
Prima - the perl graphic toolkit

Dmitry Karasik

August 19, 2024

Contents

1 Introduction 2

2 Tutorials 4
2.1 Prima::tutorial . 4

3 Core toolkit classes 13
3.1 Prima . 13
3.2 Prima::Object . 17
3.3 Prima::Classes . 35
3.4 Prima::Drawable . 36
3.5 Prima::Region . 75
3.6 Prima::Image . 77
3.7 Prima::image-load . 95
3.8 Prima::Widget . 115
3.9 Prima::Widget::pack . 157
3.10 Prima::Widget::place . 161
3.11 Prima::Window . 164
3.12 Prima::Clipboard . 173
3.13 Prima::Menu . 179
3.14 Prima::Timer . 190
3.15 Prima::Application . 192
3.16 Prima::Printer . 205
3.17 Prima::File . 209

4 Widget library 212
4.1 Prima::Buttons . 212
4.2 Prima::Calendar . 220
4.3 Prima::ComboBox . 222
4.4 Prima::DetailedList . 225
4.5 Prima::DetailedOutline . 227
4.6 Prima::DockManager . 229
4.7 Prima::Docks . 236
4.8 Prima::Edit . 247
4.9 Prima::ExtLists . 258
4.10 Prima::FrameSet . 259
4.11 Prima::Grids . 260
4.12 Prima::HelpViewer . 269
4.13 Prima::ImageViewer . 271
4.14 Prima::InputLine . 275
4.15 Prima::KeySelector . 278
4.16 Prima::Menus . 280
4.17 Prima::Label . 281

1

4.18 Prima::Lists . 284
4.19 Prima::MDI . 291
4.20 Prima::Notebooks . 297
4.21 Prima::Outlines . 304
4.22 Prima::PodView . 312
4.23 Prima::ScrollBar . 315
4.24 Prima::Sliders . 318
4.25 Prima::Spinner . 327
4.26 Prima::TextView . 329
4.27 Prima::Widget::Date . 332
4.28 Prima::Widget::Time . 334

5 Standard dialogs 336
5.1 Prima::Dialog::ColorDialog . 336
5.2 Prima::Dialog::FindDialog . 339
5.3 Prima::Dialog::FileDialog . 341
5.4 Prima::Dialog::FontDialog . 346
5.5 Prima::Dialog::ImageDialog . 348
5.6 Prima::Image::TransparencyControl . 350
5.7 Prima::MsgBox . 351
5.8 Prima::Dialog::PrintDialog . 354

6 Drawing helpers 355
6.1 Prima::Drawable::Antialias . 355
6.2 Prima::Drawable::CurvedText . 356
6.3 Prima::Drawable::Glyphs . 358
6.4 Prima::Drawable::Gradient . 366
6.5 Prima::Drawable::Markup . 368
6.6 Prima::Drawable::Metafile . 370
6.7 Prima::Drawable::Path . 371
6.8 Prima::Drawable::Pod . 376
6.9 Prima::Drawable::Subcanvas . 381
6.10 Prima::Drawable::TextBlock . 382

7 Visual Builder 386
7.1 VB . 386
7.2 Prima::VB::VBLoader . 391
7.3 cfgmaint . 395
7.4 Prima::VB::CfgMaint . 397

8 PostScript printer interface 399
8.1 Prima::PS::PostScript . 399
8.2 Prima::PS::PDF . 401
8.3 Prima::PS::Printer . 403

9 Widget helpers 406
9.1 Prima::Widget::BidiInput . 406
9.2 Prima::Widget::Fader . 407
9.3 Prima::Widget::GroupScroller . 409
9.4 Prima::Widget::Header . 411
9.5 Prima::Widget::IntIndents . 413
9.6 Prima::Widget::Link . 414
9.7 Prima::Widget::ListBoxUtils . 417
9.8 Prima::Widget::MouseScroller . 418

2

9.9 Prima::Widget::Panel . 419
9.10 Prima::Widget::RubberBand . 420
9.11 Prima::Widget::ScrollWidget . 422
9.12 Prima::Widget::StartupWindow . 424
9.13 Prima::Widget::UndoActions . 425

10 C interface to the toolkit 427
10.1 Prima::internals . 427
10.2 Prima::codecs . 443
10.3 prima-gencls . 453

11 Miscellaneous 462
11.1 Prima::faq . 462
11.2 Prima::Const . 471
11.3 Prima::EventHook . 490
11.4 Prima::Image::Animate . 492
11.5 Prima::Image::base64 . 495
11.6 Prima::Image::Exif . 496
11.7 Prima::Image::Loader . 498
11.8 Prima::IniFile . 500
11.9 podview . 503
11.10prima-pod2pdf . 504
11.11Prima::StdBitmap . 505
11.12Prima::Stress . 507
11.13Prima::Themes . 508
11.14Prima::Tie . 511
11.15Prima::types . 513
11.16Prima::Utils . 516

12 System-specific modules and documentation 521
12.1 Prima::gp-problems . 521
12.2 Prima::X11 . 526
12.3 Prima::sys::gtk::FileDialog . 536
12.4 Prima::sys::win32::FileDialog . 537
12.5 Prima::sys::XQuartz . 538
12.6 Prima::sys::FS . 539

3

1 Introduction

Preface

Prima is an extensible Perl toolkit for multi-platform GUI development. Platforms supported in-
clude Linux, Windows, and UNIX/X11 workstations (FreeBSD, IRIX, SunOS, Solaris, and others).
The toolkit contains a rich set of standard widgets and has an emphasis on 2D image processing
tasks. A Perl program using Prima looks and behaves identically on X11 and Win32.

The Prima project was started in 1997 in Protein Laboratory, Copenhagen, by Anton Berezin,
Dmitry Karasik, and Vadim Belman.

This document describes the programming with Prima graphic toolkit and is a collection of
manual pages of the Prima application program interface (API).

Requirements

Prima supports perl versions 5.12 and above. The recommended perl versions are 5.20 and above.
In the Unix environments, Prima can use the following graphic libraries: libjpeg, libgif, libtiff,
libpng, libXpm, libwebp, and libheif.

Installation

The toolkit can be downloaded from http://www.prima.eu.org in source and binary forms.
Before installing, check the content of the README file in the distribution. The installation from
the source is performed by executing commands

perl Makefile.PL

make

make test

make install

Authors

Dmitry Karasik, Anton Berezin, Vadim Belman

Credits

David Scott, Kai Fiebach, Johannes Blankenstein, Teo Sankaro, Mike Castle, H.Merijn Brand,
Richard Morgan, Kevin Ryde, Chris Marshall, Slaven Rezic, Waldemar Biernacki, Andreas Her-
nitscheck, David Mertens, Teo Sankaro, Gabor Szabo, Fabio D’Alfonso, Rob ”Sisyphus”, Chris
Marshall, Reini Urban, Nadim Khemir, Vikas N Kumar, Upasana Shukla, Sergey Romanov, Math-
ieu Arnold, Petr Pisar, Judy Hawkins, Myra Nelson, Sean Healy, Ali Yassen, Maximilian Lika,
kmx, Mario Roy, Timothy Witham, Mohammad S Anwar, Jean-Damien Durand, Zsban Ambrus,
Max Maischein, Reinier Maliepaard

– thank you for your help.

4

Copyright

(c) 1997-2003 The Protein Laboratory, University of Copenhagen (c) 1997-2024 Dmitry Karasik

5

2 Tutorials

2.1 Prima::tutorial

Introductory tutorial

Description

Programming of the graphic interfaces is often considered a somewhat boring business, and not
without a cause. There is little pride in knowing that your buttons and scrollbars work exactly
as millions of other buttons and scrollbars do, so whichever GUI toolkit is chosen, it is usually
regarded as a tool of small importance, and the less it is obtrusive, the better. Given that, and
trying to live up to the famous Perl ’making easy things easy and hard things possible’ mantra,
this manual page is an introductory tutorial meant to show how to write the easy things easy.
The hard things are explained in the other Prima manual pages (see the Prima section).

Introduction - a ”Hello world” program

Prima is written and is expected to be used in some traditions of Perl coding, such as DWIM (do
what I mean) or TMTOWTDI (there is more than one way to do it). Perl itself is the language
(arguably) most effective in small programs, as the programmer doesn’t need to include lines and
lines of prerequisite code before even getting to the problem itself. Prima can’t compete with that,
but the introductory fee is low; a minimal working ’Hello world’ can be written in just three lines
of code:

use Prima qw(Application);

Prima::MainWindow-> new(text => ’Hello world!’);

run Prima;

Line 1 is the invocation of modules Prima and Prima::Application. One can also explicitly
invoke both use Prima and use Prima::Application, but since the module Prima doesn’t export
any method names, the syntax in the code example above allows one to write programs in a more
concise style.

Line 2 creates a new window object, and instance of the Prima::MainWindow class, which is
visualized as a window rectangle on the screen, with the title ’Hello world’. The class terminates
the application (and the program) when the window is closed; this is the only difference from the

6

windows that are objects instances of the Prima::Window class, which do nothing after they are
closed by the user.

(Note: In this tutorial the Prima:: prefix in class names will be omitted and will be used
only when necessary, such as in code examples).

Line 3 enters the Prima event loop. The loop is terminated when the only instance of the
Application class (that is created by the use Prima::Application invocation) and stored in
$::application scalar, is destroyed.

Strictly speaking, a minimal ’hello world’ program can be written even in two lines:

use Prima;

Prima::message(’Hello world’);

but it is not very illustrative and not useful. The Prima::message call is rarely used and is
one of the few methods contained in the Prima:: namespace. To display a message, the MsgBox
module is often preferred, with its control over text in the buttons and with its appropriate usage
of some pre-defined icons. If using this module instead the code above can be rewritten as this:

use Prima qw(Application MsgBox);

message(’Hello world’);

but where Prima::message accepts only text scalar parameters, Prima::MsgBox::message
can do a lot more. For example the code

use Prima qw(Application MsgBox);

message(’Hello world’, mb::OkCancel|mb::Information);

displays two buttons and an icon. A small achievement, but the following code is a bit more
interesting:

use Prima qw(Application MsgBox);

message(’Hello world’, mb::OkCancel|mb::Information,

buttons => {

mb::Cancel => {

there are predefined color constants to use

backColor => cl::LightGreen,

7

but RGB integers are also o.k.

color => 0xFFFFFF,

},

mb::Ok => {

text => ’Indeed’,

},

}

);

Defining many object properties at once is a major feature of Prima and is seen throughout the
toolkit. Returning to the very first example we can demonstrate the manipulation of the window
properties in the same fashion:

use Prima qw(Application);

my $window = Prima::MainWindow-> new(

text => ’Hello world!’,

backColor => cl::Yellow,

size => [200, 200],

);

run Prima;

Note that the size property is a two-integer array, and the color constant is registered in the
cl:: namespace. In Prima, there are many similar two- and three-letter namespaces containing
(usually integer) constants for various purposes. The design reason for choosing such syntax over
the string constants (as f ex in Perl-Tk, such as color => ’yellow’) is that the syntax is
checked on the compilation stage, thus narrowing the possibility of a bug.

There are over a hundred properties, such as color, text, or size, declared on descendants of the
Widget class. These can be set in a new (alias create) call, or changed later, either individually

$window-> size(300, 150);

or in a group

$window-> set(

text => ’Hello again’,

color => cl::Black,

);

In addition to these, there are also more than 30 events called whenever a certain action is
performed; the events’ syntax is identical to the properties’ syntax.

Now, back to the code. Here, if we change it again, we can now catch a mouse click on the
window:

use Prima qw(Application MsgBox);

my $window = Prima::MainWindow-> new(

text => ’Hello world!’,

size => [200, 200],

onMouseDown => sub {

8

my ($self, $button, $mod, $x, $y) = @_;

message("Aww! You’ve clicked me right in $x:$y!");

},

);

run Prima;

While an interesting concept, it is not really practical if the only thing you want is to catch a
click, and this is the part where the standard button widget should probably be used instead:

use Prima qw(Application Buttons MsgBox);

my $window = Prima::MainWindow-> new(

text => ’Hello world!’,

size => [200, 200],

);

$window-> insert(Button =>

text => ’Click me’,

growMode => gm::Center,

onClick => sub { message("Hello!") }

);

run Prima;

For those who know Perl-Tk and prefer its ways of positioning a widget, Prima provides the
pack and place interfaces. Here one can replace the line

growMode => gm::Center,

with this line:

pack => { expand => 1 },

where both produce the same effect.

Overview of the widget classes

Prima contains a set of standard (in GUI terms) widgets, such as buttons, input lines, list boxes,
scroll bars, etc. These are diluted with the other more exotic widgets, such as the POD viewer or
docking windows. Technically, these are collected in Prima/*.pm modules and each contains its
own manual page, but for informational reasons here is the full table of the widget modules, an
excerpt from the Prima manpage:

the Prima::Buttons section - buttons and button grouping widgets
the Prima::Calendar section - calendar widget
the Prima::ComboBox section - combo box widget
the Prima::DetailedList section - multi-column list viewer with a controlling header widget
the Prima::DetailedOutline section - a multi-column outline viewer with controlling header

widget
the Prima::DockManager section - advanced dockable widgets

9

the Prima::Docks section - dockable widgets
the Prima::Edit section - text editor widget
the Prima::ExtLists section - listbox with checkboxes
the Prima::FrameSet section - frameset widget class
the Prima::Grids section - grid widgets
the Prima::Widget::Header section - multi-column header widget
the Prima::ImageViewer section - bitmap viewer
the Prima::InputLine section - input line widget
the Prima::Label section - static text widget
the Prima::Lists section - user-selectable item list widgets
the Prima::MDI section - top-level windows emulation classes
the Prima::Notebooks section - multipage widgets
the Prima::Outlines section - tree view widgets
the Prima::PodView section - POD browser widget
the Prima::ScrollBar section - scroll bars
the Prima::Sliders section - sliding bars, spin buttons, dial widget, etc.
the Prima::TextView section - rich text browser widget

Building a menu

In Prima, a tree-like menu is built by building a set of nested arrays, where each array corresponds
to a single menu entry. Such as, to modify the hello-world program to contain a simple menu, it
is enough to write the code like this:

use Prima qw(Application MsgBox);

my $window = Prima::MainWindow-> new(

text => ’Hello world!’,

menuItems => [

[’~File’ => [

[’~Open’, ’Ctrl+O’, ’^O’, sub { message(’open!’) }],

[’~Save as...’, sub { message(’save as!’) }],

[],

[’~Exit’, ’Alt+X’, km::Alt | ord(’x’), sub { shift-> close }],

]],

],

);

run Prima;

Each of the five arrays here in the example is written using different semantics, to represent
either a text menu item, a sub-menu entry, or a menu separator. Strictly speaking, menus can
also display images, but that syntax is practically identical to the text item syntax.

The idea behind all this complexity is to be able to tell what exactly the menu item is, just by
looking at the number of items in each array. So, zero or one item is treated as a menu separator:

[],

[’my_separator’]

10

The one-item syntax is needed when the separator menu item needs to be addressed explicitly.
This means that each menu item after it is created is assigned a (unique) identifier, and that
identifier looks like ’#1’, ’#2’, etc., unless it is given by the programmer. Here, for example, it
is possible to delete the separator, after the menu is created:

$window-> menu-> remove(’my_separator’);

It is also possible to assign the identifier to any menu item, not just to separators. The other
types (text, image, sub-menu) are differentiated by looking at the type of scalars they contain.
Thus, a two-item array with the last item an array reference (or, as before, three-item for the
explicit ID set), is a sub-menu. The reference, as in the example, may contain even more menu
items:

menuItems => [

[’~File’ => [

[’~Level1’ => [

[’~Level2’ => [

[’~Level3’ => [

[]

]],

]],

]],

]],

],

Finally, text items, with the most complex syntax, can be constructed with three to six items
in the array. One can set the left-aligned text string for the item, the right-aligned text string for
the display of the hotkey, if any, the definition of the hotkey itself, and the action to be taken if
the user has pressed either the menu item or the hotkey combination. Also, as in the previous
cases, an explicit menu item ID can be set, and also an arbitrary data scalar, for the generic needs
of the programmer.

Here are the combinations of scalars in an array that are allowed for defining a text menu item:
Three items - [ID, text, action]
Four items - [text, hotkey text, hotkey, action]
Five items - [ID, text, hotkey text, hotkey, action]
Six items - [ID, text, hotkey text, hotkey, action, data]
The image menu items are fully analogous to the text items, except that instead of the text

string, an image object is supplied:

use Prima qw(Application MsgBox);

use Prima::Utils qw(find_image);

my $i = Prima::Image-> load(find_image(’examples/Hand.gif’));

$i ||= ’No image found or can be loaded’;

my $window = Prima::MainWindow-> new(

text => ’Hello world!’,

menuItems => [

[’~File’ => [

[$i, sub {}],

]],

11

],

);

run Prima;

The action item of the menu description array points to the code executed when the menu
item is selected. It is either an anonymous subroutine, as it is shown in all the examples above, or
a string. The latter case will cause the method of the menu owner (in this example, the window
) to be called. This can be useful when constructing a generic class where the menu actions could
be overridden:

use Prima qw(Application);

package MyWindow;

use vars qw(@ISA);

@ISA = qw(Prima::MainWindow);

sub action

{

my ($self, $menu_item) = @_;

print "hey! $menu_item called me!\n"

}

my $window = MyWindow-> new(

menuItems => [

[’~File’ => [

[’~Action’, q(action)],

]],

],

);

run Prima;

All actions are called with the menu item identifier passed in as a string parameter.
Another useful trick here is how to define a hotkey. While the description of the hotkey can

be an arbitrary string, which will be displayed as is, the definition of the hotkey is not that simple
because one needs to encode the key combination that would trigger the menu item action. A
hotkey can be defined in two ways. The hotkey definition scalar should either be a literal string
such as ^A for Control+A, or @B for Alt+B, or ^@#F10 for Control+Alt+Shift+F10. Or it should
be a combination of the km:: constants with the base key that is either the ordinal of the character
letter, or the keycode, represented by one of the kb:: constants. The latter method produces a
less readable code, but is more explicit and powerful:

[’~Reboot’, ’Ctrl+Alt+Delete’, km::Alt | km::Ctrl | kb::Delete, sub {

print "wow!\n";

}],

[’~Or not reboot?’, ’Ctrl+Alt+R’, km::Alt | km::Ctrl | ord(’r’), sub {}],

This concludes the short tutorial on menus. To read more, see the Prima::Menu section .

12

Adding help to your program

The toolkit comes with the POD viewer program podview which can be easily incorporated into
any application. This is meant to be rather straightforward so you can write an application manual
directly in the POD format.

• First, add some pod content to your main script, such as f ex:

#!/usr/bin/env perl

...

=pod

=head1 NAME

My program

=cut

exactly as if you wanted perldoc to display it.

• Second, add the invocation code, possibly inside the menu:

[’~Help’ => ’F1’ => ’F1’ => sub {

$::application-> open_help("file://$0|Description");

}],

The open help method can also take the standard L<link> syntax so for example the code

open_help("My::Module/help")

is also okay.

• Finally, consider if the text-only POD is okay for you or if you need any images embedded
in the pod documentation. This is somewhat tricky because the perl maintainers actively
reject the idea of having images in the pod format, while metacpan.org can display images in
the perl documentation just fine, and so does Prima, however, both use different syntaxes.

Here is an example of the mixed content that shows graphics when the graphic display is
available, and just plain text otherwise:

=for podview

=for html <p>

<figure>

<figcaption>Horizontal font measurements</figcaption>

</figure>

<!--

.. plain text illustration ..

=for html -->

=for podview </cut>

13

The GIF image format is chosen because Prima keeps all of its internal images as multi-frame
GIFs, so in a way, it is also the safest fallback. However, any other image file format will do
too.

If you don’t need the text fallback, just just this:

=for podview

=for html <p>

14

3 Core toolkit classes

3.1 Prima

A Perl graphic toolkit

Synopsis

use Prima qw(Application Buttons);

Prima::MainWindow->new(

text => ’Hello world!’,

size => [200, 200],

)-> insert(Button =>

centered => 1,

text => ’Hello world!’,

onClick => sub { $::application-> close },

);

run Prima;

See more screenshots at the http:prima.eu.orgbig-picture entry.

Description

Prima is a classic 2D GUI toolkit that works under Windows and X11 environments. The toolkit
features a rich widget library, extensive 2D graphic support, PDF generation, modern Unicode
text input and output, and supports a wide set of image formats. Additionally, the RAD-style
Visual Builder and POD viewer are included. The toolkit can interoperate with other popular
event loop libraries.

15

CLASS HIERARCHY

The toolkit is built with a combination of two basic sets of classes - core and external. The core
classes are coded in C and form a baseline for every Prima object written in Perl. The usage
of C is possible together with the toolkit; however, its full power is revealed in the Perl domain.
The external classes present an easily expandable set of widgets, written entirely in Perl and
communicating with the system using Prima library calls.

The core classes form a hierarchy, which is displayed below:

Prima::Object

Prima::Component

Prima::AbstractMenu

Prima::AccelTable

Prima::Menu

Prima::Popup

Prima::Clipboard

Prima::Drawable

Prima::DeviceBitmap

Prima::Printer

Prima::Image

Prima::Icon

Prima::File

Prima::Region

Prima::Timer

Prima::Widget

Prima::Application

Prima::Window

The external classes are derived from these; the list of widget classes can be found below in
the SEE ALSO entry.

Basic program

The very basic code shown in the Synopsis entry is explained here. The code creates a window
with a ’Hello, world’ title and a button with the same text. The program terminates after the
button is pressed.

A basic construct for a program written with Prima requires

use Prima;

code; however, effective programming requires the usage of the other modules, for example,
Prima::Buttons, which contains various button widgets. The Prima.pm module can be invoked
together with a list of such modules, which makes the construction

use Prima;

use Prima::Application;

use Prima::Buttons;

shorter by using the following scheme:

use Prima qw(Application Buttons);

Another basic issue is the event loop, which is called by

run Prima;

16

code and requires a Prima::Application object to be created beforehand. Invoking the
Prima::Application standard module is one of the possible ways to create an application object.
The program usually terminates after the event loop is finished.

The main window is created by invoking

Prima::MainWindow->new();

or

Prima::MainWindow->create()

code with additional parameters. All Prima objects are created by the same scheme; the class
name is passed as the first parameter, and a custom set of parameters is passed afterward:

$new_object = Class->new(

parameter => value,

parameter => value,

...

);

Here, parameters are the class property names, and they differ from class to class. Classes
often have common properties, primarily due to object inheritance.

In the example, the following properties are used:

Window::text

Window::size

Button::text

Button::centered

Button::onClick

Property values can be of any scalar type. For example, the ::text property accepts a string,
::size - an anonymous array of two integers, and onClick - a sub.

onXxxx are special properties that describe events that can be used together with the
new/create syntax, and are additive when the regular properties are substitutive (read more
in the Prima::Object section). Events are called in the object context when a specific condi-
tion occurs. The onClick event here, for example, is called when the user presses (or otherwise
activates) the button.

API

This section describes miscellaneous methods, registered in the Prima:: namespace.

message TEXT

Displays a system message box with TEXT.

open file, save file

When the Prima::Dialog::FileDialog module is loaded, these shortcut methods are reg-
istered in the Prima:: namespace as an alternative to the same methods in the module’s
namespace. The methods execute standard file open and save dialogs, correspondingly.

See the Prima::Dialog::FileDialog section for more.

run

Enters the program event loop. The loop is ended when Prima::Application’s destroy or
close method is called.

parse argv @ARGS

Parses Prima options from @ARGS, returns unparsed arguments.

17

OPTIONS

Prima applications do not have a portable set of arguments; it depends on the particular platform.
Run

perl -e ’$ARGV[0]=q(--help); require Prima’

or any Prima program with a --help argument to get the list of supported arguments. Pro-
grammatically, setting and obtaining these options can be done by using the Prima::options

routine.
In cases where the Prima argument parsing conflicts with the application options, use the

Prima::noARGV section to disable the automatic parsing; also see the parse argv entry. Alterna-
tively, the construct

BEGIN { local @ARGV; require Prima; }

will also do.

18

3.2 Prima::Object

Base toolkit classes

Synopsis

if ($obj-> isa(’Prima::Component’)) {

set and get a property

my $name = $obj-> name;

$obj->name(’an object’);

set a notification callback

$obj-> onPostMessage(sub {

shift;

print "hey! I’ve received this: @_\n";

});

can set multiple properties. note, that ’name’ and ’owner’,

replaces the old values, while onPostMessage subs are aggregated.

$obj-> set(

name => ’AnObject’,

owner => $new_owner,

onPostMessage => sub {

shift;

print "hey! me too!\n";

},

);

de-reference by name

$new_owner-> AnObject-> post_message(1,2);

}

Description

Prima::Object and Prima::Component are the root classes of the Prima toolkit hierarchy. All
the other classes are derived from the Component class, which in turn is the only descendant of
the Object class. Both of these classes are never used for instantiating objects, although this is
possible with the

Prima::Component-> new(.. parameters ...);

call. This document describes the basic concepts of the OO programming with the Prima
toolkit. Although the Component class has wider functionality than the Object class, all the
examples will be explained using Component, since Object has no descendant classes other than
Component anyway, and all the functionality of Object is present in Component too. This docu-
ment partially overlaps with the information from the Prima::internals section, where the latter
though focuses on a C programmer’s perspective, while this document is about the perl program-
ming.

Object base features

Creation

Object creation has fixed syntax:

19

$new_object = Class-> new(

parameter => value,

parameter => value,

...

);

The parameters and the values form a hash which is passed to the new() method. This hash is
applied to the default parameter-value hash (a profile), specific to every Prima class. The object
creation is performed in several stages.

new

The new() constructor method calls the profile default() method that returns (as its name
states) the default profile, a hash with the appropriate default values assigned to its keys.
The Component class defaults are

name => ref $_[0],

owner => $::application,

delegations => undef,

(also, see the source file Prima/Classes.pm):

While the exact meaning of these parameters is described later in the Properties entry, the
idea is that a newly created object will have the ’owner’ parameter set to ’$::application’
and ’delegations’ to undef, etc etc - unless these parameters are explicitly passed to new().
Example:

$a1 = Prima::Component-> new();

$a1’s owner will be $::application

$a2 = Prima::Component-> new(owner => $a1);

$a2’s owner will be $a1. The actual merging of the default and the parameter hashes is
performed in the next stage, in the profile check in() method which is called inside the
profile add() method.

Note: the older syntax used create() instead of new(), which is still valid but is not preferred.

profile check in

The profile check in() method merges the default and the parameter profiles. By default,
all the specified parameters have the ultimate precedence over the default ones, but in
case the parameter specification is incomplete or ambiguous, the profile check in()’s task is
to determine the actual parameter values. For example, the Component::profile check in
method maintains simple automatic naming of the newly created objects. That is, if the
object’s name was not passed to new() as a parameter, then it is assigned to a string formed
from the class name and some number, for example, Component1, Component2, etc.

In another example, the Prima::Widget::profile check in() method resolves eventual ambi-
guities caused by different ways of assigning widget positions on the screen. A widget’s
horizontal position can be specified by using the left and width parameters, as well as by
the right, size, and/or rect. The default of both left and width properties is 100. But if,
for example, only the right parameter was passed to new(), then it is the profile check in()’s
job to calculate the value for the left property, given that width is still 100.

After the profiles are merged, the resulting hash is passed to the third stage, init().

20

init

The init() method’s task is to map the profile hash into the newly created object, e.g., assign
the name parameter value to the name property, and so on - for all relevant parameters. After
that, it has to return the profile so that the overridden init() methods can perform the same
actions. This stage along with the previous one can be found in almost all Prima classes.

Note: usually the init() attaches the object to its owner in keep the newly-created object
instance from being deleted by the garbage-collection mechanisms. See more on that later (
see the Links between objects entry).

After the init() finishes, the new() method calls the setup() method

setup

The setup() method is a convenience function, it is used when any post-init actions must be
taken. It is seldom overloaded, primarily because the Component::setup() method calls the
onCreate notification, which is more convenient to overload than the setup().

As can be noticed from the code pieces above, a successful new() call returns a newly created
object. If an error condition occurs, undef is returned. Only the errors that were generated via
die() during the init() stage result in undef. Other errors raise an exception instead. It is not
recommended to wrap the new() calls in an eval{} block and to recover after the error because
it can only occur in the two following situations. The first is a system error, either inside perl or
Prima core (f ex an out-of-memory error), and not much can be done here since that error can
very probably lead to an unstable program. The second reason is the programmer’s error when a
nonexistent parameter key or an invalid value is passed.

After a call to the new() method, the object can participate in the toolkit’s event flow. The
onCreate event is always the first event the object receives, and after it, other events can be sent
and received.

Destruction

Object destruction can be caused by many conditions, but the execution ultimately passes through
the destroy() method. destroy(), as well as new(), performs the following finalizing steps:

cleanup

The first method called inside the destroy() is cleanup(). The cleanup() method is a counter-
method to setup(), as destroy() is the counter-method to new(). cleanup() generates the
onDestroy event, which again can be overridden more easily than the cleanup() itself.

onDestroy is always the last event the object sees. After the cleanup() no events are allowed
to circulate.

done

The done() method is the counter-method to init() and is the proper place to free all object
resources. Although it is as safe to overload done() as init(), it gets overloaded, primarily
because overloading onDestroy is easier.

The typical conditions that lead to the object destruction are a direct destroy() call, the garbage
collection mechanisms, the user-initiated window closing action (for Prima::Window only), and
an exception during the init() stage. Thus, one must be careful implementing done() which could
be also called if init() throws an exception.

Methods

The class methods are declared and used with the perl OO syntax, which allows two ways of
referencing a method in the object’s class:

21

$object-> method();

and

method($object);

The actual code is a sub, located under the object class package. The overloaded methods that
call their ancestor code use the

$object-> SUPER::method();

syntax. Most of the Prima methods have a fixed number of parameters.

Properties

Properties are methods that combine the functionality of two ephemeral methods, ”get” and ”set”.
The idea behind properties is that many object parameters require two independent methods, one
that returns some internal state and another that changes it. For example, for managing the object
name, set name() and get name() methods are needed. Indeed, the early Prima implementation
dealt with a large amount of these get’s and set’s, but later these method pairs were deprecated
in favor of the properties. Instead, there is now only one method name() (referred to as ::name
later in the documentation).

A property returns a value if no parameters (except the object itself) are passed, and changes
the internal data to the passed parameters otherwise. Here’s a sketch code for the ::name property
implementation:

sub name

{

return $_[0]-> {name} unless $#_;

$_[0]->{name} = $_[1];

}

There are many examples of properties throughout the toolkit. Not all properties deal with
scalar values, some accept arrays or hashes as well. The properties can be set-called not only by
name like

$object-> name("new name");

but also with the set() method. The set() method accepts a hash, that is similar to hashes
passed to new(), and also assigns its values to the corresponding properties. For example, the
code

$object-> name("new name");

$object-> owner($owner);

can be rewritten as

$object-> set(

name => "new name",

owner => $owner

);

A minor speed-up is gained here by eliminating some of the C-to-perl and perl-to-C calls,
especially if the code called is implemented in C. The only problem with this technique is that the
order in which the properties are set is undefined. Therefore, the usage of set() is recommended
either when the property order is irrelevant, or it is known beforehand that such a call speeds up
the code, or is the only way to achieve the required result. An example of the latter case shows
that Prima::Image calls

22

$image-> type($a);

$image-> palette($b);

and

$image-> palette($b);

$image-> type($a);

produce different results. It is indeed the only solution to request a change that converts an
image using both type and palette at the same time, to use the following code:

$image-> set(

type => $a,

palette => $b

);

This though makes sense only when it is known beforehand that Prima::Image::set is aware
of this combination and calls neither ::type nor ::palette but performs another image conversion
instead.

Some properties are read-only and some are write-only. Some methods that might be declared
as properties are not; these are declared as plain methods with get or set name prefix. There is
not much certainty about what methods are better off being declared as properties and vice versa.

However, if get or set methods cannot be used in, correspondingly, write or read fashion, the
R/O and W/O properties can. They raise an exception in an attempt to do so.

Links between objects

Prima::Component descendants can be used as containers, ie objects that are on a higher hierarchy
level than the others, f ex the child-parent relationship. The ’children’ objects have the ::owner

property value assigned to a reference to an ’owner’ object, while the ’owner’ object contains the
list of its children. It is a one-to-many hierarchy scheme, as a ’child’ object can only have a single
owner, while an ’owner’ object can have many children. The same object can be an owner and a
child at the same time, so the owner-child hierarchy can be viewed as a tree-like structure, too.

The Prima::Component::owner property maintains such a relation, and is writable - the object
can change its owner dynamically. There is no corresponding property that manages children
objects, but there is the method get components(), that returns an array of the child references.

The owner-child relationship is used in several ways in the toolkit. For example, the widgets
that are children of another widget appear (usually, but not always) inside of the rectangular
area occupied by the owner widget. Some events (keyboard events, for example) are propagated
automatically up and/or down the object tree. Another important feature is that when an object
gets destroyed its children are destroyed first. In a typical program the whole object tree roots in
a Prima::Application object instance. When the application finishes, this feature helps clean up
the widgets and quit gracefully.

Implementation note: the name ’owner’ was taken instead of the initial ’parent’, because
the ’parent’ is a fixed term for widget hierarchy relationship description. The Prima::Widget
relationship between owner and child is not the same as GUI’s parent-to-child. The parent is the
widget for the children widgets located in and clipped by its inferior. The owner widget is more
than that, its children can be located outside its owner’s boundaries.

An alternative to the new() method, the insert() method is used to explicitly select the owner
of the newly created object. The insert() method too can be considered a constructor in the
OO-terms. It makes the code

$obj = Class-> new(owner => $owner, name => ’name);

more readable by introducing the

23

$obj = $owner-> insert(’Class’, name => ’name’);

syntax. These two code blocks are identical
There is another type of relation where objects can hold references to each other. Internally this

link level is used to keep objects from deletion by garbage collection mechanisms. This relation
is the many-to-many scheme, where every object can have many links to other objects. This
functionality is managed by the attach() and detach() methods.

Events

Prima::Component descendants employ a well-developed event propagation mechanism, which
allows the handling of events using several different schemes. An event is a condition, caused by
the system or the user, or an explicit notify() call. The formerly described events onCreate and
onDestroy are triggered after a new object is created or before it gets destroyed. These two events,
and the described below onPostMessage event are available for all Prima objects. New classes can
register their own events and define their execution flow, using the notification types() method.
This method returns all available information about the events registered in a class.

Prima defines also the non-object event dispatching and filtering mechanism, available through
the the event hook entry static method.

Propagation

The event propagation mechanism has three different schemes of registering a user-defined callback,
either on the object itself, on the object class, or on the class of some other object

In the descriptions of the schemes below, there are example codes of how to catch the following
event depending on the scheme used:

$obj-> notify("PostMessage", $data1, $data2);

Direct methods

As is usual in the OO programming, event callback routines are declared as methods. ’Direct
methods’ employ this paradigm too, so if the class method named on postmessage is present,
it will be called as a method (i.e., in the object context) when the onPostMessage event is
sent. For example:

sub on_postmessage

{

my ($self, $data1, $data2) = @_;

...

}

The callback name is the modified lower-case event name: the name for the Create event
is on create, PostMessage - on postmessage, etc. These methods can be overloaded in the
object’s class descendants. The only note on declaring these methods in the first instance is
that no ::SUPER call is needed because these methods are not defined by default.

Usually, the direct methods are used for internal bookkeeping, reacting to the events that are
not meant to be passed to the program. For example, the Prima::Button class catches mouse
and keyboard events in such a way, because usually, the only notification that is interesting
for the code that employs push-buttons is Click, and rarely anything else. This scheme is
convenient when an event handling routine serves internal, implementation-specific needs.

Delegated methods

The delegated methods are used when objects (mostly widgets) include other dependent
objects, and the functionality requires interaction between these. The callback functions

24

here are the same methods as the direct methods, except that they get called in the context
of two, not one, objects. If, for example, an $obj’s owner, $owner, would be interested in
$obj’s PostMessage event, it would register the notification callback by issuing the following
call:

$obj-> delegations([$owner, ’PostMessage’]);

where the actual callback sub will be declared as

sub Obj_PostMessage

{

my ($self, $obj, $data1, $data2) = @_;

}

Note that the naming style is different - the callback name is constructed from the object
name (let’s assume that $obj’s name is ’Obj’) and the event name. (This is one of the reasons
why Component::profile check in() performs automatic naming of newly created objects).
Note also that the context objects are $self (that equals $owner in this case) and $obj.

The delegated methods can be used not only for owner-child relations. Every Prima object
is free to add a delegation method to every other object. However, if the objects are in other
than the owner-child relation, it is a good practice to add Destroy notification to the object
whose events are of interest, so if it gets destroyed, the partner object gets a message about
that.

Anonymous subroutines

The two previous callback types are more relevant when a separate class is designed. How-
ever, in the Prima toolkit, it is not necessary to declare a new class every time the event
handling is needed. It is possible to use the third and the most powerful event hook scheme
using perl anonymous subroutines (subs) for easy customization.

Contrary to the usual OO event implementations, when only one routine per class dispatches
an event and calls the inherited handlers when it is appropriate, the Prima event handling
mechanism can accept many event handlers for one object (it is greatly facilitated by the
fact that perl has anonymous subs, however).

All the callback routines are called when an event is triggered, one by one in turn. If the
direct and delegated methods can only be multiplexed by the usual OO inheritance, the
anonymous subs are allowed to be many by design. There are three syntaxes for setting
such an event hook; the example below sets a hook on $obj using each syntax for a different
situation:

- during new():

$obj = Class-> new(

...

onPostMessage => sub {

my ($self, $data1, $data2) = @_;

},

...

);

- after new() using set()

$obj-> set(onPostMessage => sub {

my ($self, $data1, $data2) = @_;

});

25

- after new() using the event name:

$obj-> onPostMessage(sub {

my ($self, $data1, $data2) = @_;

});

The events can be addressed as properties, with the exception that they are not substitutive
but additive. The additivity means that when the latter type of syntax is used, the subs
already registered do not get overwritten or discarded but stack in the internal object queue.
Thus,

$obj-> onPostMessage(sub { print "1" });

$obj-> onPostMessage(sub { print "2" });

$obj-> notify("PostMessage", 0, 0);

code block would print

21

as the execution result.

It is a distinctive feature of the Prima toolkit that two objects of the same class may have
different set of event handlers.

Flow

When there is more than one handler of a particular event type present on an object, a question
may arise about what are the callback’s call priorities and when the event processing stops. One of
the ways to regulate the event flow is based on prototyping events, by using the notification types()
event type description. This function returns a hash, where the keys are the event names and the
values are the constants that describe the event flow. A constant is a bitwise OR combination of
several basic flow nt::XXX constants, that control the following three aspects of the event flow:

Order

If both anonymous subs and direct/delegated methods are present, the object needs to decide
which callback class must be called first. Both ’orders’ are useful: for example, if a class is
designed in such a way that some default action is meant to be overridden, it is better to call
the custom actions first. If, on the contrary, a class event handler does most of the heavy
lifting, then the reverse order may be preferred instead. One of the two nt::PrivateFirst

and nt::CustomFirst constants defines the event execution order.

Direction

Almost the same as the order, but used for finer granulation of the event flow, the direction
constants nt::FluxNormal and nt::FluxReverse are used. The ’normal flux’ defines the
FIFO (first in first out) direction. That means, that the sooner the callback is registered,
the greater priority it would have during the execution. The code block from the example
above

$obj-> onPostMessage(sub { print "1" });

$obj-> onPostMessage(sub { print "2" });

$obj-> notify("PostMessage", 0, 0);

results in 21, not 12 because the PostMessage event type is prototyped as nt::FluxReverse.

26

Execution control

It was stated above that the events are additive, - the callback storage is never discarded when
’set’-syntax is used. However, the event can be told to behave like a substitutive property,
e.g. to call one and only one callback. This functionality is managed by the nt::Single bit
in the execution control constant set, which consists of the following constants:

nt::Single

nt::Multiple

nt::Event

These constants are mutually exclusive, and may not appear together in an event type dec-
laration. A nt::Single-prototyped notification calls only the first (or the last - depending
on order and direction bits) callback. The usage of this constant is somewhat limited.

In contrast with nt::Single, the nt::Multiple constant sets the execution control to call
all the available callbacks, with respect to the direction and the order bits.

The third constant, nt::Event, is the same as nt::Multiple, except that the event flow
can be stopped at any time by calling the clear event() method.

Although there are 12 possible event type combinations, half of them are not usable for any-
thing. The combinations from another half were assigned more-less descriptive names:

nt::Default (PrivateFirst | Multiple | FluxReverse)

nt::Property (PrivateFirst | Single | FluxNormal)

nt::Request (PrivateFirst | Event | FluxNormal)

nt::Notification (CustomFirst | Multiple | FluxReverse)

nt::Action (CustomFirst | Single | FluxReverse)

nt::Command (CustomFirst | Event | FluxReverse)

Success state

Events do not return values, although the event generator, the notify() method does - it returns
either 1 or 0, which is the value of the event state. The 0 and 1 results however do not mean
either success or failure, they simply reflect the fact whether the clear event() method was called
during the processing - 1 if it was not, 0 otherwise. The state is kept during the whole processing
stage and can be accessed by the Component::eventFlag property. Since it is allowed to call
the notify() method inside event callbacks, the object maintains a stack for those states. The
Component::eventFlag property always works with the topmost one and fails if is called from
outside the event processing stage; clear event() is no more than an alias for the eventFlag(0) call.
The state stack is operated by the push event() and pop event() methods.

Implementation note: a call to clear event() inside a nt::Event-prototyped event call does not
automatically stop the execution. The execution stops if the state value equals 0 after the callback
is finished. The eventFlag(1) call thus cancels the effect of clear event().

A particular coding style is used when the event is nt::Single-prototyped and is called
many times in a row, so overheads of calling notify() become a burden. Although the notify()
logic is somewhat complicated, it is rather simple in the nt::Single case. The helper function
get notify sub() returns the context of the callback to be called, so it can be used to emulate the
notify() behavior. For example:

for (...) {

$result = $obj-> notify("Measure", @parms);

}

can be expressed in more cumbersome, but efficient code if the nt::Single-prototyped event
is used:

27

my ($notifier, @notifyParms) = $obj-> get_notify_sub("Measure");

$obj-> push_event;

for (...) {

$notifier-> (@notifyParms, @parms);

$result = $obj-> eventFlag; # this is optional

}

$result = $obj-> pop_event;

Inheritance

The design of the Prima classes is meant to be as close as possible to the standard perl OO model.
F.ex. to subclass a new package, a standard

use base qw(ParentClass);

or even

out @ISA = qw(ParentClass);

should be just fine.
However, there are special considerations about the multiple inheritance and the order of the

ancestor classes. First, the base class should be a Prima class, i e

use base qw(Prima::Widget MyRole);

not

use base qw(MyRole Prima::Widget);

This is caused by the perl OO model where if more than one base class has the same method,
only the first method will be actual, and Prima conforms to that. F ex defining a MyRole::init

won’t have any effect where MyRole is not the first base class (and things will explode badly if it
is).

In a very special case where the MyRole class needs to have methods that overload Prima core,
XS-implemented methods, a special technique is used:

• First, in MyRole, declare a special method CORE METHODS, returning all names of the core
symbols to be overloaded in that role:

package MyRole;

sub CORE_METHODS { qw(setup) }

Do not subclass MyRole from Prima objects though.

• Define the methods as if you would define a normal overridden method, with one
important exception: since perl’s SUPER is package-based, not object-based, the
$self->SUPER::foo() pattern will not work for calling the methods that are up in the
hierarchy. Instead, the first parameter to these methods is an anonymous subroutine that
will call the needed SUPER method:

sub setup

{

my ($orig, $self) = (shift, shift);

...

$orig->($self, @_);

...

}

28

If you know the Moose entry standard syntax around, this is the same idea.

Note that this method will be called after the descendant class setup if the class has one.
This is a bit confusing as in all types of OO inheritance sub-class code is always called after
the super-class, not vice versa. This might change in the future, too.

• In the descendant class, inherit from the MyRole normally, but in addition to that make the
call to overload its special methods:

package MyWidget;

use base qw(Prima::Widget MyRole);

__PACKAGE__->inherit_core_methods(’MyRole’);

Check also the Prima::Widget::GroupScroller section as an example.

API

Prima::Object methods

alive

Returns the object ’vitality’ state - true if the object is alive and usable, false otherwise.
This method can be used as a general checkout if the scalar passed is a Prima object, and if
it is usable. The true return value can be 1 for normal and operational object state, and 2
if the object is alive but in its init() stage. Example:

print $obj-> name if Prima::Object::alive($obj);

cleanup

Called right after the destroy() started. Used to initiate the cmDestroy event. Is never called
directly.

create CLASS, %PARAMETERS

Same as the new entry.

destroy

Initiates the object destruction. Calls cleanup() and then done(). destroy() can be called
several times and is the only Prima re-entrant function, therefore may not be overloaded.

done

Called by the destroy() method after cleanup() is finished. Used to free the object resources,
as a finalization stage. During done() no events are allowed to circulate, and alive() returns
0. The object is not usable after done() finishes. Is never called directly.

Note: the eventual child objects are destroyed inside the done() call.

get @PARAMETERS

Returns a hash where the keys are @PARAMETERS and values are the corresponding object
properties.

init %PARAMETERS

The most important stage of the object creation process. %PARAMETERS is the modified
hash that was passed to new(). The modification consists of merging with the result of
the profile default() method inside the profile check in() method. init() is responsible for
applying the relevant data from PARAMETERS to the corresponding object properties. Is
never called directly.

29

insert CLASS, %PARAMETERS

A convenience wrapper for new() that explicitly sets the owner property for a newly created
object.

$obj = $owner-> insert(’Class’, name => ’name’);

is identical to

$obj = Class-> new(owner => $owner, name => ’name);

insert() has another syntax that allows simultaneous creation of several objects:

@objects = $owner-> insert(

[’Class’, %parameters],

[’Class’, %parameters],

...

);

With this syntax, all newly created objects would have $owner set to their ’owner’ properties.

new CLASS, %PARAMETERS

Creates a new object instance of the given CLASS and sets its properties corresponding to
the passed parameter hash. Examples:

$obj = Class-> new(PARAMETERS);

$obj = Prima::Object::new("class" , PARAMETERS);

Is never called in an object context.

Alias: create()

profile add PROFILE

The first stage of the object creation process. The PROFILE is a reference to the PARAM-
ETERS hash, passed to the new() method. The hash is merged with the hash produced by
the profile default() method after passing both through the profile check in(). The merge
result is stored back in PROFILE.

The method is never called directly.

profile check in CUSTOM PROFILE, DEFAULT PROFILE

The second stage of the object creation process. Resolves eventual ambiguities in CUS-
TOM PROFILE, which is the reference to the PARAMETERS passed to new(), by com-
paring to and using the default values from the DEFAULT PROFILE, which in turn is the
result of the profile default() method.

The method is never called directly.

profile default

Returns a hash of the appropriate default values for all properties of the class. In the object
creation process serves as a provider of fall-back values, and is called (once) during the
process. The method can be used directly, contrary to the other creation process-related
functions.

Can be called in a context of a class.

30

raise ro TEXT

Throws an exception with text TEXT when a read-only property is called in a set- context.

raise wo TEXT

Throws an exception with text TEXT when a write-only property is called in a get-context.

set %PARAMETERS

The default behavior is equivalent to the following code:

sub set

{

my $obj = shift;

my %PARAMETERS = @_;

$obj-> $_($PARAMETERS{$_}) for keys %PARAMETERS;

}

Assigns the object properties correspondingly to the PARAMETERS hash. Many
Prima::Component descendants overload set() to make it more efficient for particular pa-
rameter key patterns.

Like the code above, raises an exception if the key in PARAMETERS has no correspondent
object property.

setup

The last stage of the object creation process. Called after init() finishes. Used to initiate
the onCreate event. Is never called directly.

Prima::Component methods

add notification NAME, SUB, REFERRER = undef, INDEX = -1

Adds the SUB to the list of notifications for the event NAME. REFEREE is the object
reference, which is used to create a context to the SUB and is also passed as a parameter to
it when the event callback is called. If the REFEREE is undef (or is not specified), then
the caller object is assumed. REFEREE also gets implicitly attached to the object, - the
implementation frees the link between the objects when one of these gets destroyed.

INDEX is a desired insert position in the notification list. By default, it is -1, which means
’in the start’. If the notification type contains nt::FluxNormal bit set, the newly inserted
SUB will be called first. If it has nt::FluxReverse, it is called last, correspondingly.

Returns a positive integer value on success, and 0 on failure. This value can be later used
to refer to the SUB in remove notification().

See also: remove notification, get notification.

attach OBJECT

Inserts the OBJECT into the list of the attached objects and increases the OBJECT’s
reference count. The list may not hold more than one reference to the same object; the
warning is issued on such an attempt.

See also: detach.

bring NAME, MAX DEPTH=0

Looks for the child object that has a name that equal to NAME. Returns its reference on
success, undef otherwise. It is a convenience method, that makes possible the usage of the
following constructs:

31

$obj-> name("Obj");

$obj-> owner($owner);

...

$owner-> Obj-> destroy;

...

$obj-> deepChildLookup(1);

$obj-> insert(Foo => name => ’Bar’);

$owner-> Bar-> do_something;

See also: find component, deepChildLookup

can event

Returns true if the object event circulation is allowed. In general, the same as alive() ==

1, except that can event() fails if an invalid object reference is passed.

clear event

Clears the event state, that is set to 1 when the event processing begins. Signals the event
execution stop for the nt::Event-prototyped events.

See also: the Events entry, push event, pop event, ::eventFlag, notify.

Use this call in your overloaded event handlers when signalling that further processing should
be stopped, f ex onMouseDown doing something else than the base widget.

See more in the Execution control entry. Check the exact nt:: type of the event in the
Prima/Classes.pm source.

detach OBJECT, KILL

Removes the OBJECT from the list of the attached objects and decreases the OBJECT’s
reference count. If KILL is true, destroys the OBJECT.

See also: attach

event error

Issues a system-dependent warning sound signal.

event hook [SUB]

Installs the SUB to receive all events on all Prima objects. The SUB receives the same
parameters passed to the notify entry and must return an integer, either 1 or 0, to pass or
block the event respectively.

If no SUB is set, returns the currently installed event hook pointer. If SUB is set, replaces
the old hook sub with SUB. If SUB is ’undef’, event filtering is not used.

Since the ’event hook’ mechanism allows only one hook routine to be installed at a time,
direct usage of the method is discouraged. Instead, use the the Prima::EventHook section
API for multiplexing access to the hook.

The method is static and can be called either with or without a class or an object as a first
parameter.

find component NAME

Performs a depth-first search on children tree hierarchy, matching the object that has a name
equal to NAME. Returns its reference on success, undef otherwise.

See also: bring

get components

Returns an array of the child objects.

See: new, the Links between objects entry.

32

get handle

Returns a system-dependent handle for the object. For example, Prima::Widget returns
its system Window/HWND handles, Prima::DeviceBitmap - its system Pixmap/HBITMAP
handles, etc.

Can be used to pass the handle value outside the program, for eventual interprocess com-
munication.

get notification NAME, @INDEX LIST

For each index in the INDEX LIST returns three scalars, bound to the index position in
the NAME event notification list. These three scalars are REFERRER, SUB, and ID.
REFERRER and SUB are those passed to add notification, and ID is its saved result.

See also: remove notification, add notification.

get notify sub NAME

A convenience method for the nt::Single-prototyped events. Returns the code reference and
the context for the first notification sub for event NAME.

See the Success state entry for example.

notification types

Returns a hash, where the keys are the event names and the values are the nt:: constants
that describe the event flow.

Can be called in the context of a class.

See the Events entry and the Flow entry for details.

notify NAME, @PARAMETERS

Calls the subroutines bound to the event NAME with parameters @PARAMETERS in the
context of the object. The calling order is described by the nt:: constants, from the hash
returned by the notification types().

notify() accepts a variable number of parameters, and while it is possible, it is not recom-
mended to call notify() with the excessive number of parameters. The call with the deficient
number of parameters results in an exception.

Example:

$obj-> notify("PostMessage", 0, 1);

See the Events entry and the Flow entry for details.

pop event

Closes the event processing stage bracket.

See push event, the Events entry

post message SCALAR1, SCALAR2

Calls the PostMessage event with parameters SCALAR1 and SCALAR2 once during the
next idle event loop. Returns immediately. Does not guarantee that PostMessage will be
called, however.

See also the post entry in the Prima::Utils section

push event

Opens the event processing stage bracket.

See pop event, the Events entry

33

remove notification ID

Removes the notification subroutine that was registered before using the add notification

method, and where the ID was its result. After the successful removal, the eventual context
object gets implicitly detached from the storage object.

See also: add notification, get notification.

set notification NAME, SUB

Adds the SUB to the event NAME notification list. Rarely used directly, but is a key point
in enabling the following syntax:

$obj-> onPostMessage(sub { ... });

or

$obj-> set(onPostMessage => sub { ... });

that are shortcuts for

$obj-> add_notification("PostMessage", sub { ... });

unlink notifier REFERRER

Removes all notification subs from all event lists bound to the REFERRER object.

Prima::Component properties

deepChildLookup BOOL

If set, the lookup by name uses a breadth-first deep lookup into the object hierarchy. If
unset (default), only immediate children objects are searched.

$self->deepChildLookup(0);

$self->Child1->GrandChild2;

...

$self->deepChildLookup(1);

$self->GrandChild2;

eventFlag STATE

Provides access to the last event processing state in the object event state stack.

See also: the Success state entry, clear event, the Events entry.

delegations [<REFERRER>, NAME, <NAME>, < <REFERRER>, NAME, ... >

]

Accepts an anonymous array in the set- context, which consists of a list of event NAMEs,
that a REFERRER object (the caller object by default) is interested in. Registers notifi-
cation entries if the subs with the naming scheme REFERRER NAME are present on the
REFERRER namespace. The example code

$obj-> name("Obj");

$obj-> delegations([$owner, ’PostMessage’]);

34

registers the Obj PostMessage callback if it is present in the $owner namespace.

In the get- context returns an array reference that reflects the object’s delegated events list
content.

See also: the Delegated methods entry.

name NAME

Maintains the object name. NAME can be an arbitrary string, however it is recommended
against the usage of special characters and spaces in NAME, to facilitate the indirect object
access coding style:

$obj-> name("Obj");

$obj-> owner($owner);

...

$owner-> Obj-> destroy;

and to prevent system-dependent issues. If the system provides capabilities that allow to
predefining some object parameters by its name (or its class), then it is impossible to know
beforehand the system naming restrictions. For example, in the X11 window system the
following resource string would make all Prima toolkit buttons green:

Prima*Button*backColor: green

In this case, using special characters such as : or * in the name of an object would make
the X11 resource unusable.

owner OBJECT

Sets the owner of the object, which may be a Prima::Component descendant. Setting an
owner to an object does not alter its reference count. Some classes allow OBJECT to
be undef, while some do not. All widget objects can not exist without a valid owner;
Prima::Application on the contrary can only exist with the owner set to undef. Prima::Image
objects are indifferent to the value of the owner property.

Changing the owner dynamically is allowed, but it is a main source of implementation bugs
since the whole hierarchy tree needs to be recreated. Although this effect is not visible in
perl, the results are deeply system-dependent, and the code that changes owner property
should be thoroughly tested.

Changes to the owner result in up to three notifications: ChangeOwner, which is called to
the object itself, ChildLeave, which notifies the previous owner that the object is about to
leave, and ChildEnter, telling the new owner about the new child.

Prima::Component events

ChangeOwner OLD OWNER

Called when the object changes its owner.

ChildEnter CHILD

Triggered when a child object is attached, either as a new instance or as a result of runtime
owner change.

ChildLeave CHILD

Triggered when a child object is detached, either because it is getting destroyed or as a result
of runtime owner change.

35

Create

The first event the object sees. Called automatically after init() is finished. Is never called
directly.

Destroy

The last event the object sees. Called automatically before done() is started. Is never called
directly.

PostMessage SCALAR1, SCALAR2

Called after the post message() call is issued, however not inside post message() but after the
next idle event loop. SCALAR1 and SCALAR2 are the data passed to the post message().

SysHandle

Sometimes Prima needs to implicitly re-create the system handle of a component. The re-
creation usually happens deep inside the Prima core, however, if widgets on the screen are
re-created, then they might get repainted. This happens when the underlying system either
doesn’t have API to change a certain property during the runtime or when such a re-creation
happens on one of the component’s parents, leading to a downward cascade of re-creation of
the children. Also, it may happen when the user changes some system settings resolution so
that some resources have to be changed accordingly.

This event will be only needed when the system handle (that can be acquired by get handle

) is used further, or in the case when Prima doesn’t restore some properties bound to the
system handle.

36

3.3 Prima::Classes

Binder module for the built-in classes.

Description

Prima::Classes and the Prima::Const section form a minimal set of perl modules needed for
the toolkit to run. Since the module provides bindings for the core classes, it is required to be
included in every Prima-related module and program.

37

3.4 Prima::Drawable

Generic 2-D graphic interface

Synopsis

if ($object-> isa(’Prima::Drawable’)) {

$object-> begin_paint;

$object-> color(cl::Black);

$object-> line(100, 100, 200, 200);

$object-> ellipse(100, 100, 200, 200);

$object-> end_paint;

}

Description

Prima::Drawable is a descendant of the Prima::Component class. It provides access to the system
graphic context and canvas through its methods and properties. The Prima::Drawable descendants
Prima::Widget, Prima::Image, Prima::DeviceBitmap, and Prima::Printer are backed by system-
dependent routines that allow drawing and painting on the system objects.

Usage

Prima::Drawable, as well as its ancestors Prima::Component and Prima::Object, is never used
directly because the Prima::Drawable class by itself provides only the interface. It provides a
three-state object access - when drawing and painting are enabled, when these are disabled, and
the information acquisition state. By default, the object is created in a paint-disabled state. To
switch to the enabled state, the begin paint() method is used. Once in the enabled state, the object
drawing and painting methods apply to the system canvas. To return to the disabled state, the
end paint() method is called. The information state can be managed by using begin paint info()
and end paint info() methods pair. An object cannot be triggered from the information state to
the enabled state (and vice versa) directly.

Graphic context and canvas

The graphic context is the set of variables, that control how exactly graphic primitives are rendered.
The variable examples are color, font, line width, etc. Another term used here is canvas - the
graphic area of a certain extent, connected to the Prima object, where the drawing and painting
methods are used.

In all three states, a graphic context is allowed to be modified, but in different ways. In the
disabled state, a graphic context value is saved as a template; when an object enters the information
or the enabled state, all values are preserved, but when the object is back to the disabled state,
the graphic context is restored to the values last assigned before entering the enabled state. The
code example below illustrates the idea:

$d = Prima::Drawable-> create;

$d-> lineWidth(5);

$d-> begin_paint_info;

lineWidth is 5 here

$d-> lineWidth(1);

lineWidth is 1

$d-> end_paint_info;

lineWidth is 5 again

38

(Note: ::region and ::clipRect properties are exceptions. They cannot be used in the
disabled state. The values of these properties, as well as the property ::matrix are neither
recorded nor used as a template).

That is, in the disabled state any Drawable maintains only the graphic context values. To draw
on a canvas, the object must enter the enabled state by calling begin paint(). This function can
be unsuccessful because the object binds with system resources during this stage, and allocation
of those may fail. Only after the enabled state is entered, the canvas is accessible:

$d = Prima::Image-> create(width => 100, height => 100);

if ($d-> begin_paint) {

$d-> color(cl::Black);

$d-> bar(0, 0, $d-> size);

$d-> color(cl::White);

$d-> fill_ellipse($d-> width / 2, $d-> height / 2, 30, 30);

$d-> end_paint;

} else {

die "can’t draw on image:$@";

}

Different objects are mapped to different types of canvases - Prima::Image canvas retains
its content after end paint(), Prima::Widget maps it to some screen area, which content more
transitory, etc.

The information state is as same as the enabled state, but the changes to the canvas are not
visible. Its sole purpose is to read, not to write information. Because begin paint() requires some
amount of system resources, there is a chance that a resource request can fail, for any reason.
The begin paint info() requires some resources as well, but usually much less, and therefore if only
information is desired, it is usually faster and cheaper to obtain it inside the information state.
A notable example is the get text width() method, which returns the length of a text string in
pixels. It works in both enabled and information states, but code

$d = Prima::Image-> create(width => 10000, height => 10000);

$d-> begin_paint;

$x = $d-> get_text_width(’A’);

$d-> end_paint;

is much more expensive than

$d = Prima::Image-> create(width => 10000, height => 10000);

$d-> begin_paint_info;

$x = $d-> get_text_width(’A’);

$d-> end_paint_info;

for the obvious reasons.
It must be noted that some information methods like get text width() work even under the

disabled state; the object is switched to the information state implicitly if it is necessary.
See also: the graphic context entry.

Color space

Graphic context and canvas operations rely completely on a system implementation. The internal
canvas color representation is therefore system-specific, and usually could not be described in
Prima definitions. Often the only information available about color space is its color depth.

Therefore all color manipulations, including dithering and antialiasing are subject to system
implementation, and can not be controlled from perl code. When a property is set on the object
in the disabled state, it is recorded verbatim; color properties are no exception. After the object

39

switches to the enabled state, a color value is translated to the system color representation, which
might be different from Prima’s. For example, if the display color depth is 15 bits, 5 bits for every
component, then the white color value 0xffffff is mapped to

11111000 11111000 11111000

--R----- --G----- --B-----

that equals to 0xf8f8f8, not 0xffffff (See the Prima::gp-problems section for inevident graphic
issues discussion).

The Prima::Drawable color format is RRGGBB, with each component resolution of 8 bits, thus
allowing 2ˆ24 color combinations. If the device color space depth is different, the color is truncated
or expanded automatically. In case the device color depth is insufficient, dithering algorithms may
apply.

Note: not only color properties but all graphic context properties allow all possible values in
the disabled state, which are translated into system-allowed values when entering the enabled and
the information states. This feature can be used to test if a graphic device is capable of performing
certain operations (for example, if it supports raster operations - the printers usually do not).
Example:

$d-> begin_paint;

$d-> rop(rop::Or);

if ($d-> rop != rop::Or) { # this assertion is always false without

... # begin_paint/end_paint brackets

}

$d-> end_paint;

There are two color properties on each drawable - ::color and ::backColor. The values they
operate are unsigned integers in the discussed above RRGGBB 24-bit format, however, the toolkit
defines some mnemonic color constants as well:

cl::Black

cl::Blue

cl::Green

cl::Cyan

cl::Red

cl::Magenta

cl::Brown

cl::LightGray

cl::DarkGray

cl::LightBlue

cl::LightGreen

cl::LightCyan

cl::LightRed

cl::LightMagenta

cl::Yellow

cl::White

cl::Gray

It is not unlikely that if a device’s color depth is insufficient, the primitives could be drawn
with dithered or incorrect colors. This usually happens on paletted displays, with 256 or fewer
colors.

There exist two methods that facilitate the correct color representation. The first way is
to get as much information as possible about the device. The methods get nearest color() and
get physical palette() provide a possibility to avoid mixed colors drawing by obtaining indirect
information about solid colors, supported by a device. Another method is to use the ::palette

40

property. It works by inserting the colors into the system palette, so if an application knows the
colors it needs beforehand, it can employ this method - however, this might result in a system
palette flash when a window focus toggles.

Both of these methods are applicable both with drawing routines and image output. An
application that desires to display an image with the least distortion is advised to export its palette
to an output device because images usually are not subject to automatic dithering algorithms. The
Prima::ImageViewer module employs this scheme.

Antialiasing and alpha

If the system has the capability for antialiased drawing and alpha rendering, Prima can use it.
The render mode can be turned on by calling

$drawable->antialias(1)

which turns on the following effects:

• All primitives except images, pixel, and bar alpha can be plotted with antialiased edges
(text is always antialiased when possible)

• Graphic coordinates are then used as floating point numbers, not integers. That means that
f ex a call

$drawable->rectangle(5.3, 5.3, 10, 10)

that had its coordinates automatically rounded to (5,5,10,10), now will render the primitive
with subpixel precision, where its two edges will be divided between pixels 5 and 6, by using
half-tones.

Another note on the rounding of coordinates: historically almost all Prima pixel coordinates
were integers, and implicit rounding of the passed numbers was done using the int function, i
e int(0.7)=0 and int(-0.7)=0. This was later changed, breaking some backward compatibility,
and now the rounding function is a more robust R = floor(x + 0.5), where R(0.7) = 1

and R(-0.7) = -1.

• The coordinate offset (0,0) moves to the ephemeral point between screen pixels (0,0),(-1,0),(-
1,-1),(0,-1), which in turn leads to different results when plotting closed shapes. F.ex. an
ellipse with a diameter of 3 pixels looks like this:

Figure 3.1: 3px ellipse and origin of the coordinate grid

That is why if you need to draw a robust graphic routine that would have more or less
identical results in both antialiasing modes, the closed shapes may need to decrease the
diameter by 1 pixel when the antialiasing mode is set.

For the cases where the system does not support antialiasing, Prima provides the the
Prima::Drawable::Antialias section emulation class, available through the new aa surface call.

41

To see if alpha and antialiasing are supported on the system, check the sv::Antialias value.
To see if a particular drawable supports alpha layering, check the can draw alpha method.

Note that in the render mode, all painting operations treat the alpha channel differently,
which can have a dramatic difference on layered surfaces. In the normal mode, the alpha channel
is completely ignored, and using normal mode paints on a layered widget always produces a
translucent window because the alpha value will always be 0, and the color bits are assumed to be
already premultiplied. In the render mode, the alpha channel is addressed by the alpha property
when drawing primitives, or in the mask property when drawing icons (again, drawing images and
non-layered bitmaps assumes alpha = 0). The same is valid for fill pattern images and fill pattern
icons.

Monochrome bitmaps

Prima has special rules when drawing a monochrome Prima::DeviceBitmap. Such objects don’t
possess an inherent color palette, and by definition are bitmaps with only two pixel values present,
0s and 1s. When a monochrome bitmap is drawn, 0s are painted using the color value of the target
canvas color property, and 1s using the backColor value.

That means that the following code

$bitmap-> color(0);

$bitmap-> line(0,0,100,100);

$target-> color(cl::Green);

$target-> put_image(0,0,$bitmap);

produces a green line on $target.
When using monochrome bitmaps for logical operations, note that the target colors should not

be explicit 0 and 0xffffff, nor cl::Black and cl::White, but cl::Clear and cl::Set instead.
The reason is that on paletted displays, the system palette may not necessarily contain the white
color under palette index (2ˆScreenDepth-1). cl::Set thus signals that the value should be ”all
ones”, no matter what color it represents because it will be used for logical operations.

Fonts

Prima maintains its own font naming convention which usually does not conform to the system’s.
Since Prima’s goal is interoperability, it might be so that some system fonts would not be accessible
from within the toolkit.

Prima::Drawable provides property ::font that accepts/returns a hash, that represents the
state of a font in the system graphic context. The font hash keys that are acceptable on the set-call
are:

name

The font name string. If there is no such font, a default font name is used. To select the
default font, a ’Default’ string can be passed with the same result (unless the system has a
font named ’Default’, of course).

height

An integer value from 1 to MAX INT. Specifies the desired extent of a font glyph between
descent and ascent lines in pixels.

size

An integer value from 1 to MAX INT. Specifies the desired extent of a font glyph between
descent and internal leading lines in points. The relation between size and height is

height - internal_leading

size = --------------------------- * 72.27

resolution

42

That differs from some other system representations: Win32, for example, rounds 72.27
constant to 72.

width

An integer value from 0 to MAX INT. If greater than 0, specifies the desired extent of a font
glyph width in pixels. If 0, sets the default (designed) width corresponding to the font size
or height.

style

A combination of fs:: (font style) constants. The constants

fs::Normal

fs::Bold

fs::Thin

fs::Italic

fs::Underlined

fs::StruckOut

fs::Outline

can be OR-ed together to express the font style. fs::Normal equals 0 and is usually never
used. If some styles are not supported by a system-dependent font subsystem, they are
ignored.

pitch

One of three constants:

fp::Default

fp::Fixed

fp::Variable

fp::Default specifies no interest in the font pitch selection. fp::Fixed is set when a
monospaced (all glyphs are of the same width) font is desired. fp::Variable pitch specifies
a font with different glyph widths. This key is of the highest priority; all other keys may be
altered for the consistency of the pitch key.

vector

One of three constants:

fv::Default

fv::Bitmap

fv::Outline

fv::Default specifies no interest in the font type selection, fv::Bitmap sets the priority for
the bitmap fonts, and fv::Outline for the vector fonts.

Additionally, font entries returned from the fonts method may set the vector field to
fv::ScalableBitmap, to distinguish a bitmap font face that comes with predefined bitmap
sets from a scalable font.

direction

A counter-clockwise rotation angle - 0 is default, 90 is pi/2, 180 is pi, etc. If a font cannot
be rotated, it is usually substituted with the one that can.

43

encoding

A string value, one of the strings returned by Prima::Application::font encodings. Se-
lects the desired font encoding; if empty, picks the first matched encoding, preferably the
locale set up by the user.

The encodings provided by different systems are different; in addition, the only encodings
are recognizable by the system, that are represented by at least one font in the system.

Unix systems and the toolkit PostScript interface usually provide the following encodings:

iso8859-1

iso8859-2

... other iso8859 ...

fontspecific

Win32 returns the literal strings like

Western

Baltic

Cyrillic

Hebrew

Symbol

A hash that ::font returns, is a tied hash, whose keys are also available as separate properties.
For example,

$x = $d-> font-> {style};

is equivalent to

$x = $d-> font-> style;

While the latter gives nothing but the arguable coding convenience, its usage in set-call is
much more usable:

$d-> font-> style(fs::Bold);

instead of

my %temp = %{$d-> font};

$temp{ style} = fs::Bold;

$d-> font(\%temp);

The properties of a font-tied hash are also accessible through the set() call, like in
Prima::Object:

$d-> font-> style(fs::Bold);

$d-> font-> width(10);

is an equivalent to

$d-> font-> set(

style => fs::Bold,

width => 10,

);

44

When get-called, the ::font property returns a hash where more entries than those described
above can be found. These keys are read-only, their values are ignored if passed to ::font in a
set-call.

To query the full list of fonts available to a graphic device, the ::fonts method is used. This
method is not present in the Prima::Drawable namespace; it can be found in two built-in class
instances, Prima::Application and Prima::Printer.

Prima::Application::fonts returns metrics for the fonts available to the screen device, while
Prima::Printer::fonts (or its substitute Prima::PS::Printer) returns fonts for the printing
device. The result of this method is an array of font metrics, fully analogous to these returned by
the Prima::Drawable::font method.

family

A string with font family name. The family is a secondary string key, used for distinguishing
between fonts with the same name but of different vendors (for example, Adobe Courier
and Microsoft Courier).

ascent

Number of pixels between a glyph baseline and descent line.

descent

Number of pixels between a glyph baseline and descent line.

internalLeading

Number of pixels between ascent and internal leading lines. Negative if the ascent line is
below the internal leading line.

externalLeading

Number of pixels between ascent and external leading lines. Negative if the ascent line is
above the external leading line.

Figure 3.2: Horizontal font measurements

weight

Font designed weight. Can be one of

fw::UltraLight

fw::ExtraLight

fw::Light

fw::SemiLight

fw::Medium

fw::SemiBold

fw::Bold

fw::ExtraBold

fw::UltraBold

constants.

45

maximalWidth

The maximal extent of a glyph in pixels. Equals to width in monospaced fonts.

xDeviceRes

Designed horizontal font resolution in dpi.

yDeviceRes

Designed vertical font resolution in dpi.

firstChar

Index of the first glyph present in a font.

lastChar

Index of the last glyph present in a font.

breakChar

Index of the default character used to divide words. In a typical Western language font it is
32, the ASCII space character.

defaultChar

Index of a glyph that is drawn instead of a nonexistent glyph if its index is passed to the
text drawing routines.

underlinePosition

Position below baseline where to draw underscore line, in pixels. Is negative.

underlineThickness

Pixel width of the underscore line

Font ABC metrics

Besides these characteristics, every font glyph has an ABC metric, the three integer values that
describe the horizontal extents of a glyph’s black part relative to the glyph extent:

Figure 3.3: Vertical glyph measurements

A and C are negative, if a glyph ’hangs’ over its neighbors, as shown in the picture on the
left. A and C values are positive if a glyph contains empty space in front or behind the neighbor
glyphs, like in the picture on the right. As can be seen, B is the width of a glyph’s black part.

ABC metrics are returned by the get font abc() method.
The corresponding vertical metrics, called DEF metrics, are returned by the get font def()

method.

Raster operations

The Prima::Drawable class has two raster operation properties: ::rop and ::rop2. These define
how the graphic primitives are plotted. ::rop deals with the foreground color drawing, and ::rop2

with the background.

46

Universal ROPs The toolkit defines the following operations:

Figure 3.4: Classic raster operations

Usually, however, graphic devices support only a small part of the above set, limiting ::rop

to the most important operations: Copy, And, Or, Xor, NoOp. ::rop2 is usually even more
restricted, and supports only Copy and NoOp.

The raster operations apply to all graphic primitives except SetPixel.
Note for layering: using layered images and device bitmaps with put image and stretch image

can only use rop::SrcCopy and rop::Blend raster operations on OS-provided surfaces. See more
on rop::Blend below.

Also, the rop::AlphaCopy operation is available for accessing alpha bits only. When used, the
source image is treated as an alpha mask, and therefore it has to be grayscale. It can be used to
apply the alpha bits independently, without the need to construct an Icon object.

rop::Blend rop::Blend is the same as rop::SrcOver except the source pixels are assumed to
be already premultiplied with the source alpha. This is the default raster operation when drawing
with 8-bit icon masks or on layered surfaces, and it reflects the expectation of the OS that images
come premultiplied.

This is the only blending operator supported on the widgets and bitmaps, and it is
advised to premultiply image pixels before drawing images using it with a call to the
Image.premultiply alpha method. The core image drawing supports this operator in case these
premultiplied images are to be used not only on native surfaces but also on Prima images.

47

Default raster operations The put image, stretch image, and put image indirect meth-
ods are allowed to be called without explicitly specifying the ROP to be used. In this case, the
default ROP, that depends on the source drawable, will be used. In the majority of cases the
default ROP is rop::CopyPut, however, when drawing using layered device bitmaps and icons
with 8-bit alpha masks, rop::Blend is used instead. This is a sort of a DWIM behavior.

This effect is achieved by translating the rop::Default constant via the get effective rop

method, that can be used to detect what is the preferred raster operation for a source drawable.
rop::Default can only be used in the aforementioned there methods, not in the rop property,
not anywhere else.

Additional ROPs Prima core imaging supports extra features for compositing images outside
the begin paint/end paint brackets. It supports the following 12+1 Porter-Duff operators and
some selected Photoshop blend operators:

Figure 3.5: Porter-Duff operators

Transparency control

There is defined a set of constants to apply a constant source and destination alpha to when
there is no alpha channel available:

rop::SrcAlpha

rop::SrcAlphaShift

rop::DstAlpha

rop::DstAlphaShift

Combine the rop constant using this formula:

$rop = rop::XXX |

rop::SrcAlpha | ($src_alpha << rop::SrcAlphaShift) |

rop::DstAlpha | ($dst_alpha << rop::DstAlphaShift)

48

Figure 3.6: Photoshop operators

or by calling rop::alpha($rop, [$src alpha, [$dst alpha]]) that does the same.

Also, the function rop::blend($alpha) creates a rop constant for the simple blending of
two images by the following formula:

$dst = ($src * $alpha + $dst * (255 - $alpha)) / 255

rop::alpha also can be used for drawing on images outside begin paint/end paint with all
Porter-Duff and Photoshop raster operators:

$image->rop(rop::alpha(rop::SrcOver, 128));

$image->ellipse(5, 5, 5, 5);

Note that when the raster operation is set to rop::SrcOver, the fully identical effect can be
achieved by

$image->alpha(128);

$image->ellipse(5, 5, 5, 5);

as well, in a DWIM fashion. The only corner case here is when $image->alpha is 255;
add the rop flags rop::DstAlpha | (255 < rop::DstAlphaShift) to make sure that
blending is selected. The corner case happens because the values of the Porter-Duff and
bitwise rops clash, as the design was to make the values of rop::CopyPut and rop::Blend

to be the same to serve as a sensible default. This may be resolved in future.

When used with icons, their source and/or destination alpha channels are additionally mul-
tiplied by these values.

rop::ConstantColor

This bit is used when the alpha is defined but the main bits aren’t. In this case, the main
bits are filled from the destination’s image color, and the source image is treated as the
source alpha channel. The following code applies a solid green shade with a mask loaded
from a file.

$src->load(’8-bit gray mask.png’);

$dst->color(cl::LightGreen);

$dst->put_image(0,0,$src,rop::SrcOver | rop::ConstantColor);

49

Coordinates

The Prima toolkit employs the XY grid where X ascends rightwards and Y ascends upwards.
There, the (0,0) location is the bottom-left pixel of a canvas.

All graphic primitives use inclusive-inclusive boundaries. For example,

$d-> bar(0, 0, 1, 1);

plots a bar that covers 4 pixels: (0,0), (0,1), (1,0) and (1,1).
The coordinate origin can be shifted using the ::matrix property that translates the (0,0)

point to the given offset. Calls to ::matrix, ::clipRect and ::region always use the ’physical’
(0,0) point, whereas the plotting methods use the transformation result, the ’logical’ (0,0) point.

As noted before, these three properties cannot be used when an object is in the disabled state.

Matrix The Prima::Drawable class accepts matrix scalars in the form of 6-item arrays that
constitute the following 2-D transformation matrix

A B DX

C D DY

0 0 1

where the coordinate transformation follows this formula:

x’ = A x + B x + DX

y’ = C y + D y + DY

There are two accessors, get matrix and set matrix that return a copy of the current matrix
or copy a new matrix, correspondingly, from and to the drawable object.

The 6-item array that get matrix returns is also a blessed object of type Prima::matrix (
see the Prima::matrix entry in the Prima::types section) that is a separate copy of the object
matrix. Prima::matrix objects feature a set of operations such as rotate and translate that
transform the matrix further. To apply this matrix, one calls $drawable->set matrix($matrix)

or $matrix->apply($drawable).
There is also a property matrix that is not orthogonal to the get matrix/ set matrix method

pair, as matrix returns a Prima::Matrix object, that, contrary to a Prima::matrix object re-
turned by get matrix, is a direct accessor to the drawable’s matrix:

my $m = $self->get_matrix;

$m->translate(1,2);

$self->set_matrix($m); # or $self->matrix($m);

is the same as

$self->matrix->translate(1,2);

and does not need an explicit call to set matrix or apply.
This class has all the methods the Prima::matrix has. See more in the Prima::Matrix entry

in the Prima::types section. See also: the reset matrix entry.

Custom line end styles

Prima uses its own plotting mechanism in the Prima::Drawable::Path section to produce all prim-
itive shapes, including lines. The way lines are plotted is managed by the properties lineEnd,
lineJoin, linePattern, and miterLimit. All of these properties are described below, however,
lineEnd provides rich capabilities to generate custom line ends, and this is what is described in
this section.

50

le:: namespace

There are 3 predefined le:: integer constants

that are hardcoded in Prima, that are accepted by the lineEnd property. These constants
are somewhat limited in the way one can operate them, for the sake of efficiency.

It is also possible to supply an array descriptor that defines a set of primitives that plot
a line cap, automatically transformed with respect to the current line tangent and width.
Details of the descriptor syntax itself are given in the next section, while here the set of
non-hardcoded line end functions is listed, which is also suitable for use in the lineEnd

property.

le::Arrow

le::Cusp

le::InvCusp

le::Knob

le::Rect

le::RoundRect

le::Spearhead

le::Tail

These descriptors could be arbitrarily transformed (f ex scaled):

all three lines produce the same effect

$x->lineEnd(le::scale(Arrow => 1.5));

$x->lineEnd(le::transform(le::Arrow, [1.5,0,0,1.5,0,0]));

$x->lineEnd(le::transform(le::Arrow, Prima::matrix->new->scale(1.5)));

Figure 3.7: Line ends with x 1.5 scaling

51

lineEnd accessors

The lineEnd property can accept up to 4 line end definitions, depending on syntax. When
Prima plots lines, depending on the location of a line end, one of these 4 definitions is selected.
Each definition also has its own property - see the lineHead entry, the lineTail entry, the
arrowHead entry, and the arrowTail entry, or an index-based accessor lineEndIndex:

Line end syntax

The syntax for the custom line end style is:

syntax ::= array of pairs

pair ::= command, array of points

command ::= line or conic or cubic

points ::= set of x,y coordinate pairs (vertices)

where individual commands accept an arbitrary number of vertices, but no less than 1 for
line, 2 for conic, and 3 for cubic.

The commands are executed sequentially on a coordinate grid where the line width is assumed
to be 1, the plotting starts from the point at (1,0) and ends at (-1,0).

For example, this is the definition of le::Arrow:

[

conic => [1,0,2.5,0,2.5,-0.5],

line => [0,2.5],

conic => [-2.5,-0.5,-2.5,0,-1,0]

]

API

Graphic context properties

alpha INTEGER

Sets the alpha component of the brush, where 0 is fully transparent and 255 is fully opaque.

Note that premultiplication of color and backColor is not necessary as it is done internally.

Default: 255

52

antialias BOOLEAN

Turns on and off antialiased drawing on all primitives, excluding image, pixel, and
bar alpha calls.

It will not be possible to turn the property on if the system does not support it. Also,
monochrome images won’t support it as well.

See the Antialiasing and alpha entry.

arrowHead

Defines the style to paint line heads on starting or ending points used to define a line or
polygon. Is never used on closed shapes. If undef, the heads are painted with the same style
as lineHead

Default value: le::Round. Cannot be undef.

arrowTail

Defines the style to paint line tails on starting or ending points used to define a line or a
polygon. Is never used on closed shapes. If undef, the heads are painted with the same style
as lineTail; if it is also undef, then the style of lineHead is used.

Default value: undef

backColor COLOR

Sets background color to the graphic context. All drawing routines that use non-solid or
transparent fill or line patterns use this property value.

color COLOR

Sets foreground color to the graphic context. All drawing routines use this property value.

clipRect X1, Y1, X2, Y2

Selects the clipping rectangle corresponding to the physical canvas origin. On get-call, re-
turns the extent of the clipping area, if it is not rectangular, or the clipping rectangle
otherwise. The code

$d-> clipRect(1, 1, 2, 2);

$d-> bar(0, 0, 1, 1);

thus affects only one pixel at (1,1).

Set-call discards the previous ::region value.

Note: ::clipRect can not be used while the object is in the paint-disabled state, its context
is neither recorded nor used as a template (see the Graphic context and canvas entry) --
except on images.

fillMode INTEGER

Affects the filling style of complex polygonal shapes filled by fillpoly. If fm::Winding, the
filled shape contains no holes; if fm::Alternate, holes are present where the shape edges
cross.

The fm::Overlay flag can be combined with these to counter an intrinsic defect of filled
shapes both in Win32 and X11 that don’t exactly follow polygon vertices. When supplied,
it overlays a polygon over the filled shape, so that the latter falls exactly in the boundaries
defined by vertices. This is desirable when one wants the shape to be defined exactly by
polygon vertices but is not desirable when a shape has holes in it and is connected in a way
that the polygon overlay may leave visible connection edges over them.

53

Default value: fm::Winding|fm::Overlay

fillPattern ([@PATTERN]) or (fp::XXX) or IMAGE

Selects 8x8 fill pattern that affects primitives that plot filled shapes: bar(), fill chord(),
fill ellipse(), fillpoly(), fill sector(), floodfill().

Accepts either a fp:: constant or a reference to an array of 8 integers, or an image reference.
In all cases, except where the image is colored, treats 0s in the pattern as the currently
selected backColor, and 1s as color. When rop2 is set to rop::NoOper, treats 0s as fully
transparent pixels. Additionally, when in the render mode respects the alpha property.

Note: Drawing over a monochrome bitmap or image will not respect its rop on Win32.

Depending on the parameters, treats the input as follows:

fp:: constant

There are some predefined patterns, that can be referred to via fp:: constants:

54

(the actual patterns are hardcoded in api/api.c) The default pattern is fp::Solid.

On a get-call, does not return the fp:: value but the corresponding array (see below).
If a constant value is needed to be recovered, use the fp::builtin function that would
return the constant from the array. There are also two shortcut functions, fp::is solid

and fp::is empty that check if the fill pattern is all-ones or all-zeros, correspondingly.

Array

Wants an 8-item array where each item is a byte value, representing 8 bits of each
line in a pattern. The first integer is the topmost pattern line, and the bit 0x80 is the
leftmost pixel in the line.

An example below shows the encoding of the fp::Parquet pattern:

76543210

84218421 Hex

0 $ $ $ 51

1 $ $ 22

2 $ $ $ 15

3 $ $ 88

4 $ $ $ 45

5 $ $ 22

6 $ $ $ 54

7 $ $ 88

$d-> fillPattern([0x51, 0x22, 0x15, 0x88, 0x45, 0x22, 0x54, 0x88]);

Monochrome image

55

Like the array above, wants an image consisting of 0s and 1s where these would repre-
sent the target canvas’ backColor and color property values, correspondingly, when
rendered. In the same fashion, when rop2 is set to rop::NoOper, zeros will be treated
as transparent pixels.

Color image

Ignores color, and backColor, and rop2. Just uses the tiles and the current alpha value.

Icon

Ignores color, backColor, and rop2. Uses the alpha pixel values from the icon’s mask
and the current alpha value.

fillPatternOffset X, Y

Origin coordinates for the fillPattern. Image patterns origin (0,0) is system-dependent.

font \%FONT

Manages font context. FONT hash acceptable values are name, height, size, width, style
and pitch.

Synopsis:

$d-> font-> size(10);

$d-> font-> name(’Courier’);

$d-> font-> set(

style => $x-> font-> style | fs::Bold,

width => 22

);

See the Fonts entry for the detailed descriptions.

Applies to text out(), get text width(), get text box(), get font abc(), get font def(), ren-
der glyph().

font mapper

Returns a font mapper object that provides the interface to a set of fonts used for substitution
in polyfont shaping (see the text shape entry). The fonts can be accessed there either by
their font hash (name and style only, currently), or the font’s corresponding index.

There are two font lists used in the substitution mechanism, passive and active. The passive
font list is initiated during the toolkit start and is never changed. Each font there is addressed
by an index. When the actual search for a glyph is initiated, these fonts are queried in the
loop and are checked if they contain the required glyphs. These queries are also cached
so that next time lookups run much quicker. That way, an active font list is built, and
the next substitutions use it before trying to look into the passive list. Since the ordering
of fonts is system-based and is rather random, some fonts may not be a good or aesthetic
substitution. Therefore the mapper can assist in adding or removing particular fonts to the
active list, potentially allowing an application to store and load a user-driven selection of
substitution fonts.

The following methods are available on the font mapper object:

activate %FONT

Adds the FONT into the active substitution list if the font is not disabled

get INDEX

Returns the font hash registered under INDEX

count

Returns the number of all fonts in the collection

56

index

Returns what index is assigned to the currently used font, if any

passivate %FONT

Remove the font from the active substitution list

is active %FONT

Returns whether the font is in the active substitution list or not

enable %FONT

Enables the font entry, the font will be considered for the polyfont lookup

disable %FONT

Disables the font entry, the font will not be considered for the polyfont lookup

is enabled %FONT

Returns whether the font is enabled or not

lineHead

Defines the style to paint line heads in patterned lines only, on line segments that do not lie
on line starting or ending points used to define a line or polygon.

Default value: undef

lineEnd VALUE

Selects a line ending cap for plotting primitives. VALUE can be one of

constants, undef, a custom line end description, or an array of four where each entry is one
of the values above.

The undef value is only accepted in the array syntax, and not for the index 0 (the lineHead
entry). The other indexes behave differently if are set to undef - see more in the lineTail
entry, the arrowHead entry, the arrowTail entry, and the lineEndIndex entry.

le::Round is the default value.

See also: the Custom line end styles entry.

57

lineEndIndex INDEX, VALUE

Same as lineEnd except only addresses a single line ending style.

Allows VALUE to be undef for indexes greater than 0; depending on the index, the line
style will be different (see more in the lineTail entry, the arrowHead entry, the arrowTail
entry).

Allows special INDEX values or’ed with le::Only, that behave differently, if the line end
style is undef: while normal INDEX queries may return undef, or possibly affect neighbor
indexing (if these are, in turn, undefs), the calls with the le::Only bit set never return
undef on get-calls, and never affect neighbor styles on set-calls.

The following lookup rules are used if a line end style is undef:

lei::LineTail - can never be undef

lei::LineHead - if undef, same as lei::LineTail

lei::ArrowTail - if undef, same as lei::LineTail

lei::ArrowHead - if undef, same as lei::LineHead, and if it also is undef, then same as lei::LineTail

lineJoin VALUE

Selects a line joining style for polygons. VALUE can be one of

constants. lj::Round is the default value.

linePattern PATTERN

Selects a line pattern for plotting primitives. PATTERN is either a predefined lp:: constant,
or a string where each even byte is the length of a dash, and each odd byte is the length of
a gap.

The predefined constants are:

58

Not all systems are capable of accepting user-defined line patterns and in such a situation
the lp:: constants are mapped to the system-defined patterns. In Win9x, for example,
lp::DashDotDot is much different from its string definition. This however is only actual for
lines with width=0, as wider lines are rendered by the Prima internal code.

The default value is lp::Solid.

lineTail

Defines the style to paint line tails in patterned lines only, on line segments that do not lie
on line starting or ending points used to define a line or polygon. If undef, line tails are
painted with the same style as lineHead.

Default value: undef

lineWidth WIDTH

Selects a line width for plotting primitives when antialias is 0. If a VALUE is 0, then
a cosmetic pen is used - the thinnest possible line that a device can plot. If a VALUE is
greater than 0, then a geometric pen is used - the line width is set in device units. There is
a subtle difference between VALUE 0 and 1 in the way the lines are joined.

When antialias is 1, the geometric plotting algorithm is always used.

Default value: 0

matrix [A,B,C,D,X,Y] | Prima::Matrix

Sets current matrix transformation that is used in all plotting operations except clipRect
and region. Returns a the Matrix entry in the Prima section object.

The default value is (1,0,0,1,0,0) or Prima::matrix::identity.

Note: ::matrix can not be used while the object is in the paint-disabled state, its context
is neither recorded nor used as a template (see the Graphic context and canvas entry).

See also: the Prima::matrix entry in the Prima::types section and
Prima::types/Prima::Matrix.

miterLimit VALUE

When path segments connect at a sharp angle, a miter join results in a spike that extends
well beyond the connection point. The purpose of the miter limit is to cut off such spikes
when they become objectionably long. At any given corner, the miter length is the distance
from the point at which the inner edges of the stroke intersect to the point at which the
outside edges of the strokes intersect -- in other words, the diagonal length of the miter.
This distance increases as the angle between the segments decreases. If the ratio of the
miter length to the line width exceeds the miter limit parameter, stroke treats the corner
with a bevel join instead of a miter join. The ratio of miter length to line width is directly
related to the angle j between the segments by the formula:

r = 1/sin(j/2)

Default value: 10.0

Assuming the line join is lj::Miter and the line angle is 30 degrees:

59

palette [@PALETTE]

Requests to install solid colors into the system palette, as many as possible. PALETTE is
an array of integer triplets, where each is the R, G, and B components. The call

$d-> palette([128, 240, 240]);

selects a gray-cyan color, for example.

The return value from the get-call is the content of the previous set-call, not the actual colors
that were copied to the system palette.

region OBJECT

Selects a clipping region applied to all drawing and painting routines. In the set-call, the
OBJECT is either undef, then the clip region is erased (no clip), or a Prima::Image object
with a bit depth of 1, or a Prima::Region object. The bit mask of the OBJECT is applied
to the system clipping region. If the OBJECT is smaller than the drawable, its exterior is
assigned to the clipped area as well. Discards the previous ::clipRect value; successive
get-calls to ::clipRect return the boundaries of the region.

In the get-mode returns either undef or a Prima::Region object.

Note: ::region can not be used while the object is in the paint-disabled state, its context
is neither recorded nor used as a template (see §3.4).

resolution X, Y

A read-only property. Returns horizontal and vertical device resolution in dpi.

rop OPERATION

Selects raster operation that applies to foreground color plotting routines.

See also: ::rop2, the Raster operations entry.

rop2 OPERATION

Selects raster operation that applies to background color plotting routines.

See also: ::rop, the Raster operations entry.

textOpaque FLAG

If FLAG is 1, then text out() fills the text background area with the ::backColor property
value before drawing the text. The default value is 0 when text out() plots text only.

In the system-based text drawing, if the background area is filled, then the alpha value is
ignored. In the standalone text drawing, if the background area is filled, then the alpha
value is not ignored.

See get text box().

textOutBaseline FLAG

If FLAG is 1, then text out() plots text on a given Y coordinate correspondent to font
baseline. If FLAG is 0, a Y coordinate is mapped to the font descent line. The default value
is 0.

translate X OFFSET, Y OFFSET

Translates the origin point by X OFFSET and Y OFFSET. Does not affect ::clipRect and
::region. Not cumulative, so the call sequence

$d-> translate(5, 5);

$d-> translate(15, 15);

60

is equivalent to

$d-> translate(15, 15);

Note: ::translate can not be used while the object is in the paint-disabled state, its context
is neither recorded nor used as a template (see the Graphic context and canvas entry).

Other properties

height HEIGHT

Selects the height of a canvas.

size WIDTH, HEIGHT

Selects the extent of a canvas.

width WIDTH

Selects the width of a canvas.

Graphic primitives methods

arc X, Y, DIAMETER X, DIAMETER Y, START ANGLE, END ANGLE

Plots an arc with the center in X, Y, and DIAMETER X and DIAMETER Y axes from
START ANGLE to END ANGLE.

Context used: color, backColor, lineEnd, linePattern, lineWidth, miterLimit, rop, rop2

bar X1, Y1, X2, Y2

Draws a filled rectangle

Context used: color, backColor, fillPattern, fillPatternOffset, rop, rop2

bar alpha ALPHA <X1, Y1, X2, Y2>

Fills a rectangle in the alpha channel bits only, using the ALPHA value between (0-255).
Can be called without parameters, in this case, fills the whole canvas.

Has only effect on the layered surfaces.

bars @RECTS

Draws a set of filled rectangles. RECTS is an array of integer quartets in the format
(X1,Y1,X2,Y2).

Context used: color, backColor, fillPattern, fillPatternOffset, rop, rop2

chord X, Y, DIAMETER X, DIAMETER Y, START ANGLE, END ANGLE

Plots an arc with the center in X, Y, and DIAMETER X and DIAMETER Y axes from
START ANGLE to END ANGLE and connects its ends with the straight line.

Context used: color, backColor, lineEnd, linePattern, lineWidth, miterLimit, rop, rop2

clear <X1, Y1, X2, Y2>

Draws a rectangle filled with background color. Can be called without parameters, in this
case, fills the whole canvas.

Context used: backColor, rop2

61

draw text CANVAS, TEXT, X1, Y1, X2, Y2, [FLAGS = dt::Default,
TAB INDENT = 1]

Draws several lines of text one under another with respect to align and break rules, specified
in FLAGS and TAB INDENT tab character expansion.

draw text is a convenience wrapper around text wrap for drawing the wrapped text, and
also provides the tilde (~)- character underlining support.

The FLAGS is a combination of the following constants:

dt::Left - text is aligned to the left boundary

dt::Right - text is aligned to the right boundary

dt::Center - text is aligned horizontally in the center

dt::Top - text is aligned to the upper boundary

dt::Bottom - text is aligned to the lower boundary

dt::VCenter - text is aligned vertically in the center

dt::DrawMnemonic - tilde-escapement and underlining is used

dt::DrawSingleChar - sets tw::BreakSingle option to

Prima::Drawable::text_wrap call

dt::NewLineBreak - sets tw::NewLineBreak option to

Prima::Drawable::text_wrap call

dt::SpaceBreak - sets tw::SpaceBreak option to

Prima::Drawable::text_wrap call

dt::WordBreak - sets tw::WordBreak option to

Prima::Drawable::text_wrap call

dt::ExpandTabs - performs tab character (\t) expansion

dt::DrawPartial - draws the last line, if it is visible partially

dt::UseExternalLeading - text lines positioned vertically with respect to

the font external leading

dt::UseClip - assign ::clipRect property to the boundary rectangle

dt::QueryLinesDrawn - calculates and returns the number of lines drawn

(contrary to dt::QueryHeight)

dt::QueryHeight - if set, calculates and returns vertical extension

of the lines drawn

dt::NoWordWrap - performs no word wrapping by the width of the boundaries

dt::WordWrap - performs word wrapping by the width of the boundaries

dt::Default - dt::NewLineBreak|dt::WordBreak|dt::ExpandTabs|

dt::UseExternalLeading

Context used: color, backColor, font, rop, textOpaque, textOutBaseline

ellipse X, Y, DIAMETER X, DIAMETER Y

Plots an ellipse with the center in X, Y, and DIAMETER X and DIAMETER Y axes.

Context used: color, backColor, linePattern, lineWidth, rop, rop2

fill chord X, Y, DIAMETER X, DIAMETER Y, START ANGLE, END ANGLE

Fills a chord outline with the center in X, Y, and DIAMETER X and DIAMETER Y axes
from START ANGLE to END ANGLE (see chord()).

Context used: color, backColor, fillPattern, fillPatternOffset, rop, rop2

fill ellipse X, Y, DIAMETER X, DIAMETER Y

Fills an elliptical outline with the center in X, Y, and DIAMETER X and DIAMETER Y
axes.

Context used: color, backColor, fillPattern, fillPatternOffset, rop, rop2

62

fillpoly \@POLYGON

Fills a polygonal area defined by POLYGON set of points. POLYGON must present an
array of (X,Y) integer pairs. Example:

$d-> fillpoly([0, 0, 15, 20, 30, 0]); # triangle

Context used: color, backColor, fillPattern, fillPatternOffset, rop, rop2, fillMode

Returns success flag; if failed, $@ contains the error.

See also: polyline().

fill sector X, Y, DIAMETER X, DIAMETER Y, START ANGLE, END ANGLE

Fills a sector outline with the center in X, Y, and DIAMETER X and DIAMETER Y axes
from START ANGLE to END ANGLE (see sector()).

Context used: color, backColor, fillPattern, fillPatternOffset, rop, rop2

fill spline \@VERTICES, %OPTIONS

Fills a polygonal area defined by the curve projected by applying a B-spline curve based on
a set of VERTICES. VERTICES must present an array of (X,Y) integer pairs. Example:

$d-> fill_spline([0, 0, 15, 20, 30, 0]);

Context used: color, backColor, fillPattern, fillPatternOffset, rop, rop2

Returns success flag; if failed, $@ contains the error.

See also: spline, render spline

flood fill X, Y, COLOR, SINGLEBORDER = 1

Fills an area of the canvas using the current fill context. The area is assumed to be bounded
as specified by the SINGLEBORDER parameter. SINGLEBORDER can be 0 or 1.

SINGLEBORDER = 0: The fill area is bounded by the color specified by the COLOR
parameter.

SINGLEBORDER = 1: The fill area is defined by the color that is specified by COLOR.

Filling continues outward in all directions as long as the color is encountered. This style is
useful for filling areas with multicolored boundaries.

Context used: color, backColor, fillPattern, fillPatternOffset, rop, rop2

line X1, Y1, X2, Y2

Plots the straight line from (X1,Y1) to (X2,Y2).

Context used: color, backColor, linePattern, lineWidth, rop, rop2

lines \@LINES

LINES is an array of integer quartets in format (X1,Y1,X2,Y2). lines() plots the straight
line per quartet.

Context used: color, backColor, linePattern, lineWidth, rop, rop2

Returns success flag; if failed, $@ contains the error.

new aa surface

Returns a new antialiasing surface object for AA emulation. See the
Prima::Drawable::Antialias section for usage and details.

63

new gradient

Returns a new gradient object. See the Prima::Drawable::Gradient section for usage and
details.

new path

Returns a new path object. See the Prima::Drawable::Path section for usage and details.

pixel X, Y, <COLOR>

::pixel is a property - on set-call it changes the pixel value at (X,Y) to COLOR, on get-call
(without COLOR) it does return a pixel value at (X,Y).

No context is used except matrix transformation of the coordinates. May return
cl::Invalid to signal an error or the out-of-boundaries condition.

polyline \@POLYGON

Draws a polygonal area defined by the POLYGON set of points. POLYGON must contain
an array of integer pairs in (X,Y) format.

Context used: color, backColor, linePattern, lineWidth, lineJoin, lineEnd, miterLimit, rop,
rop2

Returns success flag; if failed, $@ contains the error.

See also: fillpoly().

put image X, Y, OBJECT, [ROP=rop::Default]

Draws an OBJECT at coordinates (X,Y). OBJECT must be Prima::Image, Prima::Icon,
or Prima::DeviceBitmap. If ROP raster operation is specified, it is used. Otherwise, the
current value of the ::rop property is used.

Returns success flag; if failed, $@ contains the error.

Context used: rop; color and backColor for a monochrome DeviceBitmap

put image indirect OBJECT, X, Y, X FROM, Y FROM, DEST WIDTH,
DEST HEIGHT, SRC WIDTH, SRC HEIGHT, [ROP=rop::Default]

Draws the OBJECT’s source rectangle into the destination rectangle, stretching or compress-
ing the source bits to fit the dimensions of the destination rectangle, if necessary. The source
rectangle starts at (X FROM,Y FROM), and is SRC WIDTH pixels wide and SRC HEIGHT
pixels tall. The destination rectangle starts at (X,Y), and is abs(DEST WIDTH) pixels wide
and abs(DEST HEIGHT) pixels tall. If DEST WIDTH or DEST HEIGHT are negative, a
mirroring by the respective axis is performed.

OBJECT must be Prima::Image, Prima::Icon, or Prima::DeviceBitmap.

No context is used, except color and backColor for a monochrome DeviceBitmap

Returns success flag; if failed, $@ contains the error.

rect3d X1, Y1, X2, Y2, WIDTH, LIGHT COLOR, DARK COLOR, [
BACK COLOR]

Draws a 3d-shaded rectangle (X1,Y1 - X2,Y2) with WIDTH line width, and LIGHT COLOR
and DARK COLOR colors. If BACK COLOR is specified, paints an inferior rectangle with
it, otherwise the inferior rectangle is not touched.

Context used: rop; color and backColor for a monochrome DeviceBitmap

rect fill X1, Y1, X2, Y2, BORDER WIDTH, FOREGROUND, BACKGROUND

Draws a rectangle with outline color FOREGROUND and BORDER WIDTH pixels, and fills
it with color BACKGROUND. If FOREGROUND and/or BACKGROUND are undefined,
current colors are used. BORDER WIDTH is 1 pixel if omitted.

64

Contrary to a call to rectangle() with the line width greater than 1, never paints pixels
outside the given rectangle; the border is painted inwards.

Context used: rop, fillPattern

rect focus X1, Y1, X2, Y2, [WIDTH = 1]

Draws a marquee rectangle in boundaries X1,Y1 - X2,Y2 with WIDTH line width.

No context is used.

rect solid X1, Y1, X2, Y2, BORDER WIDTH, FOREGROUND

Draws a rectangle with outline color FOREGROUND and BORDER WIDTH pixels. If
FOREGROUND is undefined, a current color is used. BORDER WIDTH is 1 pixel if omit-
ted.

Contrary to a call to rectangle() with line width greater than 1, never paints pixels outside
the given rectangle; the border is painted inwards.

Context used: rop

rectangle X1, Y1, X2, Y2

Plots a rectangle with (X1,Y1) - (X2,Y2) extents.

Context used: color, backColor, linePattern, lineWidth, rop, rop2

sector X, Y, DIAMETER X, DIAMETER Y, START ANGLE, END ANGLE

Plots an arc with the center in X, Y, and DIAMETER X and DIAMETER Y axis from
START ANGLE to END ANGLE and connects its ends and (X,Y) with two straight lines.

Context used: color, backColor, lineEnd, linePattern, lineWidth, miterLimit, rop, rop2

spline \@VERTICES, %OPTIONS

Draws a B-spline curve defined by a set of VERTICES control points. VERTICES must
present an array of (X,Y) integer pairs.

The extra options knots and weights described below allow to upgrade the B-spline into a
NURBS curve. See the https:en.wikipedia.orgwikiNon-uniform rational B-spline entry.

The following options are supported:

closed BOOL = undef

When not set, checks if the first and the last vertices point to the same point, and
assumes a closed shape if they do. Note - a closed shape rendering is implemented by
adding a degree minus two points to the set; this is important if weight or knots are
specified.

degree INTEGER = 2

The B-spline degree. Default is 2 (quadratic). The number of points supplied must be
at least a degree plus one.

knots \@INTEGERS

An array of N integers (N = number of points plus degree plus one). By default, if
the shape is opened (i.e. first and last points are different), represents a clamped array,
so that the first and last points of the final curve match the first and the last control
points. If the shape is closed, represents an unclamped array so that no control points
lie directly on the curve.

Quote wikipedia: ”The knot vector is a sequence of parameter values that determines
where and how the control points affect the NURBS curve... The knot vector divides
the parametric space in the intervals ... usually referred to as knot spans. Each time
the parameter value enters a new knot span, a new control point becomes active, while
an old control point is discarded. It follows that the values in the knot vector should
be in nondecreasing order, so (0, 0, 1, 2, 3, 3) is valid while (0, 0, 2, 1, 3, 3) is not.”

65

precision INTEGER = 24

Defines the number of steps to split the curve into. The value is multiplied by the
number of points and the result is used as the number of steps.

weight \@INTEGERS = [1, 1, 1, ...]

An array of integers, one for each point supplied. Assigning these can be used to convert
B-spline into a NURBS. By default set of ones.

Context used: color, backColor, linePattern, lineWidth, lineEnd, miterLimit, rop, rop2

See also: fill spline, render spline.

stretch image X, Y, DEST WIDTH, DEST HEIGHT, OBJECT, [
ROP=rop::Default]

Draws the OBJECT on the destination rectangle, stretching or compressing the source
bits to fit the dimensions of the destination rectangle, if necessary. If DEST WIDTH or
DEST HEIGHT are negative, a mirroring is performed. The destination rectangle starts at
(X,Y) and is DEST WIDTH pixels wide and DEST HEIGHT pixels tall.

If ROP raster operation is specified, it is used. Otherwise, the value of the ::rop property
is used.

OBJECT must be Prima::Image, Prima::Icon, or Prima::DeviceBitmap.

Returns success flag; if failed, $@ contains the error.

Context used: rop

text out TEXT, X, Y

Draws TEXT string at (X,Y). TEXT is either a character string
or a Prima::Drawable::Glyphs object returned from text shape, or
Prima::Drawable::Glyphs->glyphs strings of glyphs.

Returns success flag; if failed, $@ contains the error.

Context used: color, backColor, font, rop, textOpaque, textOutBaseline

text shape TEXT, %OPTIONS

Converts TEXT into a set of glyphs, returns either a Prima::Drawable::Glyphs object, or
a 0 integer when shaping is not necessary, or undef as an error.

When Prima is compiled with libfribidi, the method runs the unicode bidirectional algo-
rithm on TEXT that properly positions embedded directional text (f.ex. a Latin quote inside
an Arabic text), see the Unicode Standard Annex #9 | http:unicode.orgreportstr9tr9-22.html
entry for the details. Without the library only does minimal RTL alignment.

Glyphs returned are positioned according to RTL directions given in TEXT using characters
from unicode block ”General Punctuation U+2000 .. U+206F”. Additionally, character
ligation may be performed so that one or more characters are represented by one or more
glyphs. Such syntactic units, clusters, are adopted in Prima where appropriate, instead of
character units, for selection, navigation, etc in f.ex. Prima::InputLine and Prima::Edit.
Helper routines that translate clusters, glyphs, and characters into each other are found in
the Prima::Drawable::Glyphs section.

Options recognized:

advances BOOLEAN = false

The shaping process may or may not fill an integer array of advances and positions for
each glyph, depending on the implementation. The advances are needed to represent
f.ex. combining graphemes, when TEXT consisting of two characters, "A" and combin-
ing grave accent U+300 should be drawn as a single À cluster but are represented by

66

two glyphs "A" and "‘". The grave glyph has its own advance for standalone usage,
but in this case, it should be ignored, and that is achieved by filling the advance table
where the "A" advance is the normal glyph advance, whereas the advance of the "‘" is
zero. Also, the position table additionally shifts glyph position by X and Y coordinates,
when that is needed (f.ex. it might be positioned differently by the vertical axis on "a"

and "A").

Setting these options to true will force to fill advance and positioning tables. These
tables can be manipulated later, and are respected by text out and get text width.

language STRING = undef

When set, the shaping process can take into account the language of the text. F.ex.
text "ae" might be shaped as a single glyph æ for the Latin language, but never for
English.

level INTEGER = ts::Full

Selects the shaping (i.e. text to glyph conversion) level, how the system should treat
the input text, and how deep the shaping should go.

One of the following ts::XXX options:

ts::Bytes
Treats input text as non-unicode locale-specific codepoints, characters higher than
255 are treated as chr(255). Reordering never happens, font substitution never
happens, kerning and ligation never happen; returns glyph indexes in a 1:1 mapping
for each codepoint.

ts::None
Performs quick null shaping without mapping to the font glyphs, but only running
the bidirectional algorithm on the text. On the return, glyphs, as well as even-
tual advances and positions, are filled with zeros, but indexes are filled with
the proper character offsets, effectively making it a visual-to-logical map since the
number of glyphs will always be equal to the number of characters in TEXT be-
cause ligation never happens here (except when TEXT contains unicode directional
characters such as isolates etc - those are removed from the output).
By default, advances and positions are not filled, but if the advances option is set,
fills them with zeros.

ts::Glyphs
Applies the unicode bidi algorithm and maps the result onto font glyphs. Ligation
and kerning don’t happen here, it’s the same as ts::None but with the glyph
mapping part.
By default, advances and positions are not filled, but if the advances option is set,
fills the advances array with character glyph advances and the positions array with
zeros.
May fill the fonts array if the polyfont option is set.

ts::Full
Applies the unicode bidi algorithm and runs the full shaping on the result. Ligation
and kerning may occur. Always fills the advances and positions array; the advances
option is ignored.
If the system or the selected font does not support shaping, tries to ligate known
Arabic shapes using the fribidi library, if available. Also in this case does not return
the advances and positions by default, but if the advances option is set, fills the
advances array with character glyph advances and the positions array with zeros.
May fill the fonts array if the polyfont option is set.

pitch INTEGER

When the polyfont is set (default) and thus font substitution is desired, filters only
fonts that match pitch, either fp::Variable or fp::Fixed. By default will be set to

67

fp::Fixed if the current for is monospaced, but to fp::Default matching all fonts,
otherwise.

polyfont BOOLEAN = true

If set, checks if the currently selected font supports all ithe required unicode points, and
if not, selects substitutions from a pre-populated list, taking into account the font pitch
(see pitch above). In cases where the current font does not have enough glyphs to shape
all the requested unicode points, font substitution is performed, and the result contains
an extra array fonts (see the fonts entry in the Prima::Drawable::Glyphs section).
When the current font has all the needed glyphs, the fonts array is not created.

The font list access is available through the font mapper entry.

Valid only with shaping levels ts::Glyphs and ts::Full.

reorder BOOLEAN = true

When set, the unicode bidi algorithm is used to reorder codepoints, and additionally,
RTL codepoints may be reversed (depending on the direction context).

When unset, no such reordering occurs, to emulate as much as possible a behavior
that each text grapheme is being mapped to a glyph cluster exactly as it occurs in the
input text, from left to right. Note that bidi reordering still may occur internally, since
system shapers may reverse the placement of RTL characters, so the Prima reordering
is needed to cancel this. In theory the caller shouldn’t see the difference as these should
cancel each other, but if Prima miscalculates the expected way the system shaper does
the bidi processing, it might.

A similar effect can be reached by prepending the text with U+202D (LEFT-TO-
RIGHT OVERRIDE).

replace tabs INTEGER = -1

If set to 0 or more, replaces each tab character with the space character and sets their
widths to the width of the latter multiplied by the given number. Since it needs the
advances table to operate, automatically sets the advances option. If the string passed
indeed contains tab characters, also turns off the skip if simple option.

Note: if using the result later in text wrap, set the tabIndent parameters there to 1
to avoid double multiplication of the tab character width.

rtl BOOLEAN

If set to 1, the default text direction is assumed as RTL, and as LTR if set to 0. If unset,
the text direction is taken from the textDirection entry in the Prima::Application
section.

skip if simple BOOLEAN = false

When set, checks whether the shaping result is identical to the input, in the sense that a
call to text out(TEXT) and a call to text shape out(TEXT) produce identical results.
The majority of English text will fall into that category, and when that indeed happens,
returns an integer value of 0 instead of a glyph object.

See also text shape out, get text shape width, text wrap shape.

text shape out TEXT, X, Y[, RTL]

Runs shaping on TEXT character string with the RTL flag (or
$::application->textDirection. Draws the resulting glyph string at (X,Y).

Returns success flag; if failed, $@ contains the error.

Context used: color, backColor, font, rop, textOpaque, textOutBaseline

68

Methods

begin paint

Enters the enabled (active paint) state and returns the success flag; if failed, $@ contains
the error. Once the object is in the enabled state, painting and drawing methods can write
on the canvas.

See also: end paint, begin paint info, the Graphic context and canvas entry

begin paint info

Enters the information state and returns the success flag; if failed, $@ contains the error.
The object information state is the same as the enabled state (see begin paint), except
painting and drawing methods do not change the object canvas.

See also: end paint info, begin paint, the Graphic context and canvas entry

can draw alpha

Returns whether using alpha bits operation on the drawable will have any effect or not. Note
that the drawable may not necessarily have an alpha channel, for example, a normal RGB
image is capable of being painted on with alpha while not having any alpha on its own. On
Unix, all non-1-bit drawables return true if Prima was compiled with XRender support and
if that extension is present on the X server. On windows, all non-1-bit drawables return true
unconditionally.

See also: has alpha layer

end paint

Exits the enabled state and returns the object to a disabled state.

See also: begin paint, the Graphic context and canvas entry

end paint info

Exits the information state and returns the object to a disabled state.

See also: begin paint info, the Graphic context and canvas entry

font match \%SOURCE, \%DEST, PICK = 1

Performs merging of two font hashes, SOURCE and DEST. Returns the merge result. If
PICK is true, matches the result with a system font repository.

Called implicitly by ::font on set-call, allowing the following example to work:

$d-> font-> set(size => 10);

$d-> font-> set(style => fs::Bold);

In the example, the hash ’style => fs::Bold’ does not overwrite the previous font context
(’size => 10’) but gets added to it (by font match()), providing the resulting font with
both font properties set.

fonts <FAMILY = ””, ENCODING = ””>

Member of Prima::Application and Prima::Printer, does not present in
Prima::Drawable.

Returns an array of font metric hashes for a given font FAMILY and ENCODING. Every
hash has a full set of elements described in the Fonts entry.

If called without parameters, returns an array of the same hashes where each hash represents
a member of the font family from every system font set. In this special case, each font hash

69

contains an additional encodings entry, which points to an array of encodings available for
the font.

If called with FAMILY parameter set but no ENCODING is set, enumerates all combinations
of fonts with all available encodings.

If called with FAMILY set to an empty string, but ENCODING specified, returns only fonts
that can be displayed with the encoding.

Example:

print sort map {"$_->{name}\n"} @{$::application-> fonts};

get bpp

Returns device color depth. 1 is for black-and-white monochrome, 24 for true color, etc.

get effective rop ROP

Converts a given ROP depending on the drawable type. The majority of cases only convert
rop::Default to rop::CopyPut, however, layered device bitmaps and icons with 8-bit alpha
masks return rop::Blend instead.

get font abc FIRST CHAR = -1, LAST CHAR = -1, UNICODE = 0

Returns ABC font metrics for the given range, starting at FIRST CHAR and ending with
LAST CHAR. If these two parameters are both -1, the default range (0 and 255) is assumed.
The UNICODE boolean flag is responsible for the representation of characters in the 127-255
range. If 0, the default, encoding-dependent characters are assumed. If 1, the U007F-U00FF
glyphs from the Latin-1 set are used.

The result is an integer array reference, where every character glyph is referred to by three
integers, each triplet containing A, B and C values.

For a detailed explanation of ABC meaning, see the Font ABC metrics entry;

Context used: font

get font def FIRST CHAR = -1, LAST CHAR = -1, UNICODE = 0

Same as get font abc but for the vertical metrics. Is expensive on bitmap fonts because
in order to find out the correct values Prima has to render glyphs on bitmaps and scan for
black and white pixels.

Vector fonts are not subject to this, and the call is as effective as get font abc.

get font languages

Returns an array of ISO 639 strings that can be displayed using glyphs available in the
currently selected font.

get font ranges

Returns an array of integer pairs denoting unicode indices of glyphs covered by the currently
selected font. Each pair is the first and the last index of a contiguous range.

Context used: font

get nearest color COLOR

Returns the nearest possible solid color in the representation of the graphic device. Always
returns the same color if the device bit depth is equal to or greater than 24.

70

get paint state

Returns the paint state value as one of the ps:: constants - ps::Disabled if the object is in
the disabled state, ps::Enabled for the enabled state, ps::Information for the information
state.

The ps::Disabled constant is equal to 0 so this allows for simple boolean testing whether
one can get/set graphical properties on the object.

See the Graphic context and canvas entry for more.

get physical palette

Returns an array of (R,G,B) integer triplets where each color entry is in the 0 - 255 range.

The physical palette array is non-empty only on paletted graphic devices, the true color
devices always return an empty array.

The physical palette reflects the solid colors currently available to all programs in the system.
The information is volatile if the system palette can change colors, since any other application
may request to change the system colors at any moment.

get text shape width TEXT, [FLAGS]

Runs shaping on TEXT character string with the text direction either taken from the FLAGS
& to::RTL value or from the $::application->textDirection property. Returns the
width of the shaping result as if it would be drawn using the currently selected font.

If FLAGS & to::AddOverhangs is set, the first character’s absolute A value and the last
character’s absolute C value are added to the string if they are negative.

get text width TEXT, ADD OVERHANG = 0

Returns the TEXT string width if it would be drawn using the currently selected font.
TEXT is either a character string, or a Prima::Drawable::Glyphs object returned from
text shape, or a Prima::Drawable::Glyphs-> glyphs glyph string.

If ADD OVERHANG is 1, the first character’s absolute A value and the last character’s
absolute C value are added to the string if they are negative.

See more on ABC values at the Font ABC metrics entry.

Context used: font

get text box TEXT

Returns the TEXT string extensions if it would be drawn using the currently selected font.
TEXT is either a character string or a Prima::Drawable::Glyphs object returned from the
text shape method, or Prima::Drawable::Glyphs-> glyphs glyph string.

The result is an anonymous array of 5 points (5 integer pairs in (X,Y) format). These 5
points are pixel offsets for the following string extents, given the string is plotted at (0,0):

1: start of string at the ascent line (top left)

2: start of string at the descent line (bottom left)

3: end of string at the ascent line (top right)

4: end of string at the descent line (bottom right)

5: concatenation point

The concatenation point coordinates (XC,YC) are the values passed to the consequent
text out() call so that the conjoint string would plot as if it was a part of the TEXT. De-
pending on the value of the textOutBaseline property, the concatenation point is located
either on the baseline or on the descent line.

Context used: font, textOutBaseline

71

graphic context %GC, $CALLBACK

A shortcut method that saves the graphic context, applies changes in %GC, calls $CALL-
BACK, and finally restores the context. F ex:

$self->graphic_context(fillPattern => fp::Solid, sub { $self-> bar(..) });

graphic context pop

Restores the graphic context properties from the stack.

graphic context push

Saves the graphic context properties on the stack.

has alpha layer

Returns true if the drawable has an alpha channel. If the drawable is treated as a source, it
means its alpha content will be respected when drawing on another surface. If the drawable
is treated as a destination, it means that its alpha content will be updated if drawing on it
uses alpha bits.

See also: can draw alpha.

render glyph INDEX, %OPTIONS

Returns a representation of a glyph as an outline. The outline is an integer array formed
as a set of plotting commands. Each command is a ggo:: constant followed by an integer
value with the number of the points returned, followed by the 2D point coordinates in 1/64
pixels.

The following options are recognized:

glyph BOOL

If set, INDEX is treated as the glyph index rather than the character index. The default
value is false.

hints BOOL

If set, hinting is enabled. The default value is true.

unicode BOOL

If set, INDEX is treated as a utf8 character index, otherwise a locale-specific index.
The default value is false.

The ggo:: commands are:

ggo::Move - move point

ggo::Line - plot line

ggo::Conic - plot 2-degree spline

ggo::Cubic - plot 3-degree spline

72

render pattern IMAGE|ICON|ARRAY|INDEX, %OPTIONS

Takes a fill pattern represented by one of the fp::XXX constants, an array of 8 bytes, or an
image (or icon); the same syntax as in fillPattern.

Uses %OPTIONS to generate a new rectangular pattern that can be used in the fillPattern
property. Since Prima does not provide an individual property that would manage specifi-
cally the matrix of a fill pattern, this method can be used to implement this functionality.

Also respects the preserveType property of the image, and if it is set, changes the resulting
pattern image type back to the original type. In case where fillPattern is given by an ARRAY
or an INDEX, always generates an im::BW image, so it can be used both in rop2 transparent
and opaque modes, like the original pattern.

Options:

color COLOR, alpha 0-255

If margin is used, pre-fills the target image with this color. alpha is used to pre-fill the
target image’s mask with this value, if the image is an icon.

margin XY | [X, Y]

Set margins in X and Y pixels before applying the transformation

matrix MATRIX

2D matrix to transform IMAGE

render polyline \@POLYLINE, %OPTIONS

Performs calculations on the POLYLINE, defined by OPTIONS. The following options are
recognized:

aafill BOOLEAN

If set, renders a 8-bit grayscale image with antialiased filled polygon. The polygon is
automatically adjusted so its lower and left boundaries and on the resulting image’s
lower and left boundaries. Also the image size corresponds to the polygon size.

The filling mode can be specificed with the mode option, or the current fillMode will be
used. Note the the option only accepts the fm::Winding and fm::Alternate constants,
and ignores fm::Overlay.

Return three scalars: first two are the X and Y polygon offsets, and the first is the
image itself.

box BOOLEAN

If set, instead of polyline vertices, calculates the box extents of the polyline (either
original or after the matrix transform, depending on whether the matrix option was
supplied or not), and returns 4 numerics for left, bottom, width, and height of the box
enclosure.

integer BOOLEAN

By default, the result is returned as a set of floating point numerics, however, if integer
results are needed, the results are transformed to integers using the int = float + ((float
< 0) ? -0.5 : 0.5) formula.

matrix A,B,C,D,U,V

If supplied, performs matrix transformation on each polyline vertex:

X’ = AX + CY + U

Y’ = BX + DY + V

and returns the new polyline

73

mode fm::Windings | fm::Alternate

See aafill above.

path BOOLEAN

If set, treats polyline as a path that will get applied lineEnd, lineJoin, linePattern,
and miterLimit properties (either from the object or from %OPTIONS) and returns
a set of commands that would represent the final shape. The commands are: arc (6
arguments, same as the arc primitive), line with 1 argument, a polyline array (respects
the integer option), and open with no arguments.

See the widen entry in the Prima::Drawable::Path section for usage. See also
line join hints below.

line join hints ARRAY OF INTEGERS

Only when the path option is present:

A specially formatted array of indexes that hint where inside the polyline are the bound-
aries between the points that need to override lineJoin and force it to be lj::Miter.

See the widen entry in the Prima::Drawable::Path section for usage.

render spline \@VERTICES, %OPTIONS

Renders B-spline curve from a set of VERTICES to a polyline with given options.

The method is internally used by spline and fill spline, and is provided for cases when
these are insufficient. See the description of options in the spline entry.

reset matrix

Set the CTM to identity

text wrap TEXT, WIDTH, OPTIONS, [TAB INDENT = 8, FROM = 0, LENGTH
= -1, GLYPHS]

Breaks the TEXT string in chunks that must fit into a WIDTH pixels wide box (for WIDTH
>= 0). TEXT is either a character string or a Prima::Drawable::Glyphs object returned
from text shape, or a Prima::Drawable::Glyphs->glyphs string of glyphs. In the latter
case some wrapping options are not applicable. It is possible to send both text as TEXT
and its shaped representation as GLYPHS.

The breaking algorithm and its result are managed by the OPTIONS integer value that is a
combination of the following tw:: constants:

tw::CalcMnemonic

Use ’hotkey’ semantics, when a character preceded by the tilde character (~) has a
special meaning, f ex it gets underlined when used in menus. If this bit is set, the first
tilde character used as an escape is not calculated, and never appears in the result apart
from the escaped character.

Not applicable in glyph wrapping.

tw::CollapseTilde

In addition to tw::CalcMnemonic, removes the tilde character from the resulting chunks.

Not applicable in glyph wrapping.

tw::CalcTabs

If set, treats tab (’\t’) characters as TAB INDENT times space characters.

Not applicable in glyph wrapping.

tw::ExpandTabs

If set, expands tab (’\t’) characters as TAB INDENT times space characters.

Not applicable in glyph wrapping.

74

tw::BreakSingle

Defines the method behavior when the text cannot fit in WIDTH. Does not affect
anything else otherwise.

If set, the method returns an empty array. If unset, returns a text broken by the
minimum number of characters per chunk. In the latter case the width of the resulting
text blocks will exceed the WIDTH.

tw::NewLineBreak

Forces the creation of a new chunk after the newline character (’\n’). If the UTF8 text
is passed, the unicode line break characters 0x2028 and 0x2029 produce the same effect
as the newline character.

Not applicable in glyph wrapping.

tw::SpaceBreak

Forces the creation of a new chunk after the space character (’ ’) or the tab character.

Not applicable in glyph wrapping.

tw::ReturnChunks

Defines the result of the text wrap() method.

If set, the array consists of integer pairs, where each is a text offset within TEXT and
its length.

If unset, the resulting array consists of text chunks.

tw::ReturnGlyphs

If GLYPHS is set (only together with TEXT), this option becomes available to get the
resulting chunks as sub-sets of GLYPHS.

tw::ReturnLines

Equals to 0, is a mnemonic to an unset tw::ReturnChunks.

When wrapping glyphs, has the same effect as the tw::ReturnGlyphs flag.

tw::WordBreak

If unset, the TEXT breaks as soon as the chunk width exceeds WIDTH. If set, tries
to keep words in TEXT so they do not appear in two chunks, e.g. breaks TEXT by
words, not by characters.

If Prima is compiled with the libthai library and Thai text is detected, Prima uses the
library to detect the word boundaries because the Thai language does not use spaces
between words. This behavior can be disabled by running Prima with --no-libthai.

Not applicable in glyph wrapping.

tw::ReturnFirstLineLength

If set, text wrap proceeds until the first line is wrapped, either by width or (if specified
) by break characters. Returns the length of the resulting line. Used for efficiency as
the inverted get text width function.

If OPTIONS has tw::CalcMnemonic or tw::CollapseTilde bits set, then the last scalar of the
array is a special hash reference. The hash contains extra information regarding the ’hotkey’
position of the underline - it is assumed that the tilde character ’~’ prefixes the underlined
character. The hash contains the following keys:

tildeLine

Chunk index that contains the escaped character. Set to undef if no tilde escape was
found; the rest of the information in the hash is not relevant in this case.

tildeStart

The horizontal offset of the beginning of the line that underlines the escaped character.

75

tildeEnd

The horizontal offset of the end of the line that underlines the escaped character.

tildeChar

The escaped character.

Context used: font

text wrap shape TEXT, WIDTH = -1, %OPTIONS

Runs text shape over results from a text wrap call, with TEXT, WIDTH, $OPTIONS{options},
and $OPTIONS{tabs}. Other %OPTIONS are used in the text shape call. Where text wrap

returns text substrings or positions, return glyphs objects or their positions instead.

When called with tw::CalcMnemonic options, recalculates the tilde position so it adapts to
the glyph positions returned.

If $OPTIONS{kashida} is set, performs kashida justification on the last wrapped line,
using optional $OPTIONS{min kashida} value (see the arabic justify entry in the
Prima::Drawable::Glyphs section).

If $OPTIONS{letter} or $OPTIONS{word} is set, performs the interspace justification on all
but the last wrapped line.

76

3.5 Prima::Region

Generic shapes for clipping and hit testing

Synopsis

$empty = Prima::Region->new;

$rect = Prima::Region->new(rect => [10, 10, 20, 20]);

$rect = Prima::Region->new(box => [10, 10, 10, 10]); # same

$poly = Prima::Region->new(polygon => [0, 0, 100, 0, 100, 100]);

$bits = Prima::Region->new(image => $image);

$drawable-> region($rect);

my $rgn = $drawable->region;

$rgn->image->save(’region.png’) if $rgn;

Description

The Prima::Region class is a descendant of the Prima::Component class. A Prima::Region object
is a representation of a generic shape that can be applied to a drawable and checked whether
points are within its boundaries.

API

new %OPTIONS

Creates a new region object. If called without any options then the resulting region will be
empty The following options can be used:

rect => [X1, Y1, X2, Y2]

Creates a rectangular region with inclusive-inclusive coordinates.

box => [X, Y, WIDTH, HEIGHT]

Same as rect but using the box semantics.

polygon => \@POINTS, fillMode = 0

Creates a polygon shape with vertices given in @POINTS, and using the optional fillMode
(see the fillMode entry in the Drawable section).

image => IMAGE

Creates a region from a 1-bit image. If the image contains no pixels that are set to 1,
the resulting region is created as an empty region.

bitmap with offset => 0, type => dbt::Bitmap

Paints the region on a newly created bitmap and returns it. By default, the region offset is
not included.

box

Returns the (X,Y,WIDTH,HEIGHT) bounding box that encloses the smallest possible rect-
angle, or (0,0,0,0) if the region is empty.

combine REGION, OPERATION = rgnop::Copy

Applies one of the following set operations to the region:

77

rgnop::Copy

Makes a copy of the REGION

rgnop::Intersect

The resulting region is an intersection of the two regions.

rgnop::Union

The resulting region is a union of the two regions.

rgnop::Xor

Performs XOR operation on the two regions.

rgnop::Diff

The resulting region is a difference between the two regions.

dup

Creates a duplicate region object

get boxes

Returns a Prima::array object filled with 4-integer tuples, where each is a box defined as
a (x,y,width,height) tuple.

get handle

Returns the system handle for the region

equals REGION

Returns true if the regions are equal, false otherwise.

image with offset => 0, type => dbt::Bitmap

Paints the region on a newly created image and returns it. By default, the region offset is
not included.

is empty

Returns true if the region is empty, false otherwise.

offset DX, DY

Shifts the region vertically and/or horizontally

point inside X, Y

Returns true if the (X,Y) point is inside the region

rect inside X1,Y1,X2,Y2

Checks whether a rectangle given by the inclusive-inclusive coordinates is inside, outside, or
partially covered by the region. The return value can be one of these flags:

rgn::Inside

rgn::Outside

rgn::Partially

where the rgn::Outside constant has the value of 0.

78

3.6 Prima::Image

2-D graphic interface for images

Synopsis

use Prima qw(Application);

create a new image from scratch

my $i = Prima::Image-> new(

width => 32,

height => 32,

type => im::BW, # same as im::bpp1 | im::GrayScale

);

draw something

$i-> begin_paint;

$i-> color(cl::White);

$i-> ellipse(5, 5, 10, 10);

$i-> end_paint;

resize

$i-> size(64, 64);

file operations

$i-> load(’a.gif’) or die "Error loading:$@\n";

$i-> save(’a.gif’) or die "Error saving:$@\n";

draw on screen

$::application-> begin_paint;

the color image is drawn as specified by its palette

$::application-> put_image(100, 100, $i);

a bitmap is drawn as specified by the colors of the destination device

$::application-> set(color => cl::Red, backColor => cl::Green);

$::application-> put_image(200, 100, $i-> bitmap);

Description

Prima::Image, Prima::Icon, and Prima::DeviceBitmap are the classes for bitmap handling,
file, and graphic input and output. Prima::Image and Prima::DeviceBitmap are descendants
of Prima::Drawable and represent bitmaps, stored in memory. Prima::Icon is a descendant of
Prima::Image and also contains a 1-bit transparency mask or an 8-bit alpha channel.

Usage

Pixel storage is usually a contiguous memory area, where scanlines of pixels are stored row-wise.
The Prima toolkit is no exception, however, it does not assume that the underlying GUI system
uses the same memory format. The implicit conversion routines are called when Prima::Image

is about to be drawn onto the screen, for example. The conversions are not always efficient,
therefore the Prima::DeviceBitmap class is introduced to represent a bitmap, stored in the system
memory in the system pixel format. These two basic classes serve different needs but can be easily
converted to each other, with the image and bitmap methods. Prima::Image is a more general
bitmap representation, capable of file and graphic input and output, plus it is supplied with a

79

set of conversion and scaling functions. The Prima::DeviceBitmap class has almost none of the
additional functionality and is used for efficient graphic input and output.

Note: If you’re looking for information on how to display an image, you may want to read
first the Prima::ImageViewer section manual page, or use put image / stretch image (the
Prima::Drawable section) inside your widget’s onPaint callback.

Graphic input and output

As descendants of Prima::Drawable, all Prima::Image, Prima::Icon, and
Prima::DeviceBitmap objects are also subject to three-state painting mode - normal (
disabled), painting (enabled), and informational. Prima::DeviceBitmap, however, exists only
in the enabled state, and cannot be switched to the other two.

When an image enters the enabled state, it can be used as a drawing canvas, so that all
Prima::Drawable operations can be performed on it. When the image is back in the disabled
state, the canvas pixels are copied back to the object- associated memory, in the pixel format
supported by the toolkit. When the object enters the enabled state again, the pixels are copied
to the system bitmap memory, in the pixel format supported by the system. In case the system
pixel representation is less precise than Prima’s, f ex when drawing on a 24-RGB image when the
system has only 8-bit paletted display, then some pixel information will be lost in the process.

Image objects can be drawn on other images and device bitmaps, as well as on
the screen and Prima::Widget objects. These operations are performed via one of the
Prima::Drawable::put image group methods (see the Prima::Drawable section) and can be
called with the image object in any paint state. The following code illustrates the dualism of the
image object, where it can serve both as the drawing target and the drawing source:

my $a = Prima::Image-> new(width => 100, height => 100, type => im::RGB);

$a-> begin_paint;

$a-> clear;

$a-> color(cl::Green);

$a-> fill_ellipse(50, 50, 30, 30);

$a-> end_paint;

$a-> rop(rop::XorPut);

$a-> put_image(10, 10, $a);

$::application-> begin_paint;

$::application-> put_image(0, 0, $a);

$::application-> end_paint;

A special case is a 1-bit (monochrome) DeviceBitmap. When it is drawn on a drawable with
a bit depth greater than 1, the drawable’s color and backColor properties are used to reflect the
source’s 1 and 0 bits, respectively.

File input and output

Depending on the toolkit configuration, images can be read and written in different file formats.
This functionality is accessible via the load() and save() methods. the Prima::image-load sec-
tion describes the loading and saving parameters that can be passed to these methods, so they can
handle different aspects of file format-specific options, such as multi-frame operations, auto con-
version when a format does not support a particular pixel type, etc. In this document, the load()
and save() methods are illustrated only in their basic, single-frame functionality. When called
with no extra parameters, these methods fail only if a disk I/O error occurs or an unsupported
image format is used.

Pixel formats

Prima::Image supports several pixel formats, managed by the ::type property. The property
is an integer value, a combination of the im::XXX constants. The toolkit defines standard pixel

80

formats for the color formats (16-color, 256-color, 16M-color), and the gray-scale formats, mapped
to C data types - unsigned char, unsigned short, unsigned long, float, and double. The gray-scale
formats can be based on real-number types and complex-number types; the latter are represented
by two real values per pixel, as the real and imaginary values.

A Prima::Image object can also be initialized from other pixel formats, that it does not support
internally, but can convert data from. Currently, these are represented by a set of permutations of
the 32-bit RGBA format, and 24-bit BGR format. These formats can only be used in conjunction
with the ::data property.

The conversions can be performed between any of the supported formats (to do so, the ::type
property is to be set-called). An image of any of these formats can be drawn on the screen, but
if the system can not accept the pixel format (as it is with the non-integer or complex formats),
the bitmap data are implicitly converted. The conversion does not change the data if the image
is about to be drawn; the conversion is performed only when the image is about to be served as
a drawing surface. If, for any reason, it is desired that the pixel format is not to be changed, the
::preserveType property must be set to 1. It does not prevent the conversion, but it detects
if the image was implicitly converted inside the end paint() call, and reverts it to the previous
pixel format.

There are situations when the pixel format must be changed together with down-sampling the
image. One of four down-sampling methods can be selected - without halftoning, 8x8 ordered
halftoning, error diffusion, and error diffusion combined with the optimized palette. These can
be set to the ::conversion property using one of the ict::XXX constants. When the conversion
doesn’t incur information loss, the ::conversion property is not used.

Another special case of image downsampling is the conversion with a palette. The following
code,

$image-> type(im::bpp4);

$image-> palette($palette);

and

$image-> palette($palette);

$image-> type(im::bpp4);

produce different results, but none of these takes into account eventual palette remapping
because the ::palette property does not change bitmap pixel data, but overwrites the palette
information only. The correct syntax here is

$image-> set(

palette => $palette,

type => im::bpp4,

);

This syntax is most powerful when conversion is set to those algorithms that can take into
account the existing image pixels to produce an optimized palette. These are ict::Optimized

(default) and ict::Posterization. This syntax not only allows remapping or downsampling
pixels to a predefined color set but also can be used to limit the palette size to a particular number,
without knowing the actual values of the final color palette. For example, for a 24-bit image,

$image-> set(type => im::bpp8, palette => 32);

call would calculate colors in the image, compress them to an optimized palette of 32 cells, and
finally convert the image to the 8-bit format using that palette.

Instead of the palette property, the colormap property can also be used.

81

Data access

The individual pixel values can be accessed in the same way as in the Prima::Drawable class, via
the ::pixel property. However, Prima::Image introduces several helper functions on its own.

The ::data property is used to set or retrieve the scalar representation of pixel data. The
data are expected to be lined up to a ’line size’ margin (4-byte boundary), which is calculated as

$lineSize = int(($image->width * ($image-> type & im::BPP) + 31) / 32) * 4;

or returned from the read-only property ::lineSize.
That value is the actual size of a single row of pixels as stored internally in the object memory,

however, the input to the ::data property should not necessarily be aligned to this value, it can
be accompanied by a write-only flag ’lineSize’ if the pixels are aligned differently:

$image-> set(width => 1, height=> 2);

$image-> type(im::RGB);

$image-> set(

data => ’RGB----RGB----’,

lineSize => 7,

);

print $image-> data, "\n";

output: RGB-RGB-

Internally, Prima contains images in memory so that the first scanline is farthest away from the
memory start; this is consistent with general Y-axis orientation in the Prima drawable paradigm
but might be inconvenient when importing data that are organized otherwise. Another write-only
boolean flag reverse can be set to 1 so data then are treated as if the first scanline of the image
is closest to the start of data:

$image-> set(width => 1, height=> 2, type => im::RGB);

$image-> set(

data => ’RGB-123-’,

reverse => 1,

);

print $image-> data, "\n";

output: RGB-123-

Although it is possible to perform all kinds of calculations and modifications with the pixels
returned by the ::data property, it is not advisable unless the speed does not matter. Stan-
dalone PDL package with the help of the PDL::PrimaImage entry package, and Prima-derived
IPA package provide routines for data and image analysis provide tools for efficient pixel manip-
ulations. Also, the Prima::Image::Magick section connects the ImageMagick entry with Prima.
Prima::Image itself provides only the simplest statistical information, namely: the lowest and
highest pixel values, the arithmetic sum of pixel values, the sum of pixel squares, the mean value,
variance, and standard deviation.

Standalone usage

All of the drawing functionality can be used standalone, with all other parts of the toolkit being
uninitialized. Example:

my $i = Prima::Image->new(size => [5,5]);

$i->color(cl::Red);

$i->bar(0,0,$i->size);

$i->save(’1.bmp’);

82

This feature is useful in non-interactive programs, running in environments with no GUI access,
for example, a CGI script with no access to an X11 display. Normally, Prima fails to start in such
situations but can be told not to initialize the GUI part by explicitly specifying system-dependent
options. See the Prima::noX11 section for more.

Generally, the standalone methods support all the OS-specific functions (i.e. color, region,
etc). Also, the graphic primitives and put image methods support drawing using the Porter-Duff
and Photoshop operators that can be specified in the ::rop property by using values from the
extended set of the rop::XXX constants, i e rop::SrcOver and above.

All text API is also supported (on unix if Prima is compiled with freetype and fontconfig) and
can be used transparently for the caller. The list of available fonts, and their renderings, may
differ from the fonts available in the system. For example, where the system may choose to render
glyphs with pixel layout optimized for LCD screens, the font query subsystem may not.

See individual methods and properties in the API entry that support standalone usage, and
how they differ from system-dependent implementation.

Prima::Icon

The Prima::Icon class inherits all properties of Prima::Image and features the 1-bit transparency
mask or the 8-bit alpha channel. The mask can also be loaded and saved into image files if the
format supports transparency.

Similar to the Prima::Image::data property, the Prima::Icon::mask property provides ac-
cess to the binary mask data. The mask can be updated automatically after an icon object is sub-
jected to painting, resizing, or other destructive changes. The auxiliary properties ::autoMasking
and ::maskColor/::maskIndex regulate the mask update procedure. For example, if an icon was
loaded with the color (vs. mask) transparency information, the binary mask will be generated
anyway, but it will be also recorded that a particular color is transparent, so eventual conversions
can rely on the color value instead.

Drawing using an icon ignores the ::rop value except when its mask is an 8-bit alpha channel,
in which case only the Photoshop and Porter-Duff operations are supported. When drawing
happens on the system canvas (i e a widget, bitmap, or an image in the enabled state), the only
operations supported are rop::Blend and rop::SrcCopy.

Layering

The term layered window is borrowed from the Windows world, and means a window with trans-
parency. In Prima, the property the layered entry is used to request this functionality. The result
of the call $::application->get system value(sv::LayeredWidgets) can show if this func-
tionality is available; if not, the ::layered property is ignored. By default, widget layering is
turned off.

A layered drawable uses an extra alpha channel to for the transparency pixels. Drawing on
widgets looks different as well - for example, drawing with black color will make the black pixels
fully transparent, while other colors will blend with the underlying background. Prima provides
graphics primitives to draw using alpha effects, and some image functions to address layered
surfaces.

The put image and stretch image functions can operate on layered surfaces both as source
and destination drawables. To address the alpha channel on a drawable use either a Prima::Icon

with maskType(im::bpp8), or a layered DeviceBitmap.
The corresponding Prima::DeviceBitmap type is dbt::Layered, and is fully compatible with

layered widgets in the same fashion as DeviceBitmap with type dbt::Pixmap is fully compatible
with normal widgets. One of the ways to put a constant alpha value over a rectangle is, for
example, like this:

my $a = Prima::Icon->new(

width => 1,

83

height => 1,

type => im::RGB,

maskType => im::bpp8,

data => "\0\0\0",

mask => chr($constant_alpha),

);

$drawable-> stretch_image(0, 0, 100, 100, $a, rop::SrcOver);

If displaying a picture with a pre-existing alpha channel, you’ll need to call the premultiply alpha
entry because the picture renderer assumes that pixel values are premultiplied.

Even though addressing the alpha values of pixels of the layered surfaces is not straightforward,
the conversion between images and device bitmaps fully supports alpha pixels. This means that:

* When drawing on an icon with an 8-bit alpha channel (argb icon), any changes to the alpha
values of pixels will be transferred back to the mask property after end paint

* Calls to the icon method on a DeviceBitmap with type dbt::Layered produce identical
argb icons. Calls to the bitmap method on argb icons produce identical layered device bitmaps.

* Putting argb icons and layered device bitmap on other drawables yields identical results.
Putting images on argb source surfaces can be only used with two raster operators, rop::Blend

(default) and rop::SrcCopy. The former produces the blending effect, while the latter copies alpha
bits over to the destination surface. Also, a special rop::AlphaCopy can be used to treat 8-bit
grayscale source images as alpha maps, to replace the alpha pixels only.

Prima’s internal implementation of the put image and the stretch image functions extends
the allowed set of raster operators when operating on images outside the begin paint/end paint
brackets. These operators include 12 Porter-Duff operators, a set of Photoshop operators, and
special flags to specify constant alpha values to override the existing alpha channel, if any. See
more in the Raster operations entry in the Prima::Drawable section.

Caveats: In Windows, mouse events will not be delivered to the layered widget if the pixel
under the mouse pointer is fully transparent.

See also: examples/layered.pl.

API

Prima::Image properties

codec $NAME

In the get-call, returns the codec name that loaded the image, given the extras were loaded
using the loadExtras => 1 options. Returns undef if cannot detect the codec.

In the set-call, assigns the codec to the image extras, so that a save call can use that to save
in the desired format.

colormap @PALETTE

The color palette is used for representing 1, 4, and 8-bit bitmaps when the image object is
to be visualized. @PALETTE contains combined RGB colors as 24-bit integers, 8 bits per
component. For example, the colormap values for a typical black-and-white monochrome
image can be 0,0xffffff.

See also palette.

conversion TYPE

Selects the type of dithering algorithm to be used for pixel down-sampling. TYPE is one of
the ict::XXX constants:

ict::None - no dithering, with a static palette or palette optimized by the source

ict::Posterization - no dithering, with palette optimized by the source pixels

84

ict::Ordered - fast 8x8 ordered halftone dithering with a static palette

ict::ErrorDiffusion - error diffusion dithering with a static palette

ict::Optimized - error diffusion dithering with an optimized palette

As an example, if a 4x4 color image with every pixel set to RGB(32,32,32) is downsampled
to a 1-bit image, the following results may occur:

ict::None, ict::Posterization:

[0 0 0 0]

[0 0 0 0]

[0 0 0 0]

[0 0 0 0]

ict::Ordered:

[0 0 0 0]

[0 0 1 0]

[0 0 0 0]

[1 0 0 0]

ict::ErrorDiffusion, ict::Ordered:

[0 0 1 0]

[0 0 0 1]

[0 0 0 0]

[0 0 0 0]

Values of these constants are made from the ictp:: entry in the Prima::Const section and
the ictd:: entry in the Prima::Const section constants.

data SCALAR

Provides access to the pixel data. On the get-call returns all the bitmap pixels, aligned to a
4-byte boundary. On the set-call, stores the provided data with the same 4-byte alignment.
The alignment can be altered by submitting the write-only lineSize flag to the set-call.
The ordering of scan lines can be altered by setting the write-only reverse flag (see the
Data access entry).

exif HASH

A shortcut to the Exif parser and compiler, Prima::Image::Exif , to operate on the image
extras.

height INTEGER

Manages the vertical dimension of the image data. On the set-call, the image content is
changed to adapt to the new height, and depending on the value of the ::vScaling property,
the pixel values are either scaled or truncated, with or without resampling.

85

lineSize INTEGER

A read-only property, returning the length of a row of pixels in bytes, as represented internally
in memory. Data returned by the ::data property are aligned to ::lineSize bytes per row.
Setting the ::data property expects the input scalar to be aligned to this value unless the
lineSize field is set together with data to indicate another alignment. See the Data access
entry for more.

mean

Returns the mean value of pixels. The mean value is a ::sum of pixel values, divided by the
number of pixels.

palette [@PALETTE]

The color palette is used for representing 1, 4, and 8-bit bitmaps when the image object is
to be visualized. @PALETTE contains individual color component (R,G,B) triplets as 8-bit
integers. For example, the palette values for a typical black-and-white monochrome image
can be [0,0,0,255,255,255].

See also colormap.

pixel (X OFFSET, Y OFFSET) PIXEL

Provides per-pixel access to the image data when the image object is in the disabled paint
state.

Pixel values for grayscale 1-, 4-, and 8-bit images are treated uniformly, their values range
from 0 to 255. For example, values for grayscale 1-bit images are 0 and 255, not 0 and 1.

In the paint state behaves in the same way as Prima::Drawable::pixel.

preserveType BOOLEAN

If 1, reverts the image type and eventual palette to their old values whenever an implicit pixel
format change is needed, for example during end paint(). This option can be expensive,
and repetitive conversions can drastically degrade image quality; use with care.

Default: false

See also: conversion

rangeHi

Returns the maximum pixel value in the image data.

rangeLo

Returns the minimum pixel value in the image data.

scaling INT

Declares the scaling strategy when the image is resized. Strategies ist::None through
ist::Box are very fast scalers, while the others are slower.

Can be one of ist:::XXX constants:

ist::None - the image will be either stripped (when downsizing)

or padded (when upsizing) with zeros

ist::Box - the image will be scaled using a simple box transform

ist::BoxX - columns will behave the same as in ist::None,

rows will behave the same as in ist::Box

ist::BoxY - rows will behave the same as in ist::None,

columns will behave the same as in ist::Box

ist::AND - when rows or columns are to be shrunk, leftover pixels

86

will be AND-end together (for black-on-white images)

(does not work for floating point pixels)

ist::OR - when rows or columns are to be shrunk, leftover pixels

will be OR-end together (for white-on-black images)

(does not work for floating point pixels)

ist::Triangle - bilinear interpolation

ist::Quadratic - 2nd order (quadratic) B-Spline approximation of the Gaussian

ist::Sinc - sine function

ist::Hermite - B-Spline interpolation

ist::Cubic - 3rd order (cubic) B-Spline approximation of the Gaussian

ist::Gaussian - Gaussian transform with gamma=0.5

Note: Resampling scaling algorithms (those greater than ist::Box), when applied to Icons
with a 1-bit icon mask will silently upgrade the mask to 8 bits and apply the same scaling
algorithm to it. This will have a great smoothing effect on mask edges if the system supports
ARGB layering (see the Layering entry).

size WIDTH, HEIGHT

Manages the dimensions of the image data. On the set-call, the image content is changed to
adapt to the new height, and depending on the value of the ::vScaling property, the pixel
values are either scaled or truncated, with or without resampling.

stats (INDEX) VALUE

Returns one of the calculated statistics addressed by INDEX, which can be one of the
following is::XXX constants:

is::RangeLo - minimum pixel value

is::RangeHi - maximum pixel value

is::Mean - mean value

is::Variance - variance

87

is::StdDev - standard deviation

is::Sum - the sum of pixel values

is::Sum2 - the sum of squares of pixel values

The values are re-calculated on request and cached. On the set-call VALUE is stored in the
cache, and is returned on the next get-call. The cached values are discarded every time the
image data changes.

These values are also accessible via a set of alias properties: ::rangeLo, ::rangeHi, ::mean,
::variance, ::stdDev, ::sum, and ::sum2.

stdDev

Returns the standard deviation of the image data. The standard deviation is the square root
of ::variance.

sum

Returns the sum of pixel values of the image data

sum2

Returns the sum of squares of pixel values of the image data

type TYPE

Manages the image pixel format type. TYPE is a combination of the im::XXX constants.
The constants are collected in groups:

Bit-depth constants provide the size of pixels in bits. Their actual value is the same as the
number of bits, so the value of the im::bpp1 constant is 1, im::bpp4 is 4, etc. The supported
constants represent the bit depths from 1 to 128:

im::bpp1

im::bpp4

im::bpp8

im::bpp16

im::bpp24

im::bpp32

im::bpp64

im::bpp128

The following values reflect the pixel format category:

im::Color

im::GrayScale

im::RealNumber

im::ComplexNumber

im::TrigComplexNumber

im::SignedInt

The value of the im::Color constant is 0, whereas other category constants are represented
by unique bit values, so a combination of im::RealNumber and im::ComplexNumber becomes
possible (although not all of the combinations are supported).

There are also several mnemonic constants defined:

88

im::Mono - im::bpp1

im::BW - im::bpp1 | im::GrayScale

im::16 - im::bpp4

im::Nibble - im::bpp4

im::256 - im::bpp8

im::RGB - im::bpp24

im::Triple - im::bpp24

im::Byte - gray 8-bit unsigned integer

im::Short - gray 16-bit unsigned integer

im::Long - gray 32-bit unsigned integer

im::Float - float

im::Double - double

im::Complex - dual float

im::DComplex - dual double

im::TrigComplex - dual float

im::TrigDComplex - dual double

The bit depths of the float- and double-derived pixel formats depend on the platform.

These values can be isolated using the mask values:

im::BPP - bit depth constants

im::Category - category constants

im::FMT - extra format constants

The extra formats are the pixel formats, not supported by the ::type property, but recog-
nized in the combined set-call, for example like this:

$image-> set(

type => im::fmtBGRI,

data => ’BGR-BGR-’,

);

The data, supplied with the extra image format specification will be converted to the closest
supported format. Currently, the following extra pixel formats are recognized:

im::fmtBGR

im::fmtRGBI

im::fmtIRGB

im::fmtBGRI

im::fmtIBGR

variance

Returns the variance of pixel values of the image data. The variance is ::sum2, divided by
the number of pixels minus the square of ::sum of pixel values.

width INTEGER

Manages the horizontal dimension of the image data. On the set-call, the image content is
changed to adapt to the new height, and depending on the value of the ::vScaling property,
the pixel values are either scaled or truncated, with or without resampling.

89

Prima::Icon properties

autoMasking TYPE

Selects if the mask information should be updated automatically after ::data is changed.
Every ::data change is mirrored in ::mask, using TYPE, one of the am::XXX constants:

am::None - no mask update performed

am::MaskColor - mask update based on ::maskColor property

am::MaskIndex - mask update based on ::maskIndex property

am::Auto - mask update based on corner pixel values

The ::maskColor color value is used as a transparent color if TYPE is am::MaskColor. The
transparency mask generation algorithm turned on by am::Auto checks corner pixel values,
assuming that the majority of the corner pixels represent a transparent color. Once such
color is found, the mask is generated as in the am::MaskColor case.

::maskIndex is the same as ::maskColor, except that it points to a specific color index in
the palette.

When image ::data is stretched, ::mask is stretched accordingly, disregarding the
::autoMasking value.

mask SCALAR

Provides access to the transparency pixels. On the get-call, returns all mask pixels, aligned
to a 4-byte boundary. On the set-call, stores the provided transparency data with the same
alignment. If the SCALAR is an image object, copies its pixels as a new mask. In that case,
copies the pixels as is if the format matches (i e 1-bit icon mask receives 1-bit pixels from
the image). or the image data is converted to 8 bits and the mask is converted to the 8-bit
format as well.

maskColor COLOR

When the ::autoMasking property is set to am::MaskColor, COLOR is used as the trans-
parency value.

maskIndex INDEX

When the ::autoMasking property is set to am::MaskIndex, the INDEXth color in the
current palette is used as the transparency value.

maskLineSize INTEGER

A read-only property, returning the length of the mask row in bytes, as represented internally
in memory. Data returned by the ::mask property is aligned with ::maskLineSize bytes
per row.

maskPixel (X OFFSET, Y OFFSET) PIXEL

Provides per-pixel access to the icon mask.

In the disabled mode, gets and sets the value directly from the mask memory. In the paint
mode, and if (and only if) the mask depth is 8 bits, queries the alpha pixel value from the
system paint surface. Pixel values for all mask depths are treated uniformly, their values
range from 0 to 255. For example, values for 1-bit mask pixels are 0 and 255, not 0 and 1.

maskType INTEGER

Is either im::bpp1 (1) or im::bpp8 (8). The latter can be used as a layered (argb) source
surface to draw with blending effects.

Note: if a mask with depth 8 is downgraded to depth 1, the image pixels that correspond to
alpha values lesser than 255 will be reset to 0.

90

Prima::DeviceBitmap properties

maskPixel (X OFFSET, Y OFFSET) PIXEL

Provides per-pixel access to the alpha component of the layered device bitmap. If the bitmap
is not layered, the property does not do anything.

type INTEGER

A read-only property that can only be set during creation, reflects whether the system
bitmap is a black-and-white 1-bit (dbt::Bitmap), a colored drawable that is compatible with
widgets (dbt::Pixmap), or is a colored drawable with an alpha channel that is compatible
with layered widgets (dbt::Layered).

The bit depth of the bitmap pixel type can be read via the get bpp() method; monochrome
bitmaps always have a bit depth of 1, and layered bitmaps have a bit depth of 32.

Prima::Image methods

The following properties are same as in the Prima::Drawable clear class, but can be called
also outside of the paint state: bar, bar alpha, bars, chord, clear, ellipse, fill chord,
fill ellipse, fill sector, fill spline, flood fill, line, lines, pixel, polyline,
put image, put image indirect, rectangle, sector, spline, stretch image.

These drawing primitives are executed using the core Prima functionality, without involving
the system backend.

bitmap

Returns a newly created Prima::DeviceBitmap object with the same image dimensions and
pixel content.

clone %properties

Creates a copy of the image and applies %properties. An easy way to create a down-sampled
copy, for example.

codecs

Returns an array of hashes, each describing the supported image format.

See the Prima::image-load section for details.

This method can be called without object instance:

perl -MData::Dumper=Dumper -MPrima::noX11 -MPrima -le ’print Dumper(Prima::Image->codecs)’

dup

Returns a copy of the object, a newly created Prima::Image, with all properties copied.
Does not preserve the graphical properties though (color etc).

extract X OFFSET, Y OFFSET, WIDTH, HEIGHT

Returns a newly created image object with dimensions equal to or less than WIDTH and
HEIGHT, initialized with pixel data from X OFFSET and Y OFFSET in the bitmap. The
dimensions could be less than requested if they extend past the original image dimensions.

Same as the Drawable:: functions but can be used also outside of the paint state.

get bpp

Returns the bit depth of the pixel format. Same as ::type & im::BPP.

get handle

Returns the system handle of the image object.

91

has codec $MATCH

Returns true if Prima supports the codec. Can be called on a package.

load (FILENAME or FILEGLOB) [%PARAMETERS]

Loads an image from file FILENAME or stream FILEGLOB into an object, and returns the
success flag. The method features different semantics, depending on the PARAMETERS
hash. The load() method can be called either in the context of the existing object, then a
boolean success flag is returned. Or in the class context, then a newly created object (or
undef) is returned. If an error occurs, the $@ variable contains the error string. These two
invocation semantics are equivalent:

my $x = Prima::Image-> new();

die "$@" unless $x-> load(...);

and

my $x = Prima::Image-> load(...);

die "$@" unless $x;

See the Prima::image-load section for details and the Prima::Image::Loader section for more
functionality.

Note: when loading from streams on win32, mind the binmode.

load stream BASE64 STRING, %OPTIONS

Decodes BASE64 STRING and tries to load an image from it. Returns image reference(s)
on success, or undef on failure; also $@ is set in this case.

map COLOR

Performs iterative mapping of bitmap pixels, setting every pixel to the ::color property
with respect to the ::rop type if a pixel equals to COLOR, and to the ::backColor property
with respect to the ::rop2 type otherwise.

The rop::NoOper type can be used for color masking.

Examples:

width => 4, height => 1, data => [1, 2, 3, 4]

color => 10, backColor => 20, rop => rop::CopyPut

rop2 => rop::CopyPut

input: map(2) output: [20, 10, 20, 20]

rop2 => rop::NoOper

input: map(2) output: [1, 10, 3, 4]

mirror VERTICAL

Mirrors the image either vertically or horizontally depending on the boolean flag VERTICAL

premultiply alpha CONSTANT OR IMAGE

Applies premultiplication formula to each pixel

pixel = int(pixel * alpha / 255 + 0.5)

92

where the alpha either is a constant or the corresponding pixel value in the image

put image, put image indirect, stretch image

Same as the Drawable:: functions but can be used also outside of the paint state.

Extends raster functionality to access alpha channel either using constant alpha values or
Prima::Icon as sources. See the explanation of the rop:: constants in the Raster oper-
ations entry in the Prima::Drawable section.

resample SRC LOW, SRC HIGH, DEST LOW, DEST HIGH

Performs linear scaling of gray pixel values from range (SRC LOW - SRC HIGH) to the new
range (DEST LOW - DEST HIGH). Can be used to visualize gray non-8-bit pixel values,
by the code:

$image-> resample($image-> rangeLo, $image-> rangeHi, 0, 255);

$image-> type(im::Byte);

rotate DEGREES [,FILL COLOR]

Rotates the image. Where the angle is 90, 180, or 270 degrees, fast pixel flipping is used,
otherwise fast Paeth rotation is used. Eventual resampling can be controlled by the scaling
property (probably not worth it for functions with a support range of more than 1 pixel).

Fills empty pixels with an optional FILL COLOR.

The resulting images can be 1 pixel too wide due to horizontal shearing applied twice, where
in worst cases 1 pixel from the original image can take 3 horizontal pixels in the resulting
image.

save (FILENAME or FILEGLOB), [%PARAMETERS]

Stores image data into image file FILENAME or stream FILEGLOB, returns the success
flag. The method features different semantics, depending on the PARAMETERS hash. If
an error occurs, the $@ variable contains the error string.

Note that when saving to a stream, codecID must be explicitly given in %PARAMETERS.

See the Prima::image-load section for details and the Prima::Image::Saver entry in the
Prima::Image::Loader section for more functionality.

Note: when saving to streams on win32, mind the binmode.

save stream BASE64 STRING, %OPTIONS

Saves the image into an internal stream. Unless $OPTIONS{codecID} or $image-{extras}-
>{codecID}> is set, tries to find the best codec for the job. Returns the base64-encoded
content on success, or undef on failure; $@ is set in the latter case.

scanline Y

Returns a scanline from the Y offset in the same raw format as data

shear X, Y

Applies the shearing transformation to the image. If the shearing is needed only for one
axis, set the shearing factor for the other one to zero.

convert to icon $MASK DEPTH, $MASK TEMPLATE

Creates an icon from the image, with $MASK DEPTH integer (can be either 1 or 8), and
$$MASK TEMPLATE scalar used for the newly created mask.

93

to colormask COLOR

Creates a new icon with bit depth 24 filled with COLOR, where the mask bits are copied
from the caller image object and upgraded to bit depth 8 if needed.

to rgba TYPE=undef

Creates a new icon with type set to 24 or 8 gray bits and mask type to 8 bits. If TYPE is
set, uses that type instead.

to region

Creates a new the Prima::Region section object with the image as the data source. The
image is expected to be of 1-bit depth.

transform matrix => [a,b,c,d,x,y], [fill => color]

Applies a generic 2D transform matrix to the image and fills empty pixels with an optional
fill color.

The required option matrix should point to an array of 6 float numbers, where these represent
a standard 3x2 matrix for 2D transformation, f ex a Prima::matrix object.

Tries first to split the matrix into a series of shear and scale transforms using the LDU
decomposition; if an interim image is calculated to be too large, fails and returns false.

The last two matrix members (X and Y translation) only use the mantissa and ignore the
integer part, so setting these f ex to 10.5 will not produce an image 11 pixels larger, but only
1. The translation is thus effectively sub-pixel.

The rotation matrices can be applied too, however, when angles are close to 90 or 270
degrees, either interim images become too big, or defects introduced by the shearing become
too visible. Therefore the method specifically detects rotation cases and uses the Paeth
rotation algorithm instead, which yields better results. Also, if the angle is detected to be
90, 180, or 270 degrees, fast pixel flipping is used.

Eventual resampling can be controlled by the scaling property.

ui scale %OPTIONS

Resizes the image with smooth scaling. Understands zoom and scaling options. The zoom

default value is the one in $::application->uiScaling, and the scaling default value is
ist::Quadratic .

See also: the uiScaling entry in the Application section

Prima::Image events

Prima::Image-specific events occur only from inside the load call, to report the loading progress.
Not all codecs (currently JPEG,PNG,TIFF only) can report the progress to the caller. See
the Loading with progress indicator entry in the Prima::image-load section for details,
the watch load progress entry in the Prima::ImageViewer section and the load entry in the
Prima::Dialog::ImageDialog section for suggested use.

HeaderReady EXTRAS

Called whenever the image header is read, and image dimensions and pixel type are changed
accordingly to accommodate the image data.

EXTRAS is the hash to be stored later in the {extras} field on the object.

DataReady X, Y, WIDTH, HEIGHT

Called whenever image data that covers an area defined by the X,Y,WIDTH,HEIGHT rect-
angle is ready. Use the load option eventDelay to limit the rate of DataReady events.

94

Prima::Icon methods

bar alpha ALPHA <X1, Y1, X2, Y2>

Same as Drawable::bar alpha but can be used also outside of the paint state.

combine DATA, MASK

Copies information from the DATA and MASK images into the ::data and the ::mask

properties. DATA and MASK are expected to be images of the same dimension.

create combined DATA, MASK, %SET

Same as combine, except can be called without an object, and applies the %SET hash to the
corresponding properties of the newly created icon.

image %opt

Renders the icon on a newly created Prima::Image object instance using the black back-
ground. If $opt{background} is given, this color is used instead.

maskline Y

Returns the mask scanline from the Y offset in the same raw format as mask

maskImage

Return an image created from the mask

premultiply alpha CONSTANT OR IMAGE = undef

Applies the premultiplication formula to each pixel

pixel = pixel * alpha / 255

where alpha is the corresponding alpha value for each coordinate. If the value passed is
undef, premultiplies the data pixels with the corresponding mask pixels.

Only applicable when maskType is <im::bpp8>.

rotate, transform

Applies the transformation to both color and mask pixels. Ignores fill color, fills with zeros
in both planes.

split

Returns two new Prima::Image objects of the same dimension. Pixels in the first image are
copied from the ::data storage, and in the second one - from the ::mask storage.

translate matrix => [a,b,c,d,x,y]

Same as the translate method in the Prima::Image class except that it also rotates the
mask, and ignores the fill option - all new pixels are filled with zeros.

ui scale %OPTIONS

Same as ui scale from Prima::Image, but with few exceptions: It tries to use
ist::Quadratic only when the system supports ARGB layering. Otherwise, falls back
on the ist::Box scaling algorithm, and also limits the zoom factor to integers (2x, 3x, etc)
only, because when displayed, the smooth-scaled color plane will not match the mask plane
downgraded to 0/1 mask, and also because the box-scaling with non-integer zooms looks
ugly.

95

Prima::DeviceBitmap methods

dup

Returns a duplicate of the object, a newly created Prima::DeviceBitmap, with all informa-
tion copied to it. Does not preserve graphical properties (color etc).

icon

Returns a newly created Prima::Icon object instance, with the pixel information copied
from the object. If the bitmap is layered, returns icons with maskType set to im::bpp8.

image

Returns a newly created Prima::Image object instance, with the pixel information copied
from the object.

get handle

Returns the system handle for the system bitmap object.

96

3.7 Prima::image-load

Using the image subsystem

Description

This document describes using the Prima image subsystem for loading and saving images

Loading

Simple loading

In the simplest case, loading a single image would look like this:

my $x = Prima::Image-> load(’filename.jpg’);

die "$@" unless $x;

Image functions can be invoked either as package functions or as Prima::Image object methods.
The code above could be also written as

my $x = Prima::Image-> new;

die "$@" unless $x-> load(’filename.jpg’);

In both cases, $x contains loaded image data upon success. If an error occurs, it is returned
in the $@ variable (see perlvar).

Loading from stream

Prima::Image can also load images by reading from a stream:

open FILE, ’a.jpeg’ or die "Cannot open:$!";

binmode FILE;

my $x = Prima::Image-> load(*FILE);

die "$@" unless $x;

Multiframe loading

Multiframe load calls can be issued in two ways:

my @x = Prima::Image-> load(’filename.gif’, loadAll => 1);

die "$@" unless $x[-1];

my $x = Prima::Image-> new;

my @x = $x-> load(’filename.gif’, loadAll => 1);

die "$@" unless $x[-1];

In the second case, the content of the first frame is stored in $x and $x[0]. To check if the
error has occurred during the loading, inspect the last item of the returned array; it is undefined
if the error indeed occurred. This check works also if an empty array is returned. Only this last
item can be undefined, others are guaranteed to be valid objects.

Prima can load more than one image from a file, assuming the image format allows that. The
load function recognizes such multiframe semantics when certain extra hash keys are used. These
keys are:

loadAll

Requests to load all frames that can be read from the file:

97

loadAll => 1

index

If present, returns a single frame with the index given:

index => 8

map

Contains an anonymous array of the frame indices to load. The indices must be integers
that are greater or equal to zero:

map => [0, 10, 15..20]

Querying extra information

By default, Prima loads only image pixels and palette. For any other information that can be
loaded, use the hash ’extras’ bound to the image object. To notify the image loader that this
extra information is expected, the loadExtras boolean value is used:

my $x = Prima::Image-> load($f, loadExtras => 1);

die "$@" unless $x;

for (keys %{$x-> {extras}}) {

print " $_ : $x->{extras}->{$_}\n";

}

The code above loads and prints extra information read from a file. Typical output, for
example, from a gif codec based on the libgif library would look like this:

codecID : 1

transparentColorIndex : 1

comment : created by GIMP

frames : 18

codecID is a Prima-defined integer field, an internal index of the codec which had previously
loaded the file. This value is useful for the explicit selection of the codec to be used for saving an
image.

frames is also a Prima-defined field, with its integer value set to the number of frames in the
image. It might be set to -1 signaling that the codec is incapable of quick reading of the frame
count. If, however, it is necessary to get the actual frame count, the wantFrames boolean value
should be set to 1 - then the frames field is guaranteed to be set to a 0 or a positive value. Such a
request may take longer though, especially on large files with sequential access. A real-life example
is a gif file with more than a thousand frames. The wantFrames flag is also useful in null load
requests (see below).

Multiprofile loading requests

The parameters that are accepted by the load function are divided into two groups - first, those
that apply to the whole loading process, and then those that apply only to a particular frame.
Some fields that were already mentioned (wantFrames and loadAll) belong to the first group
because they affect the whole loading session. Some other parameters (loadExtras, noImageData,
noIncomplete, iconUnmask) can be applied to each loaded frame, individually. A codec may as
well define its own parameters, however, it is not possible to tell what parameter belongs to what
group - this information is to be found in the codec documentation.

The parameters that apply to a frame, can be specified separately for every frame in a single call.
For that purpose, the special parameter profiles is defined. The profiles value is expected to
be an anonymous array of hashes, where each hash corresponds to a request number. For example:

98

$x-> load($f, loadAll => 1, profiles => [

{loadExtras => 0},

{loadExtras => 1},

]);

The first hash there applies to the frame index 0, second - to the frame index 1. Note that in
the code below

$x-> load($f,

map => [5, 10],

profiles => [

{loadExtras => 0},

{loadExtras => 1},

]);

first hash applies to the frame index 5, and second - to the frame index 10.

Null load requests

If it is desired to quickly peek into an image, reading only its pixel type and dimensions, one
should set the noImageData boolean value to 1. Using noImageData, empty image objects are
returned, that would have the type property set to the image type (as the codec would translate
it to the Prima image type), and with the extras width and height set to the image dimensions.
Example:

$x-> load($f, noImageData => 1);

die "$@" unless $x;

print $x-> {extras}-> {width} , ’x’ , $x-> {extras}-> {height}, ’x’,

$x-> type & im::BPP, "\n";

Some image information can be loaded even without frame loading - if the codec provides such
a functionality. This is the only request that cannot be issued with the package syntax, an existing
image object is required:

my $x = Prima::Image->new;

$x-> load($f, map => [], loadExtras => 1);

Since no frames are required to load, an empty array is returned on success and an array with
one undefined value on failure.

Using Prima::Image descendants

If Prima needs to create a storage object, it uses by default either the class name of the caller
object, or the package the request was issued on, or the Prima::Image class. This behavior can
be altered using the parameter className, which defines the class to be used for each frame:

my @x = Prima::Image-> load($f,

map => [1..3],

className => ’Prima::Icon’,

profiles => [

{},

{ className => ’Prima::Image’ },

{}

],

99

In this example, @x will contain (Icon, Image, Icon) upon success.
When loading to an Icon object, the default toolkit action is to build the transparency mask

based on the image data. When this is not desired, f.ex., there is no explicit knowledge of the
image to be loaded, while the image may or may not contain transparency information, the
iconUnmask boolean parameter can be used. When set to the true value, and the object is a
Prima::Icon descendant, Prima::Icon::autoMasking is set to am::None before the file loading
which effectively disables any attempt to generate the icon mask. By default, this option is turned
off.

Loading with the progress indicator

Some codecs (PNG,TIFF,JPEG) can signal their progress as they read image data. For this
purpose, the Prima::Image class defines two events, onHeaderReady and onDataReady. If either
(or both) are present on the image object issuing the load call, and the codec supports progressive
loading, then these events will be called. The onHeaderReady event is called when the image header
data is acquired, and an empty image with the required pixel dimensions and type is allocated.
The onDataReady notification is called whenever a part of the image is ready and is loaded in
the memory of the object; the position and dimensions of the loaded area are reported also. The
format of the events is as follows:

onHeaderReady $OBJECT

onDataReady $OBJECT, $X, $Y, $WIDTH, $HEIGHT

The onHeaderReady event is called only once while onDataReady is called as soon as new image
data is available. To reduce the frequency of these calls, which otherwise would be issued after
every scanline loaded, load has the parameter eventDelay, the minimum number of seconds that
need to pass between two consecutive onDataReady calls. The default eventDelay is 0.1 .

The handling of the onDataReady event must be performed with care. First, the image must
be accessed read-only, i e no transformations of any kind are allowed. Currently, there is no
protection for such actions (because the codec must also perform these itself), so a crash will
most surely issue. Second, loading and saving of images is not in general reentrant, and although
some codecs are reentrant, loading and saving images inside image events is not recommended.

There are two techniques to display the image progressively. Both of them require overloading
the onHeaderReady and onDataReady callbacks. The simpler case is to call the put image method
from inside onDataReady:

$i = Prima::Image-> new(

onDataReady => sub {

$progress_widget-> put_image(0, 0, $i);

},

);

but that will most probably load heavily underlying OS-dependent conversion of the image
data to native display bitmap data. A smarter, but more complex solution is to copy loaded (and
only loaded) bits to a preexisting bitmap or image:

$i = Prima::Image-> new(

onHeaderReady => sub {

$bitmap = Prima::DeviceBitmap-> new(

width => $i-> width,

height => $i-> height,

));

},

onDataReady => sub {

my ($i, $x, $y, $w, $h) = @_;

100

$bitmap-> put_image($x, $y, $i-> extract($x, $y, $w, $h));

},

);

The latter technique is used by the Prima::ImageViewer widget class when it is or-
dered to monitor the image loading progress. See the watch load progress entry in the
Prima::ImageViewer section for details.

Truncated files

By default, codecs are not told whether they would fail on the premature end of the file or omit
the error and return a truncated image. The noIncomplete boolean parameter tells that a codec
must always fail if the image cannot be read in full. It is off by default. If indeed the codec detects
that the file is incomplete, it sets the truncated field in the extras profile, if loadExtras was
requested; the field is a string and contains the error message that occurred when the codec tried
to load the truncated field.

Inline files

Using the Prima::Image::base64 module it is possible to convert images into the base64 format
and embed the result directly into the source code. Assuming an appropriate codec was compiled
in, the following would work:

my $icon = Prima::Icon->load_stream(<<~’ICON’);

R0lGODdhIAAgAIAAAAAAAP///ywAAAAAIAAgAIAAAAD///8CT4SPqcvtD6OctNqLcwogcK91nEhq

3gim2Umm4+W2IBzX0fvl8jTr9SeZiU5E4a1XLHZ4yaal6XwFoSwMVUVzhoZSaQW6ZXjD5LL5jE6r

DQUAOw==

ICON

print $icon->save_stream;

Reading one frame at a time

When one needs to load all frames from an image that contains too many frames, or there is
a constraint on memory, Prima provides a way to load images one by one, without needing to
allocate space for all frames in the file.

This section describes the lower-level API that allows for that functionality, however, an easier-
to-use higher level API is documented in the Prima::Image::Loader section .

In order to read one frame at a time, the programmer needs to open a loading session, by
adding the session => 1 option to the load call; that call can only be made on an existing
object, not on the package. The call would return the success flag and an eventual error in $@, as
usual. No frames are loaded yet, though the extras hash on the caller image object may be filled,
depending on the loadExtras option. The options supplied to the session opening call would
apply to all subsequent frames, but these settings may be overridden later.

Having the session successfully opened, the subsequent calls to load with the session => 1

option but with the first parameter set to undef will load the next frame. Each of those load call
will recognize the options supplied and will apply them to indifidual frames. The session-based
loading will recognize all of the function options, except the map, profiles and loadAll options.
The loading session is closed automatically after either a first loading failure or after the end of
file is reached.

Saving

Simple saving

The typical saving code is

101

$x-> save(’filename.jpg’) or die $@;

The function returns 1 on success and 0 on failure. Save requests also can be performed with
the package syntax:

die "$@" unless Prima::Image-> save(’filename.jpg’,

images => [$x]);

Saving to a stream

Saving to a stream requires the explicit codecID integer value to be supplied. When the image is
loaded with loadExtras, this field is always present on the image object and is the integer that
selects the image file format.

my ($png_id) =

map { $_-> {codecID} }

grep { $_-> {fileShortType} =~ /^png$/i }

@{ Prima::Image-> codecs };

die "No png codec installed" unless $png_id;

open FILE, ">", "a.png" or die "Cannot save:$!";

binmode FILE;

$image-> save(*FILE, codecID => $png_id)

or die "Cannot save:$@";

Multiframe saving

When saving more than one image object into a single file the method returns the number of
successfully saved frames. The saved image file is erased though, if an error occurs, even after
some successfully written frames.

die "$@" if scalar(@images) > Prima::Image-> save($f,

images => \@images);

Saving extras information

All information that is found in the object hash reference extras, is assumed to be saved in the
image file too. It is a codec’s own business how it reacts to invalid and/or unacceptable information
- but a typical behavior is that keys that were not recognized by the codec get ignored, while invalid
values raise an error.

$x-> {extras}-> {comments} = ’Created by Prima’;

$x-> save($f);

Saving one frame at a time

Similar to the session-based loading, Prima provides the functionality to save a multi-frame image
with one frame at a time, using the similar API calls.

This section describes the lower-level API that allows for that functionality, however,
an easier-to-use higher level API is documented in the Prima::Image::Saver entry in the
Prima::Image::Loader section .

In order to save one frame at a time, the programmer needs to open a saving session, by adding
the session => 1 option to the save call, and the frames options that signals how many frames
are to be saved in total; that call can only be made on an existing object, not on the package. The
call would return the success flag and an eventual error in $@, as usual. The options supplied to the

102

session opening call would apply to all subsequent frames, but these settings may be overridden
later.

Having the session successfully opened, the subsequent calls to save with the session => 1

and the image as the first option option would save the next frame. Each of those save call will
recognize the options supplied and will apply them to indifidual frames. The session-based saving
will recognize all of the function options, except the images option. The saving session is closed
automatically after a first failure.

Selecting a codec

The integer field codecID, the same field that is defined after successful load requests, explicitly
selects the codec for saving the image. If the codec is incapable of saving then an error is returned.
Selecting a codec is only possible with the object-driven syntax, and this information is never
extracted from the objects but is passed in the images array instead.

$x-> {extras}-> {codecID} = 1;

$x-> save($f);

The actual relation between codecs and their indices is described below.
Note: if codecID is not specified, Prima tries to deduce the codec by the file extension.

Type conversion

Codecs usually are incapable of saving images in all possible pixel formats, so whenever Prima
needs to save an image with an unsupported pixel type it either converts the image to an appro-
priate pixel format or signals an error. This behavior is managed by the parameter autoConvert,
which is 1 by default. With the autoConvert set, it is guaranteed that the image will be saved,
but original image information may be lost. With the autoConvert field set to 0, no information
will be lost, but Prima may signal an error. Therefore general-purpose saving routines should be
planned carefully. As an example, the Prima::Dialog::ImageDialog::SaveImageDialog code
might be useful.

When the conversion takes place, the Image property conversion is used for the selection of
the error distribution algorithm if down-sampling is required.

Managing the codecs

Prima provides the Prima::Image-> codecs function that returns an anonymous array of hashes
where every hash entry corresponds to a registered codec. The codecID parameter on load and
save requests is the index in this array. Indexes for the codecs registered once never change, so it
is safe to manipulate these numbers within a single run of the program

Codec information that is contained in these hashes contains the following fields:

codecID

A unique integer value for a codec, the same as the index of the codec entry in the result of
the Prima::Image->codecs method

name

The full codec name, string

vendor

The codec vendor, string

versionMajor and versionMinor

Usually underlying library versions, integers

103

fileExtensions

An array of strings, with file extensions that are typical to the codec. Example: [’tif’, ’tiff’]

fileType

Description of the type of file that the codec is designed to work with. A string.

fileShortType

Short description of the type of file that the codec is designed to work with (short means
3-4 characters). A string.

featuresSupported

An array of strings containing string description of the features that the codec supports -
usually they implement only a part of file format specification, so it is always interesting to
know, which part

module and package

Specifies the perl module, usually inside the Prima/Image directory in the Prima distribu-
tion, and the package name inside the module. The package contains some specific functions
for working with codec-specific parameters. The current implementation defines the only
save dialog function that creates a dialog that allows to change these parameters. See
Prima::Dialog::ImageDialog::SaveImageDialog for details. Strings or undef.

canLoad

1 if the codec can load images, 0 if not

canLoadStream

1 if the codec can load images from streams, 0 otherwise

canLoadMultiple

1 if the codec can handle multiframe load requests and load frames with an index more than
zero, 0 otherwise

canSave

1 if the codec can save images, 0 if not.

canSaveStream

1 if the codec can save images to streams, 0 otherwise

canSaveMultiple

Is set if the codec can save more than one frame

types

An array of integers - each is a combination of the im::XXX flags, the image type, that the
codec can save. The first type in the list is the default type; if the type of the image to be
saved is not in that list, the image will be converted to this default type.

loadInput

A hash, where the keys are those that are accepted by the Prima::Image-> load method
and the values are the default values for these keys.

loadOutput

An array of strings, each is the name of an extra information entry in the extras hash.

104

saveInput

A hash, where the keys are those that are accepted by the Prima::Image-> save method
and the values are the default values for these keys.

mime

An array of strings, containing the mime identifiers specific to the image format. An example:
[’image/xbm’, ’image/x-bitmap’]

API

This section describes the parameters accepted and the data returned by the Prima::Image::load
method

Common

Loading parameters

blending BOOLEAN = 1

Affects how to treat the alpha channel bits, if present.

If set, mixes the alpha channel with the background color in case when loading to an image,
or premultiplies color bits (either data or palette) with alpha, when loading to an icon. Note
that saving the object will result in different image pixel values, but the object will be ready
to be displayed immediately.

If unset, the color and eventual alpha bits, if loaded to an icon, will not be affected in
any way. Note that saving the object will result in the same image, but the object will
not be ready to be displayed immediately. See also: the premultiply alpha entry in the
Prima::Image section.

className STRING

When loading more than one image, this string is used to create instances of image containers.
By default, the calling class is used (i.e. Prima::Image or Prima::Icon).

eventDelay INT

Specifies onDataReady event granularity in seconds, when the codec is capable of triggering
this event.

Default: 0.1

iconUnmask BOOL

If set, Prima::Icon::autoMasking is set to am::None before the file loading which disables
any attempt to deduce the mask pixels based on the data pixels.

Default: false. Only actual for Prima::Icon loading.

index INT

When loading from a multiframe file, selects the frame index to load.

Default: 0

loadExtras BOOL

If set, all available extra information will be stored in the extras hash on the loaded object.

Default: false

loadAll BOOL

When loading from a multiframe file, selects that all frames are to be loaded

Default: false

105

map [INT]

When loading from a multiframe file, selects the set of the frame indexes to load.

Default: undef

noImageData BOOL

If set, neither image data is loaded, nor image dimensions are changed (newly created images
have a size of 1x1). Instead, the {extras} hash contains width and height integers.

Default: false

noIncomplete BOOL

Affects the action when the image is incomplete, truncated, etc. If set, signals an error.
Otherwise, no error is signaled and whatever data could be recovered from the image is
returned. In the latter case, the truncated field contains the error string.

Default: false

profiles [HASH]

An array of hashes passed down to each frame in multiframe loading sessions. Each frame
loading request will be provided with an individual hash, a result of the hash join of all
profiles passed to Image::load and the nth hash in the array.

wantFrames BOOL

Affects how the number of frames in a file is reported in the frames field. If set, Prima
always scans the file for the exact number of frames. Otherwise, it is up to the codec to do
that.

Default: false

See also: the frames entry.

Load output

codecID INT

Indicates the internal codec ID used to load the image. Can be used for Image::save.

frames INT

If set to a positive integer, indicates the number of frames in the file. Otherwise signals that
there are frames, but the codec needs an expensive scan to calculate the number (and the
wantFrames parameter being set).

height INT

When the noImageData parameter is set, contains the image height.

truncated BOOL

When the noIncomplete parameter is set, will be set if the image was truncated. The value
is the error string.

width INT

When the noImageData parameter is set, contains the image width.

106

Saving parameters

autoConvert BOOL

Affects the action when the image cannot be stored in a file in its existing pixel format. If
set, the system tries to convert the image into one of the pixel formats supported by the
selected codec. Fails otherwise.

Default: true

codecID INT

Disables the algorithm where the codec is selected based on the filename extension. Uses
the codec number codecID instead. Note that when saving images into streams this option
must always be present.

Default: undef

BMP codec

BMP, the bitmap codec is not dependent on external libraries and is always available.

BitDepth INT

Original bit depth may differ from Image::bpp.

Not valid as a saving parameter.

Compression STRING

Bitmap compression method.

Not valid as a saving parameter.

HotSpotX, HotSpotY INT

If loading from a cursor file, contains pointer hotspot coordinates

ImportantColors INT

The minimal number of colors is needed to display the image

OS2 BOOL

Is set when loading an OS/2 bitmap

XResolution, YResolution INT

Image resolution in PPM

X11 codec

X11, the X Consortium data file codec is implemented internally and is always available.

hotSpotX, hotSpotY INT

Contains pointer hotspot coordinates, if any

XPM codec

extensions HASH

A set of xpm-specific extension strings. Cannot be used for saving.

hintsComment, colorsComment, pixelsComment STRING

Contains comments on different sections

107

hotSpotX, hotSpotY INT

Contains the pointer hotspot coordinates

transparentColors [COLOR]

An array of transparent colors. Cannot be used for saving.

JPEG codec

Load parameters

exifTransform none|auto|wipe

If set to auto or wipe, tries to detect whether there are any exif tags hinting that the image
has to be rotated and/or mirrored. If found, applies the transformation accordingly.

When set to wipe, in addition to that, removes the exif tags so that subsequent image save
won’t result in transformed images with exifs tags still present.

This parameter requires a loadExtras parameter set because exif tags are stored in extra
JPEG data.

Output fields of the loader and input parameters for the saver

appdata [STRING]

An array of raw binary strings found in extra JPEG data.

comment STRING

Any comment text found in the file.

progressive BOOL

If set, produces a progressively encoded JPEG file.

Default: 0

Only used for saving.

quality INT

JPEG quality, 1-100.

Default: 75

Only used for saving.

PNG codec

Load input

background COLOR

When a PNG file contains an alpha channel, and alpha is set to blend, this color is used
to blend the background. If set to clInvalid, the default PNG library background color is
used.

Default: clInvalid

Not applicable to Prima::Icon.

gamma REAL

Override gamma value applied to the loaded image

Default: 0.45455

screen gamma REAL

Current gamma value for the operating system, if specified.

Default: 2.2

108

Load output and save input

background COLOR

Default PNG library background color

Default: clInvalid, which means PNG library default

blendMethod blend|no blend|unknown

Signals whether the new frame is to be blended over the existing animation, or it should
replace that.

delayTime $milliseconds

Delay between frames

default frame BOOLEAN

When set, means that the first image is the ”default” frame, a special backward-compatibility
image that is supposed to be excluded from the animation sequence, to be displayed only
when all animation frames cannot be loaded for whatever reason.

disposalMethod none|background|restore|unknown

Signals whether the frame, before being replaced, is to be erased by the background color,
or by the previous frame, or not touched at all.

gamma REAL

Gamma value found in the file.

Default: 0.45455

hasAlpha BOOLEAN

If set, the image contains an alpha channel

iccp name, iccp profile STRING

Embedded ICC color profiles in raw format

Default: unspecified and "".

interlaced BOOL

If set, the PNG file is interlaced

Default: 0

left INTEGER

The horizontal offset of the frame from the screen

loopCount INTEGER

How many times the animation sequence should run, or 0 for forever

mng datastream BOOL

If set, the file contains an MNG datastream

Default: 0

offset x, offset y INT

A positive offset from the left edge of the screen to offset x and the positive offset from the
left edge of the screen to offset y

Default: 0

109

offset dimension pixel|micrometer

Offset units

Default: pixel

render intent none|saturation|perceptual|relative|absolute

See the PNG docs (the http:www.libpng.orgpubpngspec1.1PNG-Chunks.html entry, 4.2.9.
sRGB Standard RGB color space).

Default: none

resolution x, resolution y INT

Image resolution

Default: 0

resolution dimension meter|unknown

Image resolution units

Default: meter

scale x, scale y

Image scale factors

Default: 1

scale unit meter|radian|unknown

Image scale factor units

Default: unknown

screenWidth, screenHeight INTEGER

text HASH

Free-text comments found in the file

Default: {}

top INTEGER

The vertical offset of the frame from the screen

transparency table [INT]

When a paletted image contains transparent colors, returns an array of palette indexes
(transparency table) in the 0-255 range, where each number is an alpha value.

Default value: empty array

transparent color COLOR

One transparent color value for 24-bit PNG images.

Default value: clInvalid (i.e. none)

transparent color index INT

One transparent color value, as the palette index for 8- or less-bit PNG images.

Default value: -1 (i.e. none)

Not applicable for load.

110

TIFF codec

Load input

MinIsWhite BOOL

Automatically invert PHOTOMETRIC MINISWHITE images

Default: 1

Fax BOOL

If set, converts 1-bit grayscale with ratio 2:1 into 2-bit grayscale (algorithm also known as
faxpect).

Default: 0

Load output

Photometric STRING

TIFF PHOTOMETRIC XXX constant. One of:

MinIsWhite

MinIsBlack

Palette

YCbCr

RGB

LogL

LogLUV

Separated

MASK

CIELAB

DEPTH

Unknown

BitsPerSample INT

Bits used to represent a single sample, 1-64

SamplesPerPixel INT

Number of samples per pixel, 1-4. Most images have 1 sample. Planar TIFFs may split low
and high bytes in 2 samples. RGB has 3 samples, and YCbCr and RGBA have 4.

PlanarConfig contiguous|separate

separate images split individual samples or components (f.ex. R and G and B) into indi-
vidual planes. contiguous mix sample bytes one after another.

SampleFormat STRING

Pixel sample format, one of:

unsigned integer

signed integer

floating point

untyped data

complex signed int

complex floating point

111

Tiled BOOL

If set, TIFF is tiled

Faxpect BOOL

When the Fax option was set to true, and indeed the image was converted from 1 to 2 bits,
this parameter will be set to signal this.

CompressionType STRING

The compression algorithm used for reading. One of:

NONE

CCITTRLE

CCITTFAX3

CCITTFAX4

LZW

OJPEG

JPEG

NEXT

CCITTRLEW

PACKBITS

THUNDERSCAN

IT8CTPAD

IT8LW

IT8MP

IT8BL

PIXARFILM

PIXARLOG

DEFLATE

ADOBE_DEFLATE

DCS

JBIG

SGILOG

SGILOG24

Save input

Compression STRING

Same values as in CompressionType. Different names are used to avoid implicit but impos-
sible compression selection because tibtiff can decompress many types, but compress only a
few.

Load output and save input

generic strings

The following keys have no specific meanings for Prima, but are both recognized for loading
and saving:

Artist

Copyright

DateTime

DocumentName

HostComputer

ImageDescription

112

Make

Model

PageName

PageNumber

PageNumber2

PageNumber, PageNumber2 INT

Default: 1

ResolutionUnit inch|centimeter|none

Default: none

Software

Default: Prima

XPosition, YPosition INT

Default: 0

XResolution, YResolution INT

Default: 1200

GIF codec

For GIF animation see the Prima::Image::Animate section.
The following load output and save input keys are recognized:

comment STRING

GIF comment text

delayTime INT

Delay in a hundredth of a second between frames

Default: 1

disposalMethod INT

Animation frame disposal method

DISPOSE_NOT_SPECIFIED = 0; # Leave frame, let new frame draw on top

DISPOSE_KEEP = 1; # Leave frame, let new frame draw on top

DISPOSE_CLEAR = 2; # Clear the frame’s area, revealing bg

DISPOSE_RESTORE_PREVIOUS = 3; # Restore the previous (composited) frame

Default: 0

interlaced BOOL

If set, the GIF image is interlaced

Default: 0

left, top INT

Frame offset in pixels

Default: 0

113

loopCount INT

How many times do the GIF animation loops. 0 means indefinite.

Default: 1

screenBackGroundColor COLOR

GIF screen background color

Default: 0

screenColorResolution INT

Default: 256

screenWidth, screenHeight INT

Default: -1, i.e. use image width and height

screenPalette [INT]

Default: 0,0,0,255,255,255

transparentColorIndex INT

Index of the GIF transparent color

Default: 0

userInput INT

User input flag

Default: 0

WebP codec

Load output

background $ARGB color

An integer constant encoded as 32-bit ARGB, hints the background color to be used

blendMethod blend|no blend|unknown

Signals whether the new animation frame is to be blended over the existing animation, or it
should replace that.

delayTime $milliseconds

Delay time between frames

disposalMethod none|background|unknown

Signals whether the frame, before being replaced, is to be erased by the background color or
not.

hasAlpha BOOLEAN

If set, the image contains an alpha channel

left INTEGER

The horizontal offset of the frame from the screen

loopCount INTEGER

How many times the animation sequence should run, or 0 for forever.

screenWidth INTEGER

114

screenHeight INTEGER

top INTEGER

The vertical offset of the frame from the screen

Save input WebP requires all images to have the same dimensions. Also, saving the webp
loading result might fail because loaded frames might only contain parts to be superimposed on
each other while saving always requires full frames. To convert the loaded frames to something that
can be saved later more-or-less identically, use the Prima::Image::webp::animation to frames

converter:

use Prima qw(Image::webp);

my @i = Prima::Icon->load(’source.webp’, loadAll => 1, loadExtras => 1) or die $@;

@i = Prima::Image::webp::animation_to_frames(@i);

die $@ if @i != Prima::Icon->save(’target.webp’, images => \@i);

background $ARGB color

An integer constant encoded as 32-bit ARGB, hints the background to be used

compression lossless (default)|lossy|mixed

delay $milliseconds

filter strength INTEGER

The value is between 0 and 100, where 0 means off.

kmax INTEGER

Min distance between keyframes. The default is 9 for the lossless compression and 3 for the
lossy

kmin INTEGER

Max distance between keyframes. The default is 17 for the lossless compression and 5 for
the lossy

loopCount 0

How many times the animation sequence should run, or 0 for forever.

method INTEGER

Compression method vs size, 0 (fast) to 6 (slow)

minimize size BOOLEAN

Minimize the output size (off by default)

quality INTEGER

Quality factor (0:small..100:big)

thread level BOOLEAN

Use multi-threading if available (off by default)

115

HEIF codec

Load output

chroma bits per pixel

depth images

Number of depth images available for the frame

has alpha

ispe height, ispe width

Original image size before transformations (crop, rotation, etc) are applied

is primary

Set if this is the primary image

luma bits per pixel

premultiplied alpha

Is set if the values of the alpha channel are premultiplied

thumbnails

An array of hashes with keys type, content type, and content.

aux

metadata

thumbnail of INDEX

Set if this frame is the thumbnail of the INDEXth top-level frame

Save input

quality

Integer, 0-100

compression

HEIC,AV1,AVC

is primary

The first frame (#0) gets to be the primary by default, but this can be changed explicitly.

premultiplied alpha

Trueset if the values of the alpha channel are premultiplied

metadata

An array of hashes with keys type, content type, and content.

thumbnail of INDEX

Sets this image as the thumbnail of the INDEXth top-level frame

116

3.8 Prima::Widget

Window management

Synopsis

create a widget

my $widget = Prima::Widget-> new(

size => [200, 200],

color => cl::Green,

visible => 0,

onPaint => sub {

my ($self,$canvas) = @_;

$canvas-> clear;

$canvas-> text_out("Hello world!", 10, 10);

},

);

manipulate the widget

$widget-> origin(10, 10);

$widget-> show;

Description

Prima::Widget is a descendant of the Prima::Component class, that provides comprehensive man-
agement of system-dependent windows. Objects of the Prima::Widget class are mapped to the
screen space as a rectangular area, with distinct boundaries, a pointer and sometimes a cursor,
and a user-selectable input focus.

Usage

The Prima::Widget class and its descendants are used widely throughout the toolkit and are at
the center of almost all its user interaction and input-output functions. The notification system,
explained in the Prima::Object section, is heavily used in the Prima::Widget class, providing the
programmer with unified access to the system-generated events that occur when for example the
user moves a window, clicks the mouse, types on the keyboard, etc.

Creation and destruction

The widget creation syntax is the same as for creating other Prima objects:

Prima::Widget-> new(

name => ’Widget’,

size => [20, 10],

onMouseClick => sub { print "click\n"; },

owner => $owner,

);

A widget must almost always be explicitly assigned an owner. The owner object is either a
Prima::Widget descendant, in which case the widget is drawn inside its inferior, or the application
object so that the widget becomes a top-level screen object. This is the reason why the insert

syntax is preferred, as it is more illustrative and is more convenient for creating several widgets
in one call (see the Prima::Object section).

117

$owner-> insert(’Prima::Widget’,

name => ’Widget’,

size => [20, 10],

onMouseClick => sub { print "click\n"; },

);

These two examples produce identical results.
As a descendant of the Prima::Component class, Prima::Widget objects also send the Create

notification while being created (more precisely, after its init stage is finished. See the
Prima::Object section for details). This notification is called and processed within the new()

method. Another notification Setup is sent after the widget finishes the creation process. This
message is posted though, i e it is invoked within the new() method but is processed inside the ap-
plication event loop. This means that the moment when the Setup event is executed is uncertain,
as it is with all posted messages. Its delivery is system-dependent, so its use must be considered
with care.

After the widget is created, it is usually asked to render its visual content by the system,
provided that the widget is visible. This request is delivered by the Paint notification.

When the lifetime of the widget is over, its method destroy() should be called. In some
circumstances, the method can be also called implicitly by the toolkit. If the widget gets destroyed
because its owner also gets destroyed, it is guaranteed that its widget children will be destroyed
first, and the owner only afterward. In such situation the widget can still operate but with limited
functionality (see the Prima::Object section, the Creation section).

Graphic content

There are two ways graphics can be displayed in a widget. The first is the event-driven method
when the Paint notification arrives, notifying the widget that it must re-paint itself. The second
is the ’direct’ method when the program itself begins drawing on the widget.

Event-driven rendering

When the system decides that a widget needs to update its graphics it sends the Paint notification
to the program. The notification has a single (besides the widget itself) parameter, referred to as
canvas, the object where the drawing is performed. During the event-driven call initiated by the
system, it is always the widget itself. Other callers of the Paint notification though can provide
another object to draw on:

$widget-> notify(’Paint’, $some_other_widget);

When programming this notification use this parameter, not the widget itself, for the painting.
An example of the Paint notification handler could be a simple like this:

Prima::Widget-> new(

...

onPaint => sub {

my ($self, $canvas) = @_;

$canvas-> clear;

$canvas-> text_out("Clicked $self->{clicked} times", 10, 10);

},

onMouseClick => sub {

$_[0]-> {clicked}++;

$_[0]-> repaint;

},

);

118

The example shows several important features of the event-driven mechanism. First, no
begin paint()/end paint() brackets are used within the callback - these are called implicitly.
Second, when the widget graphics need to be changed (after a mouse click, for example), no code
like notify(q(Paint)) is needed - the repaint() method is used instead. Note that the execution
of Paint callbacks may or may not occur inside the repaint() call. This behavior is managed by
the ::syncPaint property. A call to repaint() marks the whole widget’s area to be refreshed,
or invalidates the area. For the finer access to the area that should be repainted, the functions
invalidate rect() and validate rect() are used. Thus the call

$x-> repaint()

is identical to the

$x-> invalidate_rect(0, 0, $x-> size);

call.
The area passed to the invalidate rect() method will be accessible as the clipping rectangle

inside the Paint notification. However, the interaction between the program logic and the system
logic can result in situations where the system may request repainting of the other parts of the
widget, not only those that were requested by the invalidate rect call. This can happen for
example when windows from another program move over the widget. In these cases, the clipping
rectangle might not be exactly the same. Moreover, the clipping rectangle can even become empty
as a result of these interactions, and the notification won’t be called at all.

The clipping rectangle is represented differently inside and outside the drawing mode. To access
the rectangle, the ::clipRect property is used. Inside the Paint call (or, strictly speaking, inside
the begin paint/end paint brackets) the rectangle is measured in the inclusive-inclusive coordi-
nates, whereas the invalidate rect(), validate rect(), and get invalid rect() method use
the inclusive-exclusive coordinates. Assuming the clipping rectangle is not changed by the system,
the example below illustrates the difference:

$x-> onPaint(sub {

my @c = $_[0]-> clipRect;

print "clip rect:@c\n";

});

$x-> invalidate_rect(10, 10, 20, 20);

...

clip rect: 10 10 19 19

The notification handler can use the ::clipRect property to optimize the painting code,
drawing only the parts that are necessary to draw.

In the drawing mode it is possible to change the ::clipRect property, however, increasing
the clipping rectangle in such a way won’t make it possible to draw on the screen area that lies
outside the original clipping region. This is part of the same mechanism that doesn’t allow drawing
outside the widget’s geometric boundaries.

Direct rendering

The direct rendering, contrary to the event-driven, is initiated by the program, not by the system.
If a programmer wishes to paint over a widget immediately, then the begin paint() method
should be called first, and, if it is successful, the part of the screen occupied by the widget is
accessible for drawing.

This method is useful, for example, for graphic demonstration programs, that draw continu-
ously without any input. Another use of this method is the drawing directly on the screen, which
is performed by entering the drawing mode on the $::application object, that does not have
the Paint notification. The application’s graphic canvas represents the whole screen, allowing
drawing the windows that also belong to other programs.

119

The majority of the widget rendering code is using the event-driven drawing. Sometimes,
however, the changes needed to be made to the widget’s graphic context are so insignificant, so
the direct rendering method is preferable, because of the cleaner and terser code. Below is an
example of a simple progress bar that draws a simple colored stripe. The event-driven code would
be (in short, omitting many details) like this:

$bar = Widget-> new(

width => 100,

onPaint => sub {

my ($self, $canvas) = @_;

$canvas-> color(cl::Blue);

$canvas-> bar(0, 0, $self-> {progress}, $self-> height);

$canvas-> color(cl::Back);

$canvas-> bar($self-> {progress}, 0, $self-> size);

},

);

...

$bar-> {progress} += 10;

$bar-> repaint;

or, more efficiently,

$bar-> invalidate_rect($bar->{progress}-10, 0,

$bar->{progress}, $bar-> height);

While the version with the direct drawing would be

$bar = Widget-> new(width => 100);

...

$bar-> begin_paint;

$bar-> color(cl::Blue);

$bar-> bar($progress, 0, $progress + 10, $bar-> height);

$bar-> end_paint;

$progress += 10;

The pros and the contras are obvious: the event-driven rendered widget correctly represents
the status after an eventual repaint, for example when the user sweeps a window over the progress
bar widget. The direct method is not that smart, but if the status bar is an insignificant part of
the program it can be used instead.

Both methods can be effectively disabled by using the locking mechanism. The lock() and
unlock()methods can be called several times, counting the requests. This feature is useful because
many properties implicitly call repaint(), and if several of these properties are called in a row or
within each other, the unnecessary redrawing of the widget can be avoided by wrapping such calls
in the lock/unlock brackets. The drawback is that the last unlock() call triggers the repaint()

method unconditionally.

Geometry

Basic properties

A widget always has its position and size determined, even when it is not visible on the screen.
Prima::Widget provides several properties with overlapping functionality that manage the geom-
etry of widgets. The base properties are ::origin and ::size, and the derived ones are ::left,
::bottom, ::right, ::top, ::width, ::height, and ::rect. ::origin and ::size operate on
two integers, ::rect on four, others on one integer value.

The Prima toolkit coordinate space begins in the lower bottom corner, so the combination
of ::left and ::bottom is the same as ::origin, and the combination of ::left, ::bottom,
::right and ::top - same as the ::rect property.

120

When widgets are moved or resized, two notifications may occur, correspondingly, Move and
Size. The parameters for both are the old and the new position and size. The notifications occur
irrespective of whether the geometry change was issued by the program itself or by the user.

Implicit size regulations

There exist two other properties that regulate widget size, ::sizeMin and ::sizeMax. They keep
the minimum and the maximum sizes the widget may have. A call that would try to assign the
widget size outside the ::sizeMin and ::sizeMax limits will fail; the widget size will always be
adjusted to the limits’ values.

Changes to the widget’s position and size can also occur automatically if the widget’s owner
changes its size. The toolkit contains several implicit rules that define how exactly these changes
should occur. For example, the ::growMode property accepts a set of gm::XXX flags that encode
this behavior. The exact meaning of the gm::XXX flags is not given here (see the description
to ::growMode in the API section), but in short, it is possible using fairly simple means to
program changes to widget size and position when its owner is resized. By default, the value
of the ::growMode property is 0, so widgets don’t change either their size or position on these
occasions. A widget with ::growMode set to 0 stays always in the left bottom corner of its owner.
When, for example, a widget is expected to stay in the right bottom corner, or the left top corner,
the gm::GrowLoX and gm::GrowLoY values must be used, correspondingly. If a widget is expected
to cover its owner’s lower part and change its width following the owner’s, (a horizontal scroll bar
in an editor window is a good example of this behavior), the gm::GrowHiX value must be used.

When such implicit size change occurs, the ::sizeMin and ::sizeMax properties still play their
part - they still do not allow the widget’s size to exceed these limits. However, this algorithm has
a problem, that is illustrated by the following example. Imagine a widget with the size-dependent
::growMode set to gm::GrowHiX, which means that the increase or decrease of the owner width
would result in a similar change in the widget. If the implicit width change would match verbatim
the change of the owner’s width, then the widget’s size (and probably its position) will be incorrect
after an attempt is made to change the widget’s size to values outside the size limits.

Here’s the example: let’s assume that the child widget has width of a 100 pixels, its growMode
property is set to gm::GrowHiX, and its sizeMin property is set to (95, 95). The widget’s owner
has a width of 200 pixels. If the owner widget changes its width from 200 to 195 and then to 190
pixels, and then back again, then one naively could expect that the child widget’s width would
undergo the following changes:

Owner Child

Initial state 200 100

Shrink 195 -5 95

Shrink 190 -5 95 - as it can not be less than 95.

Grow 195 +5 100

Grow 200 +5 105

The situation here is fixed by introducing the virtual size . The ::size property is derived from
the virtual size, but while ::size cannot exceed the size limits, the virtual size can. Moreover, it
can even accept negative values. This algorithm produces the correct sizes:

Owner Child’s Child’s

virtual width width

Initial state 200 100 100

Shrink 195 -5 95 95

Shrink 190 -5 90 95

Grow 195 +5 95 95

Grow 200 +5 100 100

121

Geometry managers

The concept of geometry managers is imported from the Tk, which in turn is a port of the
Tcl-Tk. The idea behind it is that the widget size and position are governed by one of the
managers, and each manager has its own set of properties. One can select the manager by
assigning the ::geometry property one the of gt::XXX constants. The native (and the default)
geometry manager is the described above grow-mode algorithm (gt::GrowMode). The currently
implemented Tk managers are packer (gt::Pack) and placer (gt::Place). Each has its own
set of options and methods, and their manuals are provided separately in the Prima::Widget::pack
section and the Prima::Widget::place section (the manpages are also imported from the Tk).

Another concept that comes along with geometry managers is the ’geometry request size’. It
is realized as a two-integer property ::geomSize, which reflects the size deduced by some intrinsic
widget knowledge. The idea is that ::geomSize is merely a request to a geometry manager,
whereas the latter changes ::size accordingly. For example, a button might set its ’intrinsic’ width
in accord with the width of the text string displayed in it. If the default width for such a button
is not overridden, it is assigned with such a width. By default, under the gt::GrowMode geometry
manager, setting ::geomSize (and its two semi-alias properties ::geomWidth and ::geomHeight

) also changes the actual widget size. Moreover, when the size is passed to the Widget initialization
code, the ::size property is used to initialize ::geomSize. Such design minimizes the confusion
between the two properties, and also minimizes the direct usage of ::geomSize, limiting it to
selecting the advisory size in the internal code.

The geometry request size is useless under the gt::GrowMode geometry manager, but Tk
managers use it extensively.

Relative coordinates

Another geometry issue, or rather a programming technique, must be mentioned - the relative
coordinates. It is a well-known problem, when a dialog window, developed with one font looks
garbled on another system with another font. The relative coordinates technique solves this
problem by introducing the ::designScale two-integer property, the width and height of the font
that was used when the dialog window was designed. With this property supplied, the position
and size supplied when the widget is created on another setup using another font, are adjusted
proportionally to the actual font metrics.

The relative coordinates can only be used when passing the geometry properties values, and
only before the creation stage, before the widget is created. This is because the scaling calculations
are made in the Prima::Widget::profile check in() method.

To use the relative coordinates technique the owner (or the dialog) widget must set its
::designScale property to the font metrics, and the ::scaleChildren property to 1. Widgets
created with an owner that meets these requirements automatically participate in the relative
coordinates scheme. If a widget must be excluded from the relative geometry applications, either
the owner’s property ::scaleChildren must be set to 0, or the widget’s ::designScale must be
set to undef. As the default ::designScale value is undef, no implicit relative geometry schemes
are applied by default.

The ::designScale property is automatically propagated to the children widgets, unless the
explicit ::designScale overrides it. This is useful when a child widget is a complex widget
container, and was designed on yet another setup with different font sizes.

Note: it is advised to test your applications with the Prima::Stress module that assigns a
random font as the default. See the Prima::Stress section for more.

Z-order

When two widgets overlap on the screen, one of these is drawn in full whereas the other only
partly. Prima::Widget provides management of the Z-axis ordering, with these four methods:
first(), last(), next(), and prev(). The methods return, correspondingly, the first and the

122

last widgets in the Z-order stack, and the direct neighbors of the widget ($widget-> next-> prev
always is the $widget itself given that $widget-> next exists). If a widget is last that means that
it is not obscured by its sibling widgets, i e the topmost one.

The Z-order can also be changed at runtime (but not during the widget’s creation). Three
methods that change the Z-order: bring to front() sends the widget to the top of the stack,
send to back() sends it to the bottom, and insert behind() sets a widget behind another widget

Changes to Z-order trigger the ZOrderChanged notification.

Parent-child relationship

By default, if a widget is the child of another widget or a window, it is clipped by its owner’s
boundaries and is moved together with its owner if the latter changes its position. In this case,
the child’s owner is also its parent.

A widget must always have an owner, however, not necessarily a parent. The ::clipOwner

which is 1 by default, is set to 0, switches the widget into the parent-less mode. That means that
the widget is neither clipped nor moved together with its parent. The widget becomes parent-less,
or, more strictly speaking, the screen becomes its parent. Moreover, in this mode, the widget’s
origin offset is calculated not from the owner’s coordinates but from the screen, and clicking on
the widget does not bring its owner’s top-level window to the front.

The same result can be also achieved if a widget is inserted in the application object which
does not have any screen visualization. A widget that belongs to the application object, has its
::clipOwner value set to 0, and it cannot be changed.

The ::clipOwner property opens a possibility for the toolkit widgets to live inside other
programs’ windows. The ::parentHandle property can be assigned a valid system window handle,
so the widget becomes a child of this window. This option has a caveat, because normal widgets
are never destroyed for no reason, and likewise, top-level windows are never destroyed before their
Close notification agrees to their destruction. When a widget is inserted into another application
it must be prepared to be destroyed at any moment. It is recommended to use prior knowledge
about such an application, and, even better, use one or another inter-process communication
scheme to interact with it.

A widget doesn’t need to do any special action to become an ’owner’. A widget that was
referred to in the ::owner property of another widget, becomes an owner of the latter auto-
matically. The get widgets() method returns the list of these children widgets, similar to the
Prima::Component::get components() method, but returns only Prima::Widget descendant ob-
jects.

Widgets can change their owner at any moment. The ::owner property is both readable and
writable, and if a widget is visible during the owner change, it immediately appears under different
coordinates and different clipping conditions after the property change, given that its ::clipOwner
property is set to 1.

Visibility

Widgets are created visible by default. The visibility status is managed by the ::visible property,
and its two convenience alias methods, show() and hide().

When a widget gets hidden its geometry is not discarded; the widget retains its position and
size and is still subject to all previously discussed implicit sizing issues. When the change to the
::visible property is made, the screen is not updated immediately but in the next event loop
invocation because uncovering the underlying area of a hidden widget, and repainting a newly-
shown widget, both depend on the event-driven rendering functionality. If the graphic content
must be updated immediately, the update view() method must be called, but there’s a caveat.
It is obvious that if a widget is shown, the only content to be updated is its own. When a widget
becomes invisible, it may uncover more than one underlying widget, and even if the uncovered
widgets belong to the same program, it is unclear what widgets must be updated and when. For

123

practical reasons, it is enough to get one event loop passed, by calling the yield() method on the
$::application object. The other notifications may pass here as well, however.

There are other kinds of visibility. A widget might be visible, but one of its owners might
not. Or, a widget and its owners might be visible, but they might be overshadowed by the other
windows. These conditions are returned by showing() and exposed() functions, correspondingly.
So, if a widget is ’exposed’, it is ’showing’ and ’visible’; the exposed() method always returns
0 if the widget is either not ’showing’ or not ’visible’. If a widget is ’showing’, then it is always
’visible’. showing() always returns 0 if a widget is invisible.

Change to the visibility status trigger the Hide and Show notifications.

Focus

One of the key points of any GUI system is that only one window at a time can possess a focus.
The widget is focused if the keyboard input is directed to it.

Prima::Widget property ::focused manages the focused state of the widget. It is often too
powerful to be used directly, however. Its wrappers, the ::selected and the ::current properties
are usually more convenient to operate.

The ::selected property sets focus to a widget only if it is allowed to be focused, by consulting
with the value of the ::selectable property. When the widget is selectable, the focus may be
passed to either the widget itself or to one of its (grand-) children. For example, when ’selecting’
a window with a text field by clicking on a window, one does not expect the window itself to
be focused, but the text field. To achieve this and reduce unnecessary coding, the ::current

property is introduced. The ’current’ widget gets precedence in getting selected over widgets that
are not ’current’.

De-selecting, in turn, leaves the system in such a state when no window has input focus.
There are two convenience shortcuts select() and deselect() defined, aliased to selected(1)
and selected(0), correspondingly.

Within the whole GUI space, there can be only one focused widget, and in the same fashion
there can be only one current widget for each owner widget. A widget can be marked as current
by calling either its ::current property or the owner widget’s ::currentWidget property. When
a widget gets focused, the reassignments of the current widgets happen automatically. The reverse
is also true: if a widget becomes current while it belongs to the widget tree with the focus in one
of its widgets, then the focus is automatically passed to it, or down to its hierarchy if the widget
itself is not selectable.

These relations between the current widget pointer and focus allow the toolkit to implement
the focusing hierarchy easily. The focused widget is always on the top of the chain of its owner
widgets, where each is the current widget. If, for example, a window that contains a widget that
contains a focused button, becomes un-focused, and then the user selects the window again, then
the button will become focused automatically.

Changes to the focus produce the Enter and Leave notifications.
The next section discusses the mouse- and keyboard-driven focusing schemes. Note that all

of these work via the ::selected property, and do not allow to focus the widgets with their
::selectable property set to 0.

Mouse-aided focusing

Typically when the user clicks the left mouse button on a widget, the latter becomes focused.
One can note that not all widgets become focused after the mouse click - scroll bars for example.
Another behavior is the one described above the window with the text field - clicking the mouse
on the window focuses the text field, not the window.

Prima::Widget has also the ::selectingButtons property, a combination of the mb::XXX (
mouse buttons) flags. If the bits corresponding to the buttons are present there then the click of
this mouse button will automatically call ::selected(1) on the widget that received the mouse
click.

124

Another boolean property ::firstClick determines the behavior when the mouse button
action is about to focus a widget, but the widget’s top-level window is not active. The default
value of ::firstClick is 1, but if it is set otherwise, the user must click twice on the widget
to get it focused. The property does not influence anything if the top-level window was already
active when the click event occurred.

Due to different GUI designs, it is hardly possible to force the selection of a top-level window
when the user clicked another window. The window manager or the OS can interfere, although
this does not always happen, and the results may be different depending on the system. Since
the primary goal of the toolkit is portability, such functionality must be considered with care.
Moreover, when the user selects a window by clicking not on the toolkit-created widgets, but on
the top-level window decorations, it is not possible to discern the case from any other kind of
focusing.

Keyboard focusing

The Prima has a built-in way to navigate between the widgets using the tab and arrow keys.
The tab (and its reverse, shift-tab) key combinations move the focus between the widgets in
the same top-level group (but not inside the same owner widget group). The arrow keys, if the
focused widget is not interested in these keystrokes, move the focus in the specified direction, if it
is possible. The methods that calculate the widget to be focused depending on the keystroke are
next tab() and next positional() (see API for the details).

The next positional() method uses the geometry of the widgets to calculate which widget
is the best candidate when the user presses an arrow key. The next tab() method uses the
::tabStop and ::tabOrder properties for this. The boolean property ::tabStop is set to 1 by
default and is used to check whether the widget is willing to participate in the tab-aided focus
circulation or not. If it doesn’t the next tab() never returns that widget as a candidate to be
selected. The value of the ::tabOrder property value is an integer that is unique within the
sibling widgets (i e those that share the same owner) list. That integer value is used as a simple
tag when the next tab-focus candidate is considered. The default ::tabOrder value is -1, which
changes to a unique value automatically after the widget creation.

User input

The toolkit responds to the two basic means of user input - the keyboard and the mouse. Below
are the three aspects of the input handling - the event-driven, the polling, and the simulated input.

The event-driven input is the more or less natural way of communicating with the user; when
the user presses the key or moves the mouse, a system event occurs and triggers the notification
in one or more widgets. Polling provides the immediate state of the input devices. The polling
technique is rarely chosen, primarily because of its limited usability, and because the information
it provides is passed to the notification callbacks anyway. The simulated input is little more than
a notify() call with specifically crafted parameters. It interacts with the system, by sending the
event through the system API so that the input emulation can be more similar to the user actions.
The simulated input functions allow the notifications to be called right away, or to be post ’ed,
delaying the notification until the next invocation of the event loop.

Keyboard

Event-driven

Keyboard input generates several notifications, where the most important are the KeyDown

and KeyUp. Both have almost the same list of parameters (see the API) that contain
the keycode, the modifier keys (if any) that were pressed, and an eventual character
code. The algorithms that extract the meaning of the key, for example, discern between
the character and functional keys, etc are not described here. The reader is advised to look
at the Prima::KeySelector module which provides some convenience functions for various

125

transformations of the keyboard input values. And to the Prima::Edit and Prima::InputLine
modules, the classes that use extensively the keyboard input. But in short, the keycode is
one of the kb::XXX (like, kb::F10, kb::Esc) constants and the key modifier value is a
combination of the km::XXX (km::Ctrl, km::Shift) constants. The notable exception is the
kb::None constant that hints that there is a character code present in the event. Some other
kb::XXX-marked keys have the character code as well, and it is up to a programmer to
decide how to treat these combinations. It is advised, however, to look at the keycode first,
and then at the character code later after to decide what type of key combination the user
pressed.

The KeyDown event has also the repeat integer parameter that shows the count of how many
times the key was repeatedly pressed. Usually, it is set to 1, but if a widget is not able
to get its portion of events between the key presses, its value can be higher. If the code
doesn’t check for this parameter, some keyboard input may be lost. If the code will be
too complicated by introducing the repeat-value, one may consider setting the ::briefKeys
property to 0. ::briefKeys, the boolean property, is 1 by default. If it is set to 0, it
guarantees that the repeat value will always be 1, but that comes with the price of certain
under-optimization. If the core KeyDown processing code sees a repeat value greater than 1,
it simply calls the notification again.

Along with these two notifications, the TranslateAccel event is generated after KeyDown, if
the focused widget is not interested in the key event. Its usage covers the eventual needs of
the other widgets to read the user input, even while being out of focus. A notable example
can be a button with a hotkey, that reacts on the key press when the focus is elsewhere
within its top-level window. TranslateAccel has the same parameters as KeyDown, except
the REPEAT parameter.

Such an out-of-focus input scheme is also used when Prima checks if a keypress event should
trigger a menu item because the menu items API allows to declare hotkeys in the Menu
definitions. Thus, if a descendant of the Prima::AbstractMenu class is in the widget’s children
tree hierarchy, then it is checked whether it contains some hotkeys that match the user
input. See the Prima::Menu section for the details. In particular, Prima::Widget has the
::accelTable property, a mere slot for an object that contains a table of hotkeys mapped
to the custom subroutines.

Polling

The keyboard can only be polled for the states of the modifier keys. The get shift state()

method returns the state of the modifier keys as a combination of the km::XXX constants.

Simulated input

There are two methods key up() and key down() that generate the simulated keyboard
input. They accept the same parameters as the KeyUp and KeyDown notifications plus the
POST boolean flag. See the API entry for details. These methods are convenience wrappers
for the key event() method, which is never used directly.

Mouse

Event-driven

The mouse notifications are sent when the user moves the mouse, presses the mouse buttons,
or releases them. The notifications are grouped in two sets, after their function. The first set
consists of the <MouseDown>, MouseUp, MouseClick, and MouseWheel notifications, and
the second of MouseMove, MouseEnter, end MouseLeave.

The notifications from the first set respond to the mouse button actions. Pressing, de-
pressing, clicking (and double-clicking), and turning the mouse wheel, all these actions
result in the generation of the four notifications from the group. The notifications are sent

126

together with the mouse pointer coordinates, the button that the user was operating on, and
the eventual modifier keys that were pressed, if any. In addition, the MouseClick notification
provides an integer parameter of how many clicks occurred on the same button; that one can
distinguish between the single, double, triple, etc mouse clicks. The MouseWheel notification
provides the numeric argument that reflects how far the mouse wheel was turned. All of
these notifications occur when the user operates the mouse while the mouse pointer is within
the geometrical bounds of a widget. If the widget is in the capture mode, then these events
are sent to it even if the mouse pointer is outside the widget’s boundaries, and are not sent
to the widgets and windows that reside under the mouse pointer.

The second set of notifications responds to the mouse pointer movements. When the pointer
passes over a widget, it receives first the MouseEnter event, then a series of MouseMove events,
and finally the MouseLeave event. The MouseMove and MouseEnter notifications provide the
X,Y-coordinates and the eventual modifier keys; MouseLeave provides no parameters.

Polling

The get mouse state() method returns a combination of the mb::XXX constants. The
::pointerPos two-integer property reflects the current position of the mouse pointer.

Simulated input

There are five methods, - mouse up(), mouse down(), mouse click(), mouse wheel(), and
mouse move(), that accept the same parameters as their event counterparts do, plus the
POST boolean flag. See the API entry for details.

These methods are convenience wrappers for the mouse event() method that is never used
directly.

Drag and drop

Widgets can participate in drag-and-drop sessions, interacting with other applications as well as
with themselves, with very few restrictions. See below how to use this functionality.

Data exchange

Prima defines a special clipboard object that serves as an exchange agent whenever data is to
be either sent or received in a DND session. To either offer to or choose from many formats
that another DND client can work with, use this clipboard (see more in the Prima::Clipboard
section). The DND clipboard can be accessed at any time by calling the $::application-

get dnd clipboard > method.

To successfully exchange data with other applications, one should investigate the results of
a $clipboard-> get formats(1) call to see what types of data the selected application
can send or accept. Programs can often exchange text and images in the system-dependent
format, and other data in the formats named after the MIME type of the data. For example,
Prima supports image formats like image/bmp out of the box, and text/plain on X11, which
are selected automatically when operating with pseudo-formats Text or Image. Other MIME
formats like f.ex. text/html are not known to Prima, but can be exchanged quite easily; the
program only needs to register these formats by calling the Clipboard::register format

method at the start of the program.

Dragging

To begin a dragging session first fill the DND clipboard with data to be exchanged, using
one or more formats, then call the the start dnd entry method. Alternatively, call the
begin drag entry, a wrapper method that can set up the necessary clipboard data itself. See
the documentation on these methods for more details.

During the dragging, the sender will receive the the DragQuery entry and the DragResponse
entry events, to decide whether the drag session must continue or stop depending on the

127

user interactions, and reflect that decision to the user. Traditionally, mouse pointers are
changed to show whether an application will receive dropped data, and if yes, what action
(copy, move, or link) it will recognize. Prima will try its best to either use system pointers
or synthesize ones that are informative enough; if that is not sufficient, one may present its
own pointer schema (see f.ex how begin drag is implemented).

Dropping

To register a widget as a drop target, set its the dndAware entry property to either 1, to
mark that it will answer to every format, or to a string, in which case drop events will only
be delivered if the DND clipboard contains a format with that string as its name.

When the user initiates a DND session and moves the mouse pointer over the widget, it
receives the related events: first a the DragBegin entry event, then a series of the the
DragOver entry events, and finally a the DragEnd entry event with a flag telling whether
the user chose to drop the data to the widget or cancel the session.

The DragOver and DragEnd callbacks provide the possibility to either allow or deny data and
select an action (if there is more than one allowed by the other application) to proceed with.
To do so, set appropriate values to the {allow} and the {action} fields in the last hashref
parameter that is sent to these event handlers. Additionally, the program can respond to
the DragOver by setting the {pad} rectangle that will cache the last answer and tell the
system to not send repeated events with the same input while the mouse pointer stays in
the rectangle.

Portability

X11 and Win32 are rather identical in how they handle DND sessions from the user per-
spective. The only difference that is significant to Prima here is whether the sender or the
receiver is responsible for selecting an action for the available list of actions when the user
presses the modifier keys, like CTRL or SHIFT.

On X11, it is the sender that controls that aspect, and tells the receiver what action at
any given moment the user chose, by responding to a DragQuery event. On Win32, it is
the receiver that selects an action from the list on each DragOver event, depending on the
modifier keys pressed by the user; Win32 recommends adhering to the standard scheme where
the CTRL key means the dnd::Move action, and the SHIFT key the dnd::Link action, but
that is up to the receiver.

Thus, to write a robust and portable program, assume that it may control the actions both
as the sender and as the receiver. The toolkit’s system-dependent code will make sure that
there will be no ambiguities in the input. F.ex. the sender on Win32 will never be presented
with combination of several dnd:: constants inside a DragQuery event, and the X11 receiver
will similarly never be presented with such combination inside DragOver. Nevertheless, a
portable program must be prepared to select and return a DND action in either callback.

Additionally, the X11 DND protocol describes the situation when the receiver is presented
with the choice of actions, and may also ask the user what action to select, or cancel the
session altogether. This is okay and is expected by the user, and it is up to your program to
use that possibility or not.

Colors

Prima::Widget extends the functionality of ::color and ::backColor, the properties inherited
from the Prima::Drawable class. Their values are the widget’s ’foreground’ and ’background’
colors, in addition to their function as template values. Moreover, their dynamic change induces
the repainting of the widget. The values of these properties can be inherited from the owner; the
inheritance is managed by the properties ::ownerColor and ::ownerBackColor. If these are set
to 1 then changes to the owner’s properties ::color or ::backColor are copied automatically to

128

the widget. Once the widget’s ::color or ::backColor is explicitly set, the owner link breaks
automatically by setting ::ownerColor or ::ownerBackColor to 0.

In addition to these two existing color properties, Prima::Widget introduces six others.
These are: ::disabledColor, ::disabledBackColor, ::hiliteColor, ::hiliteBackColor,
::light3DColor, and ::dark3DColor. The ’disabled’ color pair contains the values that are
expected to be used as the foreground and the background when the widget is in the disabled
state (see API, ::enabled property). The ’hilite’ values serve as colors painting a selection
inside of the widget. Selection may be of any kind, and some widgets do not provide any. But for
those that do, the ’hilite’ color values provide distinct alternative colors. The examples are the
selections in the text widgets or the list boxes. The last pair, ::light3DColor and ::dark3DColor

is used for drawing 3D-bevelled outlines on the widget. The purpose of all these properties is to
respect the system colors and draw the Prima GUI as close as possible to the native system look.

There are eight additional cl:: constants that can be used to access these system colors. These
named correspondingly, cl::NormalText, cl::Normal, cl::HiliteText, cl::Hilite, cl::DisabledText,
cl::Disabled, cl::Light3DColor, and cl::Dark3DColor. The cl::NormalText constant is an alias
to cl::Fore, and cl::Normal - to the cl::Back constant. Another constant set, ci:: can be used
with the ::colorIndex property, a multiplexer method for all the eight color properties. ci::

constants mimic their non-RGB cl:: counterparts, so that a call to hiliteBackColor(cl::Red)

is equal to colorIndex(ci::Hilite, cl::Red).
The map color translates these special constants to the 24-bit RGB integer values. The cl::

constants alone are sufficient for acquiring the default values, but the toolkit provides even wider
functionality to address default colors for different types of widgets. The cl:: constants can
be combined with the wc:: constants, that represent the standard widget classes. If the color
property was assigned with a cl:: constant not combined with a wc:: constant, the widget
class value is read from the ::widgetClass property. Thus a call to, for example, backColor(
cl::Back) on a button and an input line may result in different colors because the cl::Back is
translated in the first case to cl::Back|wc::Button, and in another to cl::Back|wc::InputLine.
The wc:: constants are described in the API entry.

Dynamic changes of the color properties result in the ColorChanged notification.

Fonts

The default font can be automatically inherited from the owner if the ::ownerFont property is set
to 1. If it is set to 0, then the font returned by the get default font method is used instead. The
method may return different fonts depending on the widget class, name, and user preferences (
see the Additional resources entry). A similar method get default popup font is used to query
the default popup font and the ::popupFont property for accessing it. The Prima::Window class
has also similar functions, the get default menu font method and the ::menuFont property.

Dynamic changes to the font property result in the FontChanged notification.

Additional resources

The resources operated via the Prima::Widget class but not that strictly bound to the widget
concept are gathered in this section. The section includes an overview of pointer, cursor, hint,
menus, and user-specified resources.

Markup text

The Prima::Drawable::Markup class provides text-like objects that can draw rich text with
various fonts and colors and has primitive support for painting images. The methods of
Prima::Drawable that handle text output such as text out, and get text width, etc can detect
if the text passed is a blessed object, and make a corresponding call on it. The markup objects
can employ this mechanism to be used transparently in the text and the hint properties.

There are two ways to construct a markup object: either directly:

129

Prima::Drawable::Markup->new(...)

or using an imported method M,

use Prima::Drawable::Markup q(M);

M ’...’;

where the results of both calls can be directly set to almost any textual property throughout
the whole toolkit, provided that the classes are not peeking inside the object but only calling the
drawing methods on them.

In addition to that, the Prima::Widget class and its descendants recognize the third syntax:

Widget->new(text => \ ’markup’)

treating a scalar reference to a text string as a sign that this is the text to be compiled into a
markup object.

Pointer

The mouse pointer is the shared resource that can change its visual representation when it hovers
over different kinds of widgets. It is usually a good practice for a text field, for example, to set
the pointer icon to a vertical line, or indicate a moving window with a cross-arrow pointer.

A widget can select any of the predefined system pointers mapped by the cr::XXX constant
set, or supply own pointer icon of arbitrary size and color depth.

NB: Not all systems support colored pointer icons. The system value sv::ColorPointer index
contains a boolean value, whether the colored icons are allowed or not. Also, the pointer icon size
may have a limit: check if sv::FixedPointerSize is non-zero, in which case the pointer size will be
forcibly reduced to the system limits.

In general, the ::pointer property is enough to access these functions of the mouse pointer.
The property can deduce whether it is an icon or a constant passed and set the appropriate
system properties. These properties are also accessible separately, although their usage is not
encouraged, primarily because of the tangled relationship between them. These properties are:
::pointerType, ::pointerIcon, and ::pointerHotSpot. See the details in the the API entry
sections.

Another property called Prima::Application::pointerVisible manages the visibility of the
mouse pointer for all widgets at once.

Cursor

The cursor is a blinking rectangular area that signals that the widget has the input focus. There can
be only one active cursor or no active cursor at all. The Prima::Widget class provides several cursor
properties: ::cursorVisible, ::cursorPos, and ::cursorSize. There are also two methods,
show cursor() and hide cursor() that govern the cursor visibility. Note: If the hide cursor()

method was called three times, then show cursor() must be called three times as well for the
cursor to become visible.

Hints

::hint is a text string that describes the widget’s purpose to the user in a terse manner. If the
mouse pointer hovers over the widget longer than some timeout (see Prima::Application::hintPause
), then a small tooltip window appears with the hint text, which stays on the screen until the pointer
is drawn away. The hint behavior is managed by Prima::Application, but a widget can do two
additional things about its hint: it can enable and disable it by setting the ::showHint property,
and it can inherit the owner’s ::hint and ::showHint properties using the ::ownerHint and
::ownerShowHint properties. If, for example, the widgets’ ::ownerHint property is set to 1, then
the ::hint value is automatically copied from the widget’s owner when it changes. If, however,

130

the widget’s ::hint or ::showHint are explicitly set, the owner link breaks automatically by
setting ::ownerHint or ::ownerShowHint to 0.

The widget can also operate the ::hintVisible property that shows or hides the hint label
immediately if the mouse pointer is inside the widget’s boundaries.

Menu objects

Prima::Widget objects may have a special relationship with registered object instances of the
Prima::AccelTable and Prima::Popup class (for Prima::Window this is also valid for Prima::Menu
objects). The registration and/or automatic creation of these objects can happen by using the
::accelTable, ::popup, and ::menu properties. Also the ::items property of these objects
can also be accessed via the ::accelItems, ::popupItems, and ::menuItems properties. As
mentioned in the User input entry, these objects intercept the user keyboard input and call the
programmer-defined callback subroutine if the keystroke matches one of their key definitions.
::popup provides access to a context pop-up menu, which can be invoked by either right-clicking
the mouse or pressing a system-dependent key combination.

The widget also provides the ::popupColorIndex and ::popupFont properties. The
multiplexer method ::popupColorIndex can be also used to access the ::popupColor,
::popupHiliteColor, ::popupHiliteBackColor, etc properties exactly like the ::colorIndex

property. The Prima::Window class provides equivalent methods for the menu bar, introducing
::menu, ::menuItems, ::menuColorIndex, and ::menuFont properties.

Win32 doesn’t support custom font and color of the menu and popup objects. Check the the
Prima::Menu section for the implementation of the menu widgets without using the system menu
objects.

User-specified resources

It is considered a good idea to incorporate user preferences into the toolkit look and feel.
Prima::Widget relies on the system-specific code that tries to map these preferences as closely
as possible to the toolkit.

The X11 backend uses XRDB (X resource database) which is the natural (but mostly ob-
solete as of now) way for the user to tell the preferences with fine granularity. Win32 reads the
setting that the user has to set interactively, using system tools. Nevertheless, the toolkit can not
emulate all user settings that are available on the supported platforms; it rather takes the ’least
common denominator’, which is colors and fonts only. The fetch resource() method is capable
of accessing such settings, in font, color, or a generic text format. The method is rarely called
directly.

A somewhat appealing idea of making every widget property adjustable via the user-specified
resources is not implemented in full. It can be accomplished up to a certain degree using the
fetch resource() method, but it is believed that calling the method for every property on every
widget is prohibitively expensive.

API

Properties

accelItems [ITEM LIST]

Manages items of a Prima::AccelTable object associated with a widget. The ITEM LIST
format is the same as Prima::AbstractMenu::items and is described in the Prima::Menu
section.

See also: accelTable

accelTable OBJECT

131

Manages a Prima::AccelTable object associated with a widget. The sole purpose of the
accelTable object is to provide convenience mapping of key combinations to anonymous
subroutines. Instead of writing an interface specifically for Prima::Widget, the existing
interface of Prima::AbstractMenu was taken.

The accelTable object can be destroyed safely; its cancellation can be done either via
accelTable(undef) or destroy() call.

Default value: undef

See also: accelItems

autoEnableChildren BOOLEAN

If TRUE, all immediate children widgets maintain the same enabled state as the widget.
This property is useful for group-like widgets (ComboBox,

Default value: 0

backColor COLOR

In the paint state, manages the background color of the graphic context. In the normal
state, manages the background color property. When changed initiates the ColorChanged

notification and repaints the widget.

See also: color, colorIndex, ColorChanged

bottom INTEGER

Maintains the lower boundary of the widget. If changed does not affect the widget height,
however does so if called in the set() method together with the ::top property.

See also: left, right, top, origin, rect, growMode, Move

briefKeys BOOLEAN

If 1 compresses the repetitive KeyDown events into a single event and reports the number of
the events compressed in the REPEAT parameter. If 0 the REPEAT parameter is always 1.

Default value: 1

See also: KeyDown

buffered BOOLEAN

If 1, request the system to allocate a memory buffer for painting the widget. The memory
content is copied to the screen then. Used when complex drawing methods are used, or if
output smoothness is desired.

This behavior can not be always granted, however. If there is not enough memory then the
widget draws in the usual manner. One can check whether the buffering request is granted
by calling the is surface buffered method.

Default value: 0

See also: Paint, the is surface buffered entry.

capture BOOLEAN, CLIP OBJECT = undef

Manipulates capturing of the mouse events. If 1, the mouse events are not passed to the
widget the mouse pointer is over but is redirected to the caller widget. The call for capture
might not be always granted due to the race conditions between programs.

If the CLIP OBJECT widget is defined in the set-mode call, the pointer movements are
confined to CLIP OBJECT inferior.

See also: MouseDown, MouseUp, MouseMove, MouseWheel, MouseClick.

132

centered BOOLEAN

A write-only property. Once set the widget is centered by X and Y axis relative to its owner.

See also: x centered, y centered, growMode, origin, Move.

clipChildren BOOLEAN

Affects the drawing mode when the children widgets are present and obscuring the drawing
area. If set, the children widgets are automatically added to the clipping area, and drawing
over them will not happen. If unset, the painting can be done over the children widgets.

Default: 1

clipOwner BOOLEAN

If 1, the widget is clipped by its owner boundaries. It is the default and expected behavior.
If clipOwner is 0, the widget behaves differently: it does not get clipped by the owner, it
is not moved together with the parent, the origin offset is calculated not from the owner’s
coordinates but from the screen, and mouse events in the widget do not transgress to the
top-level window decorations. In short, it becomes a top-level window, that, contrary to
the one created from the Prima::Window class, does not have any interference with the
system-dependent window stacking and positioning (and any other) policy, and it is neither
equipped with the window manager decorations.

Default value: 1

See the Parent-child relationship entry

See also: Prima::Object owner section, parentHandle

color COLOR

In the paint state manages, the foreground color of the graphic context. In the normal
state, manages the basic foreground color property. When changed initiates ColorChanged
notification and repaints the widget.

See also: backColor, colorIndex, ColorChanged

colorIndex INDEX, COLOR

Manages the basic color properties indirectly by accessing them via the ci::XXX con-
stants. Is a complete alias for ::color, ::backColor, ::hiliteColor, ::hiliteBackColor,
::disabledColor, ::disabledBackColor, ::light3DColor, and ::dark3DColor proper-
ties. The ci::XXX constants are:

ci::NormalText or ci::Fore

ci::Normal or ci::Back

ci::HiliteText

ci::Hilite

ci::DisabledText

ci::Disabled

ci::Light3DColor

ci::Dark3DColor

The non-RGB cl:: constants, specific to the Prima::Widget color usage are identical to
their ci:: counterparts:

cl::NormalText or cl::Fore

cl::Normal or cl::Back

cl::HiliteText

cl::Hilite

133

cl::DisabledText

cl::Disabled

cl::Light3DColor

cl::Dark3DColor

See also: color, backColor, ColorChanged

current BOOLEAN

If 1, the widget (or one of its children) is marked as the one to be selected and possibly
focused when the owner widget receives the select() call. Only one children widget can be
current, or none at all.

See also: currentWidget, selectable, selected, selectedWidget, focused

currentWidget OBJECT

Points to the children widget that is to be selected and possibly focused when the owner
widget receives the select() call.

See also: current, selectable, selected, selectedWidget, focused

cursorPos X OFFSET Y OFFSET

Specifies the lower left corner of the cursor

See also: cursorSize, cursorVisible

cursorSize WIDTH HEIGHT

Specifies width and height of the cursor

See also: cursorPos, cursorVisible

cursorVisible BOOLEAN

Specifies the cursor visibility flag. The default value is 0.

See also: cursorSize, cursorPos

dark3DColor COLOR

The color used to draw dark shades.

See also: light3DColor, colorIndex, ColorChanged

designScale X SCALE Y SCALE

The width and height of the font that was used when the widget (usually a dialog or a
grouping widget) was designed.

See also: scaleChildren, width, height, size, font

disabledBackColor COLOR

The color to be used instead of the value of the ::backColor property when the widget is
in the disabled state.

See also: disabledColor, colorIndex, ColorChanged

disabledColor COLOR

The color to be used instead of the value of the ::color property when the widget is in the
disabled state.

See also: disabledBackColor, colorIndex, ColorChanged

134

dndAware 0 | 1 | Format

To register the widget as a drop target, set its the dndAware entry property to either 1, to
mark that it will answer to all formats, or to a text string, in which case the drop events
will only be delivered if the DND clipboard contains the data of the type Format.

Default: 0

See also: Drag and Drop

enabled BOOLEAN

Specifies if the widget can accept focus, the keyboard, and the mouse events. The default
value is 1, however, being ’enabled’ does not automatically allow the widget to become
focused. Only the reverse is true - if enabled is 0, focusing can never happen.

See also: responsive, visible, Enable, Disable

font %FONT

Manages the font context. Same syntax as in Prima::Drawable. When changed initiates
FontChanged notification and repaints the widget.

See also: designScale, FontChanged, ColorChanged

geometry INTEGER

Selects one of the available geometry managers. The corresponding integer constants are:

gt::GrowMode, gt::Default - the default grow-mode algorithm

gt::Pack - Tk packer

gt::Place - Tk placer

See growMode, the Prima::Widget::pack section, the Prima::Widget::place section.

growMode MODE

Specifies the widget’s behavior, when its owner is resized or moved. MODE can be 0 (
default) or a combination of the following constants:

Basic constants

gm::GrowLoX the widget’s left side is kept in constant

distance from its owner’s right side

gm::GrowLoY the widget’s bottom side is kept in constant

distance from its owner’s top side

gm::GrowHiX the widget’s right side is kept in constant

distance from its owner’s right side

gm::GrowHiY the widget’s top side is kept in constant

distance from its owner’s top side

gm::XCenter the widget is kept in the center of its owner’s

horizontal axis

gm::YCenter the widget is kept in the center of its owner’s

vertical axis

gm::DontCare widgets origin is constant relative

to the screen

Derived or aliased constants

gm::GrowAll gm::GrowLoX|gm::GrowLoY|gm::GrowHiX|gm::GrowHiY

gm::Center gm::XCenter|gm::YCenter

gm::Client gm::GrowHiX|gm::GrowHiY

gm::Right gm::GrowLoX|gm::GrowHiY

gm::Left gm::GrowHiY

gm::Floor gm::GrowHiX

135

See also: Move, origin

firstClick BOOLEAN

If 0, the widget ignores the first mouse click if the top-level window it belongs to was not
activated, so selecting such a widget with a mouse must take two clicks.

Default: 1

See also: MouseDown, selectable, selected, focused, selectingButtons

focused BOOLEAN

On the get-call returns whether the widget possesses the input focus or not. On the set-call
sets the focus to the widget, ignoring the ::selectable property.

See also: selectable, selected, selectedWidget, KeyDown

geomWidth, geomHeight, geomSize

The three properties that manage the geometry request size. Writing and reading to
the ::geomWidth and ::geomHeight properties is equivalent to doing the same to the
::geomSize property. The properties are run-time only, and behave differently under dif-
ferent circumstances:

• The properties can only be used after widget creation, they can not be set in the creation
profile, and their initial value is fetched from the ::size property. Thus, setting the
explicit size additionally sets the advised size in case the widget is to be used with the
Tk geometry managers.

• Setting the properties under the gt::GrowMode geometry manager also sets the cor-
responding ::width, ::height, or ::size properties. When the properties are read
though, the widget size properties are not accessed, their values are kept separately.

• Setting the properties under Tk geometry managers causes the widget’s size and posi-
tion to change according to the geometry manager policy.

height

Maintains the height of the widget.

See also: width, growMode, Move, Size, get virtual size, sizeMax, sizeMin

helpContext STRING

A text string that binds the widget to the interactive help topic. STRING format is defined
as a POD link (see perlpod) - ”manpage/section”, where ’manpage’ is the file with POD
content and ’section’ is the topic inside the manpage.

See also: help

hiliteBackColor COLOR

The color to be used to draw the alternate background areas with a higher contrast.

See also: hiliteColor, colorIndex, ColorChanged

hiliteColor COLOR

The color to be used to draw the alternate foreground areas with a higher contrast.

See also: hiliteBackColor, colorIndex, ColorChanged

hint TEXT

A text string is shown under the mouse pointer if it is hovered over the widget longer than
the Prima::Application::hintPause timeout. The text appears only if the ::showHint is
1.

TEXT can also be a Prima::Drawable::Markup object

See also: hintVisible, showHint, ownerHint, ownerShowHint

136

hintVisible BOOLEAN

Returns the hint visibility status when called in the get-form. When called in the set-form
immediately turns on or off the hint label, disregarding the timeouts. It does regard the
mouse pointer location though and does not turn on the hint label if the pointer is not
immediately over the widget.

See also: hint, showHint, ownerHint, ownerShowHint

layered BOOLEAN

If set, requests the system to use the alpha transparency. Depending on the system and
its configuration this request may or may not be granted. The actual status of the request
success is returned by the is surface layered method. See the Layering entry in the
Prima::Image section for more details.

Default: false

Note: On Windows mouse events will not be delivered to the layered widget if the pixel
under the mouse pointer is fully transparent.

On X11 you need to run a composition manager, f.ex. compiz or xcompmgr.

On Darwin/XQuartz the alpha transparency is unavailable (2023).

left INTEGER

Maintains the left boundary of the widget. If changed does not affect the widget width,
however does so if called in the set() method together with the ::right property.

See also: bottom, right, top, origin, rect, growMode, Move

light3DColor COLOR

The color to draw light shades.

See also: dark3DColor, colorIndex, ColorChanged

ownerBackColor BOOLEAN

If 1, the background color is synchronized with the owner’s. Automatically resets to 0 if the
::backColor property is set explicitly.

See also: ownerColor, backColor, colorIndex

ownerColor BOOLEAN

If 1, the foreground color is synchronized with the owner’s. Automatically resets to 0 if the
::color property is set explicitly.

See also: ownerBackColor, color, colorIndex

ownerFont BOOLEAN

If 1, the font is synchronized with the owner’s. Automatically resets to 0 if the ::font

property is set explicitly.

See also: font, FontChanged

ownerHint BOOLEAN

If 1, the hint is synchronized with the owner’s. Automatically resets to 0 if the ::hint

property is set explicitly.

See also: hint, showHint, hintVisible, ownerShowHint

ownerShowHint BOOLEAN

If 1, the show hint flag is synchronized with the owner’s. Automatically resets to 0 if the
::showHint property is set explicitly.

See also: hint, showHint, hintVisible, ownerHint

137

ownerPalette BOOLEAN

If 1, the palette array is synchronized with the owner’s. Automatically resets to 0 if the
::palette property is set explicitly.

See also: palette

ownerSkin BOOLEAN

If 1, the skin property is set to undef and thus will be synchronized with the owner’s.
Automatically resets to 0 if the ::skin property is set explicitly.

See also: skin

origin X Y

Maintains the left and bottom boundaries of the widget relative to its owner (or to the
screen if the ::clipOwner property is 0).

See also: bottom, right, top, left, rect, growMode, Move

packInfo %OPTIONS

See the Prima::Widget::pack section

palette [@PALETTE]

Manages the array of colors that are desired to be present in the system palette, as close
to the PALETTE as possible. This property works only if the graphic device allows palette
operations. See the palette entry in the Prima::Drawable section.

See also: ownerPalette

parentHandle SYSTEM WINDOW

If the SYSTEM WINDOW is a valid system-dependent window handle then a widget be-
comes the child of the window specified, given the widget’s ::clipOwner is 0. The parent
window may belong to another application.

Default value is undef.

See also: clipOwner

placeInfo %OPTIONS

See the Prima::Widget::place section

pointer cr::XXX or ICON

Specifies the pointer icon by either one of the cr::XXX constants or an icon. If the icon
contains a hash variable pointerHotSpot with an array of two integers, these integers
will be treated as the pointer hot spot. In the get-mode call, this variable is automatically
assigned to an icon if the result is an icon object.

See also: pointerHotSpot, pointerIcon, pointerType

pointerHotSpot X OFFSET Y OFFSET

Specifies the hot spot coordinates of the pointer icon associated with the widget.

See also: pointer, pointerIcon, pointerType

pointerIcon ICON

Specifies the pointer icon associated with the widget.

See also: pointerHotSpot, pointer, pointerType

138

pointerPos X OFFSET Y OFFSET

Specifies the mouse pointer coordinates relative to the widget’s coordinates.

See also: get mouse state, screen to client, client to screen

pointerType TYPE

Specifies the type of the pointer associated with the widget. The TYPE can accept one
constant of the cr::XXX constants:

cr::Default same pointer type as owner’s

cr::Arrow arrow pointer

cr::Text text entry cursor-like pointer

cr::Wait hourglass

cr::Size general size action pointer

cr::Move general move action pointer

cr::SizeWest, cr::SizeW right-move action pointer

cr::SizeEast, cr::SizeE left-move action pointer

cr::SizeWE general horizontal-move action pointer

cr::SizeNorth, cr::SizeN up-move action pointer

cr::SizeSouth, cr::SizeS down-move action pointer

cr::SizeNS general vertical-move action pointer

cr::SizeNW up-right move action pointer

cr::SizeSE down-left move action pointer

cr::SizeNE up-left move action pointer

cr::SizeSW down-right move action pointer

cr::Invalid invalid action pointer

cr::DragNone pointer for an invalid dragging target

cr::DragCopy pointer to indicate that a dnd::Copy action can be accepted

cr::DragMove pointer to indicate that a dnd::Move action can be accepted

cr::DragLink pointer to indicate that a dnd::Link action can be accepted

cr::Crosshair the crosshair pointer

cr::UpArrow arrow directed upwards

cr::QuestionArrow question mark pointer

cr::User user-defined icon

All constants except the cr::User and the cr::Default represent the system-defined point-
ers, their icons, and hot spot offsets. cr::User is a constant that tells the system that an
icon object was specified explicitly via the ::pointerIcon property. The cr::Default con-
stant tells that the widget inherits its owner pointer type, no matter if is it a system-defined
pointer or a custom icon.

See also: pointerHotSpot, pointerIcon, pointer

popup OBJECT

Manages a Prima::Popup object associated with the widget. The purpose of the popup
object is to show the context menu when the user right-clicks or selects the corresponding
keyboard combination. Prima::Widget can host many popup objects but only the one that
is registered in the ::popup property will be activated automatically.

The popup object can be destroyed safely; can be done either via a popup(undef) or a
destroy() call.

See also: Prima::Menu, Popup, Menu, popupItems, popupColorIndex, popupFont

popupColorIndex INDEX, COLOR

139

Maintains eight color properties of the pop-up context menu, associated with the widget.
INDEX must be one of the ci::XXX constants (see ::colorIndex property).

See also: popupItems, popupFont, popup

popupColor COLOR

Basic foreground color in the popup context menu color.

See also: popupItems, popupColorIndex, popupFont, popup

popupBackColor COLOR

Basic background color in the popup context menu color.

See also: popupItems, popupColorIndex, popupFont, popup

popupDark3DColor COLOR

The color for drawing dark shades in the popup context menu.

See also: popupItems, popupColorIndex, popupFont, popup

popupDisabledColor COLOR

The foreground color for the disabled items in the popup context menu.

See also: popupItems, popupColorIndex, popupFont, popup

popupDisabledBackColor COLOR

The background color for the disabled items in the popup context menu.

See also: popupItems, popupColorIndex, popupFont, popup

popupFont %FONT

Maintains the font of the pop-up context menu associated with the widget.

See also: popupItems, popupColorIndex, popup

popupHiliteColor COLOR

The foreground color for the selected items in the popup context menu.

See also: popupItems, popupColorIndex, popupFont, popup

popupHiliteBackColor COLOR

The background color for the selected items in the popup context menu.

See also: popupItems, popupColorIndex, popupFont, popup

popupItems [ITEM LIST]

Manages items of the Prima::Popup object associated with the widget. The ITEM LIST
format is the same as Prima::AbstractMenu::items and is described in the Prima::Menu
section.

See also: popup, popupColorIndex, popupFont

popupLight3DColor COLOR

The color for drawing light shades in the popup context menu.

See also: popupItems, popupColorIndex, popupFont, popup

rect X LEFT OFFSET Y BOTTOM OFFSET X RIGHT OFFSET
Y TOP OFFSET

Maintains the rectangular boundaries of the widget relative to its owner (or to the screen
if ::clipOwner is 0).

See also: bottom, right, top, left, origin, width, height, size growMode, Move, Size,
get virtual size, sizeMax, sizeMin

140

right INTEGER

Maintains the right boundary of the widget. If changed does not affect the widget width,
however does so if called in the set() method together with the ::left property.

See also: left, bottom, top, origin, rect, growMode, Move

scaleChildren BOOLEAN

If the widget has the ::scaleChildren property set to 1, then the newly-created children
widgets inserted in it will be scaled corresponding to the value of its owner’s ::designScale
property, given that widget’s ::designScale is not undef and the owner’s is not [0,0].

Default: 1

See also: designScale

selectable BOOLEAN

If 1, the widget can be granted focus by the toolkit or by the user. The select() method
checks if this property is set, and does not focus a widget that has ::selectable set to 0.

Default: 0

See also: current, currentWidget, selected, selectedWidget, focused

selected BOOLEAN

In the get-mode returns true if either the widget or one of its (grand-) children is focused.
In the set-mode either turns the system with no-focus state (if a value of 0 is given) or re-
sends input focus to itself or one of the (grand-) children widgets down the ::currentWidget
chain.

See also: current, currentWidget, selectable, selectedWidget, focused

selectedWidget OBJECT

Points to the immediate child widget that has the value of the property ::selected set to
1.

See also: current, currentWidget, selectable, selected, focused

selectingButtons FLAGS

The FLAGS is a combination of the mb::XXX (mouse button) flags. If the widget receives
a mouse click with the button that has the corresponding bit set in ::selectingButtons

then the select() method is called.

Default: mb::Left

See also: MouseDown, firstClick, selectable, selected, focused

shape REGION

Maintains the non-rectangular shape of the widget. In the set-mode REGION is either a
Prima::Image object with its 0 bits treated as transparent pixels and 1 bits as opaque pixels,
or a Prima::Region object. In the get-mode, it is either undef or a Prima::Region object.

Successive only if the sv::ShapeExtension value is true.

showHint BOOLEAN

If 1, the toolkit is allowed to show the hint label over the widget. The ::hint property must
contain a non-empty string text if the hint label is to be shown.

The default value is 1.

See also: hint, ownerShowHint, hintVisible, ownerHint

141

size WIDTH HEIGHT

Maintains the width and height of the widget.

See also: width, height growMode, Move, Size, get virtual size, sizeMax, sizeMin

sizeMax WIDTH HEIGHT

Specifies the maximal size for the widget.

See also: width, height, size growMode, Move, Size, get virtual size, sizeMin

sizeMin WIDTH HEIGHT

Specifies the minimal size for the widget.

See also: width, height, size growMode, Move, Size, get virtual size, sizeMax

skin SCALAR

A generic scalar, is not used in the Prima::Widget class implementation but is designed to
select the visual style of a widget, where the interpretation of the property value will be up
to the widget class itself. Many of the toolkit widgets implement two skins, classic and
flat.

Does not repaint the widget on the property change, however many of the toolkit widgets
do that.

If the ownerSkin property value is 1 returns the skin of the owner. When is undef, sets the
ownerSkin property to 1, otherwise resets it to 0.

Note: this is not a symmetric property, as a $self->skin($self->skin) call is not idem-
potent.

syncPaint BOOLEAN

If 0, the Paint request notifications are stacked until the event loop is called. If 1, every
time the widget surface gets invalidated the Paint notification is called.

Default: 0

See also: invalidate rect, repaint, validate rect, Paint

tabOrder INTEGER

Maintains the order in which the tab- and shift-tab key navigation algorithms focus the sib-
ling widgets. INTEGER is unique among the sibling widgets. In the set-mode, if INTEGER
the value is already taken by another widget, the latter is assigned another unique value,
but without the destruction of the internal queue - the widgets with ::tabOrder greater than
of the widget in question receive new values too. The special value -1 is accepted as ’the end
of list’ request in the set-call. A negative value is never returned in the get-call.

See also: tabStop, next tab, selectable, selected, focused

tabStop BOOLEAN

Specifies whether the widget is interested in the tab- and shift-tab key navigation or not.

Default value is 1.

See also: tabOrder, next tab, selectable, selected, focused

text TEXT

A text string for generic purposes. Many Prima::Widget descendants use this property
heavily - buttons, labels, input lines, etc, but Prima::Widget itself does not.

If the TEXT is a reference to a string, it is treated as a markup string and is compiled into a
Prima::Drawable::Markup object internally.

See the Prima::Drawable::Markup section, examples/markup.pl

142

top INTEGER

Maintains the upper boundary of the widget. If changed does not affect the widget height,
however does so if called in the set() method together with the ::bottom property.

See also: left, right, bottom, origin, rect, growMode, Move

transparent BOOLEAN

Specifies whether the background of the widget before it starts painting is of any importance.
If 1, the widget can gain a certain emulated transparency look if it does not clear the
background during the Paint event.

Default value is 0

See also: Paint, buffered.

visible BOOLEAN

Specifies whether the widget is visible or not. See the Visibility entry.

See also: Show, Hide, showing, exposed

widgetClass CLASS

Maintains the integer value, designating the color class that is defined by the system and is
associated with Prima::Widget’s eight basic color properties. The CLASS can be one of the
wc::XXX constants:

wc::Undef

wc::Button

wc::CheckBox

wc::Combo

wc::Dialog

wc::Edit

wc::InputLine

wc::Label

wc::ListBox

wc::Menu

wc::Popup

wc::Radio

wc::ScrollBar

wc::Slider

wc::Widget or wc::Custom

wc::Window

wc::Application

These constants are not associated with the toolkit classes but rather are a wide shot to any
possible native classes or widgets that the system may implement and have different color
defaults for. Any Prima class can use any of these constants in its ::widgetClass property.

See also: map color, colorIndex

widgets @WIDGETS

In the get-mode returns the list of immediate children widgets (identical to get widgets).
In the set-mode accepts the set of widget profiles, as insert does, as a list or an array. This
way it is possible to create a widget hierarchy in a single call.

width WIDTH

Maintains the width of the widget.

See also: height growMode, Move, Size, get virtual size, sizeMax, sizeMin

143

x centered BOOLEAN

A write-only property. Once set, the widget is centered on the horizontal axis relative to its
owner.

See also: centered, y centered, growMode, origin, Move.

y centered BOOLEAN

A write-only property. Once set, the widget is centered on the vertical axis relative to its
owner.

See also: x centered, centered, growMode, origin, Move.

Methods

begin drag [DATA | %OPTIONS]

Wrapper over the dnd start method that adds several aspects to the DND session that the
system doesn’t offer. All of the input is contained in the %OPTIONS hash except when the
case of a single-parameter call, when the DATA scalar is treated either as text => DATA or
image => DATA depending on the DATA type.

Returns -1 if a DND session cannot start, dnd::None if it was canceled by the user, or any
other dnd:: constant when the DND receiver has selected and successfully performed that
action. For example, after a call to the dnd start method that returned the dnd::Move

value the caller may remove the data the user selected to move (Prima::InputLine and
Prima::Edit do exactly this).

In the wantarray context also returns the widget that accepted the drop, if that is a Prima
widget. Check this before handling dnd::Move actions that require data to be deleted on
the source, to not occasionally delete the freshly transferred data. The begin drag method
uses a special precaution for this scenario and by default won’t let the widget be both the
sender and the receiver (see self aware below).

The following input is recognized:

actions INTEGER = dnd::Copy

A combination of the dnd:: constants, to tell a DND receiver if copying, moving,
and/or linking the data is allowed. The method fails on the invalid actions input.

format Format, data INPUT

If set, the DND clipboard will contain a single entry of the INPUT in the Format format,
where the format is either the standard Text or Image, or one of the formats registered
by the Clipboard::register format method.

If not set, the caller needs to fill the clipboard in advance, f.ex. to offer data in more
than one format.

image INPUT

Shortcut for format => ’Image’, data => $INPUT, preview => $INPUT

preview INPUT

If set, the mouse pointers sending feedback to the user will be visually combined with
either text or image, depending on whether INPUT is a text scalar or an image reference.

self aware BOOLEAN = 1

If unset, the widget’s dndAware will be temporarily set to 0 to exclude a possibility of
an operation that may end in sending data to itself.

text INPUT

Shortcut for format => ’Text’, data => $INPUT, preview => $INPUT

144

track INTEGER = 5

If set, waits to start the DND process until the user moves the mouse pointer away
from the starting point further than track pixels, which makes sense if the method is
to be called directly from a MouseDown event handler.

If the drag did not happen because the user released the button or otherwise marked
that this is not a drag, -1 is returned. In that case, the caller should continue to handle
the MouseDown event as if no drag session was ever started.

bring to front

Sends the widget on top of all other sibling widgets

See also: insert behind, send to back, ZOrderChanged ,first, next, prev, last

can close

Sends the Close event and returns its flag value. Windows that need to abort a potential
closing, for example when an editor asks the user if a document needs to be saved, need to
call the clear event method in the Close event handler.

See also: Close, close

client to screen @OFFSETS

Maps an array of X and Y integer offsets from the widget to the screen coordinates. Returns
the mapped OFFSETS.

See also: screen to client, clipOwner

close

Calls can close(), and if successful, destroys the widget. Returns the can close() result.

See also: can close, Close

defocus

Alias for the focused(0) call

See also: focus, focused, Enter, Leave

deselect

Alias for the selected(0) call

See also: select, selected, Enter, Leave

dnd start ACTIONS = dnd::Copy, USE DEFAULT POINTERS = 1

Starts a drag-and-drop session with a combination of the ACTIONS allowed. It is expected
that the DND clipboard will be filled with the data that are prepared to be sent to a DND
receiver.

Returns -1 if a DND session cannot start, the dnd::None constant if it was canceled by
the user or any other dnd:: constant when the DND receiver has selected and success-
fully performed that action. For example, after a call to the dnd start method returning
dnd::Move, the caller may remove the data the user selected to move (Prima::InputLine
and Prima::Edit do exactly this).

Also returns the widget that accepted the drop, if that was the Prima widget within the
same program.

If the USE DEFAULT POINTERS flag is set the system will use default drag pointers. Oth-
erwise, it is expected that a DragResponse action will change the mouse pointers according
to the current action, to give the user the visual feedback.

See begin drag for the wrapper over this method that extends this functionality.

See also: Drag and Drop, DragQuery, DragResponse.

145

exposed

Returns the boolean value indicating whether the widget is at least partly visible on the
screen. Never returns 1 if the widget’s ::visible value is 0.

See also: visible, showing, Show, Hide

fetch resource CLASS NAME, NAME, CLASS RESOURCE, RESOURCE,
OWNER, RESOURCE TYPE = fr::String

Returns a system-defined scalar of the resource, defined by the widget hierarchy, its class,
name, and owner. RESOURCE TYPE can be one of the following type constants:

fr::Color - color resource

fr::Font - font resource

fs::String - text string resource

These parameters are used to address the widget in its hierarchy before it is created. The
CLASS NAME is the widget class string, NAME is the widget name. CLASS RESOURCE
is the class of the resource, and RESOURCE is the resource name.

For example, resources ’color’ and ’disabledColor’ belong to the resource class ’Foreground’.

first

Returns the first (from bottom) sibling widget in Z-order.

See also: last, next, prev

focus

Alias for focused(1) call

See also: defocus, focused, Enter, Leave

hide

Sets widget ::visible to 0.

See also: hide, visible, Show, Hide, showing, exposed

hide cursor

Hides the cursor. If the hide cursor() method was called more than once then the
show cursor should also be called as many times to show the cursor back.

See also: show cursor, cursorVisible

help

Starts the interactive help viewer session and requests it to open the link in the
::helpContext string value. The string value is combined from the widget’s owner
::helpContext strings if the latter is empty or begins with a slash. A special meaning
is assigned to the empty string ” ” - the help() call fails when such value is found to be
the section component. This feature can be useful when a window or a dialog presents
a standalone functionality in a separate module, and the documentation is related more
to the module than to an embedding program. In such case the grouping widget holds
::helpContext as a pod manpage name with the trailing slash, and its children widgets
are assigned ::helpContext to the topics without the manpage but with the leading slash
instead. If the grouping widget has an empty string ” ” as the ::helpContext then the help
is unavailable for all the children widgets.

See also: helpContext

146

insert CLASS, %PROFILE [[CLASS, %PROFILE], ...]

Creates one or more widgets with their owner properties set to the caller widget, and returns
the list of the references to the newly created widgets.

Has two calling formats:

Single widget

$parent-> insert(’Child::Class’,

name => ’child’,

....

);

Multiple widgets

$parent-> insert(

[

’Child::Class1’,

name => ’child1’,

....

],

[

’Child::Class2’,

name => ’child2’,

....

],

);

insert behind OBJECT

Sends the widget behind the OBJECT on Z-axis given that the OBJECT is a sibling to the
widget.

See also: bring to front, send to back, ZOrderChanged ,first, next, prev, last

invalidate rect X LEFT OFFSET Y BOTTOM OFFSET X RIGHT OFFSET
Y TOP OFFSET

Marks the rectangular area of the widget as ’invalid’, triggering the re-painting of the area.
See the Graphic content entry.

See also: validate rect, get invalid rect, repaint, Paint, syncPaint, update view

is surface buffered

Returns true if the buffered property is set and the buffering request was granted. The
value is only valid inside the begin paint/end paint bracket and is always false otherwise.

See also: the buffered entry

is surface layered

Returns true if both the widget and its top-most parent are layered. If the widget itself is
top-most, i.e. a window, a non-clipOwner widget, or a child to the application, then is the
same as layered.

See also: the layered entry

key down CODE, KEY = kb::NoKey, MOD = 0, REPEAT = 1, POST = 0

The method sends or posts (POST flag) the simulated KeyDown event to the system. CODE,
KEY, MOD, and REPEAT are the parameters to be passed to the notification callbacks.

See also: key up, key event, KeyDown

147

key event COMMAND, CODE, KEY = kb::NoKey, MOD = 0, REPEAT = 1,
POST = 0

The method sends or posts (POST flag) the simulated keyboard event to the system.
CODE, KEY, MOD and REPEAT are the parameters to be passed to an eventual KeyDown
or KeyUp notification. COMMAND is allowed to be either cm::KeyDown or cm::KeyUp.

See also: key down, key up, KeyDown, KeyUp

key up CODE, KEY = kb::NoKey, MOD = 0, POST = 0

The method sends or posts (POST flag) the simulated KeyUp event to the system. CODE,
KEY and MOD are the parameters to be passed to the notification callbacks.

See also: key down, key event, KeyUp

last

Returns the last (the topmost) sibling widget in Z-order.

See also: first, next, prev

lock

Turns off the ability of the widget to re-paint itself. If the lock method was called more
than once, then the unlock method should be called as many times to re-enable the painting.
Returns the boolean success flag.

See also: unlock, repaint, Paint, get locked

map color COLOR

Translated combinations of the cl::XXX and ci::XXX constants to a 24-bit RGB integer
color value. If the COLOR is already in the RGB format, returns the same value.

See also: colorIndex

mouse click BUTTON = mb::Left, MOD = 0, X = 0, Y = 0, NTH = 0, POST = 0

The method sends or posts (POST flag) the simulated MouseClick event to the system.
BUTTON, MOD, X, Y, and NTH are the parameters to be passed to the notification call-
backs.

See also: MouseDown, MouseUp, MouseWheel, MouseMove, MouseEnter, MouseLeave

mouse down BUTTON = mb::Left, MOD = 0, X = 0, Y = 0, POST = 0

The method sends or posts (POST flag) the simulated MouseDown event to the system.
BUTTON, MOD, X, and Y are the parameters to be passed to the notification callbacks.

See also: MouseUp, MouseWheel, MouseClick, MouseMove, MouseEnter, MouseLeave

mouse enter MOD = 0, X = 0, Y = 0, POST = 0

The method sends or posts (POST flag) the simulated MouseEnter event to the system.
MOD, X, and Y are the parameters to be passed to the notification callbacks.

See also: MouseDown, MouseUp, MouseWheel, MouseClick, MouseMove, MouseLeave

mouse event COMMAND = cm::MouseDown, BUTTON = mb::Left, MOD = 0, X
= 0, Y = 0, NTH = 0, POST = 0

The method sends or posts (POST flag) the simulated mouse event to the system. BUT-
TON, MOD, X, Y, and NTH are the parameters to be passed to an eventual mouse
notification. COMMAND is allowed to be one of the cm::MouseDown, cm::MouseUp,
cm::MouseWheel, cm::MouseClick, cm::MouseMove, cm::MouseEnter, cm::MouseLeave

constants.

148

See also: mouse down, mouse up, mouse wheel, mouse click, mouse move, mouse enter,
mouse leave, MouseDown, MouseUp, MouseWheel, MouseClick, MouseMove, MouseEnter,
MouseLeave

mouse leave

The method sends or posts (POST flag) the simulated MouseLeave event to the system.

See also: MouseDown, MouseUp, MouseWheel, MouseClick, MouseMove, MouseEnter,
MouseLeave

mouse move MOD = 0, X = 0, Y = 0, POST = 0

The method sends or posts (POST flag) the simulated MouseMove event to the system.
MOD, X, and Y are the parameters to be passed to the notification callbacks.

See also: MouseDown, MouseUp, MouseWheel, MouseClick, MouseEnter, MouseLeave

mouse up BUTTON = mb::Left, MOD = 0, X = 0, Y = 0, POST = 0

The method sends or posts (POST flag) the simulated MouseUp event to the system.
BUTTON, MOD, X, and Y are the parameters to be passed to the notification callbacks.

See also: MouseDown, MouseWheel, MouseClick, MouseMove, MouseEnter, MouseLeave

mouse wheel MOD = 0, X = 0, Y = 0, INCR = 0, POST = 0

The method sends or posts (POST flag) the simulated MouseUp event to the system. MOD,
X, Y, and INCR are the parameters to be passed to the notification callbacks.

See also: MouseDown, MouseUp, MouseClick, MouseMove, MouseEnter, MouseLeave

next

Returns the neighbor sibling widget, next (above) in the Z-order. If none is found, undef
is returned.

See also: first, last, prev

next tab FORWARD = 1

Returns the next widget in the list of the sibling widgets sorted by ::tabOrder. FORWARD
is the boolean lookup direction flag. If none is found, the first (or the last, depending on
the FORWARD flag) widget is returned. Only widgets with the ::tabStop value set to 1
participate in the scanning.

Also used by the internal keyboard navigation code.

See also: next positional, tabOrder, tabStop, selectable

next positional DELTA X DELTA Y

Returns the sibling, the (grand-)child of a sibling, or the (grand-)child widget that matched
best the direction specified by the DELTA X and DELTA Y integers. Only one of these
parameters may be zero; another parameter must be either 1 or -1.

Also used by the internal keyboard navigation code.

See also: next tab, origin

pack, packForget, packSlaves

See the Prima::Widget::pack section

place, placeForget, placeSlaves

See the Prima::Widget::place section

149

prev

Returns the neighbor sibling widget, previous (below) in the Z-order. If none is found,
undef is returned.

See also: first, last, next

repaint

Marks the whole widget area as ’invalid’, triggering the re-painting of the widget. See the
Graphic content entry.

See also: validate rect, get invalid rect, invalidate rect, Paint, update view,
syncPaint

rect bevel $CANVAS, @RECT, %OPTIONS

Draws a rectangular area, similar to one produced by the rect3d method, over @RECT which
is a 4-integer tuple (X1,Y1,X2,Y2). Uses the values of the widget’s light3DColor and
dark3DColor properties. The following options are recognized:

fill COLOR

If set, the area is filled with COLOR, otherwise is left intact.

width INTEGER

The width of the border in pixels

concave BOOLEAN

If 1, draws a concave area, or a bulged area otherwise

responsive

Returns the boolean flag indicating whether the widget and its owners have all the ::enabled
property value set 1 or not. Useful for the fast check if the widget should respond to the
user’s actions.

See also: enabled

screen to client @OFFSETS

Maps array of X and Y integer offsets from screen to widget coordinates. Returns the
mapped OFFSETS.

See also: client to screen

scroll DELTA X DELTA Y %OPTIONS

Scrolls the graphic context area by DELTA X and DELTA Y pixels. The OPTIONS is a
hash that may contain the following optional parameters:

clipRect [X1, Y1, X2, Y2]

The clipping area is confined by the X1, Y1, X2, Y2 rectangle. If not specified, the
clipping area covers the whole widget. Only the bits covered by the clipRect are affected.
The bits scrolled from the outside of the rectangle to the inside are invalidated; the bits
scrolled from the inside of the rectangle to the outside are not invalidated.

confineRect [X1, Y1, X2, Y2]

The scrolling area is confined by the X1, Y1, X2, Y2 rectangle. If not specified, the
scrolling area covers the whole widget.

withChildren BOOLEAN

If 1, the scrolling affects the eventual children widgets so that they also change their
positions to DELTA X and DELTA Y.

Returns one of the following constants:

150

scr::Error - failure

scr::NoExpose - call resulted in no new exposed areas

scr::Expose - call resulted in new exposed areas, expect a repaint

Cannot be used inside the paint state.

See also: Paint, get invalid rect

select

Alias for selected(1) call

See also: deselect, selected, Enter, Leave

send to back

Sends the widget to the bottom of all other sibling widgets

See also: insert behind, bring to front, ZOrderChanged ,first, next, prev, last

show

Sets the widget’s ::visible property to 1.

See also: hide, visible, Show, Hide, showing, exposed

show cursor

Shows the cursor. If the hide cursor() method was called more than once then the
show cursor should also be called as many times to show the cursor back.

See also: hide cursor, cursorVisible

showing

Returns the boolean value indicating whether the widget and its owners have all ::visible
property set to 1 or not.

unlock

Turns on the ability of a widget to re-paint itself. As many times the lock() method
was called, as many times its counterpart, the unlock() method must be called to enable
re-painting again. After the last unlock() is called an implicit repaint() call is issued.
Returns the boolean success flag.

See also: lock, repaint, Paint, get locked

update view

If any parts of the widget were marked as ’invalid’ by either the invalidate rect(), scroll,
or repaint() calls, or by the exposure caused by the window movements, then the Paint

notification is immediately called. If no parts are invalid, no action is performed. If the
widget has the ::syncPaint property set to 1 the update view() is always a no-op call.

See also: invalidate rect, get invalid rect, repaint, Paint, syncPaint, update view

validate rect X LEFT OFFSET Y BOTTOM OFFSET X RIGHT OFFSET
Y TOP OFFSET

Reverses the effect of invalidate rect(), restoring the original, ’valid’ state of the widget
area covered by the rectangular area passed. If the widget with previously invalid areas was
wholly validated by this method, no Paint notifications occur.

See also: invalidate rect, get invalid rect, repaint, Paint, syncPaint, update view

151

Get-methods

get default font

Returns the default font for the Prima::Widget class.

See also: font

get default popup font

Returns the default font for the Prima::Popup class.

See also: font

get invalid rect

Returns the rectangle encompassing the actual invalid region on the widget. If the widget
doesn’t need to be repainted, the (0,0,0,0) tuple is returned.

See also: validate rect, invalidate rect, repaint, Paint, syncPaint, update view

get handle

Returns the system handle for the widget

See also: get parent handle, Window::get client handle

get locked

Returns 1 if the lock() was called and all repaints are effectively blocked.

See also: lock, unlock

get mouse state

Returns a combination of the mb::XXX constants that reflects the currently pressed mouse
buttons.

See also: pointerPos, get shift state

get parent

Returns the widget that the caller widget boundaries get clipped to, or the application object
if the caller widget is top-level or has the clipOwner property set to 1.

See also: clipOwner

get parent handle

Returns the system handle for the parent of the widget, the window that belongs to another
program. Returns 0 if the widget’s owner and parent are in the same application and process
space.

See also: get handle, clipOwner

get pointer size

Returns two integers, the width and height of the icon, that the system accepts as valid for
the mouse pointer. If the sizes of the icon exceed or are inferior to the size the icon is then
truncated or padded with transparency bits (but not stretched). Can be called with the
class syntax as it returns the system-wide value.

get shift state

Returns a combination of the km::XXX constants that reflects the currently pressed keyboard
modifier buttons.

See also: get shift state

152

get virtual size

Returns the virtual width and height of the widget. See the Geometry entry, Implicit size
regulations.

See also: width, height, size growMode, Move, Size, sizeMax, sizeMin

get widgets

Returns the list of the children widgets.

Events

Change

A generic notification, is used for the Prima::Widget’s descendants; the Prima::Widget class
itself neither calls nor uses the event. Designed to be called when an arbitrary major state
of the widget is changed.

Click

A generic notification, is used for the Prima::Widget’s descendants; Prima::Widget itself
neither calls nor uses the event. Designed to be called when an arbitrary major action for
the widget is called.

Close

Triggered by the can close() and close() functions. If the event flag is cleared during
execution, these functions return the false value.

See also: close, can close

ColorChanged INDEX

Called when one of the widget’s color properties is changed, either by a direct property
change or by the system. INDEX is one of the ci::XXX constants.

See also: colorIndex

Disable

Triggered by a successful enabled(0) call

See also: Enable, enabled, responsive

DragBegin CLIPBOARD, ACTION, MOD, X, Y, COUNTERPART

Triggered on the receiver widget when the mouse pointer with a DND object enters its
screen boundaries. CLIPBOARD contains the DND data, ACTION is a combination of the
dnd:: constants that reflect the actions the sender is ready to offer, MOD is a combination
of the modifier keys (kb::), and X and Y are the coordinates where the mouse pointer has
entered the widget. This event and the following DragOver and DragEnd events occur only
if the property dndAware is set either to 1 or if it matches the clipboard format that exists
in the CLIPBOARD.

COUNTERPART is set to the Prima DND sender widget if the session was initiated within the
same program; is undef otherwise.

See also: the Drag and Drop entry, DragOver, DragEnd

DragEnd CLIPBOARD, ACTION, MOD, X, Y, COUNTERPART, ANSWER

Triggered on the receiver widget when the user either drops or cancels the DND session. In
case of the canceled drop, CLIPBOARD is set to undef and ACTION to the dnd::None constant.
On a successful drop, the input data are the same as in DragBegin while the output data are
expected to be stored in the hashref ANSWER, if any. The following answers can be stored:

153

allow BOOLEAN

Is pre-set to 1. If changed to 0, a signal will be sent to the sender that the drop request
is not accepted.

action INTEGER

A dnd:: constant (not a combination) to be returned to the sender with the action the
receiver has accepted, if any.

COUNTERPART is set to the Prima DND sender widget if the session was initiated within the
same program; is undef otherwise.

See also: the Drag and Drop entry, DragBegin, DragOver

DragOver CLIPBOARD, ACTION, MOD, X, Y, COUNTERPART, ANSWER

Triggered on the received widget during the DND session. The event is sent repeatedly while
the user drags the mouse pointer over the widget. The input data are same as in DragBegin,
and output data are to be stored in hashref ANSWER, if any. The following answers can be
stored:

allow BOOLEAN

Is pre-set to 1. If the event handler changes it to 0, a response will be sent to the sender
that a drop action cannot happen with the input or location provided.

action INTEGER

A dnd:: constant (not a combination) to be returned to the sender with the action the
receiver is ready to accept, if any.

pad X, Y, WIDTH, HEIGHT

If set, instructs the sender not to repeat DragOver events that contain the same input
data, while the mouse pointer is within these geometrical limits.

COUNTERPART is the Prima DND sender widget, if the session is initiated within the same
program.

DragQuery MOD, COUNTERPART, ANSWER

Triggered on a sender DND widget when there was detected a change in the mouse or modifier
buttons, or the user pressed the Escape key to cancel the DND session. The combination
of the mouse and modifier buttons is stored in the MOD integer parameter. The km::Escape
bit is set if the Escape key is pressed.

It is up to the event handler to decide whether to continue the drag session or not. If it is
decided not to continue, the $ANSWER->{allow} flag must be set to 0.

Additionally, the $ANSWER->{action} flag can be assigned a single dnd:: constant to
counter-propose the action to the sender. The proposal will be typically based on the MOD

value, f.ex. dnd::Move if the CTRL key was pressed.

Note: This action will only forward the change to the receiver on X11, but it is advised to
implement it anyway for the sake of portability.

COUNTERPART is the Prima DND receiver widget, if the session is initiated within the same
program.

See also: the Drag and Drop entry, DragResponse

DragResponse ALLOW, ACTION, COUNTERPART

Triggered on the sender DND widget when there was detected a change in the mouse or
modifier buttons, or when the mouse was moved from one DND target to another. The
sender event handler is then presented with the new input, collected from the interaction
with the new target. There, the ALLOW integer parameter is set to a boolean value that shows

154

whether the sender is allowed to drop data or not. The ACTION is the dnd:: constant with
the action the receiver has earlier agreed to accept, if any.

If the DND session was started without the option to update mouse pointers on this event,
the event handler should update the pointer itself. It is not needed though to save and restore
the mouse pointers before and after the DND session, the begin drag method manages this.

COUNTERPART is the Prima DND receiver widget, if the session is initiated within the same
program.

See also: the Drag and Drop entry, dnd start, begin drag.

Enable

Triggered by a successful enabled(1) call

See also: Disable, enabled, responsive

Enter

Called when the widget receives the input focus.

See also: Leave, focused, selected

FontChanged

Called when the widget font is changed either by the direct property change call or by the
system.

See also: font, ColorChanged

Hide

Triggered by a successful visible(0) call

See also: Show, visible, showing, exposed

Hint SHOW FLAG

Called when the hint label is about to show or hide, depending on the SHOW FLAG pa-
rameter. The show or hide action is not executed if the event flag is cleared in the event
handler.

See also: showHint, ownerShowHint, hintVisible, ownerHint

KeyDown CODE, KEY, MOD, REPEAT

Sent to the focused widget when the user presses a key. CODE contains an eventual character
code, KEY is one of the kb::XXX constants, and MOD is a combination of the modifier keys
pressed when the event occurred (the km::XXX constants). REPEAT is an integer with the
number of how many times the key was pressed; usually, it is 1. (see ::briefKeys).

The valid km:: constants are:

km::Shift

km::Ctrl

km::Alt

km::KeyPad

km::DeadKey

km::Unicode

The valid kb:: constants are grouped in several sets. Some codes are aliased, for example,
kb::PgDn and kb::PageDown have the same value.

Modifier keys

155

kb::ShiftL kb::ShiftR kb::CtrlL kb::CtrlR

kb::AltL kb::AltR kb::MetaL kb::MetaR

kb::SuperL kb::SuperR kb::HyperL kb::HyperR

kb::CapsLock kb::NumLock kb::ScrollLock kb::ShiftLock

Keys with character code defined

kb::Backspace kb::Tab kb::Linefeed kb::Enter

kb::Return kb::Escape kb::Esc kb::Space

Function keys

kb::F1 .. kb::F30

kb::L1 .. kb::L10

kb::R1 .. kb::R10

Other

kb::Clear kb::Pause kb::SysRq kb::SysReq

kb::Delete kb::Home kb::Left kb::Up

kb::Right kb::Down kb::PgUp kb::Prior

kb::PageUp kb::PgDn kb::Next kb::PageDown

kb::End kb::Begin kb::Select kb::Print

kb::PrintScr kb::Execute kb::Insert kb::Undo

kb::Redo kb::Menu kb::Find kb::Cancel

kb::Help kb::Break kb::BackTab

See also: KeyUp, briefKeys, key down, help, popup, tabOrder, tabStop, accelTable

KeyUp CODE, KEY, MOD

Sent to the focused widget when the user releases a key. CODE contains an eventual charac-
ter code, KEY is one of the kb::XXX constants, and MOD is a combination of the modifier
keys pressed when the event occurred (km::XXX).

See also: KeyDown, key up

Leave

Called when the input focus is removed from the widget

See also: Enter, focused, selected

Menu MENU VAR NAME

Called before the user-navigated menu (pop-up or pull-down) is about to show another
level of submenu on the screen. MENU is a Prima::AbstractMenu descendant, that is also
a direct child to the widget. VAR NAME is the name of the menu item that is about to be
shown.

Can be used for making dynamic changes in the menu structures, f.ex. enabling or disabling
clipboard commands if there is data in the clipboard that can be pasted.

See also: popupItems

MouseClick BUTTON, MOD, X, Y, NTH

Called when the mouse click (a button is pressed, then released, within the system-defined
interval of time) occurs in the widget area. BUTTON is one of the mb::XXX constants, MOD
is a combination of the km::XXX constants that reflects the pressed modifier keys during the
event, and X and Y are the mouse pointer coordinates. NTH is an integer, set to 0 if it was
a single click, and to 2 and up if it was a double (triple, etc etc) click.

mb::XXX constants are:

156

mb::b1 or mb::Left

mb::b2 or mb::Middle

mb::b3 or mb::Right

mb::b4

mb::b5

mb::b6

mb::b7

mb::b8

See also: MouseDown, MouseUp, MouseWheel, MouseMove, MouseEnter, MouseLeave

MouseDown BUTTON, MOD, X, Y

Occurs when the user presses a mouse button on the widget. BUTTON is one of the mb::XXX
constants, MOD is a combination of the km::XXX constants that reflects the pressed modifier
keys during the event, and X and Y are the mouse pointer coordinates.

See also: MouseUp, MouseClick, MouseWheel, MouseMove, MouseEnter, MouseLeave

MouseEnter MOD, X, Y

Occurs when the mouse pointer enters the area occupied by the widget. MOD is a combina-
tion of the km::XXX constants that reflects the pressed modifier keys during the event, and
X and Y are the mouse pointer coordinates.

See also: MouseDown, MouseUp, MouseClick, MouseWheel, MouseMove, MouseLeave

MouseLeave

Occurs when the mouse pointer leaves the area occupied by the widget.

See also: MouseDown, MouseUp, MouseClick, MouseWheel, MouseMove, MouseEnter

MouseMove MOD, X, Y

Occurs when the mouse pointer moves over the widget. MOD is a combination of the
km::XXX constants that reflects the pressed modifier keys during the event, and X and Y are
the mouse pointer coordinates.

See also: MouseDown, MouseUp, MouseClick, MouseWheel, MouseEnter, MouseLeave

MouseUp BUTTON, MOD, X, Y

Occurs when the user depresses a mouse button on the widget. BUTTON is one of the
mb::XXX constants, MOD is a combination of the km::XXX constants that reflects the pressed
modifier keys during the event, X and Y are the mouse pointer coordinates.

See also: MouseDown, MouseClick, MouseWheel, MouseMove, MouseEnter, MouseLeave

MouseWheel MOD, X, Y, INCR

Occurs when the user rotates the mouse wheel on the widget. MOD is a combination of
the km::XXX constants that reflects the pressed modifier keys during the event, INCR is the
wheel movement, scaled by 120. +120 is a step upwards, and -120 is a step downwards.
Many of the consumer mice report the wheel moves with a resolution of 120, the gamer mice
may report a better resolution. An event handler should treat the scroll values as INCR/120
per unit, for whatever the unit of movement might be, for example as lines of text, slider
ticks, etc.

The event handle may use different units if some MOD keys are pressed. For example, the
Prima::SpinEdit class has two different step and pageStep properties, and it uses the
value of the pageStep property when the CTRL key is pressed and the value of the step

property otherwise (see the Prima::Sliders section).

See also: MouseDown, MouseUp, MouseClick, MouseMove, MouseEnter, MouseLeave

157

Move OLD X, OLD Y, NEW X, NEW Y

Triggered when the widget changes its position relative to its parent, either by one of the
Prima::Widget methods or by the user. OLD X and OLD Y are the old coordinates of the
widget, NEW X and NEW Y are the new ones.

See also: Size, origin, growMode, centered, clipOwner

Paint CANVAS

Caused when the system calls for the refresh of the widget’s graphic content. CANVAS is
the widget itself, use it to draw on (see the Graphic content entry).

See also: repaint, syncPaint, get invalid rect, scroll, colorIndex, font

Popup BY MOUSE, X, Y

Called by the system when the user presses the key or the mouse combination defined for the
execution of a context the pop-up menu. By default executes the associated Prima::Popup
object if it is present. If the event flag is cleared in the event handler then pop-up menu
request is denied and the popup is not shown.

See also: popup

Setup

This message is posted right after the Create notification and is delivered to widgets from
inside the event loop. Prima::Widget does not use it for anything.

Show

Triggered by a successful visible(1) call

See also: Show, visible, showing, exposed

Size OLD WIDTH, OLD HEIGHT, NEW WIDTH, NEW HEIGHT

Triggered when the widget changes its size, either by Prima::Widget methods or by the user.
OLD WIDTH and OLD HEIGHT are the old sizes of the widget, and NEW WIDTH and
NEW HEIGHT are the new ones.

See also: Move, origin, size, growMode, sizeMax, sizeMin, rect, clipOwner

SysHandle

Same as in Component except that the following Widget properties can also trigger it:

the clipOwner entry, the syncPaint entry, the layered entry, the transparent entry

Handling of this event is generally needed only if the program relies on the widget’s system
handle that is returned by the get handle method.

TranslateAccel CODE, KEY, MOD

A distributed version of the KeyDown event. The event traverses all of the object tree that the
widget that received the original KeyDown event belongs to. Once the event flag is cleared,
the iteration stops.

Used by the widgets that need to react to the keyboard input even if not focused.

See also: KeyDown

ZOrderChanged

Triggered when the widget’s stacking order (Z-order) is changed either by one of the
Prima::Widget methods or by the user.

See also: bring to front, insert behind, send to back

158

3.9 Prima::Widget::pack

Geometry manager that packs around edges of cavity

Synopsis

$widget-> pack(args);

$widget-> packInfo(args);

$widget-> geometry(gt::Pack);

Description

The pack method is used to communicate with the packer, a geometry manager that arranges the
children of a owner by packing them in order around the edges of the owner.

In this port of Tk::pack it is normal to pack widgets one-at-a-time using the widget object
to be packed to invoke a method call. This is a slight distortion of the original Tcl-Tk interface
(which can handle lists of windows to one pack method call) but Tk reports that it has proven
effective in practice.

The pack method can have any of several forms, depending on Option:

pack %OPTIONS

The options consist of pairs of arguments that specify how to manage the slave. See the The
packer algorithm entry below for details on how the options are used by the packer. The
following options are supported:

after => $other

$other must be another window. Use its master as the master for the slave, and insert
the slave just after $other in the packing order.

anchor => anchor

Anchor must be a valid anchor position such as n or sw; it specifies where to position
each slave in its parcel. Defaults to center.

before => $other

$other must be another window. Use its master as the master for the slave, and insert
the slave just before $other in the packing order.

expand => boolean

Specifies whether the slave should be expanded to consume extra space in their master.
Boolean may have any proper boolean value, such as 1 or no. Defaults to 0.

fill => style

If a slave’s parcel is larger than its requested dimensions, this option may be used to
stretch the slave. Style must have one of the following values:

none
Give the slave its requested dimensions plus any internal padding requested with
-ipadx or -ipady. This is the default.

x
Stretch the slave horizontally to fill the entire width of its parcel (except leave
external padding as specified by -padx).

y
Stretch the slave vertically to fill the entire height of its parcel (except leave external
padding as specified by -pady).

both
Stretch the slave both horizontally and vertically.

159

in => $master

Insert the slave(s) at the end of the packing order for the master window given by
$master. Currently, only the immediate owner can be accepted as master.

ipad => amount

Amount specifies how much both horizontal and vertical internal padding to leave on
each side of the slave(s). Amount must be a valid screen distance, such as 2 or .5c. It
defaults to 0.

ipadx => amount

Amount specifies how much horizontal internal padding to leave on each side of the
slave(s). Amount must be a valid screen distance, such as 2 or .5c. It defaults to 0.

ipady => amount

Amount specifies how much vertical internal padding to leave on each side of the
slave(s). Amount defaults to 0.

pad => amount

Amount specifies how much horizontal and vertical external padding to leave on each
side of the slave(s). Amount defaults to 0.

padx => amount

Amount specifies how much horizontal external padding to leave on each side of the
slave(s). Amount defaults to 0.

pady => amount

Amount specifies how much vertical external padding to leave on each side of the
slave(s). Amount defaults to 0.

side => side

Specifies which side of the master the slave(s) will be packed against. Must be left,
right, top, or bottom. Defaults to top.

If no in, after or before option is specified then slave will be inserted at the end of the packing
list for its owner unless it is already managed by the packer (in which case it will be left where
it is). If one of these options is specified then slave will be inserted at the specified point. If the
slave are already managed by the geometry manager then any unspecified options for them retain
their previous values rather than receiving default values.

packForget

Removes slave from the packing order for its master and unmaps its window. The slave will
no longer be managed by the packer.

packInfo [%OPTIONS]

In get-mode, returns a list whose elements are the current configuration state of the slave
given by $slave. The first two elements of the list are “in=>$master” where $master is the
slave’s master.

In set-mode, sets all pack parameters, but does not set widget geometry property to
gt::Pack.

packPropagate BOOLEAN

If boolean has a true boolean value then propagation is enabled for $master, (see the Ge-
ometry propagation entry below). If boolean has a false boolean value then propagation
is disabled for $master. If boolean is omitted then the method returns 0 or 1 to indicate
whether propagation is currently enabled for $master.

Propagation is enabled by default.

160

packSlaves

Returns a list of all of the slaves in the packing order for $master. The order of the slaves
in the list is the same as their order in the packing order. If $master has no slaves then an
empty list/string is returned in array/scalar context, respectively

The packer algorithm

For each master the packer maintains an ordered list of slaves called the packing list. The in,
after, and before configuration options are used to specify the master for each slave and the
slave’s position in the packing list. If none of these options is given for a slave then the slave is
added to the end of the packing list for its owner.

The packer arranges the slaves for a master by scanning the packing list in order. At the time
it processes each slave, a rectangular area within the master is still unallocated. This area is called
the cavity ; for the first slave it is the entire area of the master.

For each slave the packer carries out the following steps:

• The packer allocates a rectangular parcel for the slave along the side of the cavity given by
the slave’s side option. If the side is top or bottom then the width of the parcel is the width
of the cavity and its height is the requested height of the slave plus the ipady and pady
options. For the left or right side the height of the parcel is the height of the cavity and the
width is the requested width of the slave plus the ipadx and padx options. The parcel may
be enlarged further because of the expand option (see the Expansion entry below)

• The packer chooses the dimensions of the slave. The width will normally be the slave’s
requested width plus twice its ipadx option and the height will normally be the slave’s
requested height plus twice its ipady option. However, if the fill option is x or both then
the width of the slave is expanded to fill the width of the parcel, minus twice the padx
option. If the fill option is y or both then the height of the slave is expanded to fill the
width of the parcel, minus twice the pady option.

• The packer positions the slave over its parcel. If the slave is smaller than the parcel then the
-anchor option determines where in the parcel the slave will be placed. If padx or pady
is non-zero, then the given amount of external padding will always be left between the slave
and the edges of the parcel.

Once a given slave has been packed, the area of its parcel is subtracted from the cavity,
leaving a smaller rectangular cavity for the next slave. If a slave doesn’t use all of its parcel,
the unused space in the parcel will not be used by subsequent slaves. If the cavity should
become too small to meet the needs of a slave then the slave will be given whatever space is
left in the cavity. If the cavity shrinks to zero size, then all remaining slaves on the packing
list will be unmapped from the screen until the master window becomes large enough to
hold them again.

Expansion

If a master window is so large that there will be extra space left over after all of its slaves have
been packed, then the extra space is distributed uniformly among all of the slaves for which the
expand option is set. Extra horizontal space is distributed among the expandable slaves whose
side is left or right, and extra vertical space is distributed among the expandable slaves whose
side is top or bottom.

Geometry propagation

The packer normally computes how large a master must be to just exactly meet the needs of its
slaves, and it sets the requested width and height of the master to these dimensions. This causes

161

geometry information to propagate up through a window hierarchy to a top-level window so that
the entire sub-tree sizes itself to fit the needs of the leaf windows. However, the packPropagate
method may be used to turn off propagation for one or more masters. If propagation is disabled
then the packer will not set the requested width and height. This may be useful if, for example,
you wish for a master window to have a fixed size that you specify.

Restrictions on master windows

The master for each slave must not be a child of the slave, and must not be present in any other
list of slaves that directly or indirectly refers to the slave.

Packing order

If the master for a slave is not its owner then you must make sure that the slave is higher in the
stacking order than the master. Otherwise the master will obscure the slave and it will appear as
if the slave hasn’t been packed correctly. The easiest way to make sure the slave is higher than
the master is to create the master window first: the most recently created window will be highest
in the stacking order. Or, you can use the bring to front and send to back methods to change
the stacking order of either the master or the slave.

162

3.10 Prima::Widget::place

Geometry manager for fixed or rubber-sheet placement

Synopsis

$widget->place(option=>value?, option=>value, ...)

$widget->placeForget;

$widget->placeInfo(option=>value?, option=>value, ...);

$widget->geometry(gt::Place);

$master->placeSlaves

Description

The placer is a geometry manager from Tk. It provides simple fixed placement of windows, where
you specify the exact size and location of one window, called the slave, within another window,
called the $master. The placer also provides rubber-sheet placement, where you specify the size
and location of the slave in terms of the dimensions of the master, so that the slave changes size
and location in response to changes in the size of the master. Lastly, the placer allows you to
mix these styles of placement so that, for example, the slave has a fixed width and height but is
centered inside the master.

place %OPTIONS

The place method arranges for the placer to manage the geometry of $slave. The remaining
arguments consist of one or more option=>value pairs that specify the way in which $slave’s
geometry is managed. If the placer is already managing $slave, then the option=>value pairs
modify the configuration for $slave. The place method returns an empty string as result.
The following option=>value pairs are supported:

in => $master

$master is the reference to the window relative to which $slave is to be placed. $master
must neither be $slave’s child nor be present in a slaves list that directly or indirectly
refers to the $slave.

If this option isn’t specified then the master defaults to $slave’s owner.

x => location

Location specifies the x-coordinate within the master window of the anchor point for
$slave widget.

relx => location

Location specifies the x-coordinate within the master window of the anchor point for
$slave widget. In this case the location is specified in a relative fashion as a floating-
point number: 0.0 corresponds to the left edge of the master and 1.0 corresponds to
the right edge of the master. Location need not be in the range 0.0-1.0. If both x and
relx are specified for a slave then their values are summed. For example, ”relx=>0.5,
x=-2” positions the left edge of the slave 2 pixels to the left of the center of its master.

y => location

Location specifies the y-coordinate within the master window of the anchor point for
$slave widget.

163

rely => location

Location specifies the y-coordinate within the master window of the anchor point for
$slave widget. In this case the value is specified in a relative fashion as a floating-point
number: 0.0 corresponds to the top edge of the master and 1.0 corresponds to the
bottom edge of the master. Location need not be in the range 0.0-1.0. If both y and
rely are specified for a slave then their values are summed. For example, rely=>0.5,
x=>3 positions the top edge of the slave 3 pixels below the center of its master.

anchor => where

Where specifies which point of $slave is to be positioned at the (x,y) location selected
by the x, y, relx, and rely options. Thus if where is se then the lower-right corner
of $slave’s border will appear at the given (x,y) location in the master. The anchor
position defaults to nw.

width => size

Size specifies the width for $slave. If size is an empty string, or if nowidth or relwidth
option is specified, then the width requested internally by the window will be used.

relwidth => size

Size specifies the width for $slave. In this case the width is specified as a floating-point
number relative to the width of the master: 0.5 means $slave will be half as wide as the
master, 1.0 means $slave will have the same width as the master, and so on. If both
width and relwidth are specified for a slave, their values are summed. For example,
relwidth=>1.0, width=>5 makes the slave 5 pixels wider than the master.

height => size

Size specifies the height for $slave. If size is an empty string, or if no height or
relheight option is specified, then the height requested internally by the window will
be used.

relheight => size

Size specifies the height for $slave. In this case the height is specified as a floating-point
number relative to the height of the master: 0.5 means $slave will be half as high as the
master, 1.0 means $slave will have the same height as the master, and so on. If both
height and relheight are specified for a slave, their values are summed. For example,
relheight=>1.0, height=>-2 makes the slave 2 pixels shorter than the master.

placeSlaves

The placeSlaves method returns a list of all the slave windows for which $master is the
master. If there are no slaves for $master then an empty list is returned.

placeForget

The placeForget method causes the placer to stop managing the geometry of $slave. If
$slave isn’t currently managed by the placer then the method call has no effect.

placeInfo %OPTIONS

In get-mode the placeInfo method returns a list giving the current configuration of $slave.
The list consists of option=>value pairs in exactly the same form as might be specified to
the place method. If the configuration of a window has been retrieved with placeInfo,
that configuration can be restored later by first using placeInfo in set-mode and setting
geometry to gt::Place, which is equivalent to a direct call to place.

Fine points

It is not necessary for the master window to be the owner of the slave window. This feature is
useful in at least two situations. First, for complex window layouts it means you can create a

164

hierarchy of subwindows whose only purpose is to assist in the layout of the owner. The “real
children” of the owner (i.e. the windows that are significant for the application’s user interface) can
be children of the owner yet be placed inside the windows of the geometry-management hierarchy.
This means that the path names of the “real children” don’t reflect the geometry-management
hierarchy and users can specify options for the real children without being aware of the structure
of the geometry-management hierarchy.

A second reason for having a master different than the slave’s owner is to tie two siblings
together. For example, the placer can be used to force a window always to be positioned centered
just below one of its siblings by specifying the configuration

in=>$sibling, relx=>0.5, rely=>1.0, anchor=>’n’
Whenever the $sibling widget is repositioned in the future, the slave will be repositioned as

well.
Unlike the other geometry managers (such as the packer) the placer does not make any attempt

to manipulate the geometry of the master windows or the owners of slave windows (i.e. it doesn’t
set their requested sizes).

165

3.11 Prima::Window

Top-level window management

Synopsis

use Prima;

use Prima::Application;

this window, when closed, terminated the application

my $main = Prima::MainWindow-> new(text => ’Hello world’);

this is a modal window

my $dialog = Prima::Dialog->create(size => [100, 100]);

my $result = $dialog-> execute;

$dialog-> destroy;

run Prima;

Description

The Prima::Window class is a descendant of the Prima::Widget class. It represents the top-level
windows that are treated specially by the system. The class’s major difference from Prima::Widget
is that instances of Prima::Window cannot reside inside of other windows and that the system or
the window manager adds decorations to these - title bar, menus, and buttons. Prima::Window
provides methods that communicate with the system and access these decorations.

Usage

A typical program communicates with the user with the help of various widgets collected under
one or more top-level windows. The creation of a Prima::Window object is straightforward:

my $w = Prima::Window-> new(

size => [300,300],

text => ’Startup window’,

);

System window management

The top-level windows are special not only in their ’look’, but also in ’feel’: the system adds
specific functions to the windows, aiding the user with the navigation through the desktop. The
system often dictates the size and position of the newly created windows, and sometimes these
rules are hard or even impossible to circumvent. This document would be quite long if it would
venture off to describe the specificities of various window management systems, and it would never
be complete - new window managers emerge every year, and the old ones unpredictable change
their behavior. Therefore a word of advice: do not rely on the behavior of one window manager,
test programs on at least two.

The Prima toolkit provides simple access to the buttons, title bar, and borders of the win-
dow. The buttons and title bar are managed by the ::borderIcons property, and borders by
the ::borderStyle property. These properties operate with a set of the predefined constants
bi::XXX and bs::XXX, correspondingly. The button constants can be combined bitwise, but not
all combinations may be realized by the system. The same is valid also for the border constants,
except that they cannot be combined; the value of the ::borderStyle property contains a single
bs::XXX constant.

166

There are other requests that the toolkit can ask from the window manager. The system can
be supplied with the icon that the window is shown with together. The system icon dimensions
can differ from system to system, and although they can be requested via the sv::XIcon and
sv::YIcon system values, the ::icon property scales the image automatically to the closest size
the system can recognize. The window icon is not shown by the toolkit itself, it usually resides
in the window decorations and sometimes on the taskbar, along with the window’s name. The
system can be requested to not add the window to the taskbar, by setting the ::taskListed

property to 0.
Another issue is the window positioning. Usually, if no explicit position is given, the window

is positioned automatically by the system. The same is valid for the size. But some window
managers bend that to the extreme - for example, the default CDE setup forces the user to set
positions of the newly created windows explicitly. There is at least one point of certainty, however.
Typically, when the initial size and/or position of the top-level window are expected to be set by
the system, the ::originDontCare and ::sizeDontCare properties can be set to 1 during the
window creation. If these are set, the system is requested to set the size and/or the position of
the window according to its policy. The reverse is not always true, unfortunately. When either
of these properties is set to 0, or the explicit size or position is given, the system is requested to
use these values instead, but this does not always succeed from the program’s point of view. Such
behavior however is expected from the user’s perspective and often does not even get noticed as
something special. Therefore it is a good practice to test top-level windowing code on several
window managers.

Different policies define that define window positioning and sizing. Some window managers
behave best when the position is given to the window including the system-dependent decorations.
This hardly can be called a good policy, since it is not possible to calculate the derived window
coordinates with certainty. This leads to the fact that it can be impossible to know the exact size
and position of the windows size before these are set explicitly. The only, not specially efficient
help the toolkit can provide here, is the properties ::frameOrigin and ::frameSize, which along
with the ::origin and ::size properties reflect the position and size of the window, but also
taking into account the system-dependent decorations.

Dialog execution

The execute method switches the window into the modal state. That means that the window
is requested to reside on top of the other windows from the same program. The method returns
after the window is dismissed in one or another way. It is special because it runs its own event
loop, similar to the

run Prima;

code. The event flow is not disrupted, but the windows and widgets that do not belong to
the currently executed, ’modal’ window group can not be activated. There can be many modal
windows on top of each other, but only one will be accessible for the user. A typical message box
window, that prevents other message boxes from being operated, is an example of this scheme.
This is also called the exclusive modality.

The toolkit also provides the shared modality scheme, where there can be several stacks of
modal windows not interfering with each other. Each window stack contains its own windows.
An analogy, consider the situation when several independent applications run with their own
modal message boxes being executed; the windows under the message boxes still are not accessible
to the user, but the user can switch between the applications. This scheme, however, can not
be programmed with a single execute()-like call without creating interlocking conditions. The
shared model call, the execute shared() method, inserts the window into the shared modal
stack, activates the window, and returns immediately.

Both kinds of modal windows can coexist in the same program, but the exclusive windows
prevent the shared windows from being accessed by the user. While there are exclusive windows,
the shared ones have the same rights as the normal windows.

167

The stacking order for these two models is also slightly different. The window after a call to
the execute() method is sent to the top of the last exclusive modal window, or, in other words, is
added to the exclusive window stack. There can be only one exclusive window stack, but many
shared window stacks. The window after a call to the execute shared() method is added to the
shared window stack, to the one that the window’s owner belongs to. The shared window stacks
are located on so-called modal horizons, the windows with the boolean property ::modalHorizon

set to 1. The default modal horizon is ::application.
The window in any modal state can return to the normal non-modal state by calling the

end modal() method. The window is then hidden and disabled, and the windows below it become
accessible to the user. When the window’s exclusive modal state is finished, its execute() method
is finished as well; it returns the exit code, the same as the value of the ::modalResult property.
Two shortcut methods end the modal state and set the ::modalResult property to the basic
’ok’ or ’not ok’ code, correspondingly by the ok() and cancel() methods. The behavior of the
cancel() method is identical to when the user closes the modal window by clicking the system
close button, pressing the Escape key, or otherwise canceling the dialog execution. The ok()

method sets ::modalResult to mb::OK, cancel() to mb::Cancel, correspondingly. There are
more mb::XXX constants but these have no special meaning, any integer value can be passed. For
example, the Prima::MsgBox::message method uses these constants so the message window can
return up to four different mb codes.

Menu

A top-level window can be equipped with a menu bar. Its outlook is system-dependent but can
be controlled by the toolkit up to a certain level. The ::menuItems property, which manages the
menu items of a ::menu object of the the Prima::Menu section class, arranges the layout of the
menu. The syntax of the items-derived properties is described in the Prima::Menu section, but it
must be reiterated that menu items contain only hints, not requests for their exact representation.
The same is valid for the color and font properties, ::menuColorIndex and ::menuFont.

Only one menu at a time can be displayed in a top-level window, although a window can be an
owner for many menu objects. The key property is Prima::Menu::selected - if a menu object is
selected on a widget or a window object, it refers to the default menu actions, which, in the case
of Prima::Window is being displayed as a menu bar.

Note: A window can be an owner for several menu objects and still not have a menu bar
displayed, if no menu objects are marked as selected.

Prima::Dialog

The Prima::Dialog class, a descendant from Prima::Window, introduces no new functionality. It
only has its default values adjusted so that the colors it uses are matching the appropriate system
dialog colors. It also requests the system that the look of the dialog window is to be different, to
resemble the system dialogs on systems where such are provided.

Prima::MainWindow

The class is a simple descendant of the Prima::Window class that overloads the Destroy notifica-
tion and calls the $application->close inside it. The purpose of the declaration of a separate
class for such a trifle difference is that many programs are designed under the paradigm where
there exists the main window that is most important to the user. Since such a construct is used
more often than any other, it is considered to be an optimization to write

Prima::MainWindow->new(...)

rather than

168

Prima::Window->new(...,

mainWindow => 1,

onDestroy => sub { $::application-> close }

)

Additionally, the $::main window scalar points to the newly created main window.
See also mainWindow.

API

Properties

borderIcons INTEGER

Requests the system to provide decorations for the window, by selecting a combination of
the bi::XXX constants. These constants are:

bi::SystemMenu - the system menu button and/or close button

(usually with the icon)

bi::Minimize - minimize button

bi::Maximize - maximize/restore button

bi::TitleBar - the window title

bi::All - all of the above

Not all systems respect these requests, and some systems provide more decoration controls,
but these are not addressable by the toolkit.

borderStyle STYLE

Requests the system to set the window border style, by selecting one of the bs::XXX con-
stants. These constants are:

bs::None - no border

bs::Single - thin border

bs::Dialog - thick border

bs::Sizeable - border that can be resized

bs::Sizeable is a unique window mode. If selected, the user can resize the window, not
only by dragging the window borders with the mouse but by other system-dependent means.
The other border styles do not allow interactive resizing.

Not all systems recognize all of the requests, although all recognize the interactive resizing
request.

effects HASH or undef

This generic property implements system-specific window effects, not necessarily portable.
The format of the hash is also system-specific. The only portable behavior here is that
setting the value to undef cancels all the effects.

Example:

$window->effects({

effect1 => {

key1 => $value1,

...

},

});

169

Previously this mechanism was used for setting the DWM blur on Windows 7 and 8, but as
Windows 10 removed it, this capability was also removed, so for now this is an empty call
reserved for future use.

frameHeight HEIGHT

Maintains the height of the window, including the window decorations.

frameOrigin X OFFSET, Y OFFSET

Maintains the left X and bottom Y boundaries of the window’s decorations relative to the
screen.

frameSize WIDTH, HEIGHT

Maintains the width and height of the window, including the window decorations.

frameWidth WIDTH

Maintains the width of the window, including the window decorations.

icon OBJECT

Requests the system to associate the icon with the window. If OBJECT is set to undef,
removes the association.

See also: ownerIcon

mainWindow BOOLEAN

Tells the system that the window is the main window for the application. The X11 imple-
mentation uses this field to associate dialogs with the main application window.

menu OBJECT

Manages the Prima::Menu object associated with the window. Prima::Window can host
many Prima::Menu objects, but only the one that is registered in the ::menu property is
visualized as the menu bar.

See also: Prima::Menu, menuItems

menuColorIndex INDEX, COLOR

Manages eight color properties of a menu associated with the window. INDEX must be one
of the ci::XXX constants (see the Prima::Widget section, colorIndex section).

See also: menuItems, menuFont, menu

menuColor COLOR

Basic foreground menu color.

See also: menuItems, menuColorIndex, menuFont, menu

menuBackColor COLOR

Basic background menu color.

See also: menuItems, menuColorIndex, menuFont, menu

menuDark3DColor COLOR

The color for drawing dark shades in menus.

See also: menuItems, menuColorIndex, menuFont, menu

menuDisabledColor COLOR

Foreground color for the disabled items in menus.

See also: menuItems, menuColorIndex, menuFont, menu

170

menuDisabledBackColor COLOR

Background color for the disabled items in menus.

See also: menuItems, menuColorIndex, menuFont, menu

menuFont %FONT

Manages the font of the menu

See also: menuItems, menuColorIndex, menu

menuHiliteColor COLOR

Foreground color for the selected items in menus.

See also: menuItems, menuColorIndex, menuFont, menu

menuHiliteBackColor COLOR

Background color for the selected items in menus.

See also: menuItems, menuColorIndex, menuFont, menu

menuItems [ITEM LIST]

Manages items of the Prima::Menu object that is associated with the window. The
ITEM LIST format is the same as in the Prima::AbstractMenu::items property and is
described in the Prima::Menu section.

See also: menu, menuColorIndex, menuFont

menuLight3DColor COLOR

Color for drawing light shades in menus.

See also: menuItems, menuColorIndex, menuFont, menu

modalHorizon BOOLEAN

Sets a flag that tells if the window serves as root to the shared modal window stack. A window
with ::modalHorizon set to 1 groups its children windows in a window stack, separate from
other shared modal stacks. The ::modalHorizon is therefore useful only when several shared
modal window stacks are needed.

The property also serves as an additional grouping factor for widgets and windows. For
example, default keyboard navigation by tab and arrow keys is limited to the windows and
widgets of the same window stack.

modalResult INTEGER

Manages a custom integer value returned by the execute() method. Historically it is one of
the mb::XXX constants, but any integer value can be used. The most useful mb:: constants
are:

mb::OK, mb::Ok

mb::Cancel

mb::Yes

mb::No

mb::Abort

mb::Retry

mb::Ignore

mb::Help

Note: These constants are defined so they can be or’ed bitwise, and the Prima::MsgBox
package uses this feature in one of its parameters that can be a combination of the mb::

constants.

171

onTop BOOLEAN

If set, the window is requested to stay on top of all other windows in the system.

Default value: 0

ownerIcon BOOLEAN

If 1, the icon is synchronized with the owner’s. Automatically set to 0 if the ::icon property
is explicitly set. The default value is 1, so assigning an icon to $::application automatically
assigns it to all windows.

taskListed BOOLEAN

If set to 0, requests that the system should not show the window in the system taskbar or
the top-level window menu, if there is any.

If 1, does not request anything.

Default value: 1

windowState STATE

The property that manages the state of the window. STATE can be one of the four ws::XXX
constants:

ws::Normal

ws::Minimized

ws::Maximized

ws::Fullscreen

There can be other window states provided by the system, but these four were chosen as a
’least common denominator’. The property can be changed either by an explicit set-mode
call or by the user. In either case, a WindowState notification is triggered.

The property has the corresponding convenience wrappers: maximize(), minimize(),
restore(), and fullscreen().

See also: WindowState

Methods

cancel

A standard method to dismiss the modal window with the mb::Cancel result. The effect
of calling this method is equal to the action when the user closes the window with the
system-provided menu, button, or some other command.

See also: ok, modalResult, execute, execute shared

end modal

Turns off the window modal state, sends the EndModal notification, and hides and disables
the window. If the window is on top in the exclusive modal state, the last called execute()

method finishes. If the window was not on top in the exclusive modal state, the corresponding
execute() function finishes after all subsequent execute() calls are finished.

execute INSERT BEFORE = undef

Switches the window to the exclusive modal state and puts it on top of all non-modal
and shared-modal windows. By default, if INSERT BEFORE object is undef, the window
is also put on top of other exclusive-modal windows; if INSERT BEFORE is one of the
exclusive-modal windows the window is placed in the queue before the INSERT BEFORE
window. The window is made visible and enabled, if necessary, and the Execute notification
is triggered.

172

The function is returned after the window is dismissed, or if the system-dependent ’exit’-
event is triggered by the user (the latter case makes the execution fall through all of the
running execute() calls and terminates the run Prima; call, exiting gracefully).

execute shared INSERT BEFORE = undef

Switches the window to the shared modal state and put it on top of all non-modal windows
that belong to the same modal horizon. If the window has the ::modalHorizon property
value set to 1, starts its own stack, independent of all other window stacks.

By default, if the INSERT BEFORE object is undef, the window is also put on top of other
shared-modal windows in the same stack. If INSERT BEFORE is one of the shared-modal
windows in the stack, the window is placed in the queue before the INSERT BEFORE
window.

The window is made visible and enabled, if necessary, and the Execute notification is trig-
gered.

The function returns immediately.

fullscreen

Sets the window in the fullscreen mode. A shortcut for the windowState(ws::Fullscreen)
call.

get client handle

Returns the system handle for the special client window that is inserted in the top-level
window and covers all of its areas. It is different from the get handle method in that the
latter returns the system handle of the top-level window itself. In other terms, the handle
returned by this function is a child of the window returned by get handle.

See also: get handle

get default menu font

Returns the default font for the Prima::Menu class.

get modal

Returns one of the three constants that reflect the modal state of the window:

mt::None

mt::Shared

mt::Exclusive

The value of mt::None is 0, so the result of get modal() can be also treated as a boolean
value if one needs to check if the window is modal or not.

get modal window MODALITY TYPE = mt::Exclusive, NEXT = 1

Returns the modal window that is next to the given window in the modality chain. MODAL-
ITY TYPE selects the chain, and can be either mt::Exclusive or mt::Shared. NEXT is
the boolean flag selecting the lookup direction; if it is 1, the ’upper’ window is returned,
otherwise the ’lower’ one (in a simple case when the window A is made modal (executed)
after the modal window B, the A window is the ’upper’ one).

If the window has no immediate modal siblings, undef is returned.

maximize

Maximizes the window. A shortcut for windowState(ws::Maximized).

minimize

Minimizes the window. A shortcut for windowState(ws::Minimized).

173

ok

The standard method to dismiss the modal window with the mb::OK result. Typically the
effect of calling this method is equal to when the user presses the enter key of on the modal
window, signalling that the default action is to be taken.

See also: cancel, modalResult, execute, execute shared

restore

Restores the window to a normal state from the minimized or maximized state. A shortcut
for windowState(ws::Normal).

Events

Activate

Triggered when the window is activated by the user. The active window is the one that has
the keyboard focus; its decorations are usually highlighted by the system.

The toolkit does not provide a standalone activation function, the select() method is used
for this instead.

Deactivate

Triggered when the window is deactivated by the user. The window is marked inactive when
it has no keyboard focus.

The toolkit does not provide a standalone deactivation function, the deselect() method is
used for this instead.

EndModal

Called before the window leaves the modal state.

Execute

Called as soon as the window enters the modal state.

SysHandle

Same as in the Prima::Widget class, but in addition to the Widget properties that may
trigger the event, the following Window properties can trigger it as well: the taskListed entry,
the borderIcons entry, the borderStyle entry, the onTop entry

WindowState STATE

Triggered when the window state is changed, either by an explicit windowState() call or by
the user. STATE is the new window state, one of the four ws::XXX constants.

174

3.12 Prima::Clipboard

GUI interprocess data exchange

Description

Prima::Clipboard is an interface to system clipboards. Depending on the OS, there can be only
one clipboard (Win32), or three (X11). The class is also used for data exchange in drag-and-drop
interactions.

Synopsis

my $c = $::application-> Clipboard;

paste data

my $string = $c-> text;

my $image = $c-> image;

my $other = $c-> fetch(’Other type’);

copy datum

$c-> text($string);

copy data

$c-> open;

$c-> text($string);

$c-> image($image);

$c-> store($image);

$c-> close;

clear

$c-> clear;

Usage

Prima::Clipboard provides access to the system clipboard data storage. For easier communication,
the system clipboard has one ’format’ field, which is stored along with the data. This field is used
to distinguish between data formats. Moreover, a clipboard can hold simultaneously several data
instances, of different data formats. Since the primary usage of a clipboard is ’copying’ and
’pasting’, an application can store copied information in several formats, increasing the possibility
that the receiving application can recognize the data.

Different systems provide a spectrum of predefined data types, but the toolkit uses only three
of these out of the box - ascii text, utf8 text, and image. It does not limit, however, the data
format being one of these three types - an application is free to register its own formats. Both
predefined and newly defined data formats are described by a string, while the three predefined
formats are represented by the ’Text’, ’UTF8’, and ’Image’ string constants.

The most frequent usage of Prima::Clipboard is to perform two tasks - copying and pasting.
Both can be exemplified by the following:

my $c = $::application-> Clipboard;

paste

my $string = $c-> text;

copy

$c-> text($string);

175

Here is what happens under the hood:
First, the default clipboard is accessible by an implicit name call, as an object named ’Clip-

board’. This scheme makes it easily overridable. A more important point is, that the default
clipboard object might be accompanied by other clipboard objects. This is the case with the X11
environment, which defines also ’Primary’ and ’Secondary’ system clipboards. Their functional-
ity is identical to the default clipboard, however. get standard clipboards() method returns
strings for the clipboards, provided by the system.

Second, the code for fetching and/or storing multi-format data is somewhat different. Clip-
board is viewed as a shared system resource and has to be ’opened’ before a process can grab it,
so other processes can access the clipboard data only after the clipboard is ’closed’ (note: It is
not so under X11, where there is no such thing as clipboard locking, -- but the toolkit imposes
this model for the consistency sake).

fetch() and store() implicitly call open() and close(), but these functions must be called
explicitly for the multi-format data handling. The code below illustrates the following:

copy text and image

if ($c-> open) {

$c-> clear;

$c-> store(’Text’, $string);

$c-> store(’Image’, $image);

$c-> close;

}

check present formats and paste

if ($c-> open) {

if ($c-> format_exists(’Text’)) {

$string = $c-> fetch(’Text’);

}

or, check the desired format alternatively

my %formats = map { $_ => 1 } $c-> get_formats;

if ($formats{’Image’}) {

$image = $c-> fetch(’Image’);

}

$c-> close;

}

The clear() call in the copying code is necessary so the newly written data will not mix with
the old.

At last, the newly registered formats can be accessed by the following example code:

my $myformat = ’Very Special Old Pale Data Format’;

if ($c-> register_format($myformat)) {

$c-> open;

$c-> clear;

$c-> store(’Text’, ’sample text’);

$c-> store($myformat’, ’sample ## text’);

$c-> close;

}

On-demand storage

Under X11 it is possible to skip the generation of data in all possible clipboard formats when
copying the data. The native X11 mechanism allows to ask the source application for the exact data
format needed by the target application, and the toolkit uses the special notification onClipboard

triggered on the application whenever necessary.

176

By default, this event handler responds to querying images in file-encoded formats (gif,jpg)
under X11 on the fly. It can be extended to generate other formats as well. See the Events entry
in the Prima::Application section Clipboard for the details.

Custom formats

Once registered, all processes in the GUI space can access the data in this format. The registration
must take place also if a Prima-driven program needs to read data in a format, defined by another
program. In either case, the duplicate registration is a valid case. When no longer needed, the
format can be de-registered. It is not a mandatory action, however - the toolkit de-registers
these formats before exiting. Moreover, the system maintains a reference counter on the custom-
registered formats; de-registering thus does not mean deletion. If two processes use a custom
format, and one exits and re-starts, the other still can access the data in the same format, registered
by its previous incarnation.

Unicode

Applications can interchange text in both ascii and utf8, leaving the selection choice to reader
programs. While it is possible to access both at the same time, by fetch’ing content of Text

and UTF8 clipboard slots, the widget proposes its own pasting scheme, where the mechanics are
hidden under the text property call. The property is advised to be used instead of individual
’Text’ and ’UTF8’ formats. This method is used in all the standard widgets and is implemented
so the programmer can reprogram its default action by overloading the PasteText notification of
Prima::Application (see the PasteText entry in the Prima::Application section).

The default action of PasteText is to query first if the ’Text’ format is available, and if
so, return the ascii text scalar. If Prima::Application::wantUnicodeInput is set (default), the
’UTF8’ format is checked before resorting to ’Text’. This scheme is not the only possibly needed,
for example, an application may want to ignore ASCII text, or, recognize UTF8 text but have the
Prima::Application::wantUnicodeInput cleared, etc.

The symmetric action is CopyText, which allows for a custom text conversion code to be
installed.

Images

Image data can be transferred in different formats in different OSes. The lowest level is raw pixel
data in display-based format, whereas GTK-based applications can also exchange images in file-
based formats, such as bmp, png, etc. To avoid further complications in the implementations, the
PasteImage action was introduced to handle these cases, together with a symmetrical CopyImage.

The default action of PasteImage is to check whether lossless encoded image data is present,
and if so, load a new image from this data, before falling back to the OS-dependent image storage.

When storing the image on the clipboard, only the default format, raw pixel data is used.
Under X11 the toolkit can also serve images encoded as file formats.

Note: Under X11 you’ll need to keep the image alive during the whole time it might get copied
from the application - Prima doesn’t keep a copy of the image, only the reference. Changing the
image after it was stored in the clipboard will affect the clipboard content.

Exact and meta formats

Prima registers two special meta formats, Image and Text, that interoperate with the system
clipboard, storing data in the format that matches best with system conventions when copying
and pasting images and text, correspondingly. It is recommended to use the meta-format calls
(has format, text, image, copy, paste) rather than exact format calls (format exists, store, fetch)
whenever possible.

Where the exact format method operates on a single format data storage, meta format calls
may operate on several exact formats. F.ex. text can check whether there exists a UTF-8 text

177

storage before resorting to 8-bit text. image on X11 is even more complicated and may use image
codecs to transfer encoded PNG streams, for example.

Special system formats

Warning: this section is experimental.
Under win32, it is possible to access files dropped from Explorer. The application must register

a special Win32.CF HDROP format, and read raw binary data in the onDragEnd handler:

use constant CF_HDROP => "Win32.CF_HDROP";

$::application-> Clipboard-> register_format(CF_HDROP);

onDragEnd => sub {

my ($self, $clipboard, $action, $modmap, $x, $y, $counterpart, $ref) = @_;

if ($clipboard->has_format(CF_HDROP)) {

my $raw = $clipboard->fetch(CF_HDROP);

my ($offset, $x, $y, $nonclient, $wide) = unpack("Lllll", $raw);

my $files = substr($raw, $offset);

if ($wide) {

use Encode;

$files = Encode::decode("utf-16le", $files);

}

my @files = split "\x0", $files;

print "dropped files: [@files] at [$x,$y]\n";

}

}

API

Properties

image OBJECT, [KEEP]

Provides access to an image, stored in the system clipboard. In the get-mode call returns
undef if no image is stored. In the set-mode clears the clipboard unless the KEEP flag is
set.

text STRING, [KEEP]

Provides access to the text stored in the system clipboard. In the get-mode returns undef
if no text information is present. In the set-mode clears the clipboard unless the KEEP flag
is set.

Methods

clear

Deletes all data from the clipboard.

close

Closes the open/close brackets. open() and close() can be called recursively. Only the last
close() removes the actual clipboard locking, so that other processes can use it as well.

copy Format, DATA, KEEP

Sets DATA in Format. Clears the clipboard before unless the KEEP flag is set.

deregister format FORMAT STRING

De-registers a previously registered data format. Called implicitly for all custom formats
before the program exits.

178

fetch FORMAT STRING

Returns the data of exact FORMAT STRING data format, if present in the clipboard.
Depending on the FORMAT STRING, data is either a text string for the ’Text’ format, a
Prima::Image object for the ’Image’ format, or a binary scalar value for all custom formats.

format exists FORMAT STRING

Returns a boolean flag, reflecting whether the FORMAT STRING exact format data is
present in the clipboard or not.

has format FORMAT STRING

Returns a boolean flag, reflecting whether the FORMAT STRING meta format data is
present in the clipboard or not.

get handle

Returns the system handle for the clipboard object.

get formats INCLUDE UNREGISTERED = 0

Returns an array of strings, where each is a format ID, reflecting the formats present in the
clipboard.

Only the predefined formats, and the formats registered via register format() are returned
if INCLUDE UNREGISTERED is unset. If the flag is set, then all existing formats are returned,
however, their names are not necessarily the same as those registered with Prima.

get registered formats

Returns an array of strings, each representing a registered format. Text and Image are
returned also.

get standard clipboards

Returns an array of strings, each representing a system clipboard. The default Clipboard
is always present. Other clipboards are optional. As an example, this function returns only
Clipboard under win32, but also Primary and Secondary under X11. The code, specific to
these clipboards must refer to this function first.

The drag-and-drop clipboard name is also returned here; it is system-specific.

is dnd

Returns 1 if the clipboard is the special clipboard used as a proxy for drag-and-drop inter-
actions.

See also: Widget/Drag and drop, Application/get dnd clipboard.

open

Opens a system clipboard and locks it for the process single use; returns a success flag.
Subsequent open calls are possible and always return 1. Each open() must correspond to
close(), otherwise the clipboard will stay locked until the blocking process is finished.

paste FORMAT STRING

Returns data of meta format FORMAT STRING if found in the clipboard, or undef other-
wise.

register format FORMAT STRING

Registers a data format under FORMAT STRING string ID, and returns a success flag. If
a format is already registered, 1 is returned. All formats, registered via register format()

are de-registered with deregister format() when a program is finished.

179

store FORMAT STRING, SCALAR

Stores SCALAR value into the clipboard in FORMAT STRING exact data format. Depend-
ing on FORMAT STRING, the SCALAR value is treated as follows:

FORMAT_STRING SCALAR

Text text string in ASCII

UTF8 text string in UTF8

Image Prima::Image object

other formats binary scalar value

Note: All custom formats are treated as binary data. In case when the data are transferred
between hosts with different byte orders no implicit conversions are made. It is up to the
programmer whether to convert the data into a portable format or leave it as is. The former
option is of course preferable. As far as the author knows, the Storable module from the
CPAN collection provides the system-independent conversion routines.

180

3.13 Prima::Menu

Pull-down and pop-up menu objects

Synopsis

use Prima;

use Prima::Application;

my $window = Prima::Window-> new(

menuItems => [

[’~File’ => [

[’~Open’, ’Ctrl+O’, ’^O’, \&open_file],

[’-save_file’, ’~Save’, km::Ctrl | ord(’s’), sub { save_file() }],

[],

[’~Exit’, ’Alt+X’, ’@X’, sub { exit }],

]],

[’~Options’ => [

[’*option1’ => ’Checkable option’ => sub { $_[0]-> menu-> toggle($_[1]) }],

[’*@option2’ => ’Checkable option’ => sub {}], # same

]],

[],

[’~Help’ => [

[’Show help’ => sub { $::application-> open_help("file://$0"); }],

]],

],

);

sub open_file

{

enable ’save’ menu item

$window-> menu-> save_file-> enable;

}

$window-> popupItems($window-> menuItems);

Description

The document describes the interfaces of Prima::AbstractMenu class, and its three descendants
- Prima::Menu, Prima::Popup, and Prima::AccelTable. Prima::AbstractMenu is a descendant of
the Prima::Component class, and its specialization is the handling of menu items, held in a tree-
like structure. Descendants of Prima::AbstractMenu are designed to be attached to widgets and
windows, to serve as hints for the system-dependent pop-up and pull-down menus.

Usage

Menu items

The central point of functionality in Prima::AbstractMenu-derived classes and their object in-
stances (further referred to as ’menu classes’ and ’menu objects’), is the handling of a complex
structure, contained in the ::items property. This property is special in that its structure is a
tree-like array of scalars, each of which is either a description of a menu item or a reference to an
array.

Parameters of an array must follow a special syntax, so the property input can be parsed and
assigned correctly. In general, the syntax is

181

$menu-> items([

[menu item description],

[menu item description],

...

]);

where the ’menu item description’ is an array of scalars, that can hold from 0 up to 6 elements.
Each menu item has six fields, that qualify a full description of a menu item. The shorter arrays
are the shortcuts that imply some default or special cases. These base six fields are:

Menu item name

A string identifier. There are defined several shortcut properties in the Prima::MenuItem
namespace that access the menu items and their data by the name. If the menu item name
is not given or is empty, the name is assigned a string in the form ’#ID’ where the ID is a
unique integer value within the menu object.

The IDs are set for each menu item, disregarding whether they have names or not. Any
menu item can be uniquely identified by its ID value, by supplying the ’#ID’ string, in the
same fashion as the named menu items. When creating or copying menu items, names in
the format ’#ID’ are ignored and treated as if an empty string is passed. When copying
menu items to another menu object, all menu items to be copied change their IDs, but the
explicitly set names are preserved. Since the anonymous menu items do not have names
their auto-generated names change also.

If the name is prepended by the special characters (see below), these characters are not
treated as a part of the name but as an item modifier. This syntax is valid only for ::items
and insert() functions, not for set variable() method.

- - the item is disabled

* - the item is checked

@ - the item is using auto-toggling

? - the item is custom drawn

Expects the onMeasure and onPaint callbacks in options

(and) - radio group

The items marked with parentheses are treated as a part of a group, where only a single
item can be checked at any time. Checking and unchecking happen automatically.

A group is only valid on the same level where it was defined (i.e. submenus are not a
part of the group). A group is automatically closed on the separator item. If that is
not desired, mark it as (too (consequent (’s are allowed):

[’(one’ ...]

[’two’ ...]

[’(’],

[’)last’ ...]

If the user hits an already checked item then nothing happens. However, when combined
with auto-toggling (i.e. marked with (@), a checked item becomes unchecked, thus the
group can present a state where no items are checked as well.

See also: group

Menu text / menu image

A non-separator menu item can be visualized either as a text string or an image. These
options exclude each other and therefore occupy the same field. The menu text is an arbitrary
string, with the ~ (tilde) character escaping a shortcut character, so that the system uses

182

it as a hotkey during the menu navigation. The menu image is a the Prima::Image section
object.

Note: the tilde-marked character is also recognized when navigating the custom drawn menu
items, even though they not necessarily might draw the highlighted character.

The menu text in the menu item is accessible via the ::text property, and the menu image
via the ::image property. Only one of these could be used, depending on whether the menu
item contains text or image.

Accelerator text

An alternative text string that appears next to the menu item or the menu image, usually
serving as a hotkey description. For example, if the hotkey is a combination of the ’enter’
and the ’control’ keys, then usually the accelerator text is the ’Ctrl+Enter’ string.

The accelerator text in the menu item is accessible via the ::accel property.

Note: there is the Prima::KeySelector::describe function which converts an integer key
value to a string in the human-readable format, perfectly usable as accelerator text.

Hotkey

An integer value, is a combination of either a kb::XXX constant or a character index with
the modifier key values (km::XXX constant). This format is less informative than the
three-integer key event format (CODE,KEY,MOD), described in the Prima::Widget sec-
tion. However, these formats are easily converted to each other: CODE,KEY,MOD are
translated to the INTEGER format by the translate key() method. The reverse oper-
ation is not needed for the Prima::AbstractMenu functionality and is performed by the
Prima::KeySelector::translate codes method.

The integer value can be given in a more readable format when calling the ::items method.
Character and F-keys (from F1 to F16) can be used as string literals, without the kb::

constant, and the modifier keys can be hinted as prefix characters: km::Shift as ’#’, km::Ctrl
as ’ˆ’, and km::Alt as ’@’. This way the combination of the ’control’ and ’G’ keys can be
expressed as the ’^G’ literal, and ’control’+’shift’+’F10’ - as ’^#F10’.

The hotkey in menu items is accessible via the ::key property. This property accepts the
literal key format described above.

A literal key string can be converted to an integer value by the translate shortcutmethod.

When the user presses the key combination that matches the hotkey entry in a menu item,
its action is triggered.

Action

Every non-separator and non-submenu item performs an action that needs to be defined
explicitly. The action can be set either as an anonymous sub or as a string with the name
of the method on the owner of the menu object. Both ways have their niches, and both use
three parameters when called - the owner of the menu object, the name of the menu item,
that triggered the action, and the new checked status of the menu item

Prima::MainWindow-> new(

menuItems => [

[’@item’, ’Test’,

sub {

my (

$window, # MainWindow

$item, # ’item’

$checked # MainWindow->men(’item’)->checked

) = @_;

183

}],

]

);

The action scalar in the menu item is accessible via the ::action property.

A special built-in action can automatically toggle a menu item without the need to program
that explicitly. The manual toggle of the menu item can be done by a code like this:

$window->menu->toggle($item)

However, Prima can toggle the item automatically too, if the @ character is added to the
menu item name (see the Menu item name entry).

Options

At last, the non-separator menu items can hold an extra hash in the options property. The
toolkit reserves the following keys for internal use:

group INTEGER

Same as the group property.

icon HANDLE

Is used to replace the default checkmark bitmap on a menu item

onMeasure MENUITEM, REF

Required when the custom painting is requested. It is called when the system needs to
query the menu item dimensions. REF is a 2-item arrayref that needs to be set with the
pixel dimensions of the item.

onPaint MENUITEM, CANVAS, SELECTED, X1, Y1, X2, Y2

Required when custom painting is requested. It is called whenever the system needs
to draw the menu item. The X1 - Y2 are the coordinates of the rectangle where the
drawing is allowed.

The syntax of the ::items method does not provide the ’disabled’ and the ’checked’ states
for a menu item as separate fields. These states can be only set by using the - and the * prefix
characters, as described above, in the Menu item name entry. They can though be assigned later
on a per-item basis via the ::enabled and the ::checked properties when the menu object is
created.

All these fields comprise the most common type of a menu item, that has a text, a shortcut
key, and an action - a ’text item’. However, there are also two other types of menu items - a
sub-menu and a separator. The type of the menu item cannot be changed on the fly except by
changing the full menu tree by the functions ::items, remove(), and insert().

A sub-menu item can hold the same references as a text menu item does, except for the action
field. Instead, the action field is used for a sub-menu reference scalar pointing to another set
of menu item description arrays. From that point of view, the syntax of ::items can be more
elaborated and shown in the following example:

$menu-> items([

[text menu item description],

[sub-menu item description [

[text menu item description],

[sub-menu item description [

[text menu item description],

...

184

]

[text menu item description],

...

]],

...

]);

The separator items don’t have any fields, except the name. Their purpose is to hint a logical
division of the menu items, usually as non-selectable horizontal lines.

In the menu bars, the first separator item met by the menu parser is treated differently. It
serves as a hint that the following items must be shown in the right corner of the menu bar,
contrary to the left-adjacent default layout. Subsequent separator items in a menu bar declaration
can be either shown as a vertical division bar, or ignored.

All of these menu item types can be constructed by specifying menu description arrays. An
item description array can hold between 0 to 6 scalars, and each combination is treated differently:

six - [NAME, TEXT/IMAGE, ACCEL, KEY, ACTION/SUBMENU, DATA]

A six-scalar array is a fully qualified text-item description. All fields correspond to the
described above scalars.

five [NAME, TEXT/IMAGE, ACCEL, KEY, ACTION/SUBMENU]

Same as the six-scalar syntax, but without the DATA field. If DATA is skipped then it is
set to undef.

four [TEXT/IMAGE, ACCEL, KEY, ACTION/SUBMENU] or [NAME,
TEXT/IMAGE, ACTION/SUBMENU, DATA]

One of the two definitions, depending on whether the last item is a hashref or not.

If the last item is not a hashref, then treated the same as the five-scalar syntax, but without
the NAME field. When NAME is skipped it is assigned to a unique string within the menu
object.

Otherwise same as the three-scalar syntax plus the DATA hashref.

three [NAME, TEXT/IMAGE, ACTION/SUBMENU] or [TEXT/IMAGE, AC-
TION/SUBMENU, DATA]

One of the two definitions, depending on whether the last item is a hashref or not.

If the last item is not a hashref, then treated the same as the five-scalar syntax, but without
the ACCEL and the KEY fields. KEY is kb::NoKey by default, so no keyboard combination
is bound to the item. The default ACCEL value is an empty string.

Otherwise the same as the two-scalar syntax plus DATA hashref.

two [TEXT/IMAGE, ACTION/SUBMENU] or [NAME, DATA]

One of the two definitions, depending on whether the last item is a hashref or not.

If the last item is not a hashref, then treated the same as the three-scalar syntax, but without
the NAME field.

Otherwise treated as the menu items with the data reference. Useful for custom menu items
that need at least the ’?’ flag in the NAME.

one and zero [NAME]

Both empty and 1-scalar arrays define a separator menu item. In the case of the 1-scalar
syntax, the scalar value is the name of the separator item.

As an example of all the above, here’s an example of a menu tree:

185

$img = Prima::Image-> create(...);

...

$menu-> items([

["~File" => [

["Anonymous" => "Ctrl+D" => ’^d’ => sub { print "sub\n";}], # anonymous sub

[$img => sub {

my $img = $_[0]-> menu-> image($_[1]);

my @r = @{$img-> palette};

$img-> palette([reverse @r]);

$_[0]->menu->image($_[1], $img);

}], # image

[], # division line

["E~xit" => "Exit"] # calling named function of menu owner

]],

[ef => "~Edit" => [# example of system commands usage

...

["Pa~ste" => sub { $_[0]->foc_action(’paste’)}],

...

["~Duplicate menu"=>sub{ TestWindow->create(menu=>$_[0]->menu)}],

]],

...

[], # divisor in the main menu opens

["~Clusters" => [# right-adjacent part

["*".checker => "Checking Item" => "Check"],

[],

["-".slave => "Disabled state" => "PrintText"],

...

]]

]);

The code is from the examples/menu.pl in the toolkit installation. The reader is advised to
run the example and learn the menu mechanics.

Prima::MenuItem

As briefly mentioned above, all menu items can be accessed using the following properties:
::accel, ::text, ::image, ::checked, ::enabled, ::action, ::data. These, plus some other
methods can be also called in an alternative way, resembling name-based component calls of the
Prima::Object section. For example, the call

$menu-> checked(’CheckerMenuItem’, 1);

can be also written as

$menu-> CheckerMenuItem-> checked(1);

Such name-based calls create temporary Prima::MenuItem objects that are only used to mimic
the accessor functions from the Prima::AbstractMenu class and not much else.

Prima::Menu

The Prima::Menu objects complement the Prima::Window objects so that their menu items are
shown as the menu bar on top of the window.

Prima::Menu’s top-level items are laid out horizontally, and the top-level separator items be-
have differently (see above, the Menu items entry).

186

If the ::selected property is set to 1, then a menu object is visualized in a window, otherwise
it is not. This behavior allows a window to host multiple menu objects without interfering with
each other. When a Prima::Menu object gets ’selected’, it displaces the previous ’selected’ menu,
and its items are installed in the window menu bar. The Prima::Window property ::menu then
points to that new menu object. Another Prima::Window property ::menuItems is an alias for the
::items property of the currently selected menu object. Prima::Window’s properties ::menuFont
and ::menuColorIndex are used as visualization hints, if/when the system supports that.

Prima::Menu provides no new methods or properties.

Prima::Popup

Objects derived from the Prima::Popup class are used together with the Prima::Widget objects
in the same way as the menu objects with the window objects. Popup items are shown when the
user presses the system-defined pop-up key or mouse button, as a response to the Prima::Widget’s
Popup notification.

If the ::selected property is set to 1, and the autoPopup property is also set to 1, then
a popup object can appear fully automatically, without the need to program the popup-menu
appearance and handling. This behavior allows a widget to host multiple popup objects without
interfering with each other. When a Prima::Popup object gets ’selected’, it displaces the previous
’selected’ popup object. The Prima::Widget property ::popup then points to that object. Another
widget property ::popupItems is an alias for the ::items property of the currently selected popup
object. Prima::Widget’s properties ::popupFont and Prima::Widgets’s properties ::popupFont

and ::popupColorIndex are used as visualization hints, if/when the system supports that.
A Prima::Popup object can be also visualized explicitly, by calling the popup method.

Prima::AccelTable

This class has a more limited functionality than Prima::Menu or Prima::Popup and is primarily
used for mapping keystrokes to actions. Prima::AccelTable objects are never visualized, and
consume no system resources, although the full menu item management syntax is supported.

If the ::selected property is set to 1, then an acceltable object displaces the previous ’selected’
acceltable object. The Prima::Widget property ::accelTable then points to that object. Another
widget property ::accelItems is an alias for the ::items property of the currently selected
acceltable object.

Prima::AccelTable provides no new methods or properties.

API

Properties

accel NAME, STRING / Prima::MenuItem::accel STRING

Manages accelerator text for the menu item. NAME is the name of the menu item.

action NAME, SCALAR / Prima::MenuItem::action SCALAR.

Manages the action for the menu item. NAME is the name of the menu item. SCALAR
can be either an anonymous sub or a method name, defined in the menu object owner’s
namespace. Both are called with three parameters - the owner of the menu object, the menu
object itself, and the name of the menu item.

autoPopup BOOLEAN

Only in Prima::Popup

If set to 1 in the selected state, calls the popup() method in response to the Popup notifica-
tion, when the user presses the system-defined hotkey or mouse button combination.

If 0, the pop-up menu can only be shown by a call to the popup method programmatically.

187

Default value: 1

autoToggle NAME, SCALAR / Prima::MenuItem::autoToggle SCALAR.

Manages the autoToggle flag for the menu item. When set, the checked option is flipped
when the user selects the item. Also, in the unchecked state, the system displays an empty
check box icon where normally a check icon would appear, to hint to the user that the menu
item is toggle-able, despite it being unchecked.

checked NAME, BOOLEAN / Prima::MenuItem::checked BOOLEAN

Manages the ’checked’ state of a menu item. If ’checked’, a menu item is visualized with a
distinct checkmark near the menu item text or image. Its usage with the sub-menu items is
possible, although discouraged.

NAME is the name of the menu item.

data NAME, HASH / Prima::MenuItem::data HASH

Manages the user data hash. NAME is the name of the menu item.

enabled NAME, BOOLEAN / Prima::MenuItem::enabled BOOLEAN

Manages the ’enabled’ state of the menu item. If ’enabled’ is set, a menu item is visualized
with a grayed or otherwise dimmed color palette. If a sub-menu item is disabled, the whole
sub-menu is inaccessible.

Default: true

NAME is the name of the menu item.

group NAME, GROUP ID / Prima::MenuItem::group GROUP ID

If not 0, the menu item is treated as a member of a radio group with the GROUP ID number.
That means if one of the menu items that belong to the same group is checked, the other
items are automatically unchecked.

image NAME, OBJECT / Prima::MenuItem::image OBJECT

Manages the image that is bound to the menu item. The OBJECT is a non-null Prima::Image
object reference, with no particular color space or dimensions (because of dimensions, its
usage in top-level Prima::Menu items is discouraged).

The ::image and the ::text properties are mutually exclusive, and can not be set together,
but a menu item can change its representation between an image and a text during the
runtime if these properties are called.

NAME is the name of the menu item.

items SCALAR

Manages the whole menu items tree. SCALAR is a multi-level anonymous array structure,
with the syntax described in the Menu items entry.

The ::items property is an ultimate tool for reading and writing the menu items tree,
but often it is too powerful, so there exist several easier-to-use properties ::accel, ::text,
::image, ::checked, ::enabled, ::action, ::data, that can access menu items individu-
ally.

key NAME, KEY / Prima::MenuItem::key KEY

Manages the hotkey combination, bound with the menu item. Internally the KEY is kept as
an integer value, and a get-mode call always returns integers. The set-mode calls, however,
accept the literal key format - strings such as ’ˆC’ or ’F5’.

NAME is the name of the menu item; KEY is an integer value.

188

selected BOOLEAN

If set to 1, the menu object is granted extra functionality from a window or widget owner
object. Different Prima::AbstractMenu descendants are equipped with different extra func-
tionalities. In the Usage section, see the Prima::Menu section, the Prima::Popup section,
and the Prima::AccelTable section.

Within each menu-owner object hierarchy , only one menu object can be selected for its
owner.

If set to 0, the only actions performed are implicit hotkey lookup when on the KeyDown

event.

Default value: 1

submenu NAME, ARRAY / Prima::MenuItem::submenu ARRAY

Manages a submenu, if it is present. A get-call of the submenu property is equivalent to
the get items(NAME, 1) call. On a set-call removes all of the items under the NAME and
inserts new ones.

See also: the is submenu entry.

text NAME, STRING / Prima::MenuItem::text STRING

Manages the text bound to the menu item. The STRING is an arbitrary string, with the
’~’ (tilde) escape character of a hotkey character. The hotkey character is only used when
the keyboard navigation of a pop-up or the pull-down user action is performed; does not
influence outside the menu sessions.

The ::image and the ::text properties are mutually exclusive, and can not be set together,
but a menu item can change its representation between an image and a text during the
runtime if these properties are called.

Methods

check NAME / Prima::MenuItem::check

Alias for checked(1). Sets the menu item in the checked state.

disable NAME / Prima::MenuItem::disable

Alias for enabled(0). Sets the menu item in the disabled state.

enabled NAME / Prima::MenuItem::enabled

Alias for enabled(1). Sets the menu item in the enabled state.

execute NAME

Calls the action associated with the menu item

find item by key KEY

Finds items by the associated hotkey combination

get handle

Returns a system-dependent menu handle.

NB: Prima::AccelTable uses no system resources, and this method returns its object handle
instead.

get children NAME

Returns the list of children of the menu item with the name NAME

189

get item NAME, FULL TREE = 0

Returns the item entry corresponding to NAME, with or without the eventual full tree of
children items, depending on the FULL TREE flag.

get items NAME, FULL TREE = 1

Returns immediate children items entries that have NAME as a parent, with or without the
eventual full tree of children items, depending on the FULL TREE flag.

has item NAME

Returns a boolean value, that is true if the menu object has a menu item with the name
NAME.

insert ITEMS, ROOT NAME, INDEX

Inserts menu items inside the existing item tree. ITEMS has the same syntax as the ::items
property. ROOT NAME is the name of the menu item, where the insertion must take
place; if ROOT NAME is an empty string, the insertion is performed to the top-level items.
INDEX is an offset, that the newly inserted items would possess after the insertion. INDEX
0 indicates the very start of the menu.

Returns no value.

is separator NAME

Returns true if the item is a separator, false otherwise

is submenu NAME

Returns true if the item has a submenu, false otherwise

popup X OFFSET, Y OFFSET, [LEFT = 0, BOTTOM = 0, RIGHT = 0, TOP =
0]

Only in Prima::Popup

Executes the system-driven pop-up menu, in the location near (X OFFSET,Y OFFSET)
pixel on the screen, with the items from the ::items tree. The pop-up menu is hinted to be
positioned so that the rectangle, defined by (LEFT,BOTTOM) - (RIGHT,TOP) coordinates
is not covered by the first-level menu. This is useful when a pop-up menu is triggered by a
button widget, for example.

If during the execution the user selects a menu item, then its associated action is executed
(see action).

The method returns immediately and returns no value.

There is no functionality to cancel the running popup session.

remove NAME / Prima::MenuItem::remove

Deletes the menu item named NAME from the items tree, and its eventual sub-menus

select

Alias for selected(1). Sets the menu object in the selected state, and deselects all menu
siblings of the same type (ie Menu->select(1) won’t affect the selected status for a popup,
for example).

set variable NAME, NEW NAME

Changes the name of the menu item from NAME to NEW NAME. NEW NAME must not
be an empty string and must not be in the ’#integer’ form.

toggle NAME / Prima::MenuItem::toggle

Toggles the checked state of the menu item and returns the new state.

190

translate accel TEXT

Locates a ’~’ (tilde) - escaped character in the TEXT string and returns its index (as
ord(lc())), or 0 if no escaped characters were found.

The method can be called with no object.

translate key CODE, KEY, MOD

Translates the three-integer key representation into the one-integer format and returns the
integer value. The three-integer format is used in the KeyDown and the KeyUp notifications
for Prima::Widget.

See the Prima::Widget section

The method can be called with no object.

translate shortcut KEY

Converts string literal KEY string into the integer format and returns the integer value.

The method can be called with no object.

uncheck NAME / Prima::MenuItem::uncheck

Alias for checked(0). Sets the menu item in the unchecked state.

Events

Change ACTION [, NAME [, VALUE]]

Triggered when the structure of the menu tree is changed. ACTION is the method call that
triggered that action, and NAME is the menu item name, when applicable. If NAME is an
empty string, that means the affected menu item is the root of the item tree. VALUE is the
new value, if applicable.

ItemMeasure ITEMID, REF

Called when the system needs to query the dimensions of a menu item that has the custom
painting bit set. REF is a 2-item arrayref that needs to be set pixel-wise dimensions.

See also: the Options entry

ItemPaint CANVAS, ITEMID, SELECTED, X1, Y1, X2, Y2

Called whenever the system needs to draw a menu item that has the custom painting bit
set. X1 - Y2 are the coordinates of the rectangle where the drawing is allowed.

See also: the Options entry

Bugs

Menu colors and fonts don’t work on Windows and probably never will.

191

3.14 Prima::Timer

Programmable periodical events

Synopsis

my $timer = Prima::Timer-> create(

timeout => 1000, # milliseconds

onTick => sub {

print "tick!\n";

},

);

$timer-> start;

Description

The Prima::Timer class arranges for the periodical notifications to be delivered in certain time
intervals. The notifications are triggered by the system and are seen as the Tick events. There
can be many active Timer objects at one time, spawning events simultaneously.

Usage

The Prima::Timer class is a descendant of the Prima::Component class. Objects of the
Prima::Timer class are created in the standard fashion:

my $t = Prima::Timer-> create(

timeout => 1000,

onTick => sub { print "tick\n"; },

);

$t-> start;

If no ‘owner‘ is given, $::application is assumed.
Timer objects are created in the inactive state; no events are spawned by default. To start

spawning events, the start()method must be explicitly called. The time interval value is assigned
by calling the <::timeout> property.

When the system generates a timer event, no callback is called immediately, - an event is
pushed into the internal event stack instead, to be delivered during the next event loop. Therefore
it cannot be guaranteed that the onTick noitifications will be called precisely after a timeout. A
more accurate timing scheme, as well as timing with a precision of less than a millisecond, is not
supported by the toolkit.

API

Properties

timeout MILLISECONDS

Manages time intervals between the Tick events. In the set-mode call, if the timer is in the
active state already (see get active(), the new timeout value is applied immediately.

Methods

get active

Returns the boolean flag that reflects whether the object is in the active state or not. In the
active state Tick events are spawned after ::timeout time intervals.

192

get handle

Returns the system-dependent handle of the printer object

start

Sets the object in the active state. If succeeds or if the object is already in the active state,
returns 1. If the system is unable to create a system timer instance, the value of 0 is returned.

stop

Sets object in the inactive state.

toggle

Toggles the timer state

Events

Tick

The system-generated event spawned every ::timeout milliseconds if the object is in the
active state.

193

3.15 Prima::Application

The root of the widget hierarchy

Description

The Prima::Application class serves as the hierarchy root for the majority of Prima objects. All
toolkit widgets are ultimately owned by the application object. There can be only one instance of
the Prima::Application class at a time.

Synopsis

use Prima qw(Application);

Prima::MainWindow->new();

run Prima;

Usage

Prima::Application class and its only instance are treated is a special way in the toolkit’s paradigm.
Its only object instance is stored in the

$::application

scalar, defined in Prima.pm module. The application instance must be created whenever a
widget, window, or event loop functionality is needed. Usually the

use Prima::Application;

or

use Prima qw(Application);

code is enough, but $::application can also be created and assigned explicitly. The ’use’ syntax
has an advantage as more resistant to eventual changes in the toolkit design. It can also be used
in conjunction with custom parameters hash like the new() syntax:

use Prima::Application name => ’Test application’, icon => $icon;

In addition to this functionality, Prima::Application is also a wrapper to a set of system
functions, not directly related to the object classes. This functionality is generally explained
in the API entry.

Inherited functionality

Prima::Application is a descendant of Prima::Widget but does not conform strictly (in the OO
sense) to any of the built-in classes. It has methods from both Prima::Widget and Prima::Window,
also, the methods inherited from the Prima::Widget class may work quite differently. For example,
the ::origin property from Prima::Widget is also implemented in Prima::Application, but always
returns (0,0), an expected but not much usable result. The ::size property, on the contrary,
returns the extent of the screen in pixels. There are a few properties inherited from Prima::Widget,
which return actual but uninformative results, - ::origin is one of those, but there are several
others. The methods and properties, that are like ::size providing different functionality, are
described separately in the API entry.

194

Global functionality

Prima::Application is a wrapper to a set of unrelated functions that do not belong to other classes.
A notable example, the painting functionality that is inherited from the Prima::Drawable class,
allows drawing on the screen, possibly overwriting the graphic information created by the other
programs. Although it is still a subject to the begin paint()/end paint() brackets, this functionality
does not belong to a single object and is considered global.

Painting

As stated above, the Prima::Application class provides an interface to the on-screen painting.
This mode is triggered by the begin paint()/end paint() methods, while the other pair,
begin paint info()/end paint info() triggers the information mode. This three-state paint
functionality is more thoroughly described in the Prima::Drawable section.

The painting on the screen surfaces under certain environments (XQuartz, XWayland) is
either silently ignored or results in an error. There, begin paint may return a false value
(begin paint info though always true).

Hints

$::application hosts a special Prima::HintWidget class object, accessible via
get hint widget(), but with its color and font functions aliased (see ::hintColor,
::hintBackColor, ::hintFont).

This widget serves as a hint label, floating over other widgets if the mouse pointer hovers
longer than ::hintPause milliseconds.

Prima::Application internally manages all of the hint functionality. The hint widget itself,
however, can be replaced before the application object is created, using the ::hintClass

create-only property.

Printer

The result of the the get printer entry method points to an automatically created printer
object, responsible for the system printing. Depending on the operating system, it
is either Prima::Printer, if the system provides GUI printing capabilities, or generic
Prima::PS::Printer, the PostScript/PDF document interface.

See the Prima::Printer section for details.

Clipboard

$::application hosts a set of Prima::Clipboard objects created automatically to reflect the
system-provided clipboard IPC functionality. Their number depends on the system, - under
the X11 environment, there are three clipboard objects, and one under Win32.

There are no specific methods to access these clipboard objects, except bring() (or the
indirect name call); the clipboard objects are named after the system clipboard names,
which are returned by the Prima::Clipboard::get standard clipboards method.

The default clipboard is named Clipboard, and is accessible via the

my $clipboard = $::application-> Clipboard;

call.

See the Prima::Clipboard section for details.

Help subsystem

The toolkit has a built-in help viewer, that understands perl’s native POD (plain old
documentation) format. Whereas the viewer functionality itself is a part of the toolkit that
resides in the Prima::HelpViewer module, any custom help viewing module can be assigned.

195

The create-only Prima::Application properties ::helpClass and ::helpModule can be
used to set these options.

Prima::Application provides two methods for communicating with the help viewer window:
open help() opens a selected topic in the help window, and close help() closes the window.

System-dependent information

A complex program will need eventually more information than the toolkit provides. Know-
ing the toolkit boundaries in some platforms, the program may change its behavior ac-
cordingly. Both these topics are facilitated by extra system information returned by
Prima::Application methods. The get system value method returns a system-defined value
for each of the sv::XXX constants, so the program can read the system-specific information.
Another method get system info returns the short description of the system that augments
perl’s $^O variable.

The sys action method is a wrapper to system-dependent functionality that is called in
a non-portable way. This method is rarely used in the toolkit, its usage is discouraged,
primarily because its options do not serve the toolkit design, its syntax is subject to changes,
and cannot be relied upon.

Exceptions and signals

By default Prima doesn’t track exceptions caused by die, warn, and signals. Currently, it is
possible to enable a GUI dialog tracking the die exceptions, by either operating the boolean
guiException property or using the

use Prima qw(sys::GUIException)

syntax.

If you need to track signals or warnings you may do so by using standard perl practices.
It is though not advisable to call Prima interactive methods directly inside signal handlers
but use a minimal code instead. F.ex. code that would ask whether the user wants to quit
would look like this:

use Prima qw(Utils MsgBox);

$SIG{INT} = sub {

Prima::Utils::post(sub {

exit if message_box("Got Ctrl+C", "Do you really want to quit?", mb::YesNo) == mb::Yes;

});

};

and if you want to treat all warnings as potentially fatal, like this:

use Prima qw(Utils MsgBox);

$SIG{__WARN__} = sub {

my ($warn, $stack) = ($_[0], Carp::longmess);

Prima::Utils::post(sub {

exit if $::application && Prima::MsgBox::signal_dialog("Warning", $warn, $stack) ==

});

};

See also: the Die entry, the signal dialog entry in the Prima::MsgBox section

196

API

Properties

autoClose BOOLEAN

If set to 1, issues close() after the last top-level window is destroyed. Does not influence
anything if set to 0.

This feature is designed to help with generic ’one main window’ application layouts.

Default value: 0

guiException BOOLEAN

If set to 1, when a die exception is thrown, displays a system message dialog. allowing the
user to choose the course of action -- to stop, to continue, etc.

Is 0 by default.

Note that the exception is only handled inside the Prima::run and
Prima::Dialog::execute calls; if there is a call to f ex Prima::Window::execute or
a manual event loop run with yield, the signal dialog will not be shown. One needs to
explicitly call $::application->notify(Die => $@) and check the notification result to
decide whether to propagate the exception or not.

The alternative syntax for setting guiException to 1 is the

use Prima::sys::GUIException;

or

use Prima qw(sys::GUIException);

statement.

If for some reason an exception is thrown during dialog execution, it will not be handled by
Prima but by the current $SIG{ DIE } handler.

See also the signal dialog entry in the Prima::MsgBox section .

icon OBJECT

Holds the icon object associated with the application. If undef, the system-provided default
icon is assumed. Prima::Window objects inherit this application icon by default.

insertMode BOOLEAN

The system boolean flag signaling whether text widgets through the system should insert (
1) or overwrite (0) text on user input. Not all systems provide the global state of the flag.

helpClass STRING

Specifies the class of the object used as the help viewing package. The default value is
Prima::HelpViewer. Run-time changes to the property do not affect the help subsystem
until a call to close help is made.

helpModule STRING

Specifies the perl module loaded indirectly when a help viewing call is made via the
open help method. Used when the ::helpClass property is overridden and the new class
is contained in a third-party module. Run-time changes to the property do not affect the
help subsystem until a call to close help is made.

197

hintClass STRING

Create-only property.

Specifies the class of the widget used as the hint label.

Default value: Prima::HintWidget

hintColor COLOR

The alias to the foreground color property of the hint label widget.

hintBackColor COLOR

The alias to the background color property of the hint label widget.

hintFont %FONT

The alias to the font property of the hint label widget.

hintPause TIMEOUT

Sets the timeout in milliseconds before the hint label is shown when the mouse pointer hovers
over a widget.

language STRING

By default contains the user interface language deduced either from the $ENV{LANG} envi-
ronment variable (unix) or a system default setting (win32). When changed, updates the
textDirection property.

See also: get system info.

modalHorizon BOOLEAN

A read-only property. Used as the lowest-level modal horizon. Always returns 1.

palette [@PALETTE]

Used only within the paint and information modes. Selects solid colors in the system palette,
as many as possible. PALETTE is an array of 8-bit integer triplets, where each is a red,
green, and blue component.

printerClass STRING

Create-only property.

Specifies the class of the object used as the printer. The default value is system-dependent,
but is either Prima::Printer or Prima::PS::Printer.

printerModule STRING

Create-only property.

Specifies the perl module loaded indirectly before the printer object of the ::printerClass
class is created. Used when the ::printerClass property is overridden and the new class
is contained in a third-party module.

pointerVisible BOOLEAN

Manages the system pointer visibility. If 0, hides the pointer so it is not visible in all system
windows. Therefore this property usage must be considered with care.

size WIDTH, HEIGHT

A read-only property.

Returns two integers, the width and height of the screen.

198

showHint BOOLEAN

If 1, the toolkit is allowed to show the hint label over a widget. If 0, the display of the hint
is forbidden. In addition to the functionality of the ::showHint property in Prima::Widget,
Prima::Application::showHint is another layer of hint visibility control - if it is 0, all hint
actions are disabled, disregarding ::showHint value in the widgets.

skin SCALAR

The same as the skin entry in the Prima::Widget section, but is mentioned here because it
is possible to change the whole application skin by changing this property, f ex like this:

use Prima::Application skin => ’flat’;

textDirection BOOLEAN

Contains the preferred text direction initially deduced from the preferred interface language.
If 0 (default), the preferred text direction is left-to-right (LTR), otherwise right-to-left
(RTL), f.ex. for Arabic and Hebrew languages.

The value is used as a default when shaping text and setting widget input direction.

uiScaling FLOAT

The property contains an advisory multiplier factor, useful for UI elements that have a
fixed pixel value, but that would like to be represented in a useful manner when the display
resolution is too high (on modern High-DPI displays) or too low (on ancient monitors).

By default, it acquires the system display resolution and sets the scaling factor so that when
the DPI is 96 it is 1.0, 192 it is 2.0, etc. The increase step is 0.25, so that bitmaps may
look not that distorted when scaled. However, when the value is manually set the step is
not enforced and any value can be accepted.

See also: the Stress entry in the Prima section.

wantUnicodeInput BOOLEAN

Selects if the system is allowed to generate key codes in unicode. Returns the effective state
of the unicode input flag, which cannot be changed if perl or the operating system does not
support UTF8.

If 1, the Prima::Clipboard::text property may return UTF8 text from system clipboards
is available.

Default value: 1

Events

Clipboard $CLIPBOARD, $ACTION, $TARGET

With (the only implemented) $ACTION copy, is called whenever another application requests
clipboard data in the format $TARGET. This notification is handled internally to optimize
image pasting through the clipboard. Since the clipboard pasting semantics in Prima is
such that data must be supplied to the clipboard in advance, before another application can
request it, there is a problem with which format to use. To avoid encoding an image or other
complex data in all possible formats but do that on demand and in the format the other
application wants, this notification can be used.

Only implemented for X11.

CopyImage $CLIPBOARD, $IMAGE

The notification stores $IMAGE in the clipboard.

199

CopyText $CLIPBOARD, $TEXT

The notification stores $TEXT in the clipboard.

Die $@, $STACK

Called when an exception occurs inside the event loop Prima::run. By default, consults
the guiException property, and if it is set, displays the system message dialog allowing the
user to decide what to do next.

Idle

Called when the event loop handled all pending events, and is about to sleep waiting for
more.

PasteImage $CLIPBOARD, $$IMAGE REF

The notification queries $CLIPBOARD for image content and stores in $$IMAGE REF. The
default action is that the ’Image’ format is queried. On unix, encoded formats ’image/bmp’,
’image/png’ etc are queried if the default ’Image’ is not found.

The PasteImage mechanism can read images from the clipboard in the GTK environment.

PasteText $CLIPBOARD, $$TEXT REF

The notification queries $CLIPBOARD for text content and stores it in the $$TEXT REF scalar.
Its default action is that only the ’Text’ format is queried if wantUnicodeInput is unset.
Otherwise, the ’UTF8’ format is queried first.

The PasteText mechanism is devised to ease defining text unicode/ascii conversion between
clipboard and standard widgets, in a unified way.

Methods

add startup notification @CALLBACK

CALLBACK is an array of anonymous subs, which are all executed when the
Prima::Application object is created. If the application object is already created during
the call, CALLBACKs are called immediately.

Useful for initialization of add-on packages.

begin paint

Enters the enabled (active paint) state, and returns the success flag. Once the object is
in the enabled state, painting and drawing methods can perform drawing operations on the
whole screen.

begin paint info

Enters the information state, and returns the success flag. The object information state
is the same as the enabled state (see begin paint()), except that painting and drawing
methods are not permitted to change the screen.

close

Issues a system termination call, resulting in calling the close method for all top-level
windows. The call can be interrupted by the latter, and effectively canceled. If not canceled
stops the application event loop.

close help

Closes the help viewer window.

end paint

Quits the enabled state and returns the application object to the normal state.

200

end paint info

Quits the information state and returns the application object to the normal state.

font encodings

Returns an array of encodings represented by strings, that are recognized by the system and
available for at least one font. Each system provides different sets of encoding strings; the
font encodings are not portable.

fonts NAME = ”, ENCODING = ”

Returns a hash of font hashes (see the Fonts entry in the Prima::Drawable section) de-
scribing fonts of NAME font family and of ENCODING text encoding. If NAME is ” or
undef, returns one font hash for each of the font families that match the ENCODING string.
If ENCODING is ” or undef, no encoding match is performed. If ENCODING is not valid
(not present in the font encodings result), it is treated as if it was ” or undef.

In the special case when both NAME and ENCODING are ” or undef, each font metric hash
contains the element encodings, which points to an array of the font encodings, available
for the fonts of the NAME font family.

get active window

Returns the object reference to the currently active window, if any, that belongs to the
program. If no such window exists, undef is returned.

The exact definition of ’active window’ is system-dependent, but it is generally believed that
an active window is the one that has a keyboard focus on one of its children widgets.

get caption font

Returns the title font that the system uses to draw top-level window captions. The method
can be called with a class string instead of an object instance.

get default cursor width

Returns the width of the system cursor in pixels. The method can be called with a class
string instead of an object instance.

get default font

Returns the default system font. The method can be called with a class string instead of an
object instance.

get default scrollbar metrics

Returns dimensions of the system scrollbars - width of the standard vertical scrollbar and
height of the standard horizon scrollbar. The method can be called with a class string instead
of an object instance.

get dnd clipboard

Returns the predefined special clipboard used as a proxy for drag-and-drop interactions.

See also: Widget/Drag and drop, Clipboard/is dnd.

get default window borders BORDER STYLE = bs::Sizeable

Returns width and height of standard system window border decorations for one of the
bs::XXX constants. The method can be called with a class string instead of an object
instance.

get focused widget

Returns object reference to the currently focused widget, if any, that belongs to the program.
If no such widget exists, undef is returned.

201

get fullscreen image

Syntax sugar for grabbing the whole screen as in

$::application->get_image(0, 0, $::application->size)

(MacOSX/XQuartz note: get image() does not grab all screen bits, but
get fullscreen image does if Prima is compiled with the Cocoa library).

get hint widget

Returns the hint label widget, attached automatically to the Prima::Application object dur-
ing startup. The widget is of the ::hintClass class, Prima::HintWidget by default.

get image X OFFSET, Y OFFSET, WIDTH, HEIGHT

Returns Prima::Image object with WIDTH and HEIGHT dimensions filled with graphic
content of the screen, copied from X OFFSET and Y OFFSET coordinates. If WIDTH and
HEIGHT extend beyond the screen dimensions, they are adjusted. If the offsets are outside
the screen boundaries, or WIDTH and HEIGHT are zero or negative, undef is returned.

Note: When running on MacOSX under XQuartz, the latter does not give access to the
whole screen, so the function will not be able to grab the top-level menu bar. This problem
is addressed in the get fullscreen image method.

get indents

Returns 4 integers that correspond to extensions of eventual desktop decorations that the
windowing system may present on the left, bottom, right, and top edges of the screen. For
example, for win32 this reports the size of the part of the screen that the windows taskbar
may occupy, if any.

get printer

Returns the printer object attached automatically to the Prima::Application object. The
object is an instance of the ::printerClass class.

get message font

Returns the font the system uses to draw the message text. The method can be called with
a class string instead of an object instance.

get modal window MODALITY TYPE = mt::Exclusive, TOPMOST = 1

Returns the modal window that resides on an end of the modality chain. MODALITY TYPE
selects the chain, and can be either mt::Exclusive or mt::Shared. TOPMOST is a boolean
flag selecting the lookup direction: if it is 1, the ’topmost’ window is returned, if 0, the ’lower-
most’ one (in a simple case when window A is made modal (executed) after modal window
B, the A window is the ’topmost’ one).

If the chain is empty undef is returned. In case the chain consists of just one window, the
TOPMOST value is irrelevant.

get monitor rects

Returns set of rectangles in the format of (X,Y,WIDTH,HEIGHT) identifying monitor lay-
outs.

get scroll rate

Returns two integer values of two system-specific scrolling timeouts. The first is the initial
timeout that is applied when the user drags the mouse from a scrollable widget (a text field,
for example), and the widget is about to scroll, but the actual scroll is performed after the
timeout has expired. The second value is the repetitive timeout, - if the dragging condition
did not change, the scrolling performs automatically after this timeout. The timeout values
are in milliseconds.

202

get system info

Returns a hash with the following keys containing information about the system:

apc

One of the apc::XXX constants reporting the platform the program is running on.
Currently, the list of the supported platforms is one of these two:

apc::Win32

apc::Unix

gui

One of the gui::XXX constants reporting the graphic user interface used in the system:

gui::Default

gui::Windows

gui::XLib

gui::GTK

guiDescription

Description of the graphic user interface returned as an arbitrary string.

guiLanguage

The preferred language of the interface returned as an ISO 639 code.

system

An arbitrary string representing the operating system software.

release

An arbitrary string, contains the OS version information.

vendor

The OS vendor string

architecture

The machine architecture string

The method can be called with a class string instead of an object instance.

get system value

Returns the system integer value, associated with one of the sv::XXX constants. The con-
stants are:

sv::YMenu - height of menu bar in top-level windows

sv::YTitleBar - height of title bar in top-level windows

sv::XIcon - width and height of main icon dimensions,

sv::YIcon acceptable by the system

sv::XSmallIcon - width and height of alternate icon dimensions,

sv::YSmallIcon acceptable by the system

sv::XPointer - width and height of mouse pointer icon

sv::YPointer acceptable by the system

sv::XScrollbar - width of the default vertical scrollbar

sv::YScrollbar - height of the default horizontal scrollbar

(see get_default_scrollbar_metrics()

sv::XCursor - width of the system cursor

(see get_default_cursor_width()

sv::AutoScrollFirst - the initial and the repetitive

sv::AutoScrollNext scroll timeouts

203

(see get_scroll_rate())

sv::InsertMode - the system insert mode

(see insertMode)

sv::XbsNone - widths and heights of the top-level window

sv::YbsNone decorations, correspondingly, with borderStyle

sv::XbsSizeable bs::None, bs::Sizeable, bs::Single, and

sv::YbsSizeable bs::Dialog.

sv::XbsSingle (see get_default_window_borders())

sv::YbsSingle

sv::XbsDialog

sv::YbsDialog

sv::MousePresent - 1 if the mouse is present, 0 otherwise

sv::MouseButtons - number of the mouse buttons

sv::WheelPresent - 1 if the mouse wheel is present, 0 otherwise

sv::SubmenuDelay - timeout (in ms) before a sub-menu shows on

an implicit selection

sv::FullDrag - 1 if the top-level windows are dragged dynamically,

0 - with marquee mode

sv::DblClickDelay - mouse double-click timeout in milliseconds

sv::ShapeExtension - 1 if Prima::Widget::shape functionality is supported,

0 otherwise

sv::ColorPointer - 1 if the system accepts color pointer icons.

sv::CanUTF8_Input - 1 if the system can generate key codes in unicode

sv::CanUTF8_Output - 1 if the system can output utf8 text

sv::CompositeDisplay - 1 if the system uses double-buffering and alpha composition for

0 if it doesn’t, -1 if unknown

sv::LayeredWidgets - 1 if the system supports layering

sv::FixedPointerSize - 0 if the system doesn’t support arbitrarily sized pointers and

sv::MenuCheckSize - width and height of default menu check icon

sv::FriBidi - 1 if Prima is compiled with libfribidi and full bidi unicode

sv::Antialias - 1 if the system supports antialiasing and alpha layer for primitives

sv::LibThai - 1 if Prima is compiled with libthai

The method can be called with a class string instead of an object instance.

get widget from handle HANDLE

HANDLE is an integer value of a toolkit widget handle as used in the underlying GUI level,
for example, it is a HWND value on win32. It is usually passed to the program by other
IPC means, so that the method can return the associated widget. If no widget is associated
with HANDLE, undef is returned.

get widget from point X OFFSET, Y OFFSET

Returns the widget that occupies the screen area under (X OFFSET,Y OFFSET) coordi-
nates. If no toolkit widgets are found, undef is returned.

go

The main event loop. Called by the

run Prima;

standard code. Returns when the program is about to terminate, if stop was called, or if
the exception was signaled. In the latter two cases, the loop can be safely restarted.

204

lock

Effectively blocks the graphic output for all widgets. The output can be restored with
unlock().

load font FONTNAME

Registers a font resource in the system-specific format. The resource is freed after the
program ends.

Notes for win32: To add a font whose information comes from several resource files, point
FONTNAME to a string with the file names separated by a | - for example, abcxxxxx.pfm

| abcxxxxx.pfb .

Notes for unix: available only when Prima is compiled with fontconfig and Xft .

Returns the number of the font resources added.

open help TOPIC

Opens the help viewer window with TOPIC string in the link POD format (see perlpod)
- the string is treated as ”manpage/section”, where ’manpage’ is the file with POD content
and ’section’ is the topic inside the manpage.

Alternatively can handle the syntax in the form of file://path|section where path is
the file with the pod content and section is an optional pod section within the file.

stop

Stops the event loop. The loop can be started again.

sync

Synchronizes all pending requests where there are any. Is an effective XSync(false) on X11,
and is a no-op otherwise.

sys action CALL

CALL is an arbitrary string of the system service name and the parameters to it. This
functionality is non-portable, and its usage should be avoided. The system services provided
are not documented and are subject to change. The actual services can be looked at in the
toolkit source code under the apc system action tag.

unlock

Unlocks the graphic output for all widgets, previously locked with lock().

yield $wait for event=0

An event dispatcher, called from within the event loop. If the event loop can be schematized,
then in this code

while (application not closed) {

yield

}

yield() is the only function called repeatedly inside the loop. The yield(0) call shouldn’t
be used to organize event loops, but it can be employed to process stacked system events
explicitly, to increase the responsiveness of a program, for example, inside a long calculation
cycle.

yield(1) though is adapted exactly for external implementation of event loops; it does the
same as yield(0), but if there are no events it sleeps until there comes at least one, processes
it, and then returns. The return value is 0 if the application doesn’t need more event
processing, because of shutting down. The corresponding code will be

205

while (yield(1)) {

...

}

but in turn, this call cannot be used for increasing UI responsiveness inside tight calculation
loops.

The method can be called with a class string instead of an object instance; however, the
$::application object must be initialized.

206

3.16 Prima::Printer

Printing services

Synopsis

my $printer = $::application-> get_printer;

print "printing to ", $printer->printer, "...\n";

$p-> options(Orientation => ’Landscape’, PaperSize => ’A4’);

if ($p-> begin_doc) {

$p-> bar(0, 0, 100, 100);

print "another page...\n";

$p-> new_page or die "new_page:$@";

$p-> ellipse(100, 100, 200, 200);

(time % 1) ? # depending on the moon phase, print it or cancel out

$p-> end_doc :

$p-> abort_doc;

} else {

print "failed:$@\n";

}

Description

The Prima::Printer class is a descendant of the Prima::Drawable class. It provides access to the
system printing services, where available. If the system provides no graphics printing, the default
PostScript (tm) interface module Prima::PS::Printer is used instead.

Usage

Prima::Printer objects are never created directly. During the life of a program, there exists only
one instance of a printer object, created automatically by Prima::Application. A Prima::Printer
object is created only when the system provides the graphic printing capabilities, ie drawing
and painting procedures on a printer device. If there are no such API, Prima::Application cre-
ates an instance of the Prima::PS::Printer class instead, which emulates a graphic device, and
can produce PostScript and PDF output. The difference between the Prima::Printer and the
Prima::PS::Printer class is almost nonexistent for both the user and the programmer unless printer
device-specific adjustments are needed.

A printing session is started by calling the begin doc() method which switches the printer
object into the painting state. If the session is finished by the end doc() call then the document
is duly delivered to the selected printer device. The alternative finishing method, abort doc(),
terminates the printing session with no information printed, unless the document is multi-paged
and pages are already sent to the printer via the new page() method call.

A printer object (that means, derived from either Prima::Printer or Prima::PS::Printer)
provides a mechanism that allows the selection of the printer. The printers() method returns
an array of hashes, each describing a printer device. The get default printer() method returns
the default printer string identifier. The printer device can be selected by calling the ::printer

property.
The capabilities of the selected printer can be adjusted via the setup dialog() method which

invokes the system-provided (or, in the case of Prima::PS::Printer, toolkit-provided) printer
setup dialog so the user can adjust the settings of the printer device. It depends on the system,
whether the setup changes only the instance settings, or the default behavior of the printer driver
affecting every program.

207

Some printer capabilities that can be queried include the ::size() property that reports the
dimension of the page, the ::resolution() property that reports the DPI resolution selected by
the printer driver, and the list of available fonts (by the fonts() method).

A typical code that prints the document looks like this:

my $p = $::application-> get_printer;

if ($p-> begin_doc) {

... draw ...

$p-> end_doc;

} else {

print "failed:$@\n";

}

In addition, the standard package Prima::Dialog::PrintDialog can be recommended so the user
can select a printer device and adjust its setup interactively.

API

Properties

printer STRING

Selects the printer device specified by its STRING identifier. Cannot select a device if a
printing session is started.

resolution X, Y

A read-only property; returns the horizontal and vertical resolutions in DPI currently selected
for the printer device. The user can change this setting, if the printer device supports several
resolutions, inside the call of the setup dialog() method.

size WIDTH, HEIGHT

A read-only property; returns the dimensions of the printer device page. The user can change
this setting, if the printer device supports several resolutions or page formats, inside the call
of the setup dialog() method.

Methods

abort doc

Stops the printing session returns the object to the disabled painting state. Since the doc-
ument can be passed to the system spooler, parts of it could have been sent to a printing
device when abort doc() is called, so some information could still have been printed.

begin doc DOCUMENT NAME = ””

Initiates the printing session and triggers the object into the enabled painting state. The
document is assigned the DOCUMENT NAME string identifier.

Returns the success flag; if failed, $@ contains the error.

begin paint

Identical to the begin doc("") call.

begin paint info

Triggers the object into the information painting state. In this state, all graphic functions
can be accessed, but no data is printed. Neither the new page() and abort doc() methods
work. The information mode is exited via the end paint info() method.

208

end doc

Ends the printing session and delivers the document to the printer device. Does not report
eventual errors that occurred during the spooling process - the system is expected to take
care of such situations.

end paint

Identical to abort doc().

end paint info

Quits the information painting mode initiated by begin paint info() and returns the ob-
ject to the disabled painting state.

font encodings

Returns an array of the encodings, represented by strings, that are recognized by the system
and available in at least one font. Each system provides different sets of encoding strings;
the font encodings are not portable.

fonts NAME = ”, ENCODING = ”

Returns a hash of font hashes (see the Prima::Drawable section, Fonts section) describing
fonts from the NAME font family with the ENCODING encoding. If the NAME is ” or
undef, returns one font hash for each of the font families that match the ENCODING
string. If ENCODING is ” or undef, no encoding match is performed. If the ENCODING
is not valid (not present in the font encodings result), it is treated as if it was ” or undef.

In the special case, when both NAME and ENCODING are ” or undef, each font metric hash
contains the element encodings, which points to an array of the font encodings, available
for the fonts of the NAME font family.

new page

Finalizes the current page and starts a new blank page.

Returns the success flag; if failed, $@ contains the error.

options [OPTION, [VALUE, [...]]]

Queries and sets printer-specific setup options, such as orientation, paper size, etc. If called
without parameters, returns the list of options the printer supports. If called with one
parameter, treats it as the option name and return the corresponding value. Otherwise,
treats parameters as a list of key-value pairs, and changes the printer options. Returns the
number of the options that were successfully set.

The compatibility between the options and the values used by dif-
ferent OSes is low. The only fully compatible options are
Orientation[Portrait|Landscape], Color[Color|Monochrome], Copies[integer], and
PaperSize[Ainteger |Binteger |Executive|Folio|Ledger|Legal|Letter|Tabloid]. The
other options are OS-dependent. For win32, consult Microsoft manual on the DEVMODE
structure the https:learn.microsoft.comen-uswindowswin32apiwingdins-wingdi-devmodew
entry for Prima’s own PostScript printer, consult the Prima::PS::Printer section.

printers

Returns an array of hashes where each entry describes a printer device. The hash consists
of the following entries:

name

The printer device’s name

device

The physical device name, that the printer is connected to

209

defaultPrinter

The boolean flag, is 1 if the printer is default, is 0 otherwise.

setup dialog

Invokes the system-provided printer device setup dialog. In this setup, the user can adjust
the capabilities of the printer, such as page setup, resolution, color, etc etc.

get default printer

Returns the string identifying the default printer device.

get handle

Returns the system handle for the printer object.

210

3.17 Prima::File

Asynchronous stream I/O

Synopsis

use strict;

use Prima qw(Application);

create pipe and autoflush the writer end

pipe(READ, WRITE) or die "pipe():$!\n";

select WRITE;

$|=1;

select STDOUT;

create a Prima listener on the reader end

my $read = Prima::File-> new(

file => *READ,

mask => fe::Read,

onRead => sub {

$_ = <READ>;

print "read:$_\n";

},

);

print WRITE "line\n";

run Prima;

Description

The Prima::File class provides access to the I/O stream notifications that are called when a file
handle becomes readable, writable, or if an exception/out-of-band message occurs. Registering
file handles to Prima::File objects makes it possible for the stream operations to coexist with the
event loop.

Usage

Prima::File is a descendant of Prima::Component. Objects of the Prima::File class must be
bounded to a valid file handle object before the associated events can occur:

my $f = Prima::File-> create();

$f-> file(*STDIN);

When a file handle bound via the ::file property becomes readable, writable, or when an
exception/out-of-band message is signaled, one of three corresponding events is sent - Read, Write,
or Exception. When the file handle is always readable, or always writable, or, on the contrary,
some of these events are desired to be blocked, the file event mask can be set via the ::mask

property:

$f-> mask(fe::Read | fe::Exception);

When the file handle is not needed anymore it is expected to be detached from the object
explicitly:

$f-> file(undef);

211

However, if the system detects that the file handle is no longer valid, it is automatically
detached. It is possible to check if a file handle is still valid by calling the is active() method.

Prima::File events based on the events provided by the select() function on unix or on the
WSAEnumNetworkEvents function on Win32.

API

Properties

file HANDLE

Selects the file handle to be monitored for the I/O events. If the HANDLE is undef, the
object is returned to the passive state, and the previously bonded file handle is de-selected.

If the OS reports an error when attaching the file, f ex because there are too many objects
to monitor, the file handle is reverted to undef. Use that to check for an error.

fd INTEGER

Same as file(), but to be used for the file descriptors instead. When this property is used,
consequent get-calls to file() will return undef.

If the OS reports an error when attaching the file, f ex because there are too many objects
to monitor, the file handle is reverted to undef. Use that to check for an error.

mask EVENT MASK

Selects the event mask that is a combination of the fe::XXX integer constants, each repre-
senting an event:

fe::Read

fe::Write

fe::Exception

The masked events are effectively excluded from the system file event multiplexing mecha-
nism.

Methods

get handle

Returns sprintf("0x%08x", fileno(file)) string. If ::file is undef, -1 is used in-
stead of the fileno() result.

is active AUTODETACH = 0

Returns the boolean flag indicating if the file handle is valid. If AUTODETACH is 1 and
the file handle is not valid file(undef) is called.

Events

Read

Called when the file handle becomes readable. The callback procedure is expected to call a
non-blocking read() on the file handle.

Write

Called when the file handle becomes writable. The callback procedure is expected to call a
non-blocking write() on the file handle.

212

Exception

Called when an exception is signaled on the file handle. The exceptions are specific to the
handle type and the operating system. For example, a unix socket may signal the Exception
event when control status data for a pseudoterminal or an out-of-band message arrives.

OS considerations

Unix

Prima can monitor max FD SETSIZE file handles (not Prima::File objects, these can refer to the
same file handles just fine). See also man 2 select.

Win32

Files

If Prima detects that the handle is neither a socket nor a console, it assumes that it is a
regular file. Prima doesn’t use any win32 api for checking on regular file handle availability
for reading and writing and therefore sends synthetic events without actual correlation on
whether the file handle is readable or writable.

Pipes

Pipe handles are not implemented and won’t work.

Sockets

Sockets work natively, however, there’s a single catch: according to the MSDN, WSAEventS-
elect() sets sockets in a non-blocking mode, however, I couldn’t confirm that when I was
experimenting. If you want to be 100% covered, remember to save and restore the blocking
flag in your event handlers.

There can be normally a maximum of 63 sockets (not Prima::File objects, these can re-
fer to the same sockets just fine). Or a maximum of 62 sockets if STDIN is moni-
tored too. See also the https:learn.microsoft.comen-uswindowswin32apiwinusernf-winuser-
msgwaitformultipleobjectsex entry .

STDIN

STDIN works fine when it is a console. Use Prima::sys::win32::ReadConsoleInput

for detailed input parsing. See also the https:learn.microsoft.comen-
uswindowsconsolereadconsoleinputex entry.

213

4 Widget library

4.1 Prima::Buttons

Buttons, checkboxes, radios

Synopsis

use Prima qw(Application Buttons StdBitmap);

my $window = Prima::MainWindow-> create;

Prima::Button-> new(

owner => $window,

text => ’Simple button’,

pack => {},

);

$window-> insert(’Prima::SpeedButton’ ,

pack => {},

image => Prima::StdBitmap::icon(0),

);

run Prima;

Description

Prima::Buttons provides button widgets that include push buttons, check-boxes, and radio but-
tons. It also provides the Prima::GroupBox class used as a container for the checkboxes and radio
buttons.

The module provides the following classes:

*Prima::AbstractButton

Prima::Button

Prima::SpeedButton

*Prima::Cluster

Prima::CheckBox

Prima::Radio

Prima::GroupBox

Note: * - marked classes are abstract.

214

Usage

use Prima::Buttons;

my $button = $widget-> insert(’Prima::Button’,

text => ’Push button’,

onClick => sub { print "hey!\n" },

);

$button-> flat(1);

my $group = $widget-> insert(’Prima::GroupBox’,

onRadioClick => sub { print $_[1]-> text, "\n"; }

);

$group-> insert(’Prima::Radio’, text => ’Selection 1’);

$group-> insert(’Prima::Radio’, text => ’Selection 2’, pressed => 1);

$group-> index(0);

Prima::AbstractButton

Prima::AbstractButton realizes the common functionality of buttons. It provides a reaction to
mouse and keyboard events and calls the the Click entry notification when the user activates the
button. The activation can be done by:

• Mouse click

• The spacebar key is pressed

• {default} (see the default entry property) boolean variable is set and the Enter key is
pressed. This works even if the button is out of focus.

• {accel} character variable is assigned and the corresponding character key is pressed. The
{accel} variable is extracted automatically from the text string passed to the the text entry
property. This works even if the button is out of focus.

Events

Check

Abstract callback event.

Click

Called whenever the user activates the button.

Properties

hotKey CHAR

A key (defined by CHAR) that the button will react to if pressed if the button has the focus.
The combination ALT + Key works always whether the button has the focus or not

pressed BOOLEAN

Manages the pressed state of the button

Default value: 0

text STRING

The text that is drawn in the button. If STRING contains the ~ (tilde) character, the
following character is treated as a hotkey, and the character is underlined. If the user presses
the corresponding character key then the the Click entry event is called. This works even if
the button is out of focus.

215

Methods

draw veil CANVAS, X1, Y1, X2, Y2

Draws a rectangular veil shape over the CANVAS in given boundaries. This is the default
method of drawing the button in the disabled state.

draw caption CANVAS, X, Y

Draws a single line of text stored in the the text entry property on the CANVAS at the
X, Y coordinates. Underlines an eventual tilde-escaped character and draws the text with
dimmed colors if the button is disabled. If the button is focused, draws a dotted rectangle
around the text.

caption box [CANVAS = self]

Calculates geometrical extensions of the string stored in the the text entry property, in pixels.
Returns two integers, the width and the height of the string for the font currently selected
on the CANVAS.

If CANVAS is undefined, the widget’s font is used for the calculations instead.

Prima::Button

Push button widget, extends the Prima::AbstractButton functionality by allowing an image to be
drawn together with text.

Properties

autoHeight BOOLEAN

If 1, the button height is automatically changed as text extensions change.

Default value: 1

autoRepeat BOOLEAN

If set, the widget behaves like a keyboard button - after the first the Click entry event, a
timeout is set, after which if the button is still pressed, the the Click entry event is repeatedly
fired. Can be useful f ex for emulating scroll-bar arrow buttons.

Default value: 0

autoShaping BOOLEAN

If 1, the button shape is automatically updated when the button size and/or font are up-
dated, if the current skin can make use of non-rectangular shapes. Generally is unneeded
unless the owner of the button has a different back color or features some custom painting.

Default value: 0

See also: examples/triangle.pl, examples/dragdrop.pl

autoWidth BOOLEAN

If 1, the button width is automatically changed as text extensions change.

Default value: 1

borderWidth INTEGER

Width of the border around the button.

Default value: depends on the skin

216

checkable BOOLEAN

Selects if the button toggles the the checked entry state when the user presses it.

Default value: 0

checked BOOLEAN

Selects whether the button is checked or not. Only actual when the the checkable entry
property is set. See also the holdGlyph entry.

Default value: 0

default BOOLEAN

Defines if the button should react when the user presses the enter button. If set, the button
is drawn with a black border, indicating that it executes the ’default’ action. Useful for
OK-buttons in dialogs.

Default value: 0

defaultGlyph INTEGER | IMAGE | METAFILE

Selects the index of the default sub-image.

Default value: 0

disabledGlyph INTEGER | IMAGE | METAFILE

Selects the index of the sub-image for the disabled button state. If image does not contain
such a sub-image, the defaultGlyph sub-image is drawn and is dimmed over using the the
draw veil entry method.

Default value: 1

flat BOOLEAN

Selects special ’flat’ mode, when a button is painted without a border when the mouse
pointer is outside the button boundaries. This mode is useful for the toolbar buttons. See
also the hiliteGlyph entry.

Default value: 0

glyphs INTEGER

If a button is to be drawn with an image, it can be passed in the the image entry property.
If, however, the button must be drawn with several different images, there are no several
image-holding properties. Instead, the the image entry object can be logically split vertically
into several equal sub-images. This allows the image resource to contain all button states
in a single image file. The glyphs property assigns how many such sub-images the image
object contains.

The sub-image indices can be assigned to reflect the different button states. These indices
are selected by the following integer properties: the defaultGlyph entry, the hiliteGlyph entry,
the disabledGlyph entry, the pressedGlyph entry, and the holdGlyph entry.

Default value: 1

hilite

Read-only property, return 1 if the button is highlighted, 0 otherwise.

hiliteGlyph INTEGER | IMAGE | METAFILER

Selects the index of the sub-image for the state when the mouse pointer is hovering over the
button. This image is used only when the the flat entry property is set. If image does not
contain such a sub-image, the defaultGlyph sub-image is drawn.

Default value: 0

217

holdGlyph INTEGE | IMAGE | METAFILER

Selects the index of the sub-image for the state when the button is the checked entry. This
image is used only when the the checkable entry property is set. If image does not contain
such a sub-image, the defaultGlyph sub-image is drawn.

Default value: 3

image OBJECT

If set, the image object is drawn next with the button text, on the top or on the left (see
the the vertical entry property). If the OBJECT contains several sub-images, then the
corresponding sub-image is drawn for each button state. See the the glyphs entry property.

Can also be a Prima::Drawable::Metafile object, however, the imageScale factor
wouldn’t work on it.

Default value: undef

imageFile FILENAME

An alternative to image selection that loads an image from the file. During the creation
state, if set together with the the image entry property, is superseded by the latter.

To allow easy multiframe image access, the FILENAME string is checked if it contains a
number after the colon in the string end. Such as, imageFile(’image.gif:3’) loads the
fourth frame from image.gif .

imageScale SCALE

Manages the zoom factor for the the image entry.

Default value: 1

modalResult INTEGER

Contains a custom integer value, preferably one of mb::XXX constants. If a button with
non-zero modalResult is owned by a currently executing modal window, and is pressed, its
modalResult value is copied to the modalResult property of the owner window, and the
latter is closed. This scheme is helpful for the following dialog design:

$dialog-> insert(’Prima::Button’, modalResult => mb::OK,

text => ’~Ok’, default => 1);

$dialog-> insert(’Prima::Button’, modalResult => mb::Cancel,

text => ’Cancel);

return if $dialog-> execute != mb::OK.

The toolkit defines the following default constants for modalResult use:

mb::OK or mb::Ok

mb::Cancel

mb::Yes

mb::No

mb::Abort

mb::Retry

mb::Ignore

mb::Help

However, any other integer value can be safely used.

Default value: 0

218

smoothScaling BOOL

Tries to paint the image as smoothly as possible. When the system doesn’t support ARGB
layering, smooth scaling of icons will be restricted to integer-scaling only (i.e. 2x, 3x, etc)
because the smoothed color plane will not match pixelated mask plane, and because box-
scaling with non-integer zooms looks ugly.

Default value: true

See also: the ui scale entry in the Prima::Image section .

pressedGlyph INTEGER | IMAGE | METAFILE

Selects the index of the sub-image for the pressed state of the button. If image does not
contain such a sub-image, the defaultGlyph sub-image is drawn.

transparent BOOLEAN

See the transparent entry in the Prima::Widget section. If set, the background is not
painted.

vertical BOOLEAN

Determines the position of the image next to the text string. If 1, the image is drawn above
the text; left to the text if 0. In a special case when the text entry is an empty string, the
image is centered.

Prima::SpeedButton

A convenience class, same as the Prima::Button section but with default squared shape and text
property set to an empty string.

Prima::Cluster

An abstract class with common functionality of the Prima::CheckBox section and the
Prima::RadioButton section. Reassigns default actions on tab and back-tab keys, so the sib-
ling cluster widgets are not selected. Has ownerBackColor property set to 1, to prevent usage of
background color from wc::Button palette.

Properties

auto BOOLEAN

If set, the button is automatically checked when the button is in focus. This functionality
allows the use of arrow keys for navigating the radio buttons without pressing the spacebar
key. It also has a drawback, if a radio button gets focused without user intervention, or
indirectly, it also gets checked, so that behavior might confuse. The said can be exempli-
fied when an unchecked radio button in a notebook widget becomes active by turning the
notebook page.

Although this property is present in the the Prima::CheckBox section class, it is not used
in there.

Methods

check

Alias to checked(1)

uncheck

Alias to checked(0)

219

toggle

Reverts the checked state of the button and returns the new state.

Prima::Radio

Represents the standard radio button that can be checked or unchecked. When checked, delivers
the the RadioClick entry event to the owner if the latter provides one.

The button uses the standard toolkit images with sbmp::RadioXXX indices when using the
classic skin. If the images can not be loaded, the button is drawn with the graphic primitives.

Events

Check

Called when the button was checked.

Prima::CheckBox

Represents the standard check box button, that can be checked or unchecked.
The button uses the standard toolkit images with sbmp::CheckBoxXXX indices when using the

classic skin. If the images can not be loaded, the button is drawn with graphic primitives.

Prima::GroupBox

A container for radio and checkbox buttons (but can contain any widgets).
The widget draws a rectangular box and a title string. Uses the transparent property to

determine if it needs to paint its background.
The class does not provide a method to calculate the extension of the inner rectangle. However,

it can be safely assumed that all offsets except the upper are 5 pixels. The upper offset is dependent
on a font and constitutes half of the font height.

Events

RadioClick BUTTON

Called whenever one of the children radio buttons is checked. BUTTON parameter contains
the newly checked button.

The default action of the class is that all checked buttons, except BUTTON, are unchecked.
Since the flow type of the RadioClick event is nt::PrivateFirst, the on radioclick

method must be directly overloaded to disable this functionality.

Properties

border BOOLEAN

If set (default), draws a border along the widget boundaries

index INTEGER

Checks the child radio button with index. The indexing is based on the index in the widget
list, returned by the Prima::Widget::widgets method.

value BITFIELD

BITFIELD is an unsigned integer, where each bit corresponds to the checked state of a
child check-box button. The indexing is based on the index in the widget list, returned by
the Prima::Widget::widgets method.

220

Bugs

Tilde escaping in text is not realized, but is planned to. There currently is no way to avoid tilde
underscoring.

Radio buttons can get unexpectedly checked when used in notebooks. See the auto entry.
The Prima::GroupBox::value parameter is an integer, which size is architecture-dependent.

Shifting towards a vector is considered a good idea.

221

4.2 Prima::Calendar

Standard calendar widget

Synopsis

use Prima qw(Calendar Application);

my $cal = Prima::Calendar-> create(

useLocale => 1,

size => [150, 150],

onChange => sub {

print $_[0]-> date_as_string, "\n";

},

);

$cal-> date_from_time(localtime);

$cal-> month(5);

run Prima;

Description

Provides interactive selection for dates between the years 1900 and 2099. The main property, the
date entry, is a three-integer array of day, month, and year, in the format of perl localtime (see
localtime in perlfunc) - day’s range is between 1 and 31, month’s 0 to 11, year’s from 0 to 199.

API

Events

Change

Called when the the date entry property is changed.

Properties

date DAY, MONTH, YEAR

Accepts three integers in the format of localtime. DAY can be from 1 to 31, MONTH from
0 to 11, YEAR from 0 to 199.

Default value: today’s date.

day INTEGER

Selects the day in the month.

firstDayOfWeek INTEGER

Selects the first day of the week, an integer between 0 and 6, where 0 is Sunday as the first
day, 1 is Monday, etc.

Default value: 0

222

month

Selects the month

useLocale BOOLEAN

If 1, the locale-specific names of months and days of week are used. These are read by calling
POSIX::strftime. If an invocation of the POSIX module fails, the property is automatically
assigned to 0.

If 0, the English names of months and days of week are used.

Default value: 1

See also: the date as string entry

year

Selects the year.

Methods

can use locale

Returns a boolean value, whether the locale information can be retrieved by calling strftime
or not.

month2str MONTH

Returns the MONTH name according to the the useLocale entry value.

make months

Returns an array of the 12 month names according to the the useLocale entry value.

day of week DAY, MONTH, YEAR, [USE FIRST DAY OF WEEK = 1]

Returns an integer value between 0 and 6, the day of week on DAY, MONTH, YEAR date.
If boolean USE FIRST DAY OF WEEK is set, the value of the firstDayOfWeek property
is taken into account, so f ex the result of 0 means that this is a Sunday shifted forward by
firstDayOfWeek days.

The switch from the Julian to the Gregorian calendar is ignored.

date as string [DAY, MONTH, YEAR]

Returns string representation of date on DAY, MONTH, YEAR according to the the use-
Locale entry property value.

date from time SEC, MIN, HOUR, M DAY, MONTH, YEAR, ...

Copies the date entry from localtime or gmtime results. This helper method allows the
following syntax:

$calendar-> date_from_time(localtime(time));

223

4.3 Prima::ComboBox

Standard combo box widget

Synopsis

use Prima qw(Application ComboBox);

my $combo = Prima::ComboBox-> new(style => cs::DropDown, items => [1 .. 10]);

$combo-> style(cs::DropDownList);

print $combo-> text;

run Prima;

Description

Provides a combo box widget that consists of an input line, a list box of possible selections, and
an eventual drop-down button. The combo box can be either in the form of a drop-down list that
can be shown and hidden or in a form where the selection list is always visible.

The combo box is a grouping widget and contains neither painting nor user input code by
itself. All such functionality is delegated to the children widgets: input line, list box, and drop
button. Prima::ComboBox exports a fixed list of methods and properties from the namespaces
of the Prima::InputLine section and the Prima::ListBox section. It is possible to tweak the
Prima::ComboBox (using its the editClass entry and the listClass entry create-only properties)
so the input line and list box widgets can be instantiated from other classes. The list of exported
names is stored in package variables %listProps, %editProps, and %listDynas. These are also
described in the the Exported names entry section.

The module defines the cs:: package for the constants used by the the style entry property.

API

Properties

autoHeight BOOLEAN

If 1, adjusts the height of the widget automatically when its font changes. Only for styles
not equal to cs::Simple.

Default value: 1

buttonClass STRING

Assigns the drop-down button class.

Create-only property.

Default value: Prima::Widget

buttonDelegations ARRAY

Assigns the list of delegated notifications to the drop-down button.

Create-only property.

buttonProfile HASH

Assigns a hash of properties passed to the drop-down button during the creation.

Create-only property.

224

caseSensitive BOOLEAN

Selects whether the user input is case-sensitive or not, when a value is picked from the
selection list.

Default value: 0

editClass STRING

Assigns the input line class.

Create-only property.

Default value: Prima::InputLine

editProfile HASH

Assigns a hash of properties passed to the input line during the creation.

Create-only property.

editDelegations ARRAY

Assigns the list of delegated notifications to the input line.

Create-only property.

editHeight INTEGER

Selects the height of the input line.

items ARRAY

Proxy of the list widget’s items property. See the Prima::Lists section for details.

listClass STRING

Assigns the list box class.

Create-only property.

Default value: Prima::ListBox

listHeight INTEGER

Selects the height of the list box widget.

Default value: 100

listVisible BOOLEAN

Sets whether the list box is visible or not. Not writable when the style is cs::Simple.

listProfile HASH

Assigns a hash of properties passed to the list box during the creation.

Create-only property.

listDelegations ARRAY

Assigns the list of delegated notifications to the list box.

Create-only property.

literal BOOLEAN

Selects whether the combo box user input routine should assume that the list box contains lit-
eral strings, that can be fetched via get item text (see the Prima::Lists section). An exam-
ple when this property is set to 0 is Prima::ColorComboBox from the the Prima::ComboBox
section package.

Default value: 1

225

style INTEGER

Selects one of three styles of the combo box:

cs::Simple

The list box is always visible, but the drop-down button is not.

cs::DropDown

The list box is not visible, but the drop-down button is. When the user presses the
drop-down button, the list box is shown; when the list-box is defocused, it gets hidden.

cs::DropDownList

Same as cs::DropDown but the user is restricted in selection: the input line can only
accept user input that is present in the list box. If the literal entry is set to 1, the
auto-completion feature is provided.

text STRING

Alias of the input line’s text property.

Events

Change

Triggered the value is changed.

List events

ComboBox forwards SelectItem and DrawItem events from the list box, and these are
executed in the List’s context (therefore $self there is not ComboBox, but the ComboBox-
>List).

See more in the Prima::Lists section.

Exported names

%editProps

alignment autoScroll text text

charOffset maxLen insertMode firstChar

selection selStart selEnd writeOnly

copy cut delete paste

wordDelimiters readOnly passwordChar focus

select_all

%listProps

focusedItem hScroll

integralHeight items itemHeight

topItem vScroll gridColor

multiColumn offset

%listDynas

onDrawItem

onSelectItem

226

4.4 Prima::DetailedList

Multi-column list viewer with controlling header widget

Synopsis

use Prima::DetailedList;

use Prima qw(DetailedList Application);

my $l = Prima::DetailedList->new(

columns => 2,

headers => [’Column 1’, ’Column 2’],

items => [

[’Row 1, Col 1’, ’Row 1, Col 2’],

[’Row 2, Col 1’, ’Row 2, Col 2’]

],

);

$l-> sort(1);

run Prima;

Description

Prima::DetailedList is a descendant of Prima::ListViewer and as such also provides a certain level
of abstraction. It overloads the format of the items entry in order to support multi-column (2D
) cell span. It also inserts the Prima::Widget::Header section widget on top of the list so that the
user can interactively move, resize, and sort the content of the list. The sorting mechanism is also
realized inside the package; it can be activated by the mouse click on a header tab.

Since the class inherits from Prima::ListViewer, some functionality, like ’item search by key’,
or get item text method can not operate on 2D lists. Therefore, the the mainColumn entry
property is introduced, that selects the column representing the textual data.

API

Events

Sort COLUMN, DIRECTION

Called inside the the sort entry method to facilitate custom sorting algorithms. If the
callback procedure is willing to sort by COLUMN index, then it must call clear event to
signal that the event flow must stop. The DIRECTION is a boolean flag, specifying whether
the sorting must be performed in ascending (1) or descending (0) order.

The callback procedure must operate on the internal storage of {items}, which is an array
of arrays of scalars.

The default action is the literal sorting algorithm where the precedence is arbitrated by the
cmp operator (see Equality Operators in perlop) .

227

Properties

aligns ARRAY

An array of the ta:: align constants where each defines the column alignment. If an item
in the array is undef, it means that the value of the align property must be used.

columns INTEGER

Manages the number of columns in the items entry. If set-called, and the new number is
different from the old number, both the items entry and the headers entry are restructured.

Default value: 0

headerClass

Assigns the header class.

Create-only property.

Default value: Prima::Widget::Header

headerProfile HASH

Assigns a hash of properties passed to the header widget during the creation.

Create-only property.

headerDelegations ARRAY

Assigns list of delegated notifications to the header widget.

Create-only property.

headers ARRAY

An array of strings passed to the header widget as column titles.

items ARRAY

An array of arrays of scalars of any kind. The default behavior, however, assumes that the
scalars are strings. The data direction is from left to right and from top to bottom.

mainColumn INTEGER

Selects the column responsible for textual representation of all the data. When the user
clicks a header tab mainColumn is automatically changed to the corresponding column.

Default value: 0

Methods

sort [COLUMN]

Sorts items by the COLUMN index in ascending order. If COLUMN is not specified, sorts
by the last specified column, or by #0 if it is the first sort invocation.

If the COLUMN was specified, and the last specified column equals to COLUMN, the sort
direction is reversed.

The method does not perform sorting itself, but calls the the Sort entry notification, so that
the sorting algorithms can be customized.

228

4.5 Prima::DetailedOutline

Multi-column outline viewer with controlling header widget.

Synopsis

use Prima qw(DetailedOutline Application);

my $l = Prima::DetailedOutline->new(

columns => 2,

headers => [’Column 1’, ’Column 2’],

size => [200, 100],

items => [

[[’Item 1, Col 1’, ’Item 1, Col 2’], [

[[’Item 1-1, Col 1’, ’Item 1-1, Col 2’]],

[[’Item 1-2, Col 1’, ’Item 1-2, Col 2’], [

[[’Item 1-2-1, Col 1’, ’Item 1-2-1, Col 2’]],

]],

]],

[[’Item 2, Col 1’, ’Item 2, Col 2’], [

[[’Item 2-1, Col 1’, ’Item 2-1, Col 2’]],

]],

],

);

$l-> sort(1);

run Prima;

my $l = Prima::DetailedOutline->new(

style => ’triangle’,

...

);

Description

Prima::DetailedOutline combines the functionality of Prima::OutlineViewer and
Prima::DetailedList.

API

This class inherits all the properties, methods, and events of Prima::OutlineViewer (primary ances-
tor) and Prima::DetailedList (secondary ancestor). One new property autoRecalc is introduced,
and the items property is different enough to warrant the mention.

229

Methods

items ARRAY

Each item is represented by an arrayref with either one or two elements. The first element
is the item data, an arrayref of text strings to display. The second element, if present, is an
arrayref of children.

When using the node functionality inherited from Prima::OutlineViewer, the item data (that
is, the arrayref of text strings) is the first element of the node.

autoRecalc BOOLEAN

If this is set to a true value, the column widths will be automatically recalculated (via
autowidths) whenever a node is expanded or collapsed.

230

4.6 Prima::DockManager

Advanced dockable widgets

Description

Prima::DockManager contains classes that implement additional functionality in the dockable
widgets paradigm.

The module introduces two new dockable widget classes: Prima::DockManager::Panelbar,
a general-purpose dockable container for variable-sized widgets; and
Prima::DockManager::Toolbar, a dockable container for fixed-size command widgets, mostly
push buttons. The command widgets nested in a toolbar can also be docked.

The Prima::DockManager class is application-oriented in a way that a single of it is needed. It
is derived from Prima::Component and therefore is never visualized. The class instance is stored
in the instance property in all module classes to serve as a docking hierarchy root. Through the
document, the instance term means the Prima::DockManager class instance.

The module by itself is not enough to make a docking-aware application work effectively. The
reader is urged to look at the examples/dock.pl example code, which demonstrates the usage and
capabilities of the module.

Prima::DockManager::Toolbar

A toolbar widget class. The toolbar has a dual nature; it can both dock itself and accept dockable
widgets. As a dock, toolbars can host command widgets, mostly push buttons.

The toolbar consists of two widgets. The external dockable widget is implemented in
Prima::DockManager::Toolbar, and the internal dock in Prima::DockManager::ToolbarDocker

classes.

Properties

autoClose BOOLEAN

Selects the behavior of the toolbar when all of its command widgets are undocked. If 1
(default), the toolbar is automatically destroyed. If 0 it calls visible(0).

childDocker WIDGET

Pointer to the Prima::DockManager::ToolbarDocker instance.

See also Prima::DockManager::ToolbarDocker::parentDocker.

instance INSTANCE

Prima::DockManager instance, the docking hierarchy root.

Prima::DockManager::ToolbarDocker

An internal class, implements the dock widget for command widgets, and a client in a dockable
toolbar, a Prima::LinearDockerShuttle descendant. When its size is changed due to an eventual
rearrangement of its docked widgets, also resizes the toolbar.

Properties

instance INSTANCE

The Prima::DockManager instance, the docking hierarchy root.

231

parentDocker WIDGET

Pointer to a Prima::DockManager::Toolbar instance. When in the docked state, the
parentDocker value is always equal to owner.

See also Prima::DockManager::Toolbar::childDocker.

Methods

get extent

Calculates the minimal rectangle that encloses all docked widgets and returns its extensions.

update size

Called when the size is changed to resize the owner widget. If the toolbar is docked, the
change might result in a change of its position or docking state.

Prima::DockManager::Panelbar

The class is derived from Prima::LinearDockerShuttle, and is different only in that the instance
property is introduced, and the external shuttle can be resized interactively.

The class is to be used as a simple host to sizeable widgets. The user can dispose of the panel
bar by clicking the close button on the external shuttle.

Properties

instance INSTANCE

The Prima::DockManager instance, the docking hierarchy root.

Prima::DockManager

A binder class, contains a set of functions that groups toolbars, panels, and command widgets
together under the docking hierarchy.

The manager serves several purposes. First, it is a command state holder: the command
widgets, mostly buttons, usually are in an enabled or disabled state in different life stages of a
program. The manager maintains the enabled/disabled state by assigning each command a unique
scalar value, or a CLSID. The toolbars can be created using a set of command widgets, using
these CLSIDs. The same is valid for the panels - although they do not host command widgets,
the widgets that they do host can also be created indirectly via CLSID identifier. In addition to
CLSIDs, the commands can be grouped by sections. Both CLSID and group descriptor scalars
are defined by the programmer.

Second, the create manager method presents the standard launchpad interface that allows
the rearranging of normally non-dockable command widgets, by presenting a full set of available
commands to the user as icons. Dragging the icons to toolbars, dock widgets, or merely outside
the configuration widget automatically creates the corresponding command widget. The notable
moment here is that the command widgets are not required to know anything about dragging and
docking; any Prima::Widget descendant can be used as a command widget.

Third, it helps maintain the toolbars’ and panels’ visibility when the main window is hidden
or restored. The windowState method hides or shows the toolbars and panels effectively.

Fourth, it serves as a docking hierarchy root. All docking sessions start their protocol inter-
actions at a Prima::DockManager object, which although does not provide docking capabilities
itself (it is a Prima::Component descendant), redirects the docking requests to the children dock
widgets.

Finally, it provides several helper methods and notifications and enforces the use of the
fingerprint property by all dockable widgets. The module defines the following fingerprint
dmfp::XXX constants:

232

fdmp::Tools (0x0F000) - dock the command widgets

fdmp::Toolbar (0x10000) - dock the toolbars

fdmp::LaunchPad (0x20000) - allows widgets recycling

All this functionality is demonstrated in examples/dock.pl example.

Properties

commands HASH

A hash of boolean values with keys of CLSID scalars, where if the value is 1, the command
is available and is disabled otherwise. Changes to this property are reflected in the visible
command widgets, which are enabled or disabled immediately. Also, the CommandChange

notification is triggered.

fingerprint INTEGER

The property is read-only, and always returns 0xFFFFFFFF, to allow landing to all dockable
widgets. In case a finer granulation is needed, the default fingerprint values of toolbars
and panels can be reset.

interactiveDrag BOOLEAN

If 1, the command widgets can be interactively dragged, created, and destroyed. This
property is usually operated together with the create manager launchpad widget. If 0, the
command widgets cannot be dragged.

Default value: 0

Methods

activate

Brings to front all toolbars and panels. To be used inside a callback code of a main window,
that has the toolbars and panels attached to:

onActivate => sub { $dock_manager-> activate }

auto toolbar name

Returns a unique name for an automatically created toolbar, like Toolbar1, Toolbar2 etc.

commands enable BOOLEAN, @CLSIDs

Enables or disables commands from CLSIDs array. The changes are reflected in the visible
command widgets, which are enabled or disabled immediately. Also, the CommandChange

notification is triggered.

create manager OWNER, %PROFILE

Inserts two widgets into OWNER with PROFILE parameters: a list box with command
section groups, displayed as items, that usually correspond to the predefined toolbar names,
and a notebook that displays the command icons. The notebook pages can be interactively
selected by the list box navigation.

The icons dragged from the notebook, behave as dockable widgets: they can be landed
on a toolbar, or any other dock widget, given it matches the fingerprint (by default
dmfp::LaunchPad|dmfp::Toolbar|dmfp::Tools). dmfp::LaunchPad constant allows the re-
cycling; if a widget is dragged back onto the notebook, it is destroyed.

Returns the two widgets created, the list box and the notebook.

PROFILE recognizes the following keys:

233

origin X, Y

Position where the widgets are to be inserted. The default value is 0,0.

size X, Y

Size of the widget insertion area. By default, the widgets occupy all OWNER interiors.

listboxProfile PROFILE

Custom parameters passed to the list box.

dockerProfile PROFILE

Custom parameters passed to the notebook.

create panel CLSID, %PROFILE

Spawns a dockable panel from a previously registered CLSID. PROFILE recognizes the
following keys:

profile HASH

A hash of parameters passed to the new() method of the panel widget class. Before
passing it is merged with the set of parameters registered by register panel. The
profile hash takes precedence.

dockerProfile HASH

Contains extra options passed to the Prima::DockManager::Panelbar widget. Before
passing it is merged with the set of parameters registered by register panel.

Note: The dock key contains a reference to the desired dock widget. If dock is set to
undef, the panel is created in the non-docked state.

Example:

$dock_manager-> create_panel($CLSID,

dockerProfile => { dock => $main_window }},

profile => { backColor => cl::Green });

create tool OWNER, CLSID, X1, Y1, X2, Y2

Inserts a command widget, previously registered with a CLSID by register tool, into
OWNER widget at X1 - Y2 coordinates. For automatic maintenance of enabled/disabled
states of command widgets, OWNER is expected to be a toolbar. If it is not, the maintenance
must be performed separately, for example, by reacting to the CommandChange event.

create toolbar %PROFILE

Creates a new toolbar of the Prima::DockManager::Toolbar class. The following PROFILE
options are recognized:

autoClose BOOLEAN

Manages the autoClose property of the toolbar.

The default value is 1 if the name option is set, and 0 otherwise.

dock DOCK

Contains a reference to the desired DOCK widget. If undef, the toolbar is created in
the non-docked state.

dockerProfile HASH

Parameters passed to Prima::DockManager::Toolbar as creation properties.

Note: The dock key contains a reference to the desired dock widget. If dock is set to
undef, the panel is created in the non-docked state.

234

rect X1, Y1, X2, Y2

Manages geometry of the Prima::DockManager::ToolbarDocker instance in the dock
widget (if docked) or the screen (if non-docked) coordinates.

toolbarProfile HASH

Parameters passed to Prima::DockManager::ToolbarDocker as properties.

vertical BOOLEAN

Sets the vertical property of the toolbar.

visible BOOLEAN

Selects the visibility state of the toolbar.

get class CLSID

Returns a class record hash, registered under a CLSID, or undef if the class is not registered.
The hash format contains the following keys:

class STRING

Widget class

profile HASH

Creation parameters passed to new when the corresponding widget is instantiated.

tool BOOLEAN

If 1, the class belongs to a control widget. If 0, the class represents a panel client widget.

lastUsedDock DOCK

Saved value of the last used dock widget

lastUsedRect X1, Y1, X2, Y2

Saved coordinates of the widget

panel by id CLSID

Returns reference to the panel widget represented by CLSID scalar, or undef if none is
found.

panel menuitems CALLBACK

A helper function; maps all panel names into a structure, ready to feed into the
Prima::AbstractMenu::items property (see the Prima::Menu section). The action mem-
ber of the menu item record is set to the CALLBACK scalar.

panel visible CLSID, BOOLEAN

Sets the visibility of a panel referred to by the CLSID scalar. If VISIBLE is 0, the panel is
destroyed; if 1, a new panel instance is created.

panels

Returns all visible panel widgets in an array.

predefined panels CLSID, DOCK, [CLSID, DOCK, ...]

Accepts pairs of scalars, where each first item is a panel CLSID and the second is the default
dock widget. Checks for the panel visibility and creates the panels that are not visible.

The method is useful in a program startup, when some panels have to be visible from the
beginning.

predefined toolbars @PROFILES

Accepts an array of hashes where each array item describes a toolbar and a default set of
command widgets. Checks for the toolbar visibility and creates the toolbars that are not
visible.

The method recognizes the following PROFILES options:

235

dock DOCK

The default dock widget.

list ARRAY

An array of CLSIDs corresponding to the command widgets to be inserted into the
toolbar.

name STRING

Selects the toolbar name.

origin X, Y

Selects the toolbar position relative to the dock (if dock is specified) or to the screen
(if dock is not specified).

The method is useful in program startup, when some panels have to be visible from the
beginning.

register panel CLSID, PROFILE

Registers a panel client class and set of parameters to be associated with a CLSID scalar.
PROFILE must contain the following keys:

class STRING

Client widget class

text STRING

A string of text displayed in the panel title bar

dockerProfile HASH

A hash of parameters passed to Prima::DockManager::Panelbar.

profile

A hash of parameters passed to the client widget.

register tool CLSID, PROFILE

Registers a control widget class and set of parameters to be associated with a CLSID scalar.
PROFILE must contain the following keys:

class STRING

Client widget class

profile HASH

A hash of parameters passed to the control widget.

toolbar by name NAME

Returns a reference to the toolbar of NAME, or undef if none is found.

toolbar menuitems CALLBACK

A helper function; maps all toolbar names into a structure, ready to feed into the
Prima::AbstractMenu::items property (see the Prima::Menu section). The action mem-
ber of the menu item record is set to the CALLBACK scalar.

toolbar visible TOOLBAR, BOOLEAN

Sets the visibility of a TOOLBAR. If VISIBLE is 0, the toolbar is hidden; if 1, it is shown.

toolbars

Returns all toolbar widgets in an array.

236

windowState INTEGER

Mimics interface of Prima::Window::windowState, and maintains visibility of toolbars and
panels. If the parameter is ws::Minimized, the toolbars and panels are hidden. On any
other parameter, these are shown.

To be used inside a callback code of a main window, that has the toolbars and panels attached
to:

onWindowState => sub { $dock_manager-> windowState($_[1]) }

Events

Command CLSID

A generic event triggered by a command widget when the user activates it. It can also be
called by other means.

CLSID is the widget identifier.

CommandChange

Called when the commands property changes or the commands enable method is invoked.

PanelChange

Triggered when a panel is created or destroyed by the user.

ToolbarChange

Triggered when a toolbar is created, shown, gets hidden, or destroyed by the user.

Prima::DockManager::S::SpeedButton

The package simplifies the creation of Prima::SpeedButton command widgets.

Methods

class IMAGE, CLSID, %PROFILE

Builds a hash with parameters, ready to feed to Prima::DockManager::register tool for
registering a combination of the Prima::SpeedButton class and the PROFILE parameters.

IMAGE is the path to an image file, loaded and stored in the registration hash. IMAGE
provides an extended syntax for selecting the frame index if the image file is multiframed:
the frame index is appended to the path name with the : character prefix.

CLSID scalar is not used but is returned so the method result can directly be passed into
the register tool method.

Returns two scalars: CLSID and the registration hash.

Example:

$dock_manager-> register_tool(

Prima::DockManager::S::SpeedButton::class("myicon.gif:2",

q(CLSID::Logo), hint => ’Logo image’));

237

4.7 Prima::Docks

Dockable widgets

Description

The module contains a set of classes and an implementation of the dockable widgets interface.
The interface assumes two parties, the dockable widget, and the dock widget; the generic methods
for the dock widget class are contained in the Prima::AbstractDocker::Interface package.

Usage

A dockable widget is required to take particular steps before it may land on a dock widget. It
needs to talk to the dock and find out if it is allowed to land, or if the dock contains children
dock widgets that might suit better for the docking. If there’s more than one dock widget in
the program, the dockable widget can select between the targets; this is especially actual when
a dockable widget is dragged by the mouse and the landing arbitration is based on geometrical
distance.

The interface implies that there exists at least one tree-like hierarchy of dock widgets, linked up
to a root dock widget. The hierarchy is not required to follow parent-child relationships although
this is the default behavior. All dockable widgets are expected to know explicitly what hierarchy
tree they wish to dock to. Prima::InternalDockerShuttle introduces the dockingRoot property
for this purpose.

The conversation between parties starts when a dockable widget calls the open sessionmethod
of the dock. The dockable widget passes a set of parameters signaling if the widget is ready to
change its size in case the dock widget requires so, and how. The open session method can either
refuse or accept the widget. In case of the positive answer from open session, the dockable widget
calls the query method, which either returns a new rectangle or another dock widget. In the latter
case, the caller can enumerate all available dock widgets by repetitive calls to the next docker

method. The session is closed by a close session call; after that, the widget is allowed to land
by setting its owner to the dock widget, the rect property to the negotiated position and size,
and finally calling the dock method.

The open session/close session brackets cache all necessary calculations once, making the
query call as light as possible. This design allows a dockable widget when dragged, to repeatedly
ask all reachable docks in an optimized way. The docking sessions are kept open until the drag
session is finished.

The conversation can be schematized in the following code:

my $dock = $self-> dockingRoot;

my $session_id = $dock-> open_session({ self => $self });

return unless $session_id;

my @result = $dock-> query($session_id, $self-> rect);

if (4 == scalar @result) { # new rectangle is returned

if (..... is new rectangle acceptable ? ...) {

$dock-> close_session($session_id);

$dock-> dock($self);

return;

}

} elsif (1 == scalar @result) { # another dock returned

my $next = $result[0];

while ($next) {

if (... is new docker acceptable?) {

$dock-> close_session($session_id);

$next-> dock($self);

238

return;

}

$next = $dock-> next_docker($session_id, $self-> origin);

}

}

$dock-> close_session($session_id);

Since even the simplified code is quite cumbersome, direct calls to open session are rare.
Instead, Prima::InternalDockerShuttle implements the find docking method which performs
the arbitration automatically and returns the appropriate dock widget.

Prima::InternalDockerShuttle is the class that implements the dockable widget function-
ality. It also provides a top-level window-like wrapper widget for the dockable widget that hosts
the widget automatically if it is not docked. By default, Prima::ExternalDockerShuttle is used
as the wrapper widget class.

It is not required, however, to use either Prima::InternalDockerShuttle or
Prima::AbstractDocker::Interface to implement a dockable widget; the only requirement is
to respect the open session/close session protocol.

The full hierarchy of widgets participating in the mechanism is as follows:

Prima::AbstractDocker::Interface

Prima::SimpleWidgetDocker

Prima::ClientWidgetDocker

Prima::LinearWidgetDocker

Prima::SingleLinearWidgetDocker

Prima::FourPartDocker

Prima::InternalDockerShuttle

Prima::LinearDockerShuttle

Prima::ExternalDockerShuttle

All docker widget classes are derived from Prima::AbstractDocker::Interface. De-
pending on the specialization, they employ more or less sophisticated schemes for arrang-
ing dockable widgets inside themselves. The most complicated scheme is implemented in
Prima::LinearWidgetDocker; it does not allow children to overlap, can rearrange the children,
and resize itself when a widget is docked or undocked.

The package provides only basic functionality. Module Prima::DockManager provides common
dockable controls, - toolbars, panels, speed buttons, etc. based on the Prima::Docks module. See
the Prima::DockManager section.

Prima::AbstractDocker::Interface

Implements generic functionality of a docket widget. The class is not derived from Prima::Widget;
is used as a secondary ascendant class for the dock widget classes.

Properties

Since the class is not a Prima::Object descendant, it provides only run-time implementation of
its properties. It is up to the descendant object whether the properties are recognized during the
creation stage or not.

fingerprint INTEGER

A custom bit mask used by docking widgets to reject inappropriate dock widgets at an early
stage. The fingerprint property is not a part of the protocol and is not required to be
present in the implementation of a dockable widget.

Default value: 0x0000FFFF

239

dockup DOCK WIDGET

Selects the upper link in the dock widgets hierarchy tree. The upper link is required to be a
dock widget but is not required to be a direct or an indirect parent. In this case, however,
the maintenance of the link must be implemented separately, for example:

$self-> dockup($upper_dock_not_parent);

$upper_dock_not_parent-> add_notification(’Destroy’, sub {

return unless $_[0] == $self-> dockup;

undef $self-> {dockup_event_id};

$self-> dockup(undef);

}, $self);

$self-> {destroy_id} = $self-> add_notification(’Destroy’, sub {

$self-> dockup(undef);

} unless $self-> {destroy_id};

Methods

add subdocker SUBDOCK

Appends SUBDOCK to the list of children docker widgets. The items of the list are returned
by the next docker method.

check session SESSION

A debugging procedure. Checks SESSION hash, and warns if its members are invalid or
incomplete. Returns 1 if no fatal errors were encountered; 0 otherwise.

close session SESSION

Closes docking SESSION and frees the associated resources.

dock WIDGET

Called after WIDGET successfully finished negotiations with the dock widget and changed
its owner property. The method adapts the dock widget layout and lists the WIDGET into
the list of docked widgets. The method does not change the owner property of the WIDGET.

The method must not be called directly.

dock bunch @WIDGETS

Effectively docks set of WIDGETS by updating internal structures and calling rearrange.

docklings

Returns an array of docked widgets

next docker SESSION, [X, Y]

Enumerates children docker widgets inside the SESSION; returns one docker widget at a
time. After the last widget returns undef.

The enumeration pointer is reset by the query call.

X and Y are the coordinates of the point of interest.

open session PROFILE

Opens a new docking session with parameters stored in the PROFILE hash. Returns a
session ID scalar in case of success, or undef otherwise. The following keys must be set in
PROFILE:

240

position ARRAY

Contains two integer coordinates of the desired position of a widget in (X,Y) format in
the screen coordinate system.

self WIDGET

The widget that is about to dock.

sizeable ARRAY

Contains two boolean flags, representing if the widget can be resized to an arbitrary
size, horizontally and vertically. The arbitrary resize option is used as a last resort if
the sizes key does not contain the desired size.

sizeMin ARRAY

Two integers; the minimal size that the widget can accept.

sizes ARRAY

Contains an array of points in the (X,Y) format; each point represents an acceptable
widget size. If both of the sizeable flags are set to 0 and none of the sizes can be
accepted by the dock widget, open session fails.

query SESSION [X1, Y1, X2, Y2]

Checks if a dockable widget can be landed on the dock. If it can, returns a rectangle that the
widget must be set to. If coordinates (X1 .. Y2) are specified, returns the rectangle closest
to these. If sizes or sizeable keys of the open session profile were set, the returned size
might be different from the current docking widget size.

Once the caller finds the result appropriate, it is allowed to reparent under the dock; after
that, it must change its origin and size correspondingly to the result, and then call dock.

If the dock cannot accept the widget but contains children dock widgets, returns the first
child widget. The caller can use subsequent calls to next docker to enumerate all the
children docks. A call to query resets the internal enumeration pointer.

If the widget may not be landed, an empty array is returned.

rearrange

Effectively re-docks all the docked widgets. The effect is as same as of

$self-> redock_widget($_) for $self-> docklings;

but usually rearrange is faster.

redock widget WIDGET

Effectively re-docks the docked WIDGET. If WIDGET has a redock method in its names-
pace, it is called instead.

remove subdocker SUBDOCK

Removes SUBDOCK from the list of children docker widgets. See also the add subdocker
entry.

replace FROM, TO

Assigns the widget TO the same owner and size as FROM. The FROM widget must be a
docked widget.

undock WIDGET

Removes WIDGET from the list of docked widgets. The layout of the dock widget can be
changed after the execution of this method. The method does not change the owner property
of WIDGET.

The method must not be called directly.

241

Prima::SimpleWidgetDocker

A simple dock widget; accepts any widget that geometrically fits into it. Allows overlapping of
the docked widgets.

Prima::ClientWidgetDocker

A simple dock widget; accepts any widget that can cover all dock’s interior.

Prima::LinearWidgetDocker

A toolbar-like docking widget class. The implementation does not allow tiling but can reshape
the dock widget and rearrange the docked widgets if necessary.

Prima::LinearWidgetDocker is orientation-dependent; its main axis, managed by the
vertical property, aligns the docked widgets in ’lines’, which in turn are aligned by the opposite
axis (’major’ and ’minor’ terms are used in the code for the axes).

Properties

growable INTEGER

A combination of the grow::XXX constants that describes how the dock widget can be
resized. The constants are divided into two sets, direct and indirect, or, vertical property
independent and dependent.

The first set contains explicitly named constants:

grow::Left grow::ForwardLeft grow::BackLeft

grow::Down grow::ForwardDown grow::BackDown

grow::Right grow::ForwardRight grow::BackRight

grow::Up grow::ForwardUp grow::BackUp

that select if the widget can grow in the direction shown. These do not change meaning
when vertical changes, though they do change the dock widget behavior. The second set
does not affect dock widget behavior when vertical changes, however, the names are not
that illustrative:

grow::MajorLess grow::ForwardMajorLess grow::BackMajorLess

grow::MajorMore grow::ForwardMajorMore grow::BackMajorMore

grow::MinorLess grow::ForwardMinorLess grow::BackMinorLess

grow::MinorMore grow::ForwardMinorMore grow::BackMinorMore

The Forward and Back prefixes select if the dock widget can be respectively expanded or
shrunk in the given direction. Less and More are equivalent to Left and Right when
vertical is 0, and to Up and Down otherwise.

The use of constants from the second set is preferred.

Default value: 0

hasPocket BOOLEAN

A boolean flag, affects the possibility of a docked widget to reside outside the dock widget
inferior. If 1, a docked widget is allowed to stay docked (or dock into a position) further
on the major axis (to the right when vertical is 0, up otherwise) as if there’s a ’pocket’.
If 0, a widget is neither allowed to dock outside the inferior nor is allowed to stay docked
(and is undocked automatically) when the dock widget shrinks so that the docked widget
cannot stay in the dock boundaries.

Default value: 1

242

vertical BOOLEAN

Selects the major axis of the dock widget. If 1, it is vertical, horizontal otherwise.

Default value: 0

Events

Dock

Called when the dock method is successfully finished.

DockError WIDGET

Called when the dock method is unsuccessfully finished. This only happens if WIDGET
does not follow the docking protocol, and inserts itself into a non-approved area.

Undock

Called when undock is finished.

Prima::SingleLinearWidgetDocker

Descendant of Prima::LinearWidgetDocker. In addition to the constraints introduced by the
ascendant class, Prima::SingleLinearWidgetDocker allows only one row (or column, depending
on the vertical property value) of docked widgets.

Prima::FourPartDocker

Implementation of a docking widget that hosts four children docker widgets on its sides and one
in the center. All of the children docks can grow and shrink automatically so that the whole setup
has an effect as if the dock borders are dynamic.

Properties

indents ARRAY

Contains four integers specifying the breadth of offset for each side. The first integer is the
width of the left side, the second - the height of the bottom side, the third is the width of
the right side, and the fourth - height of the top side.

dockerClassLeft STRING

Assigns the class of the left-side dock window.

Default value: Prima::LinearWidgetDocker. Create-only property.

dockerClassRight STRING

Assigns the class of the right-side dock window.

Default value: Prima::LinearWidgetDocker. Create-only property.

dockerClassTop STRING

Assigns the class of the top-side dock window.

Default value: Prima::LinearWidgetDocker. Create-only property.

dockerClassBottom STRING

Assigns the class of the bottom-side dock window.

Default value: Prima::LinearWidgetDocker. Create-only property.

243

dockerClassClient STRING

Assigns the class of the center dock window.

Default value: Prima::ClientWidgetDocker. Create-only property.

dockerProfileLeft HASH

Assigns a hash of properties, passed to the left-side dock widget during the creation.

Create-only property.

dockerProfileRight HASH

Assigns a hash of properties, passed to the right-side dock widget during the creation.

Create-only property.

dockerProfileTop HASH

Assigns a hash of properties, passed to the top-side dock widget during the creation.

Create-only property.

dockerProfileBottom HASH

Assigns a hash of properties, passed to the bottom-side dock widget during the creation.

Create-only property.

dockerProfileClient HASH

Assigns a hash of properties, passed to the center dock widget during the creation.

Create-only property.

dockerDelegationsLeft ARRAY

Assigns delegated notifications of the left-side dock.

Create-only property.

dockerDelegationsRight ARRAY

Assigns delegated notifications of the right-side dock.

Create-only property.

dockerDelegationsTop ARRAY

Assigns delegated notifications of the top-side dock.

Create-only property.

dockerDelegationsBottom ARRAY

Assigns delegated notifications of the bottom-side dock.

Create-only property.

dockerDelegationsClient ARRAY

Assigns delegated notifications of the bottom-side dock.

Create-only property.

dockerCommonProfile HASH

Assigns a hash of properties, passed to all the five dock widgets during the creation.

Create-only property.

244

Prima::InternalDockerShuttle

The class provides a container, or a ’shuttle’, for a client widget, while is docked to a
Prima::AbstractDocker::Interface descendant instance. The functionality includes commu-
nicating with dock widgets, the user interface for dragging and interactive dock selection, and a
client widget container for the non-docked state. The latter is implemented by reparenting the
client widget to an external shuttle widget, selected by the externalDockerClass property. Both
user interfaces for the docked and the non-docked shuttle states are minimal.

The class implements dockable widget functionality, served by
Prima::AbstractDocker::Interface, and is derived from Prima::Widget.

See also: the Prima::ExternalDockerShuttle section.

Properties

client WIDGET

Provides access to the client widget, which always resides either in the internal or the external
shuttle. By default, there is no client, and any widget capable of changing its parent can be
set as one. After a widget is assigned as a client, its owner and clipOwner properties must
not be used.

Run-time only property.

dock WIDGET

Selects the dock widget that the shuttle is landed on. If undef, the shuttle is in the non-
docked state.

Default value: undef

dockingRoot WIDGET

Selects the root of the dock widgets hierarchy. If undef, the shuttle can only exist in the
non-docked state.

Default value: undef

See the Usage entry for reference.

externalDockerClass STRING

Assigns the class of the external shuttle widget.

Default value: Prima::ExternalDockerShuttle

externalDockerModule STRING

Assigns the module that contains the external shuttle widget class.

Default value: Prima::MDI (Prima::ExternalDockerShuttle is derived from Prima::MDI

).

externalDockerProfile HASH

Assigns a hash of properties, passed to the external shuttle widget during the creation.

fingerprint INTEGER

A custom bit mask used to reject inappropriate dock widgets at an early stage.

Default value: 0x0000FFFF

indents ARRAY

Contains four integers, specifying the breadth of offset in pixels for each widget side in the
docked state.

Default value: 5,5,5,5.

245

snapDistance INTEGER

A maximum offset, in pixels, between the actual shuttle coordinates and the coordinates
proposed by the dock widget, where the shuttle is allowed to land. In other words, it is the
distance between the dock and the shuttle when the latter ’snaps’ to the dock during the
dragging session.

Default value: 10

x sizeable BOOLEAN

Selects whether the shuttle can change its width in case the dock widget suggests so.

Default value: 0

y sizeable BOOLEAN

Selects whether the shuttle can change its height in case the dock widget suggests so.

Default value: 0

Methods

client2frame X1, Y1, X2, Y2

Returns the rectangle that the shuttle would occupy if its client rectangle is assigned to X1,
Y1, X2, Y2 .

dock back

Docks to the recent dock widget, if it is still available.

drag STATE, RECT, ANCHOR X, ANCHOR Y

Initiates or aborts the dragging session, depending on the STATE boolean flag.

If it is 1, RECT is an array with the coordinates of the shuttle rectangle before the session
has started; ANCHOR X and ANCHOR Y are coordinates of the aperture point where the
mouse event occurred that has initiated the session. Depending on how the drag session
ended, the shuttle can be relocated to another dock, undocked, or left intact. Also, Dock,
Undock, or FailDock notifications can be triggered.

If the STATE is 0, RECT, ANCHOR X ,and ANCHOR Y parameters are not used.

find docking DOCK, [POSITION]

Opens a session with DOCK, unless it is already opened, and negotiates about the possibility
of landing (at the POSITION if this parameter is present).

find docking caches the dock widget sessions and provides a possibility to select different
parameters passed to open session for different dock widgets. To achieve this, the GetCaps
request notification is triggered, which is expected to fill the parameters. The default action
sets the sizeable option according to the x sizeable and y sizeable properties.

In case an appropriate landing area is found, the Landing notification is triggered with the
proposed dock widget and the target rectangle. The area can be rejected at this stage if
Landing returns a negative answer.

On success, returns a dock widget found and the target rectangle; the widget is not docked
though. On failure returns an empty array.

This method is used by the mouse dragging routine to provide visual feedback to the user,
to indicate that a shuttle may or may not land in a particular area.

frame2client X1, Y1, X2, Y2

Returns the rectangle that the client would occupy if the shuttle rectangle is assigned to X1,
Y1, X2, Y2 .

246

redock

Undocks from the dock widget and immediately tries to land back. If not docked, does not
do anything.

Events

Dock

Called when the shuttle was docked.

EDSClose

Triggered when the user presses the close button or otherwise activates the close func-
tion of the EDS (external docker shuttle) pseudo-window. To cancel the window closing
clear event must be called inside the event handler.

FailDock X, Y

Called after the dragging session in the non-docked stage was finished but did not result in
docking. X and Y are the coordinates of the new external shuttle position.

GetCaps DOCK, PROFILE

Called before the shuttle opens a docking session with the DOCK widget. PROFILE is a
hash reference, which is to be filled inside the event handler. After that PROFILE is passed
to an open session call.

The default action sets the sizeable option according to the x sizeable and y sizeable

properties.

Landing DOCK, X1, Y1, X2, Y2

Called inside the docking session, after an appropriate dock widget is selected and the land-
ing area is defined as X1, Y1, X2, Y2. To reject the landing on either DOCK or area,
clear event must be called.

Undock

Called when the shuttle is switched to the non-docked state.

Prima::ExternalDockerShuttle

A shuttle class, hosts a client of the Prima::InternalDockerShuttle widget when it is in the
non-docked state. The widget is a pseudo-window with some minimal decorations that can be
moved, resized (this feature is not on by default though), and closed.

Prima::ExternalDockerShuttle is inherited from the Prima::MDI class, and its window-
emulating functionality is a subset of its ascendant. See also the Prima::MDI section.

Properties

shuttle WIDGET

Contains the reference to the dockable WIDGET

Prima::LinearDockerShuttle

A simple descendant of Prima::InternalDockerShuttle, used for toolbars. Introduces orienta-
tion and draws a tiny header along the minor shuttle axis.

247

Properties

headerBreadth INTEGER

The breadth of the header in pixels.

Default value: 8

indent INTEGER

A wrapper to the indents property; besides the space for the header, all indents are assigned
to the indent property value.

vertical BOOLEAN

If 1, the shuttle is drawn as a vertical bar. If 0, the shuttle is drawn as a horizontal bar.

Default value: 0

248

4.8 Prima::Edit

Standard text editor

Synopsis

use Prima qw(Edit Application);

my $e = Prima::Edit->new(

text => ’Hello $world’,

syntaxHilite => 1,

);

run Prima;

Description

The class provides text editing capabilities, three types of selection, text wrapping, syntax high-
lighting, auto indenting, undo and redo function, and search and replace methods.

The module declares the bt:: package that contains integer constants for the selection of block
type, used by the the blockType entry property.

Usage

The text is stored line-wise in the {lines} array; to access it use the the get line entry method.
All keyboard events except the character input and tab keys are processed by the accelerator

table (see the Prima::Menu section). The default accelItems table defines names, keyboard
combinations, and the corresponding actions to the class functions. The class does not provide
functionality to change these mappings. To do so, consult the Prima::AccelTable entry in the
Prima::Menu section.

Coordinates

The class addresses the text space by (X,Y)-coordinates, where X is the visual cluster offset and
Y is the line number. The addressing coordinate system can be visual, physical, or logical. See
below.

Cluster shaping and word wrapping can play a role here. Consider f.ex. a text string ”offset is
zero”, that for the sake of the example can wrapped by width and displayed as two lines, ”offset”
and ”is zero”. Here, the font substitutes ”ff” text with a single ligature glyph. Here, for example,
coord(”f”) will be (0,1) in all coordinates, but coord(”z”) is not:

Physical

The X coordinate is a character offset from character line number Y. These coordinates
are identical with and without the wordWrap flag. This coordinate is used for direct text
manipulation.

Example: coord(”z”) is (0,10);

Visual

The X coordinate is a glyph cluster offset from the character line number Y. These coordi-
nates are identical with and without the wordWrap flag. This coordinate is used for cursor
and selection API.

249

Example: coord(”z”) is (0,9);

Logical

The Y coordinate is the wrapped line index. The chunkMap internal array contains addresses
in the logical coordinates. The X coordinate is a glyph cluster offset from the line start.
This coordinate is used mostly internally.

To access the text chunk-wise, use the the get chunk entry method.

Example: coord(”z”) is (1,3);

API

Events

ParseSyntax TEXT, RESULT ARRAY REF

Called when syntax highlighting is required - TEXT is a string to be parsed, and the parsing
results to be stored in RESULT ARRAY REF, which is a reference to an array of integer
pairs, each representing a single-colored text chunk. The first integer in the pairs is the
length of a chunk, the second - color value (cl::XXX constants).

Properties

autoIndent BOOLEAN

Turns the auto indenting on or off

Default value: 1

blockType INTEGER

Defines the type of selection block. Can be one of the following constants:

bt::CUA

Normal block, where the first and the last line of the selection can be partial, and the
lines between occupy the whole line. CUA stands for ’common user access’.

Default keys: Shift + arrow keys

See also: the cursor shift key entry

bt::Vertical

Rectangular block, where all selected lines are of the same offsets and lengths.

Default key: Alt+B

See also: the mark vertical entry

bt::Horizontal

Rectangular block, where the selection occupies the whole line.

Default key: Alt+L

See also: the mark horizontal entry

cursor X, Y

Selects the visual position of the cursor

cursorX X

Selects the visual horizontal position of the cursor

cursorY Y

Selects the visual vertical position of the cursor

250

cursorWrap BOOLEAN

Selects cursor behavior when moved horizontally outside the line. If 0, the cursor is not
moved. If 1, the cursor moved to the adjacent line.

See also: the cursor left entry, the cursor right entry, the word left entry, the word right
entry.

insertMode BOOLEAN

Set the typing mode - if 1, the typed text is inserted, if 0, the new text overwrites the old
text. When insertMode is 0, the cursor shape is thick and covers the whole character; when
1, it is of the default cursor width.

Default toggle key: Insert

hiliteNumbers COLOR

Selects the color for number highlighting

hiliteQStrings COLOR

Selects the color for highlighting the single-quoted strings

hiliteQQStrings COLOR

Selects the color for highlighting the double-quoted strings

hiliteIDs ARRAY

An array of scalar pairs that define words to be highlighted. The first item in the pair is an
array of words, and the second item is a color value.

hiliteChars ARRAY

An array of scalar pairs that define characters to be highlighted. The first item in the pair
is a string of characters, and the second item is a color value.

hiliteREs ARRAY

An array of scalar pairs that define character patterns to be highlighted. The first item in
the pair is a perl regular expression, and the second item is a color value.

Note: these are tricky. Generally, these assume that whatever is captured in (), is high-
lighted, and that capturing parentheses match from the first character onwards. So for simple
matches like (\d+) (digits) or (#.*) this works fine. Things become more interesting if
you need to check text after, or especially before the capture. For this, you need to make sure
that whatever text is matched by a regexp, it must not move the pos pointer as the regexes
are internally concatenated with the \G anchor before the actual matching takes place (i.e.
starting each time from the position the previous regex left off), and use /gc flags (advancing
pos to the match length). Advancing the pos will nullify color highlighting on the text after
the capture but before the end of the match - so you’ll need look-ahead assertions for this
type of match, (?=pattern) and (?!pattern) (see Lookaround Assertions in perlre).

For example, we have a string ABC123abc, and we want to match 123 followed by abc. This
won’t work:

hiliteREs => [

’(123)abc’,cl::LightRed,

’(abc)’, cl::LightGreen

]

while this will:

251

hiliteREs => [

’(123)(?=abc)’,cl::LightRed,

’(abc)’, cl::LightGreen

]

If you need to look behind, the corresponding assertions (?<=pattern) and
(?<!pattern) could be used, but these are even more restrictive in that they only support
fixed-width looks-behinds (NB: \K won’t work because of \G either). That way, if we
want to match 123 that follows ABC, this won’t work:

hiliteREs => [

’(ABC)’,cl::LightBlue,

’(?<=[ABC]+)(123)’,cl::LightRed,

]

while this will:

hiliteREs => [

’(ABC)’,cl::LightBlue,

’(?<=[ABC]{3})(123)’,cl::LightRed,

]

mark MARK [BLOCK TYPE]

Selects block marking state. If MARK is 1, starts the block marking, if 0 - stops the block
marking. When MARK is 1, BLOCK TYPE can be used to set the selection type (bt::XXX
constants). If BLOCK TYPE is unset the value of the blockType entry is used.

markers ARRAY

An array of arrays with integer pairs, X and Y, where each represents visual coordinates in
text. Used as anchor storage for fast navigation.

See also: the add marker entry, the delete marker entry

modified BOOLEAN

A boolean flag that shows if the text was modified. Can be used externally, to check if the
text is to be saved to a file, for example.

numLines INTEGER

Returns the number of lines

offset INTEGER

Horizontal offset of text lines in pixels.

persistentBlock BOOLEAN

Selects whether the selection is canceled as soon as the cursor is moved (0) or it persists
until the selection is explicitly changed (1).

Default value: 0

readOnly BOOLEAN

If 1, no user input is accepted. Manipulations with text are allowed though.

252

selection X1, Y1, X2, Y2

Accepts two pairs of visual coordinates, (X1,Y1) the beginning and (X2,Y2) the end of the
new selection, and sets the block according to the the blockType entry property.

The selection is null if X1 equals to X2 and Y1 equals to Y2. the has selection entry method
returns 1 if the selection is non-null.

selStart X, Y

Manages the selection start. See the selection entry, X1 and Y1.

selEnd X, Y

Manages the selection end. See the selection entry, X2 and Y2.

syntaxHilite BOOLEAN

Manages the syntax highlighting.

tabIndent INTEGER

Maps the tab (\t) key to a tabIndent number of space characters.

text TEXT

Provides access to all the text data. The lines are separated by the new line (\n) character.

See also: the textRef entry.

textDirection BOOLEAN

If set, indicates RTL text input.

textLigation BOOLEAN

If set, text may be rendered at better quality with ligation and kerning, however, that comes
with a price that some ligatures may be indivisible and form clusters (f.ex. ff orffi ligatures).
The cursor cannot be positioned inside of a cluster, and thus one can only select them, delete
them as a whole, or press Del/Backspace on the cluster’s edge.

textRef TEXT PTR

Provides access to all the text data. The lines are separated by the new line (\n) character.
TEXT PTR is a pointer to a text string.

The property is more efficient than the text entry with large text because the copying of the
text scalar to the stack is eliminated.

See also: the text entry.

topLine INTEGER

Selects the first line of the text drawn.

undoLimit INTEGER

Sets limit on the number of stored atomic undo operations. If 0, undo is disabled.

Default value: 1000

wantTabs BOOLEAN

Selects the way the tab (\t) character is recognized in the user input. If 1, it is recognized as
the verbatim Tab key with an ascii value of 0x09; however, this disallows the toolkit widget
tab-driven navigation. If 0, the tab character can be entered by pressing the Ctrl+Tab key
combination.

Default value: 0

253

wantReturns BOOLEAN

Selects the way the new line (\n) character is recognized in the user input. If 1, it is
recognized as the verbatim CR key producing newline character(s); however, this disallows
the default button activation in the toolkit. If 0, the new line character can be entered by
pressing the Ctrl+Enter key combination.

Default value: 1

wordDelimiters STRING

Contains a string of characters that are used for locating a word break. Default STRING
value consists of punctuation marks, space and tab characters, and the \xff character.

See also: the word left entry, the word right entry

wordWrap BOOLEAN

Selects whether the long lines are wrapped, or can be positioned outside the horizontal
widget borders. A line of text can be represented by more than one line of screen text (
chunk) . To access the text chunk-wise, use the the get chunk entry method.

Methods

add marker X, Y

Adds visual coordinates X,Y to the the markers entry property.

back char [REPEAT = 1]

Removes REPEAT times a character left to the cursor. If the cursor is on 0 X-position,
removes the new-line character and concatenates the two lines.

Default key: Backspace

cancel block

Removes the selection block

Default key: Alt+U

change locked

Returns 1 if the logical locking is on, and 0 if it is off.

See also the lock change entry.

copy

Copies the selected text, if any, to the clipboard.

Default key: Ctrl+Insert

copy block

Copies the selected text and inserts it into the cursor position, according to the the blockType
entry value.

Default key: Alt+C

cursor cend

Moves cursor to the last line

Default key: Ctrl+End

cursor chome

Moves cursor to the first line

Default key: Ctrl+Home

254

cursor cpgdn

Default key: Ctrl+PageDown

Moves cursor to the end of text.

cursor cpgup

Moves cursor to the beginning of text.

Default key: Ctrl+PageUp

cursor down [REPEAT = 1]

Moves cursor REPEAT times down

Default key: Down

cursor end

Moves cursor to the end of the line

Default key: End

cursor home

Moves cursor to the beginning of the line

Default key: Home

cursor left [REPEAT = 1]

Moves cursor REPEAT times left

Default key: Left

cursor right [REPEAT = 1]

Moves cursor REPEAT times right

Default key: Right

cursor up [REPEAT = 1]

Moves cursor REPEAT times up

Default key: Up

cursor pgdn [REPEAT = 1]

Moves cursor REPEAT pages down

Default key: PageDown

cursor pgup [REPEAT = 1]

Moves cursor REPEAT pages up

Default key: PageUp

cursor shift key [ACCEL TABLE ITEM]

Performs action of the cursor movement, bound to ACCEL TABLE ITEM action (defined
in accelTable or accelItems property), and extends the selection block along the cursor
movement. Not called directly.

cut

Cuts the selected text into the clipboard.

Default key: Shift+Delete

255

delete block

Removes the selected text.

Default key: Alt+D

delete char [REPEAT = 1]

Deletes REPEAT characters from the cursor position

Default key: Delete

delete line LINE ID, [LINES = 1]

Removes LINES of text at LINE ID.

delete current chunk

Removes the chunk (or line, if the wordWrap entry is 0) at the cursor.

Default key: Ctrl+Y

delete chunk CHUNK ID, [CHUNKS = 1]

Removes CHUNKS (or lines, if the wordWrap entry is 0) of text at CHUNK ID

delete marker INDEX

Removes marker INDEX in the the markers entry list.

delete to end

Removes the text to the end of the chunk.

Default key: Ctrl+E

delete text X, Y, TEXT LENGTH

Removes TEXT LENGTH characters at X,Y physical coordinates

draw colorchunk CANVAS, LINE ID, X, Y, COLOR

Paints the syntax-highlighted chunk taken from LINE ID line index, at X, Y. COLOR is
used if the syntax highlighting information contains cl::Fore as a color reference.

end block

Stops the block selection session.

find SEARCH STRING, [X = 0, Y = 0, REPLACE LINE = ”, OPTIONS]

Tries to find (and, if REPLACE LINE is defined, to replace with) SEARCH STRING
starting from (X,Y) physical coordinates. OPTIONS is an integer that is a combination of
the fdo:: constants; the same constants are used in the Prima::Dialog::FindDialog section,
which provides a graphic interface to the find and replace facilities of this class.

Returns X1, Y, X2, NEW STRING where X1.Y-X2.Y are physical coordinates of the string
found, and NEW STRING is the replaced version (if any)

fdo::MatchCase

If set, the search is case-sensitive.

fdo::WordsOnly

If set, SEARCH STRING must constitute the whole word.

fdo::RegularExpression

If set, SEARCH STRING is a regular expression.

fdo::BackwardSearch

If set, the search direction is backward.

256

fdo::ReplacePrompt

Not used in the class, however, used in the Prima::Dialog::FindDialog section.

See also: examples/editor.pl

get chunk CHUNK ID

Returns the chunk of text, located at CHUNK ID. Returns an empty string if the chunk is
nonexistent.

get chunk cluster length CHUNK ID

Return the length of a chunk in clusters

get chunk dimension CHUNK ID

Finds the line number the CHUNK ID belongs to, and returns the first chunk of that line
and how many chunks the line consists of.

get chunk width TEXT, FROM, LENGTH, [RETURN TEXT PTR]

Returns the width in pixels of substr(TEXT, FROM, LENGTH). If FROM is larger than
the length of TEXT, TEXT is padded with the space characters. Tab character in TEXT
replaced to the tabIndent entry times space character. If the RETURN TEXT PTR pointer
is specified, the converted TEXT is stored there.

get line INDEX

Returns the line of text located at INDEX. Returns an empty string if the line is nonexistent.

get line cluster length LINE ID

Return the length of the line in clusters

get line dimension INDEX

Returns two integers representing the line at INDEX in the the wordWrap entry mode:
the first value is the corresponding chunk index, and the second is how many chunks are
contained in the line.

See also: the physical to logical entry.

get selected text

Return the currently selected text.

has selection

Returns a boolean value, indicating if the selection block is active.

insert empty line LINE ID, [REPEAT = 1]

Inserts REPEAT empty lines at LINE ID.

insert line LINE ID, @TEXT

Inserts @TEXT strings at LINE ID

insert text TEXT, [HIGHLIGHT = 0]

Inserts TEXT at the cursor position. If HIGHLIGHT is set to 1, the selection block is
canceled and the newly inserted text is selected.

lock change BOOLEAN

Increments (1) or decrements (0) lock count. Used to defer change notification in multi-
change calls. When the internal lock count hits zero, the Change notification is called.

257

physical to logical X, Y

Maps visual X,Y coordinates to the logical coordinate system. Returns the same values
when the wordWrap entry is 0.

logical to physical X, Y

Maps logical X,Y coordinates to the physical text offset relative to the Y line

Returns the same values when the wordWrap entry is 0.

logical to visual X, Y

Maps logical X,Y coordinates to the visual coordinate system.

Returns the same values when the wordWrap entry is 0.

visual to physical X, Y

Maps visual X,Y coordinates to the physical text offset relative to the Y line

Returns the same X when the line does not contain any right-to-left (RTL) characters or
complex glyphs.

physical to visual X, Y

Maps test offset X from line Y to the visual X coordinate.

Returns the same X when the line does not contain any right-to-left (RTL) characters or
complex glyphs.

mark horizontal

Starts block marking session with the bt::Horizontal block type.

Default key: Alt+L

mark vertical

Starts block marking session with the bt::Vertical block type.

Default key: Alt+B

overtype block

Copies the selected text and overwrites the text next to the cursor position, according to
the the blockType entry value.

Default key: Alt+O

paste

Copies text from the clipboard and inserts it at the cursor position.

Default key: Shift+Insert

realize panning

Performs deferred widget panning, activated by setting {delayPanning} to 1. The deferred
operations are those performed by the offset entry and the topLine entry.

set line LINE ID, TEXT, [OPERATION, FROM, LENGTH]

Changes line at LINE ID to new TEXT. Hint scalars OPERATION, FROM, and LENGTH
are used to maintain selection and marking data. OPERATION is an arbitrary string, the
ones that are recognized are ’overtype’, ’add’, and ’delete’. FROM and LENGTH
define the range of the change; FROM is the cluster offset and LENGTH is the length of
the changed text.

258

split line

Splits a line in two at the cursor position.

Default key: Enter (or Ctrl+Enter if the wantReturns entry is 0)

select all

Selects all text

start block [BLOCK TYPE]

Begins the block selection session. The block type is BLOCK TYPE, if it is specified, or the
value of the the blockType entry property is otherwise.

update block

Adjusts the selection inside the block session, extending or shrinking it to the current cursor
position.

word left [REPEAT = 1]

Moves the cursor REPEAT words to the left.

word right [REPEAT = 1]

Moves the cursor REPEAT words to the right.

259

4.9 Prima::ExtLists

Extended functionality for list boxes

Synopsis

use Prima qw(ExtLists Application);

my $vec = ’’;

vec($vec, 0, 8) = 0x55;

Prima::CheckList-> new(

items => [1..10],

vector => $vec,

);

run Prima;

Description

The module is intended to be a collection of list boxes with particular enhancements. Currently,
the only package defined here is the Prima::CheckList class.

Prima::CheckList

Provides a list box class where each item is equipped with a check box. The check box state can
interactively be toggled by the enter key; also the list box reacts differently to click and double
click.

Properties

button INDEX, STATE

Runtime only. Sets INDEXth button STATE to 0 or 1. If the STATE is -1 the button state
is toggled.

Returns the new state of the button.

vector VEC

VEC is a vector scalar where each bit corresponds to the checked state of each list box item.

See also: vec in perlfunc.

Methods

clear all buttons

Sets all buttons to state 0

set all buttons

Sets all buttons to state 1

260

4.10 Prima::FrameSet

Frameset widget

Synopsis

use Prima qw(Application Buttons FrameSet);

my $w = Prima::MainWindow->create(size => [300, 150]);

my $frame = $w-> insert(’FrameSet’ =>

pack => { fill => ’both’, expand => 1 },

frameSizes => [qw(60% *)],

frameProfiles => [0,0, { minFrameWidth => 123 }],

);

$frame->insert_to_frame(0, Button =>

bottom => 50,

text => ’~Ok’,

);

run Prima;

Description

Provides the standard frameset widget. The frameset divides its surface among groups of children
and allows interactive change of the surface by dragging the frame bars with the mouse.

This module defines the fra:: and frr:: constants used by the the arrangement entry and
the resizeMethod entry properties, respectively.

261

4.11 Prima::Grids

Grid widgets

Synopsis

use Prima qw(Grids Application);

my $grid = Prima::Grid-> new(

cells => [

[qw(1.First 1.Second 1.Third)],

[qw(2.First 2.Second 2.Third)],

[qw(3.First 3.Second 3.Third)],

],

onClick => sub {

print $_[0]-> get_cell_text($_[0]-> focusedCell), " is selected\n";

}

);

run Prima;

Description

The module provides classes for several abstraction layers for the representation of grid widgets.
The class hierarchy is as follows:

AbstractGridViewer

AbstractGrid

GridViewer

Grid

The root class, Prima::AbstractGridViewer, provides a common interface, while by itself
it is not directly usable. The main difference between classes is in the way the cell data are
stored. The simplest organization of a text-only cell, provided by Prima::Grid, stores data as
a two-dimensional array of text scalars. More elaborated storage and representation types are
not realized, and the programmer is urged to use the more abstract classes to derive their own
mechanisms. To organize an item storage different from Prima::Grid it is usually enough to
overload either the Stringify, Measure, and DrawCell events, or their method counterparts:
get cell text, columnWidth, rowHeight, and draw items.

The grid widget is designed to contain cells of variable extents, of two types, normal and
indent. The indent rows and columns are displayed near to the widget borders, and their cells
are drawn with distinguished colors. An example usage for a bottom indent row is a sum row in
a spreadsheet application; the top indent row can be used for displaying columns’ headers. The
normal cells can be selected by the user, scrolled, and selected. The cell selection can only contain
rectangular areas and therefore is operated with two integer pairs at the beginning and the end of
the selection.

The widget operates in two visual scrolling modes; when the space allows, the scrollbars affect
the leftmost and the topmost cell. When the widget is not large enough to accommodate at least
one cell and all indent cells, the layout is scrolled pixel-wise. These modes are named ’cell’ and
’pixel’, after the scrolling units.

The widget allows the interactive changing of cell widths and heights by dragging the grid lines
between the cells.

262

Prima::AbstractGridViewer

Prima::AbstractGridViewer, the base for all grid widgets in the module, provides the interface
to generic grid browsing functionality, plus some functionality for text-oriented grids. The class is
not usable directly.

Prima::AbstractGridViewer is a descendant of Prima::Widget::GroupScroller, and some
of its properties are not described here.

Properties

allowChangeCellHeight BOOLEAN

If 1, the user is allowed to change the vertical extents of cells by dragging the horizontal
grid lines. The prerequisites are: the lines must be set visible via the drawHGrid property,
the constantCellHeight property set to 0, and the changes to the vertical extents can be
recorded via the SetExtent notification.

Default value: 0

allowChangeCellWidth BOOLEAN

If 1, the user is allowed to change the horizontal extents of cells by dragging the horizontal
grid lines. The prerequisites are: the lines must be set visible via the drawVGrid property,
the constantCellWidth property set to 0, and the changes to the horizontal extents can be
recorded via the SetExtent notification.

Default value: 0

cellIndents X1, Y1, X2, Y2

Marks the marginal rows and columns as ’indent’ cells. The indent cells are drawn with
another color pair (see the indentCellColor entry, the indentCellBackColor entry), and
cannot be selected and scrolled. X1 and X2 correspond to the number of the indent columns,
and Y1 and Y2 to the number of the indent rows.

leftCell and topCell do not count the indent cells as the leftmost or topmost visible cells;
in other words, X1 and Y1 are minimal values for leftCell and topCell properties.

Default value: 0,0,0,0

clipCells INTEGER

A three-state integer property that manages the way clipping is applied when cells are drawn.
Depending on the kind of graphic in cells, the clipping may be necessary, or unnecessary.

If the value is 1, the clipping is applied for every column drawn, as the default drawing
routines proceeds column-wise. If the value is 2, the clipping is applied for every cell. This
setting reduces the drawing speed significantly. If the value is 0, no clipping is applied.

This property is destined for custom-drawn grid widgets when it is the developer’s task to
decide what kind of clipping suits better. Text grid widgets, Prima::AbstractGrid and
Prima::Grid, are safe with clipCells set to 1.

Default value: 1

columns INTEGER

Sets the number of columns, including the indent columns. The number of columns must be
larger than the number of indent columns.

Default value: 0.

columnWidth COLUMN [WIDTH]

263

A run-time property, selects the width of a column. To acquire or set the width, Measure
and SetExtent notifications can be invoked. The result of Measure may be cached internally
using the cache geometry requests method.

The width does not include the widths of eventual vertical grid lines.

If constantCellWidth is defined, the property is used as its alias.

constantCellHeight HEIGHT

If defined, all rows have equal height, HEIGHT pixels. If undef, rows have different heights.

Default value: undef

constantCellWidth WIDTH

If defined, all rows have equal width, WIDTH pixels. If undef, columns have different
widths.

Default value: undef

drawHGrid BOOLEAN

If 1, horizontal grid lines between cells are drawn with gridColor.

Default value: 1

drawVGrid

If 1, vertical grid lines between cells are drawn with gridColor.

Default value: 1

dx INTEGER

A run-time property. Selects horizontal offset in pixels of grid layout in pixel mode.

dy INTEGER

A run-time property. Selects vertical offset in pixels of grid layout in pixel mode.

focusedCell X, Y

Selects coordinates or the focused cell.

gridColor COLOR

Selects the color of the grid lines.

Default value: cl::Black .

gridGravity INTEGER

The property selects the breadth of the area around the grid lines that react to the grid-
dragging mouse events. The minimal value of 0, marks only grid lines themselves as the
dragging areas but makes the operation inconvenient for the user. Larger values make the
dragging more convenient, but increase the chance that the user will not be able to select
too narrow cells with the mouse.

Default value: 3

indentCellBackColor COLOR

Selects the background color of the indent cells.

Default value: cl::Gray .

indentCellColor

Selects the foreground color of the indent cells.

Default value: cl::Gray .

264

leftCell INTEGER

Selects the index of the leftmost visible normal cell.

multiSelect BOOLEAN

If 1, the normal cells in an arbitrary rectangular area can be marked as selected (see the
selection entry). If 0, only one cell at a time can be selected.

Default value: 0

rows INTEGER

Sets the number of rows, including the indent rows. The number of rows must be larger
than the number of the indent rows.

Default value: 0.

topCell

Selects the index of the topmost visible normal cell.

rowHeight INTEGER

A run-time property, selects the height of a row. To acquire or set the height, Measure and
SetExtent notifications can be invoked. The result of Measure may be cached internally
using the cache geometry requests method.

The height does not include the heights of eventual horizontal grid lines.

If constantCellHeight is defined, the property is used as its alias.

selection X1, Y1, X2, Y2

If multiSelect is 1, manages the extent of a rectangular area that contains selected cells.
If no such area is present, the selection is (-1,-1,-1,-1), and has selection returns 0 .

If multiSelect is 0, in get-mode returns the focused cell, and ignores the parameters in the
set-mode.

Methods

cache geometry requests CACHE

If CACHE is 1, starts caching results of the Measure notification, thus making the subsequent
columnWidth and rowHeight calls lighter. If CACHE is 0, flushes the cache.

If a significant geometry change happens during the caching, the cache is not updated auto-
matically, so it is the caller’s responsibility to flush the cache.

deselect all

Removes the selection if multiSelect is 1.

draw cells CANVAS, COLUMNS, ROWS, AREA

A bulk draw routine, called from onPaint to draw individual cells. AREA is an array of
four integers in inclusive-inclusive coordinates of the widget inferior without borders and
scrollbars (the result of get active area(2) call; see the get active area entry in the
Prima::Widget::IntIndents section).

COLUMNS and ROWS are structures that reflect the columns and rows of the cells to be
drawn. Each item in these corresponds to a column or row, and is an array with the following
layout:

265

0: column or row index

1: type; 0 - normal cell, 1 - indent cell

2: visible cell breadth

3: visible cell start

4: visible cell end

5: real cell start

6: real cell end

The coordinates are in the inclusive-inclusive coordinate system and do not include even-
tual grid space, nor gaps between the indent and normal cells. By default, internal arrays
{colsDraw} and {rowsDraw} are passed as COLUMNS and ROWS parameters.

In the Prima::AbstractGrid and Prima::Grid classes <draw cells> is overloaded to trans-
fer the call to std draw text cells, the text-oriented optimized routine.

draw text cells SCREEN RECTANGLES, CELL RECTANGLES,
CELL INDECES, FONT HEIGHT

A bulk routine for drawing text cells, is called from std draw text cells .

SCREEN RECTANGLES and CELL RECTANGLES are arrays, where each item is a rect-
angle with an exterior of a cell. SCREEN RECTANGLES contains rectangles that cover the
visible area of the cell; CELL RECTANGLES contains rectangles that span the cell extent
disregarding its eventual partial visibility. For example, a 100-pixel cell with only its left half
visible would contain corresponding arrays [150,150,200,250] in SCREEN RECTANGLES,
and [150,150,250,250] in CELL RECTANGLES.

CELL INDECES contains arrays of the cell coordinates; each array item is an array of
integer pairs where item 0 is the column, and item 1 is the row of the cell.

FONT HEIGHT is the current font height value, as draw text cells is mostly used for text
operations and may require vertical text justification.

get cell area [WIDTH, HEIGHT]

Returns screen area in the inclusive-inclusive pixel coordinates. The area is used to display
normal cells. The extensions are related to the current size of a widget, however, can be
overridden by specifying WIDTH and HEIGHT.

get cell alignment COLUMN, ROW

Returns two ta:: constants for horizontal and vertical cell text alignment. Since the class
does not assume the item storage organization, the values are queried via the GetAlignment
notification.

get cell text COLUMN, ROW

Returns the text string assigned to the cell in COLUMN and ROW. Since the class does not
assume the item storage organization, the text is queried via the Stringify notification.

get range VERTICAL, INDEX

Returns a pair of integers, the minimal and maximal breadth of INDEXth column or row in
pixels. If VERTICAL is 1, the rows are queried; if 0, the columns.

The method calls the GetRange notification.

get screen cell info COLUMN, ROW

Returns information about the cell in COLUMN and ROW, if it is currently visible. The
returned parameters are indexed by the gsci::XXX constants:

266

gsci::COL_INDEX - visual column number where the cell is displayed

gsci::ROW_INDEX - visual row number where the cell is displayed

gsci::V_FULL - cell is fully visible

gsci::V_LEFT - an inclusive-inclusive rectangle of the visible

gsci::V_BOTTOM part of the cell. These four indices are grouped

gsci::V_RIGHT under list constant, gsci::V_RECT.

gsci::V_TOP

gsci::LEFT - an inclusive-inclusive rectangle of the cell, as if

gsci::BOTTOM it is fully visible. These four indices are grouped

gsci::RIGHT under list constant, gsci::RECT. If gsci::V_FULL

gsci::TOP is 1, these values are identical to those in gsci::V_RECT.

If the cell is not visible, returns an empty array.

has selection

Returns a boolean value, indicating whether the grid contains a selection (1) or not (0).

point2cell X, Y, [OMIT GRID = 0]

Returns information about the point X, Y in widget coordinates. The method returns two
integers CX and CY with cell coordinates and an eventual HINTS hash that contains more
information about the pixel location. If OMIT GRID is set to 1 but the pixel belongs to the
grid, the pixels are treated as part of an adjacent cell. The call syntax is:

($CX, $CY, %HINTS) = $self->point2cell($X, $Y);

If the pixel lies within the cell boundaries by either coordinate, CX and/or CY are corre-
spondingly set to that cell column and/or row. When the pixel is outside the cell space, CX
and/or CY are set to -1.

HINTS may contain the following values:

x and y

If 0, the coordinate lies within the boundaries of a cell.

If -1, the coordinate is on the left/top of the cell body.

If +1, the coordinate is on the right/bottom of the cell body, but within the widget.

If +2, the coordinate is on the right/bottom of the cell body, but outside the widget.

x type and y type

Present when x or y values are 0.

If 0, the cell is a normal cell.

If -1, the cell is a left or a top indent cell.

If +1, the cell is a right or a bottom indent cell.

x grid and y grid

If 1, the point is at a grid line. This case can only happen when OMIT GRID is
0. If allowChangeCellHeight and/or allowChangeCellWidth are set, treats also
gridGravity-broad pixels strips on both sides of the line as the grid.

Also, values of x left/x right or y bottom/y top might be set.

x left/x right and y bottom/y top

Present together with x grid or y grid. Contain the indices of the cells adjacent to
the grid line.

267

x gap and y gap

If 1, the point is inside a gap between the last normal cell and the first right/bottom
indent cell.

normal

If 1, the point lies within the boundaries of a normal cell.

indent

If 1, the point lies within the boundaries of an indent cell.

grid

If 1, the point is at a grid line.

exterior

If 1, the point is in an inoperable area or outside the widget boundaries.

redraw cell X, Y

Repaints the cell with coordinates X and Y.

reset

Recalculates internal geometry variables.

select all

Marks all cells as selected if multiSelect is 1.

std draw text cells CANVAS, COLUMNS, ROWS, AREA

An optimized bulk routine for text-oriented grid widgets. The optimization is achieved under
the assumption that each cell is drawn with two colors only so that the color switching can
be reduced.

The routine itself paints the cells’ background and then calls draw text cells to draw the
cells’ content.

For the explanation of COLUMNS, ROWS, and AREA parameters see the draw cells entry
.

Events

DrawCell CANVAS, COLUMN, ROW, INDENT, @SCREEN RECT,
@CELL RECT, SELECTED, FOCUSED, PRELIGHT

Called when a cell with COLUMN and ROW coordinates is to be drawn on CANVAS.
SCREEN RECT is a cell rectangle in widget coordinates, where the item is to be drawn.
CELL RECT is the same as SCREEN RECT but calculated as if the cell is fully visible.

SELECTED, FOCUSED, and PRELIGHT are boolean flags, if the cell must be drawn
correspondingly in selected, focused, and pre-lighted states.

GetAlignment COLUMN, ROW, HORIZONTAL ALIGN REF,
VERTICAL ALIGN REF

Stores two text alignment ta:: constants, assigned to the cell with COLUMN and ROW
coordinates, into HORIZONTAL ALIGN REF and VERTICAL ALIGN REF scalar refer-
ences.

GetRange VERTICAL, INDEX, MIN, MAX

Stores minimal and maximal breadth of INDEXth column (VERTICAL = 0) or row (
VERTICAL = 1) in the corresponding MIN and MAX scalar references.

268

Measure VERTICAL, INDEX, BREADTH

Stores breadth in pixels of the INDEXth column (VERTICAL = 0) or row (VERTICAL
= 1) into BREADTH scalar reference.

This notification by default may be called from within the
begin paint info/end paint info brackets. To disable this feature set the internal
flag {NoBulkPaintInfo} to 1.

SelectCell COLUMN, ROW

Called when a cell with COLUMN and ROW coordinates is focused.

SetExtent VERTICAL, INDEX, BREADTH

Reports breadth in pixels of the INDEXth column (VERTICAL = 0) or row (VERTICAL
= 1), as a response to the columnWidth and rowHeight calls.

Stringify COLUMN, ROW, TEXT REF

Stores the text string, assigned to the cell with COLUMN and ROW coordinates, into the
TEXT REF scalar reference.

Prima::AbstractGrid

The same as its ascendant, Prima::AbstractGridViewer, except that it does not propagate the
DrawItem message, assuming that the items must be drawn as text.

Prima::GridViewer

The class implements cell data and geometry storage mechanisms but leaves the data format to
the programmer. The cells are accessible via the cells property and several other helper routines.

The cell data are stored in an array, where each item corresponds to a row, and contains an
array of scalars, where each corresponds to a column. All data managing routines, that accept
two-dimensional arrays, assume that the column arrays are of the same width.

For example, [[1,2,3]]] is a valid one-row, three-column structure, and
[[1,2],[2,3],[3,4]] is a valid three-row, two-column structure. The structure
[[1],[2,3],[3,4]] is invalid, since its first row has one column, while the others have
two.

Prima::GridViewer is derived from Prima::AbstractGridViewer.

Properties

allowChangeCellHeight

Default value: 1

allowChangeCellWidth

Default value: 1

cell COLUMN, ROW, [DATA]

Run-time property. Selects the data in the cell with COLUMN and ROW coordinates.

cells [ARRAY]

The property accepts or returns all cells as a two-dimensional rectangular array or scalars.

columns INDEX

A read-only property; returns the number of columns.

rows INDEX

A read-only property; returns the number of rows.

269

Methods

add column CELLS

Inserts a one-dimensional array of scalars to the end of columns.

add columns CELLS

Inserts a two-dimensional array of scalars to the end of columns.

add row CELLS

Inserts a one-dimensional array of scalars to the end of rows.

add rows CELLS

Inserts a two-dimensional array of scalars to the end of rows.

delete columns OFFSET, LENGTH

Removes LENGTH columns starting from OFFSET. Negative values are accepted.

delete rows OFFSET, LENGTH

Removes LENGTH rows starting from OFFSET. Negative values are accepted.

insert column OFFSET, CELLS

Inserts a one-dimensional array of scalars as column OFFSET. Negative values are accepted.

insert columns OFFSET, CELLS

Inserts a two-dimensional array of scalars in column OFFSET. Negative values are accepted.

insert row

Inserts a one-dimensional array of scalars as row OFFSET. Negative values are accepted.

insert rows

Inserts a two-dimensional array of scalars in row OFFSET. Negative values are accepted.

Prima::Grid

Descendant of Prima::GridViewer, declares format of cell data as a single text string. Provides
the standard text grid widget that has all the functionality of its ascendants.

Methods

get cell alignment COLUMN, ROW

Returns two ta:: constants for horizontal and vertical cell text alignment. Since the item
storage organization is implemented, does so without calling the GetAlignment notification.

get cell text COLUMN, ROW

Returns text string assigned to the cell in COLUMN and ROW. Since the item storage
organization is implemented, does so without calling the Stringify notification.

270

4.12 Prima::HelpViewer

The built-in POD browser

Usage

The module presents two packages, Prima::HelpViewer and Prima::PodViewWindow. Their pur-
pose is to serve as a mediator between the Prima::PodView package, the toolkit help interface,
and the user. Prima::PodViewWindow includes all the user functionality needed, including text
search, color and font setup, printing, etc. Prima::HelpViewer provides two methods - open and
close, used by Prima::Application for invocation of the help viewer .

Help

The browser can be used to view and print POD (plain old documentation) files. See the
command overview below for a more detailed description

File

Open

Presents a file selection dialog, when the user can select a file to browse. The file must
contain POD content, otherwise, a warning is displayed.

Goto

Asks for a manpage, that is searched in PATH and the perl installation directories.

New window

Opens the new viewer window with the same context.

Run

Commands in this group call external processes

prima-class
prima-class is the utility for displaying the widget class hierarchies. The command
asks for the Prima class to display the hierarchy information.

Print

Provides a dialog where the user can select the appropriate printer device and its
options.

Prints the current topic to the selected printer.

If the the Full text view entry menu item is checked, prints the whole manpage.

Close window

Closes the window.

Close all windows

Closes all help viewer windows.

View

Increase font

Increases the currently selected font by 2 points.

Decrease font

Decreases the currently selected font by 2 points.

Full text view

If checked, the whole manpage is displayed. Otherwise, its content is presented as a set
of topics, and only a single topic is displayed.

271

Find

Presents a text find dialog where the user can type the text to search, and select the
search options - the search direction, scope, etc.

Find again

Starts search for the text, entered in the last text find dialog, with the same search
options.

Fast find

The following commands provide a simple vi-style text search functionality - character
keys ?,/,n,N bound to the commands below:

Forward
Presents an input line where a text can be entered; the text search is performed
parallel to the input.

Backward
Same as the the Forward entry option, except that the search direction is backward.

Repeat forward
Repeats the search in the same direction as the initial search

Repeat backward
Repeat the search in the reverse direction from the initial search

Setup

Presents a setup dialog where the user can select appropriate fonts and colors.

Go

Back

Displays the previously visited manpage or topic

Forward

Displays the previously visited manpage or topic that was left via the the Back entry
command.

Up

Displays the upper-level topic within the manpage

Previous

Moves to the previous topic within the manpage

Next

Moves to the next topic within the manpage

Help

About

Displays the information about the help viewer.

Help

Displays the information about the usage of the help viewer

272

4.13 Prima::ImageViewer

Image, icon, and bitmap viewer

Synopsis

use Prima qw(ImageViewer StdBitmap Application);

Prima::ImageViewer-> new(

image => Prima::StdBitmap::image(0),

zoom => 2.718,

);

run Prima;

Description

The module contains the Prima::ImageViewer class which provides image-displaying functional-
ity. The widget can display images, icons, and bitmaps, and allows zooming.

Prima::ImageViewer is a descendant of Prima::Widget::ScrollWidget and inherits its doc-
ument scrolling behavior and programming interface. See the Prima::Widget::ScrollWidget section
for details.

API

Properties

alignment INTEGER

One of the following ta::XXX constants:

ta::Left

ta::Center

ta::Right

Selects the horizontal image alignment.

Default value: ta::Left

autoZoom BOOLEAN

When set, the image is automatically stretched while keeping aspects to the best available
fit, given the zoomPrecision. Scrollbars are turned off if autoZoom is set to 1.

image OBJECT

Selects the image object to be displayed. OBJECT can be an instance of the Prima::Image,
Prima::Icon, or Prima::DeviceBitmap classes.

imageFile FILE

Sets the image FILE to be loaded and displayed. Is rarely used since does not return a
success flag.

273

scaling ist::XX

Applies scaling when drawing an image.

Default: ist::Box, default cheap scaling.

Warning: scaling types above the ist::Box might be somewhat expensive

stretch BOOLEAN

If set, the image is simply stretched over the visual area, without keeping the aspect. Scroll
bars, zooming and keyboard navigation become disabled.

quality BOOLEAN

A boolean flag, selects if the palette of image is to be copied into the widget palette, providing
higher visual quality on paletted displays. See also the palette entry in the Prima::Widget
section.

Default value: 1

valignment INTEGER

One of the following ta::XXX constants:

ta::Top

ta::Middle or ta::Center

ta::Bottom

Selects the vertical image alignment.

Note: The ta::Middle value is not equal to ta::Center’s, however, both constants produce
an equal effect here.

Default value: ta::Bottom

zoom FLOAT

Selects the image zoom level. The acceptable value range is between 0.01 and 100. The
zoom value is rounded to the closest value divisible by 1/zoomPrecision. For example, if
zoomPrecision is 100, the zoom values will be rounded to the precision of hundredth - to
fiftieth and twentieth fractional values - .02, .04, .05, .06, .08, and 0.1 . When zoomPrecision

is 1000, the precision is one thousandth, and so on.

Default value: 1

zoomPrecision INTEGER

Zoom precision of the zoom property. The minimal acceptable value is 10, where the zoom
factor will be rounded to 0.2, 0.4, 0.5, 0.6, 0.8, and 1.0 .

The reason behind this arithmetics is that when an image of an arbitrary zoom factor is
requested to be displayed, the image sometimes must be drawn from a fractional image
pixel. In an example that only involves integer pixels, a 10x zoomed image shifted 3 pixels
left must be displayed so that the first image pixel from the left occupies 7 screen pixels, and
the next ones - 10 screen pixels. That means that the correct image display routine must
ask the system to draw the image at the offset of -3 screen pixels, where the first image pixel
column would correspond to that offset.

When the zoom factor is fractional, the picture is getting more complex. For example,
with the zoom factor of 12.345 and zero screen offset, the first image pixel begins at the
12th screen pixel, the next one - at the 25th (because of the roundoff), then the 37th,
etc etc. If the image is 2000x2000 pixels wide and is asked to be drawn so that it appears
shifted 499 screen image pixels left, it needs to be drawn from the 499/12.345=40.42122th
image pixel. It might seem that indeed it would be enough to ask the system to begin

274

drawing from image pixel 40, and offset int(0.42122*12.345)=5 screen pixels to the left,
however, that procedure will not account for the correct fixed point roundoff that accu-
mulates as the system scales the image. For the zoom factor of 12.345 this roundoff se-
quence is, as we have seen before, (12,25,37,49,62,74,86,99,111,123) for the first 10 pixels
displayed, that occupy (12,13,12,12,13,12,12,13,12,12) screen pixels correspondingly. For the
pixels starting at 499, the sequence is (506,519,531,543,556,568,580,593,605,617) offsets or
(13,12,12,13,13,12,12,13,12,12) widths -- note the two subsequent 13s there. This sequence
begins to repeat itself after 200 iterations (12.345*200=2469.000), which means that to
achieve correct display results, the image must be asked to be displayed from as far as image
pixel 0 if image’s first pixel on the screen is between 0 and 199 (or for screen pixels 0-2468),
then from image pixel 200 for offsets 200-399, (screen pixels 2469-4937), and so on.

Since the system internally allocates memory for image scaling, that means that up to
2*200*min(window width,image width)*bytes per pixel unnecessary bytes will be allocated
for each image drawing call (2 because the calculations are valid for both the vertical and
horizontal strips), and this can lead to a slowdown or even request failure when image or
window dimensions are large. The proposed solution is to round off the accepted zoom
factors so that these offsets are kept small. For example, the N.25 zoom factors require only
max 1/.25=4 extra pixels. When the zoomPrecision value is set to 100, the zoom factors
are rounded to 0.X2, 0.X4, 0.X5, 0.X6, 0.X8, and 0.X0, thus requiring max 50 extra pixels.

NB. If, despite the efforts, the property gets in the way, increase it to 1000 or even 10000,
but note that this may lead to problems.

Default value: 100

Methods

on paint SELF, CANVAS

The Paint notification handler is mentioned here for the specific case of its return value,
that is the return value of the internal put image call. For those who might be interested in
put image failures, which mostly occur when trying to draw an image that is too big, the
following code might be useful:

sub on_paint

{

my ($self, $canvas) = @_;

warn "put_image() error:$@" unless $self-> SUPER::on_paint($canvas);

}

screen2point X, Y, [X, Y, ...]

Performs translation of integer pairs as (X,Y)-points from the widget coordinates to pixel
offsets in the image coordinate system. Takes into account zoom level, image alignments,
and offsets. Returns an array of the same length as the input.

Useful for determining correspondence, for example, of a mouse event to an image point.

The reverse function is point2screen.

point2screen X, Y, [X, Y, ...]

Performs translation of integer pairs as (X,Y)-points from image pixel offset to widget image
coordinates. Takes into account zoom level, image alignments, and offsets. Returns an array
of the same length as the input.

Useful for determining the screen location of an image point.

The reverse function is screen2point.

275

watch load progress IMAGE

When called, the image viewer begins to track the progress of the IMAGE being loaded
(see the load entry in the Prima::Image section) and incrementally displays the loading
picture. As soon as IMAGE begins to load, it replaces the existing the image property value.
Example:

$i = Prima::Image-> new;

$viewer-> watch_load_progress($i);

$i-> load(’huge.jpg’);

$viewer-> unwatch_load_progress;

A similar functionality is present in the Prima::Dialog::ImageDialog section.

unwatch load progress CLEAR IMAGE=1

Stops monitoring the image loading progress. If CLEAR IMAGE is 0, the leftovers of the
incremental loading stay intact in image property. Otherwise, image is set to undef.

zoom round ZOOM

Rounds the zoom factor to zoomPrecision precision, returns the rounded zoom value. The
algorithm is the same as used internally in the zoom property.

276

4.14 Prima::InputLine

Input line widget

Synopsis

use Prima qw(InputLine Application);

Prima::InputLine-> new(text => ’Hello world!’);

run Prima;

Description

The class provides the basic functionality of an input line, including hidden input, read-only
state, selection, and clipboard operations. The input line text data is stored in the the text entry
property.

API

Events

Change

The notification is called when the the text entry property is changed, either interactively
or as a result of a direct call.

Validate TEXT REF

The notification is called right before the the text entry property is changed, either inter-
actively or as a result of a direct call. The custom code has a chance to validate the text
and/or provide some sort of interactive feedback.

See also: the blink entry

Properties

alignment INTEGER

One of the following ta:: constants, defining the text alignment:

ta::Left

ta::Right

ta::Center

Default value: ta::Left

autoHeight BOOLEAN

If 1, adjusts the height of the widget automatically when its font changes.

Default value: 1

autoSelect BOOLEAN

If 1, all the text is selected when the widget becomes focused.

Default value: 1

277

autoTab BOOLEAN

If 1, ignores the keyboard kb::Left and kb::Right commands, when these are received
when the cursor is at the beginning or the end of text and cannot be moved farther. The
result of this is that the default handler moves focus to a neighbor widget, in a way as if the
Tab key was pressed.

Default value: 0

borderWidth INTEGER

Width of the border around the widget.

Default value: depends on the skin

charOffset INTEGER

Managets the current position of the cursor

firstChar

Selects the first visible cluster of text

insertMode BOOLEAN

Manages the typing mode - if 1, the typed text is inserted, if 0, the text overwrites the old
text. When insertMode is 0 the cursor shape is thick and covers the whole character; when
1, it is of the default width.

Default toggle key: Insert

maxLen INTEGER

The maximal length of the text, that can be stored into the text entry or typed by the user.

Default value: 256

passwordChar CHARACTER

A character to be shown instead of the text letters when the writeOnly entry property value
is 1.

Default value: ’*’

readOnly BOOLEAN

If 1, the text cannot be edited by the user.

Default value: 0

selection START, END

Two integers, specifying the beginning and the end of the selected text, in clusters. A case
with no selection is when START equals END.

selStart INTEGER

Selects the start of the text selection.

selEnd INTEGER

Selects the end of the text selection.

textDirection BOOLEAN

If set, indicates RTL text input.

278

textLigation BOOLEAN

If set, text may be rendered at better quality with ligation and kerning, however, that comes
with a price that some ligatures may be indivisible and form clusters (f.ex. ff orffi ligatures).
The cursor cannot go inside such clusters, and thus one can only select them, delete them
as a whole, or press Del/Backspace on the cluster’s edge.

Toggle during runtime with Ctrl+Shift+L.

wordDelimiters STRING

Contains the string of characters that are used for locating a word break. Default STRING
value consists of punctuation marks, space, tab, and \xff character.

writeOnly BOOLEAN

If 1, the input is not shown but mapped to the passwordChar entry characters. Useful for a
password entry.

Default value: 0

Methods

blink %options

Produces a short blink by setting the background to red color. Can be used to signal an
invalid input, f ex from on validate. %options allows the backColor and color entries.

copy

Copies the selected text, if any, to the clipboard.

Default key: Ctrl+Insert

cut

Cuts the selected text into the clipboard.

Default key: Shift+Delete

delete

Removes the selected text.

Default key: Delete

paste

Copies text from the clipboard and inserts it in the cursor position.

Default key: Shift+Insert

select all

Selects all text

Bi-directional input and output

When working on bidirectional texts, or text represented by complex script shaping, values re-
turned from the methods firstChar, charOffset, selection, etc cannot be used to calculate
text offsets f.ex. via substr. Note that these values are in clusters, not in characters (see the
Prima::Drawable::Glyphs section for the description>. Also, the selection ranges of bidi text
become not straightforward. Use the following methods whenever text manipulations are needed:

char at OFFSET

Returns character at cluster OFFSET

selection strpos

Returns range of characters covered by the selection.

279

4.15 Prima::KeySelector

Key combination widget and routines

Description

The module provides a standard widget for selecting user-defined key combinations. The widget
class allows import, export, and modification of key combinations. The module also provides a
set of routines useful for the conversion of key combinations between various representations.

Synopsis

my $ks = Prima::KeySelector-> create();

$ks-> key(km::Alt | ord(’X’));

print Prima::KeySelector::describe($ks-> key);

API

Properties

key INTEGER

Selects a key combination in integer format. The format is described in the Hotkey entry
in the Prima::Menu section, and is a combination of the km::XXX key modifiers and is either
a kb::XXX virtual key or a character code value.

The property allows almost, but not all possible combinations of key constants. Only the
km::Ctrl, km::Alt, and km::Shift modifiers are allowed.

Methods

All methods must be called without the object as a first parameter.

describe KEY

Accepts KEY in integer format and returns a string description of the key combination in a
human-readable format. Useful for supplying an accelerator text to a menu.

print Prima::KeySelector::describe(km::Shift|km::Ctrl|km::F10);

Ctrl+Shift+F10

export KEY

Accepts KEY in integer format and returns a string with a perl-evaluable expression, which
after the evaluation resolves to the original KEY value. Useful for storing a key into text
config files, where the value must be both human-readable and easily passed to a program.

print Prima::KeySelector::export(km::Shift|km::Ctrl|km::F10);

km::Shift|km::Ctrl|km::F10

shortcut KEY

Converts KEY from integer format to a string, acceptable by Prima::AbstractMenu input
methods.

print Prima::KeySelector::shortcut(km::Ctrl|ord(’X’));

^X

280

translate codes KEY, [USE CTRL = 0]

Converts KEY in integer format to three integers in the format accepted by the the Key-
Down entry in the Prima::Widget section event: code, key, and modifier. USE CTRL is
only relevant when the KEY first byte (KEY & 0xFF) is between 1 and 26, which means
that the key is a combination of an alpha key with the control key. If USE CTRL is 1, the
code result is unaltered and is in range 1 - 26. Otherwise, the code result is converted to the
character code (1 to ord(’A’), 2 to ord(’B’), etc).

281

4.16 Prima::Menus

Menu widgets

Description

This module contains classes that can create menu widgets used as regular widgets, without any
special considerations about system-depended menus.

Synopsis

use Prima qw(Application Menus);

my $w = Prima::MainWindow->new(

accelItems => [[’~File’ => [

[’Exit’ => sub { exit }],

]]],

onMouseDown => sub {

Prima::Menu::Popup->new(menu => $_[0]-> accelTable)->popup;

},

height => 100,

);

$w->insert(’Prima::Menu::Bar’,

pack => { fill => ’x’, expand => 1},

menu => $w-> accelTable,

);

run Prima;

282

4.17 Prima::Label

Static text widget

Description

The class is designed for the display of text and provides no user interaction. The text output
capabilities include wrapping, horizontal and vertical alignment, and automatic widget resizing
to match text extensions. If the text contains a tilde-escaped (hot) character, the label can
explicitly focus the specified widget upon pressing of the character key; this feature is useful for
the design of dialogs.

Labels can display rich text with links. See the Prima::Drawable::Markup section for more.

Synopsis

use Prima qw(Label InputLine Application);

my $w = Prima::MainWindow->new;

$w->insert(’Prima::Label’,

text => ’Enter ~name:’,

focusLink => ’InputLine1’,

alignment => ta::Center,

pack => { fill => ’x’, side => ’top’, pad => 10 },

);

$w->insert(

’Prima::InputLine’,

text => ’’,

pack => { fill => ’x’, side => ’top’, pad => 10 },

);

run Prima;

API

Properties

alignment INTEGER

One of the following ta::XXX constants:

ta::Left

ta::Center

ta::Right

Selects the horizontal text alignment.

Default value: ta::Left

autoHeight BOOLEAN

If 1, the widget height is automatically changed as text extensions change.

Default value: 0

283

autoWidth BOOLEAN

If 1, the widget width is automatically changed as text extensions change.

Default value: 1

focusLink WIDGET

Points to a widget or a widget name (has to be a sibling widget), which is explicitly focused
when the user presses the combination of the hotkey with the Alt key.

Prima::Label does not provide a separate property to access the hotkey value from the
tilde-escaped string, however, it can be read from the {accel} variable.

Default value: undef.

hotKey CHAR

A key (defined by CHAR) that the label will react to if pressed if the label has the focus
The combination ALT + Key works always whether the label has the focus or not

linkColor COLOR

The color of text in links.

The default value is taken from the Prima::Widget::Link section and is currently hardcoded
as green. So far there is no support for the system link color.

showAccelChar BOOLEAN

If 0, the tilde (~) character is collapsed from the text, and the hot character is underlined.
When the user presses the combination of the escaped character with the Alt key, the
focusLink widget is explicitly focused.

If 1, the text is shown as is, and no hot character is underlined. Key combinations with the
Alt key are not recognized. See also: hotKey.

Default value: 0

showPartial BOOLEAN

Used to determine if the last line of text should be drawn if it can not be vertically fit in the
widget interior. If 1, the last line is shown even if not visible in full. If 0, only full lines are
drawn.

Default value: 1

textJustify $BOOL | { letter => 0, word => 0, kashida => 0, min kashida => 0 }
| %VALUES

If set, justifies wrapped text according to the option passed in the hash (see the ara-
bic justify entry in the Prima::Drawable::Glyphs section and the interspace justify entry
in the Prima::Drawable::Glyphs section). Can accept three forms:

If an anonymous hash is used, overwrites all the currently defined options.

If $BOOL is used, treated as a shortcut for { letter => $BOOL, word => $BOOL, kashida

=> $BOOL }; consequent get-calls return a full hash, not the $BOOL value.

If the %VALUES form is used, overwrites only values found in %VALUES.

Only actual when wordWrap is set.

textDirection BOOLEAN

If set, indicates RTL text direction.

284

wordWrap BOOLEAN

If 0, the text is not wrapped unless new line characters are present in the text.

If 1, the text is wrapped if it can not be fit horizontally in the widget interior. The text is
also wrapped over new lines.

Default value: 0

valignment INTEGER

One of the following ta::XXX constants:

ta::Top

ta::Middle or ta::Center

ta::Bottom

Selects the vertical text alignment.

Note: the ta::Middle value is not equal to ta::Center’s, however, both constants produce
an equal effect here.

Default value: ta::Top

285

4.18 Prima::Lists

List widgets

Description

The module provides several listbox classes that differ in the way items in the list widget are
associated with data. The hierarchy of classes is as follows:

AbstractListViewer

AbstractListBox

ListViewer

ProtectedListBox

ListBox

The root class Prima::AbstractListViewer provides a common interface that is though not
usable directly. The main differences between classes are centered around the way the items
are stored. The simplest organization of a text-only item list, provided by Prima::ListBox,
stores an array of text scalars in a widget. More elaborated storage and representation types
are not realized, and the programmer is urged to use the more abstract classes to derive
their own mechanisms. For example, for a list of items that contain text strings and icons
see the Prima::DirectoryListBox entry in the Prima::Dialog::FileDialog section. To orga-
nize an item storage different from Prima::ListBox it is usually enough to overload either the
Stringify, MeasureItem, and DrawItem events, or their method counterparts: get item text,
get item width, and draw items.

Prima::AbstractListViewer

Prima::AbstractListViewer is a descendant of Prima::Widget::GroupScroller, and some of
its properties are not described here.

The class provides an interface to generic list browsing functionality, plus functionality for
text-oriented lists. The class is not usable directly.

Properties

autoHeight BOOLEAN

If 1, the item height is changed automatically when the widget font is changed; this is useful
for text items. If 0, the item height is not changed; this is useful for non-text items.

Default value: 1

count INTEGER

An integer property, used to access the number of items in the list. Since it is tied to the
item storage organization, and hence the possibility of changing the number of items, this
property is often declared as read-only in descendants of Prima::AbstractListViewer.

dragable BOOLEAN

If 1, allows the items to be dragged interactively by pressing the Control key together with
the left mouse button. If 0, item dragging is disabled.

Default value: 0

drawGrid BOOLEAN

If 1, vertical grid lines between columns are drawn with gridColor. Actual only in multi-
column mode.

Default value: 1

286

extendedSelect BOOLEAN

Manages the way the user selects multiple items that is only actual when multiSelect is 1.
If 0, the user must click each item to mark it as selected. If 1, the user can drag the mouse
or use the Shift key plus arrow keys to perform range selection; the Control key can be used
to select individual items.

Default value: 0

focusedItem INDEX

Selects the focused item index. If -1, no item is focused. It is mostly a run-time property,
however, it can be set during the widget creation stage given that the item list is accessible
at this stage as well.

Default value: -1

gridColor COLOR

Color used for drawing vertical divider lines for multi-column list widgets. The list classes
support also the indirect way of setting the grid color, as well as the widget does, via the
colorIndex property. To achieve this, the ci::Grid constant is declared (for more detail
see the colorIndex entry in the Prima::Widget section).

Default value: cl::Black.

integralHeight BOOLEAN

If 1, only the items that fit vertically in the widget interiors are drawn. If 0, the partially
visible items are drawn also.

Default value: 0

integralWidth BOOLEAN

If 1, only the items that fit horizontally in the widget interiors are drawn. If 0, the partially
visible items are drawn also. Actual only in the multi-column mode.

Default value: 0

itemHeight INTEGER

Selects the height of the items in pixels. Since the list classes do not support items with
variable heights, changes to this property affect all items.

Default value: default font height

itemWidth INTEGER

Selects the width of the items in pixels. Since the list classes do not support items with
variable widths, changes to this property affect all items.

Default value: default widget width

multiSelect BOOLEAN

If 0, the user can only select one item, and it is reported by the focusedItem property. If
1, the user can select more than one item. In this case, the focusedItem’th item is not
necessarily selected. To access the selected item list use the selectedItems property.

Default value: 0

multiColumn BOOLEAN

If 0, the items are arranged vertically in a single column and the main scroll bar is vertical.
If 1, the items are arranged in several columns, each itemWidth pixels wide. In this case,
the main scroll bar is horizontal.

287

offset INTEGER

Horizontal offset of an item list in pixels.

topItem INTEGER

Selects the first item drawn.

selectedCount INTEGER

A read-only property. Returns the number of selected items.

selectedItems ARRAY

ARRAY is an array of integer indices of selected items.

vertical BOOLEAN

Sets the general direction of items in multi-column mode. If 1, items increase down-to-right.
Otherwise, right-to-down.

Doesn’t have any effect in single-column mode. Default value: 1.

Methods

add selection ARRAY, FLAG

Sets item indices from ARRAY in selected or deselected state, depending on the FLAG
value, correspondingly 1 or 0.

Only for the multi-select mode.

deselect all

Clears the selection

Only for the multi-select mode.

draw items CANVAS, ITEM DRAW DATA

Called from within the Paint notification to draw items. The default behavior is
to call the DrawItem notification for every item in the ITEM DRAW DATA array.
ITEM DRAW DATA is an array or arrays, where each array consists of parameters passed
to the DrawItem notification.

This method is overridden in some descendant classes to increase the speed of drawing. For
example, std draw text items is the optimized routine for drawing text-based items. It is
used in the Prima::ListBox class.

See the DrawItem entry for the description of the parameters.

draw text items CANVAS, FIRST, LAST, STEP, X, Y, OFFSET, CLIP RECT

Called by std draw text items to draw a sequence of text items with indices from FIRST
to LAST, by STEP, on CANVAS, starting at point X, Y, and incrementing the vertical
position with OFFSET. CLIP RECT is a reference to an array of four integers given in the
inclusive-inclusive coordinates that represent the active clipping rectangle.

Note that OFFSET must be an integer, otherwise bad effects will be observed when text is
drawn below Y=0

get item text INDEX

Returns the text string assigned to the INDEXth item. Since the class does not assume the
item storage organization, the text is queried via the Stringify notification.

288

get item width INDEX

Returns width in pixels of the INDEXth item. Since the class does not assume the item
storage organization, the value is queried via the MeasureItem notification.

is selected INDEX

Returns 1 if the INDEXth item is selected, 0 otherwise.

item2rect INDEX, [WIDTH, HEIGHT]

Calculates and returns four integers with rectangle coordinates of the INDEXth item.
WIDTH and HEIGHT are optional parameters with pre-fetched dimensions of the wid-
get; if not set, the dimensions are queried by calling the size property. If set, however, the
size property is not called, thus some speed-up can be achieved.

point2item X, Y

Returns the index of an item that contains the point at (X,Y). If the point belongs to the
item outside the widget’s interior, returns the index of the first item outside the widget’s
interior in the direction of the point.

redraw items INDICES

Redraws all items in the INDICES array.

select all

Selects all items.

Only for the multi-select mode.

set item selected INDEX, FLAG

Sets the selection flag on the INDEXth item. If FLAG is 1, the item is selected. If 0, it is
deselected.

Only for the multi-select mode.

select item INDEX

Selects the INDEXth item.

Only for the multi-select mode.

std draw text items CANVAS, ITEM DRAW DATA

An optimized method, draws text-based items. It is fully compatible with the draw items

interface and is used in the Prima::ListBox class.

The optimization is derived from the assumption that items maintain common background
and foreground colors, that only differ in the selected and non-selected states. The routine
groups drawing requests for selected and non-selected items, and then draws items with
a reduced number of calls to the color property. While the background is drawn by the
routine itself, the foreground (usually text) is delegated to the draw text items method,
so that the text positioning and eventual decorations would be easier to implement.

ITEM DRAW DATA is an array of arrays of scalars, where each array contains parameters
of the DrawItem notification. See the DrawItem entry for the description of the parameters.

toggle item INDEX

Toggles selection of the INDEXth item.

Only for the multi-select mode.

unselect item INDEX

Deselects the INDEXth item.

Only for the multi-select mode.

289

Events

Click

Called when the user presses the return key or double-clicks on an item. The index of the
item is stored in focusedItem.

DragItem OLD INDEX, NEW INDEX

Called when the user finishes the drag of an item from OLD INDEX to NEW INDEX posi-
tion. The default action rearranges the item list according to the dragging action.

DrawItem CANVAS, INDEX, X1, Y1, X2, Y2, SELECTED, FOCUSED, PRE-
LIGHT, COLUMN

Called when the INDEXth item is to be drawn on CANVAS. X1, Y1, X2, Y2 define the item
rectangle in widget coordinates where the item is to be drawn. SELECTED, FOCUSED,
and PRELIGHT are boolean flags, if the item must be drawn correspondingly in selected
and focused states, with or without the prelight effect.

MeasureItem INDEX, REF

Stores width in pixels of the INDEXth item into the REF scalar reference. This notification
must be called from within the begin paint info/end paint info block.

SelectItem INDEX, FLAG

Called when an item changes its selection state. INDEX is the index of the item, FLAG is
its new selection state: 1 if it is selected, 0 if it is not.

Stringify INDEX, TEXT REF

Stores the text string associated with the INDEXth item into TEXT REF scalar reference.

Prima::AbstractListBox

The same as its ascendant Prima::AbstractListViewer except that it does not the propagate
DrawItem message, assuming that all items must be drawn as text strings.

Prima::ListViewer

The class implements an item storage mechanism but leaves the definition of the format of the
item to the programmer. The items are accessible via the items property and several other helper
routines.

The class also defines user navigation by accepting character keyboard input and jumping to
the items that have text assigned with the first letter that matches the input.

Prima::ListViewer is derived from Prima::AbstractListViewer.

Properties

autoWidth BOOLEAN

Selects if the item width must be recalculated automatically when either the font or item
list is changed.

Default value: 1

count INTEGER

A read-only property; returns the number of items.

items ARRAY

Accesses the storage array of the items. The format of items is not defined, it is merely
treated as one scalar per index.

290

Methods

add items ITEMS

Appends an array of ITEMS to the end of the item list.

calibrate

Recalculates all item widths. Adjusts itemWidth if autoWidth is set.

delete items INDICES

Deletes items from the list. INDICES can be either an array or a reference to an array of
item indices.

get item width INDEX

Returns the width in pixels of the INDEXth item from the internal cache.

get items INDICES

Returns an array of items. INDICES can be either an array or a reference to an array of
item indices. Depending on the caller context, the results are different: in the array context
the item list is returned; in scalar - only the first item from the list.

insert items OFFSET, ITEMS

Inserts an array of items at the OFFSET index in the list. Offset must be a valid index; to
insert items at the end of the list use the add items method.

ITEMS can be either an array or a reference to an array of items.

replace items OFFSET, ITEMS

Replaces existing items at the OFFSET index in the list. The offset must be a valid index.

ITEMS can be either an array or a reference to an array of items.

Prima::ProtectedListBox

A semi-demonstrational class derived from Prima::ListViewer, implements certain protections
for every item during drawing. Assuming that several item drawing algorithms can be used in the
same widget, Prima::ProtectedListBox provides a safety layer between these. If an algorithm
selects a font or a color and does not restore the old value, this does not affect the outlook of other
items.

This functionality is implemented by overloading the draw items method and also all graphic
properties.

Prima::ListBox

Descendant of Prima::ListViewer, declares that an item must be a single text string. Incorpo-
rating all the functionality of its predecessors, provides the standard workhorse listbox widget.

Synopsis

my $lb = Prima::ListBox-> create(

items => [qw(First Second Third)],

focusedItem => 2,

onClick => sub {

print $_[0]-> get_items($_[0]-> focusedItem), " is selected\n";

}

);

291

Methods

get item text INDEX

Returns the text string associated with the INDEXth item. Since the item storage organi-
zation is implemented, does so without calling the Stringify notification.

292

4.19 Prima::MDI

Top-level window emulation

Description

MDI stands for Multiple Document Interface and is a Microsoft Windows user interface that
consists of multiple non-top-level windows belonging to an application window. The module
contains classes that provide similar functionality; sub-window widgets realize a set of operations
similar to those of the real top-level windows, - iconize, maximize, cascade, etc.

The basic classes required to use the MDI are Prima::MDIOwner and Prima::MDI, which are,
correspondingly, sub-window owner class and sub-window class. Prima::MDIWindowOwner is the
same as Prima::MDIOwner but is a Prima::Window descendant: both owner classes are different
only in the class they are derived from. Their second ascendant is the Prima::MDIMethods package
that contains all the owner class functionality.

Usage of the Prima::MDI class extends beyond the multi-document paradigm. The
Prima::DockManager module uses the class as a base of the dockable toolbar window class (see
the Prima::DockManager section.

Synopsis

use Prima qw(Application MDI Buttons);

my $owner = Prima::MDIWindowOwner-> new;

my $mdi = $owner-> insert(’Prima::MDI’);

$mdi-> client-> insert(’Prima::Button’ => centered => 1);

run Prima;

Prima::MDI

Implements MDI window functionality. A subwindow widget consists of a title bar, title bar
buttons, and a client widget. The latter must be used as an insertion target for all children
widgets.

A subwindow can be moved and resized, both by mouse and keyboard. These functions, along
with maximize, minimize, and restore commands are accessible via the popup menu anchored to
the window toolbar. The default set of commands is as follows

Close window - Ctrl+F4

Restore window - Ctrl+F5 or double-click on the title bar

Maximize window - Ctrl+F10 or double-click on the title bar

Go to the next MDI window - Ctrl+Tab

Go to the previous MDI window - Ctrl+Shift+Tab

Invoke popup menu - Ctrl+Space

The class mimics the API of the Prima::Window class, and to some extent, the Prima::Window
section and this page share the same information.

293

Properties

borderIcons INTEGER

Manages window decorations, which are buttons on the title bar and the title bar itself.
Can be 0 or a combination of the following mbi::XXX constants that are a superset of the
bi::XXX constants (see the borderIcons entry in the Prima::Window section) and are
interchangeable.

mbi::SystemMenu - system menu button with an icon is shown

mbi::Minimize - minimize button

mbi::Maximize - maximize and restore buttons

mbi::TitleBar - window title

mbi::Close - close button

mbi::All - all of the above

Default value: mbi::All

borderStyle INTEGER

One of the bs::XXX constants that define the window border style:

bs::None - no border

bs::Single - thin border

bs::Dialog - thick border

bs::Sizeable - thick border with interactive resize capabilities

The bs::Sizeable is a unique mode. If selected, the user can resize the window interactively.
The other border styles disallow resizing and affect the border width and design only.

Default value: bs::Sizeable

client OBJECT

Selects the client widget at run time. When changing the client, the old client’s children are
not reparented to the new client. The property cannot be used to set the client during the
MDI window creation; use the clientClass and clientProfile properties instead.

When setting a new client object, note that it has to be named MDIClient, and that the
window will be automatically destroyed after the client is destroyed.

clientClass STRING

Assigns the client widget class.

Create-only property.

Default value: Prima::Widget

clientProfile HASH

Assigns a hash of properties passed to the client during the creation.

Create-only property.

dragMode SCALAR

A three-state variable that manages the visual feedback style when the user moves or resizes
a window. If 1, the window is moved or resized simultaneously with the user’s mouse or
keyboard actions. If 0, a marquee rectangle is drawn, which is moved or resized as the user
sends the commands; the window is only positioned and/or resized after the dragging session
is successfully finished. If undef, the system-dependant dragging style is used. (See the
get system value entry in the Prima::Application section).

294

The dragging session can be aborted by hitting the Esc key or calling the sizemove cancel

method.

Default value: undef.

icon HANDLE

Selects a custom image to be drawn in the left corner of the toolbar. If 0, the default image
(menu button icon) is drawn.

Default value: 0

iconMin HANDLE

Selects the minimized button image in the normal state.

iconMax HANDLE

Selects the maximized button image in the normal state.

iconClose HANDLE

Selects the close button image in the normal state.

iconRestore HANDLE

Selects the restore button image in the normal state.

iconMinPressed HANDLE

Selects the minimize button image in the pressed state.

iconMaxPressed HANDLE

Selects the maximize button image in the pressed state.

iconClosePressed HANDLE

Selects the close button image in the pressed state.

iconRestorePressed HANDLE

Selects the restore button image in the pressed state.

tileable BOOLEAN

Selects whether the window is allowed to participate in cascading and tiling auto-
arrangements, performed correspondingly by the cascade and tile methods. If 0, the
window position is not affected by these methods.

Default value: 1

titleHeight INTEGER

Selects the height of the title bar in pixels. If 0, the default system value is used.

Default value: 0

windowState STATE

A three-state property that manages the state of a window. STATE can be one of three
ws::XXX constants:

ws::Normal

ws::Minimized

ws::Maximized

295

The property can be changed either by an explicit set-mode call or by the user. In either
case, a WindowState notification is triggered.

The property has three convenience wrappers: maximize(), minimize(), and restore().

The ws::Fullscreen constant is not supported, and there’s no corresponding fullscreen()
method.

Default value: ws::Normal

See also: WindowState

Methods

arrange icons

Arranges geometrically the minimized sibling MDI windows.

cascade

Arranges sibling MDI windows so they form a cascade-like structure: the lowest window is
expanded to the full owner window inferior rectangle, the next window occupies the inferior
rectangle of the first window, etc.

Only windows with the tileable property set to 1 are arranged.

client2frame X1, Y1, X2, Y2

Returns a rectangle that the window would occupy if its client rectangle is assigned to the
X1, Y1, X2, Y2 rectangle.

frame2client X1, Y1, X2, Y2

Returns a rectangle that the window client would occupy if the window rectangle is assigned
to the X1, Y1, X2, Y2 rectangle.

get client rect [WIDTH, HEIGHT]

Returns a rectangle in the window coordinate system that the client would occupy if the
window extensions are WIDTH and HEIGHT. If WIDTH and HEIGHT are undefined, the
current window size is used.

keyMove

Initiates window moving session, navigated by the keyboard.

keySize

Initiates window resizing session, navigated by the keyboard.

mdis

Returns an array of sibling MDI windows.

maximize

Maximizes the window. A shortcut for windowState(ws::Maximized).

minimize

Minimizes the window. A shortcut for windowState(ws::Minimized).

post action STRING

Posts an action to the window; the action is deferred and executed in the next message loop.
This is used to avoid unnecessary state checks when the action-executing code returns. The
current implementation accepts the following string commands: min, max, restore, close.

296

repaint title [STRING = title]

Invalidates the part of the title bar corresponding to the STRING, which can be one of the
following:

left - redraws the menu button

right - redraws minimize, maximize, and close buttons

title - redraws the title

restore

Restores the window to the normal state from the minimized or maximized state. A shortcut
for windowState(ws::Normal).

sizemove cancel

Cancels active moving or resizing session and returns the window to the previous state

tile

Arranges sibling MDI windows so they form a grid-like structure where all windows occupy
equal space, if possible.

Only windows with the tileable property set to 1 are processed.

xy2part X, Y

Maps a point in the (X,Y) coordinates into a string corresponding to the part of the window:
title bar, button, or a part of the border. The latter can be returned only if borderStyle
is set to bs::Sizeable. The possible return values are:

border - window border; the window is not sizeable

client - client widget

caption - title bar; the window is not movable

title - title bar; the window is movable

close - close button

min - minimize button

max - maximize button

restore - restore button

menu - menu button

desktop - the point does not belong to the window

In addition, if the window is sizeable, the following constants can be returned, indicating
the part of the border:

SizeN - upper side

SizeS - lower side

SizeW - left side

SizeE - right side

SizeSW - lower left corner

SizeNW - upper left corner

SizeSE - lower right corner

SizeNE - upper right corner

297

Events

Activate

Triggered when the user activates the window. The activation mark usually resides on the
window that has the keyboard focus.

The module does not provide a dedicated activation function; the select() call can be used
for this.

Deactivate

Triggered when the user deactivates the window. A window is usually marked inactive when
it contains no keyboard focus.

The module does not provide a dedicated de-activation function; the deselect() call can
be used instead.

WindowState STATE

Triggered when the window state is changed, either by an explicit windowState() call or by
the user. STATE is the new window state, one of three ws::XXX constants.

Prima::MDIMethods

Methods

The package contains methods for MDI window owners. Add Prima::MDIMethods as a base to
your class to inherit this functionality if neither Prima::MDIOwner nor Prima::MDIWindowOwner
suit your needs.

mdi activate

Repaints window titles in all children MDI windows.

mdis

Returns an array of children MDI windows.

arrange icons

The same as Prima::MDI::arrange icons.

cascade

The same as Prima::MDI::cascade.

tile

The same as Prima::MDI::tile.

Prima::MDIOwner

A predeclared descendant class derived from Prima::Widget and Prima::MDIMethods.

Prima::MDIWindowOwner

A pre-declared descendant class derived from Prima::Window and Prima::MDIMethods.

SEE ALSderived from

the Prima section, the Prima::Widget section, the Prima::Window section, the
Prima::DockManager section, examples/mdi.pl

298

4.20 Prima::Notebooks

Multipage widgets

Description

The module contains several widgets useful for organizing multipage containers, notebooks.
Prima::Notebook provides the basic functionality of such a widget container. Prima::TabSet

is a page selector control, and Prima::TabbedNotebook combines these two into a ready-to-use
multipage control with interactive navigation.

Synopsis

use Prima qw(Notebooks Buttons Application);

my $nb = Prima::TabbedNotebook-> new(

tabs => [’First page’, ’Second page’, ’Second page’],

size => [300, 200],

);

$nb-> insert_to_page(1, ’Prima::Button’);

$nb-> insert_to_page(2,

[’Prima::Button’, bottom => 10],

[’Prima::Button’, bottom => 150],

);

$nb-> Notebook-> backColor(cl::Green);

run Prima;

Prima::Notebook

Properties

Provides basic widget container functionality. Acts as a merely grouping widget, hiding and
showing the children widgets when the pageIndex property is changed.

defaultInsertPage INTEGER

Selects the page where widgets attached the by insert call are assigned. If set to undef,
the default page is the current page.

Default value: undef.

pageCount INTEGER

Selects the number of pages. If the number of pages is reduced, the widgets that belong to
the rejected pages are removed from the notebook’s storage.

pageIndex INTEGER

Selects the index of the current page. Valid values are from 0 to pageCount - 1.

299

Methods

attach to page INDEX, @WIDGETS

Attaches WIDGETS to INDEXth page. The widgets not necessarily must be children of the
notebook widget. If the INDEXth page is not current, the widgets get hidden and disabled;
otherwise their state is not changed.

contains widget WIDGET

Searches for WIDGET in the attached widgets list. If found, returns two integers: location
page index and widget list index. Otherwise returns an empty list.

delete page [INDEX = -1, REMOVE CHILDREN = 1]

Deletes the INDEXth page, and detaches the widgets associated with it. If RE-
MOVE CHILDREN is 1, the detached widgets are destroyed.

delete widget WIDGET

Detaches WIDGET from the widget list and destroys the widget.

detach from page WIDGET

Detaches WIDGET from the widget list.

insert CLASS, %PROFILE [[CLASS, %PROFILE], ...]

Creates one or more widgets with the owner property set to the caller widget, and returns
the list of references to the newly created objects.

See the insert entry in the Prima::Widget section for details.

insert page [INDEX = -1]

Inserts a new empty page at INDEX. The valid range is from 0 to pageCount; setting INDEX
equal to pageCount is equivalent to appending a page to the end of the page list.

insert to page INDEX, CLASS, %PROFILE, [[CLASS, %PROFILE], ...]

Inserts one or more widgets to the INDEXth page. The semantics of setting CLASS and
PROFILE, as well as the return values are fully equivalent to the insert method.

See the insert entry in the Prima::Widget section for details.

insert transparent CLASS, %PROFILE, [[CLASS, %PROFILE], ...]

Inserts one or more widgets to the notebook widget, but does not add widgets to the widget
list, so the widgets are not flipped together with pages. Useful for setting omnipresent (or
transparent) widgets, visible on all pages.

The semantics of setting CLASS and PROFILE, as well as the return values are fully equiv-
alent to the insert method.

See the insert entry in the Prima::Widget section for details.

move widget WIDGET, INDEX

Moves WIDGET to the INDEXth page.

widget get WIDGET, PROPERTY

Returns PROPERTY value of WIDGET. If PROPERTY is affected by the page flipping
mechanism, the internal flag value is returned instead.

widget set WIDGET, %PROFILE

Calls set onWIDGET with PROFILE and updates the internal visible, enabled, current,
and geometry properties if these are present in PROFILE.

See the set entry in the Prima::Object section.

300

widgets from page INDEX

Returns list of widgets associated with the INDEXth page.

Events

Change OLD PAGE INDEX, NEW PAGE INDEX

Called when the pageIndex value is changed from OLD PAGE INDEX to
NEW PAGE INDEX. Current implementation invokes this notification while the notebook
widget is in the locked state so no redraw requests are honored during the execution of the
notification.

Bugs

Since the notebook operates directly on children widgets’ ::visible and ::enable properties,
there is a problem when a widget associated with a non-active page must be explicitly hidden or
disabled. As a result, such a widget would become visible and enabled anyway. This happens
because Prima API does not cache property requests. For example, after the execution of the
following code

$notebook-> pageIndex(1);

my $widget = $notebook-> insert_to_page(0, ...);

$widget-> visible(0);

$notebook-> pageIndex(0);

$widget will still become visible. As a workaround, the widget set method can be suggested,
to be called together with the explicit state calls. Changing the

$widget-> visible(0);

code to

$notebook-> widget_set($widget, visible => 0);

solves the problem, but introduces an inconsistency in API.

Prima::TabSet

The Prima::TabSet class implements the functionality of an interactive page switcher. A widget
is presented as a set of horizontal bookmark-styled tabs with text identifiers.

Properties

colored BOOLEAN

A boolean property, selects whether each tab uses unique color (OS/2 Warp 4 style), or all
tabs are drawn with backColor.

Default value: 1

colorset ARRAY

Allows to specify custom colors for the tabs.

Used only when colored is set to 1.

firstTab INTEGER

Selects the first (leftmost) visible tab.

301

focusedTab INTEGER

Selects the currently focused tab. This property value is almost always equal to tabIndex

except when the widget is navigated by arrow keys, and the tab selection does not occur
until the user presses the return key.

topMost BOOLEAN

Selects the way the widget is oriented. If 1, the widget is drawn as if it resides on top of
another widget. If 0, it is drawn as if it is at the bottom.

Default value: 1

tabIndex INDEX

Selects the INDEXth tab. When changed, the Change notification is triggered.

tabs ARRAY

An array of text scalars. Each scalar corresponds to a tab and is displayed correspondingly.
The class supports single-line text strings only; newline characters are not respected.

Methods

get item width INDEX

Returns width in pixels of the INDEXth tab.

tab2firstTab INDEX

Returns the index of the tab that will be drawn leftmost if the INDEXth tab is to be
displayed.

insert tab TEXT, [POSITION = -1]

Inserts a new tab text at the given position, which is at the end by default

delete tab POSITION

Removes the tab from the given position

Events

Change

Triggered when the tabIndex property is changed.

DrawTab CANVAS, INDEX, COLOR SET, POLYGON1, POLYGON2

Called when the INDEXth tab is to be drawn on CANVAS. COLOR SET is an array refer-
ence that consists of four cached color values: foreground, background, dark 3d color, and
light 3d color. POLYGON1 and POLYGON2 are array references that contain four points as
integer pairs in (X,Y)-coordinates. POLYGON1 keeps the coordinates of the larger polygon
of a tab, while POLYGON2 of the smaller. Text is displayed inside the larger polygon:

302

Depending on the topMost property value, POLYGON1 and POLYGON2 change their mu-
tual vertical orientation.

The notification is always called from within the begin paint/end paint block.

MeasureTab INDEX, REF

Stores the width of the INDEXth tab in pixels into the REF scalar value. This notification
must be called from within the begin paint info/end paint info block.

Prima::TabbedNotebook

The class combines the functionality of Prima::TabSet and Prima::Notebook, providing the
interactive multipage widget functionality. The page indexing scheme has two levels: the first level
is equivalent to the tabs provided by Prima::TabSet. Each first-level tab, in turn, may contain one
or more second-level pages, which can be switched using native Prima::TabbedNotebook controls.

The first-level tabs are referred to as tabs, and the second-level as pages.

Properties

The class forwards the following properties of Prima::TabSet, which are described in the
Prima::TabSet section: colored, colorset

defaultInsertPage INTEGER

Selects the page where widgets attached by the insert call are assigned to. If set to undef,
the default page is the current page.

Default value: undef.

notebookClass STRING

Assigns the notebook widget class.

Create-only property.

Default value: Prima::Notebook

notebookProfile HASH

Assigns a hash of properties passed to the notebook widget during the creation.

Create-only property.

notebookDelegations ARRAY

Assigns a list of delegated notifications to the notebook widget.

Create-only property.

orientation INTEGER

Selects one of the following tno::XXX constants

tno::Top

The TabSet will be drawn at the top of the widget.

tno::Bottom

The TabSet will be drawn at the bottom of the widget.

Default value: tno::Top

pageIndex INTEGER

Selects the INDEXth page or a tabset widget (the second-level tab). When this property
is triggered, tabIndex can change its value, and the Change notification is triggered.

303

style INTEGER

Selects one of the following tns::XXX constants

tns::Standard

The widget will have a raised border surrounding it and a +/- control at the top for
moving between pages.

tns::Simple

The widget will have no decorations (other than a standard border). It is recommended
to have only one second-level page per tab with this style.

Default value: tns::Standard

tabIndex INTEGER

Selects the INDEXth tab on the tabset widget using the first-level tab numeration.

tabs ARRAY

Manages the number and names of notebook pages. ARRAY is an anonymous array of
text scalars where each corresponds to a single first-level tab and a single notebook page,
however, with a single exception. To define second-level tabs, the same text string must be
repeated as many times as many second-level tabs are needed. For example, the code

$nb-> tabs(’1st’, (’2nd’) x 3);

results in the creation of a notebook of four pages and two first-level tabs. The tab ’2nd’

contains three second-level pages.

The property implicitly operates the underlying notebook’s pageCount property. When
changed at run-time, its effect on the children widgets is therefore the same. See the page-
Count entry for more information.

tabsetClass STRING

Assigns the tab set widget class.

Create-only property.

Default value: Prima::TabSet

tabsetProfile HASH

Assigns a hash of properties passed to the tab set widget during the creation.

Create-only property.

tabsetDelegations ARRAY

Assigns a list of delegated notifications to the tab set widget.

Create-only property.

Methods

The class forwards the following methods of Prima::Notebook, which are described in the
Prima::Notebook section: attach to page, insert to page, insert, insert transparent,
delete widget, detach from page, move widget, contains widget, widget get, widget set,
widgets from page.

tab2page INDEX

Returns the second-level tab index that corresponds to the INDEXth first-level tab.

304

page2tab INDEX

Returns the first-level tab index that corresponds to the INDEXth second-level tab.

insert page TEXT, [POSITION = -1]

Inserts a new page with text at the given position, which is at the end by default. If the
TEXT is the same as the existing tab left or right from POSITION, the page is joined to
the existing tab as a page; otherwise, a new tab is created.

delete page POSITION

Removes the page from the given position.

Events

Change OLD PAGE INDEX, NEW PAGE INDEX

Triggered when the pageIndex property changes its value from OLD PAGE INDEX to
NEW PAGE INDEX.

305

4.21 Prima::Outlines

Tree view widgets

Synopsis

use Prima qw(Outlines Application);

my $outline = Prima::StringOutline-> create(

items => [

[’Simple item’],

[’Embedded items’, [[’#1’], [’#2’]]],

],

);

$outline-> expand_all;

run Prima;

my $outline = Prima::StringOutline-> create(

iconStyle => ’triangle’,

...

);

Description

The module provides a set of widget classes designed to display tree-like structures.
Prima::OutlineViewer presents a generic class that contains the basic functionality and defines
the interface for the class descendants, which are Prima::StringOutline, Prima::Outline, and
Prima::DirectoryOutline.

Prima::OutlineViewer

Presents a generic interface for browsing tree-like lists. Each node in a linked list represents
an item. The format of the node is predefined, and is an anonymous array with the following
definitions of its indices:

#0

Item id in an unspecified format. The simplest implementation, Prima::StringOutline,
treats the scalar as a text string. The more complex classes store references to arrays or
hashes here. See the items article of a concrete class for the format of the node record.

#1

Reference to a child node. undef if there is none.

#2

A boolean flag, which selects if the node is to be shown as expanded, e.g. all of its immediate
children are visible.

306

#3

Width of an item in pixels.

The indices above 3 should not be used because eventual changes to the implementation of
the class may use these. The general idea is that the data at index #0 should be self-sufficient to
define an item.

To support a custom format of the node the following notifications should be overloaded:
DrawItem, MeasureItem, and Stringify. Since DrawItem is called for every item, a gross
method draw items can be overloaded instead. See also the Prima::StringOutline section and
the Prima::Outline section.

The class employs two ways to address an item, index-wise and item-wise. The index-wise
counts only the visible (non-expanded) items and is represented by an integer index. The item-
wise addressing cannot be expressed by an integer index, and the full node structure is used as a
reference. It is important to use a valid reference here since the class does not always perform the
check if the node belongs to the internal node list due to speed reasons.

Prima::OutlineViewer is a descendant of Prima::Widget::GroupScroller and
Prima::Widget::MouseScroller, so some of their properties and methods are not described
here.

The class is not usable directly.

Properties

autoHeight INTEGER

If set to 1, changes itemHeight automatically according to the widget font height. If 0, does
not influence anything. When itemHeight is set explicitly, changes value to 0.

Default value: 1

dragable BOOLEAN

If 1, allows the items to be dragged interactively by pressing the Control key together with
the left mouse button. If 0, item dragging is disabled.

Default value: 1

drawLines BOOLEAN

If 1, draws dotted tree lines left to the items.

Default value: 1

extendedSelect BOOLEAN

Manages the way the user selects multiple items and is only actual when multiSelect is 1.
If 0, the user must click each item to mark it as selected. If 1, the user can drag the mouse
or use the Shift key plus arrow keys to perform range selection; the Control key can be
used to select individual items.

Default value: 0

focusedItem INTEGER

Selects the focused item index. If -1, no item is focused. It is mostly a run-time property,
however, it can be set during the widget creation stage given that the item list is accessible
at this stage as well.

iconCollapsed ICON

Sets the image that is to be displayed when a tree branch is collapsed

iconExpanded ICON

Sets the image that is to be displayed when a tree branch is expanded

307

iconStyle STYLE

Sets visual style, one of: default, plusminus, or triangle.

The default style is set in $Prima::Outlines::default style and is currently ’plusminus’,
however, it can be overridden by skin. The default style for the current default skin flat

is ’triangle’.

indent INTEGER

Width in pixels of the indent between item levels.

Default value: 12

itemHeight INTEGER

Selects the height of the items in pixels. Since the outline classes do not support items with
various heights, changes to this property affect all items.

Default value: default font height

items ARRAY

Provides access to the items as an anonymous array. The format of an item is described in
the opening article (see the Prima::OutlineViewer section).

Default value: []

multiSelect BOOLEAN

If 0, the user can only select one item, which is also reported by the focusedItem property.
If 1, the user can select more than one item. In this case, the focusedItem’th item is not
necessarily selected. To access the selected item list, use the selectedItems property.

Default value: 0

offset INTEGER

Horizontal offset of the item list in pixels.

selectedItems ARRAY

ARRAY is an array of integer indices of the selected items. Note, that these are the items
visible on the screen only. The property doesn’t handle the selection status of the collapsed
items.

The widget keeps the selection status on each node, visible and invisible (e.g. the node
is invisible if its parent node is collapsed). However, selectedItems accounts for the vis-
ible nodes only; to manipulate the node status or both visible and invisible nodes, use
select item, unselect item, and toggle item methods.

showItemHint BOOLEAN

If 1, allows activation of a hint label when the mouse pointer is hovered above an item that
does not fit horizontally into the widget inferiors. If 0, the hint is never shown.

See also: the makehint entry.

Default value: 1

topItem INTEGER

Selects the first item drawn.

308

Methods

add selection ARRAY, FLAG

Sets item indices from ARRAY in selected or deselected state, depending on the FLAG
value, correspondingly 1 or 0.

Note, that these are the items visible on the screen only. The method doesn’t handle the
selection status of the collapsed items.

Only for the multi-select mode.

adjust INDEX, EXPAND

Performs expansion (1) or collapse (0) of the INDEXth item, depending on the EXPAND
boolean flag value.

calibrate

Recalculates the node tree and item dimensions. Used internally.

delete items [NODE = undef, OFFSET = 0, LENGTH = undef]

Deletes LENGTH children items of NODE at OFFSET. If NODE is undef, the root node
is assumed. If LENGTH is undef, all items after OFFSET are deleted.

delete item NODE

Deletes NODE from the item list.

deselect all

Removes selection from all items.

Only for multi-select mode.

draw items CANVAS, PAINT DATA

Called from within the Paint notification to draw items. The default behavior is to call the
DrawItem notification for every visible item. PAINT DATA is an array of arrays, where each
consists of the parameters passed to the DrawItem notification.

This method is overridden in some descendant classes, to increase the speed of the drawing
routine.

See the DrawItem entry for PAINT DATA parameters description.

get index NODE

Traverses all items for NODE and finds if it is visible. If it is, returns two integers: the
first is the item index and the second is the item depth level. If the node is not visible, -1,
undef is returned.

get index text INDEX

Returns the text string associated with the INDEXth item. Since the class does not assume
the item storage organization, the text is queried via the Stringify notification.

get index width INDEX

Returns the width in pixels of the INDEXth item, which is a cached result of the MeasureItem
notification, stored under index #3 in a node.

get item INDEX

Returns two scalars corresponding to the INDEXth item: the node reference and its depth
level. If INDEX is outside the list boundaries, an empty array is returned.

309

get item parent NODE

Returns two scalars, corresponding to the NODE: its parent node reference and offset of the
NODE in the parent’s immediate children list.

get item text NODE

Returns the text string associated with the NODE. Since the class does not assume the item
storage organization, the text is queried via the Stringify notification.

get item width NODE

Returns width in pixels of the INDEXth item, which is a cached result of the MeasureItem
notification, stored under index #3 in a node.

expand all [NODE = undef].

Expands all nodes under NODE. If NODE is undef the root node is assumed. If the tree is
large, the execution can take a significant amount of time.

insert items NODE, OFFSET, @ITEMS

Inserts one or more ITEMS under NODE with OFFSET. If NODE is undef, the root node
is assumed.

iterate ACTION, FULL

Traverses the item tree and calls the ACTION subroutine on each node. If the FULL boolean
flag is 1, all nodes are traversed. If 0, only the expanded nodes are traversed.

ACTION subroutine is called with the following parameters:

#0

Node reference

#1

Parent node reference; if undef, the node is the root.

#2

Node offset in the parent item list.

#3

Node index.

#4

Node depth level. 0 means the root node.

#5

A boolean flag, set to 1 if the node is the last child in the parent node list, set to 0
otherwise.

#6

Visibility index. When iterate is called with FULL = 1, the index is the item index
as seen on the screen. If the item is not visible, the index is undef.

When iterate is called with FULL = 1, the index is always the same as node index.

is selected INDEX, ITEM

Returns 1 if an item is selected, 0 if it is not.

The method can address the item either directly (ITEM) or by its INDEX in the screen
position.

310

makehint SHOW, INDEX

Controls hint label of the INDEXth item. If a boolean flag SHOW is set to 1, the
showItemHint property is 1, and the item index does not fit horizontally in the widget
inferiors, then the hint label is shown. By default, the label is removed automatically as
soon as the user moves the mouse pointer away from the item. If SHOW is set to 0, the hint
label is hidden immediately.

point2item Y, [HEIGHT]

Returns the index of an item that occupies the horizontal axis at Y in the widget coordinates.
If HEIGHT is specified, it must be the widget height; if it is not, the value is fetched by
calling Prima::Widget::height. If the value is known, passing it to point2item thus
achieves some speed-up.

select all

Selects all items.

Only for multi-select mode.

set item selected INDEX, ITEM, FLAG

Sets the selection flag of an item. If FLAG is 1, the item is selected. If 0, it is deselected.

The method can address the item either directly (ITEM) or by its INDEX. Only for the
multi-select mode.

select item INDEX, ITEM

Selects an item.

The method can address the item either directly (ITEM) or by its INDEX. Only for the
multi-select mode.

toggle item INDEX, ITEM

Toggles selection of an item.

The method can address the item either directly (ITEM) or by its INDEX. Only for the
multi-select mode.

unselect item INDEX, ITEM

Deselects an item.

The method can address the item either directly (ITEM) or by its INDEX. Only for the
multi-select mode.

validate items ITEMS

Traverses an array of ITEMS and changes every node so that eventual scalars above index
#3 are deleted. Also adds default values to a node if it contains less than 3 scalars.

Events

Expand NODE, EXPAND

Called when NODE is expanded (1) or collapsed (0). The EXPAND boolean flag reflects
the action taken.

DragItem OLD INDEX, NEW INDEX

Called when the user finishes the drag of an item from OLD INDEX to NEW INDEX posi-
tion. The default action rearranges the item list according to the dragging action.

311

DrawItem CANVAS, NODE, X1, Y1, X2, Y2, INDEX, SELECTED, FOCUSED,
PRELIGHT

Called when the INDEXth item contained in NODE is to be drawn on CANVAS. X1, Y1, X2,
Y2 coordinates define the exterior rectangle of the item in widget coordinates. SELECTED,
FOCUSED, and PRELIGHT boolean flags are set to 1 if the item is selected, focused, or
pre-lighted, respectively; 0 otherwise.

MeasureItem NODE, LEVEL, REF

Stores the width of the NODE item in pixels into the REF scalar reference. LEVEL is the
node depth as returned by get item for the reference. This notification must be called from
within the begin paint info/end paint info block.

SelectItem [[INDEX, ITEM, SELECTED], [INDEX, ITEM, SELECTED], ...]

Called when an item gets selected or deselected. The array passed contains a set of arrays for
each item where each contains either an integer INDEX or the ITEM, or both. In case the
INDEX is undef, the item is invisible; if the ITEM is undef, then the caller didn’t bother to
call get item for speed reasons, and the receiver should call this function. The SELECTED
flag contains the new value of the item.

Stringify NODE, TEXT REF

Stores text string associated with the NODE item into the TEXT REF scalar reference.

Prima::StringOutline

A descendant of the Prima::OutlineViewer class, provides a standard single-text-item widget.
The items can be defined by supplying a text as the first scalar in the node array structure:

$string outline-> items([’String’, [’Descendant’]]);

Prima::Outline

A variant of Prima::StringOutline, with the only difference that the text is stored not in the
first scalar in a node but as a first scalar in an anonymous array, which in turn is the first node
scalar. The class does not define either format or the number of scalars in the array, and as such
presents a half-abstract class.

Prima::DirectoryOutline

Provides a standard widget with the item tree mapped to the directory structure, so that each
item is mapped to a directory. Depending on the type of the host OS, there is either a single root
directory (unix), or one or more disk drive root items (win32).

The node format is defined as follows:

#0

Directory name, string.

#1

Parent path; an empty string for the root items.

#2

Icon width in pixels, integer.

#3

Drive icon; defined only for the root items under Windows to reflect the drive type (hard,
floppy, etc).

312

Properties

closedGlyphs INTEGER

The number of horizontal equal-width images in the closedIcon property.

Default value: 1

closedIcon ICON

Provides an icon representation for the collapsed items.

openedGlyphs INTEGER

The number of horizontal equal-width images in the openedIcon property.

Default value: 1

openedIcon OBJECT

Provides an icon representation for the expanded items.

path STRING

Runtime-only property. Selects the current file system path.

showDotDirs BOOLEAN Selects if the directories with the first dot character are
shown in the tree view. The treatment of the dot-prefixed names as hidden
is traditional to unix and is of doubtful use under Windows.

Default value: 0

Methods

files [FILE TYPE]

If the FILE TYPE value is not specified, the list of all files in the current directory is
returned. If FILE TYPE is given, only the files of the types are returned. The FILE TYPE
is a string, one of those returned by Prima::Utils::getdir (see the getdir entry in the
Prima::Utils section).

get directory tree PATH

Reads the file structure under PATH and returns a newly created hierarchy structure in the
class node format. If the showDotDirs property value is 0, the dot-prefixed names are not
included.

Used internally inside the Expand notification.

313

4.22 Prima::PodView

POD browser widget

Synopsis

use Prima qw(Application PodView);

my $window = Prima::MainWindow-> create;

my $podview = $window-> insert(’Prima::PodView’,

pack => { fill => ’both’, expand => 1 }

);

$podview-> open_read;

$podview-> read("=head1 NAME\n\nI’m also a pod!\n\n");

$podview-> close_read;

run Prima;

Description

Prima::PodView contains a formatter (in terms of perlpod) and a viewer of the POD content. It
heavily employs its ascendant class the Prima::TextView section, and is in turn the base class for
the toolkit’s default help viewer the Prima::HelpViewer section.

Usage

The package consists of several logically separated parts. These include file locating and loading,
formatting, and navigation.

Content methods

The basic access to the content is not bound to the file system. The POD content can be supplied
without any file to the viewer. Indeed, the file loading routine load file is a mere wrapper to
the following content-loading functions:

open read %OPTIONS

Clears the current content and enters the reading mode. In this mode, the content can be
appended by repeatedly calling the read method that pushes the raw POD content to the
parser.

read TEXT

Supplies the TEXT string to the parser. Parses basic indentation, but the main formatting
is performed inside the add entry and the add formatted entry.

Must be called only within the open read/close read brackets

close read

Closes the reading mode and starts the text rendering by calling format. Returns undef if
there is no POD context, 1 otherwise.

314

Rendering

The rendering is started by the format call which returns almost immediately, initiating the
mechanism of delayed rendering, which is often time-consuming. format’s only parameter
KEEP OFFSET is a boolean flag, which, if set to 1, remembers the current location on a page,
and when the rendered text approaches the location, scrolls the document automatically.

The rendering is based on a document model, generated by the open read/close read session.
The model is a set of the same text blocks defined by the Prima::TextView section, except that
the header length is only three integers:

pod::M_INDENT - the block X-axis indent

pod::M_TEXT_OFFSET - same as BLK_TEXT_OFFSET

pod::M_FONT_ID - 0 or 1, because PodView’s fontPalette contains only two fonts -

variable (0) and fixed (1).

The actual rendering is performed in format chunks, where model blocks are transformed into
text blocks, wrapped, and pushed into the TextView-provided storage. In parallel, links and the
corresponding event rectangles are calculated at this stage.

Topics

Prima::PodView provides the ::topicView property, which manages whether the man page is
viewed by topics or as a whole. When a page is in the single topic mode, the {modelRange} array
selects the model blocks that include the topic to be displayed. That way the model stays the
same while text blocks inside the widget can be changed.

Styles

In addition to styles provided by the Prima::Drawable::Pod section, Prima::PodView defines
colorMap entries for pod::STYLE LINK , pod::STYLE CODE, and pod::STYLE VERBATIM:

COLOR_LINK_FOREGROUND

COLOR_CODE_FOREGROUND

COLOR_CODE_BACKGROUND

The default colors in the styles are mapped into these entries.

Link and navigation methods

Prima::PodView provides the hand-icon mouse pointer that highlights links. Also, the link docu-
ments or topics are loaded in the widget when the user presses the mouse button on the link. the
Prima::Widget::Link section is used for the implementation of the link mechanics.

If the page is loaded successfully, depending on the ::topicView property value, either the
select topic or select text offset method is called.

The family of file and link access functions consists of the following methods:

load file MANPAGE

Loads the manpage if it can be found in the PATH or perl installation directories. If unsuc-
cessful, displays an error.

load link LINK

LINK is a text in the format of perlpod L<> link: ”manpage/section”. Loads the manpage,
if necessary, and selects the section.

load bookmark BOOKMARK

Loads the bookmark string prepared by the the make bookmark entry function. Used inter-
nally.

315

load content CONTENT

Loads content into the viewer. Returns undef if there is no POD context, 1 otherwise.

make bookmark [WHERE]

Combines the information about the currently viewing page source, topic, and text offset,
into a storable string. WHERE, an optional string parameter, can be either omitted, in such
case the current settings are used, or be one of the ’up’, ’next’, or ’prev’ strings.

The ’up’ string returns a bookmark to the upper level of the manpage.

The ’next’ and ’prev’ return a bookmark to the next or the previous topics in the manpage.

If the location cannot be stored or defined, undef is returned.

Events

Bookmark BOOKMARK

When a new topic is navigated by the user, this event is triggered with the current topic to
have it eventually stored in the bookmarks or user history.

Link LINK REF, BUTTON, MOD, X, Y

When the user clicks on a link, this event is called with the link address, mouse button,
modification keys, and coordinates.

NewPage

Called after new content is loaded

316

4.23 Prima::ScrollBar

Scroll bars

Description

Prima::ScrollBar implements standard vertical and horizontal scrollbars

Synopsis

use Prima::ScrollBar;

my $sb = Prima::ScrollBar->new(owner => $group, %rest_of_profile);

my $sb = $group-> insert(’ScrollBar’, %rest_of_profile);

my $isAutoTrack = $sb-> autoTrack;

$sb-> autoTrack($yesNo);

my $val = $sb-> value;

$sb-> value($value);

my $min = $sb-> min;

my $max = $sb-> max;

$sb-> min($min);

$sb-> max($max);

$sb-> set_bounds($min, $max);

my $step = $sb-> step;

my $pageStep = $sb-> pageStep;

$sb-> step($step);

$sb-> pageStep($pageStep);

my $partial = $sb-> partial;

my $whole = $sb-> whole;

$sb-> partial($partial);

$sb-> whole($whole);

$sb-> set_proportion($partial, $whole);

my $size = $sb-> minThumbSize;

$sb-> minThumbSize($size);

my $isVertical = $sb-> vertical;

$sb-> vertical($yesNo);

my ($width,$height) = $sb-> get_default_size;

API

Properties

autoTrack BOOLEAN

Tells the widget if it should send the Change notification during mouse tracking events.
Generally, it should only be set to 0 on very slow computers.

The default value: 1

317

growMode INTEGER

The default value is gm::GrowHiX, i.e. the scrollbar will try to maintain the constant distance
from its right edge to its owner’s right edge as the owner changes its size. This is useful for
horizontal scrollbars.

height INTEGER

The default value is $Prima::ScrollBar::stdMetrics[1], which is an operat-
ing system-dependent value determined with a call to Prima::Application->

get default scrollbar metrics. The height is affected because by default the hori-
zontal ScrollBar will be created.

max INTEGER

Sets the upper limit for value.

The default value: 100.

min INTEGER

Sets the lower limit for value.

The default value: 0

minThumbSize INTEGER

A minimal thumb breadth in pixels. The thumb cannot have a main dimension lesser than
this.

The default value: 21

pageStep INTEGER

This determines the increment/decrement to value during the operations that suppose to
scroll by pages, for example clicking the mouse on the strip outside the thumb, or pressing
PgDn or PgUp.

The default value: 10

partial INTEGER

This tells the scrollbar how many imaginary units the thumb should occupy. See whole

below.

The default value: 10

selectable BOOLEAN

The default value is 0. If set to 1 the widget receives keyboard focus; when in focus, the
thumb bar is blinking.

step INTEGER

This determines the minimal increment/decrement to value during mouse/keyboard inter-
action.

The default value is 1

value INTEGER

A basic scrollbar property; reflects the imaginary position between min and max, which
corresponds directly to the position of the thumb.

The default value is 0

318

vertical BOOLEAN

Determines the main scrollbar style. Set this to 1 when the scrollbar style is vertical, 0 -
horizontal. The property can be changed at run-time, so the scrollbars can morph from
horizontal to vertical and vice versa.

The default value is 0

whole INTEGER

This tells the scrollbar how many imaginary units correspond to the whole length of the
scrollbar. This value has nothing in common with min and max. You may think of the
combination of partial and whole as the proportion between the visible size of something
(document, for example) and the whole size of that ”something”.

The default value is 100.

Methods

get default size

Returns two integers, the default platform-dependant width of a vertical scrollbar and the
height of a horizontal scrollbar.

Events

Change

The Change notification is sent whenever the thumb position of the scrollbar is changed,
subject to certain limitations when autoTrack is 0. The notification is sent when appropri-
ate, regardless of whether due to the user interaction or a side effect of some method the
programmer has called.

Track

If autoTrack is 0, called when the user changes the thumb position with the mouse.

Example

use Prima;

use Prima::Application name => ’ScrollBar test’;

use Prima::ScrollBar;

my $w = Prima::Window->new(

text => ’ScrollBar test’,

size => [300,200]);

my $sb = $w-> insert(ScrollBar =>

width => 280,

left => 10,

bottom => 50,

onChange => sub {

$w-> text($_[0]-> value);

});

run Prima;

319

4.24 Prima::Sliders

Sliding bars, spin buttons, dial widgets, etc

Description

The module contains a set of unrelated widget classes that provide input and/or output of an
integer value. That is the only thing common in these classes, which are:

Prima::AbstractSpinButton

Prima::SpinButton

Prima::AltSpinButton

Prima::SpinEdit

Prima::Gauge

Prima::PrigressBar

Prima::AbstractSlider

Prima::Slider

Prima::CircularSlider

Prima::AbstractSpinButton

Provides a generic interface to the spin-button class functionality that includes events and range
definition properties. Neither Prima::AbstractSpinButton nor its descendants store the integer
value. These provide a mere possibility for the user to send the incrementing and decrementing
commands.

The class is not usable directly.

Properties

state INTEGER

The property manages a common internal state that doesn’t have an exact meaning, as it is
only defined in the descendant classes. For example, the state can be set to non-zero when
the user performs a mouse drag action.

Events

Increment DELTA

Called when the user presses a part of the widget that is responsible for incrementing or
decrementing commands. DELTA is an integer value that indicates how the associated value
must be modified.

TrackEnd

Called when the user finished the mouse transaction.

Prima::SpinButton

A rectangular spin button that consists of three parts, divided horizontally. The upper and
the lower parts are push buttons associated with singular increment and decrement commands.
The middle part, when dragged by the mouse, fires the Increment events with delta value, based
on the vertical position of the mouse pointer.

320

Prima::AltSpinButton

A rectangular spin button that consists of two push-buttons, associated with singular increment
and decrement commands. Compared to Prima::SpinButton, the class is a bit less functional
but has a more stylish look.

Prima::SpinEdit

The widget contains a numerical input line and a spin button. The input line value can be
changed in three ways - either as a direct traditional keyboard input, as a result of the spin button
actions, or as the mouse wheel response. The class provides properties for value storage and range
selection.

Properties

allowEmpty BOOLEAN

If set, allows an empty string as a valid value

Default value: false

circulate BOOLEAN

Selects the value modification rule when the increment or decrement action hits a range
limit. If 1, the value is changed to the opposite limit value (for example, if the value is 100
in the range 2-100, and the user clicks on the ’increment’ button, the value is changed to 2
).

If 0, the value does not change.

Default value: 0

editClass STRING

Assigns the input line class.

A create-only property.

Default value: Prima::InputLine

editDelegations ARRAY

Assigns the input line list of the notifications.

A create-only property.

editProfile HASH

Assigns a hash of properties passed to the input line during the creation.

A create-only property.

max INTEGER

Sets the upper limit for value.

Default value: 100.

min INTEGER

Sets the lower limit for value.

Default value: 0

321

pageStep INTEGER

Determines the multiplication factor for incrementing and decrementing actions of the mouse
wheel.

Default value: 10

spinClass STRING

Assigns the spin-button class.

A create-only property.

Default value: Prima::AltSpinButton

spinProfile ARRAY

Assigns the spin-button list of the delegated notifications.

A create-only property.

spinDelegations HASH

Assigns a hash of properties passed to the spin-button during the creation.

A create-only property.

step INTEGER

Determines the multiplication factor for incrementing and decrementing actions of the spin-
button.

Default value: 1

value INTEGER

Selects the integer value in the range from min to max. The value is reflected in the input
line.

Default value: 0.

Methods

set bounds MIN, MAX

Simultaneously sets both min and max values.

Events

Change

Called when value is changed.

Prima::Gauge

An output-only widget class, displays a progress bar and an eventual percentage string. Useful
as a progress indicator.

322

Properties

indent INTEGER

Selects the width of the border around the widget.

Default value: 1

max INTEGER

Sets the upper limit for value.

Default value: 100.

min INTEGER

Sets the lower limit for value.

Default value: 0

relief INTEGER

Selects the style of the border around the widget. Can be one of the following gr::XXX

constants:

gr::Sink - 3d sunken look

gr::Border - uniform black border

gr::Raise - 3d raised look

Default value: gr::Sink.

threshold INTEGER

Selects the threshold value used to determine if the changes to value are reflected immedi-
ately or are deferred until the value is changed more significantly. When 0, all calls to value

result in an immediate repaint request.

Default value: 0

value INTEGER

Selects the integer value between min and max, reflected in the progress bar and eventual
text.

Default value: 0.

vertical BOOLEAN

If 1, the widget is drawn vertically and the progress bar moves from bottom to top. If 0, the
widget is drawn horizontally and the progress bar moves from left to right.

Default value: 0

Methods

set bounds MIN, MAX

Simultaneously sets both min and max values.

Events

Stringify VALUE, REF

Converts the integer VALUE into a string format and stores it in the REF scalar reference.
Default stringifying conversion is identical to a call to sprintf("%2d%%").

323

Prima::ProgressBar

Displays a progress bar

Properties

max INTEGER

Sets the upper limit for value.

Default value: 100.

min INTEGER

Sets the lower limit for value.

Default value: 0

value INTEGER

Selects the integer value between min and max, reflected in the progress bar and an eventual
text.

Default value: 0.

Methods

set bounds MIN, MAX

Simultaneously sets both min and max values.

Prima::AbstractSlider

The class provides the basic functionality of a sliding bar, equipped with tick marks. The tick
marks are supposed to be drawn alongside the main sliding axis or the dialing circle, and provide
visual feedback for the user.

The class is not usable directly.

Properties

autoTrack BOOLEAN

A boolean flag, selects the way notifications are executed when the user mouse-drags the
sliding bar. If 1, the Change notification is executed as soon as value is changed. If 0,
Change is deferred until the user finishes the mouse drag; instead, the Track notification is
executed when the bar is moved.

This property can be used when the Change notification handler performs very slowly, so
the eventual fast mouse interactions would not thrash down the program.

Default value: 1

increment INTEGER

A step range value used in scheme for marking the key ticks. See the scheme entry for
details.

Default value: 10

max INTEGER

Sets the upper limit for value.

Default value: 100.

324

min INTEGER

Sets the lower limit for value.

Default value: 0

readOnly BOOLEAN

If 1, the user cannot change the value by moving the bar or otherwise.

Default value: 0

ticks ARRAY

Selects the tick marks representation along the sliding axis or the dialing circle. ARRAY
consists of hashes, each for one tick. The hash must contain at least a value key with an
integer value. The two additional keys height and text, select the height of a tick mark in
pixels, and the text is drawn near the mark, correspondingly.

If ARRAY is undef, no ticks are drawn.

scheme INTEGER

scheme is a property that creates a set of tick marks using one of the predefined scale designs
selected by the ss::XXX constants. Each constant produces a different scale; some make
use of the increment integer property that selects a step that is used to place additional
text marks. As an example, the ss::Thermometer design with the default min, max, and
increment values would look like this:

0 10 20 100

| | | |

|||||||||||||||....|||

The module defines the following constants:

ss::Axis - 5 minor ticks per increment

ss::Gauge - 1 tick per increment

ss::StdMinMax - 2 ticks at the ends of the bar

ss::Thermometer - 10 minor ticks per increment, longer text ticks

When the tick property is explicitly set, scheme is reset to undef.

snap BOOLEAN

If 1, value cannot accept values that are not on the tick scale. When such a value is
attempted to be set, it is rounded to the closest tick mark. If 0, value can accept any
integer value in the range from min to max.

Default value: 0

step INTEGER

An integer delta for singular increment and decrement commands, and also a threshold for
value when the snap value is 0.

Default value: 1

value INTEGER

Selects an integer value between min and max and the corresponding sliding bar position.

Default value: 0.

325

Events

Change

Called when the value value is changed, with one exception: if the user moves the sliding
bar while autoTrack is 0, the Track notification is called instead.

Track

Called when the user moves the sliding bar while the autoTrack value is 0; this notification
is a substitute to Change.

Prima::Slider

Presents a linear sliding bar, movable along a linear shaft.

Properties

borderWidth INTEGER

In horizontal mode, sets extra margin space between the slider line and the widget bound-
aries. Can be used for fine-tuning text labels from ticks(), where the default spacing (0)
or spacing procedure (drop overlapping labels) does not produce decent results.

ribbonStrip BOOLEAN

If 1, the parts of the shaft are painted with different colors to increase visual feedback. If 0,
the shaft is painted with the single default background color.

Default value: 0

shaftBreadth INTEGER

The breadth of the shaft in pixels.

Default value: 6

tickAlign INTEGER

One of the tka::XXX constants that correspond to the position of the tick marks:

tka::Normal - ticks are drawn on the left or the top of the shaft

tka::Alternative - ticks are drawn on the right or at the bottom of the shaft

tka::Dual - ticks are drawn both ways

The ticks’ orientation (left or top, right or bottom) is dependent on the vertical property
value.

Default value: tka::Normal

vertical BOOLEAN

If 1, the widget is drawn vertically, and the slider moves from bottom to top. If 0, the widget
is drawn horizontally, and the slider moves from left to right.

Default value: 0

326

Methods

pos2info X, Y

Translates integer coordinates pair (X, Y) into the value corresponding to the scale, and
returns three scalars:

info INTEGER

If undef, the user-driven positioning is not possible (min equals to max).

If 1, the point is located on the slider.

If 0, the point is outside the slider.

value INTEGER

If info is 0 or 1, contains the corresponding value.

aperture INTEGER

Offset in pixels along the shaft axis.

Prima::CircularSlider

Presents a slider widget with a dialing circle and two increment/decrement buttons. The tick
marks are drawn around the perimeter of the dial; the current value is displayed in the center of
the dial.

Properties

buttons BOOLEAN

If 1, the increment / decrement buttons are shown at the bottom of the dial, and the user
can change the value either by the dial or by the buttons. If 0, the buttons are not shown.

Default values: 0

stdPointer BOOLEAN

Determines the style of a value indicator (pointer) on the dial. If 1, it is drawn as a black
triangular mark. If 0, it is drawn as a small circular knob.

Default value: 0

Methods

offset2data VALUE

Converts integer value in the range from min to max into the corresponding angle, and returns
two floating-point values: cosine and sine of the angle.

offset2pt X, Y, VALUE, RADIUS

Converts integer value in the range from min to max into the point coordinates, with the
RADIUS and dial center coordinates X and Y. Return the calculated point coordinates as
two integers in the (X,Y) format.

327

xy2val X, Y

Converts widget coordinates X and Y into value in the range from min to max and returns
two scalars: the value and the boolean flag, which is set to 1 if the (X,Y) point is inside the
dial circle, and to 0 otherwise.

Events

Stringify VALUE, REF

Converts integer VALUE into a string format and stores it in the REF scalar reference. The
resulting string is displayed in the center of the dial.

The default conversion routine simply copies VALUE to REF as is.

328

4.25 Prima::Spinner

Spinner animation widget

Synopsis

use Prima qw(Application Buttons Spinner);

my $mw = Prima::MainWindow->new(

size => [200, 400],

text => ’Button Example’

);

my $spinner = $mw->insert(’Spinner’,

style => ’drops’,

size => [200,400],

growMode => gm::Center

);

my $button = $mw->insert(

’Button’,

text => ’Start/Stop’,

checkable => 1,

checked => 1,

origin => [0,0],

onClick => sub { $spinner->toggle },

growMode => gm::XCenter

);

run Prima;

Description

Prima::Spinner provides a simple spinning animation in three different designs and the opportunity
to specify the colors of the spinning animation. This is useful to show the progress of a running
process.

Usage

Properties

active [BOOLEAN]

Manages whether the spinning animation is active or not.

329

color COLOR

Inherited from the Prima::Widget section. color manages the basic foreground color. For
the spinner widget, this means the background color of the circle or the color of the drops.

hiliteColor COLOR

Inherited from the Prima::Widget section. The color is used to draw alternate foreground
areas with high contrast. For the spinner widget, this defines the color of the arc. Only for
the circle style.

showPercent BOOLEAN

If set, displays completion percent as text. Only for the circle style.

start

Same as active(1)

stop

Same as active(0)

style STRING

style can be ’drops’, ’circle’ or ’spiral’. drops shows drops with fading colors. The circle
style features an arc moving around a circle. spiral shows a spinning spiral. The default is
’drops’.

value INT

An integer value between 0 and 100, shows completion percentage. Only for the circle style.

toggle

Same as active(!active)

330

4.26 Prima::TextView

Rich text browser widget

Synopsis

use strict;

use warnings;

use Prima qw(TextView Application);

my $w = Prima::MainWindow-> create(

name => ’TextView example’,

);

my $t = $w->insert(TextView =>

text => ’Hello from TextView!’,

pack => { expand => 1, fill => ’both’ },

);

Create a single block that renders all the text using the default font

my $tb = tb::block_create();

my $text_width_px = $t->get_text_width($t->text);

my $font_height_px = $t->font->height;

$tb->[tb::BLK_WIDTH] = $text_width_px;

$tb->[tb::BLK_HEIGHT] = $font_height_px;

$tb->[tb::BLK_BACKCOLOR] = cl::Back;

$tb->[tb::BLK_FONT_SIZE] = int($font_height_px) + tb::F_HEIGHT;

Add an operation that draws the text:

push @$tb, tb::text(0, length($t->text), $text_width_px);

Set the markup block(s) and recalculate the ymap

$t->{blocks} = [$tb];

$t->recalc_ymap;

Additional step needed for horizontal scroll as well as per-character

selection:

$t->paneSize($text_width_px, $font_height_px);

run Prima;

Description

Prima::TextView accepts blocks of formatted text and provides basic functionality for text scrolling
and user selection. The text strings are stored as one large text chunk accessible with the ::text
and ::textRef properties. A block of formatted text is an array with a fixed-length header
and following commands. Each command is formed as an opcode followed by a fixed number of
arguments. The block header contains the text offset, which text commands implicitly add to
when addressing text strings by the offsets in their arguments.

The package tb:: provides the block constants and simple functions for creating and accessing
blocks, opcodes, and commands.

331

Capabilities

Prima::TextView is mostly about text block functions and helpers. It provides functions for wrap-
ping text blocks, calculating block dimensions, and drawing and converting coordinates from (X,Y)
to a block position. The class functionality is focused on the text functionality, and although any
custom graphic of arbitrary complexity can be embedded in a text block, the internal coordi-
nate system is (TEXT OFFSET, BLOCK) , where TEXT OFFSET is the text offset from the
beginning of a block and BLOCK is an index of a block.

The functionality does not imply any particular text layout - this is up to the class descendants,
they must provide their own layout policy. The only policy Prima::TextView requires is that the
blocks’ BLK TEXT OFFSET field must be strictly increasing, and the block text chunks must
not overlap. The text gaps are allowed though.

A text block basic drawing function handles the commands changing of color, backColor, and
font, and the painting of text strings. Other types of graphics can be achieved by supplying custom
code.

block draw CANVAS, BLOCK, X, Y

The block draw method draws BLOCK on the CANVAS in screen coordinates (X,Y). It
may be used not only inside begin paint/end paint brackets; CANVAS can be an arbitrary
Prima::Drawable descendant.

block walk BLOCK, %OPTIONS

Cycles through the block opcodes, calls the relevant callbacks on each. The callbacks can be
supplied in %OPTIONS.

Coordinate system methods

Prima::TextView employs two own coordinate systems: document-based (X,Y) and block-based
(TEXT OFFSET,BLOCK). Each block’s text offset is also referred to as big text offset vs small
text offset that is used by individual commands; the small text offset always is added to the block’s
big text offset to address the string in the widget’s text scalar.

The document coordinate system is isometric and measured in pixels. Its origin is located in
the imaginary point of the beginning of the document (not in the first block!), in the upper-
left pixel. X increases to the right, and Y increases down. The block header values BLK X and
BLK Y use document coordinates, and the widget’s pane extents (regulated the by ::paneSize,
::paneWidth and ::paneHeight properties) are also in the document coordinates.

The block coordinate system is anisometric - its second axis BLOCK, is an index of a text
block in the widget’s blocks storage, $self->{blocks}, and its first axis TEXT OFFSET is a
text offset from the beginning of the block.

Below are described different coordinate system converters:

screen2point, point2screen X, Y

screen2point accepts (X,Y) in the screen coordinates (O is the lower left widget corner)
and returns (X,Y) in document coordinates (O is the upper left corner of the document).
point2screen does the reverse transformation.

xy2info X, Y

Accepts (X,Y) is document coordinates, returns (TEXT OFFSET,BLOCK) coordinates
where TEXT OFFSET is the text offset from the beginning of a block (not of the whole
text!) , and BLOCK is an index of a block.

info2xy TEXT OFFSET, BLOCK

Accepts (TEXT OFFSET,BLOCK) coordinates and returns (X,Y) in document coordinates
of a block.

332

text2xoffset TEXT OFFSET, BLOCK

Returns the X coordinate where TEXT OFFSET begins in a block. BLOCK is the index of
the latter.

info2text offset

Accepts (TEXT OFFSET,BLOCK) coordinates and returns the text offset from the begin-
ning of the whole text.

text offset2info TEXT OFFSET

Accepts big text offset and returns (TEXT OFFSET,BLOCK) coordinates

text offset2block TEXT OFFSET

Accepts big text offset and returns the BLOCK coordinate.

Text selection

The text selection is performed automatically when the user selects a text region with the mouse.
The selection is stored in (TEXT OFFSET,BLOCK) coordinate pair and is accessible via the
::selection property. If its value is assigned to (-1,-1,-1,-1) then this indicates that there is no
selection. For convenience, the has selection method is introduced.

Also, get selected text returns the text within the selection (or undef with no selection),
and copy copies automatically the selected text into the clipboard. The latter action is bound to
the Ctrl+Insert key combination.

A block with TEXT OFFSET set to -1 will be treated as not containing any text, and therefore
will not be able to get selected.

Event rectangles

Partly as an option for future development, partly as a hack a concept of event rectangles was
introduced. Currently, the {contents} private variable points to an array of objects equipped
with the on mousedown, on mousemove, and on mouseup methods. These are called by the widget
mouse events so that the overloaded classes can define the interactive content without overloading
the actual mouse events (which is although easy but is dependent on the implementation of
Prima::TextView’s mouse handlers).

As an example, the Prima::PodView section uses the event rectangles to catch the mouse events
over the document links. Theoretically, every ’content’ can be bound with a separate logical layer;
the concept was designed with an HTML browser in mind, so such layers can be thought of as
links, image maps, layers, external widgets, etc in the HTML world.

Currently, the Prima::TextView::EventRectangles class is provided for such usage. Its
property ::rectangles contains an array of rectangles, and the contains method returns an
integer value, whether the passed coordinates are inside one of its rectangles or not; in the first
case it is the rectangle index.

333

4.27 Prima::Widget::Date

Standard date picker widget

Synopsis

use Prima qw(Application Widget::Date);

my $mw = Prima::MainWindow->new;

$mw->insert(’Widget::Date’ =>

pack => { fill => ’x’, pad => 20 },

);

run Prima;

Description

Standard date picker widget, derived from the Prima::InputLine class.

API

Methods

date2str DATE

Converts the DATE to a string representation according to the current format string

default format

Returns a string to be used in format where the string is constructed to reflect the formatting
of the regional date preferences.

See also: man 3 strftime, %x .

334

str2date STRING

Tries to extract the date from the STRING, assuming it is constructed according to the
current format string. Doesn’t fail but values that could not be extracted are assigned to
today’s day/month/year instead.

today

Returns today’s date in widgets [D,M,Y] format

validate date D, M, Y

Checks if D, M, Y form a valid date, and adjusts the values if not. Returns the corrected
values.

Properties

date DAY, MONTH, YEAR | [DAY, MONTH, YEAR]

Accepts three integers / arrayref with three integers in the format of localtime. DAY can
be from 1 to 31, MONTH from 0 to 11, YEAR from 0 to 199.

Default value: today’s date.

day INTEGER

Selects the day of the month.

format STRING

The format string is used when converting the date to its visual interpretation, also with
regional preferences, f ex YYYY-MM-DD or DD/MM/YY. The syntax of the format is
verbatim as this, i e it recognizes fixed patterns YYYY, YY, MM, and DD, replacing them
with the date values.

month

Selects the month.

year

Selects the year.

335

4.28 Prima::Widget::Time

Standard time input widget

Synopsis

use Prima qw(Application Widget::Time);

my $mw = Prima::MainWindow->new;

$mw->insert(’Widget::Time’ =>

pack => { fill => ’x’, pad => 20 },

);

run Prima;

Description

Standard time input widget derived from the Prima::InputLine class.

API

Methods

time2str TIME

Converts the TIME to a string representation according to the current format string

default format

Returns a string to be used in format where the string is constructed to reflect the formatting
of the regional time preferences.

See also: man 3 strftime, %X .

str2time STRING

Tries to extract time from STRING, assuming it is constructed according to the current
format string. Doesn’t fail but values that could not be extracted are assigned to the
current second/minute/hour instead.

validate time S, M, H

Checks whether S, M, H form a valid point in time, adjusts the values if not. Returns the
corrected values.

Properties

format STRING

The format string is used when converting the time to its visual interpretation, also with
regional preferences, f ex hh:mm:ss or hh:mm:AA . The syntax of the format is verbatim as
this, i e it recognizes fixed patterns hh, mm, ss, aa, and AA, replacing them with the time
values.

(aa is for <am / pm>, AA is for <AM / PM>).

336

hour

Selects the hour.

minute

Selects the minute.

second INTEGER

Selects the second

time SEC, MIN, HOUR | [SEC, MIN, HOUR]

Accepts three integers / arrayref with three integers in the format of localtime. SEC and
MIN can be from 0 to 59, and HOUR from 0 to 23.

Default value: today’s time.

337

5 Standard dialogs

5.1 Prima::Dialog::ColorDialog

Standard color selection facilities

Synopsis

use Prima qw(Dialog::ColorDialog Application);

my $p = Prima::Dialog::ColorDialog-> new(

quality => 1,

);

printf "color: %06x", $p-> value if $p-> execute == mb::OK;

Description

The module contains two packages, Prima::Dialog::ColorDialog and Prima::ColorComboBox,
used as standard tools for the interactive color selection. Prima::ColorComboBox is a modified
combo widget that provides selecting colors from a predefined palette, but also can invoke a
Prima::Dialog::ColorDialog window.

338

Prima::Dialog::ColorDialog

Properties

grayscale BOOLEAN

If set, allows only gray colors

quality BOOLEAN

The setting can increase the visual quality of the dialog if run on paletted displays.

Default value: 0

value COLOR

Selects the color represented by the color wheel and other dialog controls.

Default value: cl::White

Methods

hsv2rgb HUE, SATURATION, LUMINOSITY

Converts a color from HSV to RGB format and returns three 8-bit integer values, red, green,
and blue components.

rgb2hsv RED, GREEN, BLUE

Converts color from RGB to HSV format and returns three numerical values, hue, saturation,
and luminosity components.

xy2hs X, Y, RADIUS

Maps X and Y coordinate values onto a color wheel with RADIUS in pixels. The code
uses RADIUS = 119 for mouse position coordinate mapping. Returns three values, - hue,
saturation, and error flag. If the error flag is set, the conversion is failed.

hs2xy HUE, SATURATION

Maps hue and saturation onto a 256-pixel wide color wheel, and returns X and Y coordinates
of the corresponding point.

create wheel SHADES, BACK COLOR

Creates a color wheel with the number of SHADES given, drawn on a BACK COLOR
background. Returns a Prima::DeviceBitmap object.

create wheel shape SHADES

Creates a circular 1-bit mask with a radius derived from SHAPES. SHAPES must be the
same as passed to the create wheel entry. Returns a Prima::Image object.

Events

BeginDragColor $PROPERTY

Called when the user starts dragging a color from the color wheel by the left mouse button
and an optional combination of Alt, Ctrl, and Shift keys. $PROPERTY is one of the
Prima::Widget color properties, and depends on a combination of the following keys:

Alt backColor

Ctrl color

Alt+Shift hiliteBackColor

Ctrl+Shift hiliteColor

Ctrl+Alt disabledColor

Ctrl+Alt+Shift disabledBackColor

339

The default action reflects the property to be changed in the dialog title

Change

The notification is called when the the value entry property is changed, either interactively
or as a result of a direct call.

EndDragColor $PROPERTY, $WIDGET

Called when the user releases the mouse button over a Prima widget. The default action
sets $WIDGET->$PROPERTY to the selected color value.

Variables

$colorWheel

Contains the cached result of the the create wheel entry method.

$colorWheelShape

Contains the cached result of the the create wheel shape entry method.

Prima::ColorComboBox

Events

Colorify INDEX, COLOR PTR

nt::Action callback, designed to map combo palette index into an RGB color. INDEX is
an integer from 0 to the colors entry - 1, COLOR PTR is a reference to the result scalar
where the notification is expected to store the resulting color.

Properties

colors INTEGER

Defines the amount of colors in the fixed palette of the combo box.

grayscale BOOLEAN

If set, allows only gray colors

value COLOR

Contains the color selection as a 24-bit integer value.

340

5.2 Prima::Dialog::FindDialog

The standard dialogs FindDialog and ReplaceDialog to find and replace text

Synopsis

use Prima qw(Dialog::FindDialog Application);

my $dlg = Prima::Dialog::FindDialog-> new(findStyle => 0);

my $res = $dlg-> execute;

if ($res == mb::Ok) {

print $dlg-> findText, " is to be found\n";

} elsif ($res == mb::ChangeAll) {

print "all occurrences of ", $dlg-> findText,

" are to be replaced by ", $dlg-> replaceText;

}

Description

The module provides two classes Prima::Dialog::FindDialog and Prima::Dialog::ReplaceDialog.
The Prima::Dialog::ReplaceDialog class is the same as Prima::Dialog::FindDialog except that
its default the findStyle entry property value is set to 0. One can cache and reuse the di-
alog object, changing its the findStyle entry value to 0 and 1, so that only one instance of
Prima::Dialog::FindDialog is used in the program.

The module does not provide the actual search algorithm; this must be implemented by the
programmer. The toolkit includes some help - the part of the algorithm for the Prima::Edit class
is implemented in the Prima::Edit/find method, and another part in the examples/editor.pl
example program. The the Prima::HelpWindow section class also uses the module but implements
its own searching algorithm.

API

Properties

All the properties reflect values that the user can change interactively, - except the findStyle entry.

findText STRING

Selects the text string to be found.

341

Default value: ”

findStyle BOOLEAN

If 1, the dialog provides only the ’find text’ interface. If 0, the dialog provides also the’replace
text’ interface.

Default value: 1 for Prima::Dialog::FindDialog, 0 for Prima::Dialog::ReplaceDialog.

options INTEGER

A combination of the fdo:: constants. For the detailed description see the find entry in
the Prima::Edit section.

fdo::MatchCase

fdo::WordsOnly

fdo::RegularExpression

fdo::BackwardSearch

fdo::ReplacePrompt

Default value: 0

replaceText STRING

Selects the text string to replace the found text.

Default value: ”

scope

One of the fds:: constants. Represents the scope of the search: it can be started from the
cursor position, from the top of the text, or from the bottom.

fds::Cursor

fds::Top

fds::Bottom

Default value: fds::Cursor

342

5.3 Prima::Dialog::FileDialog

File system-related widgets and dialogs

Synopsis

open file

use Prima qw(Application Dialog::FileDialog);

my $open = Prima::Dialog::OpenDialog-> new(

filter => [

[’Perl modules’ => ’*.pm’],

[’All’ => ’*’]

]

);

print $open-> fileName, " is to be opened\n" if $open-> execute;

save file

my $save = Prima::Dialog::SaveDialog-> new(

fileName => $open-> fileName,

);

print $save-> fileName, " is to be saved\n" if $save-> execute;

open several files

$open-> multiSelect(1);

print $open-> fileName, " are to be opened\n" if $open-> execute;

Description

The module contains standard open file, save file, and change directory dialogs; plus special widgets
for file and drive selection that are used in the dialogs

Prima::DirectoryListBox

A directory list box. Shows the list of subdirectories.

343

Properties

closedGlyphs INTEGER

The number of horizontal equal-width images, contained in the the closedIcon entry property.

Default value: 1

closedIcon ICON

Provides the icon for the directories contained in the current directory.

indent INTEGER

A positive integer number of pixels, the offset of the hierarchy outline.

Default value: 12

openedGlyphs INTEGER

The number of horizontal equal-width images, contained in the the openedIcon entry prop-
erty.

Default value: 1

openedIcon OBJECT

Provides the icon for the directories contained above the current directory.

path STRING

Runtime-only property. Selects the file path.

showDotDirs BOOLEAN

Selects if the directories with the first dot character are shown. The dot-prefixed files are
traditionally hidden in unix, so under Windows, this property is not useful.

Default value: 1

Methods

files FILE TYPE

Returns the list of files filtered by FILE TYPE. The FILE TYPE is a string, one of those
returned by Prima::Utils::getdir (see the getdir entry in the Prima::Utils section.

Prima::DriveComboBox

Drive selector combo-box for non-unix systems

Properties

firstDrive DRIVE LETTER

Create-only property.

Default value: ’A:’

DRIVE LETTER can be set to another value to start the drive enumeration. Some OSes
can probe eventual diskette drives inside the drive enumeration routines, so it might be
reasonable to set DRIVE LETTER to the C: string for responsiveness increase.

drive DRIVE LETTER

Selects the drive letter.

Default value: ’C:’

344

Prima::Dialog::FileDialog

Provides the standard file dialog where the user can navigate in the file system and select one
or many files. The class can operate in two modes - ’open’ and ’save’; these modes are triggered
internally by the Prima::Dialog::OpenDialog section and the Prima::Dialog::SaveDialog section.
Some properties behave differently depending on the mode that is stored in the the openMode
entry property.

Properties

createPrompt BOOLEAN

If 1, and the selected file is nonexistent, asks the user if the file is to be created.

Only actual when the openMode entry is 1.

Default value: 0

defaultExt STRING

Selects the file extension, appended to the file name typed by the user, if the extension is
not given.

Default value: ”

directory STRING

Selects the currently selected directory

fileMustExist BOOLEAN

If 1, ensures that the file typed by the user exists before closing the dialog.

Default value: 1

fileName STRING, ...

For the single-file selection, assigns the selected file name. For the multiple-file selection, on
get-calls returns a list of the selected files; on set-calls accepts a single string where the file
names are separated by the space character. The eventual space characters must be quoted.

filter ARRAY

Contains an array of arrays of string pairs, where each pair describes a file type. The first
scalar in the pair is the description of the type; the second is a file mask.

Default value: [[’All files’ => ’*’]]

filterIndex INTEGER

Selects the index in the the filter entry array, which is the currently selected file type.

multiSelect BOOLEAN

Selects whether the user can select several (1) or one (0) file.

See also: the fileName entry.

noReadOnly BOOLEAN

If 1, fails to open a file when it is read-only.

Default value: 0

Only actual when the openMode entry is 0.

noTestFileCreate BOOLEAN

If 0, tests if a file that the user selected can be created.

Default value: 0

Only actual when the openMode entry is 0.

345

overwritePrompt BOOLEAN

If 1, asks the user if the file selected is to be overwritten.

Default value: 1

Only actual when the openMode entry is 0.

openMode BOOLEAN

Create-only property.

Selects whether the dialog operates in ’open’ (1) mode or ’save’ (0) mode.

pathMustExist BOOLEAN

If 1, ensures that the path typed by the user exists before closing the dialog.

Default value: 1

showDotFiles BOOLEAN

Selects if the directories with the first dot character are shown.

Default value: 0

showHelp BOOLEAN

A create-only property. If 1, the ’Help’ button is inserted in the dialog.

Default value: 0

sorted BOOLEAN

Selects whether the file list appears sorted by name (1) or not (0).

Default value : 1

system BOOLEAN

A create-only property. If set to 1, Prima::Dialog::FileDialog returns an instance of the
Prima::sys::XXX::FileDialog system-specific file dialog, if available for the XXX plat-
form.

The system property knows only how to map the FileDialog, OpenDialog, and SaveDialog

classes onto the system-specific file dialog classes; the inherited classes are not affected and
cannot be replaced by the system dialog.

Methods

reread

Re-reads the currently selected directory.

Prima::Dialog::OpenDialog

A descendant of the Prima::Dialog::FileDialog section tuned for open-dialog functionality.

Prima::Dialog::SaveDialog

A descendant of the Prima::Dialog::FileDialog section tuned for save-dialog functionality.

Prima::Dialog::ChDirDialog

Provides standard dialog with interactive directory selection.

346

Properties

directory STRING

Selects the directory

showDotDirs

Selects if the directories with the first dot character are shown

Default value: 0

showHelp

Create-only property. If 1, the ’Help’ button is inserted in the dialog.

Default value: 0

347

5.4 Prima::Dialog::FontDialog

Standard font dialog

Synopsis

use Prima qw(Application Dialog::FontDialog);

my $f = Prima::Dialog::FontDialog-> create;

return unless $f-> execute == mb::OK;

$f = $f-> logFont;

print "$_:$f->{$_}\n" for sort keys %$f;

Description

The dialog provides standard font selection by name, style, size, and encoding. The selected font
is returned by the the logFont entry property.

API

Properties

fixedOnly BOOLEAN

Selects whether only the fonts of fixed pitch (1) or all fonts (0) are displayed in the
selection list.

Default value: 0

logFont FONT

Provides access to the interactive font selection as a hash reference. FONT format is fully
compatible with Prima::Drawable::font.

sampleText STRING

Sample line of text drawn with the currently selected font

Default value: AaBbYyZz

showHelp BOOLEAN

A create-only property.

Specifies if the help button is displayed in the dialog.

Default value: 0

348

Events

BeginDragFont

Called when the user starts dragging a font from the font sample widget by the left mouse
button.

The default action reflects the dragging status in the dialog title

EndDragFont $WIDGET

Called when the user releases the mouse button over a Prima widget. The default action
applies the currently selected font to $WIDGET.

349

5.5 Prima::Dialog::ImageDialog

Image file open and save dialogs

Description

The module provides standard dialogs specially adjusted for image loading and saving.

Prima::Dialog::ImageOpenDialog

Provides a preview widget, allowing the user to view the image file before loading, and the selection
of a frame index for the multi-framed image files. Instead of the execute call, the the load entry
method is used to invoke the dialog and returns the loaded image as a Prima::Image object. The
loaded object contains the {extras} hash with the file and image information filled by the loader.
See the Prima::image-load section for more information.

Synopsis

use Prima qw(Application Dialog::ImageDialog);

my $dlg = Prima::Dialog::ImageOpenDialog-> new;

my $img = $dlg-> load;

return unless $img;

print "$_:$img->{extras}->{$_}\n" for sort keys %{$img-> {extras}};

Properties

preview BOOLEAN

Selects if the preview functionality is active. The user can switch it on and off interactively.

Default value: 1

Methods

load %PROFILE

Executes the dialog, and, if successful, loads the image file and frame selected by the user.
Returns the loaded image as a Prima::Image object. PROFILE is a hash, passed to the
Prima::Image::load method. In particular, it can be used to disable the default loading of
extra information in the {extras} hash variable or to specify a non-default loading option.

350

For example, {extras}->{className} = ’Prima::Icon’ would return the loaded image
as an icon object. See the Prima::image-load section for more.

load can report the progress of the image loading to the caller, and/or to an instance
of Prima::ImageViewer, if desired. If either (or both) onHeaderReady and onDataReady

notifications are specified, these are called from the respective event handlers of the image
being loaded (see the Loading with progress indicator entry in the Prima::image-load
section for details). If the profile key progressViewer is supplied, its value is treated as
a Prima::ImageViewer instance, and it is used to display the loading progress. See the
watch load progress entry in the Prima::ImageViewer section.

Events

HeaderReady IMAGE

See the HeaderReady entry in the Prima::Image section.

DataReady IMAGE, X, Y, WIDTH, HEIGHT

See the DataReady entry in the Prima::Image section.

Prima::Dialog::ImageSaveDialog

Provides the standard image save dialog where the user can select the desired image format, the bit
depth, and other format-specific options. The format-specific options can be set if a dialog for the
file format is provided by the toolkit. The standard toolkit dialogs reside under the Prima::Image
namespace, in the Prima/Image subdirectory. For example, Prima::Image::gif provides the
selection of a transparent color, and Prima::Image::jpeg provides the image quality control. If
the image passed to the the image entry property contains the {extras} hash variable, its data
are used as the default values. In particular, the {extras}->{codecID} field, responsible for the
file format, affects the default file format selection.

Synopsis

my $dlg = Prima::Dialog::ImageSaveDialog-> new;

return unless $dlg-> save($image);

print "saved as ", $dlg-> fileName, "\n";

Properties

image IMAGE

Selects the image to be saved. The property is to be used for the standard invocation of
dialog, via the execute method. It is not needed when the execution and saving are invoked
via the the save entry method.

Methods

save IMAGE, %PROFILE

Invokes the dialog, and, if the execution is successful, saves the IMAGE according to the
user selection and PROFILE hash. PROFILE is not used as a source of the default options,
but is passed directly to the Prima::Image::save call, possibly overriding the selection of
the user.

Returns 1 on success, 0 on error. If the error occurs, the user is notified before the method
returns.

351

5.6 Prima::Image::TransparencyControl

Standard dialog for selecting transparent color when saving an image to a file.

Description

The module contains two classes - Prima::Image::BasicTransparencyDialog and
Prima::Image::TransparencyControl. The former provides the dialog used by image
codec-specific save options dialogs to select a transparent color index when saving an image to a
file. Prima::Image::TransparencyControl is the widget class that displays the image palette
and allows color rather than index selection.

Prima::Image::TransparencyControl

Properties

index INTEGER

Selects the palette index

image IMAGE

Selects the image, reads its palette, and displays it in such a manner that only a color that
is found in the palette can be selected by the user.

Events

Change

Triggered when the user changes the index property.

Prima::Image::BasicTransparencyDialog

Methods

transparent BOOLEAN

If 1, the transparent color widgets are enabled, and the user can select the transparent color
index in the image palette. If 0, the widgets are disabled; the image file is saved with no
transparent color index.

The property can also be toggled interactively by a checkbox.

352

5.7 Prima::MsgBox

Standard message and input dialog boxes

Description

The module contains methods that start standard simple message dialogs

Synopsis

use Prima qw(Application);

use Prima::MsgBox qw(input_box message);

my $text = input_box(’Sample input box’, ’Enter text:’, ’’) // ’(none)’;

message(\ "You have entered: ’B<Q<< $text >>>’", mb::Ok);

API

input box TITLE, LABEL, INPUT STRING, [BUTTONS = mb::OkCancel,
%PROFILES]

Invokes a standard dialog box, that contains an input line, a text label, and buttons that end
the dialog session. The dialog box uses the TITLE string to display as the window title, the
LABEL text to draw next to the input line, and INPUT STRING, which is the text present
in the input box. Depending on the value of the BUTTONS integer parameter, which can
be a combination of the mb::XXX constants, different combinations of push buttons can be
displayed in the dialog.

The PROFILE parameter is a hash, that contains customization parameters for the buttons
and the input line. To access the input line parameters the inputLine hash key is used. See
the Buttons and profiles entry for more information on BUTTONS and PROFILES.

Returns different results depending on the call context. In the array context returns two
values: the result of Prima::Dialog::execute which is either mb::Cancel or one of the
mb::XXX constants of the dialog buttons; and the text entered. The input text is not restored
to its original value if the dialog is canceled. In the scalar context returns the text entered,
if the dialog ended with mb::OK or mb::Yes result, or undef otherwise.

message TEXT, [OPTIONS = mb::Ok | mb::Error, %PROFILES]

Same as the message box call, with the application name passed as the title string.

message box TITLE, TEXT, [OPTIONS = mb::Ok | mb::Error, %PROFILES]

353

Invokes the standard dialog box that contains a text label, a predefined icon, and buttons
to end the dialog session. The dialog box uses the TITLE string to display as the window
title, and the TEXT to display as the main message. The value of the OPTIONS integer
parameter is combined from two different sets of mb::XXX constants. The first set is the
button constants mb::OK, mb::Yes, etc. See the Buttons and profiles entry for the details.
The second set consists of the following constants:

mb::Error

mb::Warning

mb::Information

mb::Question

While there can be several constants of the first set, only one constant from the second set
can be selected. Depending on the message type constant, one of the predefined icons is
displayed and one of the system sounds is played; if no message type constant is selected,
no icon is displayed and no sound is emitted. In case no sound is desired, a special constant
mb::NoSound can be used.

The PROFILE parameter is a hash that contains customization parameters for the buttons.
See the Buttons and profiles entry for the details.

Returns the result of Prima::Dialog::execute which is either mb::Cancel or one of
mb::XXX constants of the specified dialog buttons.

signal dialog $TITLE, $ERROR, $STACK TRACE

The standard minimalistic exception dialog shown by default when
Prima::Application.guiException is 1 and an exception is thrown. Could be reused for
other purposes, by supplying a title, error message, and stack trace. If the stack trace is
not defined, the corresponding button is not shown.

Buttons and profiles

The message and input boxes provide several predefined buttons that correspond to the following
mb::XXX constants:

mb::OK

mb::Cancel

mb::Yes

mb::No

mb::Abort

mb::Retry

mb::Ignore

mb::Help

To provide more flexibility, the PROFILES hash parameter can be used. In this hash, the
following predefined keys tell the dialog methods about certain customizations:

defButton INTEGER

Selects the default button in the dialog, i.e. the button that reacts on the return key. Its
value must be to an mb:: constant of the desired button. If this option is not set, the
leftmost button is selected as the default.

helpTopic TOPIC

Selects the help TOPIC invoked in the help viewer window if the mb::Help button is pressed
by the user. If this option is not set, the Prima section is displayed.

354

inputLine HASH

Only for input box.

Contains the profile hash passed to the input line as creation parameters.

buttons HASH

To modify a button, an integer key with the corresponding mb::XXX constant can be set with
the hash reference under the buttons key. The hash is the profile passed to the button as
creation parameters. For example, to change the text and behavior of a button, the following
construct can be used:

Prima::MsgBox::message(’Hello’, mb::OkCancel,

buttons => {

mb::Ok, {

text => ’~Hello’,

onClick => sub { Prima::message(’Hello indeed!’); }

}

}

);

If it is not desired that the dialog must be closed when the user presses a button, its
::modalResult property (see the Prima::Buttons section) must be reset to 0.

owner WINDOW

If set, the dialog owner is set to WINDOW, otherwise to $::main window. Necessary to
maintain window stack order under some window managers, to disallow other windows to
be brought over the message box.

wordWrap BOOLEAN=undef

message box can display the message in two modes. In wordWrap = 1 where the text is
expected to be relatively short, plus or minus several lines, the user can resize the dialog if
for some reason the text is too big. In wordWrap = 0 mode there is added a scroller, so that
even if the text indeed is too big, even when the dialog is maximized.

By default, the function analyzes the message text and decides which of the two modes is
suited best. An explicit override is possible with this flag.

355

5.8 Prima::Dialog::PrintDialog

Standard printer setup dialog

Description

Provides the standard dialog that allows the user to select the printer and its options. The toolkit
does not provide the in-depth management of the printer options; this can only be accessed
by executing the printer-specific setup window, called by the Prima::Printer::setup dialog

method. The class invokes this method when the user presses the ’Properties’ button. Otherwise
the class provides only selection from the printer list.

When the dialog finishes successfully the selected printer is set as current by setting the
Prima::Printer::printer property. This technique allows direct use of the user-selected printer
and its properties without prior knowledge of the selection process.

Synopsis

use Prima qw(Dialog::PrintDialog Application);

my $dlg = Prima::Dialog::PrintDialog-> new;

if ($dlg-> execute) {

my $p = $dlg-> printer;

if ($p-> begin_doc) {

$p-> text_out(’Hello world’, 10, 10);

$p-> end_doc;

}

}

$dlg-> destroy;

356

6 Drawing helpers

6.1 Prima::Drawable::Antialias

Alternative API for antialiased shapes

Description

Prima offers drawing antialiased lines and shapes, which is rather slow but provides better visual
feedback.

The module augments the Prima::Drawable drawing functionality by adding the
new aa surface function, which features two plotting methods, polyline and fillpoly, identical
to the ones in Prima::Drawable.

The emulation method in the module used to be the backend and the only implementation of
antialiased shapes, but as Prima now supports that internally, this module is not used anymore.
It is still functional though and can be used as an alternative.

Synopsis

$canvas-> new_aa_surface-> polyline([0, 0, 100, 100]);

$canvas-> new_path(subpixel => 1)-> ellipse(100,100,100)->fill;

API

Methods

new $CANVAS

Creates a new AA surface object. The object is cheap to keep and reuse.

fillpoly $POLY [$FILLMODE]

Paints an antialiased polygon shape. The following properties from the $CANVAS are re-
spected: color, backColor, fillPattern, fillPatternOffset, rop2.

polyline $POLY

Plots an antialiased polyline. The following properties from the $CANVAS are respected:
color, backColor, linePattern, lineWidth, lineEnd, lineJoin, miterLimit, rop2

357

6.2 Prima::Drawable::CurvedText

Fit text to path

Description

The module registers a single function curved text out in the Prima::Drawable namespace. The
function plots a line of text along the path defined as a set of points. Various options regulate the
behavior of the function when individual glyphs collide with either the path boundaries or each
other.

Synopsis

use Prima qw(Application Drawable::CurvedText);

my $spline = [qw(100 100 150 150 200 100)];

$::application-> begin_paint;

$::application-> spline($spline);

$::application-> curved_text_out(’Hello, world!’, $::application-> render_spline($spline));

curved text out $TEXT, $POLYLINE, %OPTIONS

$TEXT is a line of text, no special treatment is given to tab and newline characters. The text is
plotted over $POLYLINE path that is an array of coordinate numeric pairs, in the same format as
the Prima::Drawable::polyline method expects.

The plotting begins by drawing the first glyph at the first point in the path unless specified
otherwise with the offset option. The glyph is plotted with the angle perpendicular to the first
path segment; therefore the path may contain floating point numbers if better angle accuracy is
desired.

When the text cannot be fit along a segment it is plotted along the next segment in the path.
Depending on the bevel boolean option, the next glyph is either drawn on the next segment with
the angle corresponding to the tangent of that segment (value 0) or is drawn with the normal text
concatenation offset, with the angle averaged between tangents of the two segments it is plotted
between (value 1). The default value of the bevel option is 1.

The glyph positioning rules differ depending on the collisions integer option. If the option
is set to 0 (default), the next glyph position always corresponds to the glyph width as projected
to the path. This means that glyphs will overlap when plotted inside segments forming an acute
angle. Also, when plotting along a reflex angle, the glyphs will be visually more distant from each
other than when plotted along a straight line.

Simple collision detection can be turned on by setting the collisions option to 1 so that no two
adjacent glyphs may overlap. The glyphs will be placed together with a minimal distance between
them, when possible. With this option set, the function will behave slower. This detection works
only for the adjacent glyphs; if the detection of all glyphs in the text is needed, the collisions

value 2 turns that on. This option may be needed when, for example, the text is plotted inside an
acute angle, and the upper parts of glyphs plotted along one segment will overlap the lower parts
of glyphs plotted along the other one. Setting collisions to 2 will slow the function even more.

The function internally creates an array of tuples where each contains the text string, plotting
angle, and the X,Y coordinates for the text to be plotted. If called in the array context, the
function returns this array. In the scalar context, the function returns the success flag that is the
result of the last call to the text out function.

Options:

358

bevel BOOLEAN=true

If set, the glyphs between two adjoining segments will be plotted with a beveled angle.
Otherwise, the glyphs will strictly follow the tangents of the segments in the path.

callback CODE($SELF, $POLYLINE, $CHUNKS)

If set, the callback is called with $CHUNKS after the calculations are made but before the
text is plotted. $CHUNKS is an array of tuples where each consists of text, angle, and X,Y
coordinates for each text. The callback is free to modify the array.

collisions INTEGER=0

If 0, collision detection is disabled, and text glyphs are plotted strictly along the path. If
1, no two adjacent glyphs may overlap, and no two adjacent glyphs will be situated further
away from each other than is necessary. If 2, the same functionality as with 1, and also no
two glyphs in the whole text will overlap.

nodraw BOOLEAN=false

If set, calculate glyph positions but do not draw them.

offset INTEGER=0

Sets a pixel offset from the beginning of the path where the first glyph is plotted. If the
offset is negative, it is calculated from the end of the path.

skiptail BOOLEAN=false

If set, the remainder of the text that is left after the path is completely traversed is not
shown. Otherwise (default), the tail text is shown with the angle used to plot the last glyph
(if bevelling was requested) or the angle perpendicular to the last path segment (otherwise).

359

6.3 Prima::Drawable::Glyphs

Helper routines for bi-directional text input and complex scripts output

Synopsis

use Prima;

$::application->begin paint;

$application->text out(’100,100,’123ספא);

אפס123

Description

The class implements an abstraction layer by organizing arrays filled with information about
glyphs as a structure that can be used to render text strings. Objects of the class are created
and returned by the Prima::Drawable::text shape method, see more in the text shape entry
in the Prima::Drawable section. A Prima::Drawable::Glyphs object is a blessed array reference
that can contain either two, four, or five packed arrays with 16-bit integers, representing, corre-
spondingly, a set of glyph indexes, a set of character indexes, a set of glyph advances, a set of
glyph position offsets per glyph, and a font index. Additionally, the class implements several sets
of helper routines that aim to address common tasks when displaying glyph-based text.

Structure

Each sub-array is an instance of the Prima::array class, an effective plain memory structure that
provides a standard perl interface over a string scalar filled with fixed-width integers.

The following methods provide read-only access to these arrays:

glyphs

Contains a set of unsigned 16-bit integers where each is a glyph number corresponding to
the font that was used for shaping the text. The glyph numbers are only applicable to the
font used in the shaping process. Zero is usually treated as a default glyph in vector fonts
when shaping cannot map a character; in bitmap fonts, this number is usually the same as
defaultChar.

The glyphs array is recognized as a special case when is sent to the text out or
get text width methods that can process it natively. In this case, no special advances
and glyph positions are taken into account.

Each glyph is not necessarily mapped to a text character, and quite often is not, even in
English left-to-right texts. F ex character combinations like "ff", "fi", and "fl" may
be mapped to single ligature glyphs. When right-to-left, RTL, text direction is taken into
account, the glyph positions may change, too. See indexes below that addresses the mapping
of glyphs to characters.

indexes

Contains a set of unsigned 16-bit integers where each is a text offset corresponding to the
text used in the shaping process. Each glyph position points to the first character in the
text that maps to the glyph.

There can be more than one character per glyph, such as the above example with the "ff"
ligature. There can also be cases with more than one character per more than one glyph,
f ex in indic scripts. In these cases it is easier to operate neither by character offsets nor

360

by glyph offsets, but rather by clusters, where each cluster is an individual syntax unit that
contains one or more characters per one or more glyphs.

In addition to the text offset, each index value can be flagged with a to::RTL bit, signifying
that the character in question has RTL direction. This is not necessarily semitic characters
from RTL languages that only have that attribute set; spaces in these languages are normally
attributed with the RTL bit too, sometimes also numbers. The use of explicit direction
control characters from the U+20XX block can result in any character being assigned or not
assigned the RTL bit.

The array has an extra item added to its end, the length of the text that was used for the
shaping. This helps calculate the cluster length in characters, especially of the last one,
where the difference between indexes is, basically, the cluster length.

The array is not used for text drawing or calculation, but only for conversion between
character, glyph, and cluster coordinates (see Coordinates below).

advances

Contains a set of unsigned 16-bit integers where each is a pixel distance of how much space
the corresponding glyph occupies. Where the advances array is not present, or was force-
filled by advances options by the text shape method, a glyph advance value is basically
the sum of a, b, and c widths of the corresponding glyph. However there are cases when
depending on the shaping input, these values can differ.

One of those cases is the combining graphemes, where the text consisting of two characters,
"A" and the combining grave accent U+300 should be drawn as a single ”À” symbol, and
where the font doesn’t have that single glyph but rather two individual glyphs "A" and "‘".
Even though the grave glyph has its own advance for standalone usage, in this case, it should
be ignored; this is achieved by the shaper setting the advance of the "‘" to zero.

The array content is respected by the text out and get text widthmethods, and its content
can be changed at will to produce gaps in the text quite easily. F ex Prima::Edit uses that
to display tab characters as spaces with the 8x advance.

positions

Contains a set of pairs of signed 16-bit integers where each is an X and Y pixel offset for
each glyph. Like in the previous example with the ”À” symbol, the grave glyph "‘" may be
positioned differently on the vertical axis in ”À” and ”à” graphemes, for example.

The array is respected by text out (but not by get text width).

fonts

Contains a set of unsigned 16-bit integers where each is an index in the font substitution list
(see the font mapper entry in the Prima::Drawable section). Zero means the current font.

The font substitution is applied by the text shape method when the polyfont option is set
(it is by default), and when the shaper cannot match all characters in the text to the glyphs
using the current font. If the current font contains all the needed glyphs, this entry is not
present at all.

The array is respected by the text out and get text width methods.

Coordinates

In addition to the natural character coordinates, where each index is a text offset that can be di-
rectly used in the substr perl function, the Prima::Drawable::Glyphs class offers two additional
coordinate systems that help abstract the object data for the display and navigation.

The glyph coordinate system is a rather straightforward copy of the character coordinate
system, where each number is an offset in the glyphs array. Similarly, these offsets can be used

361

to address individual glyphs, indexes, advances, and positions. However, these are not easy to use
when one needs, for example, to select a grapheme with a mouse, or break a set of glyphs in such
a way that a grapheme is not broken. These use cases can be managed more easily in the cluster
coordinate system.

The cluster coordinates represent a virtually superimposed set of offsets where each corresponds
to a set of one or more characters displayed by one or more glyphs. The most useful functions
below operate in this system.

Visual selection

The coordinates that are best used for implementing the visual selection are either characters or
clusters, but not glyphs. The charater-based selection makes it trivial to extract or replace the
selected text, while the cluster-based makes it easier to manipulate (f ex with Shift- arrow keys)
the selection itself.

The class supports both, by operating on selection maps or selection chunks, where each
represents the same information but in different ways. For example, consider an embedded number
in a bidi text. For the sake of clarity, I’ll use Latin characters here. Let’s imagine a text scalar
containing these characters:

ABC123

where ABC is a right-to-left text that, if rendered on the screen should be displayed as

123CBA

(and the indexes, i e the offsets of the first characters for each glyph, are (3,4,5,2,1,0)).
Next, the user clicks the mouse between the glyphs A and B (in the text offset of 1), drags the

mouse to the left, and finally stops between the characters 2 and 3 (in the text offset of 4). The
resulting selection then should not be, as one might naively expect, this:

123CBA

__^^^_

but this instead:

123CBA

^^_^^_

because the next character after C is 1, and the range of the selected sub-text is from characters
1 to 4.

The class offers means to encode such information in a map, i.e. an array of integers
1,1,0,1,1,0, where each entry is either 0 or 1 depending on whether the cluster is or is not
selected. Alternatively, the same information can be encoded in chunks, or RLE sets, as an array
0,2,1,2,1, where the first integer signifies the number of non-selected clusters to display, the sec-
ond - the number of selected clusters, the third the non-selected again, etc. If the first character
belongs to the selected chunk, the first integer in the result is set to 0.

Bidi input

When sending an input to a widget to type some text, the otherwise trivial case of figuring out
at which position the text should be inserted (or removed, for that matter), becomes interesting
when there are characters with mixed input direction.

F ex it is indeed trivial, when the Latin text is AB, and the cursor is positioned between A and
B, to figure out that whenever the user types C, the result should become ACB. Likewise, when
the text is RTL and both text and input are Arabic, the result is the same. However when f.ex.
the text is A1, which is displayed as 1A because of the RTL shaping, and the cursor is positioned

362

between the 1 (LTR) and A (RTL) glyphs, it is not clear whether that means the new input should
be appended after 1 and become A1C, or after A, and become, correspondingly, AC1.

There is no easy solution for this problem, and different programs approach this differently,
where some go as far as to provide two cursors for both input directions. The class offers its own
solution that uses some primitive heuristics to detect whether the cursor belongs to the left or
the right glyph. This is the area that can be enhanced, and any help from native users of the
languages that use the right-to-left writing system can be greatly appreciated.

API

abc $CANVAS, $INDEX

Returns the a, b, c metrics from the glyph $INDEX

advances

A read-only accessor to the advances array, see the Structure entry above.

clone

Clones the object

cluster2glyph $FROM, $LENGTH

Maps the range of clusters starting with $FROM with size $LENGTH into the corresponding
range of glyphs. Undefined $LENGTH calculates the range from $FROM to the object’s end.

cluster2index $CLUSTER

Returns character offset of the first character in the cluster $CLUSTER.

Note: result may contain to::RTL flag.

cluster2range $CLUSTER

Returns character offset of the first character in the cluster $CLUSTER and the number of
characters in the cluster.

clusters

Returns an array of integers where each is the offset of the first character in each cluster.

cursor2offset $AT CLUSTER, $PREFERRED RTL

Given the cursor is positioned next to the cluster $AT CLUSTER, runs simple heuristics to
calculate what character offset it corresponds to. The $PREFERRED RTL flag is used when
object data does not have enough information to decide the text direction.

See the Bidi input entry above.

def $CANVAS, $INDEX

Returns the d, e, f metrics from the glyph $INDEX

fonts

A read-only accessor to the font indexes, see the Structure entry above.

get box $CANVAS

Return box metrics of the glyph object.

See the get text box entry in the Prima::Drawable section.

get sub $FROM, $LENGTH

Extracts and clones a new object that contains data from cluster offset $FROM with cluster
length $LENGTH.

363

get sub box $CANVAS, $FROM, $LENGTH

Calculate the box metrics of the glyph string from the cluster $FROM with size $LENGTH.

get sub width $CANVAS, $FROM, $LENGTH

Calculate the pixel width of the glyph string from the cluster $FROM with size $LENGTH.

get width $CANVAS, $WITH OVERHANGS

Returns the width of the glyph objects, with overhangs if requested.

glyph2cluster $GLYPH

Return the cluster that contains $GLYPH.

glyphs

A read-only accessor to the glyph indexes array, see the Structure entry above.

glyph lengths

Returns an array where each glyph position is the number of how many glyphs the corre-
sponding cluster occupies

index2cluster $INDEX, $ADVANCE = 0

Returns the cluster that contains the character offset $INDEX.

Set the $ADVANCE 1 to add the RTL-dependent advance to the resulting cluster

indexes

A read-only accessor to the indexes, see the Structure entry above.

index lengths

Returns an array where each glyph position is the number of how many characters the
corresponding cluster occupies

justify CANVAS, TEXT, WIDTH, %OPTIONS

An umbrella call for justify interspace if $OPTIONS{letter} or $OPTIONS{word} is set;
for justify arabic if $OPTIONS{kashida} is set; and for justify tabs if $OPTIONS{tabs}
is set.

Returns a boolean flag whether the glyph object was changed or not.

justify arabic CANVAS, TEXT, WIDTH, %OPTIONS

Performs justifications of Arabic TEXT with kashida to the given WIDTH, returns either a
success flag, or a new text with explicit tatweel characters inserted.

my $text = "\x{6a9}\x{634}\x{6cc}\x{62f}\x{647}";

my $g = $canvas->text_shape($text) or return;

$canvas->text_out($g, 10, 50);

$g->justify_arabic($canvas, $text, 200) or return;

$canvas->text_out($g, 10, 10);

Inserts tatweels only between Arabic letters that did not form any ligatures in the glyph
object, max one tatweel set per word (if any). Does not apply the justification if the letters

364

in the word are rendered as LTR due to embedding or explicit shaping options; only does
justification on RTL letters. If for some reason newly inserted tatweels do not form a
monotonically increasing series after shaping, skips the justifications in that word.

Note: Does not use the JSTF font table, on Windows results may be different from the
native rendering.

Options:

If justification is found to be needed, eventual ligatures with newly inserted tatweel glyphs
are resolved via a call to text shape(%OPTIONS) - so any needed shaping options, such as
language, may be passed there.

as text BOOL = 0

If set, returns the new text with inserted tatweels, or undef if no justification is possible.

If unset, runs in-place justification on the caller glyph object, and returns the boolean
success flag.

min kashida INTEGER = 0

Specifies the minimal width of a kashida strike to be inserted.

kashida width INTEGER

During the calculation, the width of the tatweel glyph is needed - unless supplied by
this option, it is calculated dynamically. Also, when called in the list context, and
succeeds, returns a 1, kashida width tuple that can be reused in subsequent calls.

justify interspace CANVAS, TEXT, WIDTH, %OPTIONS

Performs an in-place inter-letter and/or inter-word justification of TEXT to the given
WIDTH. Returns either a boolean flag whether there were any changes made, or, the new
text with explicit space characters inserted.

Options:

as text BOOL = 0

If set, returns new text with inserted spaces, or undef if no justification is possible.

If unset, runs in-place justification on the caller glyph object, and returns the boolean
success flag.

letter BOOL = 1

If set, runs an inter-letter spacing on all glyphs.

max interletter FLOAT = 1.05

When the inter-letter spacing is applied, it is applied first, so that the width of the
resulting text line can take up to $OPTIONS{max interletter} * glyph width pixels.

The inter-word spacing does not have such a limit, and in the worst case can produce
two words moved to the left and the right edges of the enclosing 0 - WIDTH-1 rectangle.

space width INTEGER

as text mode: during the calculation, the width of the space glyph may be needed.
Unless supplied by $OPTIONS{space width}, it is calculated dynamically. Also, when
called in the list context, and succeeds, returns the 1, space width tuple that can
be reused in subsequent calls.

word BOOL = 1

If set, runs an inter-word spacing by extending advances on all space glyphs.

min text to space ratio FLOAT = 0.75

If the word option set, does not run inter-word justification if the text-to-space ratio is
too small (to not spread the text too thin)

365

justify tabs CANVAS, TEXT, %OPTIONS

Expands the tab characters as $OPTIONS{tabs} (default:8) spaces.

Needs the advance of the space glyph to replace the tab glyph. If no $OPTIONS{glyph} and
$OPTIONS{width} are specified, calculates them.

Returns a boolean flag whether there were any changes made. On success, if called in the
list context, returns also the space glyph ID and space glyph width for eventual use on the
later calls.

left overhang

The first integer from the overhangs result.

log2vis

Returns a map of integers where each character position corresponds to the glyph position.
The name is a rudiment from pure fribidi shaping, where log2vis and vis2log were mapper
functions with the same functionality.

n clusters

Calculates how many clusters are there in the object

new @ARRAYS

Creates a new object. Is not used directly, created automatically inside the text shape

method.

new array NAME

Creates an array suitable for direct insertion to the object, if manual construction of the
object is needed. F ex one may set the missing fonts array like this:

$obj->[Prima::Drawable::Glyphs::FONTS()] = $obj->new_array(’fonts’);

$obj->fonts->[0] = 1;

The newly created array is filled with zeros.

new empty

Creates a new empty object.

overhangs

Calculates two widths for overhangs at the beginning and at the end of the glyph string.
This is used in the emulation of the get text width method with the to::AddOverhangs

flag.

positions

A read-only accessor to the positions array, see the Structure entry above.

reorder text TEXT

Returns a visual representation of TEXT assuming it was the input of the text shape call
that created the object.

reverse

Creates a new object that has all arrays reversed. Used for calculation of the pixel offset
from the right end of a glyph string.

right overhang

The second integer from the overhangs result.

366

selection2range $CLUSTER START $CLUSTER END

Converts cluster selection range into text selection range

selection chunks clusters, selection chunks glyphs $START, $END

Converts text selection given as the visual range between $START and $END into a set of
integers (chunks), where each is the number or selected or not-selected clusters or glyphs.
The first chunk is a number of non-selected items and is 0 if the first cluster or glyph is
selected.

selection diff $OLD, $NEW

Given two chunk sets in the format as returned by selection chunks clusters or
selection chunks glyphs, calculates the new set of chunks where each integer value cor-
responds to the number of the clusters or glyphs affected by the transition from the $OLD

to $NEW visual selection. The first chunk is the number of non-affected items and is 0 if the
first cluster or glyph is affected by the selection change.

Can be used for efficient repaints when the user interactively changes text selection, to redraw
only the changed regions.

selection map clusters, selection map glyphs $START, $END

Same as selection chunks XXX, but instead of RLE chunks returns a full array for each clus-
ter/glyph, where each entry is a boolean value corresponding to whether that cluster/glyph
is to be displayed as selected or not.

selection walk $CHUNKS, $FROM, $TO = length, $SUB

Walks the selection chunks array, returned by selection chunks, between $FROM and
$TO clusters/glyphs. Calls the provided $SUB->($offset, $length, $selected) for each
chunk where each call contains 2 integers - the chunk offset and its length, and a boolean
flag whether the chunk is selected or not.

Can be also used on a result of selection diff, in which case the $selected flag shows
whether the chunk is affected by the selection change or not.

sub text out $CANVAS, $FROM, $LENGTH, $X, $Y

An optimized version of $CANVAS->text out($self->get sub($FROM, $LENGTH), $X,

$Y).

sub text wrap $CANVAS, $FROM, $LENGTH, $WIDTH, $OPT, $TABS

An optimized version of $CANVAS->text wrap($self->get sub($FROM, $LENGTH),

$WIDTH, $OPT, $TABS). The result is also converted to chunks.

text length

Returns the length of the text that was shaped and that produced the object.

x2cluster $CANVAS, $X, $FROM, $LENGTH

Given the sub-cluster from $FROM with size $LENGTH, calculates how many clusters would fit
in $X pixels.

debug

Dumps the glyph object content in a readable format.

367

6.4 Prima::Drawable::Gradient

Gradient fills for primitives

Description

Prima offers simple gradient services to draw gradually changing colors. A gradient is made
by setting at least two colors and optionally a set of points that, when projected, generate the
transition curve between the colors.

The module augments the Prima::Drawable drawing functionality by adding the
new gradient function.

Synopsis

$canvas-> new_gradient(

palette => [cl::White, cl::Blue, cl::White],

)-> sector(50,50,100,100,0,360);

API

Methods

clone %OPTIONS

Creates a new gradient object with %OPTIONS replaced.

new $CANVAS, %OPTIONS

Creates a new gradient object. The following %OPTIONS are available:

dither BOOLEAN = 0

When set, applies not only gradient colors but also different fill patterns to create an
even smoother transition effect between adjacent colors. Works significantly slower.

palette @COLORS

Each color is a cl:: value. The gradient is calculated as a polyline where each of its
vertices corresponds to a certain blend between two adjacent colors in the palette. F.ex.
the simplest palette going from cl::White to cl::Black over a transition line 0..1

(default), produces a pure white color at the start and a pure black color at the end,
with all available shades of gray in between.

poly @VERTICES

A set of 2-integer polyline vertices where the first integer is a coordinate (x, y, or
whatever is required by the drawing primitive) between 0 and 1, and the second is the
color blend value between 0 and 1.

Default: ((0,0),(1,1))

spline \@VERTICES, %OPTIONS

Serving the same purpose as the poly option but the vertices are projected first to a
B-spline curve using the render spline entry and %OPTIONS. The resulting polyline is
treated as poly.

368

vertical BOOLEAN

Only used in the the bar entry primitive, to set the gradient direction.

widgetClass INTEGER

Points to the widget class to resolve generic colors like cl::Back that may differ between
widget classes.

See also: the bar entry, the stripes entry .

bar X1, Y1, X2, Y2, VERTICAL = 0

Draws a filled rectangle with (X1,Y1) - (X2,Y2) extents

Context used: fillPattern, rop, rop2

colors BREADTH

Returns a list of gradient colors for each step from 1 to BREADTH. When dither is set,
each color is an array of three items, - the two adjacent colors and an integer value between
0 and 63 that reflects the amount of blending needed between the colors.

ellipse X, Y, DIAM X, DIAM Y

Draws a filled ellipse with the center in (X,Y) and diameters (DIAM X,DIAM Y)

Context used: fillPattern, rop, rop2

sector X, Y, DIAM X, DIAM Y, START ANGLE, END ANGLE

Draws a filled sector with the center in (X,Y) and diameters (DIAM X,DIAM Y) from
START ANGLE to END ANGLE

Context used: fillPattern, rop, rop2

stripes BREADTH

Returns an array consisting of integer pairs, where the first one is a color value, and the
second is the breadth of the color strip. the bar entry uses this information to draw a gradient
fill, where each color strip is drawn with its own color. Can be used for implementing other
gradient-aware primitives (see examples/f fill.pl)

369

6.5 Prima::Drawable::Markup

Allow markup in widgets

Synopsis

use Prima qw(Application Buttons);

use Prima::Drawable::Markup q(M);

my $m = Prima::MainWindow->new;

$m-> insert(Button =>

text => Prima::Drawable::Markup->new(markup => "B<Bold> bU<u>tton"),

hotKey => ’u’,

pack => {},

);

$m->insert(Button => pack => {}, text => M "I<Italic> button");

$m->insert(Button => pack => {}, text => \ "Not an Q<I<italic>> button");

run Prima;

Description

Prima::Drawable::Markup adds the ability to recognize POD-like markup to Prima widgets.
Supported markup sequences are B (bold text), I (italic text), U (underlined text), F (change
font), S (change font size), C (change foreground color), G (change background color), M (move
pointer), W (disable wrapping), and P (picture).

The F sequence is used as follows: n|text , where n is a 0-based index into the fontPalette.
The S sequence is used as follows: n|text, where n is the number of points relative to the

current font size. The font size may optionally be preceded by + or -.
The C and G sequences are used as follows: c|text, where c is either: a color in any form

accepted by Prima, including the cl constants (Black Blue Green Cyan Red Magenta Brown

LightGray DarkGray LightBlue LightGreen LightCyan LightRed LightMagenta Yellow White

Gray). Or, a 0-based index into the colorPalette. Also, default can be used to set the color
that the canvas originally had. For G a special value off can be used to turn off the background
color and set it as transparent.

The M command has three parameters, comma-separated: X, Y, and flags. X and Y are
coordinates of how much to move the current pointer. By default X and are in pixels, and do not
extend block width. flags is a set of characters, where each is:

m - set units to font height

p - set units to points

x - also extend the block width

The text inside the W sequence will not be wrapped during text wrap calls.
The text inside the Q sequence will not be treated as markup.
The P sequence is used as follows:P<n>, where n is a 0-based index into the picturePalette.
The the URL|text entry sequence parsing results in making 1) text of color linkColor, and

2) wrapping the text with OP LINK commands in the block, that do nothing by default but
could be used by whoever uses the block. See the Prima::Widget::Link section for more and
the Prima::Label section as an example.

370

The methods text out and get text width are affected by Prima::Drawable::Markup.
text out will write formatted text to the canvas, and get text width will return the width of
the formatted text. NOTE: These methods do not save the state between calls, so your markup
cannot span lines (since each line is drawn or measured with a separate call).

The module can export a single method M which is a shortcut over the creation of a new markup
object with default color, font, and image palettes. These can be accessed directly as @COLORS,
@FONTS, @IMAGES correspondingly.

API

The following properties are used:

colorPalette([@colorPalette])

Gets or sets the color palette to be used for C sequences within this widget. Each element
of the array should be a cl:: constant.

fontPalette([@fontPalette])

Gets or sets the font palette to be used for F sequences within this widget. Each element of
the array should be a hashref suitable for setting a font.

picturePalette([@picturePalette])

Gets or sets the picture palette to be used for P sequences within this widget. Each element
of the array should be a Prima::Image descendant.

371

6.6 Prima::Drawable::Metafile

Graphics recorder

Description

Metafiles can record graphic primitives and replay them later on another canvas

Synopsis

my $metafile = Prima::Drawable::Metafile->new(size => [30, 30]);

$metafile->begin_paint;

$metafile->rectangle(10,10,20,20);

$metafile->end_paint;

$metafile->execute($another_drawable, 100, 100);

API

call $SUB::($self,$canvas,@ARGS), @ARGS

$SUB will be called when the metafile is executed, with the first two parameters the metafile
and the target canvas, and @ARGS thereafter.

clear

When called without parameters, clears the content before proceeding. Otherwise same as
Drawable.clear.

execute CANVAS,X,Y

Draws the content on the CANVAS with X,Y offset

size X,Y

Sets the metafile extensions; the content is not clipped by it.

372

6.7 Prima::Drawable::Path

Stroke and fill complex paths

Description

The module augments the Prima::Drawable’s drawing and plotting functionality by implementing
paths that allow arbitrary combinations of polylines, splines, and arcs, to be used for drawing or
clipping shapes.

Synopsis

draws an elliptic spiral

my ($d1, $dx) = (0.8, 0.05);

$canvas-> new_path->

rotate(45)->

translate(200, 100)->

scale(200, 100)->

arc(0, 0, $d1 + $dx * 0, $d1 + $dx * 1, 0, 90)->

arc(0, 0, $d1 + $dx * 2, $d1 + $dx * 1, 90, 180)->

arc(0, 0, $d1 + $dx * 2, $d1 + $dx * 3, 180, 270)->

arc(0, 0, $d1 + $dx * 4, $d1 + $dx * 3, 270, 360)->

stroke;

API

Primitives

All primitives come in two versions, with absolute and relative coordinates. The absolute version
draws a graphic primitive so that its starting point (or a reference point) is at (0,0). The relative
version, called with an ’r’ (f.ex. line vs rline) has its starting point as the ending point of the
previous primitive (or (0,0) if there’s none).

arc CENTER X, CENTER Y, DIAMETER X, DIAMETER Y, ANGLE START,
ANGLE END, TILT = 0

Adds an elliptic arc to the path. The arc is centered around the (CENTER X,CENTER Y)
point.

Important: if the intention is an immediate rendering, especially with a 1-pixel line width,
consider decreasing diameters by 1. This is because all arc calculations are made with the
floating point precision, where the diameter is also given not in pixels but in geometrical
coordinates, to allow for matrix transformations. Before rendering is performed, arcs are
transformed into spline vertices and then the transformation matrix is applied, and by that
time the notion of an arc diameter is lost to be successfully converted into pixel size minus
one.

Read more about this in the Antialiasing and alpha entry in the Prima::Drawable section
.

373

close, open

Closes the current shape and opens a new one. close() is the same as open() but makes sure
the shape’s first point is equal to its last point.

circular arc ANGLE START, ANGLE END

Adds a circular arc to the path. Note that adding transformations will effectively make it
into an elliptic arc, which is used internally by arc and rarc.

chord CENTER X, CENTER Y, DIAMETER X, DIAMETER Y, AN-
GLE START, ANGLE END.

Adds a chord to the path. Is there only for compatibility with Prima::Drawable.

ellipse CENTER X, CENTER Y, DIAMETER X, DIAMETER Y = DIAME-
TER X, TILT = 0

Adds a full ellipse to the path.

glyph INDEX, %OPTIONS

Adds a glyph outline to the path. %OPTIONS are passed as is to the renger glyph entry in
the Prima::Drawable section, except the fill option.

Note that filled glyphs require fillMode without the fm::Overlay bit set, and also the fill
option set to generate proper shapes with holes.

line, rline @POINTS

Adds a polyline to the path

lines [X1, Y1, X2, Y2]..

Adds a set of multiple, unconnected lines to the path. Is there only for compatibility with
Prima::Drawable.

moveto, rmoveto X, Y

Stops plotting the current shape and moves the plotting position to X, Y.

rarc DIAMETER X, DIAMETER Y, ANGLE START, ANGLE END, TILT = 0

Adds an elliptic arc to the path so that the first point of the arc starts on the last point of
the previous primitive, or (0,0) if there’s none.

rectangle X1, Y1, X2, Y2

Adds a rectangle to the path. Is there only for compatibility with Prima::Drawable.

round rect X1, Y1, X2, Y2, MAX DIAMETER

Adds a round rectangle to the path.

sector CENTER X, CENTER Y, DIAMETER X, DIAMETER Y, AN-
GLE START, ANGLE END

Adds a sector to the path. Is there only for compatibility with Prima::Drawable.

spline, rspline $POINTS, %OPTIONS.

Adds a B-spline to the path. See the spline entry in the Prima::Drawable section for
%OPTIONS descriptions.

374

text TEXT, %OPTIONS

Adds TEXT to the path. %OPTIONS are the same as in the render glyph entry in the
Prima::Drawable section, except that unicode is deduced automatically based on whether
the TEXT has utf8 bit on or off. An extra option cache with a hash can be used to speed up the
function with subsequent calls. The baseline option is the same as the textOutBaseline
entry in the Prima::Drawable section.

Note that filled glyphs require fillMode without the fm::Overlay bit set, and also the fill
option set to generate proper shapes with holes.

Transformations

Transformation calls change the current path properties (matrix etc) so that all subsequent calls
would use them until a call to restore is made. The save and restore methods implement the
stacking mechanism so that local transformations can be made.

Properties

canvas DRAWABLE

Provides access to the attached drawable object

matrix A, B, C, D, Tx, Ty

Applies a transformation matrix to the path. The matrix, as used by the module, is formed
as follows:

A B 0

C D 0

Tx Ty 1

When applied to 2D coordinates, the transformed coordinates are calculated as

X’ = AX + CY + Tx

Y’ = BX + DY + Ty

precision INTEGER

Selects current precision for splines and arcs. See the spline entry in the Prima::Drawable
section, precision entry.

restore

Pops the stack entry and replaces the current matrix and graphic properties with it.

rotate ANGLE

Adds rotation to the current matrix

save

Saves the current matrix and graphic properties on the stack.

shear X, Y = X

Adds shearing to the current matrix

scale X, Y = X

Adds scaling to the current matrix

375

subpixel BOOLEAN

Turns on and off slow but more precise floating-point calculation mode

Default: depends on the canvas antialiasing mode

translate X, Y = X

Adds an offset to the current matrix

Operations

These methods perform path rendering and create an array of points that can be used for drawing

clip %options

Returns a 1-bit image with the clipping mask created from the path. %options can be used
to pass the fillMode property that affects the result of the filled shape.

contours

Same as the points entry but further reduces lines into a set of 8-connected points, suitable
to be traced pixel-by-pixel.

extents

Returns two points that box the path.

last matrix

Returns the current transform matrix (CTM) after running all commands

fill fillMode=undef

Paints a filled shape over the path. If fillMode is set, it is used instead of the one selected
on the canvas.

fill stroke fillMode=undef

Paints a filled shape over the path with the background color. If fillMode is set, it is used
instead of the one selected on the canvas. Thereafter, draws a polyline over the path.

flatten PRESCALE

Returns new objects where arcs are flattened into lines. The lines are rasterized with a
scaling factor that is as close as possible to the device pixels, to be suitable for a call to
the polyline() method. If the PRESCALE factor is set, it is used instead to premultiply
coordinates of arc anchor points used to render the lines.

points

Runs all accumulated commands, returns rendered set of points suitable for the
Prima::Drawable::polyline and Prima::Drawable::fillpoly methods.

region MODE=fm::Winding|fm::Overlay, RGNOP=rgnop::Union

Creates a region object from the path. If MODE is set, applies fill mode (see the fillMode
entry in the Prima::Drawable section for more); if RGNOP is set, applies region set operation
(see the combine entry in the Prima::Region section).

stroke

Draws a polyline over the path

376

widen %OPTIONS

Expands the path into a new path object containing outlines of the original path as if
drawn with selected line properties. The values of lineWidth, lineEnd, lineJoin, and
linePattern are read from %OPTIONS, or from the attached canvas when available. Supports
the miterLimit option with values from 0 to 20.

Note: if the intention is to immediately render lines, decrease lineWidth by 1 (they are 1
pixel wider because paths are built around the assumption that pixel size is 0, which makes
them scalable).

Methods for custom primitives

append PATH

Copies all commands from another PATH object. The PATH object doesn’t need to have
balanced stacking brackets save and restore, and can be viewed as a macro.

identity

Returns the identity matrix

matrix apply @POINTS

Applies the CTM to POINTS, returns the transformed points. If @POINTS is a list, returns
the transformed points as a list; if it is an array reference, returns an array reference.

377

6.8 Prima::Drawable::Pod

POD parser and renderer

Synopsis

use Prima::Drawable::Pod;

use Prima::PS::Printer;

my $pod = Prima::Drawable::Pod->new;

$pod-> load_pod_content("=head1 NAME\n\nI’m also a pod!\n\n");

my $printer = Prima::PS::PDF::File->new(file => ’pod.pdf’);

$printer-> begin_doc or die $@;

$pod-> print($printer);

$printer-> end_doc;

Description

Prima::Drawable::Pod contains a formatter (in terms of perlpod) and a renderer of the POD
content. The POD text is converted in model, a set of text blocks in format described in the
Prima::Drawable::TextBlock section. The model blocks are not directly usable though, and would
need to be rendered to another set of text blocks, that in turn can be drawn on the screen, a
printer, etc. The module also provides helper routines for these operations.

Usage

The package consists of several logically separated parts. These include file locating and loading,
formatting, and navigation.

Content methods

load pod content CONTENT, %OPTIONS

High-level POD content parser. %OPTIONS are same as in open read.

open read %OPTIONS

Clears the current content and enters the reading mode. In this mode, the content can be
appended by repeatedly calling the read method that pushes the raw POD content to the
parser.

read TEXT

Supplies the TEXT string to the parser. Parses basic indentation, but the main formatting
is performed inside the add entry and the add formatted entry.

Must be called only within the open read/close read brackets

add TEXT, STYLE, INDENT

Formats the TEXT string of a given STYLE (one of the pod::STYLE XXX constants) with
the INDENT space.

Must be called only within the open read/close read brackets.

add formatted Format, TEXT

Adds a pre-formatted TEXT with a given Format, supplied by the =begin or =for POD
directives. Prima::PodView understands ’text’ and ’podview’ FORMATs; the latter format

378

is for Prima::PodView itself and contains a small number of commands for rendering images
in documents.

The ’podview’ commands are:

cut

Example:

=for podview <cut>

=for text just text-formatter info

....

text-only info

...

=for podview </cut>

The <cut<gt> clause skips all POD input until canceled. It is used in conjunction
with the following command, the img entry, to allow a POD manpage to provide both
graphic (’podview’, ’html’, etc) and text (’text’) content.

img [src=”SRC”] [width=”WIDTH”] [height=”HEIGHT”] [cut=”CUT”]
[frame=”FRAME”]

An image inclusion command, where src is a relative or an absolute path to an image
file. In case scaling is required, width and height options can be set. If the image
is a multiframe image, the frame index can be set by the frame option. A special
cut option, if set to a true value, activates the the cut entry behavior if (and only
if) the image load operation is unsuccessful. This makes possible simultaneous use of
’podview’ and ’text’ :

=for podview

=begin text

y .

| .

|.

+----- x

=end text

=for podview </cut>

In the example above ’graphic.gif’ will be shown if it can be found and loaded, otherwise,
the poor-man drawings will be selected.

If src is omitted, the image is retrieved from the images array, from the index frame.

It is also possible to embed images in the pod, by using a special src tag for base64-
encoded images. The format should preferably be GIF, as this is Prima default format,
or BMP for very small images, as it is supported without third-party libraries:

=for podview

R0lGODdhAQABAIAAAAAAAAAAACwAAAAAAQABAIAAAAAAAAACAkQBADs=

close read

Closes the reading mode. Returns undef if there is no POD context, or a hash with topic id

(ID of the first topic containing the content) and the success flag otherwise.

379

Topics

Topics reside in the {topics} array, where each is an array with the following indices of the
pod::T XXX constants:

pod::T_MODEL_START - start of topic

pod::T_MODEL_END - end of a topic

pod::T_DESCRIPTION - topic name

pod::T_STYLE - pod::STYLE_XXX constant

pod::T_ITEM_DEPTH - depth of =item recursion

pod::T_LINK_OFFSET - offset in the links array

Styles

The ::styles property provides access to the styles, applied to different pod text parts. These
styles are:

pod::STYLE_CODE - style for C<>

pod::STYLE_TEXT - normal text

pod::STYLE_HEAD_1 - =head1

pod::STYLE_HEAD_2 - =head2

pod::STYLE_HEAD_3 - =head3

pod::STYLE_HEAD_4 - =head4

pod::STYLE_HEAD_5 - =head5

pod::STYLE_HEAD_6 - =head6

pod::STYLE_ITEM - =item

pod::STYLE_LINK - style for L<> text

pod::STYLE_VERBATIM - style for pre-formatted text

Each style is a hash with the following keys: fontId, fontSize, fontStyle, color, and
backColor, fully analogous to the tb::BLK DATA XXX options. This functionality provides an-
other layer of accessibility to the pod formatter.

Rendering

The model loaded by the read functions is stored internally. It is independent of screen resolution,
fonts, colors, etc. To be rendered or printed, the following functions can be used:

begin format %OPTIONS

Starts formatting session. The following options are recognized:

allow width overrun BOOLEAN=1

If set, allows resulting block width to overrun the canvas width. If set, the actual width
can be queried by calling the accumulated width overrun method. Otherwise forcibly
breaks blocks explicitly marked to be not wrapped.

colormap ARRAY

Array of at least 5 color entries (default foreground color, default background color, link
color, verbatime text color, and its background color). If unset, some sensible default
values are used.

fontmap ARRAY OF HASHES

Set of at least 2 hashes each describing a font to be used for normal text (index 0) and
verbatim text (index 1). If unset, some sensible default values are used.

hmargin, vmargin

Target device margins

380

resolution ARRAY OF 2

Target device resolution

width, height

Target device size

format model $MODEL

Renders a model block $MODEL and returns zero or more text blocks suitable for the drawing
on the given canvas. Also the block draw method can be used for the same purpose.

end format

Ends formatting session

Printing

The method print prints the pod content on a target canvas. Accepts the following options (along
with all the other options from begin format)

canvas OBJECT

The target device

from, to INDEX

Selects the model range to be printed

Block export

The method export blocks can render the model into a set of blocks that can be reused elsewhere.
This functionality is used by Prima::Label that is able to display the pod content. Returns a
Prima::Drawable::PolyTextBlock object that is a super-set of text blocks that also contains all
necessary information (fonts, colors, etc) needed to pass on the block drawing routines and to be
suitable as input for text out method.

The method accepts the following options (along with all the other options from begin format):

canvas OBJECT

The target device

from, to INDEX

Selects the model range to be printed

max height INTEGER

Stops rendering after max height pixel are occupied by the pod content

trim header BOOLEAN

If set, removes the topic or page header, so that only the content itself is rendered

trim footer BOOLEAN

Prunes empty newlines

width INTEGER

Desired render width in pixels

381

Navigation

load link LINK, %OPTIONS

Parses and loads POD content from LINK. If the LINK contains a section reference, loads
only that section. Returns the success flag.

%OPTIONS are same as understood by the load pod file and open read.

load pod file FILE, %OPTIONS

High-level POD file reader. %OPTIONS are same as in open read.

parse link LINK

The method parse link accepts text in the format of perlpod L<> link: ”manpage/section”.
Returns a hash with up to two items, file and topic. If the file is set, then the link
contains a file reference. If the topic is set, then the link topic matches the currently loaded
set of topic.

Note: if the file requested is not loaded, f.ex. by load pod file, then topic will not me
matched. Issue another call to parse link to match the topic if file is set.

382

6.9 Prima::Drawable::Subcanvas

Paint a hierarchy of widgets to any drawable

Description

Needed for painting a screenshot on an image, printer, etc. Adds two methods to the
Prima::Drawable namespace: the paint with widgets entry and the screenshot entry.

Synopsis

use Prima qw(Application Button);

my $w = Prima::MainWindow-> create;

$w->insert(’Button’);

$w->screenshot->save(’a.bmp’);

Methods

paint with widgets $canvas, $x=0, $y=0

Given a $canvas is in the paint mode, traverses all widgets as they are seen on the screen,
and paints them on the canvas with given $x,$y offsets.

screenshot $canvas, %opt

Syntax sugar over the paint with widgets. Creates an image with the $self’s, size, and calls
paint with widgets with it. Returns the screenshot.

383

6.10 Prima::Drawable::TextBlock

Rich text representation

API

Block header

A block’s fixed header consists of tb::BLK START - 1 integer scalars, each of which is accessible
via the corresponding tb::BLK XXX constant. The constants are separated into two logical groups:

BLK_FLAGS

BLK_WIDTH

BLK_HEIGHT

BLK_X

BLK_Y

BLK_APERTURE_X

BLK_APERTURE_Y

BLK_TEXT_OFFSET

and

BLK_FONT_ID

BLK_FONT_SIZE

BLK_FONT_STYLE

BLK_COLOR

BLK_BACKCOLOR

The first group defines the offset constants that are used to address the values in the block
header; the constants lie in the 0 - tb::BLK START - 1 range. The second group values line in the
tb::BLK DATA START - tb::BLK DATA END range. This is done for eventual backward compatibility,
if the future development changes the length of the header.

The fields from the first group define the text block dimension, aperture position, and text
offset (remember, the text is stored as one big chunk). The second group defines the initial
color and font settings. Prima::TextView needs all fields of every block to be initialized before
displaying. The the block wrap entry method can be used for the automated assigning of these
fields.

Block parameters

The scalars after tb::BLK START encode the commands to the block renderer. These commands
have their own parameters which follow the command. The length of the command is encoded
in the high 16-bit word of the command. The basic command set includes OP TEXT, OP COLOR,
OP FONT, OP TRANSPOSE, and OP CODE. The additional codes are OP WRAP and OP MARK, not used
in drawing but are special commands to the block wrap entry.

OP TEXT - TEXT OFFSET, TEXT LENGTH, TEXT WIDTH

OP TEXT commands to draw a string, from the offset tb::BLK TEXT OFFSET + TEXT OFFSET,
with the length TEXT LENGTH. The third parameter TEXT WIDTH contains the width
of the text in pixels. The scheme is made for simplification of an imaginary code, that would
alter (insert to, or delete part of) the text; the updating procedure would not need to
traverse all commands in all blocks, but only the block headers.

Relative to: tb::BLK TEXT OFFSET

384

OP COLOR - COLOR

OP COLOR sets foreground or background color. To set the background, COLOR must be or-
ed with the tb::BACKCOLOR FLAG value. In addition to the two toolkit-supported color values
(RRGGBB and system color index), COLOR can also be or-ed with the tb::COLOR INDEX

flag, in such case it is treated an index in the ::colormap property array.

Relative to: tb::BLK COLOR, tb::BLK BACKCOLOR.

OP FONT - KEY, VALUE

As a font is a complex property which includes font name, size, direction, etc fields, the
OP FONT KEY represents one of the three parameters - tb::F ID, tb::F SIZE, tb::F STYLE.
All three have different VALUE meanings.

Relates to: tb::BLK FONT ID, tb::BLK FONT SIZE, tb::BLK FONT STYLE.

F STYLE

Contains a combination of the fs::XXX constants, such as fs::Bold, fs::Italic etc.

Default value: 0

F SIZE

Contains the relative font size. The size is relative to the current font size. As such, 0
is a default value, and -2 is the default font decreased by 2 points. Prima::TextView
provides no range checking (but the toolkit does), so while it is o.k. to set the negative
F SIZE values larger than the default font size, one must be careful when relying on the
combined font size value .

If the F SIZE value is added to the F HEIGHT constant, then it is treated as font height
in pixels rather than font size in points. The macros for these opcodes are named
respectively tb::fontSize and tb::fontHeight, while the opcode is the same.

F ID

All other font properties are collected under an ’ID’. ID is an index in the
::fontPalette property array, which contains font hashes with the other font keys
initialized - name, encoding, and pitch. These three fields are required to be defined in
the font hash; the other font fields are optional.

OP TRANSPOSE X, Y, FLAGS

Contains a mark for an empty space. The space is extended to the relative coordinates
(X,Y), so the block extension algorithms take this opcode into account. If FLAGS does not
contain tb::X EXTEND, then in addition to the block expansion, the current coordinate is also
moved to (X,Y). (OP TRANSPOSE,0,0,0) and (OP TRANSPOSE,0,0,X EXTEND) are identical
and are empty operators.

The X DIMENSION FONT HEIGHT flag indicates that (X,Y) values must be multiplied by the
current font height. Another flag X DIMENSION POINT does the same but multiplies by the
current value of the the resolution entry property divided by 72 (treats X and Y not as
pixel but as point values).

OP TRANSPOSE can be used for customized graphics, in conjunction with OP CODE to assign a
space, so the rendering algorithms do not need to be rewritten every time a new graphic is
invented. For example, see how the Prima::PodView section implements images and bullet
points.

OP CODE - SUB, PARAMETER

Contains a custom code pointer SUB with a parameter PARAMETER, passed when the
block is about to be drawn. SUB is called with the following format:

($widget, $canvas, $text_block, $font_and_color_state, $x, $y, $parameter);

385

$font and color state (or $state, through the code) contains the state of font and color
commands in effect, and is changed as the rendering algorithm advances through the block.
The format of the state is the same as of the text block, and the F ID, F SIZE, the F STYLE
constants are the same as BLK FONT ID, BLK FONT SIZE, and BLK FONT STYLE.

The SUB code is executed only when the block is about to be drawn.

OP WRAP mode

OP WRAP is only used in the the block wrap entry method. mode is a flag, selecting the
wrapping command.

WRAP_MODE_ON - default, block commands can be wrapped

WRAP_MODE_OFF - cancels WRAP_MODE_ON, commands cannot be wrapped

WRAP_IMMEDIATE - proceed with immediate wrapping, unless the ignoreImmediateWrap option is

the block wrap entry does not support stacking for the wrap commands, so the
(OP WRAP,WRAP MODE ON,OP WRAP,WRAP MODE ON,OP WRAP,WRAP MODE OFF) command se-
quence has the same effect as the (OP WRAP,WRAP MODE OFF) sequence. If mode is
WRAP MODE ON, wrapping is disabled - all following commands are treated as non-
wrappable until the (OP WRAP,WRAP MODE OFF) command sequence is met.

OP MARK PARAMETER, X, Y

OP MARK is only in effect in the the block wrap entry method and is a user command. the
block wrap entry only sets (!) X and Y to the current coordinates when the command is
met. Thus, OP MARK can be used for arbitrary reasons, for example for saving the geometrical
positions during the block wrapping.

These opcodes are far not enough for the full-weight rich text viewer. However, the new
opcodes can be created using tb::opcode, which accepts the opcode length and returns the new
opcode value.

Rendering methods

block wrap %OPTIONS

block wrap wraps a block into a given width in pixels. It returns one or more text blocks
with fully formed headers. The returned blocks are located one below another, providing an
illusion that the text itself is wrapped. It does not only traverse the opcodes and sees if the
command fits in the given width; it also splits the text strings if these do not fit.

By default, the wrapping can occur either on a command boundary or by the spaces or
tab characters in the text strings. The unsolicited wrapping can be prevented by using the
OP WRAP command brackets. The commands inside these brackets are not wrapped; the
OP WRAP commands are removed from the resulting blocks.

block wrap copies all commands and their parameters as is, except the following:

- OP TEXT’s third parameter, TEXT WIDTH, is disregarded, and is recalculated for every
OP TEXT command.

- If OP TRANSPOSE’s third parameter, X FLAGS contains the X DIMENSION FONT HEIGHT flag,
the command coordinates X and Y are multiplied to the current font height, and the flag is
cleared in the output block. The X DIMENSION PIXEL has a similar effect but the coordinates
are multiplied by the current resolution divided by 72.

- OP MARK’s second and third parameters are assigned to the current (X,Y) coordinates.

- OP WRAP is removed from the output.

386

justify interspace %OPTIONS

Uses $OPTIONS{width} and $OPTIONS{min text to space ratio} to try to make inter-word
spacing. Returns new block if successful, undef otherwise.

walk BLOCK, %OPTIONS

Cycles through the block opcodes, calls supplied callbacks on each.

387

7 Visual Builder

7.1 VB

Visual Builder for the Prima toolkit

Synopsis

Run the VB command in your terminal

Description

Visual Builder is a RAD-style suite for designing forms using the Prima toolkit. It provides a
rich set of perl-based widgets which can be inserted into a window-based form by simple actions.
The form can be stored in a file and loaded by either a user program or a simple wrapper,
utils/prima-fmview.pl; the form can be also stored as a valid perl program.

A form file has the .fm extension and can be loaded fairly simply by using the the
Prima::VB::VBLoader section module. The following code is the only content of the
prima-fmview.pl program:

use Prima qw(Application VB::VBLoader);

388

my $ret = Prima::VBLoad($ARGV[0]);

die "$@\n" unless $ret;

$ret-> execute;

Such code is usually sufficient for executing a form file.

Help

The builder provides three main windows, that are used for interactive design. These are called
main panel, object inspector, and form window. When the builder is started, the form window is
empty.

The main panel consists of the menu bar, speed buttons, and the widget buttons. If the user
presses a widget button and then clicks the mouse on the form window, the selected widget is
inserted into the form and becomes a child of the form window. If the click was made on a visible
widget in the form window, the newly inserted widget becomes a child of that widget. After the
widget is inserted, its properties are accessible in the object inspector window.

The menu bar contains the following commands:

File

New

Closes the current form and opens a new empty form. If the old form was not saved,
the user is asked if the changes made are to be saved.

This command is an alias to the ’new file’ icon on the panel.

Open

Invokes the file open dialog so a .fm form file can be opened. After a successful file
load, all form widgets are visible and available for editing.

This command is an alias to the ’open folder’ icon on the panel.

Save

Stores the form into a file. The user here can select a type of the file to be saved. If the
form is saved as a .fm form file then it can be re-loaded either in the builder or a user
program (see the Prima::VB::VBLoader section for details). If the form is saved as a
.pl program, then it can not be loaded; instead, the program can be run immediately
without the builder or any supplementary code.

This command is an alias to the ’save on disk’ icon on the panel.

Save as

Same as the Save entry, except that a new name or type of file is asked every time the
command is invoked.

Close

Closes the form and removes the form window. If the form window was changed, the
user is asked if the changes made are to be saved.

Edit

Copy

Copies the selected widgets into the clipboard so they can be inserted later by using the
the Paste entry command. The form window itself can not be copied, only the widgets
it contains.

Paste

Reads the information put by the builder the Copy entry command into the clipboard
and inserts the widgets into the form window. The child-parent relation is kept by the
names of the widgets; if the widget with the name of the parent of the clipboard-read
widgets is not found, the widgets are inserted into the form window. The form window
is not affected by this command.

389

Delete

Deletes the selected widgets. The form window itself can not be deleted.

Select all

Selects all of the widgets inserted in the form window except the form window itself.

Duplicate

Duplicates the selected widgets. The form window is not affected by this command.

Align

This menu item contains z-ordering actions that are performed on selected widgets.
These are:

Bring to front

Send to back

Step forward

Step backward

Restore order

Change class

Changes the class of the selected widget. This is an advanced option and can lead to
confusion or errors if the default widget class and the supplied class differ too much. It is
used when the widget that has to be inserted is not present in the builder installation. Also,
it is called implicitly when the loaded form does not contain a valid widget class; in such
case the Prima::Widget class is assigned.

Creation order

Opens the dialog that manages the creation order of the widgets. It is not that important
for the widget child-parent relation, since the builder tracks these, and does not allow a child
to be created before its parent. However, the explicit order might be helpful in a case when,
for example, the tabOrder property is left to its default value, so it is assigned according to
the order of widget creation.

Toggle lock

Changes the lock status for selected widgets. The lock, if set, prevents widgets from being
selected by the mouse to avoid occasional positional changes. This is useful when a widget
is used as an owner for many sub-widgets.

The ctrl+mouse combination click locks and unlocks widgets.

View

Object inspector

Brings the object inspector window, if it was hidden or closed.

Add widgets

Opens the file dialog to install additional VB widgets. The modules are used
for providing custom widgets and properties for the builder. As an example, the
Prima/VB/examples/Widgety.pm module is provided with the builder and the toolkit.
Look inside this file for the implementation details.

Reset guidelines

Resets the guidelines on the form window into the center.

Snap to guidelines

Specifies if the moving and resizing widget actions must treat the form window guide-
lines as snapping areas.

390

Snap to grid

Specifies if the moving and resizing widget actions must use the form window grid
granularity instead of the pixel granularity.

Run

This command hides the form and object inspector windows and ’executes’ the form as
if it would be run by prima-fmview.pl. The execution session ends either by closing
the form window or by calling the the Break entry command.

This command is an alias to the ’run’ icon on the panel.

Break

Explicitly terminates the execution session initiated by the the Run entry command.

Help

About

Displays the information about the visual builder.

Help

Displays the information about the usage of the visual builder.

Widget property

Invokes the help viewer on the the Prima::Widget section manpage and tries to open
the topic corresponding to the current selection of the object inspector property or
event. While the manpage covers far not all (but still many) properties and events, it
is still a little bit more convenient than nothing.

Form window

The form widget is the common parent for all widgets created by the builder. The form window
provides the following basic navigation.

Guidelines

The form window contains two guidelines, the horizontal and the vertical, drawn as blue
dashed lines. Dragging with the mouse can move these lines. If the menu option the Snap to
guidelines entry is checked, the widgets’ moving and sizing operations treat the guidelines
as snapping areas.

Selection

A widget can be selected by clicking with the mouse on it. There can be more than one
selected widget at a time, or none at all. To explicitly select a widget in addition to the
already selected ones, hold the shift key while clicking on a widget. This combination also
deselects the widget. To select all widgets on the form window, call the the Select all entry
command from the menu. To prevent widgets from being occasionally selected, lock them
with the ”Edit/Toggle lock” command or Ctrl+mouse click.

Moving

Dragging the mouse can move the selected widgets. Widgets can be snapped to the grid
or the guidelines during the move. If one of the moving widgets is selected in the object
inspector window, the coordinate changes are reflected in the origin property.

If the Tab key is pressed during the move, the mouse pointer is changed between three states,
each reflecting the currently accessible coordinates for dragging. The default accessible
coordinates are both the horizontal and the vertical; the other two are the horizontal only
and the vertical only.

391

Sizing

The sizeable widgets can be dynamically resized. Only one widget at a time can be resized.
If the resized widget is selected in the object inspector window, the size changes are reflected
in the size property.

Context menus

The right-click (or the other system-defined pop-up menu invocation command) provides
the menu, identical to the main panel’s the Edit entry submenu.

The alternative context menus can be provided with some widgets (for example,
TabbedNotebook), and are accessible with the control + right click combination.

Object inspector window

The inspector window reflects the events and properties of a widget. To explicitly select a widget,
it must be either clicked by the mouse on the form window or selected in the widget combo box.
Depending on whether properties or events are selected, the left panel of the inspector provides
a list of properties or events, and the right panel - a value of the currently selected property or
event. To toggle between the properties and the events use the button below the list.

The adjustable properties of a widget include an incomplete set of the properties returned by
the class method profile default (for a detailed explanation see the Prima::Object section).
Among these are such basic properties as origin, size, name, color, font, visible, enabled,
owner, and many others. Each property can be selected by the property selector; in such case
the name of a property is highlighted in the list - that means, that the property is initialized. To
remove a property from the initialization list, double-click on it, so it is grayed again. Some very
basic properties as name can not be deselected. This is because no widgets of the same name can
coexist simultaneously in the builder.

The events, much like the properties, are accessible for direct change. All the events provide a
small editor, so the custom code can be supplied. This code is executed when the form is run or
loaded via the Prima::VB::VBLoader interface.

The full explanation of properties and events is not provided here. It is not even the goal
of this document because the builder can work with the widgets irrespective of their property
or event capabilities; this information is provided by the toolkit. To read what each property
or event means, use the documentation on the class of interest; the Prima::Widget section is a
good start because it encompasses the basic Prima::Widget functionality. The other widgets are
documented in their respective modules, for example, the Prima::ScrollBar documentation can
be found in the Prima::ScrollBar section.

392

7.2 Prima::VB::VBLoader

Visual Builder file loader

Description

The module provides functionality for loading resource files created by Visual Builder. After a
successful load, the newly created window with all children is returned.

Synopsis

A simple way to use the loader is as follows:

use Prima qw(Application VB::VBLoader);

my $form = Prima::VBLoad(’./your_resource.fm’,

Form1 => { centered => 1 },

);

die $@ unless $form;

$form-> execute;

All form widgets can be supplied with custom parameters, combined in a hash of hashes, and
passed as the second parameter to the VBLoad() function. The example above supplies values
for the ::centered property to the Form1 widget, which is the default name for a form window
created by Visual Builder. All other widgets are accessible by their names in a similar fashion;
after the creation, the widget hierarchy can be accessed in the standard way:

$form = Prima::VBLoad($fi,

....

StartButton => {

onMouseOver => sub { die "No start buttons here\n" },

}

);

...

$form-> StartButton-> hide;

In case a form is to be included not from another data source, the the AUTOFORM REALIZE
entry method can be used to transform the array of hashes that describes the form widget hierarchy
into a set of widgets:

$form = AUTOFORM_REALIZE([Form1 => {

class => ’Prima::Window’,

parent => 1,

profile => {

name => ’Form1’,

size => [330, 421],

}], {});

There are several examples of how the form files are used in the toolkit; for instance, the
Prima/PS/setup.fm dialog is used by the Prima::PS::Setup package.

API

Methods

check version HEADER

393

Scans HEADER that the first line of the .fm file for the version info. Returns two scalars -
the first is a boolean flag, which is set to 1 if the file can be used and loaded, 0 otherwise.
The second scalar is the version string.

GO SUB SUB [@EXTRA DATA]

Depending on the value of the boolean flag Prima::VB::VBLoader::builderActive per-
forms the following: if it is 1, the SUB text is returned as is. If it is 0, evaluates it in
the sub{} context and returns the code reference. If the evaluation fails, EXTRA DATA is
stored in the Prima::VB::VBLoader::eventContext array and the exception is re-thrown.
Prima::VB::VBLoader::builderActive is an internal flag that helps the Visual Builder to
use the module interface without actual evaluation of the SUB code.

AUTOFORM REALIZE WIDGETS, PARAMETERS

WIDGETS is an array reference which contains evaluated data of the content of a .fm
file, assuming its format is preserved. PARAMETERS is a hash reference with custom
parameters passed to widgets during the creation. The widgets are distinguished by their
names. Visual Builder ensures that no widgets have equal names.

AUTOFORM REALIZE creates a tree of widgets and returns the root window which is usually
named Form1. It automatically resolves parent-child relations, so the order in which WID-
GETS are specified does not matter. Moreover, if a parent widget is passed as a parameter
to a child widget, the parameter is deferred and passed only after the creation using the
::set call.

During the parsing and the creation process, some internal notifications may be invoked.
These notifications (events) are stored in the .fm file and usually provide class-specific loading
instructions. See the Events entry for details.

AUTOFORM CREATE FILENAME, %PARAMETERS

Reads FILENAME in the .fm file format, checks its version, loads, and creates a widget tree.
Upon successful load, the root widget is returned. The parsing and creation are performed
by calling AUTOFORM REALIZE. If loading fails, die() is called.

Prima::VBLoad FILENAME, %PARAMETERS

A wrapper around AUTOFORM CREATE is exported in the Prima namespace. FILENAME can
be specified either as a file system path name or as a relative module name. In a way,

Prima::VBLoad(’Module::form.fm’)

and

Prima::VBLoad(

Prima::Utils::find_image(’Module’, ’form.fm’))

are identical. If the procedure finds that FILENAME is a relative module name it calls
Prima::Utils::find image automatically. To tell explicitly that FILENAME is a file sys-
tem path name, FILENAME must be prefixed with the < symbol (the syntax is influenced
by CORE::open).

%PARAMETERS is a hash with custom parameters passed to the widgets during the cre-
ation. The widgets are distinguished by their names. Visual Builder ensures that no widgets
have equal names.

If the form file loaded successfully returns the form object reference. Otherwise undef is
returned and the error string is stored in the $@ variable.

394

Events

The events stored in the .fm file are executed during the loading process. The module provides no
functionality for supplying extra events during the load. This interface is useful only for developers
of new widget classes for Visual Builder.

The events section is located in the actions section of the widget entry. There can be more
than one event of each type, registered to different widgets. NAME parameter is a string with the
name of the widget. INSTANCE is a hash created during load for every widget, and is provided
to keep internal event-specific or class-specific data there. The extras section of the widget entry
is present there as the place to store local data.

Begin NAME, INSTANCE

Called before the creation of a widget tree.

FormCreate NAME, INSTANCE, ROOT WIDGET

Called after the creation of the form, which reference is contained in ROOT WIDGET.

Create NAME, INSTANCE, WIDGET.

Called after the creation of a widget. The newly created widget is passed in WIDGET

Child NAME, INSTANCE, WIDGET, CHILD NAME

Called before a child of WIDGET is created with CHILD NAME as a name.

ChildCreate NAME, INSTANCE, WIDGET, CHILD WIDGET.

Called after a child of WIDGET is created; the newly created widget is passed in
CHILD WIDGET.

End NAME, INSTANCE, WIDGET

Called after the creation of all widgets is finished.

File format

The idea of the format of the .fm file is that it should be evaluated by the perl eval() call without
special manipulations and kept as plain text. The file starts with a header which is a #-prefixed
string, and contains a signature, the version of file format, and the version of the creator of the
file:

VBForm version file=1 builder=0.1

The header can also contain additional headers, also prefixed with #. These can be used to
tell the loader that another perl module is needed to be loaded before the parsing; this is useful,
for example, if a constant is declared in the module.

[preload] Prima::ComboBox

The main part of a file is enclosed in a sub{} statement. After evaluation, this sub returns an
array of paired scalars where each first item is a widget name and the second item is a hash of its
parameters and other associated data:

sub

{

return (

’Form1’ => {

class => ’Prima::Window’,

module => ’Prima::Classes’,

395

parent => 1,

code => GO_SUB(’init()’),

profile => {

width => 144,

name => ’Form1’,

origin => [490, 412],

size => [144, 100],

}},

);

}

The hash has several predefined keys:

actions HASH

Contains a hash of events. The events are evaluated via the GO SUB mechanism and executed
during the creation of the widget tree. See the Events entry for details.

code STRING

Contains the code executed before the form is created. This key is present only on the root
widget record.

class STRING

Contains the name of the class to be instantiated.

extras HASH

Contains class-specific parameters used by the events.

module STRING

Contains the name of the perl module that contains the class. The module will be use’d by
the loader.

parent BOOLEAN

A boolean flag; is set to 1 for the root widget only.

profile HASH

Contains the profile hash passed as a set of parameters to the widget during its creation. If
custom parameters are passed to AUTOFORM CREATE, these are merged with profile (the
custom parameters take precedence) before passing the result to the new() call.

396

7.3 cfgmaint

Configuration tool for Visual Builder

Syntax

cfgmaint [-rbxop] command object [parameters]

Description

Maintains configuration of the widget palette in the Visual Builder. The widget palette can be
stored in the system-wide and local user config files. cfgmaint allows adding, renaming, moving,
and deleting the classes and pages in the Visual Builder widget palette.

Usage

cfgmaint is invoked with the command and object arguments where the command defines the
action to be taken and object the object to be handled.

Options

-r

Write configuration to the system-wide config file

-b

Read configuration from both the system-wide and user config files

-x

Do not write backups

-o

Read-only mode

-p

Execute use Prima; code before start. This option might be necessary when adding a
module that relies on the toolkit but does not invoke the code itself.

Objects

m

Selects a module. Valid for the add, list, and remove commands.

p

Selects a page. Valid for all commands.

w

Selects a widget. Valid for the list, remove, rename, and move commands.

397

Commands

a

Adds a new object to the configuration. Can be either a page or a module.

d

Removes an object.

l

Prints the object name. In case the object is a widget, prints all registered widgets. If the
string is specified as an additional parameter, it is treated as a page name, and only widgets
from the page are printed.

r

Renames the object to a new name, which is passed as an additional parameter. Can be
either a widget or a page.

m

If the object is a widget, relocates one or more widgets to a new page. If the object is a
page, moves the page before the page specified as an additional parameter, or to the end if
no additional page is specified.

Example

Add a new module to the system-wide configuration:

cfgmaint -r a m CPAN/Prima/VB/New/MyCtrls.pm

List widgets that are present in both config files:

cfgmaint -b l w

Rename a page:

cfgmaint r p General Basic

Files

Prima/VB/Config.pm, ~/.prima/vbconfig

398

7.4 Prima::VB::CfgMaint

Configures the widget palette in the Visual Builder

Description

The module is used by the Visual Builder and prima-cfgmaint programs, to configure the Visual
Builder widget palette. The installed widgets are displayed in the main panel of the Visual Builder
and can be maintained by the prima-cfgmaint program.

Usage

The widget palette configuration is contained in two files - the system-wide Prima::VB::Config

and the user ~/.prima/vbconfig. The user config file takes precedence when loaded by the
Visual Builder. The module can select either configuration by assigning the $systemWide boolean
property.

The widgets are grouped in pages which are accessible by their names.
New widgets can be added to the palette by calling the add module method which accepts a

perl module file as its first parameter. The module must conform to the VB-loadable format.

Format

This section describes the format of a module with VB-loadable widgets.
The module must define a package with the same name as the module. In the package, the

class sub must be declared, that returns an array or paired scalars, where each first item in the
pair corresponds to the widget class and the second to the hash which contains the class loading
information, and must contain the following keys:

class STRING

Name of the package which represents the original widget class in the Visual Builder. This
is usually a lightweight package that does not contain all the functionality of the original
class but is capable of visually reflecting changes to the most useful class properties.

icon PATH

Sets the image file with the class icon. PATH provides an extended syntax for indicating a
frame index if the image file is multiframed: the frame index is appended to the path name
with the : character prefix, for example: "NewWidget::icons.gif:2".

module STRING

Sets the module name that contains class.

page STRING

Sets the default palette page where the widget is to be stored. The current implementation
of the Visual Builder provides four pages: General,Additional,Sliders,Abstract. If the
page is not present, a new page is automatically created when the widget class is registered
there.

RTModule STRING

Sets the module name that contains the original widget class.

The reader is urged to explore Prima::VB::examples::Widgety file which contains an example
class Prima::SampleWidget, its VB-representation, and an example property lineRoundStyle.

399

API

Methods

add module FILE

Reads the FILE module and loads all VB-loadable widgets from it.

classes

Returns declaration of all registered classes as a string (see the Format entry).

open cfg

Loads class and pages information from either the system-wide or the user configuration
file. If succeeds, the information is stored in the @pages and %classes variables (the old
information is lost) and returns 1. If fails, returns 0 and a string with the error explanation;
@pages and %classes content is undefined.

pages

Returns an array of page names

read cfg

Reads information from both the system-wide and user configuration files and merges the
information. If succeeds, returns 1. If fails, returns 0 and a string with the error explanation.

reset cfg

Erases all information about pages and classes.

write cfg

Writes either the system-wide or the user configuration file. If the $backup flag is set to 1,
the old file is renamed to a .bak file. If succeeds, returns 1. If fails, returns 0 and a string
with the error explanation.

Files

Prima::VB::Config.pm, ~/.prima/vbconfig.

400

8 PostScript printer interface

8.1 Prima::PS::PostScript

PostScript interface to Prima::Drawable

Synopsis

Recommended usage:

use Prima::PS::Printer;

my $x = Prima::PS::File-> new(file => ’out.ps’);

or

my $x = Prima::PS::FileHandle-> new(handle => \&STDOUT);

Low-level:

use Prima::PS::PostScript;

my $x = Prima::PS::PostScript-> create(onSpool => sub {

open F, ">> ./test.ps";

print F $_[1];

close F;

});

Printing:

die "error:$@" unless $x-> begin_doc;

$x-> font-> size(30);

$x-> text_out("hello!", 100, 100);

$x-> end_doc;

Description

Implements the Prima library interface to PostScript level 2 document language. The module is
designed to be compliant with the Prima::Drawable interface. All properties’ behavior is as same
as Prima::Drawable’s except those described below.

Inherited properties

resolution

Can be set while the object is in the normal stage - cannot be changed if the document
is opened. Applies to implementation of the fillPattern property and general pixel-to-point
and vice versa calculations

alpha

alpha is not implemented

401

Specific properties

copies

The number of copies that the PS interpreter should print

grayscale

could be 0 or 1

pageSize

The physical page dimension, in points

pageMargins

Non-printable page area, an array of 4 integers: left, bottom, right, and top margins in
points.

reversed

if 1, a 90 degrees rotated document layout is assumed

Internal methods

emit

Can be called for direct PostScript code injection. Example:

$x-> emit(’0.314159 setgray’);

$x-> bar(10, 10, 20, 20);

pixel2point and point2pixel

Helpers for translation from pixels to points and vice versa.

fill & stroke

Wrappers for PS outline that are expected to be either filled or stroked. Apply colors, line,
and fill styles if necessary.

spool

Prima::PS::PostScript is not responsible for the output of the generated document, it only
calls the ::spool method when the document is closed through an ::end doc call. By
default discards the data. The Prima::PS::Printer class handles the spooling logic.

fonts

Calls Prima::Application::fonts and returns its output filtered so that only the fonts that
support the iso10646-1 encoding are present. This effectively allows only unicode output.

402

8.2 Prima::PS::PDF

PDF interface to Prima::Drawable

Synopsis

Recommended usage:

use Prima::PS::Printer;

my $x = Prima::PS::PDF::File-> new(file => ’out.pdf’);

or

my $x = Prima::PS::PDF::FileHandle-> new(handle => \&STDOUT);

Low-level:

use Prima::PS::PDF;

my $x = Prima::PS::PDF-> create(onSpool => sub {

open F, ">> ./test.pdf";

binmode F;

print F $_[1];

close F;

});

Printing:

die "error:$@" unless $x-> begin_doc;

$x-> font-> size(30);

$x-> text_out("hello!", 100, 100);

$x-> end_doc;

Description

Implements the Prima library interface to PDF v1.4. The module is designed to be compliant with
the Prima::Drawable interface. All properties’ behavior is as same as Prima::Drawable’s except
those described below.

Inherited properties

::resolution

Can be set while the object is in the normal stage - cannot be changed if the document
is opened. Applies to implementation of the fillPattern property and general pixel-to-point
and vice versa calculations

Specific properties

grayscale

could be 0 or 1

pageSize

The physical page dimension, in points

pageMargins

Non-printable page area, an array of 4 integers: left, bottom, right, and top margins in
points.

reversed

if 1, a 90 degrees rotated document layout is assumed

403

Internal methods

pixel2point and point2pixel

Helpers for translation from pixel to points and vice versa.

spool

Prima::PS::PDF is not responsible for the output of the generated document, it only calls
the ::spool method when the document is closed through an ::end doc call. By default
discards the data. The Prima::PS::Printer class handles the spooling logic.

fonts

Calls Prima::Application::fonts and returns its output filtered so that only the fonts that
support the iso10646-1 encoding are present. This effectively allows only unicode output.

404

8.3 Prima::PS::Printer

PostScript and PDF interfaces to Prima::Printer

Synopsis

use Prima::PS::Printer;

my $x;

if ($preview) {

$x = Prima::PS::Pipe-> new(command => ’gv $’);

} elsif ($print_in_file) {

$x = Prima::PS::File-> new(file => ’out.ps’);

} elsif ($print_on_device) {

$x = Prima::PS::LPR-> new(args => ’-d colorprinter’);

} elsif ($print_pdf_file) {

$x = Prima::PS::PDF::File-> new(file => ’out.pdf’);

} else {

$x = Prima::PS::FileHandle-> new(handle => *STDOUT);

}

$x-> begin_doc;

$x-> font-> size(300);

$x-> text_out("hello!", 100, 100);

$x-> end_doc;

Description

Realizes the Prima printer interface to PostScript level 2 document language through the
Prima::PS::PostScript module, and to PDF v1.4 through the Prima::PS::PDF module. Allows
different user profiles to be created and managed with the standard setup dialog. The module is
designed to be compliant with the Prima::Printer interface.

Also contains convenience classes (File, LPR, Pipe) for non-GUI use.

Printer options

Below are the settigns supported by the options method:

Color STRING

One of : Color, Monochrome

Resolution INTEGER

Dots per inch.

PageSize STRING

One of: Ainteger, Binteger, Executive, Folio, Ledger, Legal, Letter, Tabloid,

US Common #10 Envelope.

Copies INTEGER

(not applicable to PDF)

Scaling FLOAT

1 is 100%, 1.5 is 150%, etc.

Orientation

One of : Portrait, Landscape.

405

MediaType STRING

An arbitrary string that represents special attributes of the medium other than its size,
color, and weight. This parameter can be used to identify special media such as envelopes,
letterheads, or preprinted forms.

(not applicable to PDF)

MediaColor STRING

A string identifying the color of the medium.

(not applicable to PDF)

MediaWeight FLOAT

The weight of the medium in grams per square meter. ”Basis weight” or or null ”ream
weight” in pounds can be converted to grams per square meter by multiplying by 3.76; for
example, 10-pound paper is approximately 37.6 grams per square meter.

(not applicable to PDF)

MediaClass STRING

(Level 3) An arbitrary string representing attributes of the medium that may require special
action by the output device, such as the selection of a color rendering dictionary. Devices
should use the value of this parameter to trigger such media-related actions, reserving the
MediaType parameter (above) for generic attributes requiring no device-specific action. The
MediaClass entry in the output device dictionary defines the allowable values for this param-
eter on a given device; attempting to set it to an unsupported value will cause a configuration
error.

(not applicable to PDF)

InsertSheet BOOLEAN

(Level 3) A flag specifying whether to insert a sheet of some special medium directly into
the output document. Media coming from a source for which this attribute is Yes are sent
directly to the output bin without passing through the device’s usual imaging mechanism
(such as the fuser assembly on a laser printer). Consequently, nothing painted on the current
page is actually imaged on the inserted medium.

(not applicable to PDF)

LeadingEdge BOOLEAN

(Level 3) A value specifying the edge of the input medium that will enter the printing engine
or imager first and across which data will be imaged. Values reflect positions relative to a
canonical page in portrait orientation (width smaller than height). When duplex printing is
enabled, the canonical page orientation refers only to the front (recto) side of the medium.

(not applicable to PDF)

ManualFeed BOOLEAN

A flag indicating whether the input medium is to be fed manually by a human operator
(Yes) or automatically (No). A Yes value asserts that the human operator will manually
feed media conforming to the specified attributes (MediaColor, MediaWeight, MediaType,
MediaClass, and InsertSheet). Thus, those attributes are not used to select from available
media sources in the normal way, although their values may be presented to the human
operator as an aid in selecting the correct medium. On devices that offer more than one
manual feeding mechanism, the attributes may select among them.

(not applicable to PDF)

406

TraySwitch BOOLEAN

(Level 3) A flag specifying whether the output device supports automatic switching of media
sources. When the originally selected source runs out of medium, some devices with multiple
media sources can switch automatically, without human intervention, to an alternate source
with the same attributes (such as PageSize and MediaColor) as the original.

(not applicable to PDF)

MediaPosition STRING

(Level 3) The position number of the media source to be used. This parameter does not
override the normal media selection process described in the text, but if specified it will be
honored - provided it can satisfy the input media request in a manner consistent with normal
media selection - even if the media source it specifies is not the best available match for the
requested attributes.

(not applicable to PDF)

DeferredMediaSelection BOOLEAN

(Level 3) A flag determining when to perform media selection. If Yes, media will be selected
by an independent printing subsystem associated with the output device itself.

(not applicable to PDF)

MatchAll BOOLEAN

A flag specifying whether input media request should match to all non-null values - Media-
Color, MediaWeight etc.

(not applicable to PDF)

407

9 Widget helpers

9.1 Prima::Widget::BidiInput

Heuristics for i18n input

Description

Provides common functionality for the bidirectional input to be used in editable widgets

Methods

handle bidi input %OPTIONS

Given action and text in %OPTIONS, returns new text and a suggested cursor position.

The following options are understood:

action

One of: backspace, delete, cut, insert, overtype

at INTEGER

Current cursor position, calculated in clusters

glyphs Prima::Drawable::Glyphs object

Shaped text

n clusters INTEGER

The number of clusters in the text

rtl BOOLEAN

Set to 1 if the default input direction is RTL (right-to-left)

text STRING

The text to edit

408

9.2 Prima::Widget::Fader

Fading- in/out functions

Description

The role implements fading effects in widgets

Synopsis

use base qw(Prima::Widget Prima::Widget::Fader);

{

my %RNT = (

%{Prima::Widget-> notification_types()},

%{Prima::Widget::Fader-> notification_types()},

);

sub notification_types { return \%RNT; }

}

sub on_mouseenter { shift-> fader_in_mouse_enter }

sub on_mouseleave { shift-> fader_out_mouse_leave }

sub on_paint

{

my ($self, $canvas) = @_;

$canvas->backColor($self-> fader_prelight_color($self-> hiliteBackColor));

$canvas->clear;

}

API

The API is currently under design so the parts that are documented are those that expected to
be staying intact.

Methods

fader in mouse enter

Initiates a fade-in transition, calls repaint on each step.

fader out mouse leave

Initiates a fade-out transition, calls repaint on each step.

fader current value

Returns the current fader value in the range from 0 to 1. Returns undef if there is no current
fading transition in effect

fader prelight color $COLOR [, $MULTIPLIER]

Given a base $COLOR, increases (or decreases) its brightness according to
fader current value and an eventual $MULTIPLIER that is expected to be in the
range from 0 to 1.

409

Events

FadeIn $ENDS OK

Called when fader in mouse enter finishes the fading, the $ENDS OK flag is set to 0 if the
process was overridden by another fader call, 1 otherwise.

FadeOut $ENDS OK

Called when fader out mouse leave finishes the fading, the $ENDS OK flag is set to 0 if the
process was overridden by another fader call, 1 otherwise.

FadeRepaint

By default repaints the whole widget, but can be overloaded if only some widget parts need
to reflect the fader effect.

410

9.3 Prima::Widget::GroupScroller

Optional automatic scroll bars

Description

The class is used for widgets that contain optional scroll bars and provides means for their man-
agement. The class is the descendant of the Prima::IntIndents section and adjusts its the indents
entry property when scrollbars are shown, hidden, or the borderWidth entry is changed.

The class does not provide range selection for the scrollbars; the descendant classes must
implement that.

The descendant classes must follow the following guidelines:

• A class may provide borderWidth, hScroll, vScroll, autoHScroll, and autoVScroll prop-
erty keys in profile default() .

• A class’ init() method must call the setup indents method

If a class overrides the autoHScroll and autoVScroll properties, these must be set to 0
before the initialization.

• If a class needs to overload one of the borderWidth, hScroll, vScroll, autoHScroll, and
autoVScroll properties, it is mandatory to call the inherited properties.

• A class must implement the scroll bar notification callbacks: HScroll Change and
VScroll Change.

• A class must not use the reserved variable names, which are:

{borderWidth} - internal borderWidth storage

{hScroll} - internal hScroll value storage

{vScroll} - internal vScroll value storage

{hScrollBar} - pointer to the horizontal scroll bar

{vScrollBar} - pointer to the vertical scroll bar

{bone} - rectangular widget between the scrollbars

{autoHScroll} - internal autoHScroll value storage

{autoVScroll} - internal autoVScroll value storage

The reserved method names:

set_h_scroll

set_v_scroll

insert_bone

setup_indents

reset_indents

borderWidth

autoHScroll

autoVScroll

hScroll

vScroll

The reserved widget names:

HScroll

VScroll

Bone

411

Properties

autoHScroll BOOLEAN

Selects if the horizontal scrollbar is to be shown and hidden dynamically, depending on the
widget layout.

autoVScroll BOOLEAN

Selects if the vertical scrollbar is to be shown and hidden dynamically, depending on the
widget layout.

borderWidth INTEGER

Width of the border around the widget.

Depends on the skin property.

hScroll BOOLEAN

Selects if the horizontal scrollbar is visible. If it is, {hScrollBar} points to it.

vScroll BOOLEAN

Selects if the vertical scrollbar is visible. If it is, {vScrollBar} points to it.

scrollBarClass STRING = Prima::ScrollBar

A create-only property that allows to change the scrollbar class

hScrollBarProfile, vScrollBarProfile HASH

Create-only properties that allows to adjust the scrollbar parameters when the scrollbars are
created

Methods

setup indents

The method is never called directly; it should be called whenever the widget layout is changed
so that its indents are affected. The method is a request to recalculate indents, depending
on the new widget layout.

The method is not reentrant; to receive this callback and update the widget layout that in
turn can result in more setup indents calls, overload reset indents .

reset indents

Called after setup indents updates the internal widget layout, to give a chance to follow
up the layout changes. Does not do anything by default.

412

9.4 Prima::Widget::Header

Multi-column header widget

Description

The widget class provides functionality of several button-like caption tabs, that can be moved and
resized by the user. The class was implemented to serve as a table header for list and grid widgets.

API

Events

Click INDEX

Called when the user clicks on the tab positioned at INDEX.

DrawItem CANVAS, INDEX, X1, Y1, X2, Y2, TEXT BASELINE

A callback to draw the tabs. CANVAS is the output object; INDEX is the index of a tab.
X1,Y2,X2,Y2 are the coordinates of the boundaries of the tab rectangle; TEXT BASELINE
is a pre-calculated vertical position for eventual centered text output.

MeasureItem INDEX, RESULT

Stores in scalar referenced by RESULT the width or height (depending on the the vertical
entry property value) of the INDEXth tab, in pixels.

MoveItem OLD INDEX, NEW INDEX

Called when the user moves a tab from its old location, specified by OLD INDEX, to the
NEW INDEX position. By the time of the call, all internal structures are updated.

SizeItem INDEX, OLD EXTENT, NEW EXTENT

Called when the user resizes a tab in the INDEXth position. OLD EXTENT and
NEW EXTENT are either the width or height of the tab, depending on the the vertical
entry property value.

SizeItems

Called when more than one tab changes its extent. This might happen as a result of both
user and programmatic actions.

Properties

clickable BOOLEAN

Selects if the user is allowed to click the tabs.

Default value: 1

dragable BOOLEAN

Selects if the user is allowed to move the tabs.

Default value: 1

items ARRAY

An array of scalars representing the internal data of the tabs. By default, the scalars are
treated as text strings.

413

minTabWidth INTEGER

A minimal extent in pixels a tab must occupy.

Default value: 2

offset INTEGER

An offset on the major axis (depends on the the vertical entry property value) that the
widget is drawn with. Used for the conjunction with list widgets (see the Prima::DetailedList
section), when the list is horizontally or vertically scrolled.

Default value: 0

pressed INTEGER

Contains the index of the currently pressed tab. A -1 value is selected when no tabs are
pressed.

Default value: -1

scalable BOOLEAN

Selects if the user is allowed to resize the tabs.

Default value: 1

vertical BOOLEAN

If 1, the tabs are aligned vertically; the the offset entry, the widths entry property, and
extent parameters of the callback notification assume the heights of the tabs.

If 0, the tabs are aligned horizontally, and the extent properties and parameters assume tab
widths.

widths ARRAY

Array of integer values, corresponding to the extents of the tabs. The extents are widths (
vertical is 0) or heights (vertical is 1).

Methods

tab2offset INDEX

Returns the offset of the INDEXth tab (without regard to the the offset entry property
value).

tab2rect INDEX

Returns four integers representing the rectangle area occupied by the INDEXth tab (without
regard to the the offset entry property value).

414

9.5 Prima::Widget::IntIndents

Indenting support

Description

Provides common functionality for the widgets that delegate part of their surface to border ele-
ments. For example, scroll bars and borders in a list box are such elements.

Properties

indents ARRAY

Contains four integers specifying the breadth of decoration elements for each side. The first
integer is the width of the left element, the second is the height of the lower element, the
third is the width of the right element, and the fourth is the height of the upper element.

The property can accept and return the array either as four scalars, or as an anonymous
array of four scalars.

Methods

get active area [TYPE = 0, WIDTH, HEIGHT]

Calculates and returns the extension of the area without the border elements, or the active
area. The extension is related to the current size of a widget, however, can be overridden
by specifying WIDTH and HEIGHT. TYPE is an integer, indicating the requested type of
calculation:

TYPE = 0

Returns four integers, defining the area in the inclusive-exclusive coordinates.

TYPE = 1

Returns four integers, defining the area in the inclusive-inclusive coordinates.

TYPE = 2

Returns two integers, the size of the area.

415

9.6 Prima::Widget::Link

Routines for interactive links

Description

The class can be used in widgets that need to feature links, i e highlighted rectangles, usually
with a line of text. When the user moves the mouse or clicks on a link, depending on the link
type, various actions can be executed. A ”tooltip” link can display a hint with (rich) text, and a
”hyperlink” link can open a browser or a pod viewer. The programmer can also customize these
actions.

Synopsis

use Prima qw(Label Application);

my $main_window = Prima::MainWindow->new(size => [400, 100]);

$main_window->insert(Label =>

centered => 1,

text => \ "the I<tip:$0ttt|tip> entry, the I<pod:Prima|podviewer> entry, the I<http:google.com|browser>

onLink => sub { print "$_[2]\n" },

);

run Prima;

=pod

=head1 ttt

this is a tooltip

=for podview

R0lGODdhFgAVAIAAAAAAAP///ywAAAAAFgAVAIAAAAD///8CLIyPqcutsKALQKI6qT11R69lWDJm

5omm6jqBjucycEx+bVOSNNf1+/NjCREFADs=

Link types

Link types can be set with the url syntax. Four recognized link types behave differently

Tooltips

These are not links in the strict sense, as clicking on them doesn’t cause any action, however when
the user hovers the mouse over a tooltip, the module loads the pod content from the URL and
displays it as a hint.

The idea behind this feature is to collect all tooltip cards in a pod section and reference them
in the text like in the example code in the Synopsis entry above.

Syntax: L<tip://FILEPATH OR MODULE/SECTION> or L<tip://FILEPATH OR MODULE> where
FILEPATH OR MODULE can refer either to a file (path with slashes/backslashes) or a perl module
(with ::s).

416

The tooltip text, when selected, is underscored by a dashed line, vs all other link types that
use a solid line.

Pod sections

These links display a pod section preview like the tooltip but also open a pod viewer with the
referred section when clicked on.

Syntax: L<pod://FILEPATH OR MODULE/SECTION> or L<pod://FILEPATH OR MODULE> where
FILEPATH OR MODULE can refer either to a file (path with slashes/backslashes) or a perl module
(with ::s).

Hyperlinks

Links with schemes ftp://, http://, and https:// open a browser when clicked on.

Custom links

All other URLs, not matched by either scheme above, are expected to be handled programmati-
cally. The preview, if any, should be handled by the LinkPreview event, and the mouse click by
the Link event.

See the Events entry below.

Usage

Since Prima::Widget::Link is not a widget by itself but a collection of routines in a class, an
object of such class should be instantiated programmatically and attached to an owner widget
that needs to display links.

The owner widget needs to call the mouse and paint methods from inside its on mousedown etc
relevant events. The owner widget class might also want to overload link events, see below how.

Markup

the Prima::Drawable::Markup section understands the L<..|..> command, which, unlike perl-
pod, is formatted with its arguments reversed, to stay consistent with the other markup commands
(i e it is L<http://google.com|search>, not L<search|http://google.com> .

The simple way to incorporate rich text in both the widget and link handler is to use
Prima::Drawable::Markup to handle the markup parsing and use the resulting object from the
same class both for widget drawing and for the link reactions. One just needs to add markup =

$markup object > to Prima::Widget::Link-new() >.

API

Properties

rectangles

Contains an array of rectangles in arbitrary coordinates that could be used to map screen
coordinates to a URL. Filled automatically.

references

An array of URLs

417

Methods

add positions from blocks LINK ID, BLOCKS, %DEFAULTS

Used when the link object is not bound to any markup object but recalculation of the visual
rectangle that the link occupies is needed due to change in formatting, f ex after a change in
widget size, font size, etc. %DEFAULTS is sent internally to tb::block walk which may need
eventual default parameters.

Scans BLOCKS and add monotonically increasing LINK ID to new link rectangles. Return
new LINK ID.

clear positions

Clears the content of rectangles

id2rectangles ID

Returns rectangles mapped to a link ID. There can be more than 1 rectangle bound to a
single link ID since link text could be f ex wrapped.

open podview URL

Opens a pod viewer with the URL

open browser URL

Opens a web browser with the URL

reset positions markup BLOCKS, %DEFAULTS

Used when the link object is bound to a markup object and recalculation of the visual
rectangle that the link occupies is needed due to change in formatting, f ex after a change in
widget size, font size, etc. %DEFAULTS is sent internally to tb::block walk which may need
eventual default parameters.

Events

All events are sent to the owner, not to the link object itself, however, the SELF parameter which
contains the link object is always the first parameter

Link SELF, URL, BUTTON, MOD

Sent to the owner, if any, from within the on mousedown event to indicate that the link was
pressed on.

LinkPreview SELF, URL REF

Sent to the owner, if any, from within the on mousemove event. The owner may want to fill
URL REF with (rich) text that will be displayed as a link preview

LinkAdjustRect SELF, RECT REF

Since the owner may implement a scrollable view or any other view that has a coordinate
system that is not necessarily consistent with the rectangles stored in the link object, this
event will be called when a link rectangle needs to be mapped to the owner coordinates.

418

9.7 Prima::Widget::ListBoxUtils

Common paint routine for listboxes

Description

Used internally by list-like widgets

419

9.8 Prima::Widget::MouseScroller

Auto-repeating mouse events

Description

Implements routines for emulation of auto repeating mouse events. A code inside MouseMove

callback can be implemented by the following scheme:

if (mouse_pointer_inside_the_scrollable_area) {

$self-> scroll_timer_stop;

} else {

$self-> scroll_timer_start unless $self-> scroll_timer_active;

return unless $self-> scroll_timer_semaphore;

$self-> scroll_timer_semaphore(0);

}

The class uses a semaphore {mouseTransaction}, which should be set to non-zero if a widget
is in mouse capture state, and set to zero or undef otherwise.

The class starts an internal timer, which sets a semaphore and calls MouseMove

notification when triggered. The timer is assigned the timeouts, returned by
Prima::Application::get scroll rate (see the get scroll rate entry in the
Prima::Application section).

Methods

scroll timer active

Returns a boolean value indicating if the internal timer is started.

scroll timer semaphore [VALUE]

A semaphore, set to 1 when the internal timer was triggered. It is advisable to check
the semaphore state to discern a timer-generated event from the real mouse movement. If
VALUE is specified, it is assigned to the semaphore.

scroll timer start

Starts the internal timer.

scroll timer stop

Stops the internal timer.

420

9.9 Prima::Widget::Panel

Simple panel widget
Provides a simple panel widget capable of displaying a single line of centered text on a custom

background. Probably this functionality is better to be merged with Prima::Label.

Properties

borderWidth INTEGER

Width of 3d-shade border around the widget.

Default value: 1

image OBJECT

Selects the image to be drawn as a tiled background. If undef the background is drawn with
the background color.

imageFile PATH

Sets the image FILE to be loaded and displayed. Is rarely used since does not return the
success flag.

raise BOOLEAN

The style of the 3d-shade border around the widget. If 1, the widget is ’risen’; if 0 it is
’sunken’.

Default value: 1

zoom INTEGER

Selects the zoom level for the image display. The acceptable value range is between 1 and
10.

Default value: 1

421

9.10 Prima::Widget::RubberBand

Dynamic rubberbands

Description

The motivation for this module was that I was tired of seeing corrupted screens on Windows 7
when dragging rubberbands in Prima code. Even though MS somewhere warned of not doing any
specific hacks to circumvent the bug, I decided to give it a go anyway.

This module thus is a Prima::Widget/rect focus with a safeguard. The only thing it can do
is to draw a static rubberband - but also remember the last coordinates drawn, so cleaning and
animation come for free.

The idea is that a rubberband object is meant to be a short-lived one: as soon as it gets
instantiated it draws itself on the screen. When it is destroyed, the rubberband is erased too.

Synopsis

use strict;

use Prima qw(Application Widget::RubberBand);

sub xordraw

{

my ($self, @new_rect) = @_;

$::application-> rubberband(@new_rect ?

(rect => \@new_rect) :

(destroy => 1)

);

}

Prima::MainWindow-> new(

onMouseDown => sub {

my ($self, $btn, $mod, $x, $y) = @_;

$self-> {anchor} = [$self-> client_to_screen($x, $y)];

xordraw($self, @{$self-> {anchor}}, $self-> client_to_screen($x, $y));

$self-> capture(1);

},

onMouseMove => sub {

my ($self, $mod, $x, $y) = @_;

xordraw($self, @{$self-> {anchor}}, $self-> client_to_screen($x, $y)) if

},

onMouseUp => sub {

my ($self, $btn, $mod, $x, $y) = @_;

xordraw if delete $self-> {anchor};

$self-> capture(0);

},

);

run Prima;

API

new %properties

Creates a new RubberBand instance. See the description of its properties below.

422

Properties

breadth INTEGER = 1

Defines the rubberband breadth in pixels.

canvas = $::application

Sets the painting surface, and also the widget (it must be a widget) used for drawing.

clipRect X1, Y1, X2, Y2

Defines the clipping rectangle in inclusive-inclusive coordinates. If set to [-1,-1,-1,-1], means
no clipping is needed.

rect X1, Y1, X2, Y2

Defines the band geometry in inclusive-inclusive coordinates. The band is drawn so that its
body is always inside these coordinates, no matter what the breadth is.

Methods

hide

Hides the band

has clip rect

Checks whether clipRect contains an actual clipping rectangle or it is empty.

set %profile

Applies all properties

left, right, top, bottom, width, height, origin, size

The same shortcuts as in Prima::Widget, but read-only.

show

Shows the band

Prima::Widget interface

The module adds a single method to the Prima::Widget namespace, rubberband (see example of
use in the synopsis).

rubberband(%profile)

Instantiates a Prima::RubberBand object with %profile, also sets canvas to $self (unless
canvas is set explicitly).

rubberband()

Returns the existing Prima::RubberBand object

rubberband(destroy => 1)

Destroys the existing Prima::Widget::RubberBand object

423

9.11 Prima::Widget::ScrollWidget

Scrollable generic document widget

Description

Prima::Widget::ScrollWidget is a simple class that declares two pairs of properties, delta and
limit for vertical and horizontal axes, which define the extensions of a virtual document. limit is
the document dimension, and delta is the current offset.

Prima::Widget::ScrollWidget is a descendant of Prima::Widget::GroupScroller, and as
well as its ascendant, provides the same user navigation by two scrollbars. The scrollbars’ partial
and whole properties are automatically updated when the document or widget extensions change.

Prima::Widget::ScrollGroup provides the capability of hosting other widgets inside, and
also scrolling them. Useful for widget group panels that cannot fit in a window

Prima::Widget::ScrollWidget

Properties

deltas X, Y

Selects the horizontal and vertical document offsets.

deltaX INTEGER

Selects the horizontal document offset.

deltaY INTEGER

Selects the vertical document offset.

limits X, Y

Selects the horizontal and vertical document extensions.

limitX INTEGER

Selects the horizontal document extension.

limitY INTEGER

Selects the vertical document extension.

Events

Scroll DX, DY

Called whenever the client area is to be scrolled. The default action calls Widget::scroll .

Prima::Widget::ScrollGroup

Properties

client

Returns the parent widget to insert other widgets. The client size is fixed and is panned
through the slave widget when scrolling. The client is unaffected by the eventual automated
pack/place/growMode size alteration the parent or slave might be subjected to.

clientClass

A clientClass widget is inserted in the slave widget.

424

slave

Returns the slave widget. The slave widget covers the scrollable area and is otherwise just
a normal Prima::Widget object that can be resized, moved, etc.

slaveClass

A slaveClass widget is inserted directly in the scroll group widget.

425

9.12 Prima::Widget::StartupWindow

A simplistic startup banner window

Description

The module, when imported by the use call, creates a temporary window which appears with the
’loading...’ text while the modules required by a program are loading. The window parameters
can be modified by passing custom parameters after the use Prima::Widget::StartupWindow

statement, that are passed to the Prima::Window class as creation parameters. The window is
discarded by explicit unimporting of the module (see the Synopsis entry).

Synopsis

use Prima;

use Prima::Application;

use Prima::Widget::StartupWindow; # the window is created here

use Prima::Buttons;

.... # lots of ’use’ of other modules

no Prima::Widget::StartupWindow; # the window is discarded here

426

9.13 Prima::Widget::UndoActions

Undo and redo the content of editable widgets

Description

Generic helpers that implement stored actions for undo/redo.

Synopsis

package MyUndoableWidget;

use base qw(Prima::Widget Prima::Widget::UndoActions);

sub on_mousedown

{

if ($button == mb::Left) {

$self->begin_undo_group;

$self->push_undo_action(text => $self->text);

$self->text($self->text . ’.’);

$self->end_undo_group;

} else {

$self->undo; # will call $self->text(old text)

}

}

Properties

undoLimit INTEGER

Sets the limit on the number of atomic undo operations. If 0, undo is disabled.

Methods

begin undo group

Opens a bracket for a group of actions that can be undone as a single operation. The bracket
is closed by calling end undo group.

can undo, can redo

Return a boolean flag that reflects if the undo or redo actions could be done. Useful for
graying a menu, f ex.

end undo group

Closes the bracket for a group of actions, that was previously opened by begin undo group.

init undo

Should be called once, inside init()

has undo action ACTION

Checks whether there are any undo-able ACTIONs in the undo list.

push grouped undo action ACTION, @PARAMS

Stores a single undo action where ACTION is a method to be called inside undo/redo, if
any. Each action is added to the last undo group and will be removed/replayed together
with the other actions in the group.

427

push undo action ACTION, @PARAMS

Stores a single undo action where ACTION is the method to be called inside undo/redo, if
any. Each action is a single undo/redo operation.

redo

Re-applies changes, previously rolled back by undo.

undo

Rolls back changes into an internal array. The array size cannot extend the undoLimit value.
In case undoLimit is 0 no undo actions can be made.

428

10 C interface to the toolkit

10.1 Prima::internals

Prima internal architecture

Description

This document describes the internal structures of the Prima toolkit, its loading considerations,
object and class representation, and C coding style.

Bootstrap

Initializing

From the point of view of a perl script, Prima is no more but an average module that uses
DynaLoader. As the use Prima code gets executed, the bootstrap procedure boot Prima() is
called. This procedure initializes all internal structures and built-in Prima classes. It also initializes
all system-dependent structures, calling window subsystem init(). After that point, the Prima
module is ready to use. All wrapping code for built-in functionality that can be seen from perl is
in two modules - Prima::Const and Prima::Classes.

Constants

Prima defines a lot of constants for different purposes (e.g. colors, font styles,0 etc). Prima does
not follow perl naming conventions here, for the sake of simplicity. It is (arguably) easier to write
cl::White rather than Prima::cl::White. As perl constants are functions to be called once (that
means that a constant’s value is not defined until it is used first), Prima registers these functions
during the boot Prima stage. As soon as perl code tries to get a constant’s value, an AUTOLOAD
function is called, which is banded inside Prima::Const. Constants are widely used both in C and
perl code and are defined in apricot.h in such a way so that perl constant definitions come along
with the C ones. As an example file event constants set is described here.

apricot.h:

#define FE(const_name) CONSTANT(fe,const_name)

START_TABLE(fe,UV)

#define feRead 1

FE(Read)

#define feWrite 2

FE(Write)

#define feException 4

FE(Exception)

END_TABLE(fe,UV)

#undef FE

429

Const.pm:

package fe; *AUTOLOAD = \&Prima::Const::AUTOLOAD;

This code creates a structure filled with UVs (unsigned integers) and declares a regis-
ter fe constants() function, which should be called at the boot Prima stage. This way feRead
becomes the C analog to the fe::Read in perl.

Classes and methods

Virtual method tables

Prima implementation of classes uses virtual method tables, or VMTs, to make the classes inher-
itable and their methods overridable. The VMTs are usual C structs, that contain pointers to
functions. A set of these functions represents a class. This chapter is not about OO programming,
you have to find a good book on it if you are not familiar with the OO concepts, but in short,
because Prima is written in C, not in C++, it uses its own classes and objects implementation,
so all object syntax is devised from scratch.

The built-in classes already contain all the information needed for method overloading, but
when a new class is derived from an existing one, a new VMT has to be created as well. The actual
sub-classing is performed inside build dynamic vmt() and build static vmt(). gimme the vmt()
function creates a new VMT instance on the fly and caches the result for every new class that is
derived from a Prima built-in class.

C to Perl and Perl to C calling routines

The majority of Prima methods are written in C using XS perl routines, which represent a natural
(from a perl programmer’s view) way of C-to-Perl communication. perlguts manpage describes
these functions and macros.

Note: Do not mix XS calls with the XS language (perlxs manpage) - the latter is a meta-
language for simplification of coding tasks and is not used in the Prima implementation.

It was decided not to code every function with XS calls, but instead use special wrapper
functions (also called ”thunks”) for every function that is called from within perl. Thunks are
generated automatically by the gencls tool (the prima-gencls section manpage), and the typical
Prima method consists of three functions, two of which are thunks.

The first function, say Class init(char*), would initialize a class (for example). It is written
fully in C, so to be called from perl code a registration step must be taken for the second function,
Class init FROMPERL(), that would look like this:

newXS("Prima::Class::init", Class_init_FROMPERL, "Prima::Class");

Class init FROMPERL() is the first thunk, that translates the parameters passed from perl to
C and the result back from the C function to perl. This step is almost fully automatized, so one
never bothers about writing the XS code, the gencls utility creates the thunks code automatically.

Many C methods are called from within Prima C code using VMTs, but it is possible to
override these methods from the perl code too. The actions for such a situation when a function
is called from C but is an overridden method therefore must be taken. On that occasion, the third
function Class init REDEFINED() is declared. Its task is a reverse from Class init FROMPERL()
- it conveys all C parameters to perl and returns values from a perl function back to C. This thunk
is also generated automatically by the gencls tool.

As one can notice, only basic data types can be converted between C and perl, and at some
point, automated routines do not help. In such a situation data conversion code is written manually
and is included in core C files. In the class declaration files these methods are prepended with the
’public’ or ’weird’ modifiers, while methods with no special data handling need to use the ’method’
or ’static’ modifiers.

Note: functions that are not allowed to be seen from perl should have the ’c only’ modifier,
and do not need the thunk wrapping. These functions can nevertheless be overridden from C.

430

Built-in classes

Prima defines the following built-in classes: (in hierarchy order)

Object

Component

AbstractMenu

AccelTable

Menu

Popup

Clipboard

Drawable

DeviceBitmap

Printer

Image

Icon

File

Region

Timer

Widget

Application

Window

These classes can be seen from perl with Prima:: prefix. Along with these, the Utils class is
defined in a special way. Its only difference is that it cannot be used as a prototype for an object,
and used merely as a package that binds functions. Classes that are not intended to be an object
prototype are marked with the ’package’ prefix while the other classes are marked with the ’object’
prefix (see prima-gencls manpage).

Objects

This chapter deals only with Prima::Object descendants, pure perl objects are not of interest here,
so the ’object’ term is thereafter referenced to be the Prima::Object descendant object. Prima
employs blessed hashes as its objects.

Creation

All built-in object classes and their descendants can be used for creating objects with perl seman-
tics. Perl objects are created by calling bless(), but this is not enough to create Prima objects.
Every Prima::Object descendant class therefore is equipped with the create() method, which al-
locates the object instance and calls bless() itself. Parameters that come to the create() call are
formed into a hash and passed to the init() method, which is also present on every object. Note
that although the perl-coded init() returns the hash, it is not seen in C code. This is a special con-
sideration for the methods that have ’HV * profile’ as a last parameter in their class declaration.
The corresponding thunk copies the hash content back to the perl stack, using the parse hv() and
push hv() functions.

Objects can be created from perl by using the following code example:

$obj = Prima::SampleObject-> create(

name => "Sample",

index => 10,

);

and from C:

431

Handle obj;

HV * profile = newHV();

pset_c(name, "Sample");

pset_i(index, 10);

obj = Object_create("SampleObject", profile);

sv_free((SV*) profile);

or even

create_object("SampleObject", "si",

"name", "Sample",

"index", 10

);

Convenience pset XX macros assign a value of XX type to the hash key given as a first pa-
rameter, to a hash variable named profile. pset i works with integers, pset c - with strings,
etc.

Destruction

As well as the create() method, every object class has the destroy() method. An object can be
destroyed either from perl

$obj-> destroy

or from C

Object_destroy(obj);

An object can be automatically destroyed when its reference count reaches 0. Note that the
auto destruction would never happen if the object’s reference count is not lowered after its creation.
The code

--SvREFCNT(SvRV(PAnyObject(object)-> mate));

is required if the object is to be returned to perl. If that code is not called, the object still
could be destroyed explicitly, but its reference would still live, resulting in a memory leak problem.

For the user code it is sufficient to overload done() and/or cleanup() methods, or just the
onDestroy notification. It is highly recommended to avoid overloading the destroy() method since
it can be called in a re-entrant fashion. When overloading done(), be prepared that it may be
called inside init(), and deal with the semi-initialized object.

Data instance

All Prima objects are blessed hashes, and the hash key CMATE holds a C pointer to a memory
that is occupied by a C data instance, or a ”mate”. It keeps all object variables and a pointer to
the VMT. Every object has its own copy of the data instance, but the VMTs can be shared. To
reach the C data instance gimme the mate() function is used. As the first argument, it accepts a
scalar (SV*), which is expected to be a reference to a hash, and returns the C data instance if the
scalar is a Prima object.

432

Object life stages

There are several steps, or ”stages”, in every object’s life cycle. Every stage is mirrored into
PObject(self)-> stage integer variable, which can be one of the following csXXX constants:

csConstructing

The object is this initial stage until create() is finished. Right after init() is completed, the
setup() method is called.

csNormal

After create() is finished and before destroy() starts. If an object is in either csNormal or
csConstructing stage, the result of the Object alive() method is non-zero.

csDestroying

The destroy() started. This stage runs the cleanup() and the done() methods.

csFrozen

cleanup() started.

csFinalizing

done() started

csDead

destroy() finished

Coding techniques

Accessing object data

C coding in Prima has no specific conventions, except when coding an object method. The object
syntax for accessing the object’s data instance is though fairly straightforward. For example,
accessing the component field called ’name’ can be done in several ways:

((PComponent) self)-> name; // classic C

PComponent(self)-> name; // using PComponent() macro from apricot.h

var-> name; // using local var() macro

Object methods could be called in several ways:

(((PComponent) self)-> self)-> get_name(self); // classic C

CComponent(self)-> get_name(self); // using CComponent() macro from apricot.h

my-> get_name(self); // using local my() macro

The calling of methods via the object’s VMTs is preferred, compared to the direct call of
Component get name(), primarily because get name() is a method that can be overridden in the
user code.

Calling perl code

The call perl indirect() function accepts an object, a name of the method to be called, an argument
format string, and an argument list. It has several wrappers for the ease of use, which are:

call_perl(Handle self, char * method, char * format, ...)

sv_call_perl(SV * object, char * method, char * format, ...)

cv_call_perl(SV * object, SV * code_reference, char * format, ...)

433

each character of the format string represents the type of the corresponding argument, using
the following characters to encode types:

’i’ - integer

’s’ - char *

’n’ - float

’H’ - Handle

’S’ - SV *

’P’ - Point

’R’ - Rect

The format string can be prepended with the ’<’ character, in which case an SV * scalar
(always scalar, even if the code returns nothing or an rray) value is returned. The caller is
responsible for freeing the returned value.

Exceptions

As described in the perlguts manpage, the G EVAL flag is used in perl call sv() and
perl call method() to indicate that an eventual exception should never be propagated automati-
cally. The caller checks if the exception was taken place by evaluating the

SvTRUE(GvSV(errgv))

statement. It is guaranteed to be false if there was raised no exception. In some situations
though, namely, when no perl call * functions are called or an error value is already assigned
before calling code, there is a wrapping technique that keeps the eventual previous error message.
Such code may look like this:

dG_EVAL_ARGS; // define arguments

....

OPEN_G_EVAL; // open brackets

// call code

perl_call_method(... | G_EVAL); // G_EVAL is necessary

if (SvTRUE(GvSV(errgv)) {

CLOSE_G_EVAL; // close brackets

croak(SvPV_nolen(GvSV(errgv)));// propagate exception

// no code is executed after croak

}

CLOSE_G_EVAL; // close brackets

...

This technique provides a workaround to a ”false alarm” situation if SvTRUE(GvSV(errgv))
is already true before perl call method().

Object protection

After the object destroy stage is completed, it is possible that the object’s data instance is gone,
and even a simple stage check might cause a segmentation fault. To avoid this, bracketing functions
called protect object() and unprotect object() are used. protect object() increments the ref-
erence count to the object instance, thus delaying its freeing until decrementing unprotect object()
is called.

All C code that references an object must check its stage after every routine that may poten-
tially switch to perl code because the object might be destroyed inside the call. A typical code
example would be like this:

434

int handle_object(Handle object) {

int stage;

protect_object(object);

// call some perl code

perl_call_method(object, "test", ...);

stage = PObject(object)-> stage;

unprotect_object(object);

if (stage != csNormal) return 0;

// proceed with the object

...

return 1;

}

Usually C code doesn’t need to check the object stage before the call to perl is made because the
gimme the mate() function returns NULL when the object’s stage is csDead, and the majority of
Prima C code is prepended with this call, thus rejecting invalid references on the early stage. If it is
desired to get the C mate for objects that are in the csDead stage, use the gimme the real mate()

function instead.

init

Object’s method init() is responsible for setting all its initial properties to the given values, how-
ever, all code that is executed inside the init() must be aware that the object’s stage is csConstruct-
ing. init() consists of two parts: calling of ancestor’s init() and setting the properties. Examples
are many in both C and perl code, but in short, it looks like this:

void

Class_init(Handle self, HV * profile)

{

inherited init(self, profile);

my-> set_index(pget_i(index));

my-> set_name(pget_c(name));

}

pget XX macros call croak() if the profile key is not present in the profile, but the mechanism
guarantees that all keys that are listed in profile default() are conveyed to the init(). For explicit
checking of key presence the pexists() macro is used, and the pdelete() macro is used for the key
deletion, although is it not recommended to use pdelete() inside init().

Object creation and returning

As described in the previous sections, there are some precautions to be taken into account when
an object is created inside C code. A piece of real code from DeviceBitmap.c would serve as an
example:

static

Handle xdup(Handle self, char * className)

{

Handle h;

Point s;

PDrawable i;

// allocate a parameters hash

HV * profile = newHV();

435

// set all necessary arguments

pset_H(owner, var-> owner);

pset_i(width, var-> w);

pset_i(height, var-> h);

pset_i(type, (var-> type == dbtBitmap) ? imBW : imRGB);

// create object

h = Object_create(className, profile);

// free profile, do not need it anymore

sv_free((SV *) profile);

i = (PDrawable) h;

s = i-> self-> get_size(h);

i-> self-> begin_paint(h);

i-> self-> put_image_indirect(h, self, 0, 0, 0, 0, s.x, s.y, s.x, s.y, ropCopyPut);

i-> self-> end_paint(h);

// decrement reference count

--SvREFCNT(SvRV(i-> mate));

return h;

}

Note that all code that would use this xdup() has to increase and decrease the object’s reference
count if some perl functions are to be executed before returning the object to perl, otherwise it
might get destroyed in the middle of the execution:

Handle x = xdup(self, "Prima::Image");

++SvREFCNT(SvRV(PAnyObject(x)-> mate)); // Code without these

CImage(x)-> type(x, imbpp1);

--SvREFCNT(SvRV(PAnyObject(x)-> mate)); // brackets is unsafe

return x;

Attaching objects

The newly created object returned from C would be destroyed due perl’s garbage cleaning mech-
anism right away, unless the object value is assigned to a scalar, for example.

Thus

$c = Prima::Object-> create();

and Prima::Object-> create;
have different results. But for some classes, namely Widget and its descendants, and also for

Timer, AbstractMenu, Printer, and Clipboard the code above would have the same result - the
objects would not be killed. That is because these objects call the Component attach() method
during the init-stage, automatically increasing their reference count. The Component attach()
and its reverse Component detach() keep a list of objects that are attributed to each other. An
object can be attached to more than object at a time, but cannot be attached more than once to
another object.

Notifications

All descendats of the Prima::Component class are equipped with a mechanism that allows user
callback routines to be called when corresponding events occur. A very similar mechanism is used
typically everywhere in the event-driven programming. Component notify() is used to call the
user notifications; its format string has the same format as accepted by perl call indirect(). The
only difference is that it always has to be prepended with ’<s’, - this way the call success flag can
be returned, and the first parameter must be the name of the notification.

436

Component_notify(self, "<sH", "Paint", self);

Component_notify(self, "<sPii", "MouseDown", self, point, int, int);

The notification mechanism keeps another reference list, similar to the attach-detach mecha-
nism so that notifications can be attributed to different objects. Objects entering the list don’t
get their reference counter changed.

Multi-property setting

Prima::Object method set() is designed to assign several properties at once. Sometimes it is more
convenient to write

$c-> set(index => 10, name => "Sample");

than to invoke several methods one by one. The set() method executes these calls itself, but for
the performance reasons it is possible to overload this method and code special conditions for the
mult-assignment. As an example, here’s Prima::Image type conversion code using this technique:

void

Image_set(Handle self, HV * profile)

{

...

if (pexist(type))

{

int newType = pget_i(type);

if (!itype_supported(newType))

warn("Invalid image type requested (%08x) in Image::set_type",

newType);

else

if (!opt_InPaint)

my-> reset(self, newType, pexist(palette) ?

pget_sv(palette) : my->get_palette(self));

pdelete(palette);

pdelete(type);

}

...

inherited set (self, profile);

}

Here, if the type conversion is performed along with the palette change, some efficiency is gained
by supplying both the ’type’ and ’palette’ parameters at once. Moreover, because the ordering of
the fields is not determined by default (although that is done by supplying the ’ ORDER ’ hash
key to set() }, it can easily be discovered that

$image-> type($a);

$image-> palette($b);

and

$image-> palette($b);

$image-> type($a);

produce different results. Therefore the only solution here is to code Class set() explicitly.
If it is desired to specify the exact order of how atomic properties have to be called, ORDER

anonymous array has to be added to the set() parameters.

437

$image-> set(

owner => $xxx,

type => 24,

__ORDER__ => [qw(type owner)],

);

API reference

Variables

primaObjects, PHash

Hash with all prima objects, where keys are their data instances

application, Handle

Pointer to the application. There can be only one Application instance at a time, or none
at all.

Macros and functions

dG EVAL ARGS

Defines a variable for $@ value storage

OPEN G EVAL, CLOSE G EVAL

Brackets for exception catching

build static vmt

Bool(void * vmt)

Caches pre-built VMT for further use

build dynamic vmt

Bool(void * vmt, char * ancestorName, int ancestorVmtSize)

Creates a subclass from vmt and caches the result under ancestorName key

gimme the vmt

PVMT(const char *className);

Returns the VMT pointer associated with class by name.

gimme the mate

Handle(SV * perlObject)

Returns a C pointer to an object, if perlObject is a reference to a Prima object. returns
NULL HANDLE if the object stage is csDead

gimme the real mate

Handle(SV * perlObject)

Returns a C pointer to an object, if perlObject is a reference to a Prima object. Same as
gimme the mate, but does not check for the object stage.

438

alloc1

alloc1(type)

To be used instead (type*)(malloc(sizeof(type))

allocn

allocn(type,n)

To be used instead (type*)(malloc((n)*sizeof(type))

alloc1z

Same as alloc1 but fills the allocated memory with zeros

allocnz

Same as allocn but fills the allocated memory with zeros

prima mallocz

Same as malloc() but fills the allocated memory with zeros

prima hash create

PHash(void)

Creates an empty hash

prima hash destroy

void(PHash self, Bool killAll);

Destroys a hash. If killAll is true, assumes that every value in the hash is a dynamic memory
pointer and calls free() on each.

prima hash fetch

void*(PHash self, const void *key, int keyLen);

Returns the pointer to a value, if found, NULL otherwise

prima hash delete

void*(PHash self, const void *key, int keyLen, Bool kill);

Deletes the hash key and returns the associated value. If the kill argument is true, calls
free() on the value and returns NULL.

prima hash store

void(PHash self, const void *key, int keyLen, void *val);

Stores a new value into hash. If the key is already present, the old value is overwritten.

prima hash count

int(PHash self)

439

Returns the number of keys in the hash

prima hash first that

void * (PHash self, void *action, void *params, int *pKeyLen, void **pKey);

Enumerates all hash entries, calling action procedure on each. If the action procedure re-
turns true, enumeration stops and the last processed value is returned. Otherwise NULL is
returned. action has to be a function declared as

Bool action_callback(void * value, int keyLen, void * key, void * params);

The params argument is a pointer to arbitrary user data

kind of

Bool(Handle object, void *cls);

Returns true, if the object is an exemplar of class cls or its descendant

PERL CALL METHOD, PERL CALL PV

To be used instead of perl call method and perl call pv, (see the perlguts manpage). These
functions should be used to code a workaround of the perl bug which emerges when the
G EVAL flag is combined with G SCALAR.

eval

SV *(char *string)

Simplified perl eval pv() call.

sv query method

CV * (SV * object, char *methodName, Bool cacheIt);

Returns a perl pointer to a method searched by the perl object and the name. If cacheIt is
true, caches the result of the hierarchy traversal for speedup.

query method

CV * (Handle object, char *methodName, Bool cacheIt);

Returns a perl pointer to a method searched by the C object and the name. If cacheIt is
true, caches the hierarchy traverse result for a speedup.

call perl indirect

SV * (Handle self, char *subName, const char *format, Bool cdecl,

Bool coderef, va_list params);

The main core function for calling Prima methods. Is used by the following three functions,
but is never called directly. The format is described in the Calling perl code section.

call perl

SV * (Handle self, char *subName, const char *format, ...);

440

Calls the subName method on a C object

sv call perl

SV * (SV * mate, char *subName, const char *format, ...);

Calls the subName method on a perl object

cv call perl

SV * (SV * mate, Sv * coderef, const char *format, ...);

Calls arbitrary perl code with a SV mate as the first parameter. Used in notifications
mechanism.

Object create

Handle(char * className, HV * profile);

Creates an exemplar of className class with parameters in the profile hash. Never returns
NULL HANDLE, throws an exception instead.

create object

void*(const char *objClass, const char *format, ...);

A convenience wrapper to Object create. Uses the format specification that is described in
the section Calling perl code above.

create instance

Handle(const char * className)

Convenience call to Object create with parameters in hash ’profile’.

Object destroy

void(Handle self);

Destroys an object. One of the few Prima functions that can be called in the re-entrant
fashion.

Object alive

void(Handle self);

Returns non-zero if the object is alive, 0 otherwise. In particular, returns 1 if the object’s
stage is csNormal and 2 if it is csConstructing. Has virtually no use in C, only used in perl
code.

protect object

void(Handle obj);

Protects the object data from deletion after Object destroy() is called. Can be called several
times on an object. Increments Object.protectCount .

unprotect object

441

void(Handle obj);

Frees the objectdatapointer after Object.protectCount hits zero. Can be called several times
on an object.

parse hv

HV *(I32 ax, SV **sp, I32 items, SV **mark, int expected, const char *methodName);

Transfers arguments in perl stack to a newly created HV and returns it.

push hv

void (I32 ax, SV **sp, I32 items, SV **mark, int callerReturns, HV *hv);

Puts all hv contents back into perl stack.

push hv for REDEFINED

SV **(SV **sp, HV *hv);

Puts hv content as arguments to perl code to be called

pop hv for REDEFINED

int (SV **sp, int count, HV *hv, int shouldBe);

Reads the result of the executed perl code and stores it into the HV hash.

pexist

Bool(char*key)

Returns true if a key is present in the hash ’profile’

pdelete

void(char*key)

Deletes a key in the hash ’profile’

pget sv, pget i, pget f, pget c, pget H, pget B

TYPE(char*key)

Returns a value of one of the types supported (SV*, int, float, char*, Handle or Bool) that
is associated with a key in the hash ’profile’. Calls croak() if the key is not present.

pset sv, pset i, pset f, pset c, pset H

void(char*key, TYPE value)

Assigns value to a key in hash ’profile’ and increments reference count to a newly created
scalar.

pset b

void(char*key, void* data, int length)

442

Assigns binary data to a key in the hash ’profile’ and increments the reference counter for
the newly created scalar.

pset sv noinc

void(char* key, SV * sv)

Assigns a scalar value to a key in the hash ’profile’ without incrementing the reference
counter.

duplicate string

char*(const char *)

Returns copy of a string

list create

void (PList self, int size, int delta);

Creates a list instance with a static List structure.

plist create

PList(int size, int delta);

Created list instance and returns newly allocated List structure.

list destroy

void(PList self);

Destroys the list data.

plist destroy

void (PList self);

Destroys the list data and frees the list instance.

list add

int(PList self, Handle item);

Adds new item into a list, returns its index or -1 on error.

list insert at

int (PList self, Handle item, int pos);

Inserts new item into a list at a given position; returns its position or -1 on error.

list at

Handle (PList self, int index);

Returns the item that is located at a given index or NULL HANDLE if the index is out of
range.

443

list delete

void(PList self, Handle item);

Removes the item from the list.

list delete at

void(PList self, int index);

Removes the item located at a given index from a list.

list delete all

void (PList self, Bool kill);

Removes all items from the list. If the kill argument is true, calls free() on every item before
removing them from the list.

list first that

int(PList self, void * action, void * params);

Enumerates all list entries, calling action procedure on each. If the action returns true, the
enumeration stops and the index is returned. Otherwise, -1 is returned. action has to be a
function declared as

Bool action_callback(Handle item, void * params);

where params is a pointer to an arbitrary user data

list index of

int(PList self, Handle item);

Returns index of an item, or -1 if the item is not in the list.

444

10.2 Prima::codecs

How to write a codec for Prima image subsystem

Description

How to write a codec for the Prima image subsystem

Start simple

There are many graphical formats in the world, and yet more libraries, that depend on them.
Writing a codec that supports a particular library is a tedious task, especially if one wants to
support more than one format. Usually, you never want to get into internal parts, the functionality
comes first, and who needs all those funky options that format provides? We want to load a file
and to display its content. Everything else comes later - if ever. So, in a way to not scare you off,
we start it simple.

Loading

Define a callback function like this:

static Bool

load(PImgCodec instance, PImgLoadFileInstance fi)

{

}

Just that function is not enough for the whole mechanism to work, but the bindings will come
later. Let us imagine we work with an imaginary library libduff, and we want to load files of .duf
format. [To discern imaginary code from real, imaginary will be prepended with - for example,
libduff loadfile]. So, we call the libduff loadfile() function, which loads black-and-white,
1-bits/pixel images, where 1 is white and 0 is black.

static Bool

load(PImgCodec instance, PImgLoadFileInstance fi)

{

_LIBDUFF * _l = _libduff_load_file(fi-> fileName);

if (!_l) return false;

// - create storage for our file

CImage(fi-> object)-> create_empty(fi-> object,

_l-> width, _l-> height, imBW);

// Prima wants images aligned to a 4-byte boundary,

// happily libduff has the same considerations

memcpy(PImage(fi-> object)-> data, _l-> bits,

PImage(fi-> object)-> dataSize);

_libduff_close_file(_l);

return true;

}

Prima keeps an open handle of the file; if libduff can use file handles, then we can use it too,
which is more robust than just file names because the caller can also load images from a byte
stream.

445

{

_LIBDUFF * _l = _libduff_load_file_from_handle(fi-> f);

...

// In both cases, you don’t need to close the handle -

// however you might, it is ok:

_libduff_close_file(_l);

fclose(fi-> f);

// You just assign it to NULL to indicate that you’ve closed it

fi-> f = NULL;

...

}

Together with load() you will need to implement minimal open load() and close load()

functions.
The simplest open load() returns a non-null pointer as a success flag:

static void *

open_load(PImgCodec instance, PImgLoadFileInstance fi)

{

... open file handle ...

return (void*)1;

}

Its result will be stored in PImgLoadFileInstance-> instance for future reference. If it was
dynamically allocated, free it in close load(). A dummy close load() is doing nothing but
must be present nevertheless:

static void

close_load(PImgCodec instance, PImgLoadFileInstance fi)

{

}

Writing to PImage-> data

Prima formats its image data as 32-bit aligned scanlines in a contiguous memory block. If libduff
allows reading from files by scanlines, we can use the lineSize field to properly address the data:

PImage i = (PImage) fi-> object;

// note - since this notation is more convenient than

// PImage(fi-> object)-> , instead i-> will be used

Byte * dest = i-> data + (_l-> height - 1) * i-> lineSize;

while (_l-> height--) {

_libduff_read_next_scanline(_l, dest);

dest -= i-> lineSize;

}

Note that the image is filled in reverse - Prima images are built like a classical XY-coordinate
grid, where Y ascends upwards.

Here ends the simple part. You can skip down to the the Registering with the image subsystem
entry part if you want it fast.

446

Single-frame loading

Palette

Our libduff images can be black-and-white in two ways - where 0 is black and 1 is white and vice
versa. While 0B/1W perfectly corresponds to the imbpp1 | imGrayScale Prima image type and
no palette operations are needed (Prima cares automatically about these), a 0W/1B is a black-
and-white grayscale image that should be treated like the imbpp1 type with custome palette:

if (l-> _reversed_BW) {

i-> palette[0].r = i-> palette[0].g = i-> palette[0].b = 0xff;

i-> palette[1].r = i-> palette[1].g = i-> palette[1].b = 0;

}

Note. The image always has a palette array with a size enough to store 256 colors, since it
can’t know beforehand the actual palette size. If the color palette for, say, a 4-bit image contains
15 out of the 16 colors possible, the code like

i-> palSize = 15;

does the trick.

Data conversion

Prima defines image scanline size to be aligned to 32 bits, and the formula for the calculation of
the scanline size is

lineSize = ((width * bits_per_pixel + 31) / 32) * 4;

Prima defines many converting routines between different data formats. Some of them can
be applied to scanlines, and some to the whole image (because sampling algorithms generally
may need access to more than a single scanline). These are defined in include/img conv.h, and
probably the ones that you’ll need would be bc format1 format2, which works on scanlines, and
also ibc repad that does byte repadding.

For those who are especially lucky, some libraries do not check between machine byte format
and file byte format. Prima unfortunately doesn’t provide an easy method for determining this
situation, but you’ll have to convert your data in the appropriate way to have picture data displayed
correctly. Note the BYTEORDER symbol that is (usually) defined in sys/types.h.

Loading with no data

If a high-level code just needs information about the image dimensions and bit depth rather than its
pixels, a codec should be able to provide that in an effective way. The implementation above would
still work but will use more memory and time. The PImgLoadFileInstance-> noImageData flag
indicates if image data is needed. On that condition, the codec needs to report only the dimensions
of the image - but the type must be set anyway. Here is the full code:

static Bool

load(PImgCodec instance, PImgLoadFileInstance fi)

{

_LIBDUFF * _l = _libduff_load_file(fi-> fileName);

HV * profile = fi-> frameProperties;

PImage i = (PImage) fi-> frameProperties;

if (!_l) return false;

CImage(fi-> object)-> create_empty(fi-> object, 1, 1,

_l-> _reversed_BW ? imbpp1 : imBW);

447

// copy palette, if any

if (_l-> _reversed_BW) {

i-> palette[0].r = i-> palette[0].g = i-> palette[0].b = 0xff;

i-> palette[1].r = i-> palette[1].g = i-> palette[1].b = 0;

}

if (fi-> noImageData) {

// report dimensions

pset_i(width, _l-> width);

pset_i(height, _l-> height);

return true;

}

// - create storage for our file

CImage(fi-> object)-> create_empty(fi-> object,

_l-> width, _l-> height,

_l-> _reversed_BW ? imbpp1 : imBW);

// Prima wants images aligned to a 4-byte boundary,

// happily libduff has the same considerations

memcpy(PImage(fi-> object)-> data, _l-> bits,

PImage(fi-> object)-> dataSize);

_libduff_close_file(_l);

return true;

}

The newly introduced macro pset i is a convenience operator, assigning integer (i) as a value
to a hash key, given as a first parameter - it becomes a string literal upon the expansion. The
hash used for storage is a perl scalar of type HV*. The following code

HV * profile = fi-> frameProperties;

pset_i(width, _l-> width);

is a syntax sugar for

hv_store(

fi-> frameProperties,

"width", strlen("width"),

newSViv(_l-> width),

0);

hv store(), which together with HV’s and SV’s and the other symbols are described in perlguts.

Returning extra information

The most useful image attributes are dimensions, type, palette, and (pixel) data. However different
formats can supply a fair amount of other image information, often irrelevant but sometimes useful.
In the perl code, an image has access have a special hash reference ’extras’ on object, where all
this information is stored. Codec can report also such data, storing it in PImgLoadFileInstance->
frameProperties. Data should be stored in the native perl format, so if you’re not familiar with
perl scalar implementation, you might want to read it first (see perlguts), especially if you want
to return arrays and hashes. But for simple types, one can return the following perl scalars:

integers

448

pset_i(integer, _l-E<gt> integer);

floats

pset_f(float, _l-E<gt> float);

strings

pset_c(string, _l-E<gt> charstar);

- note - no malloc call is required

prima objects

pset_H(Handle, _l-E<gt> primaHandle);

SVs

pset_sv_noinc(scalar, newSVsv(sv));

hashes

pset_sv_noinc(scalar, (SV *) newHV());

hashes created through newHV can be filled in the same manner as described here

arrays

pset_sv_noinc(scalar, (SV *) newAV());

arrays (AVs) are described in perlguts also, but the most useful function here is av push.
To push 4 values, for example, this code:

AV * av = newAV();

for (i = 0;i < 4;i++) av_push(av, newSViv(i));

pset_sv_noinc(myarray, newRV_noinc((SV *) av);

is a C equivalent to

->{extras}-> {myarray} = [0,1,2,3];

High-level code can specify if the extra information should be loaded. This behavior is deter-
mined by the flag PImgLoadFileInstance-> loadExtras. A codec may choose to not respect
this flag, and thus the image extra information will not be returned. All data that can be possi-
bly extracted from an image, should be listen in the <char ** PImgCodecInfo- loadOutput>>

array:

static char * loadOutput[] = {

"hotSpotX",

"hotSpotY",

NULL

};

static ImgCodecInfo codec_info = {

...

loadOutput

};

449

static void *

init(PImgCodecInfo * info, void * param)

{

*info = &codec_info;

...

}

The code above is taken from codec X11.c, where the X11 bitmap can provide the location of
the hotspot, as two integers, X and Y. The type of the data is not specified.

Loading to icons

If high-level code wants an Icon object with 1-bit mask (and -mask) instead of an Image object,
Prima can take care of producing the mask automatically. However, if codec can read the explicit
transparency data, it might instead change the final mask in a more precise way. The mask pixels
are stored on the Icon obejct in the mask field.

a) Let us imagine, that a 4-bit image always carries a transparent color index, in the 0-15
range. In this case, the following code will create the correct mask:

if (kind_of(fi-> object, CIcon) &&

(_l-> transparent >= 0) &&

(_l-> transparent < PIcon(fi-> object)-> palSize)) {

PRGBColor p = PIcon(fi-> object)-> palette;

p += _l-> transparent;

PIcon(fi-> object)-> maskColor = ARGB(p->r, p-> g, p-> b);

PIcon(fi-> object)-> autoMasking = amMaskColor;

}

Of course,

pset_i(transparentColorIndex, _l-> transparent);

would be also helpful to report.
b) if an explicit bit mask is contained in the image, the code will be using the amNone constant

instead:

if (kind_of(fi-> object, CIcon) &&

(_l-> maskData >= 0)) {

memcpy(PIcon(fi-> object)-> mask, _l-> maskData, _l-> maskSize);

PIcon(fi-> object)-> autoMasking = amNone;

}

Note that the mask is also subject to LSB/MSB and 32-bit alignment issues. Treat it as a
regular imbpp1 data format.

c) A format supports transparency information, but the image does not contain any. In this
case no, action is required on the codec’s part; the high-level code specifies if the transparency
mask is created (iconUnmask field).

d) The full alpha transparency, if present, can be loaded into a 8-bit alpha mask. The icon
mask storage should be upgraded to accomodate for the 8-bit mask pixel depth by calling either
mask or create empty icon methods.

open load() and close load()

open load() and close load() are used as brackets for load requests. If a codec assigns false
to PImgCodecInfo-> canLoadMultiple that means that it can only load a single image ob-
ject from an image file, even if the image format supports many images per file. It may report

450

the total amount of frames, but still be incapable of loading them. There is also a load se-
quence, called null-load, when no load() calls are made, just open load() and close load().
These requests are made in case the codec can provide some file information without loading
frames at all. It can be any information, of whatever kind. It has to be stored in the hash
PImgLoadFileInstance-> fileProperties, to be filled once on open load(). The only excep-
tion is PImgLoadFileInstance-> frameCount, which can be updated during one of load() calls.
Actually, the frameCount field could be filled during any load stage, except close load(), so that
the Prima code that drives the multiframe logic would be able to correctly track individual images.

Even if the codec can only load single image per file, it is still advised to fill this field, at least
to tell whether a file is empty (frameCount == 0) or not (frameCount == 1). More information
about the frameCount field can be found below in the chapters dedicated to the multiframe
requests.

Load input

So far a codec is expected to respond for the noImageData hint only, and it is possi-
ble to allow a high-level code to alter the codec load behavior, passing specific parameters.
PImgLoadFileInstance-> profile is a hash, that contains these parameters. The data that
should be applied to all frames and/or the whole image file are set there when open load() is
called. These data, plus frame-specific keys passed to every load() call. However, Prima passes
only those hash keys, which are returned by the load defaults() function. This function returns
a newly created (by calling newHV()) hash, with the accepted keys and their default (and always
valid) value pairs. The example below defines the speed vs memory field, which should accept
integer values 0, 1, or 2.

static HV *

load_defaults(PImgCodec c)

{

HV * profile = newHV();

pset_i(speed_vs_memory, 1);

return profile;

}

...

static Bool

load(PImgCodec instance, PImgLoadFileInstance fi)

{

...

HV * profile = fi-> profile;

if (pexist(speed_vs_memory)) {

int speed_vs_memory = pget_i(speed_vs_memory);

if (speed_vs_memory < 0 || speed_vs_memory > 2) {

strcpy(fi-> errbuf, "speed_vs_memory should be 0, 1 or 2");

return false;

}

_libduff_set_load_optimization(speed_vs_memory);

}

}

The latter code chunk can be applied to open load() as well.

Returning an error

The image subsystem defines no severity gradation for codec errors. If an error occurs during
loading, the codec returns a false value, which is NULL on open load() and false on load(). It
is advisable to explain the error, otherwise, the user gets just the generic ”Load error” string. To

451

do so, the error message is to be copied to PImgLoadFileInstance-> errbuf :: char[256] .
On an extremely severe error codec may call croak(), which jumps to the closest G EVAL block.
If there are no G EVAL blocks then the program aborts. This condition could also happen if the
codec calls some Prima code that issues croak(). This condition is untrappable, - at least without
calling perl functions. Understanding that that behavior is not acceptable, it is still under design.

Multiple-frame load

To indicate that the codec is ready to read multiframe images, it must set the PImgCodecInfo->
canLoadMultiple flag to true. This only means, that codec should respond to the
PImgLoadFileInstance-> frame field, which value is an integer that should be in the range from
0 to PImgLoadFileInstance-> frameCount - 1. It is advised that the codec should change the
frameCount from its original value -1 to the actual one, to help Prima filter range requests be-
fore they go down to the codec. The only real problem that may happen to the codec which is
unwilling to initialize frameCount, is as follows. If a loadAll request was made (corresponding
boolean PImgLoadFileInstance-> loadAll flag is set for codec’s information) and frameCount
is not initialized, then Prima starts loading all frames, incrementing frame index until it receives
an error. Assuming the first error it gets is an EOF, it reports no error, so there’s no way for a
high-level code to tell whether there was a loading error or an end-of-file condition. Codec may
initialize the frameCount field at any time during open load() or load(), even while returning a
false return value to the caller.

Saving

The approach for handling saving requests is very similar to the handling of the loading requests.
For the same reason and with the same restrictions functions save defaults(), open save(),
save(), and close save() are defined. Below is an example of typical saving code with highlighted
differences from the loading code. As an example, we’ll take existing img/codec X11.c, which
defines extra hotspot coordinates, X and Y.

static HV *

save_defaults(PImgCodec c)

{

HV * profile = newHV();

pset_i(hotSpotX, 0);

pset_i(hotSpotY, 0);

return profile;

}

static void *

open_save(PImgCodec instance, PImgSaveFileInstance fi)

{

return (void*)1;

}

static Bool

save(PImgCodec instance, PImgSaveFileInstance fi)

{

PImage i = (PImage) fi-> object;

Byte * l;

...

fprintf(fi-> f, "#define %s_width %d\n", name, i-> w);

fprintf(fi-> f, "#define %s_height %d\n", name, i-> h);

if (pexist(hotSpotX))

452

fprintf(fi-> f, "#define %s_x_hot %d\n", name, (int)pget_i(hotSpotX));

if (pexist(hotSpotY))

fprintf(fi-> f, "#define %s_y_hot %d\n", name, (int)pget_i(hotSpotY));

fprintf(fi-> f, "static char %s_bits[] = {\n ", name);

...

// printing of data bytes is omitted

}

static void

close_save(PImgCodec instance, PImgSaveFileInstance fi)

{

}

A saving request takes into account the image types that the codec previously declared to
support, and that are defined in the PImgCodecInfo-> saveTypes array. Prima converts an
image to be saved into one of these formats, before the actual save() call takes place.

A codec may also set two of PImgCodecInfo flags, canSave and canSaveMultiple. Save re-
quests will never be called if canSave is false, and correspondingly, the multiframe save requests
would be never invoked for a codec with canSaveMultiple set to false. The scenario for a mul-
tiframe save request is the same as for a multiframe loading request. All the issues concerning
palette, data converting, and saving extra information are actual, however, there’s no correspond-
ing flag like loadExtras - the codec is expected to save all information that it can extract from
the PImgSaveFileInstance-> objectExtras hash.

Registering with the image subsystem

Finally, the codec has to be registered. All of its callback functions are to be set into a ImgCodecVMT
structure. The function slots that are unused should not be defined as dummies - those are
already defined and gathered under the CNullImgCodecVMT struct. That’s why all functions in
the illustration code were defined as static. A codec has to provide some information that Prima
uses to decide which codec should load a particular file type. If no explicit directions are given,
Prima would only ask the codecs that match with the loaded file’s extensions. The init() function
should return a pointer to the filled struct, that describes the codec’s capabilities:

// extensions to file - might be several, of course, thanks to dos...

static char * myext[] = { "duf", "duff", NULL };

// we can work only with 1-bit/pixel

static int mybpp[] = {

imbpp1 | imGrayScale, // 1st item is a default type

imbpp1,

0 }; // Zero means end-of-list. No type has zero value.

// main structure

static ImgCodecInfo codec_info = {

"DUFF", // codec name

"Numb & Number, Inc.", // vendor

_LIBDUFF_VERS_MAJ, _LIBDUFF_VERS_MIN, // version

myext, // extension

"DUmb Format", // file type

"DUFF", // file short type

NULL, // features

"", // module

true, // canLoad

false, // canLoadMultiple

453

false, // canSave

false, // canSaveMultiple

mybpp, // save types

NULL, // load output

};

static void *

init(PImgCodecInfo * info, void * param)

{

*info = &codec_info;

return (void*)1; // just non-null, to indicate success

}

The result of init() is stored in the PImgCodec-> instance, and the information in the
PImgCodec-> info field. If dynamic memory was allocated for these structs, it can be freed
on done() invocation which happens at the end of the program run. Finally, the function that
is invoked from Prima, is the only one that is required to be exported, and is responsible for
registering a codec:

void

apc_img_codec_duff(void)

{

struct ImgCodecVMT vmt;

memcpy(&vmt, &CNullImgCodecVMT, sizeof(CNullImgCodecVMT));

vmt. init = init;

vmt. open_load = open_load;

vmt. load = load;

vmt. close_load = close_load;

apc_img_register(&vmt, NULL);

}

This procedure can register as many codecs as it wants to, but currently, Prima is designed so
that one codec XX.c file should be connected to one library only.

The name of the procedure is apc img codec plus the library name, which is required for a
compilation with Prima. The file with the codec should be called codec duff.c (in our case)
and put into the img directory in the Prima source tree. Following these rules, Prima will be
assembled with libduff.a (or duff.lib, or some other file, as the actual library name is system
dependent) if the library is present.

454

10.3 prima-gencls

Class interface compiler for Prima core modules

Synopsis

prima-gencls --h --inc --tml -O -I<name> --depend --sayparent filename.cls

Description

Creates C files for Prima core module object definitions.

Arguments

The prima-gencls program accepts the following arguments:

--h

Generates a .h file (with the declarations to be included in one or more files)

--inc

Generates a .inc file (with the declarations to be included in only one file)

-O

Turns on the optimizing algorithm for the .inc files. The algorithm is based on an assumption
that some function bodies are identical, and so the duplicates can be detected and removed.
When the -O flag is set, the body of such a function is replaced with a call to the function
with an auto-generated name. That function is not included in the .inc file, but in a .tml
file instead. All the duplicate declarations from a set of .tml files can be later removed by
the the tmlink entry utility.

--tml

Generates a .tml file. Turns the -O flag on automatically.

-Idirname

Adds a directory to a search path, where the program searches for the .cls files. Can be
specified several times.

--depend

Prints out dependencies for the given file.

--sayparent

Prints out the immediate parent of a class inside the given file.

Syntax

The syntax of a .cls file can be described by the following scheme:

[zero or more type declarations]

[zero or one class declaration]

The prima-gencls program produces .h, .inc, and .tml files with the same basename as the .cls
file if no object or package name is given, or with the name of the object or the package inside the
.cls file otherwise.

455

Basic scalar data types

Prima-gencls can generate the conversion code for several built-in scalar data types that transfers
data between C and perl, using the XS (see perlguts) library interface.

These types are:

int

Bool

Handle

double

SV*

HV*

char *

string (C declaration is char[256])

There are also some derived built-in types, which are

long

short

char

Color

U8

that are mapped to the int type. The data undergoes no conversion to int in the transfer
process, but it is stored to the perl scalar using the newSViv() function which may lose bits or a
sign.

Derived data types

The syntax for a new data type definition is as follows:

<scope> <prefix> <id> <definition>

A scope can be one of two pragmas, global or local. That requests the usage locality of the
new data type, i e whether the type will be used only for one class or in more than one. Usage of
the local scope somewhat resembles the C predicate static. The difference between the scopes
is that a function using a complex local type in the parameter list, or as a result, will not be
optimized out with the -O flag.

Scalar types

New scalar types may only be aliased to the existing ones, primarily for coding convenience in C.
A scalar type can be defined in two ways:

Direct aliasing

Syntax:

<scope> $id => <basic_scalar_type>;

Example:

global $Handle => int;

The new type id will not be visible in the C files, but the type will be substituted over all
.cls files that include this definition.

456

C macro

Syntax:

<scope> id1 id2

Example:

global API_HANDLE UV

Such code creates a C macro definition in the .h header file in the form

#define id1 id2

C macros with parameters are not allowed. id1 and id2 are not required to be present in the
.cls namespace, and no substitution during .cls file processing is made.

Complex types

Complex data types can be arrays, structs, and hashes. Prima-gencls allows several combinations
of complex data types that C language does not recognize. These will be described below.

The complex data types do not get imported into the perl code. A perl program must conform
to the data type used when passing the corresponding parameters to such a function.

Arrays

Syntax:

<scope> @id <basic_scalar_type>[dimension];

Example:

global @FillPattern U8[8];

Example of functions using arrays:

Array * func(Array a1, Array * a2);

Perl code:

@ret = func(@array1, @array2);

Note that the array references are not used, and the number of items in the array parameters
must be exactly the same as the dimensions of the arrays.

Warning: the following declaration will not compile with the C compiler, as C cannot return
arrays. However, this construct is not treated as an error by prima-gencls:

Array func();

Structs

Syntax:

457

<scope> @id {

<basic_scalar_type> <id>;

...

<basic_scalar_type> <id>;

};

Example:

global @Struc {

int number;

string id;

}

Example of the functions using structs:

Struc * func1(Struc a1, Struc * a2);

Struc func2(Struc a1, Struc * a2);

Perl code:

@ret = func1(@struc1, @struc2);

@ret = func2(@struc1, @struc2);

Note that the array references are not used, and both the number and order of items in the
array parameters must be exactly as the dimensions and the order of the structs. The struct
field names are not used in the perl code as well.

Hashes

Syntax:

<scope> %id {

<basic_scalar_type> <id> [with undef];

...

<basic_scalar_type> <id> [with undef];

};

Example:

global %Hash {

int number;

string id with undef;

}

Examples of the functions using hashes:

Hash * func1(Hash a1, Hash * a2);

Hash func2(Hash a1, Hash * a2);

Perl code:

%ret = %{func1(\%hash1, \%hash2)};

%ret = %{func2(\%hash1, \%hash2)};

458

Note that only the hash references are used and returned. When a hash is passed from the
perl code it might have some or all fields unset. The C structure is filled and passed to a
C function, and the unset fields are assigned to a corresponding C TYPE UNDEF value,
where TYPE is one of NUMERIC, STRING, and POINTER literals.

If the optional with undef declarator was used, the C structure is augmented with additional
struct undef with boolean fields that explicitly reflect whether the perl value was passed or
not. The C-to-perl conversion respects these boolean flags as well and does not populate
hash fields with this bit set.

Namespace section

Syntax:

<namespace> <ID> {

<declaration>

...

<declaration>

}

A .cls file can have zero or one namespace sections filled with function descriptions. Functions
described here will be exported to the given ID in the initialization code. A namespace can be
either object or package.

The package namespace syntax only allows functions without the prefix inside the package

block:

package <Package ID> {

<function description>

...

}

The object namespace syntax allows variables and properties as functions (called methods in
the object syntax). The general object namespace syntax is

object <Class ID> [(Parent class ID)] {

<variables>

<methods>

<properties>

}

Within the object namespace the inheritance syntax can be also used:

object <Class ID> (<Parent class ID>) { ... }

Functions

Syntax:

[<prefix>] <type> <function_name> (<parameter list>) [=> <alias>];

Examples:

package A {

int func1(int a, int b);

Point func2(Struc * x);

}

459

object B

method int func1(int a, int b = 1) => c_func_2;

import Point func2(Struc * x, ...);

c_only void func3(HV * profile);

}

The prefix is used with object functions (methods) only. More on the prefix in the the
Methods entry section.

A function can return nothing (void), a scalar (int, string, etc), or a complex (array,
hash) type. It can as well accept scalar and complex parameters, with the type conversion that
corresponds to the rules described above in the the Basic scalar data types entry section.

If a function has parameters and/or a result of the type that cannot be converted automatically
between C and perl, it gets declared but not exposed to the perl namespace. A warning is also
issued. It is not possible to use the gencls syntax to declare a function with custom parameters or
result types. For such purpose, the explicit C declaration of the code along with a call to newXS

must be made.
Example: ellipsis (...) cannot be converted by prima-gencls, even though it is a legal C con-

struction.

Point package_func2(Struc * x, ...);

The function syntax has several convenience additions:

Default parameter values

Example:

void func(int a = 15);

A function declared in such a way can be called both with 0 or 1 parameters. If it is called
with 0 parameters, an integer value of 15 will be automatically used. The syntax allows
default parameters for types int, pointer, and string, and their scalar aliases.

The default parameters can be as many as possible, but they have to be at the end of the
function parameter list. The declaration func(int a = 1, int b) is incorrect.

Aliasing

In the generated C code, a C function has to be called after the parameters have been parsed.
Prima-gencls expects a conforming function to be present in the C code, with the fixed name
and parameter list. However, if the only task of such a function is to be a one-to-one wrapper
to the identical function published under another name, aliasing can be performed to save
both code and speed:

Example:

package Package {

void func(int x) => internal;

}

A function declared in that way will not call the Package func() C function, but the internal()
function instead. The only request here is that the internal() function must have the same
C parameters and result as the func() function.

Inline hash

If a function is declared with the last parameter of the HV* type then the parameter trans-
lation from perl to C is performed as if all the parameters passed are a hash. This hash is
passed to the C function and its content is returned then back to perl as a hash again. The
hash content can be modified inside the C function.

This declaration is used heavily in constructors, that are coded in perl typically like this:

460

sub init

{

my %ret = shift-> SUPER::init(@_);

...

return %ret;

}

and the corresponding C code is

void Obj_init (HV * profile) {

inherited init(profile);

... [modify profile content] ...

}

Methods

Methods are the functions called in the context of an object. Virtually all class methods need to
have access to the object they are bound to. Prima objects are visible in C as the Handle data
type. The Handle is a pointer to the object instance which in turn contains a pointer to the object
virtual methods table (VMT). To facilitate the OO-like syntax, this Handle parameter is rarely
mentioned in the method declarations:

method void a(int x)

however, the signature of the corresponding C function contains the Handle parameter

void Object_a(Handle self, int x)

Methods are accessible in C code by the direct name dereferencing of the Handle self like
this:

(((PMyObject) self)-> self)-> my_method(self, ...);

A method can have one of the following six prefixes that produce different C code wrappers:

method

This is the most basic method type. Methods of this type are expected to be coded in C,
the object handle is implicit and is not included in the .cls function declaration:

method void a()

results in

void Object_a(Handle self)

C declaration. The published method automatically converts its parameters and the result
between C and perl.

public

When the methods need to have parameters and/or a result that cannot be automatically
converted between C and perl, or the function declaration does not fit into the C syntax,
the public prefix is used. The methods declared as public are expected to communicate
with perl by through the XS (see perlxs) interface. It is also expected that the programmer
declares the REDEFINED and FROMPERL functions in C code(see the Prima::internals
section for details). Examples are many throughout the Prima source and will not be shown
here. public methods usually have the void result and no parameters, but that does not
matter since prima-gencls provides no data conversion for such methods anyway.

461

import

For the methods that are best implemented in perl instead of C, prima-gencls can produce
the C-to-perl wrappers using the import prefix. An import function does not need a C
counterpart, only the auto-generated code.

static

If the method has to be able to work both with and without an object instance, it needs to
be prepended with the static prefix. static methods are similar to method except that
the Handle self first parameter is not implicitly declared. If the static method is called
without an object (but with a class), like for example

Class::Object-> static_method();

its first parameter is not an object but the ”Class::Object” string. If the method never uses
that first parameter it is enough to declare it as

static a(char * className = "");

but if it does, a

static a(SV * class_or_object = NULL);

declaration is needed. In the latter case C code itself has to determine what exactly has
been passed, if ever. Note the default parameter here: a static method is usually legible
to call as

Class::Object::static_method();

where no parameters are passed to it. Without the default parameter, such a call generates
an ’insufficient parameters passed’ runtime error.

weird

We couldn’t find a better name for it. The weird prefix describes a method that combines
properties from both the static and public methods. Prima-gencls generates no conversion
code for the weird methods and expects no Handle self as the first parameter. As an
example, the Prima::Image::load function can be called using a wide spectrum of calling
semantics (see the Prima::image-load section for details).

c only

The c only methods are present in the VMT but are not accessible from perl. They can be
overloaded, but from C only. Moreover, it is allowed to register a perl function with the same
name as the existing c only method, and these entities will be completely independent.

Note: methods that have a result and/or parameters declared as data types that cannot be
converted automatically, change their prefix to c only during the .cls processing. Probably
this is the wrong behavior, and such a condition has to signal an error.

462

Properties

The Prima toolkit introduces an entity named property, that is used to replace method pairs
whose function is to acquire and assign some internal object variable, for example, an object
name, color, etc. Instead of having a pair of methods like Object::set color and Object::get color,
a property Object::color can be used instead. A property is a method with special considerations,
in particular, when it is called without parameters, the get-mode is implied. On the contrary, if
it is called with one parameter, such a call is treated as being done in the set-mode. Note that in
both ’set’ and ’get’ invocations the first parameter Handle self is implicit and is always present.

Properties can operate with different, but always fixed number of parameters. For example,

property char * name

has the C counterpart

char * Object_name(Handle self, Bool set, char * name)

Depending on the calling mode, the Bool set argument is either true or false. In the set-
mode, the C code result is discarded, while in the get-mode the property parameter value is
undefined.

The syntax for a multi-parameter property is

property long pixel(int x, int y);

with the C code

long Object_pixel(Handle self, Bool set, int x, int y, long pixel)

Note that in the multi-parameter case, the parameters declared after the property name are
always initialized, in both the set- and get- modes.

Instance variables

The prima-gencls syntax allows variable declarations for the variables that are allocated for every
object instance. Although data type validation is not performed for variables, and their declara-
tions just get copied as is, complex C declarations involving array, struct, and function pointers
are not supported. As a workaround, pointers to typedef’d entities are used. Example:

object SampleObject {

int x;

List list;

struct { int x } s; # illegal declaration

}

The variables are accessible in C code by direct name dereferencing the Handle self:

((PMyObject) self)-> x;

463

11 Miscellaneous

11.1 Prima::faq

Frequently asked questions about Prima

Description

The FAQ covers various topics around Prima, such as distribution, compilation, installation, and
programming.

COMMON

What is Prima?

Prima is a general-purpose extensible graphical user interface toolkit with a rich set of standard
widgets and an emphasis on 2D image processing tasks. A Perl program using Prima looks and
behaves identically in the X11 and Windows environments.

Yeah, right. So what is Prima again?

A Yet Another Perl GUI.

Why bother with the Yet Another thing, while there is Perl-Tk and plenty of others?

Prima was started on OS/2, where Tk didn’t run. We have had two options - either port Tk,
or write something on our own, probably better than the existing tools. We believe that we’ve
succeeded.

However, Prima’s support for OS/2 was removed because no one needed that in 2012.

Why Perl?

Why not? Perl is great. The high-level GUI logic fits badly into C, C++, or the like, so a scripting
language is probably the way to go here.

But I want to use Prima in another language.

Unless your language has runtime binding with perl, you cannot.

Who wrote Prima?

Dmitry Karasik implemented the majority of the toolkit, after the original idea by Anton Berezin.
Many contributors helped the development of the toolkit since then.

464

What is the copyright?

The copyright is a modified BSD license, where only two first paragraphs remain out of the original
four. The text of copyright is present in almost all files of the toolkit.

I’d like to contribute

You can do this in several ways. The project would probably best benefit from the advocacy
because not many people use it. Of course, you can send in new widgets, patches, suggestions,
or even donations. Also, documentation is the topic that needs particular attention, since my
native language is not English, so if there are volunteers for polishing the Prima docs, you are
very welcome.

INSTALLATION

Where can I download Prima?

the http:www.prima.eu.org entry contains links to source and binary download resources, and some
other useful info.

What is better, source or binary?

Depends on where you are and what are your goals. On unix, the best is to use the source. On
win32 the binaries based on Strawberry Perl distribution are preferred. If you happen to use
cygwin you are probably still better off using the source.

How to install the binary distribution?

First, check if you downloaded the Prima binary for the correct version of Perl, that should be
enough.

To install, unpack the archive and type ’perl ms install.pl’. The files will be copied into the
perl tree.

How to compile Prima from the source?

Type the following:

perl Makefile.PL

make

make install

If the ’perl Makefile.PL’ fails with errors, you can check makefile.log to see if anything is wrong.
A typical situation here is that Makefile.PL might report that it cannot find the Perl library, for
example, where the real problem is that it invokes the compiler in the wrong way.

Note, that to get Prima working from sources, your system must contain graphic libraries, such
as libgif or ligjpeg, for Prima to load graphic files.

What about the graphic libraries?

To load and save images, Prima uses graphic libraries. Such as, to load GIF files, the libgif library
is used, etc. Makefile.PL finds available libraries and links Prima against these. It is possible to
compile Prima without any, but this is not useful.

On every supported platform Prima can make use of the following graphic libraries:

465

libXpm - Xpm pixmaps

libjpeg - JPEG images

libgif - GIF images

libpng - PNG images

libtiff - tiff images

libwebp,libwebpdemux,libwebpmux - WebP images

libheif - Heif images

Strawberry perl and Cygwin come with most of them, so on these installations Prima just
compiles without any trouble. For other perl builds, use one of the Prima::codecs:: modules
that contain the needed include and lib files. If you are installing Prima with CPAN, that gets
done automatically.

img/codec XXX.c compile error

img/codec XXX.c files are C sources for support of the graphic libraries. In case a particular
codec does not compile, the ultimate fix is to remove the file and re-run Makefile.PL . This way
the problem can be avoided easily, although at the cost of a lack of support for that graphic format.

How do I check what graphic libraries are supported?

perl -MPrima::noX11 -MPrima -e ’print map { $_->{name}.qq(\n) } @{Prima::Image->codecs};’

I have a graphic library installed, but Makefile.PL doesn’t find it

The library is probably located in such a location Makefile.PL must be told about by adding LIB-
PATH+=/mypath/lib, and possibly INCPATH+=/mypath/include in the command line. Check
makefile.log created by Makefile.PL for the actual errors reported when it tries to use the library.

Compile errors

There are various reasons why a compilation may fail. The best would be to copy the output
together with outputs of env and perl -V and send these to the author, or better, open a GitHub
issue here the https:github.comdkPrimaissues entry.

Prima doesn’t run

Again, there are reasons for Prima to fail.
First, check whether all main files are installed correctly. Prima.pm must be in your perl

directory, and the Prima library file (Prima.a or Prima.so for unix, Prima.dll for win32) is
copied in the correct location in the perl tree.

Second, try to run ’perl -MPrima -e 1’ . If Prima.pm is not found, the error message would be
something like

Can’t locate Prima.pm in @INC

If the Prima library or one of the libraries it depends on cannot be found, perl Dynaloader
would complain. On win32 this usually happens when some dll files Prima needs are not found.
If this is the case, try to copy these files into your PATH, for example in C:/Windows .

Cannot install Prima on ActiveState

ActiveState doesn’t seem to support anymore compilation of locally built libraries and doesn’t
provide precompiled Prima distributions either. Consider using Strawberry or msys2 builds in-
stead.

466

Prima error: Can’t open display

This error happens when you are running under the X11 environment and no connection to the
X11 display can be established. Check your DISPLAY environment variable, or use the --display
command line parameter. If you do not want Prima to connect to the display, for example, to
use it inside of a CGI script, either use the --no-x11 parameter or include the use Prima::noX11

statement in your program.

X11: my fonts are bad!

Check whether you have Xft and fontconfig installed. Prima benefits greatly from having been
compiled with Xft/fontconfig. Read more in the Prima::X11 section .

Where are the docs installed?

Prima documentation comes in .pm and .pod files. These, when installed, are copied under the
perl tree, and the man tree in unix. So, ’perldoc Prima’ should be sufficient to invoke the main
page of the Prima documentation. Other pages can be invoked as ’perldoc Prima::Buttons’, say,
or, for the graphical pod reader, ’podview Prima::Buttons’. podview is the Prima doc viewer,
which is also capable of displaying any POD page.

There is also the pdf file on the Prima website the http:prima.eu.org entry that contains the
same set of documentation but composed as a single book. Its sources are in the utils/makedoc
directory, are somewhat rudimentary, and require an installation of latex and dvips to produce
one of the tex, dvi, ps, or pdf targets.

Screen grabbing doesn’t work on MacOSX.

It does if you 1) compile Prima with cocoa and 2) allow the application (XQuartz and probably
terminal) to access the screen. To do the latter, Choose the Apple menu, System Preferences,
click Security & Privacy, then click Privacy. Click on an icon on the left lower corner to allow
changes. Then, in the screen recording tab, add XQuartz to the list of allowed applications. Note
that it might not work if you run your application from a (remote) ssh session - I couldn’t find
how to enable screen grabbing for sshd.

I’ve found a bug!

the https:github.comdkPrimaissues entry is the place.

PROGRAMMING

How can I use the .fm files from the Visual Builder inside my program?

podview the Prima::VB::VBLoader section

I want to use Prima inside CGI for loading and converting images only, without an
X11 display.

use Prima::noX11; # this prevents Prima from connecting to the X11 display

use Prima;

my $i = Prima::Image-> load(...)

Note that drawing on images will be somewhat limited.

467

How would I change several properties with a single call?

$widget-> set(

property1 => $value1,

property2 => $value2,

...

);

I want Prima::Edit to have feature XXX

If the feature is not managed by none of the Prima::Edit properties, you need to overload
::on paint. It is not as hard as you might think.

If the feature is generic enough, you can send a GitHub pull request.

Tk (Wx, Qt, whatever) has a feature Prima doesn’t.

Well, I’d probably love to see the feature in Prima as well, but I don’t have time to write it myself.
Send in a patch, and I promise I’ll check it out.

I wrote a program and it looks ugly with another font size

This would most certainly happen when you rely on your screen properties. There are several
ways to avoid this problem.

First, if one programs a window where there are many widgets independent of each other size,
one actually can supply coordinates for these widgets as they are positioned on a screen. Don’t
forget to set the designScale property of the parent window, which contains the dimensions of
the font used to design the window. One can get these by executing

perl -MPrima -MPrima::Application -le ’$_=$::application->font; print $_->width, q(), $_->height’;

This way, the window and the widgets would get resized automatically under another font.
Second, in case the widget layout is not that independent, one can position the widgets rela-

tively to each other by explicitly calculating widget extension. For example, an InputLine would
have a height relative to the font, and to have a widget placed exactly say 2 pixels above the input
line, code something like

my $input = $owner-> insert(InputLine, ...);

my $widget = $owner-> insert(Widget, bottom => $input-> top + 2);

Of course, one can change the font as well, but it is a bad idea since users would get annoyed
by this.

Third, one can use geometry managers, similar to the ones in Tk. See the Prima::Widget::pack
section and the Prima::Widget::place section.

Finally, check the widget layouts with the Prima::Stress section written specifically for this
purpose:

perl -MPrima::Stress myprogram

How would I write a widget class myself?

There are lots and lots of examples of this. Find a widget class similar to what you are about to
write, and follow the idea. There are, though, some non-evident moments worth enumerating.

• Test your widget class with different default settings, such as colors, fonts, parent sizes, and
widget properties such as buffered and visible.

468

• Try to avoid special properties for new, where for example a particular property must always
be supplied, or never supplied, or a particular combination of properties is expected. See if
the DWIM principle can be applied instead.

• Do not be afraid to define and redefine notification types. These have a large number
of options, to be programmed once and then used as DWIM helpers. Consider for what
notifications the user callback routines (onXxxx) would be best to be called first, or last,
and whether a notification should allow multiple callbacks or only one.

If there is a functionality better off performed by the user-level code, consider creating an
individual notification for this purpose.

• Repaint only the changed areas, not the whole widget.

If your widget has scrollable areas, use the scroll method.

Inside on paint check whether the whole or only a part of the widget is about to be repainted.
Simple optimizations here increase the speed.

Avoid using pre-cooked data in on paint, such as when for example only a particular part of
a widget was invalidated, and this fact is stored in an internal variable. This is because when
the actual on paint call is executed, the invalid area may be larger than was invalidated
by the class actions. If you must though, compare values of the clipRect property to see
whether the invalid area is indeed the same as it is expected.

Remember, that inside on paint all coordinates are inclusive-inclusive, while the widget
coordinates generally are inclusive-exclusive.

Note, that the buffered property does not guarantee that the widget output would be
buffered. The same goes with antialias and layered; these functions are opportunis-
tic. Use the is surface buffered, can draw alpha, and is surface layered functions to
make sure that these requests were respected.

• Write some documentation and examples of use.

How would I add my widget class to the VB palette?

Check Prima/VB/examples/Widgety.pm . This file, if loaded through the ’Add widget’ command
in VB, adds the example widget class and example VB property into the VB palette and Object
Inspector.

How would I use unicode/UTF8 in Prima?

Prima by default is unicode-aware, in some areas more than the Perl (as of 5.38) itself.
For example, on win32 Perl has huge problems with filenames with unicode characters, and

this is recommended to mitigate using the Prima::sys::FS section, which overrides open, opendir
and the like builtin functions with their unicode-friendly versions. It doesn’t though overload -f

and -e syntax, so use f, e etc instead.
Displaying UTF8 text is unproblematic because Perl scalars can be unambiguously told whether

the text they contain is in UTF8 or not. The text that comes from the user input, ie keyboard
and clipboard, can be treated and reported to Prima either as UTF8 or plain text, depending on
the Prima::Application::wantUnicodeInput property, which is set to 1 by default. Remember
though that if data are to be put through file I/O, the ’utf8’ IO layer must be selected (see the
open entry).

The keyboard input is also easy because a character key event comes with the character code,
not the character itself, and conversion between these is done via standard perl’s chr and ord.

The clipboard input is more complicated because the clipboard may contain both UTF8 and
plain text data at once, and it must be decided by the programmer explicitly which one is desired.
See more in the Unicode entry in the Prima::Clipboard section.

469

Is there a way to display the POD text that comes with my program / package ?

$::application-> open_help("file://$0");

$::application-> open_help("file://$0|Description");

$::application-> open_help(’My::Package/Bugs’);

How to implement parallel processing?

Prima doesn’t work if called from more than one thread, since Perl scalars cannot be shared
between threads automatically, but only if explicitly told, by using the thread::shared entry. Prima
does work in multithread environments though, but only given it runs within a dedicated thread.
It is important not to call Prima methods from any other thread because scalars that may be
created inside these calls will be unavailable to the Prima core, which would result in strange
errors.

It is possible to run things in parallel by calling the event processing by hand: instead of
entering the main loop with

run Prima;

one can write

while ($::application-> yield) {

... do some calculations ..

}

That’ll give Prima a chance to handle accumulated events, but that technique is only viable if
calculations can be quantized into relatively short time frames.

The generic solution would be harder to implement and debug, but it scales well. The idea is
to fork a process, then communicate with it via its stdin and/or stdout (see perlipc how to do
that), and use the Prima::File section to asynchronously read data passed through a pipe or a
socket.

Note: the Win32 runtime library does not support asynchronous pipes, only asynchronous
sockets. Cygwin does support both asynchronous pipes and sockets.

How do I use Prima with AnyEvent or POE ?

• the Prima::sys::AnyEvent section can be used to organize event loops driven by Prima with
AnyEvent support:

use Prima qw(sys::AnyEvent);

use AnyEvent;

my $ev = AnyEvent->timer(after => 1, cb => sub { print "waited 1 second!\n" });

run Prima;

this is the preferred, but not the only solution.

• If you need AnyEvent to drive the event loop, you can fire up the Prima yield() call once in
a while:

my $timer = AnyEvent->timer(after => 0, interval => 1/20, cb => sub {

$::application->yield;

});

470

• If you want to use Prima’s internal event loop system you have to install the
POE::Loop::Prima entry and include it in your code before Prima is loaded like below:
use POE ’Loop::Prima’; use Prima qw/Application/; use AnyEvent;

You can call AnyEvent::detect to check if the implementation is ’AnyEvent::Impl::POE’
if you want to use Prima’s event loop or if it should be the event loop implementation you
expect such as ’AnyEvent::Impl::EV’;

If you use the POE::Loop::Prima entry then you can continue to call run Prima and should
not call the AnyEvent entry’s condition variable recv function.

• If you want to use another event library implementation of the AnyEvent entry, you have to
not call run Prima but instead call the AnyEvent entry’s condition variable recv function.

See full examples in examples/socket anyevent1.pl, examples/socket anyevent2.pl, and exam-
ples/socket anyevent poe.pl.

How do I post an asynchronous message?

The Prima::Component::post message method posts a message through the system event dis-
patcher and returns immediately; when the message arrives, the onPostMessage notification is
triggered:

use Prima qw(Application);

my $w = Prima::MainWindow-> create(onPostMessage => sub { shift; print "@_\n" });

$w-> post_message(1,2);

print "3 4 ";

run Prima;

output: 3 4 1 2

This technique is fine when all calls to the post message on the object are controlled. To
multiplex callbacks one can use one of the two scalars passed to post message as callback iden-
tification. This is done by the post entry in the Prima::Utils section, which internally intercepts
$::application’s PostMessage and provides the procedural interface to the same function:

use Prima qw(Application);

use Prima::Utils qw(post);

post(sub { print "@_\n" }, ’a’);

print "b";

run Prima;

output: ba

Now to address widgets inside TabbedNotebook / TabbedScrollNotebook ?

The tabbed notebooks work as parent widgets for Prima::Notebook, which doesn’t have any in-
terface elements on its own and provides only a page-flipping function. The sub-widgets, therefore,
are to be addressed as $TabbedNotebook-> Notebook-> MyButton.

How to compile a Prima-based module using XS?

Take a look at the Prima::IPA section, the Prima::OpenGL section, the Prima::Image::Magick
section, the PDL::PrimaImage entry, and the PDL::Drawing::Prima entry . These modules com-
pile against the Prima dynamic module and start from there. Note - it’s important to include
PRIMA VERSION BOOTCHECK in the ”BOOT:” section, to avoid binary incompatibilities if
there should be any.

471

How do I generate Prima executables with PAR?

You’ll need some files that PAR cannot detect automatically. During the compilation phase
Makefile.PL creates the utils/par.txt file that contains these files. Include them with this command:

pp -A utils/par.txt -o a.out my_program

472

11.2 Prima::Const

Predefined constants

Description

Prima::Const and the Prima::Classes section for a minimal set of perl modules needed for the
toolkit. Since the module provides bindings for the core constants, it is required to be included in
every Prima-related module and program.

The constants are collected under the top-level package names, with no Prima:: prefix. This
violates the perl guidelines about package naming, however, it was considered way too inconvenient
to prefix every constant with a Prima:: string.

This document describes all constants defined in the core. The constants are also described
in the articles together with the corresponding methods and properties. For example, the nt

constants are also described in the the Flow entry in the Prima::Object section article.

API

am:: - Prima::Icon auto masking

See also the autoMasking entry in the Prima::Image section

am::None - no mask update performed

am::MaskColor - mask update based on Prima::Icon::maskColor property

am::MaskIndex - mask update based on Prima::Icon::maskIndex property

am::Auto - mask update based on corner pixel values

apc:: - OS type

See the get system info entry in the Prima::Application section

apc::Win32

apc::Unix

bi:: - border icons

See the borderIcons entry in the Prima::Window section

bi::SystemMenu - the system menu button and/or close button

(usually with the icon)

bi::Minimize - minimize button

bi::Maximize - maximize/restore button

bi::TitleBar - the window title

bi::All - all of the above

bs:: - border styles

See the borderStyle entry in the Prima::Window section

bs::None - no border

bs::Single - thin border

bs::Dialog - thick border

bs::Sizeable - border that can be resized

473

ci:: - color indices

See the colorIndex entry in the Prima::Widget section

ci::NormalText or ci::Fore

ci::Normal or ci::Back

ci::HiliteText

ci::Hilite

ci::DisabledText

ci::Disabled

ci::Light3DColor

ci::Dark3DColor

ci::MaxId

cl:: - colors

See the colorIndex entry in the Prima::Widget section

Direct color constants

cl::Black

cl::Blue

cl::Green

cl::Cyan

cl::Red

cl::Magenta

cl::Brown

cl::LightGray

cl::DarkGray

cl::LightBlue

cl::LightGreen

cl::LightCyan

cl::LightRed

cl::LightMagenta

cl::Yellow

cl::White

cl::Gray

Indirect color constants

cl::NormalText, cl::Fore

cl::Normal, cl::Back

cl::HiliteText

cl::Hilite

cl::DisabledText

cl::Disabled

cl::Light3DColor

cl::Dark3DColor

cl::MaxSysColor

Special constants

See the Colors entry in the Prima::gp problems section

cl::Set - logical all-1 color

cl::Clear - logical all-0 color

474

cl::Invalid - invalid color value

cl::SysFlag - indirect color constant bit set

cl::SysMask - indirect color constant bit clear mask

Color functions

from rgb R8,G8,B8 -> RGB24

to rgb RGB24 -> R8,G8,B8

from bgr B8,G8,R8 -> RGB24

to bgr RGB24 -> B8,G8,R8

to gray byte RGB24 -> GRAY8

to gray rgb RGB24 -> GRAY24

from gray byte GRAY8 -> GRAY24

premultiply RGB24,A8 -> RGB24

distance RGB24,RGB24 -> distance between colors

blend RGB24,RGB24,AMOUNT FROM 0 TO 1 - RGB24

cm:: - commands

Keyboard and mouse commands

See the key down entry in the Prima::Widget section, the mouse down entry in the
Prima::Widget section

cm::KeyDown

cm::KeyUp

cm::MouseDown

cm::MouseUp

cm::MouseClick

cm::MouseWheel

cm::MouseMove

cm::MouseEnter

cm::MouseLeave

Internal commands (used in core only or not used at all)

cm::Close

cm::Create

cm::Destroy

cm::Hide

cm::Show

cm::ReceiveFocus

cm::ReleaseFocus

cm::Paint

cm::Repaint

cm::Size

cm::Move

cm::ColorChanged

cm::ZOrderChanged

cm::Enable

cm::Disable

cm::Activate

475

cm::Deactivate

cm::FontChanged

cm::WindowState

cm::Timer

cm::Click

cm::CalcBounds

cm::Post

cm::Popup

cm::Execute

cm::Setup

cm::Hint

cm::DragDrop

cm::DragOver

cm::EndDrag

cm::Menu

cm::EndModal

cm::MenuCmd

cm::TranslateAccel

cm::DelegateKey

cr:: - pointer cursor resources

See the pointerType entry in the Prima::Widget section

cr::Default same pointer type as owner’s

cr::Arrow arrow pointer

cr::Text text entry cursor-like pointer

cr::Wait hourglass

cr::Size general size action pointer

cr::Move general move action pointer

cr::SizeWest, cr::SizeW right-move action pointer

cr::SizeEast, cr::SizeE left-move action pointer

cr::SizeWE general horizontal-move action pointer

cr::SizeNorth, cr::SizeN up-move action pointer

cr::SizeSouth, cr::SizeS down-move action pointer

cr::SizeNS general vertical-move action pointer

cr::SizeNW up-right move action pointer

cr::SizeSE down-left move action pointer

cr::SizeNE up-left move action pointer

cr::SizeSW down-right move action pointer

cr::Invalid invalid action pointer

cr::DragNone pointer for an invalid dragging target

cr::DragCopy pointer to indicate that a dnd::Copy action can be accepted

cr::DragMove pointer to indicate that a dnd::Move action can be accepted

cr::DragLink pointer to indicate that a dnd::Link action can be accepted

cr::Crosshair the crosshair pointer

cr::UpArrow arrow directed upwards

cr::QuestionArrow question mark pointer

cr::User user-defined icon

dbt:: - device bitmap types

dbt::Bitmap monochrome 1-bit bitmap

dbt::Pixmap bitmap compatible with display format

dbt::Layered bitmap compatible with display format with alpha channel

476

dnd:: - drag and drop action constants and functions

dnd::None no DND action was selected or performed

dnd::Copy copy action

dnd::Move move action

dnd::Link link action

dnd::Mask combination of all valid actions

is one action ACTIONS

Returns true if ACTIONS is not a combination of dnd:: constants.

pointer ACTION

Returns a cr:: constant corresponding to the ACTION

to one action ACTIONS

Selects the best single action from a combination of allowed ACTIONS

keymod ACTION

Returns a km:: keyboard modifier constant that would initiate ACTION if the user presses it
during a DND session. Returns 0 for dnd::Copy which is the standard action to be performed
without any modifiers.

dt:: - drive types

See the query drive type entry in the Prima::Utils section

dt::None

dt::Unknown

dt::Floppy

dt::HDD

dt::Network

dt::CDROM

dt::Memory

dt:: - Prima::Drawable::draw text constants

dt::Left - text is aligned to the left boundary

dt::Right - text is aligned to the right boundary

dt::Center - text is aligned horizontally in the center

dt::Top - text is aligned to the upper boundary

dt::Bottom - text is aligned to the lower boundary

dt::VCenter - text is aligned vertically in the center

dt::DrawMnemonic - tilde-escapement and underlining is used

dt::DrawSingleChar - sets tw::BreakSingle option to

Prima::Drawable::text_wrap call

dt::NewLineBreak - sets tw::NewLineBreak option to

Prima::Drawable::text_wrap call

dt::SpaceBreak - sets tw::SpaceBreak option to

Prima::Drawable::text_wrap call

dt::WordBreak - sets tw::WordBreak option to

Prima::Drawable::text_wrap call

dt::ExpandTabs - performs tab character (\t) expansion

dt::DrawPartial - draws the last line, if it is visible partially

dt::UseExternalLeading- text lines positioned vertically with respect to

the font external leading

477

dt::UseClip - assign ::clipRect property to the boundary rectangle

dt::QueryLinesDrawn - calculates and returns the number of lines drawn

(contrary to dt::QueryHeight)

dt::QueryHeight - if set, calculates and returns vertical extension

of the lines drawn

dt::NoWordWrap - performs no word wrapping by the width of the boundaries

dt::WordWrap - performs word wrapping by the width of the boundaries

dt::Default - dt::NewLineBreak|dt::WordBreak|dt::ExpandTabs|

dt::UseExternalLeading

fdo:: - find / replace dialog options

See the Prima::FindDialog section

fdo::MatchCase

fdo::WordsOnly

fdo::RegularExpression

fdo::BackwardSearch

fdo::ReplacePrompt

fds:: - find / replace dialog scope type

See the Prima::FindDialog section

fds::Cursor

fds::Top

fds::Bottom

fe:: - file events constants

See the Prima::File section

fe::Read

fe::Write

fe::Exception

fm:: - fill modes

See the fillMode entry in the Prima::Drawable section

fp::Alternate

fp::Winding

fp::Overlay

fp:: - standard fill pattern indices

See the fillPattern entry in the Prima::Drawable section

fp::Empty

fp::Solid

fp::Line

fp::LtSlash

fp::Slash

fp::BkSlash

fp::LtBkSlash

fp::Hatch

478

fp::XHatch

fp::Interleave

fp::WideDot

fp::CloseDot

fp::SimpleDots

fp::Borland

fp::Parquet

builtin $FILL PATTERN

Given a result from Drawable::fillPattern, an 8x8 array of integers, checks whether the
array matches one of the builtin fp:: constants, and returns one if found. Returns undef
otherwise.

is empty $FILL PATTERN

Given a result from Drawable::fillPattern, an 8x8 array of integers, checks if the array
is all zeros

is solid $FILL PATTERN

Given a result from Drawable::fillPattern, an 8x8 array of integers, checks if the array
is all ones (ie 0xff)

patterns

Returns a set of string-encoded fill patterns that correspond to the builtin fp:: constants.
These are not suitable for use in Drawable::fillPatterns.

fp:: - font pitches

See the pitch entry in the Prima::Drawable section

fp::Default

fp::Fixed

fp::Variable

fr:: - fetch resource constants

See the fetch resource entry in the Prima::Widget section

fr::Color

fr::Font

fs::String

fs:: - font styles

See the style entry in the Prima::Drawable section

fs::Normal

fs::Bold

fs::Thin

fs::Italic

fs::Underlined

fs::StruckOut

fs::Outline

479

fw:: - font weights

See the weight entry in the Prima::Drawable section

fw::UltraLight

fw::ExtraLight

fw::Light

fw::SemiLight

fw::Medium

fw::SemiBold

fw::Bold

fw::ExtraBold

fw::UltraBold

ggo:: - glyph outline commands

ggo::Move

ggo::Line

ggo::Conic

ggo::Cubic

See also the render glyph entry in the Prima::Drawable section

gm:: - grow modes

See the growMode entry in the Prima::Widget section

Basic constants

gm::GrowLoX widget’s left side is kept in constant

distance from the owner’s right side

gm::GrowLoY widget’s bottom side is kept in constant

distance from the owner’s top side

gm::GrowHiX widget’s right side is kept in constant

distance from the owner’s right side

gm::GrowHiY widget’s top side is kept in constant

distance from the owner’s top side

gm::XCenter widget is kept in the center on its owner’s

horizontal axis

gm::YCenter widget is kept in the center on its owner’s

vertical axis

gm::DontCare widgets origin is constant relative

to the screen

Derived or aliased constants

gm::GrowAll gm::GrowLoX|gm::GrowLoY|gm::GrowHiX|gm::GrowHiY

gm::Center gm::XCenter|gm::YCenter

gm::Client gm::GrowHiX|gm::GrowHiY

gm::Right gm::GrowLoX|gm::GrowHiY

gm::Left gm::GrowHiY

gm::Floor gm::GrowHiX

480

gui:: - GUI types

See the get system info entry in the Prima::Application section

gui::Default

gui::Windows

gui::XLib

gui::GTK

le:: - line end styles

See the lineEnd entry in the Prima::Drawable section

le::Flat

le::Square

le::Round

le::Arrow

le::Cusp

le::InvCusp

le::Knob

le::Rect

le::RoundRect

le::Spearhead

le::Tail

Functions:

le::transform($matrix)

le::scale($scalex, [$scaley = $scalex])

lei:: - line end indexes

lei::LineTail

lei::LineHead

lei::ArrowTail

lei::ArrowHead

lei::Max

lei::Only

See the lineEndIndex entry in the Prima::Drawable section

lj:: - line join styles

See the lineJoin entry in the Prima::Drawable section

lj::Round

lj::Bevel

lj::Miter

lp:: - predefined line pattern styles

See the linePattern entry in the Prima::Drawable section

481

lp::Null # "" /* */

lp::Solid # "\1" /* ___________ */

lp::Dash # "\x9\3" /* __ __ __ __ */

lp::LongDash # "\x16\6" /* _____ _____ */

lp::ShortDash # "\3\3" /* _ _ _ _ _ _ */

lp::Dot # "\1\3" /* */

lp::DotDot # "\1\1" /* */

lp::DashDot # "\x9\6\1\3" /* _._._._._._ */

lp::DashDotDot # "\x9\3\1\3\1\3" /* _.._.._.._.. */

im:: - image types

See the type entry in the Prima::Image section.

Bit depth constants

im::bpp1

im::bpp4

im::bpp8

im::bpp16

im::bpp24

im::bpp32

im::bpp64

im::bpp128

Pixel format constants

im::Color

im::GrayScale

im::RealNumber

im::ComplexNumber

im::TrigComplexNumber

im::SignedInt

Mnemonic image types

im::Mono - im::bpp1

im::BW - im::bpp1 | im::GrayScale

im::16 - im::bpp4

im::Nibble - im::bpp4

im::256 - im::bpp8

im::RGB - im::bpp24

im::Triple - im::bpp24

im::Byte - gray 8-bit unsigned integer

im::Short - gray 16-bit unsigned integer

im::Long - gray 32-bit unsigned integer

im::Float - float

im::Double - double

im::Complex - dual float

im::DComplex - dual double

im::TrigComplex - dual float

im::TrigDComplex - dual double

Extra formats

482

im::fmtBGR

im::fmtRGBI

im::fmtIRGB

im::fmtBGRI

im::fmtIBGR

Masks

im::BPP - bit depth constants

im::Category - category constants

im::FMT - extra format constants

ict:: - image conversion types

See the conversion entry in the Prima::Image section.

ict::None - no dithering, with static palette or palette optimized by the source

ict::Posterization - no dithering, with palette optimized by the source pixels

ict::Ordered - 8x8 ordered halftone dithering

ict::ErrorDiffusion - error diffusion dithering with a static palette

ict::Optimized - error diffusion dithering with an optimized palette

Their values are combinations of ictp:: and ictd:: constants, see below.

ictd:: - image conversion types, dithering

These constants select the color correction (dithering) algorithm when downsampling an image

ictd::None - no dithering, pure colors only

ictd::Ordered - 8x8 ordered halftone dithering (checkerboard)

ictd::ErrorDiffusion - error diffusion dithering (2/5 down, 2/5 right, 1/5 down/right)

ictp:: - image conversion types, palette optimization

These constants select how the target palette is made up when downsampling an image.

ictp::Unoptimized - use whatever color mapping method is fastest,

image quality can be severely compromised

ictp::Cubic - use static cubic palette; a bit slower,

guaranteed mediocre quality

ictp::Optimized - collect available colors in the image;

slowest, gives the best results

Not all combinations of ictp and ictd constants are valid

is:: - image statistics indices

See the stats entry in the Prima::Image section.

is::RangeLo - minimum pixel value

is::RangeHi - maximum pixel value

is::Mean - mean value

is::Variance - variance

is::StdDev - standard deviation

is::Sum - the sum of pixel values

is::Sum2 - the sum of squares of pixel values

483

ist:: - image scaling types

ist::None - image stripped or padded with zeros

ist::Box - the image will be scaled using a simple box transform

ist::BoxX - columns behave as ist::None, rows as ist::Box

ist::BoxY - rows behave as in ist::None, columns as ist::Box

ist::AND - shrunken pixels AND-end together (black-on-white images)

ist::OR - shrunken pixels OR-end together (white-on-black images)

ist::Triangle - bilinear interpolation

ist::Quadratic - 2nd order (quadratic) B-Spline approximation of the Gaussian

ist::Sinc - sine function

ist::Hermite - B-Spline interpolation

ist::Cubic - 3rd order (cubic) B-Spline approximation of the Gaussian

ist::Gaussian - Gaussian transform with gamma=0.5

See the scaling entry in the Prima::Image section.

kb:: - keyboard virtual codes

See also the KeyDown entry in the Prima::Widget section.

Modificator keys

kb::ShiftL kb::ShiftR kb::CtrlL kb::CtrlR

kb::AltL kb::AltR kb::MetaL kb::MetaR

kb::SuperL kb::SuperR kb::HyperL kb::HyperR

kb::CapsLock kb::NumLock kb::ScrollLock kb::ShiftLock

Keys with character code defined

kb::Backspace kb::Tab kb::Linefeed kb::Enter

kb::Return kb::Escape kb::Esc kb::Space

Function keys

kb::F1 .. kb::F30

kb::L1 .. kb::L10

kb::R1 .. kb::R10

Other

kb::Clear kb::Pause kb::SysRq kb::SysReq

kb::Delete kb::Home kb::Left kb::Up

kb::Right kb::Down kb::PgUp kb::Prior

kb::PageUp kb::PgDn kb::Next kb::PageDown

kb::End kb::Begin kb::Select kb::Print

kb::PrintScr kb::Execute kb::Insert kb::Undo

kb::Redo kb::Menu kb::Find kb::Cancel

kb::Help kb::Break kb::BackTab

Masking constants

kb::CharMask - character codes

kb::CodeMask - virtual key codes (all other kb:: values)

kb::ModMask - km:: values

484

km:: - keyboard modifiers

See also the KeyDown entry in the Prima::Widget section.

km::Shift

km::Ctrl

km::Alt

km::KeyPad

km::DeadKey

km::Unicode

mt:: - modality types

See the get modal entry in the Prima::Window section, the get modal window entry in the
Prima::Window section

mt::None

mt::Shared

mt::Exclusive

nt:: - notification types

Used in Prima::Component::notification types to describe event flow.
See also the Flow entry in the Prima::Object section.

Starting point constants

nt::PrivateFirst

nt::CustomFirst

Direction constants

nt::FluxReverse

nt::FluxNormal

Complexity constants

nt::Single

nt::Multiple

nt::Event

Composite constants

nt::Default (PrivateFirst | Multiple | FluxReverse)

nt::Property (PrivateFirst | Single | FluxNormal)

nt::Request (PrivateFirst | Event | FluxNormal)

nt::Notification (CustomFirst | Multiple | FluxReverse)

nt::Action (CustomFirst | Single | FluxReverse)

nt::Command (CustomFirst | Event | FluxReverse)

485

mb:: - mouse buttons

See also the MouseDown entry in the Prima::Widget section.

mb::b1 or mb::Left

mb::b2 or mb::Middle

mb::b3 or mb::Right

mb::b4

mb::b5

mb::b6

mb::b7

mb::b8

mb:: - message box constants

Message box and modal result button commands

See also the modalResult entry in the Prima::Window section, the modalResult entry
in the Prima::Button section.

mb::OK, mb::Ok

mb::Cancel

mb::Yes

mb::No

mb::Abort

mb::Retry

mb::Ignore

mb::Help

Message box composite (multi-button) constants

mb::OKCancel, mb::OkCancel

mb::YesNo

mb::YesNoCancel

mb::ChangeAll

Message box icon and bell constants

mb::Error

mb::Warning

mb::Information

mb::Question

ps:: - paint states

ps::Disabled - can neither draw, nor get/set graphical properties on an object

ps::Enabled - can both draw and get/set graphical properties on an object

ps::Information - can only get/set graphical properties on an object

For brevity, ps::Disabled is equal to 0 so this allows for simple boolean testing if one can get/set
graphical properties on an object.

See the get paint state entry in the Drawable section.

rgn:: - result of Prima::Region.rect inside

rgn::Inside - the rectangle is fully inside the region

rgn::Outside - the rectangle is fully outside the region

rgn::Partially - the rectangle overlaps the region but is not fully inside

486

rgnop:: - Prima::Region.combine set operations

rgnop::Copy

rgnop::Intersect

rgnop::Union

rgnop::Xor

rgnop::Diff

rop:: - raster operation codes

See the Raster operations entry in the Prima::Drawable section

rop::Blackness # = 0

rop::NotOr # = !(src | dest)

rop::NotSrcAnd # &= !src

rop::NotPut # = !src

rop::NotDestAnd # = !dest & src

rop::Invert # = !dest

rop::XorPut # ^= src

rop::NotAnd # = !(src & dest)

rop::AndPut # &= src

rop::NotXor # = !(src ^ dest)

rop::NotSrcXor # alias for rop::NotXor

rop::NotDestXor # alias for rop::NotXor

rop::NoOper # = dest

rop::NotSrcOr # |= !src

rop::CopyPut # = src

rop::NotDestOr # = !dest | src

rop::OrPut # |= src

rop::Whiteness # = 1

12 Porter-Duff operators

rop::Clear # same as rop::Blackness, = 0

rop::XorOver # = src (1 - dstA) + dst (1 - srcA)

rop::SrcOver # = src srcA + dst (1 - srcA)

rop::DstOver # = dst srcA + src (1 - dstA)

rop::SrcCopy # same as rop::CopyPut, = src

rop::DstCopy # same as rop::NoOper, = dst

rop::SrcIn # = src dstA

rop::DstIn # = dst srcA

rop::SrcOut # = src (1 - dstA)

rop::DstOut # = dst (1 - srcA)

rop::SrcAtop # = src dstA + dst (1 - srcA)

rop::DstAtop # = dst srcA + src (1 - dstA)

rop::Blend # src + dst (1 - srcA)

same as rop::SrcOver but assumes the premultiplied source

rop::PorterDuffMask - masks out all bits but the constants above

Photoshop operators

rop::Add

rop::Multiply

rop::Screen

487

rop::Overlay

rop::Darken

rop::Lighten

rop::ColorDodge

rop::ColorBurn

rop::HardLight

rop::SoftLight

rop::Difference

rop::Exclusion

Special flags

rop::SrcAlpha # The combination of these four flags

rop::SrcAlphaShift # may encode extra source and destination

rop::DstAlpha # alpha values in cases either where there is none

rop::DstAlphaShift # in the images, or as additional blend factors.

#

rop::ConstantAlpha # (same as rop::SrcAlpha|rop::DstAlpha)

rop::AlphaCopy # source image is treated a 8-bit grayscale alpha

rop::ConstantColor # foreground color is used to fill the color bits

rop::Default # rop::SrcOver for ARGB destinations, rop::CopyPut otherwise

ROP functions

alpha ROP, SRC ALPHA = undef, DST ALPHA = undef

Combines one of the alpha-supporting ROPs (Porter-Duff and Photoshop operators) with
source and destination alpha, if defined, and returns a new ROP constant. This is useful
when blending with constant alpha is required with/over images that don’t have their own
alpha channel. Or as an additional alpha channel when using icons.

blend ALPHA

Creates a ROP that would effectively execute alpha blending of the source image over the
destination image with ALPHA value.

sbmp:: - system bitmaps indices

See also the Prima::StdBitmap section.

sbmp::Logo

sbmp::CheckBoxChecked

sbmp::CheckBoxCheckedPressed

sbmp::CheckBoxUnchecked

sbmp::CheckBoxUncheckedPressed

sbmp::RadioChecked

sbmp::RadioCheckedPressed

sbmp::RadioUnchecked

sbmp::RadioUncheckedPressed

sbmp::Warning

sbmp::Information

sbmp::Question

sbmp::OutlineCollapse

sbmp::OutlineExpand

sbmp::Error

488

sbmp::SysMenu

sbmp::SysMenuPressed

sbmp::Max

sbmp::MaxPressed

sbmp::Min

sbmp::MinPressed

sbmp::Restore

sbmp::RestorePressed

sbmp::Close

sbmp::ClosePressed

sbmp::Hide

sbmp::HidePressed

sbmp::DriveUnknown

sbmp::DriveFloppy

sbmp::DriveHDD

sbmp::DriveNetwork

sbmp::DriveCDROM

sbmp::DriveMemory

sbmp::GlyphOK

sbmp::GlyphCancel

sbmp::SFolderOpened

sbmp::SFolderClosed

sbmp::Last

scr:: - scroll exposure results

Widget::scroll returns one of these.

scr::Error - failure

scr::NoExpose - call resulted in no new exposed areas

scr::Expose - call resulted in new exposed areas, expect a repaint

sv:: - system value indices

See also the get system value entry in the Prima::Application section

sv::YMenu - the height of the menu bar in top-level windows

sv::YTitleBar - the height of the title bar in top-level windows

sv::XIcon - width and height of main icon dimensions,

sv::YIcon acceptable by the system

sv::XSmallIcon - width and height of alternate icon dimensions,

sv::YSmallIcon acceptable by the system

sv::XPointer - width and height of mouse pointer icon

sv::YPointer acceptable by the system

sv::XScrollbar - the width of the default vertical scrollbar

sv::YScrollbar - the height of the default horizontal scrollbar

sv::XCursor - width of the system cursor

sv::AutoScrollFirst - the initial and the repetitive

sv::AutoScrollNext scroll timeouts

sv::InsertMode - the system insert mode

sv::XbsNone - widths and heights of the top-level window

sv::YbsNone decorations, correspondingly, with borderStyle

sv::XbsSizeable bs::None, bs::Sizeable, bs::Single, and

sv::YbsSizeable bs::Dialog.

sv::XbsSingle

489

sv::YbsSingle

sv::XbsDialog

sv::YbsDialog

sv::MousePresent - 1 if the mouse is present, 0 otherwise

sv::MouseButtons - number of the mouse buttons

sv::WheelPresent - 1 if the mouse wheel is present, 0 otherwise

sv::SubmenuDelay - timeout (in ms) before a sub-menu shows on

an implicit selection

sv::FullDrag - 1 if the top-level windows are dragged dynamically,

0 - with marquee mode

sv::DblClickDelay - mouse double-click timeout in milliseconds

sv::ShapeExtension - 1 if Prima::Widget::shape functionality is supported,

0 otherwise

sv::ColorPointer - 1 if the system accepts color pointer icons.

sv::CanUTF8_Input - 1 if the system can generate key codes in unicode

sv::CanUTF8_Output - 1 if the system can output utf8 text

sv::CompositeDisplay - 1 if the system uses double-buffering and alpha composition for the

0 if it doesn’t, -1 if unknown

sv::LayeredWidgets - 1 if the system supports layering

sv::FixedPointerSize - 0 if the system doesn’t support arbitrarily sized pointers and will

sv::MenuCheckSize - width and height of default menu check icon

sv::FriBidi - 1 if Prima is compiled with libfribidi and full bidi unicode support

sv::Antialias - 1 if the system supports antialiasing and alpha layer for primitives

sv::LibThai - 1 if Prima is compiled with libthai

ta:: - alignment constants

Used in: the Prima::InputLine section, the Prima::ImageViewer section, the Prima::Label section.

ta::Left

ta::Right

ta::Center

ta::Top

ta::Bottom

ta::Middle

to:: - text output constants

These constants are used in various text- and glyph-related functions and form a somewhat vague
group of bit values that may or may not be used together depending on the function

to::Plain - default value, 0

to::AddOverhangs - used in C<get_text_width> and C<get_text_shape_width>

to request text overhangs to be included in the returned

text width

to::Glyphs - used in C<get_font_abc> and C<get_font_def> to select extension of

glyph indexes rather than text codepoints

to::Unicode - used in C<get_font_abc> and C<get_font_def> to select extension of

unicode rather than ascii text codepoints

to::RTL - used in C<get_text_shape_width> to request RTL bidi direction.

Also used in C<Prima::Drawable::Glyphs::indexes> values to mark

RTL characters.

490

tw:: - text wrapping constants

See the text wrap entry in the Prima::Drawable section

tw::CalcMnemonic - calculates tilde underline position

tw::CollapseTilde - removes escaping tilde from text

tw::CalcTabs - wraps the text with respect to tab expansion

tw::ExpandTabs - expands tab characters

tw::BreakSingle - determines if the text is broken into single

characters when text cannot be fit

tw::NewLineBreak - breaks line on newline characters

tw::SpaceBreak - breaks line on space or tab characters

tw::ReturnChunks - returns wrapped text chunks

tw::ReturnLines - returns positions and lengths of wrapped

text chunks

tw::WordBreak - defines if text break by width goes by the

characters or by the words

tw::ReturnFirstLineLength - returns the length of the first wrapped line

tw::Default - tw::NewLineBreak | tw::CalcTabs | tw::ExpandTabs |

tw::ReturnLines | tw::WordBreak

wc:: - widget classes

See the widgetClass entry in the Prima::Widget section

wc::Undef

wc::Button

wc::CheckBox

wc::Combo

wc::Dialog

wc::Edit

wc::InputLine

wc::Label

wc::ListBox

wc::Menu

wc::Popup

wc::Radio

wc::ScrollBar

wc::Slider

wc::Widget, wc::Custom

wc::Window

wc::Application

ws:: - window states

See the windowState entry in the Prima::Window section

ws::Normal

ws::Minimized

ws::Maximized

ws::Fullscreen

491

11.3 Prima::EventHook

Event filtering

Synopsis

use Prima::EventHook;

sub hook

{

my ($my_param, $object, $event, @params) = @_;

...

print "Object $object received event $event\n";

...

return 1;

}

Prima::EventHook::install(\&hook,

param => $my_param,

object => $my_window,

event => [qw(Size Move Destroy)],

children => 1

);

Prima::EventHook::deinstall(\&hook);

Description

The toolkit dispatches notifications by calling subroutines registered on one or more objects. Also,
the core part of the toolkit allows a single event hook callback to be installed that would receive all
events occurring on all objects. Prima::EventHook provides multiplexed access to the core event
hook and introduces a set of dispatching rules so that the user hooks can receive only a subset of
events.

API

install SUB, %RULES

Installs SUB using a hash of RULES.
The SUB is called with a variable list of parameters, formed so that first come parameters

from the ’param’ key (see below), then the event source object, then the event name, and finally
the parameters to the event. The SUB must return an integer, either 0 or 1, to block or pass
the event, respectively. If 1 is returned, other hook subs are called; if 0 is returned, the event is
efficiently blocked and no hooks are called further.

Rules can contain the following keys:

event

An event is either a string, an array of strings, or an undef value. In the latter case, it is
equal to a ’*’ string which selects all events to be passed to the SUB. A string is either the
name of an event or one of the pre-defined event groups, declared in the %groups package
hash. The group names are:

ability

focus

geometry

492

keyboard

menu

mouse

objects

visibility

These contain the respective events. See the source for a detailed description.

In case the ’event’ key is an array of strings, each of the strings is also the name of either
an event or a group. In this case, if the ’*’ string or event duplicate names are present in
the list, SUB is called several times.

object

A Prima object, or an array of Prima objects, or undef; in the latter case matches all objects.
If an object is defined, the SUB is called if the event source is the same as the object.

children

If 1, SUB is called using the same rules as described in ’object’, but also if the event source
is a child of the object. Thus, selecting undef as a filter object and setting ’children’ to
0 is almost the same as selecting $::application, which is the root of the Prima object
hierarchy, as a filter object with ’children’ set to 1.

Setting object to undef and children to 1 is inefficient.

param

A scalar or array of scalars passed as first parameters to SUB

deinstall SUB

Removes the hook sub

NOTES

Prima::EventHook by default automatically starts and stops the Prima event hook mechanism
when appropriate. If it is not desired, for example for your own event hook management, set
$auto hook to 0.

493

11.4 Prima::Image::Animate

Animate gif,webp,png files

Description

The module provides high-level access to GIF, APNG, and WebP animation sequences.

Synopsis

use Prima qw(Application Image::Animate);

my $x = Prima::Image::Animate->load($ARGV[0]);

die $@ unless $x;

my ($X, $Y) = (0, 100);

my $want_background = 1; # 0 for eventual transparency

my $background = $::application-> get_image($X, $Y, $x-> size);

$::application-> begin_paint;

while (my $info = $x-> next) {

my $frame = $background-> dup;

$frame-> begin_paint;

$x-> draw_background($frame, 0, 0) if $want_background;

$x-> draw($frame, 0, 0);

$::application-> put_image($X, $Y, $frame);

$::application-> sync;

select(undef, undef, undef, $info-> {delay});

}

$::application-> put_image($X, $Y, $g);

new $CLASS, %OPTIONS

Creates an empty animation container. If $OPTIONS{images} is given, it is expected to be an
array of images, best if loaded from files with the loadExtras and iconUnmask parameters set (
see the Prima::image-load section for details).

detect animation $HASH

Checks the {extras} hash obtained from an image loaded with the loadExtras flag set to detect
whether the image is an animation or not, and if loading of all of its frame is supported by the
module. Returns the file format name on success, undef otherwise.

load $SOURCE, %OPTIONS

Loads a GIF, APNG, or WebP animation sequence from $SOURCE which is either a file or a stream.
Options are the same as used by the Prima::Image::load method.

Depending on the loadAll option, either loads all frames at once (1), or uses
Prima::Image::Loader to load only a single frame at a time (0, default). Depending on the
loading mode, some properties may not be available.

add $IMAGE

Appends an image frame to the container.
Only available if the loadAll option is on.

494

bgColor

Returns the background color specified by the sequence as the preferred color to use when there
is no specific background to superimpose the animation on.

close

Releases eventual image file handle for loader-based animations. Sets the {suspended} flag so
that all image operations are suspended. A later call to reload restores the status quo execpt the
current frame prior to the close call.

Has no effect on animations loaded with the loadAll option.

current

Returns the index of the current frame

draw $CANVAS, $X, $Y

Draws the current composite frame on $CANVAS at the given coordinates

draw background $CANVAS, $X, $Y

Fills the background on $CANVAS at the given coordinates if the file provides the color to fill.
Returns a boolean value whether the canvas was drawn on or not.

height

Returns the height of the composite frame

icon

Returns a new icon object created from the current composite frame

image

Returns a new image object created from the current composite frame The transparent pixels on
the image are replaced with the preferred background color

is stopped

Returns true if the animation sequence was stopped, false otherwise. If the sequence was stopped,
the only way to restart it is to call reset.

length

Returns the total animation length (without repeats) in seconds.

loopCount [INTEGER]

Sets and returns the number of loops left, undef for indefinite.

495

next

Advances one animation frame. The step triggers changes to the internally kept buffer image that
creates the effect of transparency if needed. The method returns a hash, where the following fields
are initialized:

left, bottom, right, top

Coordinates of the changed area since the last frame was updated

delay

Time in seconds how long the frame is expected to be displayed

reload

Reloads the animation after a close call. Returns the success flag.

reset

Resets the animation sequence. This call is necessary either when the image sequence was altered,
or when the sequence display restart is needed.

size

Returns the width and height of the composite frame

suspended

Returns true if a call to the close method was made.

total

Return the number of frames

warning

If an error occured during frame loading, it will be stored in the warning property. The animation
will stop at the last successfully loaded frame

Only available if the loadAll option is off.

width

Returns the width of the composite frame

496

11.5 Prima::Image::base64

Hardcoded image files

Description

Loads and saves images from and to base64-encoded data streams. This allows loading images
directly from the source code.

Synopsis

my $icon = Prima::Icon->load_stream(<<~’ICON’);

R0lGODdhIAAgAIAAAAAAAP///ywAAAAAIAAgAIAAAAD///8CT4SPqcvtD6OctNqLcwogcK91nEhq

3gim2Umm4+W2IBzX0fvl8jTr9SeZiU5E4a1XLHZ4yaal6XwFoSwMVUVzhoZSaQW6ZXjD5LL5jE6r

DQUAOw==

ICON

print $icon->save_stream;

API

load, load image BASE64 STRING, %OPTIONS

Decodes BASE64 STRING and tries to load an image from it. Returns image reference(s)
on success, or undef, ERROR STRING on failure.

load icon BASE64 STRING, %OPTION

Same as load image but returns a Prima::Icon instance.

save IMAGE OR ICON, %OPTIONS

Saves an image to a datastream and encodes it in base64. Unless the $OPTIONS{codecID}
or $image-{extras}->{codecID}> field is set, tries to deduce the best codec for the job.

Returns the encoded content on success, or undef, ERROR STRING on failure.

497

11.6 Prima::Image::Exif

Manipulate Exif records

Description

The module allows to parse and create Exif records. The records could be read from JPEG files,
and stored in these using the extra appdata hash field.

Synopsis

use Prima qw(Image::Exif);

load image with extras

my $jpeg = Prima::Image->load($ARGV[0], loadExtras => 1);

die $@ unless $jpeg;

my ($data, $error) = Prima::Image::Exif->read_extras($jpeg,

load_thumbnail => 1,

tag_as_string => 1

);

if ($error eq ’XMP data’ && defined $data) {

require XML::LibXML;

my $xml = XML::LibXML->load_xml(string => $data);

for my $node ($xml->findnodes(’//*’)) {

my @p = $node->childNodes;

next unless @p == 1;

my $p = $node->nodePath;

$p =~ s{\/\b[-\w]+\:}{.}g;

$p =~ s{\.(xmpmeta|rdf)}{}ig;

$p =~ s{^\.}{};

print "$p: $p[0]\n";

}

($data, $error) = ({}, undef);

}

die "cannot read exif: $error\n" if defined $error;

for my $k (sort keys %$data) {

my $v = $data->{$k};

if ($k eq ’thumbnail’) {

if (ref($v)) {

print "thumbnail ", $v->width, ’x’, $v->height, "\n";

} else {

print "error loading thumbnail: $v\n";

}

next;

}

for my $dir (@$v) {

my ($tag, $name, @data) = @$dir;

print "$k.$tag $name @data\n";

}

}

498

create new image

$jpeg->size(300,300);

create a thumbnail - not too big as jpeg appdata max length is 64k

my $thumbnail = $jpeg->dup;

delete $thumbnail->{extras};

$thumbnail->size(150,150);

compile an exif chunk

my $ok;

($ok, $error) = Prima::Image::Exif->write_extras($jpeg,

thumbnail => $thumbnail,

gpsinfo => $data->{gpsinfo},

);

die "cannot create exif data: $error\n" unless $ok;

$jpeg->save(’new.jpg’) or die $@;

API

parse $CLASS, $EXIF STRING

Returns two scalars, a data reference and an error. If there is no data reference, the error is fatal,
otherwise a warning (i.e. assumed some data were parsed, but most probabyl not all).

The data is a hash where there are the following keys may be set: image, photo, gpsinfo,
thumbnail. These are individual categories containing the exif tags. Each hash value contains
an array of tags, except thumbnail that contains a raw image data. Each tag is an array in the
following format: [tag, format, @data] where the tag is a numeric tag value, the format is a type
descriptor (such as int8 and ascii), and data is 1 or more scalars containing the data.

The module recognized some common tags that can be accessed via
%Prima::Image::Exif::tags.

read extras $CLASS, $IMAGE, %OPTIONS

Given a loaded Prima image, loads exif data from extras; returns two scalar, a data reference and
an error.

Options supported:

load thumbnail

If set, tries to load thumbnail as a Prima image. In this case, replaces the thumbnail raw
data with the image loaded, or in case of an error, with an error string

tag as string

If set, replaces known tag numeric values with their string names

compile $CLASS, $DATA

Accepts DATA in the format described above, creates an exif string. Returns two scalars, am exif
string and an error. If the string is not defined, the error is.

write extras $CLASS, $IMAGE, %DATA

Checks if image codec is supported, creates Exif data and saves these in $IMAGE->{extras} .
Return two scalars, a success flag and an error.

499

11.7 Prima::Image::Loader

Progressive loading and saving for multiframe images

Description

The toolkit provides functionality for session-based loading and saving of multiframe images so that
it is not needed to store all image frames in memory at once. Instead, the Prima::Image::Loader
and Prima::Image::Saver classes provide the API for operating on a single frame at a time.

Prima::Image::Loader

use Prima::Image::Loader;

my $l = Prima::Image::Loader->new($ARGV[0]);

printf "$ARGV[0]: %d frames\n", $l->frames;

while (!$l->eof) {

my ($i,$err) = $l->next;

die $err unless $i;

printf "$n: %d x %d\n", $i->size;

}

new FILENAME|FILEHANDLE, %OPTIONS

Opens a filename or a file handle, tries to deduce if the toolkit can recognize the image, and
creates an image loading handler. The %OPTIONS are the same as recognized by the load
entry in the Prima::Image section except map, loadAll, and profiles. The other options
apply to each frame that will be consequently loaded, but these options could be overridden
by supplying parameters to the next call.

Returns either a new loader object or undef and an error string.

Note that it is possible to supply the onHeaderReady and onDataReady callbacks in the
options, however, note that the first arguments in these callbacks will point to the newly
created image, not the loader object.

close

Releases the image file handle. The image can be reopened again by calling reload.

current INDEX

Manages the index of the frame that will be loaded next. When set, requests repositioning
of the frame pointer so that the next call to next would load the INDEXth image.

eof

Returns the boolean flag if the end of the file is reached.

extras

Returns the hash of the extra file data as filled by the codec

frames

Returns the number of frames in the file

next %OPTIONS

Loads the next image frame.

Returns either a newly loaded image or undef and an error string.

500

reload

In case an animation file is defective and cannot be loaded in full, the toolkit will not allow
to continue the loading session and will close it automatically. If it is desired to work around
this limitation, a new session must be opened. The reload method does this by reopening
the loading session with all the parameters supplied to the initial new call. The programmer
thus has a chance to record how many successful frames were loaded, and only navigate
these after the reload.

rescue BOOLEAN

If set, reopens the input stream or file on every new frame. This may help recover broken
frames.

source

Returns the filename or the file handle passed to the new call.

Prima::Image::Saver

my $fn = ’1.webp’;

open F, ">", $fn or die $!;

my ($s,$err) = Prima::Image::Saver->new(*F, frames => scalar(@images));

die $err unless $s;

for my $image (@images) {

my ($ok,$err) = $s->save($image);

next if $ok;

unlink $fn;

die $err;

}

new FILENAME|FILEHANDLE, %OPTIONS

Opens a filename or a file handle. The %OPTIONS are the same as recognized by the save
entry in the Prima::Image section except the images option. The other options apply to
each frame that will be consequently saved, but these options could also be overridden by
supplying parameters to the save call.

Returns either a new saver object or undef and an error string.

save %OPTIONS

Saves the next image frame.

Returns a success boolean flag and an eventual error string

501

11.8 Prima::IniFile

Support of Windows-like initialization files

Description

The module provides mapping of a text initialization file to a two-level hash structure. The first
level is sections, which groups the second level hashes, items. Sections must have unique keys. The
values of the items hashes are arrays of text strings. The methods that operate on these arrays
are the get values entry, the set values entry, the add values entry, and the replace values entry.

Synopsis

use Prima::IniFile;

my $ini = create Prima::IniFile;

my $ini = create Prima::IniFile FILENAME;

my $ini = create Prima::IniFile FILENAME,

default => HASHREF_OR_ARRAYREF;

my $ini = create Prima::IniFile file => FILENAME,

default => HASHREF_OR_ARRAYREF;

my @sections = $ini->sections;

my @items = $ini->items(SECTION);

my @items = $ini->items(SECTION, 1);

my @items = $ini->items(SECTION, all => 1);

my $value = $ini-> get_values(SECTION, ITEM);

my @vals = $ini-> get_values(SECTION, ITEM);

my $nvals = $ini-> nvalues(SECTION, ITEM);

$ini-> set_values(SECTION, ITEM, LIST);

$ini-> add_values(SECTION, ITEM, LIST);

$ini-> replace_values(SECTION, ITEM, LIST);

$ini-> write;

$ini-> clean;

$ini-> read(FILENAME);

$ini-> read(FILENAME, default => HASHREF_OR_ARRAYREF);

my $sec = $ini->section(SECTION);

$sec->{ITEM} = VALUE;

my $val = $sec->{ITEM};

delete $sec->{ITEM};

my %everything = %$sec;

%$sec = ();

for (keys %$sec) { ... }

while (my ($k,$v) = each %$sec) { ... }

Methods

add values SECTION, ITEM, @LIST

Adds LIST of string values to the ITEM in SECTION.

clean

Cleans all internal data in the object, including the name of the file.

502

create PROFILE

Creates an instance of the class. The PROFILE is treated partly as an array, and partly as
a hash. If PROFILE consists of a single item, the item is treated as a filename. Otherwise,
PROFILE is treated as a hash, where the following keys are allowed:

file FILENAME

Selects the name of the file.

default %VALUES

Selects the initial values for the file, where VALUES is a two-level hash of sections and
items. It is passed to the read entry, where it is merged with the file data.

get values SECTION, ITEM

Returns an array of values for ITEM in SECTION. If called in scalar context and there is
more than one value, the first value in the list is returned.

items SECTION [HINTS]

Returns items in SECTION. HINTS parameters are used to tell if a multiple-valued item
must be returned as several items of the same name; HINTS can be supplied in the following
forms:

items($section, 1) items($section, all => 1);

new PROFILE

Same as the create entry.

nvalues SECTION, ITEM

Returns the number of values in ITEM in SECTION.

read FILENAME, %PROFILE

Flushes the old content and opens a new file. FILENAME is a text string, PROFILE is a
two-level hash of default values for the new file. PROFILE is merged with the data from
the file, and the latter keeps the precedence. Does not return any success values but warns
if any error is occurred.

replace values SECTION, ITEM, @VALUES

Removes all values from ITEM in SECTION and assigns it to the new list of VALUES.

section SECTION

Returns a tied hash for SECTION. All its read and write operations are reflected in the
caller object which allows the following syntax:

my $section = $inifile-> section(’Sample section’);

$section-> {Item1} = ’Value1’;

which is identical to

$inifile-> set_items(’Sample section’, ’Item1’, ’Value1’);

sections

Returns an array of section names.

503

set values SECTION, ITEM, @VALUES

Assigns VALUES to ITEM in SECTION. If the number of new values is equal to or greater
than the number of the old, the method is the same as the replace values entry. Otherwise,
the values with indices higher than the number of new values are not touched.

write

Rewrites the file with the object content. The object keeps an internal modification flag
{changed}; in case it is undef, no actual write is performed.

504

11.9 podview

Graphical pod viewer

Description

A small GUI browser for POD-formatted files. Accepts either a file path or a perl module name
(f.ex. File::Copy) as a command line agrument, displays the documentation found.

SEE ALSO

perlpod - the Plain Old Documentation format
the Prima section - perl graphic toolkit the viewer is based on
the Prima::HelpViewer section - menu commands explained
the Adding help to your program entry in the Prima::tutorial section - how to add help

content

505

11.10 prima-pod2pdf

Convert pod file to a pdf document

Synopsis

format: prima-pod2pdf [options] input.pod [output.pdf|-]

506

11.11 Prima::StdBitmap

Shared access to the standard bitmaps

Description

The toolkit provides the sysimage.gif file that contains the standard Prima image library and
consists of a predefined set of images used by different modules. To provide unified access to
the images inside the file, this module’s API can be used. Every image is assigned to a sbmp::

constant that is used as an index for an image loading request. If an image is loaded successfully,
the result is cached and the successive requests use the cached image.

The images can be loaded as Prima::Image and Prima::Icon instances, by two methods,
correspondingly image and icon.

Synopsis

use Prima::StdBitmap;

my $logo = Prima::StdBitmap::icon(sbmp::Logo);

API

Methods

icon INDEX

Loads the INDEXth image frame and returns a Prima::Icon instance.

image INDEX

Loads the INDEXth image frame and returns a Prima::Image instance.

load std bmp %OPTIONS

Loads the indexth image frame from file and returns it as either a Prima::Image or a
Prima::Icon instance, depending on the value of the boolean icon flag. If the copy boolean
flag is unset, a cached image can be used. If this flag is set, a cached image is never used
and the created image is neither stored in the cache. Since the module’s intended use is to
provide shared and read-only access to the image library, copy set to 1 can be used to return
non-shareable images.

The loader automatically scales images if the system dpi suggests so. If layering is supported,
the icon scaling will use that as well. To disable these optimizations use the raw => 1 flag
to disable all optimizations, and argb => 0 to disable producing ARGB icons.

Constants

An index value passed to the methods must be one of the sbmp:: constants:

sbmp::Logo

sbmp::CheckBoxChecked

sbmp::CheckBoxCheckedPressed

sbmp::CheckBoxUnchecked

sbmp::CheckBoxUncheckedPressed

sbmp::RadioChecked

sbmp::RadioCheckedPressed

sbmp::RadioUnchecked

sbmp::RadioUncheckedPressed

sbmp::Warning

507

sbmp::Information

sbmp::Question

sbmp::OutlineCollapse

sbmp::OutlineExpand

sbmp::Error

sbmp::SysMenu

sbmp::SysMenuPressed

sbmp::Max

sbmp::MaxPressed

sbmp::Min

sbmp::MinPressed

sbmp::Restore

sbmp::RestorePressed

sbmp::Close

sbmp::ClosePressed

sbmp::Hide

sbmp::HidePressed

sbmp::DriveUnknown

sbmp::DriveFloppy

sbmp::DriveHDD

sbmp::DriveNetwork

sbmp::DriveCDROM

sbmp::DriveMemory

sbmp::GlyphOK

sbmp::GlyphCancel

sbmp::SFolderOpened

sbmp::SFolderClosed

sbmp::Last

Scalars

The $sysimage scalar is initialized to the file name to be used as a source of standard images. It
is possible to alter this scalar at run-time, which causes all subsequent image frame requests to be
redirected to the new file.

Scaling and ARGB-shading

The loading routine scales and visually enhances the images automatically according to the system
settings that are reported by the Prima::Application class. It is therefore advisable to load
images after the Application object is created.

508

11.12 Prima::Stress

Stress test module

Description

The module is intended for use in test purposes, to check the functionality of a program or a
module under particular conditions that might be overlooked during the design. Currently, the
stress factors implemented are the default font size, default scrollbar sizes, and the UI-scaling
factor, which are set to different random values every time the module is invoked.

To use the module it is enough to include a typical

use Prima::Stress;

code, or, if the program is invoked by calling perl, by using the

perl -MPrima::Stress program

syntax. The module does not provide any methods, however, one may address individual
aspects of the UI defaults.

API

Font size

use Prima::Stress q(fs=18);

perl -MPrima::Stress=fs=18 program

This syntax changes the default font size to 18 points.

Display resolution

use Prima::Stress q(dpi=192);

perl -MPrima::Stress=dpi=192 program

This syntax changes the display resolution to 192 pixels per inch.

Scrollbar sizes

use Prima::Stress q(src=40);

perl -MPrima::Stress=src=40 program

This syntax changes the default width of vertical scrollbars, and the default height of horizontal
scrollbars to 40 pixels

509

11.13 Prima::Themes

Object themes management

Description

Provides a layer for theme registration in Prima. Themes are loosely grouped alternations of
default class properties and behaviors, by default stored in the Prima/themes subdirectory. The
theme realization is implemented as interception of the object profile during its creation inside
::profile add. Various themes apply various alterations, one way only - once an object is applied
to a theme, it cannot be either changed or revoked thereafter.

Theme configuration can be stored in an RC file, ~/.prima/themes, and is loaded automatically
unless $Prima::Themes::load rc file is explicitly set to 0 before loading the Prima::Themes

module. In effect, any Prima application not aware of themes can be coupled with themes in the
RC file by the following:

perl -MPrima::Themes program

The Prima::Themes namespace provides API for the theme registration and execution.
Prima::Themes::Proxy is a class for overriding certain methods, for internal realization of a
theme.

For the interactive theme selection see the examples/theme.pl sample program.

Synopsis

register a theme file

use Prima::Themes qw(color);

or

use Prima::Themes; load(’color’);

list registered themes

print Prima::Themes::list;

install a theme

Prima::Themes::install(’cyan’);

list installed themes

print Prima::Themes::list_active;

create an object with another theme while ’cyan’ is active

Class->new(theme => ’yellow’);

remove a theme

Prima::Themes::uninstall(’cyan’);

Prima::Themes

load @THEME MODULES

Loads THEME MODULES from files via the use clause, dies on error. Can be used instead
of the explicit use call.

A loaded theme file may register one or more themes.

register $FILE, $THEME, $MATCH, $CALLBACK, $INSTALLER

Registers a previously loaded theme. $THEME is a unique string identifier. $MATCH is
an array of pairs where the first item is a class name, and the second is an arbitrary scalar
parameter. When a new object is created, its class is matched via isa to each given class
name, and if matched, the $CALLBACK routine is called with the following parameters:
object, default profile, user profile, and second item of the matched pair.

510

If the $CALLBACK is undef, the default the merger entry routine is called, which treats
the second items of the pairs as hashes of the same format as the default and user profiles.

The theme is inactive until install is called. If the $INSTALLER subroutine is passed, it
is called during install and uninstall with two parameters, the name of the theme and the
boolean install/uninstall flag. When the install flag is 1, the theme is about to be installed;
the subroutine is expected to return a boolean success flag. Otherwise, the subroutine’s
return value is not used.

$FILE is used to indicate the file in which the theme is stored.

deregister $THEME

Un-registers $THEME.

install @THEMES

Installs previously loaded and registered THEMES; the installed themes will be applied to
match new objects.

uninstall @THEMES

Uninstalls loaded THEMES.

list

Returns the list of registered themes.

list active

Returns the list of installed themes.

loaded $THEME

Return 1 if $THEME is registered, 0 otherwise.

active $THEME

Return 1 if $THEME is installed, 0 otherwise.

select @THEMES

Uninstalls all currently installed themes, and installs THEMES instead.

merger $OBJECT, $PROFILE DEFAULT, $PROFILE USER, $PROFILE THEME

Default profile merging routine, merges $PROFILE THEME into $PROFILE USER by the
keys from $PROFILE DEFAULT.

load rc [$INSTALL = 1]

Reads the ~/.prima/themes file and loads the listed modules. If $INSTALL = 1, installs the
themes from the RC file.

save rc

Writes configuration of currently installed themes into the RC file, and returns the success
flag. If the success flag is 0, $! contains the error.

Prima::Themes::Proxy

An instance of Prima::Themes::Proxy, created as
Prima::Themes::Proxy-> new($OBJECT)
that would return a new non-functional wrapper for any Perl object $OBJECT. All methods

of the $OBJECT, except AUTOLOAD, DESTROY, and new, are forwarded to the $OBJECT itself
transparently. The class can be used, for example, to deny all changes to lineWidth inside the
object’s painting routine:

511

package ConstLineWidth;

use base ’Prima::Themes::Proxy’;

sub lineWidth { 1 } # line width is always 1 now!

Prima::Themes::register(’~/lib/constlinewidth.pm’, ’constlinewidth’,

[’Prima::Widget’ => {

onPaint => sub {

my ($object, $canvas) = @_;

$object-> on_paint(ConstLineWidth-> new($canvas));

},

}]

);

Files

~/.prima/themes

512

11.14 Prima::Tie

Tie widget properties to scalars and arrays

Description

Prima::Tie contains two abstract classes Prima::Tie::Array and Prima::Tie::Scalar which tie
an array or a scalar to a widget’s arbitrary array or scalar property. Also, it contains classes
Prima::Tie::items, Prima::Tie::text, and Prima::Tie::value, which tie a variable to a wid-
get’s items, text, and value properties respectively.

Synopsis

use Prima::Tie;

tie @items, ’Prima::Tie::items’, $widget;

tie @some_property, ’Prima::Tie::Array’, $widget, ’some_property’;

tie $text, ’Prima::Tie::text’, $widget;

tie $some_property, ’Prima::Tie::Scalar’, $widget, ’some_property’;

Usage

These classes provide immediate access to a widget’s array and scalar properties, in particular to
popular properties items and text. It is considerably simpler to say

splice(@items,3,1,’new item’);

than to say

my @i = @{$widget->items};

splice(@i,3,1,’new item’);

$widget->items(\@i);

That way, you can work directly with the text or items. Furthermore, if the only reason you
keep an object around after creation is to access its text or items, you no longer need to do so:

tie @some_array, ’Prima::Tie::items’, Prima::ListBox->new(@args);

As opposed to:

my $widget = Prima::ListBox->new(@args);

tie @some_array, ’Prima::Tie::items’, $widget;

Prima::Tie::items requires the ::items property to be available on the widget. Also, it
takes advantage of additional get items, add items, and the like methods if available.

Prima::Tie::items

The class is applicable to Prima::ListViewer, Prima::ListBox, Prima::Widget::Header, and
their descendants, and in a limited fashion to Prima::OutlineViewer and its descendants
Prima::StringOutline and Prima::Outline.

Prima::Tie::text

The class is applicable to any widget.

513

Prima::Tie::value

The class is applicable to Prima::GroupBox, Prima::Dialog::ColorDialog, Prima::SpinEdit,
Prima::Gauge, Prima::Slider, Prima::CircularSlider, and Prima::ScrollBar.

514

11.15 Prima::types

Builtin types

Description

This document describes the auxiliary second-citizen classes that are used as results of Prima
methods and accepted as inputs. Objects that instantiate from these classes are usually never
created manually. The names of some of these classes begin with a lower-case letter, to underscore
their auxiliary nature.

Prima::array

An overloaded C array that can be used transparently as a normal perl array. The array can only
hold numbers. The reason the Prima::array class exists is so Prima methods won’t need to do
expensive conversions between a perl array of scalars to a C array of integers or floats.

new LETTER = [idsS], BUF = undef

Creates a new C array with the type of either int, double, short, or unsigned short. There
are also methods new int, new double, new short, and new ushort that do the same.

BUF, a normal perl string, can be used to initialize the array, if any (and can be pre-
populated with pack()). Otherwise, an array is created empty.

is array SCALAR

Checks whether the SCALAR is a Prima::array object.

substr OFFSET, LENGTH, REPLACEMENT

Emulates perl’s substr except operates not on characters but on the individual numeric
entries of the array. Returns a new Prima::array object.

append ARRAY

Assuming that two arrays have the same type, appends the ARRAY’s contents to its content.

clone

Clones the array.

Prima::matrix

An array of 6 doubles with some helper methods attached.

A,B,C,D,X,Y

Named accessory properties for the 6 members. The members can just as well be accessed
directly with the array syntax.

clone

Clones the matrix object

identity

Sets the matrix to Prima::matrix::identity, or (1,0,0,1,0,0)

inverse transform @POINTS | $POINTS ARRAY

Applies the inverse matrix tranformations to an array or an arrayref of points and returns
the result matrix in the same format (i e array for array, ref for ref).

515

new [@ARRAY]

Creates a new object and optionally initializes it with @ARRAY

multiply MATRIX

Multiplies the matrices and stores the result

rotate ANGLE

Rotates the matrix

scale MX,MY

Scales the matrix

shear DX,DY

Shears the matrix

set @ARRAY

Assigns all the 6 members at once

translate DX,DY

Translates the matrix

transform @POINTS | $POINTS ARRAY

Applies matrix tranformations to an array or arrayref of points and returns the result matrix
in the same format (i e array for array, ref for ref).

See also: the Prima::Matrix section

Prima::Matrix

Same as Prima::matrix but explicitly binds to drawable objects so that all changes to the matrix
object are immediately reflected in the drawable.

Features all the methods available to Prima::matrix (except apply), plus the ones described
below.

new CANVAS

Creates a new matrix object instance

canvas DRAWABLE

Accesses the associated drawable object

get

Returns the current matrix

reset

Sets the matrix to Prima::matrix::identity, or (1,0,0,1,0,0)

save, restore

Saves and restores the matrix content in the internal stack

516

Prima::rect

Represents a rectangular object either as a rectangle (X1,Y1,X2,Y2) or a box (
X,Y,WIDTH,HEIGHT).

box

Returns X, Y, WIDTH, HEIGHT

clone

Clones the object

enlarge N

Enlarges the rectangle by N

inclusive

Rectangle itself is agnostic of its 2D presentation, but assuming the coordinates are inclusive-
exclusive, inclusive returns X1,Y1,X2,Y2 as the inclusive-inclusive rectangle.

intersect RECT

Intersects with the RECT rectangle and stores the result

is empty

Returns true if the rectangle width and height are zero

is equal RECT

Returns true if both rectangles are equal

new () | (WIDTH,HEIGHT) | (X1,Y1,X2,Y2)

Creates a new object assuming the rectangle syntax

new box X,Y,WIDTH,HEIGHT

Creates new object assuming the box syntax

origin

Returns X and Y

shrink N

Shrinks the rectangle by N

size

Returns the WIDTH and HEIGHT of the rectangle

union RECT

Joins the rectangle with the RECT rectangle and stores the result

517

11.16 Prima::Utils

Miscellaneous routines

Description

The module contains miscellaneous helper routines

API

alarm $TIMEOUT, $SUB, @PARAMS

Calls SUB with PARAMS after TIMEOUT milliseconds. Returns 0 on failure, and the active
timer on success. The timer can be stopped to disarm the alarm.

beep [FLAGS = mb::Error]

Invokes the system-depended sound and/or visual bell, corresponding to one of the following
constants:

mb::Error

mb::Warning

mb::Information

mb::Question

get gui

Returns one of the gui::XXX constants that report the graphic user interface used in the
system:

gui::Default

gui::Windows

gui::XLib

gui::GTK

get os

Returns one of the apc::XXX constants that report the system platform. Currently, the list
of the supported platforms is:

apc::Win32

apc::Unix

find image PATH

Converts PATH from a perl module notation into a file path and searches for the file in the
@INC paths set. If the file is found, its full filename is returned; otherwise undef is returned.

last error

Returns last system error, if any

nearest i NUMBERS

Performs floor($ + .5) operation over NUMBERS which can be an array or an arrayref.
Returns converted integers in either an array or an arrayref form, depending on the calling
syntax.

518

nearest d NUMBERS

Performs floor($ * 1e15 + .5) / 1e15 operation over NUMBERS which can be an
array or an arrayref. Returns converted NVs in either an array or an arrayref form, depending
on the calling syntax. Used to protect against perl configurations that calculate sin, cos
etc with only 15 significant digits in the mantissa. This function prevents the accumulation
of error in these configurations.

path [FILE]

If called with no parameters, returns the path to a directory, usually ~/.prima, that can be
used to store the user settings of a toolkit module or a program. If FILE is specified, appends
it to the path and returns the full file name. In the latter case, the path is automatically
created by File::Path::mkpath unless it already exists.

post $SUB, @PARAMS

Postpones a call to SUB with PARAMS until the next event loop tick.

query drives map [FIRST DRIVE = ”A:”]

Returns an anonymous array to drive letters used by the system. FIRST DRIVE can be
set to another value to start enumeration from. Win32 can probe removable drives there,
so to increase the responsiveness of the function it might be reasonable to call it with
FIRST DRIVE set to C: .

If the system supports no drive letters, an empty array reference is returned (unix).

query drive type DRIVE

Returns one of the dt::XXX constants that describe the type of a drive, where DRIVE is a
1-character string. If there is no such drive, or the system supports no drive letters (unix),
dt::None is returned.

dt::None

dt::Unknown

dt::Floppy

dt::HDD

dt::Network

dt::CDROM

dt::Memory

sleep SECONDS

Same as perl’s native sleep (i.e. CORE::sleep) but with the event loop running. Note that
the argument it takes is seconds, for the sake of compatibility, while the rest of the toolkit
operates in milliseconds.

username

Returns the login name of the user. Sometimes is preferred to the perl-provided getlogin

(see getlogin in perlfunc) .

xcolor COLOR

Accepts COLOR string in one of the three formats:

#rgb

#rrggbb

#rrrgggbbb

and returns a 24-bit RGB integer value

519

wait CONDITION [, TIMEOUT]

Waits for a condition for max TIMEOUT milliseconds, or forever if TIMEOUT is undefined.

Returns undef on failure, 0 on TIMEOUT, 1 on a successful CONDITION.

CONDITION is either a scalar reference, or a sub to be polled, where their values are treated
as 0 as a signal to continue the waiting, and 1 as a stop signal.

Unicode-aware filesystem functions

Since perl’s win32 unicode support for files is unexistent, Prima has its own parallel set of functions
mimicking native functions, ie open, chdir etc. This means that files with names that cannot be
converted to ANSI (ie user-preferred) codepage are not visible in perl, but the functions below
mitigate that problem.

The following fine points need to be understood before using these functions:

• Prima makes a distinction between whether scalars have their utf8 bit set or not throughout
the whole toolkit. For example, text output in both unix and windows is different depending
on the bit, treating non-utf8-bit text as locale-specific, and utf8-bit text as unicode. The
same model is applied to file names.

• Perl implementation for native Win32 creates virtual environments for each thread and
may keep more than one instance of the current directory, environment variables, etc.
This means that under Win32, calling Prima::Utils::chdir will NOT automatically make
CORE::chdir assume that value, even if the path is convertible to ANSI. Keep that in mind
when mixing Prima and core functions. To add more confusion, under the unix, these two
chdir calls are identical when the path is fully convertible.

• Under unix, reading entries from the environment or the file system is opportunistic: if a text
string (file name, environment entry) is a valid utf8 string, then it is treated and reported
as one. Mostly because the .UTF-8 locales are default and found everywhere. Note that
Prima ignores $ENV{LANG} here. This is a bit problematic on Perls under 5.22 as these
don’t provide > means to check for the utf8 string validity, so every string will be slapped
> a utf8 bit on here -- beware.

• Setting environment variables may or may not sync with %ENV , depending on how perl is
built. Also, %ENV will warn when trying to set scalars with utf-8 bit there.

access PATH, MODE

Same as POSIX::access.

chdir DIR

Same as CORE::chdir but disregards the thread-local environment on Win32.

chmod PATH, MODE

Same as CORE::chmod

closedir, readdir, rewinddir, seekdir, telldir DIRHANDLE

Mimic homonymous perl functions

getcwd

Same as Cwd::getcwd

getdir PATH

Reads the content of the PATH directory and and returns array of string pairs where the
first item is a file name and the second is a file type.

The file type is a string, one of the following:

520

"fifo" - named pipe

"chr" - character special file

"dir" - directory

"blk" - block special file

"reg" - regular file

"lnk" - symbolic link

"sock" - socket

"wht" - whiteout

This function was implemented for faster directory reading, to avoid successive calls of stat
for every file.

Also, getdir is consistently inclined to treat filenames in utf8, disregarding both perl unicode
settings and the locale.

getenv NAME

Reads directly from environment, possibly bypassing %ENV , and disregarding thread-local
environment on Win32.

link OLDNAME, NEWNAME

Same as CORE::link.

local2sv TEXT

Converts 8-bit text into either 8-bit non-utf8-bit or unicode utf8-bit string. May return
undef on memory allocation failure.

mkdir DIR, [MODE = 0666]

Same as CORE::mkdir.

open file PATH, FLAGS

Same as POSIX::open

open dir PATH

Returns directory handle to be used on readdir, closedir, rewinddir, telldir, seekdir.

rename OLDNAME, NEWNAME

Same as CORE::rename

rmdir PATH

Same as CORE::rmdir

setenv NAME, VAL

Directly sets environment variable, possibly bypassing %ENV , depending on how perl is
built. Also disregards the thread-local environment on Win32.

Note that effective synchronization between this call and %ENV is not always possible, since
Win32 perl implementation simply does not allow that. One is advised to assign to %ENV

manually, but only if both NAME and VAL don’t have their utf8 bit set, otherwise perl will
warn about wide characters.

stat PATH

Same as CORE::stat, except on systems that provide sub-second time resolution, in which
case returns the atime/mtime/ctime entries as floats, the same as Time::HiRes::stat does.

521

sv2local TEXT, FAIL IF CANNOT = 1

Converts either 8-bit non-utf8-bit or unicode utf8-bit string into a local encoding. May
return undef on memory allocation failure, or if TEXT contains unconvertible characters
when FAIL IF CANNOT = 1

unlink PATH

Same as CORE::unlink.

utime ATIME, MTIME, PATH

Same as CORE::utime, except on systems that provide sub-second time resolution, in which
case returns the atime/mtime/ctime entries as floats, the same as Time::HiRes::utime

does.

522

12 System-specific modules and

documentation

12.1 Prima::gp-problems

Problems, questionable or intricate topics in 2-D Graphics

Introduction

One of the most important goals of the Prima project is the portability between different operating
systems. Independently to efforts in keeping Prima’s internal code that behaves more or less iden-
tically on different platforms, it is always possible to write non-portable and platform-dependent
code. Here are some guidelines and suggestions for 2-D graphics programming.

Minimal display capabilities

A compliant display is expected to have a minimal set of capabilities, that a programmer can rely
upon. The following items are always supported by Prima:

Minimal capabilities

Distinct black and white colors

At least one monospaced font

Solid fill

rop::Copy and rop::NoOper

Plotting primitives

SetPixel,GetPixel

Line,PolyLine

Rectangle

FillPoly

TextOut

PutImage,GetImage

Information services

GetTextWidth,GetFontMetrics,GetCharacterABCWidths

GetImageBitsLayout

523

Properties

color

backColor

rop

rop2

fillPattern

fillMode

textOpaque

clipRect

All these properties must be present, however, it is not required for them to be changeable.
Even if an underlying platform-specific code can only support one mode for a property, it has
to follow all obligations for the mode. For example, if the platform supports full functionality
for black color but limited functionality for the other colors, the wrapping code should not
allow the color property to be writable.

Inevident issues

Colors

Black and white colors on paletted displays

Since paletted displays use indexed color representation, the ’black’ and ’white’ indices are
not always 0 and 2ˆn-1, so if one uses the indexes for the actual black and white colors in
the palette, the result of raster image operations may look garbled (X11). Win32 protects
itself from this condition by forcing white to be the last color in the system palette.

Example: if the white color on the 8-bit display occupies palette index 15 then the desired
masking effect wouldn’t work for xoring transparent areas with cl::White.

Workaround: Use two special color constants cl::Clear and cl::Set, that represent all
zeros and all ones values for bit-sensitive raster operations.

Black might be not 0, and white not 0xffffff

This obscure issue happens mostly on the 15- and 16-bit pixel displays. Internal color
representation for the white color on a 15-color display (assuming R,G and B are 5-bit
fields) is

11111000 11111000 11111000

--R----- --G----- --B-----

that equals 0xf8f8f8.

A bit of advice: do not check for ’blackness’ and ’whiteness’ merely by comparing to the
0x000000 or 0xffffff constant.

Filled shapes

Dithering

If a non-solid pattern is selected and the background and/or foreground color cannot be
drawn as a solid, the correct rendering may require 3 or even 4 colors. Some rendering
engines (Win9X) fail to produce correct results.

524

Pattern offset

If a widget contains a pattern-filled shape, its picture will always be garbled after scrolling
because it is impossible to provide an algorithm for a correct rendering without prior knowl-
edge of the widget’s nature. (All)

Workaround: Do not use patterned backgrounds or use fillPatternOffset property. Since
the same effect is visible on dithered backgrounds, check if the color used is pure.

Lines

Dithering

Dithering might be not used for line plotting. (Win9X)

Fonts

Font metric inconsistency

A font is loaded by request with one size but claims another afterward (X11).

Impact: system-dependent font description may not match Prima’s.

An advice: do not try to deduce Prima font metrics from system-dependent ones and vice
versa.

Transparent plotting

No internal function for drawing transparent bitmaps (to implement text plotting). There-
fore, if a font emulation is desired, special ROPs cannot be reproduced. (Win9X, WinNT)

Impact: font emulation is laborious, primarily because the glyphs have to be plotted by
consequential and -ing and xor -ing a bitmap. A full spectrum of the raster operations cannot
be achieved with this approach.

Text background

If a text is drawn with a non-CopyPut raster operation, the text background is not expected
to be mixed with glyphs - however, this is too hard to implement uniformly, so results may
differ for different platforms.

Text background may be only drawn with pure (non-dithered) color (win32) - but this is
(arguably) a more correct behavior.

A bit of advice: Do not use ::rop2 and text background for special effects

Internal platform features

Font change notification is not provided. (X11)

Raster fonts cannot be synthesized (partly X11)

Raster operations (ROPs)

The background raster operations are not supported (X11,Win9X,WinNT. Not all ROPs can be
emulated for certain primitives, like fonts, complex shapes, and patterned shapes.

It is yet unclear which primitives have to support ROPs, - like FloodFill and SetPixel. The
behavior of the current implementation is that they do not.

525

Palettes

Static palettes

Some displays are unable to change their hardware palette, so detecting an 8- or 4-bit display
doesn’t automatically mean that the palette is writable.(X11)

Widget::palette

The Widget::palette property is used for an explicit declaration of extra colors needed
by a widget. The request might be satisfied in different ways, or might not be at all. It is
advisable not to rely on platform behavior for the palette operations.

Dynamic palette change

It is possible (usually on 8-bit displays) for a display to change asynchronously its hardware
palette to process different color requests. All platforms behave differently.

Win9X/WinNT - only one top-level window at a time and its direct children (not
::clipOwner(0)) can benefit from using the Widget::palette property. The system palette
is switched every time as different windows move to the front.

X11 - Any application can easily ruin the system color table. Since this behavior is such by
design, no workaround can be applied here.

Bitmaps

Invalid scaling

Bitmap scaling is invalid (Win9X) or not supported (X11 without XRender). A common
mistake is to not take into account the fractional pixels that appear when the scaling factor
is more than 1

Workaround: described in the zoom entry in the Prima::ImageViewer section .

Large scale factors

Request for drawing a bitmap might fail if a large scaling factor is selected. (Win9X,WinNT).
This is probably because these platforms scale the bitmap into memory before the plotting
takes place.

Layering

On win32, layered widgets with pixels assigned zero alpha component, will not receive mouse
events.

Platform-specific peculiarities

Windows 9X

The number of GDI objects can not exceed some unknown threshold - experiments show that 128
objects is a number that is safe enough.

The color cursor creation routine is broken.
Filled shapes are broken.

X11

No bitmap scaling (if compiled without XRender)
No font rotation (if compiled without Xft)
No GetPixel, FloodFill (along with some other primitives)
White is not 2ˆn-1 on n-bit paletted displays (tested on XFree86).
Filled shapes are broken.
Color bitmaps cannot be drawn onto mono bitmaps.

526

Implementation notes

Win32

The plotting speed of DeviceBitmaps is somewhat less on 8-bit displays than when plotting Im-
ages and Icons. It is because DeviceBitmaps are bound to their original palette, so putting a
DeviceBitmap on a drawable with a different palette uses inefficient algorithms to provide correct
results.

X11

If an image was first drawn on a paletted Drawable, then drawing it on another paletted Drawable
would reduce the image to 8 safe colors.

This is by design and is so because the image has a special cache in the display pixel format.
Refreshing the cache on every PutImage call is very inefficient (although technically possible). It
is planned to fix the problem by checking the palette difference for every PutImage invocation.
NB - the effect is seen on dynamic color displays only.

527

12.2 Prima::X11

Usage guide for the X11 environment

Description

This document describes subtle topics one must be aware of when programming or using Prima
programs under X11. The document covers various aspects of the toolkit and its implementation
details with the guidelines of the expected use. Also, some of the X11 programming techniques
are visited.

Basic command-line switches

--help

Prints the available command-line arguments and exits

--display

Sets the X display address in the Xlib notation. If not set, the standard Xlib (
XOpenDisplay(null)) behavior applies.

Example:

--display=:0.1

--visual

Sets the X visual to be used by default. Example:

--visual=0x23

--sync

Turn on the X synchronization

--bg, --fg

Set the default background and foreground colors. Example:

--bg=BlanchedAlmond

--font

Sets the default font in either XLFD or Fontconfig format. Examples:

--font=serif

--font=Arial-16:bold

--font=’adobe-helvetica-medium-r-*-*--*-120-*-*-*-*-*-*’

--no-x11

Runs Prima without the X11 display initialized. This switch can be used for programs
that use only the OS-independent parts of Prima, such as the image subsystem or the PDF
generator, in environments where X is not present, for example, from a CGI script. Any
attempt to create an instance of the Prima::Application class or otherwise access the
X-depended code under such conditions causes the program to abort.

There are alternatives to the command switch. First, there is module Prima::noX11 for the
same purpose but that is more convenient to use as the

528

perl -MPrima::noX11

construct. Second, there is the technique to continue execution even if the connection to the
X server fails:

use Prima::noX11;

use Prima;

my $error = Prima::XOpenDisplay();

if (defined $error) {

print "not connected to display: $error\n";

} else {

print "connected to the X display\n";

}

The the Prima::noX11 section module exports the single function XOpenDisplay into the
Prima namespace, to connect to the X display explicitly. The display to be connected to is
the $ENV{DISPLAY} unless stated otherwise on the command line (with the --display option)
or with a parameter to the XOpenDisplay function.

This technique may be useful to programs that use Prima imaging functionality and may or
may not use the windowing capabilities.

The X11 resources database

X11 provides XRDB, the X resource database, a named list of arbitrary string values stored on
the X server. Each key is a combination of names and classes of widgets in the text format. The
key is constructed so that the leftmost substring (the name or the class) corresponds to the
top-level item in the hierarchy, usually the application name or class. Although the XRDB can
be also written via the native X API, it is rarely done by applications. Instead, the user creates
a file usually named .Xdefaults which contains the database in the text form.

The format of the .Xdefaults file directly reflects the XRDB capabilities, one of the most
important of which is globbing, manifested via the * (star) character. With the use of the
globbing, the user can set up a property value that corresponds to multiple targets:

*.ListBox.backColor: yellow

The string above means that all widgets of the ListBox class must have a yellow background.
The application itself is responsible for parsing the strings and querying the XRDB. Also, both

class and widget names, as well as the database values are fully defined in terms of the application.
There are some guidelines though, for example, the colors and fonts are best described in the terms
native to the X server. Also, classes and names are distinguished by the case: classes must begin
with the uppercase letter. Finally, not every character can be stored in the XRDB database
(space, for example, cannot be) and therefore the XRDB API automatically converts these to the
(underscore) characters.
Prima defines its own set of resources, divided into two parts: general toolkit settings and per-

widget settings. The general settings functionality is partially overlapping with the command-line
arguments. The per-widget settings are the fonts and colors that can be defined for each Prima
widget.

All of the general settings apply to the top-level item of the widget hierarchy, named after
the application, and the Prima class. Some of these though needed to be initialized before the
application instance itself is created, so these can be accessed via the Prima class only, for example,
Prima.Visual. Some, on the contrary, may occasionally overlap with the per-widget syntax. In
particular, one must be wary not to write

529

Prima*font: myfont

instead of

Prima.font: myfont

The latter syntax is a general setting and changes the default Prima font only. The former is
a per-widget assignment, and explicitly sets the font to all Prima widgets, effectively ruining the
toolkit font inheritance scheme. The same is valid for an even more powerful

*font: myfont

record.
The allowed per-widget settings are the color and font settings only (see the corresponding

sections). It is an arguably useful feature to map all the widget properties onto XRDB, but
Prima does not implement this, primarily because no one asked for it, and also because this
creates unnecessary latency when the enumeration of all possible widget properties takes place for
every widget.

All of the global settings’ classes and names are identical except for their first letter. For
example, to set the Submenudelay value, one can do it either by the

Prima.Submenudelay: 10

or by the

Prima.submenudelay: 10

syntax. Despite that, these calls are different, in a way that one reaches for the whole class and
another for the name, for the majority of these properties it does not matter. To avoid confusion
all class names are camelcase while the property names are lowercase.

Fonts

Default fonts

Prima::Application defines the set of get default XXX font functions, where each returns the
font that is predefined by the system or by the user through the system settings, to be displayed
correspondingly in menus, messages, window captions, and all other widgets. While in f ex Win32
these are indeed the configurable user options, the raw X11 protocol doesn’t define any. If the
toolkit is compiled with the GTK, then the default fonts can be read from the GTK settings.
Nevertheless, as the high-level code relies on these, the corresponding resources are defined. These
are:

• font - Application::get default font

• caption font - Application::get caption font. Used in Prima::MDI.

• menu font - Widget::get default menu font. The default font for the pull-down and pop-up
menus.

• msg font - Application::get message font. Used in Prima::MsgBox.

• widget font - Widget::get default font.

All of the global font properties can only be set via the Prima class, no application name
is recognized. Also, these properties are identical to --font, --menu-font, --caption-font,
--msg-font, and --widget-font command-line arguments. The per-widget properties are font

and popupFont, of class Font, settable via XRDB only:

Prima*Dialog.font: my-fancy-dialog-font

Prima.FontDialog.font: some-conservative-font

By default, Prima font is 12.helvetica .

530

X core fonts

The values of the font entries are standard XLFD strings, formatted with the default
--*-*-*-*-*-*-*-*-*-*-*-*-* pattern, where each star character can be replaced by a par-
ticular font property, such as name, size, charset, and so on. To interactively select an appropriate
font, use the standard xfontsel program from the Xorg distribution.

Note, that the encoding part of the font is recommended to be left unspecified, otherwise it
may clash with the LANG environment variable that is used by the Prima font subsystem to
determine which font to select when no encoding is given. This advice, though, is correct only
when both the LANG and encoding part of the desired font match. To force a particular font
encoding, the property Prima.font must contain one.

Alternatively, and/or to reduce X font traffic, one may set the
IgnoreEncodings.ignoreEncodings property, which is a semicolon-separated list of en-
codings Prima must not use. This feature has limited usability when for example fonts in the
Asian encodings result in large font requests. Another drastic measure to decrease font traffic is
the boolean property Noscaledfonts.noscaledfonts, which, if set to 1, restricts the choice of
fonts to the non-scalable fonts only.

Xft fonts

Prima can compile with the Xft library, which contrary to core X font API, can make use of the
client-side fonts. Plus, the Xft library offers appealing features such as font antialiasing, unicode,
and arguably a better font syntax. The Xft font syntax is inherited from the fontconfig library
and is to be consulted from man fonts-conf. For example:

Palatino-12

A font with the name Palatino and a size of 12 points.

Arial-10:BI

A font with the name Arial, size of 10 points, bold, and italic. The fontconfig syntax allows
more than that, for example, arbitrary matrix transformations, but Prima can make use only of
the font name, size, and style flags.

--no-xft

The --no-xft command-line argument, and the corresponding boolean UseXFT.usexft

XRDB property can be used to disable the use of the Xft library.

--no-core-fonts

Disables all X11 core fonts, except the fixed font. The fixed font is selected for the same
reasons that the X server is designed to provide at least one font, which usually is fixed.

It is valid to combine --no-core-fonts and --no-xft. Moreover, adding --noscaled to
these gives Prima programs the very classic X look.

--font-priority

Can be set to either xft or core, to select the font provider mechanism to match unknown
or incompletely specified fonts against.

Default value: xft (if compiled in), core otherwise.

--no-aa

If set, turns off the Xft font antialiasing.

531

Colors

XRDB conventions

The X11 is traditionally shipped with the color names database, usually a text file named rgb.txt.
Check your X manual where exactly this file resides and what is its format. The idea behind it is
that users can benefit from portable literal color names, with color values transparently adjustable
to display capabilities. Thus, it is customary to write

color: green

for many applications, and these in turn call the XParseColor function to convert strings into
RGB values.

Prima can also support this functionality. Each widget can assign eight color prop-
erties: color, hiliteBackColor, disabledColor, dark3DColor backColor, hiliteColor,
disabledBackColor, light3DColor by their name:

Prima.backColor: #cccccc

Additionally, the following command-line arguments allow overriding the default values for
these properties:

• --fg - color

• --bg - backColor

• --hilite-fg - hiliteColor

• --hilite-bg - hiliteBackColor

• --disabled-fg - disabledColor

• --disabled-bg - disabledBackColor

• --light - light3DColor

• --dark - dark3DColor

Visuals

The colors in the X11 protocol require the pixel values to be explicitly defined. A pixel value
is a 32-bit unsigned integer that encodes color in the display format. There are two different
color coding schemes - the direct color and the indexed color. The direct color-coded pixel value
can unambiguously be converted into an RGB value without any additional information. The
indexed-color scheme represents the pixel value as an index in a palette that resides on the X
server. The X11 display can contain more than one palette, and allow (or disallow) modification
of the palette color cells depending on the visual the palette is attached to.

A visual is an X server resource with a specific representation of the color coding scheme, color
bit depth, and modifiability of the palette. The X server can (and usually does) provide more
than one visual, as well as different pixel bit depths. There are six classes of visuals in the X11
paradigm. In each, Prima behaves differently, also depending on the display bit depth available.
In particular, the color dithering can be used on the displays with less than 12-bit color depth. On
the displays with the modifiable color palette Prima can install its own values in palettes, which
may result in an effect known as palette flashing.

To switch to a non-default visual, use the Prima.Visual XRDB property or the --visual

command-line argument. The list of visuals can be produced by the standard xdpyinfo command
from the Xorg distribution, where each class of the visual corresponds to one of the six following
classes:

532

StaticGray

All color cells are read-only and contain monochrome values only. A typical example is a
two-color, black-and-white monochrome display. This visual is extremely rare.

GrayScale

Contains a modifiable color palette, and is capable of displaying monochrome values only.
Theoretically, any paletted display on a monochrome monitor can be treated as a GrayScale
visual. For both GrayScale and StaticGray visuals Prima resorts to dithering if it cannot
get at least 32 evenly spaced gray values from black to white.

StaticColor

All color cells are read-only. A typical example is a PC display in the 16-color EGA mode.
This visual is extremely rare.

PseudoColor

All color cells are modifiable. Typically, the 8-bit displays define this class as the default
visual. For both StaticColor and PseudoColor visuals dithering is always used, although on
the PseudoColor visuals Prima resorts to that only if the X server cannot allocate a required
color.

On the PseudoColor and GrayScale visuals Prima allocates a small fixed set of colors, not
used for palette modifications. When a pixmap is to be exported via clipboard, displayed
in the menu, or sent to the window manager as an icon to be attached to a window, it is
resampled so that it uses these colors only, which are guaranteed to stay immutable through
the life of the application.

TrueColor

Each pixel value is explicitly coded as RGB. Typical examples are 16, 24, or 32-bit display
modes. This visual class is the best in terms of visual quality.

DirectColor

Same as TrueColor, but additionally each pixel value can be reprogrammed. Not all hardware
supports this visual, and usually this visual is not set as the default one. Prima supports
this mode in the same way as it does the TrueColor visual without any additional features.

Images

The X11 protocol does not standardize the pixel memory format for the TrueColor and DirectColor
visuals, so there is a chance that Prima won’t work on some bizarre hardware. Currently, Prima
knows how to compose pixels of 15, 16, 24, and 32 bit depth, of contiguous (not interspersed)
red-green-blue memory layout. Any other pixel memory layout causes Prima to fail.

Prima supports the shared memory image X extension that greatly speeds up displaying images
on the X servers running on the same machine as the X client. The price for this is that if the
Prima program aborts, the shared memory will never be returned to the OS. To remove the leftover
segments, use your OS facilities, for example, ipcrm on Linux and BSD.

To disable the user of the shared memory with images use the --no-shmem switch in the
command-line arguments.

The clipboard exchange of images is incompletely implemented, since Prima does not accom-
pany (and neither reads) COLORMAP, FOREGROUND, and BACKGROUND clipboard data,
which contains the RGB values for the paletted image. As a palliative, the clipboard-bound images
are downgraded to the safe immutable set of colors.

A note on the images in the clipboard: contrary to the text in the clipboard, which can be
used several times, images seemingly cannot. The Bitmap or Pixmap descriptor, stored in the
clipboard, is rendered invalid after it has been read once. This does not apply to the more modern

533

clipboard exchange protocol based on images being encoded as binary data, f ex in PNG format.
Prima prefers this exchange protocol whenever possible.

Window managers

The original design of the X protocol did not include the notion of a window manager, and
the latter was implemented as an ad-hoc patch, which results in possible race conditions when
configuring widgets.

Prima was tested with alternating success under the following window managers: mutter,
marco, mwm, kwin, wmaker, fvwm, fvwm2, enlightenment, sawfish, blackbox, 9wm, olvm, twm,
and in no-WM environment.

Protocols

Prima makes use of the WM DELETE WINDOW and WM TAKE FOCUS protocols. While the
WM DELETE WINDOW protocol usage is straightforward and needs no further attention, the
WM TAKE FOCUS protocol can be tricky, since X11 defines several of the input modes for a wid-
get, which behave differently for each WM. In particular, the ’focus follows pointer’ policy gives
problems under twm and mwm when the navigation of drop-down combo boxes is greatly hindered
by the window manager. The drop-down list is programmed so it is dismissed as soon its focus
is gone; these window managers withdraw focus even if the pointer is over the focused widget’s
border.

Hints

Size, position, icons, and other standard X hints are passed to WM in a standard way, and, as
the inter-client communication manual (ICCCM) allows, are ften misinterpreted by window
managers. Many (wmaker, for example) apply the coordinates given by the program not to the
top-level widget itself, but to its decoration. mwm defines a list of the accepted icon sizes so these
can be absurdly large, which adds to the confusion for an X client that can create an icon of any
size but is unable to determine the best one.

Non-standard properties

Prima tries to use the WM-specific hints for two window managers it knows about: mwm
and kwin. For mwm (Motif window manager) Prima sets hints for the decoration border
width and icons. For kwin (and probably to others that conform to the specifications of
http://www.freedesktop.org/) Prima uses the NET WM STATE property, in particular for the im-
plementation of the window maximization and the visibility of windows in the taskbar.

Use of these properties explicitly contradicts ICCCM and definitely might lead to bugs in the
future (at least with NET WM STATE, since the Motif interface can hardly expected to be changed
). To disable the use of the non-standard WM properties, the --icccm command-line argument
can be set.

Unicode

The core X11 protocol does not support unicode, and a number of patches were applied to X
servers and clients to make the situation change. Prima can only effectively support unicode text
shaping and rendering if compiled with the Xft, fontconfig, harfbuzz, and the fribidi libraries.

The core X11 protocol supports text rendering when the text is sent as either 8-bit or 16-bit
integers, but neither can be used to display unicode strings properly. Also, the core font transfer
protocol suffers from ineffective memory representation, which creates latency when fonts with a
large span of glyphs are loaded. Such fonts, in the still uncommon but standard iso10646 encoding,
are the only media to display multi-encoding text if the Xft services are unavailable.

534

These and some other problems are efficiently solved by the Xft library, a superset of X core
font functionality. Xft features Level 1 (November 2003) unicode display and supports 32-bit
text strings as well as UTF8-coded strings. Xft does not operate with charset encodings, and these
are implemented in Prima using the iconv charset converter library.

Clipboard

Prima supports the UTF8 text in the clipboard via the UTF8 STRING format.
Because any application can take ownership of the clipboard at any time, open/close brackets

are not strictly respected in the X11 implementation. Practically, this means that when modern
X11 clipboard daemons (KDE klipper, for example) interfere with the Prima clipboard, the
results may not be consistent from the programmer’s view, for example, the clipboard contains
data after a clear call. It must be noted though that this behavior is expected by the users.

Other XRDB resources

Timeouts

The X11 protocol provides no such GUI helpers as the double-click event, cursor, or menu. Neither
does it provide the related time how often, for example, a cursor should blink. Therefore Prima
emulates these but allows the user to reprogram the corresponding timeouts. Prima recognizes
the following properties, accessible either via the application name or the Prima class key. All
timeouts are integer values, the number of milliseconds for the corresponding timeout property.

Blinkinvisibletime.blinkinvisibletime: MSEC

The cursor stays invisible in MSEC milliseconds.

Default value: 500

Blinkvisibletime.blinkvisibletime: MSEC

The cursor stays visible in MSEC milliseconds.

Default value: 500

Clicktimeframe.clicktimeframe MSEC

If the ’mouse down’ and ’mouse up’ events follow each other within MSEC milliseconds, the
’mouse click’ event is synthesized.

Default value: 200

Doubleclicktimeframe.doubleclicktimeframe MSEC

If the ’mouse click’ and ’mouse down’ events follow each other within MSEC milliseconds,
the ’mouse double click’ event is synthesized.

Default value: 200

Submenudelay.submenudelay MSEC

When the user clicks on a menu item that points to a lower-level menu window, the latter
is displayed after MSEC milliseconds.

Default value: 200

Scrollfirst.scrollfirst MSEC

When an auto-repetitive action, similar to keystroke events resulting from a long key press
on the keyboard, is to be simulated, two timeout values are used, the ’first’ and the ’next’
delay. These actions are not simulated within Prima core, and the corresponding timeouts
are advisory for the programmer. Prima widgets use it for automatic scrolling, either by a

535

scrollbar or by any other means. Also, the Prima::Button widgets can use these timeouts
for the emulation of a key press in the autoRepeat mode.

Scrollfirst is a ’first’ timeout.

Default value: 200

Scrollnext.scrollnext MSEC

Same as Scrollfirst but for the ’next’ delay event.

Default value: 50

Miscellaneous

Visual.visual: VISUAL ID

Selects the display visual VISUAL ID which usually has a form of 0x?? hexadecimal number.
Different visuals provide different color depth and pixel encoding schemes. Some X servers
have badly chosen default visuals (for example, the default IRIX workstation setup has
an 8-bit default visual selected), so this property can be used to fix things. A list of the
visuals supported by the X display can be produced interactively by the standard xdpyinfo

command from Xorg distribution.

Identical to the --visual command-line argument.

See the Color entry for more information.

Wheeldown.wheeldown BUTTON

BUTTON is the numeric ID of the X mouse button, which corresponds to the mouse wheel
’down’ event.

Default value: 5 (default values for wheeldown and wheelup are current de-facto most
popular settings).

Wheelup.wheelup BUTTON

BUTTON is the numeric ID of the X mouse button, which that is corresponds to the mouse
wheel ’up’ event.

Default value: 4

Debugging

The famous ’use the source’ call is highly actual with Prima. However, some debug information
comes already compiled in, and can be activated by the --debug command-line key. Its parameter
is a combination of letters where each activates the debugging of different subsystems:

• C - clipboard

• E - events subsystem

• F - fonts

• M - miscellaneous debug info

• P - palettes and colors

• X - XRDB

• A - all of the above

Example:

536

--debug=xf

Also, the built-in X API XSynchronize call, which enables the X protocol synchronization (at
the expense of operation slowdown though) is activated with the --sync command-line argument,
and can be used to ease the debugging.

GTK

Prima can be compiled with GTK and can use its colors and font schemes, and also the standard
GTK file dialogs. This can be disabled with the --no-gtk command line switch.

On MacOSX, GTK usually comes compiled with the Quartz backend, which means that Prima
will get into problems with the remote X11 connections. Prima tries to detect this condition, but
if the trouble persists, please use the --no-gtk switch (and please file a bug report so this can be
fixed, too).

Quartz

Prima can be compiled with the Cocoa library on MacOSX that gives access to the screen scrap-
ing functionality that is used by the Application.get image method and which otherwise is non-
functional with XQuartz. To disable this feature use the --no-quartz command-line switch.

537

12.3 Prima::sys::gtk::FileDialog

GTK file system dialogs

Description

The module mimics the Prima file dialog classes Prima::Dialog::OpenDialog and
Prima::Dialog::SaveDialog, defined in the Prima::Dialog::FileDialog section. The class names
registered in the module are the same, but in the Prima::sys::gtk namespace.

538

12.4 Prima::sys::win32::FileDialog

Windows file system dialogs.

Description

The module mimics the Prima file dialog classes Prima::Dialog::OpenDialog and
Prima::Dialog::SaveDialog, defined in the Prima::Dialog::FileDialog section. The class names
registered in the module are the same, but in the Prima::sys::win32 namespace.

539

12.5 Prima::sys::XQuartz

MacOSX/XQuartz facilities

Description

XQuartz emulates the X11 environment with certain limits, namely, it cannot grab bits from the
screen, and it also hides the top-level menu from screen coordinates accessible for X11 clients.
For example, a Mac with 1024x768 resolution will only report f.ex. 1024x746 size to Prima. If
Prima is compiled with the Cocoa library, the get fullscreen image method circumvents these
limitations and returns a shot of the whole screen, including the application menu.

Note that screen grabbing has to be allowed by the user or the administrator. To do that,
Choose the Apple menu, System Preferences, click Security & Privacy, then click Privacy. Click on
an icon on the left lower corner to allow changes. Then, in the screen recording tab, add XQuartz
to the list of allowed applications. Note that it might not work if you run your application from
a (remote) ssh session - I couldn’t find how to enable screen grabbing for sshd.

540

12.6 Prima::sys::FS

Unicode-aware core file functions

Description

Since perl win32 unicode support for files is unexistent, Prima has its own parallel set of functions
mimicking native functions, ie open, chdir etc. This means that files with names that cannot be
converted to ANSI (ie user-preferred) codepage are not visible in perl, but the functions below
mitigate this problem.

The module exports the unicode-aware functions from Prima::Utils to override the core
functions. Read more in the Unicode-aware file system functions entry in the Prima::Utils
section.

Synopsis

use Prima::sys::FS;

my $fn = "\x{dead}\x{beef};

if (_f $fn) {

open F, ">", $fn or die $!;

close F;

}

print "ls: ", getdir, "\n";

print "pwd: ", getcwd, "\n";

API

The module exports by default three groups of functions:
These are described in the API entry in the Prima::Utils section:

chdir chmod getcwd link mkdir open rename rmdir unlink utime

getenv setenv stat access getdir

opendir closedir rewinddir seekdir readdir telldir

The underscore-prefixed functions are same as the ones in -X in perlfunc (all are present except
-T and -B).

_r _w _x _o _R _W _X _O _e _z _s _f _d _l _p _S _b _c _t _u _g _k _M _A _C

The functions that are implemented in the module itself:

abs path

Same as Cwd::abs path.

glob PATTERN

More or less same as CORE::glob or File::Glob::glob.

lstat PATH

Same as CORE::lstat

541

