
'* '] 5i' A Machine-Independent i ~eoy of the Complexity of

Reeursive Functions

MANUEL BLUM

Massachusetts Institute of Technology,* Cambridge, Massachusetts

ABSTRACT. The number of steps required to compute a function depends, in general, on the
type of computer that is used, on the choice of computer program, and on the input-output
code. Nevertheless, the results obtained in this paper are so general as to be nearly independent
of these considerations.

A function is exhibited that requires an enormous number of steps to be computed, yet has
a "nearly quickest" program: Any other program for this function, no matter how ingeniously
designed it may be, takes practically as many steps as this nearly quickest program.

A different function is exhibited with the property that no matter how fast a program may be
for computing this function another program exists for computing the function very much
faster.

1. Introduction

The problem is to characterize the complexity of computable functions. The theory
developed here is expanded along lines suggested by Rabin ' s axiomatic approach
[5]. The chosen axioms are the basis for determining what is or is not a legal measure
of functional complexity. Perhaps the most familiar such intuit ive measures are (i)
the number of steps needed to compute a function, and (ii) the amount of machine
tape needed for a computat ion. These both satisfy our axioms. Other examples are
presented after the axioms.

The complexi ty theory offered here is machine-independent . This means that a
theorem tha t characterizes the complexities of partial reeursive functions on one
class of machines equally well characterizes their complexities on a lmost any other
class. Although at first one expects this, the claim is odd, for the complexity of a
particular function necessarily depends on the class of machines used for the com-
putations. Thus it often takes fewer steps to compute a function within a class of
mult i tape machines than within a class of 1-tape machines, and in a class of machines
with a base 2 input -output code one can compute certain functions (such as 2") in
fewer steps than in a class of machines with a base 10 code. So all hope tha t an indi-
vidual function nfight enjoy a unique measure of complexity, one tha t is independent
of the class of machines, must vanish. What remains is possible, and is offered here

* Department of Mathematics and Research Laboratm T of Electronics.
This work, which is based on a Ph.D. thesis submitted to the Department of Mathematics,
Massachusetts Institute of Technology, May 5, 1964, was supported in part by the Joint
Services Electronics Program, under Contract DA36-039-AMC-03200(E); in part by the Na-
tional Science Foundation (Grant GP-2495), the National Institutes of Health (Grant MI[-
04737-05), the National Aeronautics and Space Administration (Grant NsG-496) and the U. S.
Air Force (ASD Contract AF33(615)-1747); and in part by Project MAC, an M.I.T. research
program.

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967, pp. 322-336.

Theory of lhe Complexity of Recursive Functions 323

instead: art axiomatic theory whose theorems are independent of class. An example
of such a theorem will help to fornmlate these notions.

TH~o~m~ 1. To every total recursive function g the)'e corresponds a 0-1 valued total
recursive function f which is so complex that any machine that computes f(n) takes more
than g(n) steps to do so for infinitely many inputs n.

Although the axioms should come first, they are so intuitive that an informal
proof of this theorem can be given even now. In that proof Z0, Z , , Z2, . . . is a
sequence of machines that computes all the partial recursive functions of the natural
numbers.

PROOF. The function g is given and f must be defined--in this ease by a diagonal
argument. To compute r (n) , simulate the nth machine Z~ by input n. If Z,, stops in
less than g(n) steps, with some output m, make f(n) ¢ m. Otherwise f(n) can be
arbitrary. Then any machine Z~ which with input i takes less than g(i) steps cannot
be a machine forf . But each machine appears infinitely often in the list (or else we
can change the list to force this) and, in particular, each machine for f does too. So
the theorem follows. Q.E.D.

This first theorem is not intended to be an impressive one. The purpose in pre-
senting it is to exhibit a theorem that is true for any class of machines, no matter
how the machines are constructed or coded. Thus Z0, Z~, Z2, • • • might be the class
of 1-tape machines, or it might equally well be tlhe class of 10-tape machines. I t
might even boast a base 1 input code and Roman numeral output code.

We associate with each machine Z~ two functions: (i) the partial-recursive 4~,i(n)
whieh it computes ~md (ii) a partial reeursive ~ (n) called its step-counting function.
Actually, ,I)~(n) may be interpreted either as the tmmber of steps or the amount of
tape used by Z~ when its input is n.

In this paper we present a set of axioms, a few minor theorems and two major
theorems: speed-up and compression. The speed-up and compression theorems touch
on the following problem: Given a recursive function f, does there correspond to each
machine that computes it another that eomputes it faster?

The speed-up theorem, or rather a special ease of it, gives examples of 0-1 valued
total recursive functions f with the property that to every Z~ that computes f (in
~ (n) steps) there corresponds another machine Zi that does the job so much
quicker (in a j (n) steps) that ~i(n) > 2 ~('~) for almost all n, i.e., for all but a finite
number of integers. Note that this leads to an infinite sequence f = 4'~ = ~J =
4~ such that

• ~(n) > 2 %(") > 2 2*k(") >

The compression theorem is a converse of the speed-up theorem. Much like the
work of Hartmanis and Stearns [2, Th. 9], it shows that two tight bounds can sand-
wich the number of steps needed to compute some very: complex functions f. As
proved in this paper, the theorem is completely general, but for the moment here is
an application of it to the 1-tape machines with a b (blank), 0, 1 alphabet, a base 2
input-output code and step-counting functions defined by ~i(n) equals the actual
number of steps to compute ¢~(n) : Let 4~i be a partial recursive function. Then a 0-1
valued f (n) exists with the same domain as ~b~, which is so complex that any machine
computing f (n) takes at least ~ (n) steps for almost all n, but even so at least one

Journal of the Association for Computing Machinery, Vol. 14, No. 2, Apri[1967

324 ~'taSrVE~ Bl,~'~

machine computes f (n) in less than [~i(n)]7 steps. So the number of steps needed to
compute f wedges between the bounds % and ~7.

2. Axioms for Step-Counting Functions

The axioms can be formulated without mentioning devices or machines. The firsL
step is to postulate an effective list, { q~}, of all partial recursive functions, and to re-
quire of this list that the S Z theorem 1 and t, he universal Turing machine theorem ~
hold true. (Rogers [8] calls any such list an acceptable GSdel numbering, and he
proves that any two such lists are recursively isomorphic !) The second step is to as-
sociate with each 4,~ a partial recursive function 4,,~. The set {~d is completely arbL
trary save for two basic restrictions, the axioms:

1. ¢4(n) converges (i.e., Z~ with input n stops) ~-~ 4~i(n) converges.
2. The function

= f l if q~(n) = m, M(i, n, m) \o otherwise,

is (total) recursive.
Axiom 1 can equally well be expressed in terms of the function M by the state-

merit: ¢~(n) converges ~ 3 m[M(i, n, m) = 1]. A function M which so satisfies
axioms 1 and 2 is called a measure on computation.

In what follows, ,f,(n) > m is a shorthand for m >_ ~ n > m, where ~ (n) =
is to mean that ¢,(n) diverges.

Example 1. Let, {Z d be the class of multitape machines, and {¢~} the set of func-
tions computed by it. Then a possible set of step-counting functions led is defined
by ,I~(n) = m if and only if Z~ with input n stops in precisely m steps (else ,I,~(n) is
undefined).

Another possible set {~d is defined by l,~(n) = m if and only if Z~ with input n
stops and Z~ uses precisely m squares of tape for this computation.

Example 2. If {~i} satisfies the axioms, then so does {~} defined by
= - [\ 2 i + . ~ (n) ~ n ~ .

Another possible choice of {~}, given that a certain ~0 is total recursive, is

3p~(n) ={~i(n) if if i # i = i0.i°'

Example 3. The choice ~ (n) = ¢~(n) is not permissible, since it satisfies axiom 1
but not axiom 2; nor is the choice which sets aSh(n) = 0 for all i and n permitted,
since it satisfies axiom 2 but not axiom 1. I t follows that the two axioms are inde-
pendent.

Each step-couuting function ~4, being partial reeursive, appears somewhere in
the list {Cal. The second theorem asserts that there exists an effective procedure for
telling where.

The S~' theorem [91, also known as the iteration theorem, asserts the existence of a total re-
cursive function ~ such that ¢,(i. ,~)(n) = ¢~(m, n) for all i, n and m.
2 The universal Turing machine theorem states that for any effective 1-1 onto map r: N X N
N, N = nonnegative integers, there is a universal machine Z~ with the property q~(r(x, y)) =
¢~(y) for all x and y.

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967

Theory of the Complexity of Recur~ive Functions 325

THEOREM 2. There exists a total recursive function fl such that ~ = ~(~) for all i.
PnooF. Axiom 2 indicates that M(i , n, m) = 1 ~ ~dn) = m.
Define a function f that satisfies

f (i , n) = m ¢:* M(i , n, m) ~ 1.

Function f is partial recursive. By the S,~ '~ theorem, there exists a total recursive
function f~ such that ch~(o(n) = f(i, n).

This is the desired ft. Q.E.D.
The third theorem makes precise the following notion: Suppose two machine

classes are given, and that a function f is to be computed. Then for every machine of
one class that computes it, there is a machine of the other that computes it in about
the same number of steps.

THEOt~EM 3. Let M and ~i be arbitrary measures on computation with step-counting
functions {4~} and {6~}. Then a total recursive function g exists such that
g(n, 6i(n)) > ,I~(n) and g(n, q~i(n)) >_ 6i(n) for all i and abnost all n.

This means that e l (n) and ~i(n) do not differ too much from each other.
PROOF. The desired function g comes from function p defined by

f•
(n) + 6i (n) if ¢i(n) = m or 6~(n) = m, i.e., if

p (i , n , m) = M (i , n , m) = 1 or JTl (i ,n ,m) = 1,
otherwise.

Function p is total recursive: I t is computable because M and il4 are, and it is
total because 6~(n) convergent ~:~ ¢~(n) convergent ¢:, 4'dn) convergent. The de-
sired g is g(n, m) = max ~ , p(i, n, m). Q.E.D.

A useful tool for proving complexity theorems involves a simplified version of
Kleene's recursion theorem [9] : To every total recursive function z there corresponds
~tn integer j such that ¢,~(~) = O~ • An example of its use appears in this proof of the
obvious-- that a badly designed machine can waste a huge number of steps in com-
puting a simple function:

THEOREM 4. Let h and f be total recursive functions. Then there exists an index j for
f such that Ca(n) > h(n) for all n.

Pl~ooF. Let

f (n) if ¢~(n) > h(n), i.e., if M(i, n, m) = 0
p(i, n) = for all m < h(n),

[1 + O~(n) otherwise.

Function p is total recursive; hence there exists a total recursive function z such
that p(i, n) = ¢,(~)(n) for all i and n. By the reeursion theorem there exists an
integer j such that ¢,(j) = ¢~. Now it is easy to show that j is an index for f : If
• ¢(n) <_ h(n), then ¢~(n) = 1 + Cj(n), which is a contradiction. So ~j(n) > h(n)
for all n. By definition of function p, it follows that ¢~(n) = f(n) for all n. Q.E.D,

3. Speed-Up

On a 1-tape machine with a base 10 code and with step-counting functions which
count actual numbers of steps, a function l ikef(n) = 0 o r f (n) = n can be computed

Journal of the Association for Computing Machinery, "Vol. 14, No. 2, April 1967

326 MANUEL BLUM

in a quickest or a best way. There is no surprise here, for each is computable by
finite automata.

On the other hand, if a function is reasonably complex, then to each machi~e
that computes it there corresponds another much faster that computes it in just
half as many steps for infinitely many n. A simple example of such a function is

<~ if n is a palindrome,
f(n) = otherwise.

This function determines whether an integer written in base 10 reads the same
forward as backward. To compute f(n), n = 372686273, a typical machine firs~
scans the rightmost digit 3 and deletes it, then runs down the tape to leftmost digit 3
and deletes it, backs up to rightmost digit 7 and deletes it, down to leftmost digit, 7
and deletes it, and so on. After comparing opposed digits, it prints the output 1. A
quicker machine scans the rightmost digits 7 and 3 simultaneously before running
down the tape to leftmost digits 3 and 7, and so compares digits 2 at a time rather
than 1 at a time. This quicker machine takes approximately half as many steps as the
slower one for all palindromes, In fact one can show (though not easily) that no
matter what machine is chosen to compute this function, another can be found
which does the same job in just half as many steps, for infinitely many inputs.

This indicates a result that is generally true: There exists a total recursive func-
tion f with the property that to every index i for f there corresponds another index
j forf such that ,I,~(n) > 2Oj(n) for almost all n. Can a stronger theorem be proved?
In particular, does there exist a function f with the property that to every index i
for f there corresponds an index j for f such that

,I,~(n) > ~j(n) ~

for almost all n? The next theorem asserts that such a function exists.
THEOREM 5 (SeEED-U~). Let r be a total recursive function of 2 variables. Then

there exists a total recursive function f taking values 0 and 1 with the property that to
every index i for f there corresponds another index j for f such that ¢ ~(n) > r(n, ~j(h))
for almost all n.

PROOF. Simple intuition lies behind this theorem. I t comes from a direct proof
that to every total recursive h there corresponds a total recursive f with the property
that if i is any index for f, then ~i(n) > h(n) for Mmost all n. This direct prooi'
computes f (n) by canceling the first uncanceled function ~,(n) which is in the set
{¢0(n) , . . . , ~.(n)} and whose step-counting function ~ has the property
• ~(n) < h(n). It then makesf(n) ~ ~b~(n). Toprevent the folly of looking no farther
than the ith function ¢~ at later times, the canceled ¢~ is passed up in computing f for
larger n.

A minor change in this construction makes f into the one wanted for the theorem:
Instead of canceling the first uncanceled element of the set {4~0(n), "" • , ¢~(n)}

N with the property ~ (n) _< h(n) , we cancel the first one with the property
~:~i: 'I%(n) < h(n - i). Then makef(n) ~ ~i(n) as before, tha t definesf. In the proof,
~ h i s computation of f is f = ¢~(0.0,~), where l is an index for h.

The intuition enters in seeing what makes this f work. The machine for ~ ~(0,0,~) goes
through the set {~0(n), . . . , ~(n)} and cancels the first uncanceled 4~ for which
• ~(n) < ~ (n - i). A quicker way to eomputef(n) uses the fact that it is not really

Journal of the Association for Computlng Machinery, Vol. 14, No. 2, April 1967

Theary of the Comp~e:~ffty of .Recur'sire Fw~ct'io~.s 327

necessary to scan the whole set {qS0(n), - . . , ,O,~(T~)I. C, ivea a fixed number u., it, is
sufficbnt for large n to scan only the set; {~,(7~), . . . , 4, ~(r~)}. The reason is tha t for
large enough % each of the eblnen~s ¢0(n), . . . , 4~,~(~) is ekhe r ah'eady canceled
or will never be canceled; so none of these will be can(eled durb~g the computa t ion of
/ (n) . These m a y t.herefore be bypassed for suffh~kmtly large ~, s~y ~ > v. ~uch ~
shortcut computa t ion of f (n) , which scans the smaller set I ~ , / ~) , ' " , ~,~(/~)},
takes fewer steps; it is known here as f = 0~< ~). In gem~ral, the larger '~, dIe faster
is the corresponding machine tha t computes f . The increase is sufficient: to prove the
theorem.

Only one small problem arises. These computat ions involving u m,d v are special
ways ~to compute]', and it might be thought tha t some stral,ge al~d much quicker
way to compute f has escaped us. Such is not the case, for if fi is any hidex for f, ~heu
as a consequence of the definition off , <Ib(n) > ¢,~(n - j) for a lmost all ee, which puts
a lower bound on the number of steps tha t it. takes to compute j'(~z). This lower
bound is used to show tha t any procedure for computiug f is no better tha~ one of
those above involving fixed numbers u and v.

The proof of the theorem fo lbws a plan suggested by ~,[ichael Arbib, which
clarifies and condenses tile present au thor ' s orighml proof. We defim~ a crucial Wtal
recursive function t (u , v, Z) so tha t 4u total implies 4,(~,,o,~ total with wdues 1} ,and 1.
Then prove :

LE~,tMA 1. I f ¢ht is total, thet~ Jbr each "u the're exists a v such lhat 4,~(,o.o,~) := qh(o ~ ~).
LE:u~m 2. I f O~ is total, and ~f we define f = 4J~(o,o.o, tJ~vn for eac;~ index i i'm" f ,

4,{(n) > 4~(n -- i) Jbr almost all n.
LE~.I:VIA 3. There exists a total ~'ec'ursive j:unctiar~ 4~ ,such that for ale u a~cl v,

4u(n -- u + 1) > r (n , I't(,~,,,,o('n)) for almost all n,
Then for each index i f o r f = ~(0,0,t) and for ahnost all r~,

(I,,~(n) > ~ t (u - i) (L e m m a 2)

> r (n , (I.,~(i+l.~,~)(n)) for all v (take u = i + i in. [,emma 3)

= r (n , (I , / n)) (by L e m m a 1, choose v so tha t]' = (~(~.~,,,~)=O~),

and the theorem follows. Q.E.D.
We now turn to the construct ion of t and the proof of the t, hree lemmas,
1. Car~structiar~ of t. Funct ion qst(,,,~,o is defined in terms of t;t~e set (see

Figure 1)

C ~ = [4~(m) [(m < v a n d k ' ~ m) o r (m ~ v a u d u 5~ k ~ m)]

Compute ,~(,,~.~)(n) as follows:
(i) If v < u, set ¢~(,~,.,~)(n) = 4,e(,.,,~,o(n) arm use (i i) .

(i i) If v > u, proceed as fo l lows:
(c~) Cornpu e 4~(0), ,4~(n) if n < v, but, compute oaly (h~(O), '

~ (n - u) if n >_ v. If arty of these diverge, let 4~ o (n) diverge.

Otherwise go to (~).
(fl) Circle all ,~ (n) in C,~ gl column n such tha t ,/,~(n) ~ qS/n - k). I f

none are circled, set 4u(~,,~,~)(n) equal to zero. Otherwise, go to (77).
(7) Cancel the first en t ry ~b~(n) in column n which is circled and which has

the proper ty tha t 4~(m), m < n, has not been canceled, i f noue of

Journal of the Association for Computing ~{achinery, VoL 1.t, No. 2, April 19~7

328 M A N U E L BLUM

n.= 0 I 2 v

¢o (v) ' , , " " - x , " " / ' , . . " " / ,

I 1(2)

U - I ~ u
Cuv IS THE SHADED REGION

Fro. 1

the entries in C ~ Q column n are canceled, set Ct(.... ~)(n) equal to

zero. Otherwise go to (~).
(~) I f Ck(n) is canceled, set

to o
¢~(.. . . 1)(n) = ~ _ if @k(n) = O.

This definition implies t ha t if Ct is total, then Ct(.... z) is to ta l for all u and v.
2. Proof of Lemma 1. I n the computa t ion of C t(0,0,t), the n u m b e r of entries above

row u tha t are canceled mus t be finite, since a row contains at most one canceled
entry. Let column v be immedia te ly to the r ight of the r igh tmost canceled e n t r y
above row u. Then it is clear f rom the figure tha t Ct(0.0.t)(n) = ¢~(.... o (n) for all n .

Q.E.D.
3. Proof of Lemma 2. Let i be an index for f, and suppose to the con t ra ry t h a t

¢i(n) _< ¢¢~(n - i) for infinitely m a n y n = n l , n~, n~, • • • • T h e n it is seen that , i n
the computa t ion of ¢~(0.o,o(n), ¢i(nk) mus t be canceled for some k, and so
Ct(0,0.z)(nk) ~ ¢i(nk), which implies tha t f (nk) ~ ¢i(nk). Contradict ion. Q.E.D.

4. Proof of Lemma 3. Choose a recursive 1-1 map of the integers onto the set o f
all 1-tuples, 2-tuples, 3-tuples, • • • of integers. Let ((a0, • • • , a~)) denote the in teger

which maps onto (a0, • ." , a~). Define

= / ~ t (.... ,)(n) i f n > u - F v a n d z = (@,(0), . . . , e P ~ (n - u) } } ,
g(n, u, v, i, z) \o if not.

Using the M-funct ion , we see tha t g is total recursive. I t thus suffices to find

tota l recursive funct ion ¢~ such that , for a lmost all n,

¢~(n - u + 1) _> r[n, g(n, u, v, l, (@K0), " ' " , ~ (n - u))})]. (3 .1)

Define p as follows:

p(i , O) = 0

p(i, z + 1) = max r[z + u, g(z + u, u, v, i, ((~i(0), . " , ~i(z))})] . (3 . 2)
O<v~_z
O < u ~ z

The funct ion p is par t ia l recursive, so there exists a tota l recursive funct ion cr s u c h
tha t p(i, z) = ¢~(¢)(z). B y the recursion theorem, there exists ~n index 1 such t h a t

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967

Theory of the Complexity of Recursive Functions 329

~(l)(Z) = ¢~(z) for all z. Hence

~ (z) = p(l, z). (3.3)

Thus 4~z(O) = p(l, O) = O. Now assume ~t(n) converges for n ~ z. On inspecting
(3.2) and recalling (3.3), we see that 0z(z + 1) converges, since g and r are total
recursive, and convergence of O~(n) for n ~ z implies convergence of e l (n) for
n _~ z . Hence ¢,t is total recursive.

F i x u a n d v . T h e n f o r n P_max[2u, u + v] , w e h a v e v < n - u , u ~ n - u a n d
so, putting z = n - u and i = I in (3:2), we obtain (3.1). Q.E.D.

For example, let r(n, m) = 2% Then the speed-up theorem asserts the existence
of a total recursive function f such that to every index i for f there corresponds an-
other index j for f such that ~ (n) > 2 Cj(') for almost all n. Hence it also asserts

that to index j for f there corresponds an index/c for f such that ¢~(n) > z
and so on. Unfortunately, the speed-up theorem does not provide an effective pro-
cedure for going from a machine fo r f to a speedier one. In fact it cannot, as Corollary
1 shows:

COnOLL~RY 1. Let r be a total recursive function and f the corresponding function
of the speed-up theorem. I f r is su~ciently large, there can be no total recursive function K
such that: (1) K enumerates only indices off, (2) to every index i Jbr f there corresponds
an index ~(j) for f such that ¢~(n) > r(n, q)~(j)(n)) for almost all n.

PRooF. Let v be a total recursive function with the property that for each j
there exist infinitely many n such that ~-(n) = j. By the S Z theorem, there exists a
total reeursive function ~ such that

~ (1) (n) = dp~A~Cn))(n) (3 . 4)

for all i and n. For this ¢, it is easy to show that there exists a total recursive func-
tion g such that

and therefore there exists a total recursive function h such that

• ~(1)(n) (h(n, ¢~(~(~))(n)) + h(i, ~(~r (n))) (3.5)

for all i and n. Let K = ~bk enumerate only indices off. Then ~6k(~ (~))(n) = ,~(~(~))(n),
and so by (3.4), O~(k)(n) = ,~(~(~))(n), so a(k) is an index forf . By (3.5),

• ¢(~)(n) (h(n, ~(~(,))(n)) -/- h(lc, ¢~(~r(n))) (3.6)

for all n. For eaeh j and infinitely many n, ~-(n) = j, and so for each j and infinitely
many n,

• ,(~)(n) < h(n, ~o)(n)) + h(k, ~(j)). (3.7)

But h as defined in (3.5) is independent of r. Therefore r can be chosen as large as
one likes without changing h. In particular, let r be any function that satisfies the
inequality, r(n, m) > n ~- h(n, m) for all n and m. If we let m = ,l~<1)(n), eq. (3.7)
gives

• ¢(~)(n) < r(n, ¢~o')(n)) - n -t- h(l% ~ (j))

for infinitely many n. This in turn implies that for every j there exist infinitely many

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967

330 M~UEL ~LU~

n such that

¢I,~(k)(n) < r(n, ~ (j) (n)) .

As stated just before eq. (3.6), f = 0~(~), so this is a contradiction to part 2 o f
this corolla~T. Q.E.D.

I t may be supposed of the ~'-speed-up 4~i(n) > r(n, et)j(n)) that r must be nil
exceedingly small function in comparison with ~Pi • The next theorem asserts, how-
ever, that r may in fact be as large as ~p~.

THEOREM 6 (SUPER SPEED-UP), Let g be a total reeursive j~tnction. Then there
exists a 0-1 valued total reeursive j~netion f such that (1) if i is an index for f, ther~
• ~(n) > g(n) for almost all n; (2) to every index i j ~ r f there corresponds an index j
for f such that ~i(n) > 4~j(¢j(n)) for almost all n.

P~ooF. The proof of this theorem is like that of the speed-up theorem, so it is
not given here in detail but only indicated. I t depends on the following lemm~:

LEi~t~IA. There exists a sequence {p,} ~-o of monotonically increasing total recursive
functions p, such that (1) for each s and almost all n, p~(n) > g(n); (2) for each s
and almost all n, p , (n) > p,+l(p,+l(n)); (3) for each s and all n, p,~n > p,+l(n).
The proof of this lemma is left to the reader.

To compute f (n) , cancel the first uncanceled element ~ which is in the set { 00(n),
• .. , 0n(n)} and whose step-counting function ~ has the property ~ (n) ~ p~(n).
Then make f (n) ~ Oi(n). I t follows that if i is an index for f, then for almost all n

• i(n) > pi(n) . (3.8)

By the lemma, pi(n) > g(n) for almost all n, so part 1 of this theorem is proved.
To computef (n) more quickly, it suffices to fix a number u and for large enough n.

to scan only the set {0~(n), . . . , 0,~(n)}. The number of steps needed to compute
f (n) in this way can be determined: I t can be shown, by using part 3 of the lemma,
t h a t there exists a total recursive function h which is independent of the sequence
{Pal such that a machine which computesf (n) in this way (i.e., by scanning only
the set {0~(n), • . . , O,(n)}) takes less than h(n, p~(n)) steps for almost all n. This
means that for every number u there exists a machine Z¢ which computes f so
quickly that for almost all n,

h(n, p~,(n)) > ~ (n) . (3.9)

Since the function h is independent of the choice of sequence {p~}, the function g
may be made so large in the lemma that p~_~(n) > h(n, pu(n)) for almost all n.
Then by taking u = i + 2, this yields that for ahnost all n,

(3.10) p~+l(n) > h(n, p~+2(n)).

I t follows that if Z~ computes f, then for almost all n,

¢P~(n) > p~(n) (by eq. (3.8))

> pi+l(p~+l(n)) (Lemma, part 2)

> p~+l(h(n, p~+2(n))) (by eq. (3.10) and the fact that pi+l is monotonically
increasing)

> p i+l (~(n)) where f -- 0j (u = i + 2 in eq. (3.9))

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967

Theory of the Complexity of Recursive Functions

> h(¢~(n), p~+2(¢j(n))) (by eq. (3.10))

> ,l,~(4pj(n)) w h e r e f = ~aj (u = i q- 2 in eq. (3.9)).

Q.E.D.

331

4. Compression

Tile next theorem, which is similar to one by Rabin [5], proves the existence of
e~lormously conlplex 0-1 wflued functions. As such it resembles Theorem 1, but it
extends that result in three important directions. Whereas Theorem 1 asserts that
there are 0-1 valued functions f (n) which take more than g (n') steps to compute for
infinitely many n, the next theorem asserts this for ahnost all n. I t also allows g and
f to be just partial reeursive, instead of total recursive. Finaily, it provides a re-
cursive "r which maps indices of g's into indices of f's. Theorem 7 is not a trivial
generalization, and the compression theorem leans heavily upon it, especially upon
the existence of 'V.

THEORE~i 7. (1) To every partial recursive function g there corresponds a 04
valued partial reeursive function f with the same domain as g such that ij'j is any index
for f, then ~j(n) > g(n) for almost all n. (2) There exists a total recursive Junction y
which lakes an index JUt any g into an index for the corresponding f.

PROOF. If it is known in advance that g is total recursive, then a very simple
procedure will serve to compute f. To compute f (n) , cancel the first uncanceled
clement Oj which is in the set {¢,0(n), • .. , 4,~(n)} and whose step-counting function
has the property ~¢(n) < g(n). Then make f (n) ~ ~i(n). In this way, f (n) is
forced to be different from those functions 4,i forwhich ~I,j(n) < g(n) ; hence, it must
happen that if k is an index for f, then q'k(n) > g(n) for almost all n.

This procedure for computing f (n) requires that it be known which functions in
the set {4)0, " '" , ¢~} were canceled during the computation of f (0) , . . . , f (n - 1).
So to compute f (n) with this procedure, it is necessary first to compute f (0) , then
f(1), and so on t o f (n - 1) . This is easy enough if g is total, but if not, g(m) may
diverge for some m and then so must f (m) and there may be no way of telling that
f(m) diverges. If m < n, this makes it impossible to compute f (n) . To bypass this
difficulty, we conlpute f (n) in such a way that f(O) through f (n - 1) need not be
computed first. The idea is to enumerate in some order all pairs of nonnegative
integers so that given any nonnegative integers n and m, the pair (n, m) is certain
to be produced eventually.

After each pair (n, m) is produced, take the index i for g and determine whether
or not ~ (n) = m. This may be done effectively using the measure function, M.
If ~ (n) ¢ m, go on to the next pair in the list. On the other hand, if ~ (n) = m,
then compute f (n) as follows: Cancel the first element 4~ in the set {~0, ' • • , 4~,}
which was not canceled during the enumeration of pairs up to the present pair
(n, m) and whose step-counting function ~j has the property ~j(n) < g(n). Per-
haps no '~i is canceled. If so, ser f (n) = 1.1 On the other hand, if 4i is canceled, set
f(n) ~ 4~(n). This defines f.

The proof of Corollary 1 to Theorem 8 requires an extremely detailed statement of
the above construction of f. This statement is provided by the following indented
paragraphs, which the reader may skip.

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967

332 MANUEL B L U ~

The procedure for going from an index i for g and a number n to a va lue of f(n) is as
follows :

F i r s t compute g(n), (g = 44d. If i t d iverges , let f(n) diverge. If i t converges , f(n)
m u s t be made to converge. To compute it, a procedure is se t up so t h a t all funct ions ,b/
are canceled whose s t ep -coun t ing funct ions q'i have the p r o p e r t y t h a t Opt(n) < g(n) for
infini tely m a n y n, and the cor responding pairs (j , n) are adjo ined to a l i s t L. The list L
grows in s tages and at eaeh s tage a t mos t one pair (j, n) is ad jo ined to L. The growth of
L at s tage x is descr ibed next . A recursive code t h a t maps N X N onto N is used to rewrite
x in the form (p, q} = x.

Stage x = (p, q). If .¢~(p) ¢ q, (g = ~0 , then bypass s tage x and go to s inge x ÷ l .
On the o ther hand, if ~i(p) = q, then cancel t he first uncance led funct ion 4)J(p), if there
be any, which is in the se t {¢0(p), . . . , Cp(p)} and whose s t ep -coun t ing func t ion has the
p r o p e r t y ¢~(p) _< g(p). To cancel ¢i(p) means to add (j, p) to l i s t L. Af te r cancel ing Cj(p),
go to s t age x-l-1.

Now, to compute f(n), look down the l i s t L for a pair (s, n) ending in n. I t corresponds
to a func t ion ,% for which 4)s(n) < g(n). If such a pair (s, n) exis ts , make f(n) ~ ¢,(n).
On the o ther band, if (s; n) does no t appear in L for any s, se t f(n) = 1. Note that an
effective procedure can de t e rmine whe the r or no t (s, n) is in L for some s. T h a t is because
the pa i r (s, n) can appear only in s tage (n, m), where ~i(n) converges to m.

By construction, i f j is any index for f, then ~j(n) > g(n) for almost all n. Hence
part (1) of this theorem is immediate. Part (2) follows from the proof of (1) because
that proof shows how to construct an f for every g: The proof of (1) furnishes a~
procedure for going from the index i for g and an integer n to the value of f(n).
With i fixed, a machine that follows this procedure computes f(n), and the index of
this machine, which is easily determined, is the desired index 7(i) for f. Q.E.D.

This last theorenl serves as a lemraa to the compression theorem, which comes
next. For virtually all machines and codes, the compression theorem sets upper and
lower bounds on the number of steps needed to compute a function f(n), the lower
bound being a partial recursive (3(n) and the upper bound being a total recursive
function of it, h(n, ~(n)). As a bonus, it demonstrates a curious relationship between
measures on computation and bounds on complexity. This relation becomes clearer
with the following definition.

Definition. Let ~N be a 0-1 valued total recursive function of three variables
with the property that for every i and n there is at most one m such thab
NZ(i, n, m) = 1. Set ~x(n) = the unique m, if any, such that 91Z(i, n, m) = 1,
and let oo~:(n) diverge if m does not exist. The set {~d of partial recursive functions
so defined is called a measured set.

Example 1. A measured set of functions is the set {~} of all step-counting func-
tions.

Example 2. A measured set of functions, { ooi}, which in fact includes the real-time
computable functions [Yamada, 10] is defined by

=[4~i(n) if 4i(n) converges and ~i(n) < i.qs~(n),
(31(n) / divergent otherwise.

Example 3. A measured set of functions cannot include all total reeursive func-
tions. To see this, suppose to the contrary that {~} does contain all total reeursive
functions. Let function f be defined by

if ~ (n , n, 1) = 1, i.e., if ~ (n) = 1,
f(n) ={01 otherwise.

Journal of tile Association for Computing Machinery, Vol. 14, No. 2, April 1967

~eory of the Complexity of Recursive Functions 333

This f is total recursive because {ylZ is. But f ~c {~;}, for if f = ~o.,., then f (i) = 0 ~-->
~(i) = 1 ~ f (i) = 1, which is a contradiction.

THSOREV 8 (Co.~eRESSION). {~,} is a measured set ~ there exists a total recursiz,e
/)faction h such that the following is true: To each pm'tial recursive function ~qi the~'e
corresponds a 0-1 valued partial recursive jitnction f with the same domain as ,q,. such
I]~at (1) if j is any index for f then ,(].,(n) < ¢5(n) for almost all n; (2) there exists an
index 1~ J~r f such that Ck(n) < h(g, oui(n)) for almost all n; (3) there exists a total
recu.rsive function r which maps the subscr@t i for any ~i into the index t~ above for the
corresponding f.

PROOF. ~ : There exists a total reeursive fimction ~ such that oe; = ¢;(,.) for all i.
The proof of the existence of ~ is like that of Theorem 2, so it is left to the reader.

Let v be the function of Theorem 7, and let f = ¢v~(o. Then for every index j
for f, Theorem 7 insures that

Cj(n) > 4~,(i)(n) (= c3~(n)),

as in (1). Now set

f¢,~(o(n) i fW(n) = m, i.e., if ~,g(i, n, m) = 1,
p(i, n, m) \o otherwise.

Define h(n, m) = 1 + maxi_<,~ p(i, n, m). Then h is total recursive, and h(n, g~i(n))
> ¢~(o(n) for almost all n, which mea~s that this h satisfies (2). As for the recur-
sire v in (3), the function r = v~ maps the subscript i for ~ into the correct index
vf(i) for f. This completes the proof in this direction.

~ : A proof that {~} is a measured set must show that ~g is total reeursive.
The proof that ~ (i , n, m) is total reeursive is just a procedure for computing it
which makes use of the fact that for every i and almost all n,

h(n, ~i(n)) > ¢~(o (n) > ~ (n) .

To compute ~Z(i, n, m), first determine whether ¢~(,o(n) < h(n, m). This can be
decided because h is total reeursivc. If ¢,(i)(n) _~ h(n, m), then ~'i(n) ¢ m, so set
~(i , n, m) = 0. If (L(i)(n) < h(n, m), then ¢,(o(n) converges, and since ~I),(o(n)
> ~q~(n), so does oOi(n). In this ease it is possible to deternfine whether ~ (n) = m
and so to decide whether to set ~l;(i, n, m) = 0 or 1. Hence gg is total. Q.E.D.

In [2], Hartmanis and Stearns prove a beautiful special form of this theorem.
Theirs has to do with the multi tape machines that print art arbitrary finite number
of symbols. Assume these machines use a base 2 input-output code. Also, assume
{~} to be the set of real-time computable functions. Finally, interpret q'~ as the
actual number of moves made by the ith machine over its tapes. Under these
conditions the theorem states that h exists and is approximately given by
h(n, m) = m ~. For example, let ~dn) = 2 ~. Then a bound on the minimum number
of steps needed to compute the corresponding f (f = 4i) is given by

2 ~ < ¢~(n) < 2 ~'~+~.

This means tha t f (n) can be computed by a multitape machine in less than 2 >+*
steps, but it cannot be computed in less than 2 ~" steps, no matter how many addi-
tional symbols, tapes or states are added to the machine.

Our proof of the compression theorem is constructive. Hence, it may be used to
find h for any class of machines and any measured set {~d. The first corollary is a

Journal of the Association for Computing 5Iachinery, Vol. 14, No. 2, April 1967

334 M A N U E L BLUM

case in point. Its proof carefully follows the proof of Theorem 8. In a way, it illus-
trates the goodness of the theoretical bounds given there.

COROLLARY 1. Let {Z.~} be the class of 1-tape machines that print and erase the
symbols b(blank) , 0 or 1 and which have a base 2 input-output code. Let ~]i(n) = (Pi(n)
be the number of steps taken by Zi v~ith input n. Then the function h of Theorem 8 is
total recursive, and its value is given by h(n, m) < (n + m) 7. This means that to every
step-counting function ~ there corresponds a 0-1 valued partial recursive function f
with the same domain as q)~ such that (1) if j is any index for f, then for almost all n,
c~i(n) < ~J(n)," (2) function f has the index T(i) such that for almost all n, ~i(n) <
• ~.)(n) < [n + ~ (n)] ~.

PaooF. Since ~ = M is the measure on computation, it is total recursive.
Hence, by the compression theorem, h exists and is total recursive. The proof of
Theorem 8 is an outline for determining the function h given in this corollary. When
the details of that proof are filled in, a bound on h is obtained. Filling in the details
of tha t proof is a chore, not difficult but tedious.

To begin, function h is defined in the proof of Theorem 8 in terms of the function

f~.)(n) if,I)~(n) = m,
p(i, n, m)

otherwise,

where T represents the function ~ in that proof. Then

h(n, m) = 1 -t- max p(i, n, m)

< 1 + max {~(i)(n) [i < n a n d ¢ i (n) = m}.
i

So the problem of finding an upper bound on h(n, m) reduces to that of findinE
an upper bound on ¢~(i)(n). To simplify the calculations, an upper bound is first,
found on ,i~,(~)(n) which equals the number of steps needed to compute f (n) on a~
10-tape machine. Then the value of ¢~(~)(n) is determined from that of ~ ~(~)(n).
Har tmanis and Stearns [2] show that ~I'~(i) (n) < [~ ~-(i) (n)] 2 in the case of 1-tape an4
10-tape machines that print and erase an arbitrarily large number of symbols. The
machines considered in this corollary, however, can only print and erase the blank,
0 and 1, and for this reason the relation is actually ~(i) (n) _~ 1014~,(~)(n)] ~, where t h e
10 corresponds to the 10 tapes of the 10-tape machine.

The computation of f (n) is described in the proof of Theorem 7. What follows
here is a bit-by-bit reiteration of the constructive part of that proof, together
with bracketed statements giving the number of steps needed to do each bit of t h e
computation. The symbol c is used throughout to denote a constant. To compute
f (n) :

A. Compute ~i(n) = m and go to stage 0 = (0, 0}. Number of steps needed t o
do this is [a < c + c log n + cm log m]. Then inductively,

B. At stage x = <p, q},
1. Determine whether ~ (p) = q: [/~ _< c -t- c log p + cq logq].
Assume that ,I)~(p) = q.
2. Extract the indices s ~ , - . . , st of all uncanceled functions in the s e t

{4,0(P), " '" , Cp(P)}: [~2 _< c(p + 1)(p + q)(log (p + q))].
3. Pick the smallest index sk such that ¢~k(P) < q and adjoin (s~, p) to the l i s t -

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967

Theory of lhe Complexity oJ' Recursive Functions 335

This requires that the following quantities be determined:

s(i) =~f number of steps needed to print the instructions of machine Zi ;

r(p) = ~ Z~=os(i) , [,'(p) < cp21ogp];

d(p) = df ~ = 0 di , where d(Pi(n) is the number of steps needed to simulate
the eomput~ation of Zi with input n. [d(p) < cp (log p)2],
[f13 _~ r(p) + c .d(p) (q logq) + cqp].

C. Go from stage n = <p, q} to stage n + l if <p, q} ~ (n, m}: [y _< e log p
+ c l o g q + el.

D. If no function ~ (n) is canceled in stage (n, m}, let f (n) = O. Otherwise,
~,(n) is canceled in stage (n, m}, and so le t f (n) = 1 "- ¢~(n). [6 < c].

Total number of steps required to compute f (n) on a 10-tape machine is

t n+m n+m--q ~1 ,~,(~)(n) < a -k- ~ ~ (~ + ill) + (/3~ -+-/~)lp+q=,~+,,~.(1 + n + m) "-t-
q=0 p=0

< c + c [l o g (1 + n + m)] 3 . (1 + n + m) 3.

But ¢~u)(n) _< 10[~u)(n)] 2. Therefore a permissible bound on h is h(n, rn) <
(n + m) 7. Q.E.D.

Definition. The statement there exist arbitrarily large total recursive functions r
with property A means tha t to each total recursive function s there corresponds an r
with property A such tha t r(n) > s(n) for all n. For example, there exist arbitrarily
large step-counting functions (Theorem 4).

Definition. To say tha t all sui~ciently large total recursive functions r have property
A is to say that there exists a total recursive function s such that if r(n) > s(n) for
~11 n then r has property A. For example, all sufficiently large total recursive func-
tions r take at least 2 ~ steps to compute for almost all n. (This follows from Theorem
3 and the fact that a standard Turing machine whose step-counting function counts
actual numbers of steps takes 2 n steps just to print the value of r(n) .)

COROLLARY 2. There exist arbitrarily large total recursive functions r, and associ-
ated with each r a 0-1 valued total recursive function f, such that (1) if i is any index for
f, then ¢i(n) ~ r(n) for almost all n; (2) there exists an index k for f such that
r(n + 1) > ~k(n) > r(n) for almost all n.

The proof of this corollary is left to the reader.
One might suppose that to all sufficiently large total recursive functions h there

correspond total recursive functions f such that (1) if i is any index for f, then
h(n) < ~i(n) for almost all n; (2) there exists an index k for f such that
h(n) < q~k(n) < h[h(n)] for almost all n. But this is false unless some constraint
binds h to a measured set. In fact, there exist arbitrarily large total recursive func-
tions h such that for every index j, either ,I,¢(n) < h(n) or h[h(n)] < ,.I:,i(n) for
infinitely many n. Disappointing though this may be, a weak form of this compres-
sion does hold. One can show that to each sufficiently large total recursive function h
there corresponds a total recursive function f such that (1) if i is any index for f,
then for infinitely many n, h(n) < ,-I,~(n); (2) for some index /c for f, h(n)
< I)k(n) < h[h(n)] for infinitely many n. To prove this statement, first show that to
each sufficiently large total recursive function h there corresponds an index j such

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967

336 MANUEL t~ LLr~

t h a t h(n) < ~ (n) < h[h(n)] for inf in i te ly m a n y n. Then invoke t he compress ion
theo rem to ob ta in the resul t .

ACKNOWLEDGMENTS. T h e au thor expresses his sincere apprec ia t ion to Dr'. W a r r e n
S. McCulloch, Professor M a r v i n R[insky, and Dr. Jur is t t a r t m a n i s for thei r e~lthu-
s iasm and suppor t of th is work, to Dr. ~\![iehae! Arb ib , Professor Wi l l i am Kilmer ,
a n d the referee for this and also for the i r help in revis ing the manuscr ip t , arid to
Professor H a r t l e y Rogers, Jr . , for his superb lec tures and notes on recurs ive func t ion
theo ry .

REFERENCES

1. ARBIB, M. A., AND BLUM, M. Machine dependence of degrees of difficulty. Proc. Amer.
Math. Soc. 16, 3 (June 1965), 442-447.

2. HARTMANIS, J., AND STEARNS, R. E. On the computational complexity of algorithms.
Trans. Amer. Math. Soc. 117, 5 (May 1965), 285-306.

3. ----- ,aND Computational complexity of reeursive sequences. Proc. 5th Annual Symp.
on Switching Theory and Logical Design, Princeton, N. J., 1964.

4. MYHILL, J. Linear bounded automata. WADD Tech. Note 60-165, U. of Pennsylvania
Rep. No. 60-22 (June 1960).

5. RABIN, M. O. Degree of difficulty of computing a function and a partial ordering of
recursive sets. Tech. Rep. No. 2, Hebrew U., Jerusalem, Israel (April 1960).

6. - - - . Real time computation. Israel J. Math. I (1963), 203-211.
7. RITCHIE, R.W. Classes of predictably computable functions. Trans. Amer. Math. Soc. I06,

1 (June 1963), 139-173.
8. BOOERS, It., JR. GSdel numberings of partiM reeursive functions. J. Symbolic Logic 23,

3 (Sept. 1958), 331-341.
9. - - - - . Recursive functions and effective computability. McGraw-Hill, New York (in press).

10. YAMADA, H. Real-time computation and recursive functions not real-time computable.
IR, E Trans. EC-11, 66 (Dec. 1962), 753-760.

11. COBftAM, A. The intrinsic computational complexity of functions. Proc. 1964 Int . Con-
gress on Logic, Methodology and Philosophy of Science. North-Holland, Amsterdam, 1965,
24-30.

12. COOKE, S. A. Otl the minimum computation time of functions. Bell Labs. Rep. BL-41,
1966.

13. WINOGRAD, S. On the time required to perform multiplication. IBM Res. Rep. RC-1564,
1966.

RECEIVEI) OCTOBER, 1965; REVISED JUNE, 1966

Journal of the Association for Computing Ylavhlnery, Vol. 14, No. 2, April 1967

