A Machine-Independent Theory of the Complexity of

Recursive Functions

MANUEL BLUM

Massachuselts Institule of Technology,* Cambridge, Massachusetls

apstrAcT. The number of steps required to compute a function depends, in general, on the
type of computer that is used, on the choice of computer program, and on the input-output
code. Nevertheless, the results obtained in this paper are so general as to be nearly independent.
of these considerations.

A function is exhibited that requires an enormous number of steps to be computed, yet has
a “nearly quickest” program: Any other program for this function, no matter how ingeniously
designed it may be, takes practically as many steps as this nearly quickest program.

A different function is exhibited with the property that no matter how fast a program may be
for computing this function another program exists for computing the function very much
faster.

1. Introduction

The problem is to characterize the complexity of computable functions. The theory
developed here is expanded along lines suggested by Rabin’s axiomatic approach
[6]. The chosen axioms are the basis for determining what is or is not a legal measure
of funetional complexity. Perhaps the most familiar such intuitive measures are (i)
the number of steps needed to compute a function, and (ii) the amount of machine
tape needed for a computation. These both satisfy our axioms. Other examples are
presented after the axioms.

The complexity theory offered here is machine-independent. This means that a
theorem that characterizes the complexities of partial recursive funetions on one
class of machines equally well characterizes their complexities on almost any other
class. Although at first one expects this, the claim is odd, for the complexity of a
particular function necessarily depends on the class of machines used for the com-
putations. Thus it often takes fewer steps to compute a function within a class of
multitape machines than within a class of 1-tape machines, and in a class of machines
with a base 2 input-output code one can compute certain functions (such as 2") in
fewer steps than in a class of machines with a base 10 code. So all hope that an indi-
vidual function might enjoy a unique measure of complexity, one that is independent
of the class of machines, must vanish. What remains is possible, and is offered here

* Department of Mathematics and Research Laboratory of Electronies.

This work, which is based on a Ph.D. thesis submitted to the Department of Mathematics,
Massachusetts Institute of Technology, May 5, 1964, was supported in part by the Joint
Services Electronics Program, under Contract DA36-039-AMC-03200(E); in part by the Na-
tional Science Foundation (Grant GP-2495), the National Institutes of Health (Grant MI-
04737-05), the National Aeronautics and Space Administration (Grant NsG-496) and the U. S.
Air Force (ASD Contract AF33(615)-1747); and in part by Project MAC, an M.L.T. research
program.

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967, pp. 322-336.

Theory of the Complexity of Recursive Functions 323

instead : an axiomatic theory whose theorems are independent of class. An example
of such a theorem will help to formulate these notions.

TuporEM 1. To every total recursive function g there corresponds a 0-1 valued total
recursive function [which is so complex that any machine that computes f(n) takes more
than g(n) steps to do so for infinitely many inputs n.

Although the axioms should come first, they are so intuitive that an informal
proof of this theorem can be given even now. In that proof Zo, 7, , Z,, -+ is a
sequence of machines that computes all the partial recursive functions of the natural
numbers,

Proor. The funetion g is given and f must be defined—in this case by a diagonal
argument. To compute f(n), simulate the nth machine Z, by input n. If Z,, stops in
less than g(n) steps, with some output m, make f(n) = m. Otherwise f(n) can be
arbitrary. Then any machine Z; which with input ¢ takes less than g(¢) steps cannot
be a machine for f. But each machine appears infinitely often in the list (or else we
can change the list to force this) and, in particular, each machine for f does too. So
the theorem follows, Q.E.D.

This first theorem is not intended to be an impressive one. The purpose in pre-
senting it is to exhibit a theorem that is true for any class of machines, no matter
how the machines are constructed or coded. Thus Z,, Z, , Z, , « - - might be the class
of 1-tape machines, or it might equally well be the class of 10-tape machines. It
might even boast a base 1 input code and Roman numeral output code.

We associate with each machine Z, two functions: (1) the partial-recursive ¢.(n)
which it computes and (i1) a partial recursive ®.(n) called its step-counting function.
Actually, ®;(n) may be interpreted either as the number of steps or the amount of
tape used by Z; when its input is n.

In this paper we present a set of axioms, a few rinor theorems and two major
theorems: speed-up and compression. The speed-up and compression theorems touch
on the following problem: Given a recursive function f, does there correspond to each
machine that computes it another that computes it faster?

The speed-up theorem, or rather a special case of it, gives examples of 0-1 valued
total recursive functions f with the property that to every Z; that computes f (in
®,(n) steps) there corresponds another machine Z; that does the job so much
quicker (in ®;(n) steps) that ®,(n) > 2% for almost all n, i.e., for all but a finite
number of integers. Note that this leads to an infinite sequence [= ¢; = ¢; =
¢r = -+ such that

di(n) > 28® > ™"

The compression theorem is a converse of the speed-up theorem. Much like the
work of Hartmanis and Stearns [2, Th. 9], it shows that two tight bounds can sand-
wich the number of steps needed to compute some very complex functions f. As
proved in this paper, the theorem is completely general, but for the moment here is
an application of it to the 1-tape machines with a b (blank), 0, 1 alphabet, a base 2
input-output code and step-counting functions defined by ®:(n) equals the actual
number of steps to compute ¢:(n) : Let ¢; be a partial recursive function. Then a 0-1
valued f(n) exists with the same domain as ¢, , which is so complex that any machine
computing f(n) takes at least ®.(n) steps for almost all n, but even so at least one

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967

324 MANUEL BLUyM

machine computes f(n) in less than [®,(n)]" steps. So the number of steps needed to
compute f wedges between the bounds ®; and @,".

2. Azioms for Step-Counting Functions

The axioms can be formulated without mentioning devices or machines. The first,
step Is to postulate an effective list, { ¢}, of all partial recursive functions, and to re-
quire of this list that the S,” theorem' and the universal Turing machine theorem?
hold true. (Rogers [8] calls any such list an acceptable Gédel numbering, and he
proves that any two such lists are recursively isomorphic!) The second step is to as-
sociate with each ¢; a partial recursive function ®,. The set {®.} is completely arbi-
trary save for two basic restrictions, the axioms:

1. ¢i(n) converges (i.e., Z; with input n stops) <> ®;(n) converges.

2. The function

1 if ®(n) = m,
0 otherwise,

M(i, n, m) ={

is (total) recursive.

Axiom 1 can equally well be expressed in terms of the function M by the state-
ment: ¢(n) converges <> A m[M (4, n, m) = 1]. A function M which so satisfies
axioms 1 and 2 is called a measure on computation.

In what follows, ®:(n) > m is a shorthand for « > &;n > m, where &,(n) =
o 18 to mean that ¢.(n) diverges.

Example 1. Let {Z.} be the class of multitape machines, and {¢;} the set of func-
tions computed by it. Then a possible set of step-counting functions {®.} is defined
by ®(n) = mif and only if Z; with input n stops in preeisely m steps (else ®(n) is
undefined).

Another possible set {®;} is defined by ®,(n) = m if and only if Z; with input »
stops and Z,; uses precisely m squares of tape for this computation.

Example 2. If {®;} satisfies the axioms, then so does {&,} defined by
$:(n) = ®;(n)2™"
Another possible choice of {$.}, given that a certain ¢;, is total recursive, is

4 _ @i(n) if ir"“—-io,
dn) ‘{o it =4

Example 3. The choice ®.(n) = ¢:(n) is not permissible, since it satisfies axiom 1
but not axiom 2; nor is the choice which sets ®;(n) = 0 for all 7 and n permitted,
since it satisfies axiom 2 but not axiom 1. It follows that the two axioms are inde-
pendent.

Each step-counting function ®;, being partial recursive, appears somewhere in
the list {¢}. The second theorem asserts that there exists an effective procedure for
telling where.

1 The Sy theorem [9], also known as the iteration theorem, asserts the existence of a total re-
cursive function o such that ¢, m(n) = ¢:(m, n) for all ¢, » and m.

¢ The universal Turing machine theorem states that for any effective 1-1 onto map r: N X N —
N, N = nonnegative integers, there is a universal machine Z; with the property ¢:(r(z, y)) =
¢{y) for all x and y.

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967

Theory of the Complexity of Becursive Functions 395

Tuporen 2. There exists o lolal recursive function 8 such that ®; = dsis for all .
Proor. Axiom 2 indicates (hat M (4, n,m) = 1 $(n) = m.
Define a funciion f that satisfies

Jli,n) = m e Mt n, my = 1,

Tunction f is partial recursive. By the 8,” theorem, there exists a total recursive
function 8 such that ¢gpin) = F(4, n).

This is the desired 5. Q.E.D.

The third theorem makes precise the following notion: Suppose two machine
classes are given, and that a function fis to be computed. Then for every machine of
one class that ecomputes 1t, there Is a machine of the other that computes it in about
the same number of steps.

Tugonkm 3. Let M and 1 be arbitrary measures on computation with step-counting
functions {®} and {$). Then a total recursive function g exists such that
gin, ®n)) = ®ln) end g(n, B:(n)) > dun) for all ¢ and almost all n.

This means that ®n) and &) do not, differ too much from each other.

Proor. The desired function g comes from function p defined by

rq’i(“) + &in) if @n) =m or din) =m, ie., if
plt, m,m) = M(4,n,m)=1 or M n, m) =1,
0] otherwise.

Function p is total recursive: It is computable beeause 3 and M ave, and it is
total because ¢:(n) convergent «» ¢i(n) convergent <3 &{n) convergent. The de-
gired ¢ 18 g{n, m) = max ;<. p(i, n, m). QED.

A useful tool for proving complexity theorems involves a simplified version of
Kleene’s recursion theorern [9]: To every total recursive function o there corresponds
an integer J such that ¢.¢;, = ;. An example of its use appears in this proof of the
obvious--that a badly designed machine can waste a huge number of steps in com-
puting a simple funetion:

TueoreM 4. Let h and f be total recursive functions. Then there exists an index § for
I such that ®,(n) > W{n) for all n,

Proor. Let

[f(n) if ®(n) > hin), le,if M4 nmom) =0
p(i, n) =4 for all m < A{n),
Ll + ¢:{m) otherwise.

Tunetion p is total recursive; hence there exists a total recursive function o such
that p(z, n) = ¢ow(n) for all ¢ and n. By the recursion theorem there exists an
integer 7 such that ¢,y = ¢, . Now it is easy to show that j is an index for f: If
@, (n) < ki{n), then ¢;{n) = 1 + ¢;(n), which is a contradiction, So ®;(n} > hin)
for all n. By definition of funetion p, it follows that ¢;(rn} = f(n) for all n. Q.E.D.

3. Speed-Up
On a 1-tape machine with » base 10 code and with step-counting functions which
count actual numbers of steps, a funetion like f(n) = Oor f(n) = n can be computed

Journal f the Association for Computing Machinery, Vol. 14, No. 2, April 1967

326 MANURIL, BLUN

in a quickest or a best way. There is no surprise here, for each is computable by
finite automata. .
On the other hand, if a function is reasonably complex, then to each machine
that computes it there corresponds another much faster that computes it in just
half as many steps for infinitely many n. A simple example of such a function is

v« _J1 if = isa palindrome,
Sin) = {0 otherwise.

This function determines whether an integer written in base 10 reads the same
forward as backward. To compute f(n), n = 372686273, a typical machine first
scans the rightmost digit 3 and deletes it, then runs down the tape to leftmost digit 3
and deletes it, backs up to rightmost digit 7 and deletes it, down to leftmost digit 7
and deletes it, und so on. After comparing opposed digits, it prints the output 1. A
quicker machine scans the rightmost digits 7 and 3 simultaneously before running
down the tape to leftmost digits 3 and 7, and so compares digits 2 at a time rather
than 1 at a time. This quicker machine takes approximatcly half as many steps as the
slower one for all palindremes. In fact one can show (though not easily) that no
matter what machine is chasen to compute this function, another can be found
which does the same job in just half as many steps, for infinitely many inputs.

This indicates u result that is generally true: There exists a total recursive fune-
tion f with the property that to every index 7 for f there corresponds another index
j for f such that ®,(n) > 2&,(n) for almost all #. Can astronger theorem be proved?
Tn particular, does there exist a function f with the property that to every index :
for f there corresponds an index j for f such that

®n) > &(n)* "

for almost all n? The next theorem asserts that such a function exists.

Turorem 5 (SPEED-Ur). Let r be a total recursive function of 2 variables. Then
there exists a total recursive function f taking values O and 1 with the property that Lo
every indes 1 for f there corresponds another index § for | such that ®.(n) > r(n, & (n))
for almost all n. '

Proor. Simple intuition lies behind this theorem. It comes from adirect proof
that to every total recursive # there correzponds a total recursive f with the property
that if ¢ is any index for f, then &;(n) > h(n) for almos{ all . This direct proof
compules [(n) by canceling the first uncanceled funetion ¢.(n) which is in the set
{@o(n), -+, éa(n)} and whose step-counting function ®; has the property
$i(n) < h(n). It then makes f(n) 5 ¢:{n). Toprevent the folly of looking no farther
than the ith function ¢, at later times, the canceled &, is passed up in computing f for
larger n. ‘ ‘

A minor change in this construction makes f into the one wanted for the theorern:
Tnstead of canceling the first uncanceled element of the set {go(n), -+, da(n)}
with the property ®:({n) < h(n), we cancel the first one with the property
Pin) < hin — 7). Then make fin) & ¢.n) as before. That defines /. In the proof,
‘this computation of f is f = ¢ro.0.n , where Lis an index for A.

" The intuition enters in seeing what makes this f work. The machine for ¢u,0,, gocs
through the set {¢o(n), -+, da(n)} and cancels the frst uncanceled ¢. for which
®(n) < ¢i(h — £). A quicker way to compute f(n) uses the fact that it is not really

Journal of the Association for Computing Machinery, Vol. 14, No, 2, April 1987

Theory of the Compleaity of Recursive Functions

4

e
O
-3

necessary to sean the whole set {eolnd, - ¢a(nd]. Given o fixed number u, it is
sufficient for lavge n 1o sean only the zeb {¢,(n), - - | éuind]. The renson is that for
large enough n, each of the elements du(n}, -+ | ¢, 1(n) is cither already canesled
or will never be canceled; so none of these will be eanceled during the compuiation of
f(n). These may therefore e bypassed for sutliciently large n, say » 2> o Such a
shorteut computation of f{n), which scans the smaller set {¢,(n), -, @a(nil,
takes fewer steps; it is known here as f = ¢ o o - Lo geveral, the larger u, the faster
is the corresponding machine that computes §. The increase is sufficient to prove the
theorem.

Only one small problem arises. These computations involving w and » are special
ways to compute ¥, and it might be thought that some strange and much quicker
way to compute [has escaped us. Such is not the case, for if J s any tndex for f, then
as & consequence of the definition of J, B;(n) > ¢i{n — 7) for almost all n, which puts
a lower bound on the number of steps that it takes to compute f{n), This lower
bound is used to show thak any procedure for computing f s no better than one of
those above involving fixed numbers w and 2.

The proof of the theorem follows a plan suggested by Michael Avbib, which
clarifies and condenses the prasent author's original proof. We define a erucial total
recurgive funetion {{u, », I} so that ¢; total implies ¢ . total with values G and L
Then prove:

Lewiva 1. If ¢ 43 total, then for each w there exisis 0 v such thal i = Ginn.n-

Luvaa 2. IS ¢ is total, and if we define [== e n, ten for cach index 1 Jor f,
Pn) > diln — 1) for almost all u.

Lewya 3. There exists ¢ total recursive funciton & swch that for all w and »,
o — u + 1) = vin, Byuwpin)) for almost all n.

Then for each index ¢ for f = ¢o.0,n and for almost all o,

bin) > ¢ln —) {Lemma 2)
> vin, Buapenin)) forall v (take w=141 in Lemma)
= 1(n,®;(n)) (by Lemma 1, choose v su that f = @uopsnn = ¢5),

and the theorem follows. Q.E.D.
We now turn to the construction of ¢ and the proof of the throe lemmes.
1. Construction of . Function ¢u..n 18 defined in terms of the set (see
Figure 1)
Cuo = {u(m) | (m < vand b < m)or {m 2 vandu S & < m)}

Compute ¢y .., n(n) as follows:
(i) Tf o < u, set Grpu,n(n) = Drewenlm) and use (i},
(i) Tf v 2= u, proceed as follows:
(a) Compute ¢:(0), -+, du(n) if n < v, bub compute ouly ¢}, -+,
éi(n — u) if n = v If any of these diverge, lot Bogu,e () diverge.

Otherwise go to (8). ’ '
(8) Cirele all ¢x{n) in Cue (1 column 7 such that ®uin) < duln — k). I

none are circled, set e 0, o(n) equal to zero. Otherwise, go 1o [y).
(v) Cancel the first entry ¢r(r) in eolumn n which is circled ;:L‘rle j\'.vhmh has

the property that ¢s(m), m < m, has not been canceled. If none of

Journal of the Assoeiation for Computing Machinery, Vol. 14, No. 2, April 1907

328 MANUEL BLUM

n= 0 1 2 v
=0 [F0 7 42 3o (V)
| 8 ()7, (2)
2 $,(2) /
u-l // $y1(v)
u (V)/

Cyy IS THE SHADED REGION
Fig, 1

the entries in Cwe N column 7 are canceled, set ¢y...n(n) equal to
zero. Otherwise go to (38).
(8) If ¢u(n) is canceled, set

_ [0 i au(n) # 0,
Grguwn(n) —{1 if ¢p(n) = 0.

This definition implies that if ¢, is total, then ¢:.v.0 is total for all » and ».

9. Proof of Lemma 1. In the computation of ¢uo.0.s the npumber of entries above
row i that are canceled must be finite, since a row contains at most one canceled
entry. Let column » be immediately to the right of the rightmost canceled entry
above row x. Then it is clear from the figure that ¢eo.0.n(n) = oo nin) for all n.

Q.E.D.
3. Proof of Lemina 2. Let ¢ be an index for f, and suppose to the contrary (hat
$:(n) < ¢yfn — 1) for infinitely many n = ny, %2, Mg, = . Then it is seen that, in

the computation of ¢uosn(n), ¢dn) must be canceled for some k, and so
duoon(ne) #= ¢y, which implies that f(ny) # éin). Contradiction. Q.I5.D.
4. Proof of Lemma 3. Choose a recursive 1-1 map of the integers onto the set of

all 1-tuples, 2-tuples, 3-tuples, - - - of integers. Let {ao, + + -, an)) denote the integer
which maps onto (ag, - - -, a.). Define

g(n, U, v, ’L., 2) - {‘é’t(u,u.'i)(%) :j‘ :Otz w4 v and z = ((@l(()): RN cpi(n - u)))}

Using the M -function, we see that g is total recursive. It thus suffices to find a
total recursive function ¢, such that, for almost ail n,

¢l(n —u + 1) = T[”" g(n: u, v, Z’ ((@1(0),] (I’l-(n - u))))] (31}

Define p as follows:

p(3,0) =0
p("‘sz + 1) =Ulzlasx ?"[2 + U, g(z + U, U, Y, 7:) <<¢3(0))) q')%(z:)))).l (32)
0Zuse

The function p is partial recursive, so there exists a total recursive function o such
that p(4, 2) = ¢ea(2). By the recursion theorem, there exists an index ! such that

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1907

Theory of the Complexity of Recursive Functions 329

pen(z) = @u(z) for all 2. Hence
dl2) = pld, 2). (3.3)

Thas $:(0) = p(l, 0} = Q. Now assume ¢,{n) converges for n < z. On inspecting
(3.2) and recalling (3.3), we see that ¢:(z - 1) converges, since g and r are total
recursive, and convergence of ¢,(n) for n < 2 implies convergence of ®,(n) for
n < z. Hence ¢, is total recursive.

Fix w and v, Then for n > max {Zu, w + v}, we haves <n —u, u <n — uand
so, puttingz = n —yand ¢ = [in (3.2), we obtain {3.1). Q.E.D.

For example, let »(n, m) = 27 Then the speed-up theorem asserts the existence
of a total recursive function f such that to every index 7 for f there eorvesponds an-
other index 7 for f such that ®,(n) > 2%™ for almost all n. Hence it also asserts
that to index j for f there corresponds an index k for f such that ®.(») > 22%("),
and so on. Unforbunately, the speed-up theorem does not provide an effective pro-
cedure for going from a machine for f to a speedier one. In fact it cannot, ag Corollary
1 shows:

CoroLLARY 1. Let v be a total recursive function and f the corresponding function
of the speed-up theorem. Lf v is sufficiently large, there can be no total recursive function «
such that: (1) « enumerates only indices of f, (2) to every indez i for f there corresponds
an index «(7) Jor f such that ®.{n) > r{n, Su;n(n)) for almost all n.

Proor. Let 7 be a total recursive function with the property that for each j
there exist infinitely many » such that #(n) = j. By the 8, theorem, there exists a
total recursive function ¢ such that

b)) = dyimian(n) (3.4)

far all ¢ and n. For this ¢, it is easy to show that there exists a total recursive func-
tion g such that

@B(i)(ﬂ’) = g(ny 2:, q’i(ﬂ.(n))) ql'ﬁ,‘(ﬂ'(n))(n})z
and therefore there exists a total recursive function A such that
Bon(n) < Aln, Bs;wn(n)) + A7, P(w(n})) (3.5)

for all 4 and n. Let « = ¢y enumerate only indices of 1. Then ¢y, cren{®) = deemn(n),
and s0 by (3.4}, demy(n) = $urnpn), 80 ¢(k) is an index for . By (3.5),

‘Dv(k)(n) < h(na @K[W(‘D))(n)) + h{'I’C, @R(W(n))) (?’6)
for all n. For each j and infinitely many n, #{n) = j, and so for each j and infinitely
many =,

Logp(n) < h{ny Punln)) + Rk, 2u(7)). (3.7)

But & as defined in (3.5) is independent of 7. Therefore » can be chosen as large as
one likes without changing 4. In particular, let r be any function that satisfies the
mequality, 7(n, m} = n + hin, m) for all n and m. I we let m = $,{n), eq. (3.7}
gives

Bym(n) < r(n, Bun(n)) — n + w(k, B(j))

for infinitely many n. This in turn implies that for every j there exist infinitely many

Journal of the Association for Computing Machinery, Vol, 14, No. 2, April 1087

330 MANUEL BLU M

n such that
Bomy(n) < r(n, Bey(n)).

As stated just before eq. (3.6), f = e , 50 this is a contradiction to part 2 of
this corollary. Q.E.D.

It may be supposed of the r-speed-up ®:;(n) > r(n, ®;{(n)) that r must be an
exceedingly small function in comparison with ®; . The next theorem asserts, how -
ever, that » may in fact be as large as ®; .

TuroreEM 6 (Super SpeeD-UP)., Let g be a tolal recursive function. Then there
exists a 0-1 valued total recursive function f such that (1) of < 4s an index for f, then
®n) > g(n) for almost all n; (2) to every index 1 for f there corresponds an index
for f such that ®,(n) > $;(®(n)) for almost all n.

Proor. The proof of this theorem is like that of the speed-up theorem, so it is
not given here in detail but only indicated. It depends on the following lemma:

LemMA. There exists a sequence {p.)s=o of monotonically increasing total recursive
Junctions p. such that (1) for each s and almost all n, p(n) > g(n); (2) for each s
and almost all n, p,(n) > pepr(Peyrln)}; (3) foreach sand all n, pn 2 pyuln).
The proof of this lemma is left to the reader.

To compute f(n), cancel the first uncanceled element ¢ which is in the set {¢o(n),

-, ¢a(n)} and whose step-counting function ®; has the property ®.n) < pi(n).
Then make f(n) 5 ¢i(n). It follows that if ¢ is an index for f, then for almost all n |

®i(n) > pin). (3.8)

By the lemma, p.(n) > g(n) for almost all n, so part 1 of this theorem is proved.

To compute f(n) more quickly, it suffices to fix a number « and for large enough n
to scan only the set {¢.(n), - -+, ¢o(n)}. The number of steps needed to compute
f(n) in this way can be determined: It can be shown, by using part 3 of the lemma,
that there exists a total recursive function b which is independent of the sequence
{p:} such that a machine which computes f(n) in this way (i.e., by scanning only
the set {¢u(n), -, P.(n)}) takes less than h(n, p.(n)) steps for almost all n. This
means that for every number u there exists a machine Z, which computes f so
quickly that for almost all n,

h(n, pu(n)) > ®i(n). (3.9)

Since the function A is independent of the choice of sequence {p,}, the function g
may be made so large in the lemma that p,1(n) > A(n, p.(n)) for almost all n.
Then by taking 4 = ¢ + 2, this yields that for almost all n,

pina(n) > h(n, pia(n)). (3.10)
It follows that if Z; computes f, then for almost all n,
@i(n) > pdn) (byeq. (38)) |
> P pia{n)) (Lemma, part 2)

> pia(h(n, pue(n))) (by eq. (3.10) and the fact that p.y, is monotonically
increasing)

> pa(®i(n)) wheref = ¢; (u =174 2ineq. (3.9))

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1067

Theory of the Complexity of Recursive Funclions 331

> h(®5(n), pus(®i(n))) (by eq. (3.10))
> &;(P;(n)) wheref = ¢; (u =174 2ineq. (3.9)).

QE.D.

4. Compression

The next theorem, which is similar to one by Rabin [5], proves the existence of
enormously complex 0-1 valued functions. As such it resembles Theorem 1, but it
extends that result in three important directions. Whereas Theorem 1 asserts that
there are 0-1 valued functions f(n) which take more than g(n) steps to compute for
infinitely many =, the next theorem asserts this for almost all n. It also allows g and
fto be just partial recursive, instead of total recursive. Finally, it provides a re-
cursive v which maps indices of ¢’s into indices of f’s. Theorem 7 is not a trivial
generalization, and the compression theorem leans heavily upon it, especially upon
the existence of «.

TuEOREM 7. (1) To every partial recursive function g there corresponds a 0-1
valued partial recursive function f with the same domain as g such that if 7 is any ndex
Jor f, then ®;(n) > g(n) for almost all n. (2) There exists a total recursive function v
which takes an index for any g tnto an index for the corresponding f.

Proor. If it is known in advance that ¢ is total recursive, then a very simple
procedure will serve to compute f. To compute f(n), cancel the first uncanceled
element ¢; which is in the set {¢o(n), - -+, ¢o(n)} and whose step-counting function
has the property ®;(n) < g(n). Then make f(n) = ¢i(n). In this way, f(n) is
forced to be different from those functions ¢, for which ®,(n) < ¢g(n); hence, it must
happen that if k is an index for f, then ®:(n) > g(n) for almost all n.

This procedure for computing f(n) requires that it be known which functions in
the set {¢o, - - - , ¢} were canceled during the computation of f(0), -+, f(n — 1).
So to compute f(n) with this procedure, it is necessary first to compute f(0), then
f(1), and so on to f(n—1). This is easy enough if ¢ is total, but if not, g(m) may
diverge for some m and then so must f(m) and there may be no way of telling that
f(m) diverges. If m < n, this makes it impossible to compute f(n). To bypass this
difficulty, we compute f(n) in such a way that f(0) through f(n—1) need not be
computed first. The idea is to enumerate in some order all pairs of nonnegative
integers so that given any nonnegative integers n and m, the pair (n, m) is certain
to be produced eventually.

After each pair (n, m) is produced, take the index 7 for ¢ and determine whether
or not ®,(n) = m. This may be done effectively using the measure function, M.
If ®,(n) £ m, go on to the next pair in the list. On the other hand, if ®i(n) = m,
then compute f(n) as follows: Cancel the first element ¢; in the set {¢o, -~ -, $a}
which was not canceled during the enumeration of pairs up to the present pair
(n, m) and whose step-counting function ®; has the property ®;(n) < g(n). Per-
haps no ¢, is canceled. If so, set f(n) = l‘fOn the other hand, if ¢; is canceled, set
f(n) s ¢;(n). This defines f.

The proof of Corollary 1 to Theorem 8 requires an extremely detailed statement of
the above construction of f. This statement is provided by the following indented
paragraphs, which the reader may skip.

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967

332 MANUEL BLUng

The procedure for going from an index 7 for ¢ and a number n to a value of f(n) is as
follows:

First compute g(n), (g = &:). If it diverges, let f(n) diverge. If it converges, f(n)
must be made to converge. To compute it, a procedure is set up so that all functions b;
are canceled whose step-counting functions ®; have the property that ®;(n) < g(n) for
infinitely many n, and the corresponding pairs (j, n) are adjoined to a list L. The list I,
grows in stages and at each stage at most one pair (f, n) is adjoined to L. The growth of
L at stage z is described next. A recursive code that maps N X N onto N is used to rewrite
z in the form (p, ¢) = z.

Stage © = (p, ¢). If ®:(p) # ¢, (g = &), then bypass stage = and go to stage z-41.
On the other hand, if ®;(p) = ¢, then cancel the first uncanceled function ¢;(p), if there
be any, which is in the set {¢o(p), --- , ¢p(p)} and whose step-counting function has the
property ®;(p) < g(p). To cancel ¢;(p) means to add (5, p) to list L. After canceling ¢;(p),
go to stage z-+1.

Now, to compute f(n), look down the list I for a pair (s, n) ending in n. It corresponds
to a function ¢ for which ®,(n) < g(n). If such a pair (s, n) exists, make f(n) = ¢,(n).
On the other hand, if (s; n) does not appear in L for any s, set f(n) = 1. Note that an
effective procedure can determine whether or not (s, n) is in L for some s. That is because
the pair (s, n) can appear only in stage (n, m), where ®;(n) converges to m.

By construction, if j is any index for f, then ®;(n) > g(n) for almost all n. Hence
part (1) of this theorem is immediate. Part (2) follows from the proof of (1) because
that proof shows how to construct an f for every g: The proof of (1) furnishes a
procedure for going from the index 7 for g and an integer n to the value of f(n).
With 7 fixed, a machine that follows this procedure computes f(n), and the index of
this machine, which is easily determined, is the desired index v(¢) for f. Q.E.D.

This last theorem serves as a lemma to the compression theorem, which comes
next. For virtually all machines and codes, the compression theorem sets upper and
lower bounds on the number of steps needed to compute a function f(n), the lower
bound being a partial recursive G(n) and the upper bound being a total recursive
function of it, A{n, G(n)). As a bonus, it demonstrates a curious relationship between
measures on computation and bounds on complexity. This relation becomes clearer
with the following definition.

Definition. Let M be a 0-1 valued total recursive function of three variables
with the property that for every 7 and n there is at most one m such that
M(i, n, m) = 1. Set G;(n) = the unique m, if any, such that M(4, n, m) = 1,
and let G.(n) diverge if m does not exist. The set {G,} of partial recursive functions
so defined is called a measured set.

Example 1. A measured set of functions is the set {®.} of all step-counting func-
tions.

Example 2. A measured set of functions, {G;}, which in fact includes the real-time
computable functions [Yamada, 10} is defined by

G

(n) = din) if ¢«(n) converges and ®,(n) < i-¢n),
divergent otherwise.

Example 3. A measured set of functions cannot include all total recursive func-
tions. To see this, suppose to the contrary that {G;} does contain all total recursive
functions. Let function f be defined by

[0 ifom(n, n, 1) = 1, ie. lfdn(n)

UOR 11 otherwise.

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967

Theory of the Complexity of Recursive Funciions 333

This f is total recursive because M is. But f ¢ {G.}, for if f = G,, then f(4) = 0 =
g(i) = 1« f(2) = 1, which is a contradiction.

THEOREM 8 (COMPRESSION). |G} s a measured set < there exists a total recursive
function h such that the following is true: To each partial vecursive function G, there
corresponds a 0-1 valued partial recursive function f with the same domain as G such
that (1) of 7 is any index for f then Gi(n) < ®i(n) for almost all n; (2) there exists an
index k for [such that @x(n) < h{n, Gn)) for almost all n; (3) there exists a total
recursive function T which maps the subscript © for any Gyinto the index k above for the
corresponding f. .

Proor. =>: There exists a total recursive function & such that G; = ¢, for all 4.
The proof of the existence of £ is like that of Theorem 2, so it is left to the reader.

Let v be the funetion of Theorem 7, and let f = ¢y . Then for every index j
for f, Theorem 7 insures that

®;(n) > ¢xa(n)(= Gidn)),
asin (1). Now set

. _ qDﬁ(»;)(fL) if g,(n) = m, i.e., if m(b, n, m) = 1,
p(i, n,m) = {O otherwise.

Define h(n, m) = 1 -+ maX;<, p(7, n, m). Then h is total recursive, and h(n, Gi(n))
> &y (n) for almost all n, which means that this & satisfies (2). As for the recur-
sive 7 in (3), the function = = v& maps the subscript ¢ for G; into the correct index
+4(4) for f. This completes the proof in this direction.

& A proof that {G.} is a measured set must show that 9 is total recursive.
The proof that 9M(z, n, m) is total recursive is just a procedure for computing it
which makes use of the fact that for every ¢ and almost all n,

B(n, Gin)) > . (n) > Gi(n).

To compute M (4, n, m), first determine whether ®.»(n) < h(n, m). This can be
decided because b is total recursive. If ®,(5(n) > h(n, m), then G{n) = m, so set
Wi, n, m) = 0. If ®.y(n) < h(n, m), then $.;(n) converges, and since . (n)
> Gin), so does Gi(n). In this case it is possible to determine whether Gi(n) = m
and so to decide whether to set 9(%, n, m) = 0 or 1. Hence 91 is total. Q.E.D.

In [2], Hartmanis and Stearns prove a beautiful special form of this theorem.
Theirs has to do with the multitape machines that print an arbitrary finite number
of symbols. Assume these machines use a base 2 input-output code. Also, assume
[g} to be the set of real-time computable functions. Finally, interpret ®; as the
actual number of moves made by the ith machine over its tapes. Under these
conditions the theorem states that A exists and is approximately given by
h(n,m) = m?. For example, let G:(n) = 2%, Then a bound on the minimum number
of steps needed to compute the corresponding f (f = ¢;) is given by

22n < cb](n) < 22n+1'

This means that f(n) can be computed by a multitape machine in less than o
steps, but it cannot be computed in less than 2" steps, no matter how many addi-
tional symbols, tapes or states are added to the machine.

Our proof of the compression theorem is constructive. Hence, it may be used to
find 4 for any class of machines and any measured set {G.}. The first corollary is a

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967

334 MANUEL BLUM

cage in point. Tts proof earefully follows the proof of Theorem 8. In a way, it illus.
trates the goodness of the theoretical bounds given there.

Cononvanry 1. Let {Z4 be the class of 1-tape machines that print and erase the
symbols b(blank), O or L and which have o base 2 nput-output code. Let G(n) = &(n)
be the number of steps taken by Z; with tnput n. Then the function b of Theorem 8 4y
total recursive, and its value is given by hin, m) < (n + m)". This means that to every
step-counting funetion ®; there corresponds a 0-1 valued partial recursive function f
with the saime donain as ®; such that (1) of j 2s any index for f, then for almast all n,
& (n) < ®in); (2) funciion | has the index v(1) such that for almest all n, d{n}) <
Poaln) < [n+)]

Proor. Since 97 = M is the measure on computation, it is total recursive,
Hence, by the compression theorem, k exists and is total recursive. The proof of
Theorem 8 is an outline for determining the funection & given in this corollary. When
the details of that proof are filled in, a bound on 4 is obtained. Filling in the details
of that proofl is a chore, not diflicult but tedious.

To begin, function £ is delined in the proof of Theorem 8 in terms of the function

%, —— qj"(“)(n) if be(ﬂ) = m,
plim) = {0 otherwise,

where 7 represents the function v£ in that proof. Then

A{n, m) = 1 -+ max p(Z, n, m)

ign

<1+ mux {$p(n) [< nand Bn) = m}.
+

So the problem of [inding an upper bound on h(n, m) reduces to that of finding
an upper bound on ®.5(n). To simplify the caleulations, an upper bound is first
found vn &,5(n) which equals the number of steps needed to compute f(n) on a
10-tape machine. Then the value of ®.5(n) is determined from that of & ,y(n).
Hartmanis and Stearns [2] show that @, (n) < [®+()(n)]* in the case of 1-tape and
10-tape machines that print and erase an arbitrarily large number of symbols. The
machines considered in this corollary, however, can only print and erase the blank,
0 and 1, and for this reason the relation is actually ®.y(n) < 10[&.(n)]F, where Lthe:
10 corresponds to the 10 tapes of the 10-tape machine.

The computation of f{n) iy deseribed in the proof of Theorem 7. What follows
here is a bit-by-bit reiteration of the constructive part of that proof, together
with bracketed statements giving the number of steps needed to do each bit of the
computation. The symbal ¢ is used throughout to denote a constant. To compute
fin):

A, Compute ®,(n) = m and go to stage 0 = ({0, 0). Number of stops needed to
do this is (@ < ¢ + ¢logn + cm log m]. Then induetively,

B. At stagez = {p,),

1. Determine whether {p) = ¢: [6 < ¢ + ¢log p + eg log gl

Assume that ®,p) = q. .

2. Extract the indices s, --+, s of all uncanceled functions in the set
{do(p), -+ @) (B2 £ e(p + L)(p -+ @){og (p + @)}

3. Pick the smallest index s, such that ®,(p) < ¢ and adjoin (s, p) to the list.

Journal of the Association for Computing Muchinery, Vol. 14, No. 2, April 1967

Theory of the Complexzty of Recursive Functions 335

This requires that the following quantities be determined:
s(¢) =qs number of steps needed to print the instructions of machine Z, ;
r(p) =a 2.00s(i), [r(p) < p’log pl;

d(p) =ar 2 P-ods, where d®4(n) is the number of steps needed to simulate
the computation of Z; with input n. [d(p) < ¢p (log p)7,
(85 < 7(p) + c-d(p)(qlog q) + cgp).

C. Go from stage n = (p, q) to stage n+1 if (p, ¢) = (n, m): [y < ¢ log P
+ clog q + ¢l

D. If no function ®,(n) is canceled in stage (n, m), let f(n) = 0. Otherwise,
®,(n) is canceled in stage (n, m), and so let f(n) = 1 = ¢,(n). [6 < ¢].

Total number of steps required to compute f(n) on a 10-tape machine is

ntm n+m—q
&mms{m+§ %(7+&%H&+&MWMWU+n+mf+%

< ¢+ clog (1 +n+ m)P-(14+n+m)

But ®,5(n) < 10[&.;(n)]’. Therefore a permissible bound on 4 is hin, m) <
(n +m)". Q.E.D.

Definition. The statement there exist arbitrarily large total recursive functions r
with property A means that to each total recursive function s there corresponds an r
with property A such that r(n) > s(n) for all n. For example, there exist arbitrarily
large step-counting functions (Theorem 4).

Definstion. To say that all sufficiently large total recursive functions r have property
A is to say that there exists a total recursive funection s such that if 7(n) > s(n) for
all n then r has property 4. For example, all sufficiently large total recursive func-
tions r take at least 2" steps to compute for almost all n. (This follows from Theorem
3 and the fact that a standard Turing machine whose step-counting function counts
actual numbers of steps takes 2" steps just to print the value of r(n).)

CoroLLaryY 2. There exist arbitrarily large total recursive functions r, and associ-
ated with each r a 0-1 valued total recursive function f, such that (1) <f 7 is any index for
[y then ®@(n) > r(n) for almost all n; (2) there exists an index k for [such that
r(n 4 1) > &(n) > r(n) for almost all n.

The proof of this corollary is left to the reader.

One might suppose that to all sufficiently large total recursive functions A there
correspond total recursive functions f such that (1) if 7 is any index for f, then
n) < ®(n) for almost all n; (2) there exists an index k for f such that
h(n) < &4(n) < hlh(n)] for almost all n. But this is false unless some constraint
binds A to a measured set. In fact, there exist arbitrarily large total recursive func-
tions A such that for every index j, either ®;(n) < h(n) or hlh(n)] < &(n) for
Infinitely many n. Disappointing though this may be, a weak form of this compres-
sion does hold. One can show that to each sufficiently large total recursive function A
there corresponds a total recursive function f such that (1) if ¢ is any index for f,
then for infinitely many n, kh(n) < ®(n); (2) for some index k for f, h(n)
< ®(n) < hlh(n)]for infinitely many n. To prove this statement, first show that to
each sufficiently large total recursive function h there corresponds an index j such

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967

336 MANUTI. BLyy

that h(n) < &;(n) < R{h(n}] for infinitely many n. Then invoke the compression
theorem to obtain the result.

ACKNOWLEDGMENTS., 'The author expresses his sincere appreciation to Dr. Warrey
S. MeCulloch, Professor Marvin Minsky, and D, Juris Hartmanis for their enthg.
siasm and support of this work, to Dr. Michael Arbib, Professor William Kiliner,
and the referee for this and also for their help in revising the manuseript, and tg
Professor Hartley Rogers, Jr., for his superb lectures and notes on recursive funetion
theory.

REFERENCES ‘
1. Arnig, M. A, axp Brom, M. Machine dependence of degrees of diffieulty. Mroc. Amer,
Math. Soe. 16, 3 (June 1965), 442-447.
2. Hartmangs, J., anp Strarys, R E. On the computational complexity of algorithms,
Trans. Amer. Math. Soc. 117, 5 (May 1985), 285-308.
3. —— AND ~—, Computational complexity of recursive sequences. Proc. 5th Annual Symyp.
on Switching Theory and Logiesl Design, Princeton, N. J., 1964,
4. Myminn, J. Linear bounded automata. WADD Tech. Note 60-165, U, of Pennsylvania
Rep. No. 6022 (June 1960).
. RaBin, M. 0. Degree of difficulty of computing a function and a partial ordering of
recursive sets. Tech, Rep. No. 2, Ilebrew U., Jerusalem, Isracl {April 1960).
. ——. Real time computation. fsrael J. Math, 1 (1963), 203-211.
- Rirenim, R.W. Classes of predistably computable functions. Trans. Amer. Math. Soc. 106,
1 (June 1963), 130-173.
8. llocems, I1., Jr. Godel numberings of partial recursive functions. J. Symbolic Logic 23,
3 (Sept. 1958), 331-341.

Recursive functions and effeetive computability. MeGraw-Hill, New York (in press).

10. Yamaoa, I, Real-time computabion and recursive funations not real-time computable.,
IRE Trans. EC-11, 68 (Dec. 1982), 753-760.

11. Cornam, A. The intrinsic computational complexity of functions. Proe. 1964 Ink, Con-
gress on Logic, Methodology and Philosophy of Selence. North-Holland, Amsterdam, 1965,
24-30.

12, CooxE, 8. A. On the minimui computation time of functions, Bell Labs. Rep. BL-41,
1966.

13. Wrnocran, 8, On the time required to petform multiplicalion. IBM Res. Rep. RC-1564,
1966.

e

-1

RECEIVED OCTOBER, 1965; REVISED JUNE, 1966

Journal of the Asgociation for Computing Machinery, Vol. 14, No. 2, April 1967

