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ABSTRACT. The number of steps required to compute a function depends, in general, on the 
type of computer that is used, on the choice of computer program, and on the input-output 
code. Nevertheless, the results obtained in this paper are so general as to be nearly independent 
of these considerations. 

A function is exhibited that requires an enormous number of steps to be computed, yet has 
a "nearly quickest" program: Any other program for this function, no matter how ingeniously 
designed it may be, takes practically as many steps as this nearly quickest program. 

A different function is exhibited with the property that no matter how fast a program may be 
for computing this function another program exists for computing the function very much 
faster. 

1. Introduction 

The problem is to characterize the complexity of computable  functions. The theory 
developed here is expanded along lines suggested by Rabin ' s  axiomatic approach 
[5]. The chosen axioms are the basis for determining what  is or is not  a legal measure 
of functional complexity. Perhaps the most  familiar such intuit ive measures are (i) 
the number  of steps needed to compute  a function, and (ii) the amount  of machine 
tape needed for a computat ion.  These both satisfy our  axioms. Other  examples are 
presented after the axioms. 

The complexi ty theory  offered here is machine-independent .  This means that a 
theorem tha t  characterizes the complexities of partial reeursive functions on one 
class of machines equally well characterizes their complexities on a lmost  any other 
class. Although at first one expects this, the claim is odd, for the complexity of a 
particular function necessarily depends on the class of machines used for the com- 
putations. Thus  it often takes fewer steps to compute  a function within a class of 
mult i tape machines than within a class of 1-tape machines, and in a class of machines 
with a base 2 input -output  code one can compute  certain functions (such as 2") in 
fewer steps than in a class of machines with a base 10 code. So all hope tha t  an indi- 
vidual function nfight enjoy a unique measure of complexity,  one tha t  is independent 
of the class of machines, must  vanish. What  remains is possible, and is offered here 
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Theory of lhe Complexity of Recursive Functions 323 

instead: art axiomatic theory whose theorems are independent of class. An example 
of such a theorem will help to fornmlate these notions. 

TH~o~m~ 1. To every total recursive function g the)'e corresponds a 0-1 valued total 
recursive function f which is so complex that any machine that computes f( n ) takes more 
than g(n) steps to do so for infinitely many inputs n. 

Although the axioms should come first, they are so intuitive that an informal 
proof of this theorem can be given even now. In that proof Z0, Z , ,  Z2, . . .  is a 
sequence of machines that  computes all the partial recursive functions of the natural 
numbers. 

PROOF. The function g is given and f must be defined--in this ease by a diagonal 
argument. To compute r (n) ,  simulate the nth machine Z~ by input n. If Z,, stops in 
less than g(n) steps, with some output  m, make f(n) ¢ m. Otherwise f(n) can be 
arbitrary. Then any machine Z~ which with input i takes less than g(i) steps cannot 
be a machine forf .  But each machine appears infinitely often in the list (or else we 
can change the list to force this) and, in particular, each machine for f does too. So 
the theorem follows. Q.E.D. 

This first theorem is not intended to be an impressive one. The purpose in pre- 
senting it is to exhibit a theorem that  is true for any class of machines, no matter  
how the machines are constructed or coded. Thus Z0, Z~, Z2, • • • might be the class 
of 1-tape machines, or it might equally well be tlhe class of 10-tape machines. I t  
might even boast a base 1 input code and Roman numeral output code. 

We associate with each machine Z~ two functions: (i) the partial-recursive 4~,i(n) 
whieh it computes ~md (ii) a partial reeursive ~ ( n )  called its step-counting function. 
Actually, ,I)~(n) may be interpreted either as the tmmber of steps or the amount of 
tape used by Z~ when its input is n. 

In this paper we present a set of axioms, a few minor theorems and two major 
theorems: speed-up and compression. The speed-up and compression theorems touch 
on the following problem: Given a recursive function f, does there correspond to each 
machine that  computes it another that eomputes it faster? 

The speed-up theorem, or rather a special ease of it, gives examples of 0-1 valued 
total recursive functions f with the property that  to every Z~ that  computes f (in 
~ ( n )  steps) there corresponds another machine Zi that does the job so much 
quicker (in a j (n)  steps) that ~i(n) > 2 ~('~) for almost all n, i.e., for all but a finite 
number of integers. Note that this leads to an infinite sequence f = 4'~ = ~J = 
4~ . . . .  such that  

• ~(n) > 2 %(") > 2 2*k(") > . . . .  

The compression theorem is a converse of the speed-up theorem. Much like the 
work of Hartmanis and Stearns [2, Th. 9], it shows that two tight bounds can sand- 
wich the number of steps needed to compute some very: complex functions f. As 
proved in this paper, the theorem is completely general, but for the moment here is 
an application of it to the 1-tape machines with a b (blank), 0, 1 alphabet, a base 2 
input-output code and step-counting functions defined by ~i(n) equals the actual 
number of steps to compute ¢~(n) : Let 4~i be a partial recursive function. Then a 0-1 
valued f (n )  exists with the same domain as ~b~, which is so complex that any machine 
computing f (n)  takes at least ~ ( n )  steps for almost all n, but even so at least one 
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machine computes f (n )  in less than [~i(n) ]7 steps. So the number of steps needed to 
compute f wedges between the bounds % and ~7. 

2. Axioms for Step-Counting Functions 

The axioms can be formulated without mentioning devices or machines. The firsL 
step is to postulate an effective list, { q~}, of all partial recursive functions, and to re- 
quire of this list that the S Z  theorem 1 and t, he universal Turing machine theorem ~ 
hold true. (Rogers [8] calls any such list an acceptable GSdel numbering, and he 
proves that any two such lists are recursively isomorphic !) The second step is to as- 
sociate with each 4,~ a partial recursive function 4,,~. The set {~d is completely arbL 
trary save for two basic restrictions, the axioms: 

1. ¢4(n) converges (i.e., Z~ with input n stops) ~-~ 4~i(n) converges. 
2. The function 

= f l if q~(n) = m, M( i, n, m) \o otherwise, 

is (total) recursive. 
Axiom 1 can equally well be expressed in terms of the function M by the state- 

merit: ¢~(n) converges ~ 3 m[M(i, n, m) = 1]. A function M which so satisfies 
axioms 1 and 2 is called a measure on computation. 

In what follows, ,f,(n) > m is a shorthand for m >_ ~ n > m, where ~ ( n )  = 
is to mean that ¢,(n)  diverges. 

Example 1. Let, {Z d be the class of multitape machines, and {¢~} the set of func- 
tions computed by it. Then a possible set of step-counting functions led  is defined 
by ,I~(n) = m if and only if Z~ with input n stops in precisely m steps (else ,I,~(n) is 
undefined). 

Another possible set {~d is defined by l,~(n) = m if and only if Z~ with input n 
stops and Z~ uses precisely m squares of tape for this computation. 

Example 2. If {~i} satisfies the axioms, then so does {~} defined by 
= - [ \ 2 i + .  ~ ( n )  ~ n ~  . 

Another possible choice of {~}, given that a certain ~0 is total recursive, is 

3p~(n) ={~i(n)  if if i # i  = i0.i°' 

Example 3. The choice ~ ( n )  = ¢~(n) is not permissible, since it satisfies axiom 1 
but not axiom 2; nor is the choice which sets aSh(n) = 0 for all i and n permitted, 
since it satisfies axiom 2 but not axiom 1. I t  follows that  the two axioms are inde- 
pendent. 

Each step-couuting function ~4, being partial reeursive, appears somewhere in 
the list {Cal. The second theorem asserts that there exists an effective procedure for 
telling where. 

The S~' theorem [91, also known as the iteration theorem, asserts the existence of a total re- 
cursive function ~ such that ¢,(i. ,~)(n) = ¢~(m, n) for all i, n and m. 
2 The universal Turing machine theorem states that for any effective 1-1 onto map r: N X N 
N, N = nonnegative integers, there is a universal machine Z~ with the property q~(r(x, y)) = 
¢~(y) for all x and y. 
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THEOREM 2. There exists a total recursive function fl such that ~ = ~(~) for all i. 
PnooF. Axiom 2 indicates that  M(i ,  n, m) = 1 ~ ~dn)  = m. 
Define a function f that satisfies 

f ( i ,  n) = m ¢:* M(i ,  n, m) ~ 1. 

Function f is partial recursive. By the S,~ '~ theorem, there exists a total recursive 
function f~ such that  ch~(o(n) = f( i, n). 

This is the desired ft. Q.E.D. 
The third theorem makes precise the following notion: Suppose two machine 

classes are given, and that  a function f is to be computed. Then for every machine of 
one class that  computes it, there is a machine of the other that computes it in about 
the same number of steps. 

THEOt~EM 3. Let M and ~i be arbitrary measures on computation with step-counting 
functions {4~} and {6~}. Then a total recursive function g exists such that 
g(n, 6i(n) ) > ,I~(n) and g(n, q~i(n) ) >_ 6i(n) for all i and abnost all n. 

This means that  e l (n )  and ~i(n) do not differ too much from each other. 
PROOF. The desired function g comes from function p defined by 

f• 
(n) + 6i (n)  if ¢i(n)  = m or 6~(n) = m, i.e., if 

p ( i , n , m )  = M ( i , n , m )  = 1 or JTl ( i ,n ,m)  = 1, 
otherwise. 

Function p is total recursive: I t  is computable because M and il4 are, and it is 
total because 6~(n) convergent ~:~ ¢~(n) convergent ¢:, 4'dn) convergent. The de- 
sired g is g(n, m) = max ~ ,  p(i,  n, m). Q.E.D. 

A useful tool for proving complexity theorems involves a simplified version of 
Kleene's recursion theorem [9] : To every total recursive function z there corresponds 
~tn integer j such that  ¢,~(~) = O~ • An example of its use appears in this proof of the 
obvious-- that  a badly designed machine can waste a huge number of steps in com- 
puting a simple function: 

THEOREM 4. Let h and f be total recursive functions. Then there exists an index j for 
f such that Ca(n) > h(n) for all n. 

Pl~ooF. Let 

f (n)  if ¢~(n) > h(n), i.e., if M(i,  n, m) = 0 
p(i, n) = for all m < h(n), 

[1 + O~(n) otherwise. 

Function p is total recursive; hence there exists a total recursive function z such 
that  p(i,  n) = ¢,(~)(n) for all i and n. By the reeursion theorem there exists an 
integer j such that  ¢,(j) = ¢~. Now it is easy to show that j is an index for f :  If 
• ¢(n) <_ h(n),  then ¢~(n) = 1 + Cj(n), which is a contradiction. So ~j(n) > h(n) 
for all n. By definition of function p, it follows that ¢~(n) = f(n) for all n. Q.E.D, 

3. Speed-Up 

On a 1-tape machine with a base 10 code and with step-counting functions which 
count actual numbers of steps, a function l ikef(n)  = 0 o r f (n )  = n can be computed 
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in a quickest or a best way. There is no surprise here, for each is computable by 
finite automata. 

On the other hand, if a function is reasonably complex, then to each machi~e 
that computes it there corresponds another much faster that computes it in just 
half as many steps for infinitely many n. A simple example of such a function is 

<~ if n is a palindrome, 
f(n) = otherwise. 

This function determines whether an integer written in base 10 reads the same 
forward as backward. To compute f(n),  n = 372686273, a typical machine firs~ 
scans the rightmost digit 3 and deletes it, then runs down the tape to leftmost digit 3 
and deletes it, backs up to rightmost digit 7 and deletes it, down to leftmost digit, 7 
and deletes it, and so on. After comparing opposed digits, it prints the output 1. A 
quicker machine scans the rightmost digits 7 and 3 simultaneously before running 
down the tape to leftmost digits 3 and 7, and so compares digits 2 at a time rather 
than 1 at a time. This quicker machine takes approximately half as many steps as the 
slower one for all palindromes, In fact one can show (though not easily) that no 
matter what machine is chosen to compute this function, another can be found 
which does the same job in just half as many steps, for infinitely many inputs. 

This indicates a result that is generally true: There exists a total recursive func- 
tion f with the property that to every index i for f there corresponds another index 
j forf  such that ,I,~(n) > 2Oj(n) for almost all n. Can a stronger theorem be proved? 
In particular, does there exist a function f with the property that to every index i 
for f there corresponds an index j for f such that 

,I,~(n) > ~j(n) ~ 

for almost all n? The next theorem asserts that such a function exists. 
THEOREM 5 (SeEED-U~). Let r be a total recursive function of 2 variables. Then 

there exists a total recursive function f taking values 0 and 1 with the property that to 
every index i for f there corresponds another index j for f such that ¢ ~( n ) > r( n, ~j( h ) ) 
for almost all n. 

PROOF. Simple intuition lies behind this theorem. I t  comes from a direct proof 
that to every total recursive h there corresponds a total  recursive f with the property 
that if i is any index for f, then ~i(n) > h(n)  for Mmost all n. This direct prooi' 
computes f ( n )  by canceling the first uncanceled function ~,(n) which is in the set 
{¢0(n) , . . . ,  ~.(n)} and whose step-counting function ~ has the property 
• ~(n) < h(n).  It then makesf(n) ~ ~b~(n). Toprevent the folly of looking no farther 
than the ith function ¢~ at later times, the canceled ¢~ is passed up in computing f for 
larger n. 

A minor change in this construction makes f into the one wanted for the theorem: 
Instead of canceling the first uncanceled element of the set {4~0(n), "" • , ¢~(n)} 

N with the property ~ ( n )  _< h(n) ,  we cancel the first one with the property 
~:~i: 'I%(n) < h(n - i). Then makef(n) ~ ~i(n) as before, tha t  definesf. In the proof, 
~ h i s  computation of f is f = ¢~(0.0,~), where l is an index for h. 

The intuition enters in seeing what makes this f work. The machine for ~ ~(0,0,~) goes 
through the set {~0(n), . . .  , ~(n)} and cancels the first uncanceled 4~ for which 
• ~(n) < ~ ( n  - i). A quicker way to eomputef(n) uses the fact that it is not really 
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necessary to scan the whole set {qS0(n), - . . ,  ,O,~(T~)I. C, ivea a fixed number  u., it, is 
sufficbnt for large n to scan only the set; {~,(7~), . . .  , 4, ~( r~)}. The  reason is tha t  for 
large enough % each of the eblnen~s ¢0(n), . . .  , 4~,~(~) is ekhe r  ah'eady canceled 
or will never  be canceled; so none of these will be can(eled durb~g the computa t ion  of 
/ (n ) .  These  m a y  t.herefore be bypassed for suffh~kmtly large ~, s~y ~ > v. ~uch ~ 
shortcut computa t ion  of f ( n ) ,  which scans the smaller set I ~ , / ~ ) ,  ' "  , ~,~(/~)}, 
takes fewer steps; it is known here as f = 0~< ..... ~). In  gem~ral, the larger '~, dIe faster 
is the corresponding machine tha t  computes f .  The  increase is sufficient: to prove the 
theorem. 

Only one small problem arises. These computat ions involving u m,d v are special 
ways ~to compute  ]', and it might  be thought  tha t  some stral,ge al~d much quicker 
way to compute  f has escaped us. Such is not the case, for if fi is any hidex for f, ~heu 
as a consequence of the definition off ,  <Ib(n) > ¢,~(n - j )  for a lmost  all ee, which puts 
a lower bound on the number  of steps tha t  it. takes to compute  j'(~z). This  lower 
bound is used to show tha t  any procedure for computiug f is no better  tha~ one of 
those above involving fixed numbers  u and v. 

The  proof of the theorem fo lbws  a plan suggested by ~,[ichael Arbib, which 
clarifies and condenses tile present  au thor ' s  orighml proof. We defim~ a crucial Wtal 
recursive function t (u ,  v, Z) so tha t  4u total  implies 4,(~,,o,~ total  with wdues 1} ,and 1. 
Then prove  : 

LE~,tMA 1. I f  ¢ht is total, thet~ Jbr each "u the're exists a v such lhat 4,~(,o.o,~) := qh(o ~ ~). 
LE:u~m 2. I f  O~ is total, and ~f we define f = 4J~(o,o.o, tJ~vn for eac;~ index i i'm" f ,  

4,{(n) > 4~(n -- i )  Jbr almost all n. 
LE~.I:VIA 3. There exists a total ~'ec'ursive j:unctiar~ 4~ ,such that for  ale u a~cl v, 

4u(n --  u + 1) > r (n ,  I't(,~,,,,o('n)) for almost all n, 
Then  for each index i f o r f  = ~(0,0,t) and for ahnost  all r~, 

(I,,~(n) > ~ t ( u  - i) ( L e m m a  2) 

> r (n ,  (I.,~(i+l.~,~)(n)) for all v ( take  u = i + i  in. [ ,emma 3) 

= r ( n , ( I , / n ) )  (by  L e m m a  1, choose v so tha t  ]' = (~(~.~,,,~)=O~), 

and the theorem follows. Q.E.D.  
We now turn  to the construct ion of t and the proof of the t, hree lemmas, 
1. Car~structiar~ of t. Funct ion qst(,,,~,o is defined in terms of t;t~e set (see 

Figure  1) 

C ~  = [4~(m) [ ( m  < v a n d k ' ~  m) o r ( m  ~ v a u d u  5~ k ~ m)]  

Compute  ,~(,,~.~)(n) as follows: 
( i )  If  v < u, set  ¢~(,~,.,~)(n) = 4,e(,.,,~,o(n) arm use ( i i ) .  

( i i )  If  v > u, proceed as fo l lows:  
(c~) Cornpu e 4~(0), ,4~(n)  if n < v, but, compute oaly (h~(O), ' 

~ ( n  - u )  if n >_ v. If  arty of these diverge, let 4~ ........ o (n )  diverge. 

Otherwise go to (~). 
(fl) Circle all ,~ (n )  in C,~ gl column n such tha t  ,/,~(n) ~ qS/n - k). I f  

none are circled, set 4u(~,,~,~)(n) equal to zero. Otherwise, go to (77). 
(7)  Cancel the first en t ry  ~b~(n) in column n which is circled and which has 

the proper ty  tha t  4~(m), m < n, has not been canceled, i f  noue of 
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n.= 0 I 2 v 

¢o ( v ) ' , , "  " - x , "  " / ' , . .  " " / ,  

I 1(2) 

U - I ~ u  
Cuv IS THE SHADED REGION 

Fro. 1 

the  entries in C ~  Q column n are canceled, set Ct( .... ~)(n) equal to 

zero. Otherwise go to (~). 
(~) I f  Ck(n) is canceled, set 

to o 
¢~( .. . .  1)(n) = ~ _  if @k(n) = O. 

This definition implies t ha t  if Ct is total,  then  Ct( .... z) is to ta l  for all u and v. 
2. Proof of Lemma 1. I n  the computa t ion  of C t(0,0,t), the  n u m b e r  of entries above  

row u tha t  are canceled mus t  be finite, since a row contains at  most  one canceled 
entry.  Let  column v be immedia te ly  to the r ight of the r igh tmost  canceled e n t r y  
above row u. Then  it is clear f rom the figure tha t  Ct(0.0.t)(n) = ¢~( .... o (n )  for all n .  

Q.E.D.  
3. Proof of Lemma 2. Let  i be an index for f, and  suppose to the con t ra ry  t h a t  

¢i(n) _< ¢¢~(n - i) for infinitely m a n y  n = n l ,  n~, n~, • • • • T h e n  it is seen that ,  i n  
the computa t ion  of ¢~(0.o,o(n), ¢i(nk) mus t  be canceled for some k, and so  
Ct(0,0.z)(nk) ~ ¢i(nk),  which implies tha t  f (nk)  ~ ¢i(nk). Contradict ion.  Q.E.D.  

4. Proof of Lemma 3. Choose a recursive 1-1 map  of the integers onto  the set o f  
all 1-tuples, 2-tuples, 3-tuples, • • • of integers. Let  ((a0, • • • , a~)) denote the in teger  

which maps  onto (a0,  • ." , a~). Define 

= / ~ t (  .... ,)(n) i f n  > u - F v a n d z  = (@,(0), . . . , e P ~ ( n - u ) } } ,  
g(n, u, v, i, z) \o if not.  

Using the M-funct ion ,  we see tha t  g is total  recursive. I t  thus  suffices to find 

tota l  recursive funct ion ¢~ such that ,  for a lmost  all n, 

¢~(n - u + 1) _> r[n, g(n, u, v, l, (@K0),  " ' "  , ~ ( n  - u))})]. (3 .1 )  

Define p as follows: 

p(i ,  O) = 0 

p(i,  z + 1) = max r[z + u, g(z + u, u, v, i, ((~i(0), . " ,  ~i(z))})] .  ( 3 . 2 )  
O<v~_z 
O < u ~ z  

The  funct ion p is par t ia l  recursive, so there exists a tota l  recursive funct ion cr s u c h  
tha t  p(i,  z) = ¢~(¢)(z). B y  the recursion theorem, there exists ~n index 1 such t h a t  
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~(l)(Z) = ¢~(z) for all z. Hence 

~ ( z )  = p(l, z).  (3.3) 

Thus 4~z(O) = p(l, O) = O. Now assume ~t(n) converges for n ~ z. On inspecting 
(3.2) and recalling (3.3), we see that 0z(z + 1) converges, since g and r are total 
recursive, and convergence of O~(n) for n ~ z implies convergence of e l (n )  for 
n _~ z .  Hence ¢,t is total recursive. 

F i x u a n d v .  T h e n f o r n  P_max[2u, u + v ] , w e h a v e v < n - u ,  u ~ n - u a n d  
so, putting z = n - u and i = I in (3:2), we obtain (3.1). Q.E.D. 

For example, let r(n, m) = 2% Then the speed-up theorem asserts the existence 
of a total recursive function f such that  to every index i for f there corresponds an- 
other index j for f such that  ~ ( n )  > 2 Cj(') for almost all n. Hence it also asserts 

that to index j for f there corresponds an index/c for f such that  ¢~(n) > z 
and so on. Unfortunately, the speed-up theorem does not provide an effective pro- 
cedure for going from a machine fo r f  to a speedier one. In fact it cannot, as Corollary 
1 shows: 

COnOLL~RY 1. Let r be a total recursive function and f the corresponding function 
of the speed-up theorem. I f  r is su~ciently large, there can be no total recursive function K 
such that: (1) K enumerates only indices off,  (2) to every index i Jbr f there corresponds 
an index ~(j) for f such that ¢~(n) > r(n, q)~(j)(n) ) for almost all n. 

PRooF. Let  v be a total recursive function with the property that  for each j 
there exist infinitely many n such that ~-(n) = j. By the S Z  theorem, there exists a 
total reeursive function ~ such that 

~ ( 1 ) ( n )  = dp~A~Cn))(n ) ( 3 . 4 )  

for all i and n. For this ¢, it is easy to show that  there exists a total recursive func- 
tion g such that  

and therefore there exists a total recursive function h such that  

• ~(1)(n) ( h(n, ¢~(~(~))(n)) + h(i, ~(~r (n) ) )  (3.5) 

for all i and n. Let  K = ~bk enumerate only indices off.  Then ~6k(~ (~))(n) = ,~(~(~))(n), 
and so by (3.4), O~(k)(n) = ,~(~(~))(n), so a(k) is an index forf .  By (3.5), 

• ¢(~)(n) ( h(n, ~(~(,))(n)) -/- h(lc, ¢~(~r(n))) (3.6) 

for all n. For eaeh j  and infinitely many n, ~-(n) = j,  and so for each j  and infinitely 
many n, 

• ,(~)(n) < h(n, ~o)(n)) + h(k, ~(j)). (3.7) 

But h as defined in (3.5) is independent of r. Therefore r can be chosen as large as 
one likes without changing h. In particular, let r be any function that satisfies the 
inequality, r(n, m) > n ~- h(n, m) for all n and m. If we let m = ,l~<1)(n), eq. (3.7) 
gives 

• ¢(~)(n) < r(n, ¢~o')(n)) - n -t- h(l% ~ ( j ) )  

for infinitely many n. This in turn implies that  for every j there exist infinitely many 
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n such that 

¢I,~(k)(n) < r(n, ~ ( j ) (n ) ) .  

As stated just before eq. (3.6), f = 0~(~), so this is a contradiction to part 2 o f  
this corolla~T. Q.E.D. 

I t  may be supposed of the ~'-speed-up 4~i(n) > r(n, et)j(n)) that  r must be nil 
exceedingly small function in comparison with ~Pi • The next theorem asserts, how- 
ever, that  r may in fact be as large as ~p~. 

THEOREM 6 (SUPER SPEED-UP), Let g be a total reeursive j~tnction. Then there 
exists a 0-1 valued total reeursive j~netion f such that (1) if i is an index for f, ther~ 
• ~(n) > g(n) for almost all n; (2) to every index i j ~ r f  there corresponds an index j 
for f such that ~i( n ) > 4~j( ¢j( n) ) for almost all n. 

P~ooF. The proof of this theorem is like that  of the speed-up theorem, so it is 
not given here in detail but only indicated. I t  depends on the following lemm~: 

LEi~t~IA. There exists a sequence {p,} ~-o of monotonically increasing total recursive 
functions p, such that (1) for each s and almost all n, p~(n) > g(n);  (2) for each s 
and almost all n, p , (n)  > p,+l(p,+l(n) ); (3) for each s and all n, p,~n > p,+l(n). 
The proof of this lemma is left to the reader. 

To compute f (n ) ,  cancel the first uncanceled element ~ which is in the set { 00(n), 
• .. , 0n(n)} and whose step-counting function ~ has the property ~ ( n )  ~ p~(n). 
Then make f ( n )  ~ Oi(n). I t  follows that if i is an index for f,  then for almost all n 

• i(n) > pi(n) .  (3.8) 

By the lemma, pi(n) > g(n) for almost all n, so part 1 of this theorem is proved. 
To computef (n)  more quickly, it suffices to fix a number u and for large enough n. 

to scan only the set {0~(n), . . .  , 0,~(n)}. The number of steps needed to compute 
f ( n )  in this way can be determined: I t  can be shown, by using part 3 of the lemma, 
t h a t  there exists a total recursive function h which is independent of the sequence 
{Pal such that  a machine which computesf (n)  in this way (i.e., by scanning only 
the set {0~(n), • . .  , O,(n)} ) takes less than h(n, p~(n))  steps for almost all n. This 
means that for every number u there exists a machine Z¢ which computes f so 
quickly that  for almost all n, 

h(n, p~,(n)) > ~ ( n ) .  (3.9) 

Since the function h is independent of the choice of sequence {p~}, the function g 
may be made so large in the lemma that p~_~(n) > h(n, pu(n))  for almost all n. 
Then by taking u = i + 2, this yields that for ahnost all n, 

(3.10) p~+l(n) > h(n, p~+2(n)). 

I t  follows that if Z~ computes f, then for almost all n, 

¢P~(n) > p~(n) (by eq. (3.8)) 

> pi+l(p~+l(n)) (Lemma, part 2) 

> p~+l(h(n, p~+2(n))) (by eq. (3.10) and the fact that  pi+l is monotonically 
increasing) 

> p i+l (~(n) )  where f  -- 0j (u = i + 2 in eq. (3.9)) 
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> h(¢~(n), p~+2(¢j(n))) (by eq. (3.10)) 

> ,l,~(4pj(n)) w h e r e f  = ~aj (u = i q- 2 in eq. (3.9)). 

Q.E.D. 

331 

4. Compression 

Tile next theorem, which is similar to one by Rabin [5], proves the existence of 
e~lormously conlplex 0-1 wflued functions. As such it resembles Theorem 1, but it 
extends that result in three important directions. Whereas Theorem 1 asserts that 
there are 0-1 valued functions f (n )  which take more than g (n') steps to compute for 
infinitely many n, the next theorem asserts this for ahnost all n. I t  also allows g and 
f to be just partial reeursive, instead of total recursive. Finaily, it provides a re- 
cursive "r which maps indices of g's into indices of f's. Theorem 7 is not a trivial 
generalization, and the compression theorem leans heavily upon it, especially upon 
the existence of 'V. 

THEORE~i 7. (1) To every partial recursive function g there corresponds a 04  
valued partial reeursive function f with the same domain as g such that ij'j is any index 
for f, then ~j( n ) > g( n ) for almost all n. (2) There exists a total recursive Junction y 
which lakes an index JUt any g into an index for the corresponding f. 

PROOF. If it is known in advance that g is total recursive, then a very simple 
procedure will serve to compute f. To compute f (n ) ,  cancel the first uncanceled 
clement Oj which is in the set {¢,0(n), • .. , 4,~(n)} and whose step-counting function 
has the property ~¢(n) < g(n).  Then make f ( n )  ~ ~i(n). In this way, f ( n )  is 
forced to be different from those functions 4,i forwhich ~I,j(n) < g(n) ; hence, it must 
happen that if k is an index for f, then q'k(n) > g(n) for almost all n. 

This procedure for computing f ( n )  requires that it be known which functions in 
the set {4)0, " '" , ¢~} were canceled during the computation of f (0) ,  . . .  , f ( n  - 1). 
So to compute f ( n )  with this procedure, it is necessary first to compute f (0) ,  then 
f(1), and so on t o f ( n - 1 ) .  This is easy enough if g is total, but if not, g(m) may 
diverge for some m and then so must f (m)  and there may be no way of telling that 
f(m) diverges. If m < n, this makes it impossible to compute f (n ) .  To bypass this 
difficulty, we conlpute f ( n )  in such a way that f(O) through f ( n - 1 )  need not be 
computed first. The idea is to enumerate in some order all pairs of nonnegative 
integers so that  given any nonnegative integers n and m, the pair (n, m) is certain 
to be produced eventually. 

After each pair (n, m)  is produced, take the index i for g and determine whether 
or not ~ ( n )  = m. This may be done effectively using the measure function, M. 
If ~ ( n )  ¢ m, go on to the next pair in the list. On the other hand, if ~ ( n )  = m, 
then compute f ( n )  as follows: Cancel the first element 4~ in the set {~0, ' • • , 4~,} 
which was not canceled during the enumeration of pairs up to the present pair 
(n, m) and whose step-counting function ~j has the property ~j(n) < g(n).  Per- 
haps no '~i is canceled. If so, ser f (n)  = 1.1 On the other hand, if 4i is canceled, set 
f(n) ~ 4~(n). This defines f. 

The proof of Corollary 1 to Theorem 8 requires an extremely detailed statement of 
the above construction of f. This statement is provided by the following indented 
paragraphs, which the reader may skip. 
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The  procedure  for going from an index i for g and a number  n to a va lue  of f(n) is as 
follows : 

F i r s t  compute  g(n), (g = 44d. If i t  d iverges ,  let  f(n) diverge.  If i t  converges ,  f(n) 
m u s t  be made  to converge.  To compute  it, a procedure  is se t  up so t h a t  all funct ions ,b/ 
are canceled whose s t ep -coun t ing  funct ions  q'i have the  p r o p e r t y  t h a t  Opt(n) < g(n) for 
infini tely m a n y  n, and the cor responding  pairs  (j ,  n) are adjo ined to a l i s t  L. The list  L 
grows in s tages  and at  eaeh s tage  a t  mos t  one pair  (j, n) is ad jo ined to L. The growth of 
L at  s tage  x is descr ibed next .  A recursive code t h a t  maps  N X N onto  N is used to rewrite 
x in the  form (p, q} = x. 

Stage x = (p, q). If .¢~(p) ¢ q, (g = ~0 ,  then  bypass  s tage  x and go to s inge x ÷ l .  
On the o ther  hand,  if ~i(p)  = q, then  cancel  t he  first  uncance led  funct ion  4)J(p), if there 
be any,  which is in the se t  {¢0(p), . . .  , Cp(p)} and whose s t ep -coun t ing  func t ion  has the 
p r o p e r t y  ¢~(p) _< g(p). To cancel ¢i(p) means  to add (j, p) to l i s t  L. Af te r  cancel ing Cj(p), 
go to s t age  x-l-1. 

Now, to compute  f(n), look down the l i s t  L for a pair  (s, n) ending  in n. I t  corresponds 
to a func t ion  ,% for which 4)s(n) < g(n). If such  a pair  (s, n) exis ts ,  make  f(n) ~ ¢,(n). 
On the  o ther  band,  if (s; n) does  no t  appear  in L for any  s, se t  f(n) = 1. Note  that  an 
effective procedure  can de t e rmine  whe the r  or no t  (s, n) is in L for some s. T h a t  is because 
the  pa i r  (s, n) can appear  only in s tage  (n, m), where  ~i(n)  converges  to m.  

By construction, i f j  is any index for f, then ~j(n) > g(n) for almost all n. Hence 
part ( 1 ) of this theorem is immediate. Part (2) follows from the proof of ( 1 ) because 
that  proof shows how to construct an f for every g: The proof of (1) furnishes a~ 
procedure for going from the index i for g and an integer n to the value of f(n). 
With i fixed, a machine that follows this procedure computes f(n), and the index of 
this machine, which is easily determined, is the desired index 7(i) for f. Q.E.D. 

This last theorenl serves as a lemraa to the compression theorem, which comes 
next. For virtually all machines and codes, the compression theorem sets upper and 
lower bounds on the number of steps needed to compute a function f(n), the lower 
bound being a partial recursive (3(n) and the upper bound being a total recursive 
function of it, h(n, ~(n) ). As a bonus, it demonstrates a curious relationship between 
measures on computation and bounds on complexity. This relation becomes clearer 
with the following definition. 

Definition. Let ~N be a 0-1 valued total recursive function of three variables 
with the property that  for every i and n there is at most one m such thab 
NZ(i, n, m) = 1. Set ~x(n) = the unique m, if any, such that  91Z(i, n, m) = 1, 
and let oo~:(n) diverge if m does not exist. The set {~d of partial recursive functions 
so defined is called a measured set. 

Example 1. A measured set of functions is the set {~} of all step-counting func- 
tions. 

Example 2. A measured set of functions, { ooi}, which in fact includes the real-time 
computable functions [Yamada, 10] is defined by 

=[4~i(n) if 4i(n) converges and ~i(n) < i.qs~(n), 
(31(n) / divergent otherwise. 

Example 3. A measured set of functions cannot include all total reeursive func- 
tions. To see this, suppose to the contrary that  {~} does contain all total reeursive 
functions. Let function f be defined by 

if ~ ( n ,  n, 1) = 1, i.e., if ~ ( n )  = 1, 
f(n) ={01 otherwise. 
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This f is total recursive because {ylZ is. But  f ~c {~;}, for if f = ~o.,., then f ( i )  = 0 ~--> 
~(i) = 1 ~ f ( i )  = 1, which is a contradiction. 

THSOREV 8 (Co.~eRESSION). {~,} is a measured set ~ there exists a total recursiz,e 
/)faction h such that the following is true: To each pm'tial recursive function ~qi the~'e 
corresponds a 0-1 valued partial recursive jitnction f with the same domain as ,q,. such 
I]~at (1) if  j is any index for f then ,(].,( n ) < ¢5( n ) for almost all n; (2) there exists an 
index 1~ J~r f such that Ck(n) < h(g, oui(n) ) for almost all n; (3) there exists a total 
recu.rsive function r which maps the subscr@t i for any ~i into the index t~ above for the 
corresponding f. 

PROOF. ~ :  There exists a total reeursive fimction ~ such that  oe; = ¢;(,.) for all i. 
The proof of the existence of ~ is like that  of Theorem 2, so it is left to the reader. 

Let v be the function of Theorem 7, and let f = ¢v~(o. Then for every index j 
for f, Theorem 7 insures that  

Cj(n) > 4~,(i)(n) ( = c3~(n) ), 

as in (1). Now set 

f¢,~(o(n) i fW(n)  = m, i.e., if ~,g(i, n, m) = 1, 
p(i, n, m) \o otherwise. 

Define h(n, m) = 1 + maxi_<,~ p(i, n, m). Then h is total recursive, and h(n, g~i(n)) 
> ¢~(o(n)  for almost all n, which mea~s that this h satisfies (2). As for the recur- 
sire v in (3), the function r = v~ maps the subscript i for ~ into the correct index 
vf(i) for f. This completes the proof in this direction. 

~ :  A proof that  {~} is a measured set must show that ~g is total reeursive. 
The proof that ~ ( i ,  n, m) is total reeursive is just a procedure for computing it 
which makes use of the fact that  for every i and almost all n, 

h(n, ~i(n))  > ¢~(o (n) > ~ ( n ) .  

To compute ~Z(i, n, m),  first determine whether ¢~(,o(n) < h(n, m). This can be 
decided because h is total reeursivc. If  ¢,(i)(n) _~ h(n, m), then ~'i(n) ¢ m, so set 
~(i ,  n, m) = 0. If  (L(i)(n) < h(n, m), then ¢,(o(n)  converges, and since ~I),(o(n) 
> ~q~(n), so does oOi(n). In this ease it is possible to deternfine whether ~ ( n )  = m 
and so to decide whether to set ~l;(i, n, m) = 0 or 1. Hence gg is total. Q.E.D. 

In [2], Hartmanis  and Stearns prove a beautiful special form of this theorem. 
Theirs has to do with the multi tape machines that  print art arbitrary finite number 
of symbols. Assume these machines use a base 2 input-output code. Also, assume 
{~} to be the set of real-time computable functions. Finally, interpret q'~ as the 
actual number of moves made by the ith machine over its tapes. Under these 
conditions the theorem states that  h exists and is approximately given by 
h(n, m) = m ~. For example, let ~dn )  = 2 ~. Then a bound on the minimum number 
of steps needed to compute the corresponding f (f  = 4i) is given by 

2 ~ < ¢~(n) < 2 ~'~+~. 

This means tha t  f (n)  can be computed by a multitape machine in less than 2 >+* 
steps, but it cannot be computed in less than 2 ~" steps, no matter  how many addi- 
tional symbols, tapes or states are added to the machine. 

Our proof of the compression theorem is constructive. Hence, it may be used to 
find h for any class of machines and any measured set {~d. The first corollary is a 
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case in point. Its proof carefully follows the proof of Theorem 8. In a way, it illus- 
trates the goodness of the theoretical bounds given there. 

COROLLARY 1. Let {Z.~} be the class of 1-tape machines that print and erase the 
symbols b( blank ) , 0 or 1 and which have a base 2 input-output code. Let ~]i( n ) = (Pi( n ) 
be the number of steps taken by Zi  v~ith input n. Then the function h of Theorem 8 is 
total recursive, and its value is given by h( n, m) < ( n + m) 7. This means that to every 
step-counting function ~ there corresponds a 0-1 valued partial recursive function f 
with the same domain as q)~ such that (1) if  j is any index for f, then for almost all n, 
c~i(n) < ~J(n)," (2) function f has the index T(i) such that for almost all n, ~i(n) < 
• ~.)(n) < [n + ~ ( n ) ]  ~. 

PaooF. Since ~ = M is the measure on computation, it is total recursive. 
Hence, by the compression theorem, h exists and is total recursive. The proof of 
Theorem 8 is an outline for determining the function h given in this corollary. When 
the details of that  proof are filled in, a bound on h is obtained. Filling in the details 
of tha t  proof is a chore, not difficult but tedious. 

To begin, function h is defined in the proof of Theorem 8 in terms of the function 

f~.)(n) if,I)~(n) = m, 
p( i, n, m) 

otherwise, 

where T represents the function ~ in that  proof. Then 

h(n, m) = 1 -t- max p(i,  n, m) 

< 1 + max {~(i)(n) [i  < n a n d ¢ i ( n )  = m}. 
i 

So the problem of finding an upper bound on h(n, m) reduces to that  of findinE 
an upper bound on ¢~(i)(n). To simplify the calculations, an upper bound is first, 
found on ,i~,(~)(n) which equals the number of steps needed to compute f (n )  on a~ 
10-tape machine. Then the value of ¢~(~)(n) is determined from that  of ~ ~(~)(n). 
Har tmanis  and Stearns [2] show that  ~I'~(i) (n) < [~ ~-(i) (n)] 2 in the case of 1-tape an4  
10-tape machines that print and erase an arbitrarily large number of symbols. The  
machines considered in this corollary, however, can only print and erase the blank, 
0 and 1, and for this reason the relation is actually ~(i ) (n)  _~ 1014~,(~)(n)] ~, where t h e  
10 corresponds to the 10 tapes of the 10-tape machine. 

The computation of f (n )  is described in the proof of Theorem 7. What follows 
here is a bit-by-bit reiteration of the constructive part of that  proof, together  
with bracketed statements giving the number of steps needed to do each bit of t h e  
computation. The symbol c is used throughout to denote a constant. To compute  
f ( n ) :  

A. Compute ~i(n) = m and go to stage 0 = (0, 0}. Number of steps needed t o  
do this is [a < c + c log n + cm log m]. Then inductively, 

B. At  stage x = <p, q}, 
1. Determine whether ~ (p )  = q: [/~ _< c -t- c log p + cq logq]. 
Assume that  ,I)~(p) = q. 
2. Extract  the indices s ~ , - . . ,  st of all uncanceled functions in the s e t  

{4,0(P), " '"  , Cp(P)}: [~2 _< c(p + 1)(p + q)(log (p + q))]. 
3. Pick the smallest index sk such that  ¢~k(P) < q and adjoin (s~, p) to the l i s t -  
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This requires that  the following quantities be determined: 

s(i) =~f number of steps needed to print the instructions of machine Zi ; 

r(p) = ~  Z~=os( i ) ,  [,'(p) < cp21ogp]; 

d(p) = df ~ = 0  di ,  where d(Pi(n) is the number of steps needed to simulate 
the eomput~ation of Zi with input n. [d(p) < cp (log p)2], 
[f13 _~ r(p) + c .d(p) (q logq)  + cqp]. 

C. Go from stage n = <p, q} to stage n + l  if <p, q} ~ (n, m}: [y _< e log p 
+ c l o g q +  el. 

D. If no function ~ ( n )  is canceled in stage (n, m}, let f (n )  = O. Otherwise, 
~,(n) is canceled in stage (n, m}, and so le t f (n)  = 1 "- ¢~(n). [6 < c]. 

Total number of steps required to compute f (n)  on a 10-tape machine is 

t n+m n+m--q ~1 ,~,(~)(n) < a -k- ~ ~ (~ + ill) + (/3~ -+-/~)lp+q=,~+,,~.(1 + n + m) "-t- 
q=0 p=0 

< c + c [ l o g ( 1  + n  + m ) ] 3 . ( 1  + n + m )  3. 

But ¢~u)(n) _< 10[~u)(n)] 2. Therefore a permissible bound on h is h(n, rn) < 
(n + m) 7. Q.E.D. 

Definition. The statement there exist arbitrarily large total recursive functions r 
with property A means tha t  to each total recursive function s there corresponds an r 
with property A such tha t  r(n) > s(n) for all n. For example, there exist arbitrarily 
large step-counting functions (Theorem 4). 

Definition. To say tha t  all sui~ciently large total recursive functions r have property 
A is to say that  there exists a total recursive function s such that  if r(n) > s(n) for 
~11 n then r has property A. For example, all sufficiently large total recursive func- 
tions r take at least 2 ~ steps to compute for almost all n. (This follows from Theorem 
3 and the fact that  a standard Turing machine whose step-counting function counts 
actual numbers of steps takes 2 n steps just to print the value of r(n) . )  

COROLLARY 2. There exist arbitrarily large total recursive functions r, and associ- 
ated with each r a 0-1 valued total recursive function f, such that (1) if i is any index for 
f, then ¢i(n) ~ r(n) for almost all n; (2) there exists an index k for f such that 
r(n + 1) > ~k(n) > r(n) for almost all n. 

The proof of this corollary is left to the reader. 
One might suppose that  to all sufficiently large total recursive functions h there 

correspond total recursive functions f such that  (1) if i is any index for f, then 
h(n) < ~i(n) for almost all n; (2) there exists an index k for f such that  
h(n) < q~k(n) < h[h(n)] for almost all n. But this is false unless some constraint 
binds h to a measured set. In fact, there exist arbitrarily large total recursive func- 
tions h such that  for every index j,  either ,I,¢(n) < h(n) or h[h(n)] < ,.I:,i(n) for 
infinitely many n. Disappointing though this may be, a weak form of this compres- 
sion does hold. One can show that  to each sufficiently large total recursive function h 
there corresponds a total  recursive function f such that  (1) if i is any index for f,  
then for infinitely many n, h(n) < ,-I,~(n); (2) for some index /c for f, h(n) 
< I)k(n) < h[h(n)] for infinitely many n. To prove this statement, first show that  to 
each sufficiently large total recursive function h there corresponds an index j such 
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t h a t  h(n )  < ~ ( n )  < h[h(n)] for inf in i te ly  m a n y  n. Then  invoke t he  compress ion 
theo rem to ob ta in  the  resul t .  
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