
Momentum in Reinforcement Learning

Nino Vieillard1,2 Bruno Scherrer2 Olivier Pietquin1 Matthieu Geist1
1Google Research, Brain Team

2Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France

Abstract

We adapt the optimization’s concept of mo-
mentum to reinforcement learning. Seeing
the state-action value functions as an analog
to the gradients in optimization, we inter-
pret momentum as an average of consecutive
q-functions. We derive Momentum Value It-
eration (MoVI), a variation of Value iteration
that incorporates this momentum idea. Our
analysis shows that this allows MoVI to av-
erage errors over successive iterations. We
show that the proposed approach can be read-
ily extended to deep learning. Specifically,we
propose a simple improvement on DQN based
on MoVI, and experiment it on Atari games.

1 Introduction

Reinforcement Learning (RL) is largely based on Ap-
proximate Dynamic Programming (ADP), that pro-
vides algorithms to solve Markov Decision Processes
(MDP, Puterman [1994]) under approximation. In the
exact case, where there is no approximation, classic
algorithms such as Value Iteration (VI) or Policy Iter-
ation (PI) are guaranteed to converge to the optimal
solution, that is find an optimal policy that dominates
every policy in terms of value. These algorithms rely on
solving fixed-point problems: in VI, one tries to reach
the fixed point of the Bellman optimality operator by
an iterative method. We focus on VI for the rest of the
paper, but the principle we propose can be extended
beyond this. Approximate Value Iteration (AVI) is a
VI scheme with approximation errors. It is well known
[Bertsekas and Tsitsiklis, 1996] that if the errors do
not vanish, AVI does not converge. To get some in-
tuition, consider a sequence of policies being greedy
according to the optimal q-function, with an additional

Proceedings of the 23rdInternational Conference on Artificial
Intelligence and Statistics (AISTATS) 2020, Palermo, Italy.
PMLR: Volume 108. Copyright 2020 by the author(s).

state-action dependant noise. The resulting sequence
of policies will be unstable and suboptimal, even with
centered and bounded noise. Dealing with errors is how-
ever crucial to RL, as we hope to tackle problems with
large states spaces that require function approximation.
Indeed, many recent RL successes are algorithms that
instantiate ADP schemes with neural networks for func-
tion approximation. Deep Q-Networks (DQN, Mnih
et al. [2015]) for example, can be seen as an extension
of AVI with neural networks.

In optimization, a common strategy to stabilize the
descent direction, known as momentum, is to average
the successive gradients instead of considering the last
one. In reinforcement learning, the state-action value
function can be seen informally as a kind of gradient, as
it gives an improvement direction for the policy. Hence,
we propose to bring the concept of momentum to rein-
forcement learning by basically averaging q-values in a
DP scheme.

We introduce Momentum Value Iteration (MoVI) in
Section 4. It is Value Iteration, up to the fact that
the policy, instead of being greedy with respect to the
last state-action value function, is greedy with respect
to an average of the past value functions. We analyze
the propagation of errors of this scheme. In AVI, the
performance bound will depend on a weighted sum of
the norms of the errors at each iteration. For MoVI, we
show that this depends on the norms of the cumulative
errors of previous iteration. This means that it allows
for a compensation of errors along different iterations,
and even convergence in the case of zero-mean and
bounded noises, under some assumption. This compen-
sation property is shared by a few algorithms that will
be discussed in Section 6. We also show that MoVI
can be successfully combined with powerful function
approximation by proposing Momentum-DQN in Sec-
tion 5, an extension of MoVI with neural networks
based on DQN. It provides a strong performance im-
provement over DQN on the standard Arcade Learning
Environment (ALE) benchmark [Bellemare et al., 2013].
All stated results are proven in the appendix.

Momentum in Reinforcement Learning

2 Background

Markov Decision Processes. We consider the RL
setting where an agent interacts with an environment
modeled as an infinite discounted horizon MDP. An
MDP is a quintuple {S,A, P, r, γ}, where S is a finite1

state space, A a finite action space, P ∈ ∆S×AS is a
Markovian transition kernel (writing ∆X the simplex
over the set X), r ∈ [−rmax, rmax]S×A a reward func-
tion and γ ∈ (0, 1) the discount factor. A policy π maps
the state space to distributions over actions π(·|s). We
define the q-value qπ of a policy π as, for each s ∈ S
and a ∈ A,

qπ(s, a) = Eπ

[∞∑
t=0

γtr(st, at)

∣∣∣∣∣ s0 = s, a0 = a

]
,

where Eπ denotes the expected value over all trajec-
tories (s1, a1, s2, a2, . . .) produced by π. The value
is bounded by qmax = rmax/(1 − γ). Let us de-
fine the transition kernel operator associated to π
as, for each q ∈ RS×A and for each (s, a) ∈ S × A,
as [Pπq](s, a) = Es′∼P (·|s,a),a′∼π(·|s′)[q(s′, a′)]. The q-
function of a policy is the fixed point of its Bellman
evaluation operator, defined for each q ∈ RS×A as
Tπq = r + γPπq. An optimal policy π∗ is such that for
any other policy π, we have that, for each (s, a) ∈ S×A,
qπ∗(s, a) ≥ qπ(s, a). The Bellman optimality operator
is defined as T∗q = maxπ Tπq, and we have that q∗ is
the unique fixed point of T∗. A policy is said to be
greedy with respect to q ∈ RS×A if T∗q = Tπq. We
denote the set of these policies G(q). Note that such a
policy can be computed without accessing to the model
(the transition kernel).

Finally, for µ ∈ ∆S×A we write dπ,µ = (1 − γ)µ(I −
γPπ)−1 the discounted cumulative occupancy measure
induced by π when starting from the distribution µ
(distributions being written as row vectors). We define
the µ-weighted `p-norm as, for each q ∈ RS×A, ‖q‖p,µ =(
E(s,a)∼µ [|q(s, a)|p]

) 1
p .

Approximate Value Iteration. Approximate Dy-
namic Programming provides algorithms to solve an
MDP under some errors. One classic algorithm is Ap-
proximate Value Iteration. It looks directly for the
fixed point of T∗ with an iterative process{

πk+1 ∈ G(qk)
qk+1 = Tπk+1qk + εk+1.

(AVI)

Notice that here, Tπk+1qk = T∗qk. In this scheme, we
call the first line the greedy step, and the second line

1This is for ease and clarity of exposition, the proposed
algorithm and analysis can be extended to continuous state
spaces.

the partial evaluation step. AVI satisfies the following
bound for the quality of the policy πk

‖q∗ − qπk‖∞ ≤ 2γkqmax +
2γmaxj<k ‖εj‖∞

(1− γ)2 . (1)

This explains why AVI is not resistant to errors:
maxj<k ‖εj‖∞ can be high even if each εk is zero-mean.

3 Momentum Value Iteration

In the context of optimization, momentum aims at
stabilizing gradient ascent (or descent) methods. Con-
sider we want to maximize a concave function f whose
gradient is not known analytically, and we use a classic
(stochastic) gradient ascent algorithm. This algorithm
iterates from a value x0 by computing an approxima-
tion gk of ∇f(xk), and updating xk+1 = xk+ηgk. One
can then use momentum [Qian, 1999] to stabilize the
process through a smoothing function hk = ρhk + gk,
with ρ ∈ R, and an update xk+1 = xk + ηhk. This can
stabilize the ascent as the gradient may vary greatly
from step to step.

In the context of ADP, the q-function intuitively gives
the direction that guides the policy, in the same way
that the gradient is the improvement direction of a
variable. In particular, we can rewrite the greedy step
(in AVI) as πk(·|s) ∈ argmaxπ(·|s)∈∆A〈qk(s, ·), π(·|s)〉,
thus seeing this step as finding the policy being state-
wise the most colinear with qk. This is also reminiscent
of the direction finding subproblem of Frank and Wolfe
[1956]. Consequently, the greedy step can be seen as
an analog of the update in gradient ascent (the policy
π is analog to the variable x), the differences being
(i) that qk in AVI is not a gradient, but the result of
an iterative process, qk = Tπkqk−1, and (ii) that the
policy is not updated, but replaced.

This analogy is thus quite limited (qk is not really a
gradient, there is no optimized function, the policy is
replaced rather than updated). However, it is sufficient
to adapt the momentum idea to AVI, by replacing the
q-function in the improvement step by a smoothing
of the q-functions, hk = ρhk−1 + qk. We can then
notice that G(hk) = G(hk

1+ρ), allowing us to compute a
moving average instead of a smoothing, hk = βkhk−1 +
(1− βk)qk, which leads to the following ADP scheme,
initialized with h0 = q0,

πk+1 = G(hk)
qk+1 = Tπk+1qk + εk+1

hk+1 = βk+1hk + (1− βk+1)qk+1.

(MoVI) (2)

We call this scheme Momentum Value Iteration (MoVI),
we analyze it in the following section.

Nino Vieillard, Bruno Scherrer, Olivier Pietquin, Matthieu Geist

4 Analysis

For the analysis, we consider a specific case of the
scheme in Equation (2), with an empirical mean rather
than an iteration-dependant moving average. This
amounts to define βk = k

k+1 in Eq. (2). We study
the propagation of errors of MoVI, to see how it is
impacted by the introduction of momentum, compared
to a classic AVI scheme (see Eq. (1)).

4.1 Error propagation analysis

First, let us define some useful notations. We denote
Pj:i = PπjPπj−1 . . . Pπi if 1 ≤ i ≤ j, Pj:i = I otherwise,
where πj is the policy computed by MoVI at iteration
j. We then define the negative cumulative error Ek =
−
∑k
j=1 εj , and the weighted negative cumulative error

E′k,j = −
∑k−j
i=1 Pi+j:i+1(I − γPπi)εi.

To study the efficiency of the algorithm, the natural
quantity to bound is the loss q∗−qπk ≥ 0, the difference
between the value of the optimal policy and the (true)
value of the policy computed by MoVI.
Theorem 1. After k + 1 iterations of MoVI, we have

q∗− qπk+1 ≤
1

k + 1

[
(I − γPπ∗)−1(Ek+1 + qk+1− q0)

−(I−γPπk+1)−1
(k−1∑
j=0

γjE′k,j+
k∑
j=0

γjPj:1(Tπ1q0−q0)
)]

.

To understand and then discuss this result, we provide
a bound of a µ-weighted `1-norm of the loss: the norm
is what one would want to control in a practical setting.
Notice that we could similarly derive a bound for the
µ-weighted `p-norm.
Corollary 1. Let µ be the distribution of interest,
and ν the sampling distribution. We introduce the
following concentrability coefficient (the fraction being
componentwise)

C = max
π

∥∥∥∥dπ,µν
∥∥∥∥
∞

Suppose that we initialize h0 = q0 = 0. At iteration
k + 1 of MoVI, we have

‖q∗ − qπk+1‖1,µ ≤
C

(k + 1)(1− γ)

(
‖Ek+1‖1,ν+

k−1∑
j=0

γj‖E′k,j‖1,ν + 2qmax

)
.

Theorem 1 shows that q∗ − qπk depends on two error
terms, Ek and a γ-discounted sum of E′k,j . The first

0 1000 2000 3000 4000 5000
Iterations (k)

0

5

10

15

20

25

30

‖q
*

−
q π

k‖ 1

MoVI
AVI

Figure 1: Illustration of the convergence of MoVI. We
represent the empirical mean and standard deviation
of the error over 100 MDPs.

term corresponds to a sum of errors, that can then com-
pensate, which is not the case in AVI (see Equation (1)).
The normalization by 1

k+1 reduces the variance of this
term, and that can lead to convergence under some
assumptions (see Section 4.2). However, the second
term is more cumbersome. The terms E′k,j depend
on sums of error weighted by composed kernels Pi:j .
Would these kernels be arbitrary, this could lead to
further variance reduction. However, the corresponding
average is done over the state-action space in addition
to over iterations, and the kernels are dependent of
the error they weight, this dependency being hard to
quantify. We further discuss this next.

Still, the algorithm can converge in practice, and we
illustrate its behaviour on a simple case. We give our-
selves a tabular representation of a randomly generated
MDP, with access to a generative model. The approxi-
mation comes from the fact that the Bellman operator
is sampled at each iteration (instead of being evaluated
exactly); we compare it to AVI in the same scenario.
We report the average error between qπk and q∗ in Fig-
ure 1. This experiments illustrate how AVI oscillates
with high error, while MoVI converges to q∗.

We note that our proof technique should hold with a
constant β too (moving average instead of average). In
this case, instead of having an average error (k−1Ek),
we would have a moving average of the (weighted)
errors. This would not vanish asymptotically, even
with zero-mean bounded noises εk, but this would still
reduce the variance, and improve upon the AVI bound.

4.2 About the sample complexity

To better understand MoVI, we analyze its sample
complexity in a simple case, Sampled-MoVI. In this
setting, we have access to a generative model of the
MDP and we give ourselves a tabular representation
of the MDP. At each iteration of Sampled-MoVI, for

Momentum in Reinforcement Learning

each (s, a) ∈ S × A, we sample a state s′ ∼ P (·|s, a)
and perform the update from Equation (2) with only
this state. We denote T̂πk the resulting sampled Bell-
man operator, T̂πkq(s, a) = r(s, a) + γq(s′, πk(s)). The
error at iteration k is then, for each (s, a), εk(s, a) =
T̂πkqk−1(s, a)−Tπkqk−1(s, a). It is thus zero-mean and
centered. We provide a detailed pseudo-code in the
Appendix.

We are interested in controlling the distance of our
policy to the optimal policy, precisely in the norm
‖q∗− qπk‖∞ at iteration k of Sampled-MoVI. We have,
as a direct consequence of Thm. 1, that

‖q∗ − qπk+1‖∞ ≤
1

(k + 1)(1− γ)

(
‖Ek+1‖∞+

k−1∑
j=0

γj‖E′k,j‖∞ + 2qmax

)
. (3)

Informally, using an Hoeffding argument, we have
k−1‖Ek‖∞ = O(k− 1

2). However, bounding a term
maxj≤k ‖E′k,j‖∞ is more involved. This could typi-
cally be done using the Maximal Azuma-Hoeffding
inequality. Yet, this requires the errors to be centered
and bounded. In our case, the sequence of estimation
errors {ε1(s, a), . . . εk(s, a)} is a martingale difference
sequence with respect to the natural filtration Fk−1
(generated by the sequence of states sampled from the
generative model), that is E[εk(s, a)|Fk−1] = 0. This
is sufficient for controlling the term Ek, but the terms
E′k,j are more difficult. Indeed, there, the errors are
multiplied by a series of transition kernel matrices. For
an arbitrary kernel P , independent of εk, we would
have E[Pεk(s, a)|Fk−1] = PE[εk(s, a)|Fk−1] = 0. Un-
fortunately Pπk+1 depends on πk+1, which is greedy
with respect to hk, which is computed using qk and
so depends on εk. Thus, the independence cannot be
assessed. To control the error in Sampled-MoVI, we
consequently make the following assumption.
Assumption 1. ∀i, j ≥ 1, E [Pj+i:j+1εj |Fj−1] = 0.

This assumption may seem very strong, as the depen-
dency is hard to quantify. However, we have that
πk+1 ∈ G(hk) = G(k

k+1hk−1 + 1
k+1Tπkqk−1 + 1

k+1εk).
Thus, the influence of εk on πk diminishes with time.
Indeed, assuming that E [Pj+i:j+1εj |Fj−1] = o(1√

j
)

should be enough to ensure convergence, but at a lower
speed. We study numerically this assumption in Sec-
tion 7.
Proposition 1. Suppose Asm. 1 holds. After k itera-
tions of Sampled MoVI, with probability at least 1− δ

‖q∗−qπk‖∞ ≤
2rmax

(1− γ)2

[
1
k

+ 3
(1− γ)

√
2 ln 4|S||A|

δ

k

]
.

This result only holds under the strong Asm. 1. Under
this setting (tabular representation, generative model),
there exist algorithms with faster convergence [Wain-
wright, 2019]. However, they are not easily extandable
beyond this setting, contrary to MoVI that can be easily
turned into a practical large scale deep RL algorithm.

5 Momentum DQN

We now propose an extension of MoVI to Momentum-
DQN, introducing stochastic approximation and using
deep neural networks for function approximation. We
base ourselves on Deep Q-Networks (DQN , Mnih et al.
[2015]), using the same algorithmic structure. We
propose an off-policy algorithm, using a replay buffer as
in DQN: we can apply the Bellman evaluation operator
to the estimated q-function in an off-policy manner.

We parametrize the q-function by an online network
Qθ of weights θ, and we keep a copy of these weights
in a target network Q− of weights θ−. We addition-
ally define the averaging network Hφ of weights φ, and
their target counterparts H− and φ−. Momentum-
DQN interacts in an online way with an environment
collecting transitions {s, a, r, s′} ∈ S ×A×R×S, that
are stored in a FIFO replay buffer B. In DQN, the
algorithm performs gradient descent to approximate
the partial evaluation step by regressing an approxima-
tion of T∗Q−, and periodically copies the weights of
the online networks to the target networks. The loss
minimized at each step is almost the same as in DQN,
replacing an approximation of T∗Qk by an approxima-
tion of the evaluation operator of the greedy policy
with respect to the averaging network, TG(Hφ)Q

−. We
define a regression target for Qθ as

Q̂(r, s′) = r + γQ−(s′, argmaxH−(s′, ·)),

and a regression loss

Lq(θ) = ÊB

[(
Q̂(r, s′)−Qθ(s, a)

)2
]
, (4)

with Ê the empirical loss over a finite set. Then, we
define a regression loss for the averaging network as
an approximation of Equation (2). We use the general
scheme from Equation (2) with a possibly variable mix-
ture rate βk. The regression target Ĥ for the averaging
network is computed as

Ĥ(s, a, r, s′) = βkH
−(s, a) + (1− βk)Q̂(r, s′),

which leads to a regression loss

LH(φ) = ÊB

[(
Ĥ(s, a, r, s′)−Hφ(s, a)

)2
]
. (5)

Momentum-DQN interacts with the environment with
the policy Gek(H) that is ek-greedy with respect to H,

Nino Vieillard, Bruno Scherrer, Olivier Pietquin, Matthieu Geist

the averaging network (ek depends on k because we
use a classic decreasing schedule for the exploration).
During training, it minimizes losses Lq and Lh with
stochastic gradient descent (or a variant), and update
the target weights with the online weights every C
gradient steps. A detailed pseudo-code is given in
Algorithm 1, and we evaluate this algorithm in Section
7.2.

On the mixture rate. We aim at considering a rate
close to the one of MoVI, βk = k

k+1 . Due to stochastic
approximation, an iteration of Momentum-DQN does
not match one iteration of MoVI, rather we should
wait for several target updates before considering we
have performed such an iteration. Consequently, we
consider a rate such that βk = bk/κc

bk/κc+1 , with κ a rate
update period (an hyperparameter), that is the number
of environment steps between each change of β.

Algorithm 1 Momentum-DQN
Require: K ∈ N∗ the number of steps, C ∈ N∗ the

update period, F ∈ N∗ the interaction period, κ ∈ N∗

the rate update period.
Initialize θ, φ at random
B = {}
θ− = θ, φ− = φ
for k = 1 to K do
Collect a transition t = (s, a, r, s′) from Gek(Hφ)
B ← B ∪ {t}
if k mod F == 0 then
βk = bk/κc

bk/κc+1
On a random batch of transitions Bq,k ⊂ B,
update θ with one step of SGD of Lq, see (4)
On a random batch of transitions Bh,k ⊂ B,
update φ with one step of SGD of Lh, see (5)

end if
if k mod C == 0 then
θ− ← θ, φ− ← φ

end if
end for
return G(Hφ)

6 Related work and discussion

The closest approaches to MoVI are Speedy Q-Learning
(SQL) [Azar et al., 2011] and Dynamic Policy Program-
ming (DPP) [Azar et al., 2012] (generalized by Kozuno
et al. [2019] as Conservative VI, with similar guaran-
tees). Both approaches are extensions of AVI that also
benefit from a similar compensation of errors along iter-
ations. As fat as we know, they are the sole algorithms
with this kind of guarantee. We first discuss extensively
the links to SQL and DPP, before mentioning other
(less) related works.

Algorithmic comparison. First, let us consider
DPP, in the DPP-RL version2 [Azar et al., 2012, Algo-
rithm 2]. Define the scalar product on A for all policy π
and q-value q as 〈π, q〉(s) =

∑
a∈A π(a|s)q(s, a). DPP

estimates a quantity ψk ∈ RS×A, as

ψk = ψk−1 + Tπkψk−1 − 〈πk, ψk−1〉+ εk, (6)

with πk ∈ G(ψk). Without error, ψk(s, a) converges to
q∗(s, a) when a is the optimal action in state s, and
to −∞ otherwise. This makes difficult an extension of
DPP to a function approximation setting (unbounded
function).

Secondly, SQL updates a q-value qk as

qk = qk−1 + 1
k

(T∗qk−2 − qk−1)

+ k − 1
k

(T∗qk−1 − T∗qk−2). (7)

We then re-write SQL as an update on similar quantities
as DPP. Let us define ψk = kqk, and consider the policy
πk = G(qk) = G(ψk). SQL is then equivalent to

ψk = ψk−1 + Tπkψk−1 − γPπk−1ψk−2 + εk. (8)

Finally, we also position MoVI in this setting. Here,
we define ψk as ψk = (k + 1)hk =

∑k
i=0 qj . We con-

sider the sequence of policies πk = G(hk) = G(ψk).
With some work (detailed in Appendix) we can rewrite
Equation (2) as an update on ψk as

ψk = ψk−1 + Tπkψk−1 − γPπkψk−2 + εk. (9)

Comparing MoVI, SQL and DPP through the prism
of Eqs. (9), (6) and (8), we observe that these three
schemes are similar. They all share the first part of
their update in common, and differ only in the subtrac-
tion term – that allows for error compensation. This
term is γPπkψk−2 in MoVI, which is replaced by a
γPπk−1ψk−2 = T∗ψk−2 in SQL, and by 〈πk, ψk−1〉 in
DPP. This writing eases comparison, but we highlight
that it is not how algorithms are defined initially, and
implemented, except for DPP (SQL and MoVI do not
require estimating an unbounded function).

Performance bounds. We now compare perfor-
mance bounds of various algorithm. SQL and DPP
both propagates averaged errors instead of errors, as
they both satisfy3

‖q∗− qπk‖∞ ≤
2γ

k(1− γ)

(
k∑
j=1

γk−j‖Ej‖∞+ 8γqmax

1− γ

)
,

2DPP considers general softmax policies, of which greedy
policies are a special case, that correspond to DPP-RL.

3The bounds in the original papers differ slightly by
their multiplicative constants, the one provided here is true
for both.

Momentum in Reinforcement Learning

This is to be compared to the bound for MoVI given
in Eq. (3). MoVI, DPP and SQl enjoys similar bounds,
the main difference being in the nature of the error
terms. Both SQL and DPP depend on a term of the
from

∑k
j=0 γ

k−j ‖Ek‖∞, that is a discounted sum of the
norm of averaged errors. On the other hand, in MoVI,
we have the dependency in

∑k
j=0 γ

k−j
∥∥∥E′k,j∥∥∥∞, so not

averaged errors, but averaged weighted errors. In the
generative model setting, the bound is less favourable
for MoVI. Indeed, in this case, the errors are zero-
mean, so the dependence on their average in DPP and
SQL is a strong advantage. However, we empirically
show that MoVI behaves similarly to SQL and DPP
in this case (see Sec. 7.1). In a more general case (εk
corresponding to a regression error), none of the bounds
can be easily instantiated, because the quantity we can
hope to control is ‖εk‖2, µ, not ‖Ek‖2,µ. This, we will
check the algorithms’ behaviors empirically.

From a practical point of view, neither SQL or DPP
have been originally implemented in RL on large scale
problems. A deep version of a variation of DPP4 have
been proposed by Tsurumine et al. [2017], but it is
only applied on a small number of samples. The prin-
cipal issue of a practical DPP is that it has to estimate
ψk, a quantity that is asymptotically unbounded. It
could then be applied on short training environments,
when this value is updated a relatively small number
of times, and stays numerically stable. However, on en-
vironments like the ALE, where one needs to compute
millions of environments steps, DPP is likely to diverge,
and fail due to numerical issues. In Section 7.2, we
provide a experiment in a larger setting. We extened
MoVI to deep learning, and, for the sake of somparison,
we propose deep versions of SQL and DPP. These two
last algorithms are variations of DQN that make use
of updates in Equations (7) and (6) to define DQN-
like regression targets. We could not obtain satisfying
results with both of these implementations. Experi-
mental results and details are given in Section (7) and
in the Appendix.

Other related methods. MoVI shares also algo-
rithmic similarities with other algorithms, Softened
LSPI [Pérolat et al., 2016] and Politex [Lazic et al.,
2019]. Pérolat et al. [2016] consider the zero-sum games
setting, and propose a Policy Iteration (PI)-based algo-
rithm. It relates to MoVI in the sense that it averages
the q-values of consecutive policies. Politex is also a
PI-scheme, where the policy is a softmax of the sum
of all q-values. These two algorithms share the idea of
averaging the q-values, but are derived from different

4Specifically, it is the update described by Azar et al.
[2012, Eq. (24)], that also lead to an asymptotically un-
bounded function, and thus to numerical instability.

principles. Pérolat et al. [2016] build their algorithm as
a quasi-Newton method on the Bellman residual and
rely heavily on linear parameterization, while Politex
build upon prediction with expert advice, and deals
with the average reward criterion, instead of the dis-
counted one. Moreover, none of these two approaches
offer the kind of guarantee about the propagation of
averaged errors that DPP, SQL or MoVI have.

7 Experiments

In this Section, we present experimental results from
MoVI and Momentum-DQN. First, we consider small
random MDPs (Garnets), to check empirically Asm. 1
and to compare to DDP and SQL on a tabular setting,
with access to a generative model. Then, we experiment
Momentum-DQN on a subset of Atari games, and
compare to DQN (a natural baseline) as well as deep
versions of DPP and SQL. Further experimental details
are provided in the appendix.

7.1 Garnets

A Garnet [Archibald et al., 1995, Bhatnagar et al.,
2009] is an abstract MDP. It is built from three param-
eters (NS , NA, NB). NS and NA are respectively the
number of states and actions. The parameter NB is
the branching factor, the maximum number of states
accessible from any other state. The transition probabil-
ities P (s′|s, a) are then computed as follows. For each
state-action couple (s, a), NB states (s1, . . . sNB) are
drawn uniformly without replacement. Then, NB − 1
number are drawn uniformly in (0, 1) and sorted as
(p0 = 0, p1, . . . pNB−1, pNB = 1). The transition proba-
bilities are assigned as P (sk|s, a) = pk − pk−1 for each
1 ≤ k ≤ NB . The reward function is drawn uniformly
in (−1, 1)NS .

Assumption check. First, we want to check that
Asm. 1 is reasonable. Given a step j of the algorithm
and a size l, we compute an empirical estimate of
E[Pj+l:j+1εj]. With Garnets, we have access to the
transition kernel, so we can compute the error at step
j, εj(s, a) = T̂πjqj(s, a)−Tπjqj(s, a). Given a fixed Gar-
net, we first compute the value qj with MoVI. Then, on
a number N of runs, we re-start MoVI from the same
qj , re-run the algorithm for l steps from there, and com-
pute the values Pj+l:j+1,nεj,n(s, a), with n ∈ [|1;N |].
We get an estimate ε̄l,N of ‖E[Pj+l:j+1εj |Fj−1]‖∞,

ε̄l,N = max
(s,a)∈S×A

∣∣∣∣∣ 1
N

N∑
n=1

Pj+l:j+1,nεj,n(s, a)

∣∣∣∣∣ .
We want to check that ε̄N → 0 when N → ∞. For
several values of l, We compute ε̄l,N for N between 0

Nino Vieillard, Bruno Scherrer, Olivier Pietquin, Matthieu Geist

0 25 50 75 100 125 150 175 200
Runs (N)

10−2

10−1

100

Av
er

ag
ed

st
im

at
ed

 e
rro

rs
 (

̄ ε l,
N
)

l=0
l=1
l=5
l=10

Figure 2: Evolution of the empirical weighted average
error ε̄l,N with N (log scale) for different values of l.
We need a convergence towards 0 for our assumption
to be numerically verified, which seems to be the case.

0 2000 4000 6000 8000 10000
Iterations (k)

10−1

100

101

‖q
*

−
q π

k‖ 1

MoVI
DPP
SQL
AVI

Figure 3: Error on the policy value of different ADP
schemes. Each curve represents ‖q∗ − qπk‖1, where πk
results from AVI, MoVI, SQL or DPP.

and 200, and average these results over 100 garnets. We
report the evolution of the means of ε̄l,N (over Garnets)
in Figure 2. We observe that the limit of ε̄l,N seems
to be 0 for each l, which experimentally validates our
assumption. With l = 0, we get the “natural” norm
of errors (not multiplied by any matrix). We see here
that, for every tested l > 0, the norm is lower than for
l = 0, meaning that the policies kernels do not have
a negative impact on the expected value, but seem to
further reduce variance.

Algorithms comparison. We compare VI, MoVI,
SQL and DPP on random Garnets, using the sampled
version with a generative model described in Section 4.2.
We run each algorithm on 100 Garnets, an we report
the norm of the empirical error on the uniform distri-
bution ‖q∗ − qπk‖1. We can compute the exact value
of πk with access to the model. The four algorithms
are compared in Figure 3. We observe an almost iden-
tical behaviour for MoVI, DPP, and SQL. They all
converge towards v∗ at roughly the same speed, while
AVI oscillates around a sub-optimal policy.

7.2 Atari

Atari is a standard discrete-actions environment intro-
duced by Bellemare et al. [2013] with a high dimensional
state space. We use this environment to validate our
Momentum-DQN architecture. Our baseline is DQN as
it is implemented in the Dopamine library [Castro et al.,
2018]. We used the same architecture and the same
hyperparameters as DQN, and notably we used sticky
action with a rate of 0.25 to introduce stochasticity as
recommended by Machado et al. [2018], and our state
consists in the stacking of the 4 last frames. Every 4
steps in the environment, we perform a gradient update
on θ and φ. Every C=25000 environment steps, we
update the target networks. We report the average
undiscounted score obtained during learning on the
last 250000 steps (named an iteration). On the figures,
the thick line show this average score averaged on 5
random seeds, while the semi-transparent parts denote
the standard deviation with respect to the seeds.

We evaluate Momentum-DQN on a subset of 20 Atari
games. This games are selected to represent the cate-
gories from Ostrovski et al. [2017, Appendix A], exclud-
ing the hardest exploration ones – we have no claim in
helping DQN in this setting. Here, we used a sched-
ule of βk as defined in Section 5, with κ = 2500000
that we tuned on a small subset of game (Asterix,
Zaxxon, and Jamesbond). As an example, we give
the comparison of Momentum-DQN and DQN on the
game SpaceInvaders in Figure 4. In figure 5, we report
the normalized improvement of Momentum-DQN over
DQN using the Area Under the Curve (AUC) metric.
These results show a clear improvement using Momen-
tum. Momentum-DQN outperforms DQN on 16 games
out of 20, with an average normalized improvement of
45%. It only under-performs DQN on three games by
a low margin, while the improvement goes up to 200%
for the game Seaquest. In the Appendix, we report the
score obtained for the 20 games, along with experiments
testing the influence of various βk schedules.

0 25 50 75 100 125 150 175 200
Iterations

0

1000

2000

3000

4000

5000

6000

Av
er

ag
ed

 sc
or

e

SpaceInvaders
DQN
Momentum-DQN

Figure 4: Scores obtained on SpaceInvaders by DQN
(dashed-dotted, blue) and Momentum-DQN (orange).

Momentum in Reinforcement Learning

Jam
e.
Hero

Mspa
.
Amid.

Ku
ng

.
Berz

.
Zax

x.
Tu

ta.Atla
.
Po

ng
Roa

d.
En

du
.
Cen

t.
Brea

.
Upn

d.
Astd

.
Sp

ac.Fro
s.
Astx

.
Se

aq
.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

No
rm

al
ize

d
im

pr
ov

em
en

t o
ve

r D
QN

Momentum-DQN vs DQN. Average improvement: 45.0%

Figure 5: Normalized improvement of Momentum-
DQN over DQN. We obtain an almost constant im-
provement on these 20 games.

Deep-SQL and Deep-DPP. We implemented
Deep versions of SQL and DPP (respectively DSQL
and DDPP), that we tested on Atari, also based on the
architecture and hyperparameters of Dopamine’s DQN.
For both algorithms, we derive an update rule based
on the ADP scheme, using the same parametrization
as DQN (we report specific equations in Appendix).
We were however not able to obtain satisfying – i.e.
competitive with DQN – scores with these algorithms.
We report the experimental results of DDPP and DSQL
versus DQN in Figures 6 and 7. We used the same
parameters as for Momentum-DQN, in particular the
same βk schedule for DSQL. On these two graphs, we
see that both DSQL and DDPP underperform DQN
on most of the games.

For DDPP, the reason is quite simple, as the Q-network
has to estimate a value that diverges to −∞, causing
heavy numerical issues, and the algorithms fails on
most of the games after a few iterations. It is less clear
why DSQL underperforms DQN. Our hypothesis is
that Momentum-DQN enjoys a separate network that
approximate the average of the q-values, while DSQL
needs to compute its update from consecutive target.
However, when using deep networks and stochastic
approximation, the consecutive target networks cannot
securely be associated to consecutive q-values computed
in ADP, making the update in DSQL less reliable.

8 Conclusion

We introduced a new ADP scheme, MoVI, inspired by
Momentum in gradient ascent. To adapt Momentum
to RL, we made an analogy between the q-values in DP
schemes and the gradient in gradient ascent methods,
interpreting Momentum in RL as an averaging of con-
secutive q-function. We provided an anlysis of MoVI,
showing that the Momentum brings compensation of

Fro
s.
Zax

x.
HeroBrea

.
Jam

e.
Mspa

.
Amid.

Upn
d.
Cen

t.
Roa

d.
Atla

.
Sp

ac.Tu
ta.

Berz
.
En

du
.
Ku

ng
.
Po

ng
Astd

.
Se

aq
.
Astx

.

−0.5

0.0

0.5

1.0

1.5

No
rm

al
ize

d
im

pr
ov

em
en

t o
ve

r D
QN

DSQL vs DQN. Average improvement: -10.8%

Figure 6: Normalized improvement of DSQL over DQN.

Po
ng
Zax

x.
Hero

Roa
d.
Amid.

Tu
ta.
En

du
.
Ku

ng
.
Astx

.
Berz

.
Sp

ac.
Mspa

.
Astd

.
Se

aq
.
Jam

e.
Atla

.
Fro

s.
Brea

.
Upn

d.
Cen

t.
−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

No
rm

al
ize

d
im

pr
ov

em
en

t o
ve

r D
QN

DDPP vs DQN. Average improvement: -28.8%

Figure 7: Normalized improvement of DDPP over
DQN.

errors to AVI. We also derived a partial analysis of the
sample complexity when instantiated in the tabular
case. These results are similar to what are to our knowl-
edge the closest algorithms to MoVI, SQL and DPP.
Our bound involves a more complicated averaging of er-
rors, extensively discussed. Yet, we have shown that all
algorithmic schemes behave similarly in toy problems.
We advocated that MoVI is better suited for deep
learning extensions and proposed Momentum-DQN,
as well as natural deep extensions of DPP and SQL.
With experiments on a representative subset of Atari
games, we have shown that, contrary to DDPP and
DSQL, momentum-DQN brings a clear improvement
over DQN. Note that in principle, Momentum could be
applied to any RL algorithm that estimates a value: a
value-based algorithm like C51 [Bellemare et al., 2017],
or an actor-critic (for example, SAC [Haarnoja et al.,
2018]). It could also be extended straightforwardly to
continuous action settings, replacing the critic by the
average of successive critics. We plan to extend the
idea of Momentum to other RL algorithms in future
works.

Nino Vieillard, Bruno Scherrer, Olivier Pietquin, Matthieu Geist

References
TW Archibald, KIM McKinnon, and LC Thomas. On

the generation of markov decision processes. Journal
of the Operational Research Society, 46(3):354–361,
1995.

Mohammad G Azar, Mohammad Ghavamzadeh,
Hilbert J Kappen, and Rémi Munos. Speedy q-
learning. In Advances in Neural Information Pro-
cessing System (NeurIPS), pages 2411–2419, 2011.

Mohammad Gheshlaghi Azar, Vicenç Gómez, and
Hilbert J Kappen. Dynamic policy programming.
Journal of Machine Learning Research, 13(Nov):3207–
3245, 2012.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and
Michael Bowling. The arcade learning environment:
An evaluation platform for general agents. Journal
of Artificial Intelligence Research, 47:253–279, 2013.

Marc G Bellemare, Will Dabney, and Rémi Munos. A
distributional perspective on reinforcement learning.
In International Conference on Machine Learning
(ICML), pages 449–458, 2017.

Dimitri P Bertsekas and John N Tsitsiklis. Neuro
dynamic programming. Athena Scientific Belmont,
MA, 1996.

Shalabh Bhatnagar, Richard S Sutton, Mohammad
Ghavamzadeh, and Mark Lee. Natural actor–critic
algorithms. Automatica, 45(11):2471–2482, 2009.

Pablo Samuel Castro, Subhodeep Moitra, Carles
Gelada, Saurabh Kumar, and Marc G Bellemare.
Dopamine: A research framework for deep reinforce-
ment learning. arXiv preprint arXiv:1812.06110,
2018.

Marguerite Frank and Philip Wolfe. An algorithm
for quadratic programming. Naval research logistics
quarterly, 3(1-2):95–110, 1956.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochas-
tic actor. In International Conference on Machine
Learning (ICML), pages 1861–1870, 2018.

Tadashi Kozuno, Eiji Uchibe, and Kenji Doya. Theoret-
ical analysis of efficiency and robustness of softmax
and gap-increasing operators in reinforcement learn-
ing. In International Conference on Artificial Intel-
ligence and Statistics (AISTATS), pages 2995–3003,
2019.

Nevena Lazic, Yasin Abbasi-Yadkori, Kush Bhatia,
Gellert Weisz, Peter Bartlett, and Csaba Szepesvari.
Politex: Regret bounds for policy iteration using
expert prediction. In International Conference on
Machine Learning (ICML), pages 3692–3702, 2019.

Marlos C Machado, Marc G Bellemare, Erik Talvi-
tie, Joel Veness, Matthew Hausknecht, and Michael
Bowling. Revisiting the arcade learning environment:
Evaluation protocols and open problems for general
agents. Journal of Artificial Intelligence Research,
61:523–562, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland,
Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529,
2015.

Georg Ostrovski, Marc G Bellemare, Aäron van den
Oord, and Rémi Munos. Count-based exploration
with neural density models. In International Confer-
ence on Machine Learning (ICML), pages 2721–2730,
2017.

Julien Pérolat, Bilal Piot, Matthieu Geist, Bruno Scher-
rer, and Olivier Pietquin. Softened approximate pol-
icy iteration for markov games. In International Con-
ference on Machine Learning (ICML), pages 1860–
1868, 2016.

Martin L Puterman. Markov decision processes: dis-
crete stochastic dynamic programming. John Wiley
& Sons, 1994.

Ning Qian. On the momentum term in gradient descent
learning algorithms. Neural networks, 12(1):145–151,
1999.

Yoshihisa Tsurumine, Yunduan Cui, Eiji Uchibe, and
Takamitsu Matsubara. Deep dynamic policy pro-
gramming for robot control with raw images. In
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1545–1550. IEEE,
2017.

Martin J Wainwright. Variance-reduced q-learning is
minimax optimal. arXiv preprint arXiv:1906.04697,
2019.

	Introduction
	Background
	Momentum Value Iteration
	Analysis
	Error propagation analysis
	About the sample complexity

	Momentum DQN
	Related work and discussion
	Experiments
	Garnets
	Atari

	Conclusion

