP. The algorithm starts in
the initial state s;. From the initial state s; the algorithm has a
choice of either deterministically transitioning to either state sz or
state s3. Finally from either state so or state s the algorithm picks
one of two possible actions and transitions to one of the terminal
states e;. The choice of the initial action determines the delayed
reward the algorithm will observe.

(if) optimism is necessary when using VTR to achieve good
results, as evident by UCRL-VTR achieving significantly
better regret than EGRL-VTR and even in the smaller River-
Swim environment. It is also promising that value-targeted
regression with optimistic exploration outperformed opti-
mism based on the “canonical” model estimation procedure.
We attribute this to the fact that value-targeted regression
will learn a model faster that predicts the optimal values
well than the canonical, frequency based approach. That
value-targeted regression also learns a model with small
weighted error appears to be an accidental feature of this
environment. Our next experiments are targeted at further
exploring whether VTR can be effective without learning a
good model.

6.3. WideTree

‘We introduce a novel tabular MDP we call WideTree. The
WideTree environment has a fixed horizon H = 2 and
S = 11 states. A visualization of the WideTree environment
is shown in Figure 3. In WideTree, an agent starts at the
initial state s;. The agent then progresses to one of the many
bottom terminal states and collects a reward of either O or 1.
The only significant action is whether to transition from s
to either s, or s3. Note that the model in the second layer is

Model Error on a 11 state WideTree

4

Weighted L1 norm

00 02 04 06
Episode ted

Figure 4. The results for the e-greedy algorithms are averaged over
thirty runs and error bars are reported for the regret plots.

irrelevant for making a good decision: Once in s3, all actions
lead to a reward of one, and once in s», all actions lead to
a reward of zero. We vary the number of bottom states
reachable from states s and s3 while still maintaining a
reward structure but the results here are shown with S = 11.
We set ¢ = 0.1 in this environment, as this allows the model
error of EG-Freq to match that of UC-MatrixRL. The results
are shown in Figure 4. Both UCRL-VTR and EG-VTR learn
equally poor models (their graphs are ‘on the top of each
other’). Yet, UCRL-VTR manages to quickly learn a good
policy, as attested by its low regret. EG-Freq and EG-VTR
perform equally poorly and UC-MatrixRL is even slower
as it keeps exploring the environment. These experiments
clearly illustrate that UCRL-VTR is able to achieve good
results without learning a good model — its focus on values
makes pays off swiftly in this well-chosen environment.

7. Conclusions

We considered online learning in episodic MDPs and pro-
posed an optimistic model-based reinforcement learning
method (UCRL-VTR) with the unique characteristic to eval-
uate and select models based on their ability to predict value
functions that the algorithm constructs during learning. The
regret of the algorithm was shown to be bounded by a quan-
tity that relates to the richness of the model class through the
Eluder dimension and the metric entropy of an appropriately
constructed function space. For the case of linear mixture
models, the regret bound simplifies to O(dv H3T) where
d is the number of model parameters, H is the horizon,
and 7 is the total number of interaction steps. Our experi-
ments confirmed that the value-targeted regression objective
is not only theoretically sound, but also yields a competi-
tive method which allows task-focused model-tuning: In a
carefully chosen environment we demonstrated that the al-
gorithm achieves low regret despite that it ignores modeling
a major part of the environment.
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