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Bedrock is a Coq library that supports implementation, speci�cation, and veri�cation
of low-level programs. Low-level means roughly �at the level of C or assembly,� and the
idea of �systems programming� is closely related, as some of the primary target domains for
Bedrock are operating systems and runtime systems.

Bedrock is foundational, meaning that one needs to trust very little code to believe that a
program has really been veri�ed. Bedrock supports higher-order programs and speci�cations.
That is, programs may pass code pointers around as data, and speci�cations are allowed
to quantify over other speci�cations. Bedrock supports mostly automated proofs, to save
programmers from the tedium of step-by-step formal derivations; and Bedrock is also an
extensible low-level programming language, where programmers can add new features by
justifying their logical soundness.

This advertising pitch can be a bit of a mouthful. To make things more concrete, we'll
start with three small examples. Some knowledge of Coq will be helpful in what follows,
but especially our �rst pass through the examples should be accessible to a broad audience
with a basic level of �POPL literacy.� Readers interested in applying Bedrock, but who don't
have backgrounds in core Coq concepts, should consult some other source. Naturally, the
author is partial to his Certi�ed Programming with Dependent Types. Other popular choices
are Software Foundations by Pierce et al. and Coq'Art by Bertot and Casteran.

This document is generated from a literate Coq source �le (doc/Tutorial.v in the
Bedrock distribution) using coqdoc.

1 Three Veri�ed Bedrock Programs

1.1 A Trivial Example: The Addition Function

To begin, we issue the following magic incantation to turn a normal Coq session into a
Bedrock session, where we have run Coq with command-line arguments -R BEDROCK/src

Bedrock -I BEDROCK/examples, with BEDROCK replaced by the directory for a Bedrock in-
stallation, where we have already run make successfully, at least up through the point where
it �nishes building AutoSep.vo.

Require Import AutoSep.

Importing a library module may not seem like magic, but this module, like any other
module in Coq may choose to do, exports syntax extensions and tactics that allow a very
di�erent sort of coding than one sees in most Coq developments. We demonstrate by im-
plementing a function for adding together two machine integers. Bedrock is an environment
for veri�ed programming, so we should start by writing a speci�cation for our function.

Definition addS := SPEC("n", "m") reserving 0
PRE[V ] d True e
POST[R] d R = V "n" +̂ V "m" e.
Up through the :=, this is normal Coq syntax for associating an identi�er with a def-

inition. Past that point, we use a special Bedrock notation. The SPEC ("n", "m") part
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declares this as a spec for a function of two arguments with the given formal parameter
names, and reserving 0 declares that this function will require no more stack space than is
needed to store its parameters. (As Bedrock is targeted at operating systems and similar
lowest-level code, we opt for static tracking of stack space usage, rather than forcing use of a
�xed dynamic regime for avoiding stack over�ows. Furthermore, handling of the stack is not
built into the underlying program logic, and it is possible to implement alternate regimes
without changing the Bedrock library.)

A speci�cation includes a precondition and a postcondition. The notation PRE [V ] intro-
duces a precondition, binding a local variable V that can be used to refer to the function
argument values. In this example, we impose no conditions on the arguments, so the pre-
condition is merely True. Actually, Bedrock uses a fancier domain of logical assertions than
Coq's usual Prop, so we need to use the d ... e operator to lift a normal proposition as
an assertion. More later on what assertions really are. Note that the rendering here uses
pretty LATEX symbols; see some of the �les in the examples directory for the concrete ASCII
syntax.

A postcondition begins with the notation POST [R], which introduces a local variable
R to stand for the function return value. In our postcondition above, we require that the
return value equals the sum of the two function arguments, where we write addition with
the +̂ operator, which applies to machine words.

Now that we know what our function is meant to do, we can show how to do it with
an implementation. This will be a Bedrock module, which in general might contain several
functions, but which will only contain one function here.

Definition addM := bmodule "add" {{

bfunction "add"("n", "m") [addS]

Return "n" + "m"
end

}}.

The syntax should be mostly self-explanatory, for readers familiar with the C program-
ming language. Two points are nonstandard, beyond just the concrete syntax. First, we
refer to variable names with string literals. These are not string literals in the Bedrock pro-
gramming language, but merely a trick to get Coq's lexer to accept C-like programs. Second,
the function header ends in a Coq term between square brackets. This is the position where
each function must have a speci�cation.

It doesn't seem surprising that addM should be a correct implementation of an addition
function, but, just to be sure, let's prove it.

Theorem addMOk : moduleOk addM.
Proof.
vcgen; sep auto.

Qed.

The predicate moduleOk captures the usual notion from Hoare Logic, etc., of when a
program satis�es a speci�cation. Here we prove correctness by chaining invocations of two
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tactics: vcgen, which performs veri�cation condition generation, reducing program correct-
ness to a set of proof obligations that only refer directly to straightline code, not structured
code; and sep auto, a simpli�cation procedure based on separation logic that is quite a bit
of overkill for this example, but gets the job done. (There actually is some quite non-
trivial reasoning going on behind the scenes here, dealing with complexity hidden by our
nice notations; more on that later.)

1.2 Pointers and Memory: A Swap Function

A crucial component of low-level programming is mutable state, which we introduce with a
simple example: a function that takes two pointers as arguments and swaps the values in
the memory cells that they point to. Here is its spec.

Definition swapS := SPEC("x", "y") reserving 2
∀ v, ∀ w,
PRE[V ] V "x" 7→ v ∗ V "y" 7→ w

POST[ ] V "x" 7→ w ∗ V "y" 7→ v.

We see several important changes from the last spec. First, this time we reserve 2 stack
slots, to use for local variable temporaries. Second, the spec is universally quanti�ed. The
function may be called whenever the precondition can be satis�ed for some values of v and

w. Note that the same quanti�ed variables appear in precondition and postcondition, giving
us a way to connect the initial and �nal states of a function call.

Both precondition and postcondition use notation inspired by separation logic. The
syntax p 7→ v indicates that pointer p points to a memory cell holding value v. The ∗
operator combines facts about smaller memories into facts about larger composite memories.
The concrete precondition above says that the function will be aware of only two memory
cells, whose addresses come from the values of parameters "x" and "y". These cells start out
holding v and w, respectively. The postcondition says that the function swaps these values.

Here is an implementation.

Definition swap := bmodule "swap" {{

bfunction "swap"("x", "y", "v", "w") [swapS]

"v" ← ∗ "x";;
"w" ← ∗ "y";;
"x" ∗ ← "w";;
"y" ∗ ← "v";;
Return 0

end

}}.

We write private local variables as extra function formal parameters. The operator ;;
sequences commands, the operator ← ∗ is a memory read, and ∗ ← is memory write.

Our function is not very complex, but there are still opportunities for mistakes. A quick
veri�cation establishes that we implemented it right after all.
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Theorem swapOk : moduleOk swap.
Proof.
vcgen; sep auto.

Qed.

1.3 An Abstract Predicate: In-Place List Reverse

Bedrock also supports highly automated veri�cations that involve data structures, formalized
in a way similar to abstract predicates in separation logic. As an example, consider the
following recursive de�nition of an abstract predicate for singly linked lists.

Fixpoint sll (ls : list W) (p : W) : HProp :=
match ls with

| nil ⇒ d p = 0 e
| x :: ls' ⇒ d p 6= 0 e ∗ ∃ p', (p 7→ x, p') ∗ sll ls' p'

end%Sep.

The type W is for machine words, and the %Sep at the end of the de�nition asks to
parse the function body using the rules for separation logic-style assertions.

The predicate sll ls p captures the idea that mathematical list ls is encoded in memory,
starting from root pointer p. The codomain HProp is the domain of predicates over memories.

We de�ne sll by recursion on the structure of ls. If the list is empty, then we merely
assert the lifted fact p = 0, forcing p to be null. Note that a lifted fact takes up no memory,
so we implicitly assert emptiness of whatever memory this HProp is later applied to.

If the list is nonempty, we split it into head x and tail ls'. Next, we assert that p is not
null, and that there exists some pointer p' such that p points in memory to the two values x
and p', such that p' is the root of a list encoding ls'. By using ∗, we implicitly require that
all of the memory regions that we are describing are disjoint from each other.

To avoid depending on Coq's usual axiom of functional extensionality, Bedrock requires
that we prove administrative lemmas like the following for each new separation logic-style
predicate we de�ne.

Theorem sll extensional : ∀ ls (p : W), HProp extensional (sll ls p).
Proof.
destruct ls ; reflexivity.

Qed.

We add the lemma as a hint, so that appropriate machinery within Bedrock knows about
it.

Hint Immediate sll extensional.

We want to treat the predicate sll abstractly, relying only on a set of rules for simplifying
its uses. For instance, here is an implication in separation logic, establishing the consequences
of a list with a null root pointer.

Theorem nil fwd : ∀ ls (p : W), p = 0
→ sll ls p =⇒ d ls = nil e.
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Proof.
destruct ls ; sepLemma.

Qed.

The proof only needs to request a case analysis on ls and then hand o� the rest of the work
to sepLemma, a relative of sep auto. Staying at more or less this same level of automation,
we also prove 3 more useful facts about sll.

Theorem nil bwd : ∀ ls (p : W), p = 0
→ d ls = nil e =⇒ sll ls p.

Proof.
destruct ls ; sepLemma.

Qed.

Theorem cons fwd : ∀ ls (p : W), p 6= 0
→ sll ls p =⇒ ∃ x, ∃ ls', d ls = x :: ls' e ∗ ∃ p', (p 7→ x, p') ∗ sll ls' p'.

Proof.
destruct ls ; sepLemma.

Qed.

Theorem cons bwd : ∀ ls (p : W), p 6= 0
→ (∃ x, ∃ ls', d ls = x :: ls' e ∗ ∃ p', (p 7→ x, p') ∗ sll ls' p') =⇒ sll ls p.

Proof.
destruct ls ; sepLemma;
match goal with

| [ H : :: = :: ` ] ⇒ injection H ; sepLemma
end.

Qed.

So that Bedrock knows to use these rules where applicable, we combine them into a hint
package, using a Bedrock tactic prepare.

Definition hints : TacPackage.
prepare (nil fwd, cons fwd) (nil bwd, cons bwd).

Defined.

Now that we have our general �theory of lists� in place, we can specify and verify in-placed
reversal for lists.

Definition revS := SPEC("x") reserving 3
∀ ls,
PRE[V ] sll ls (V "x")
POST[R] sll (rev ls) R.

Definition revM := bmodule "rev" {{

bfunction "rev"("x", "acc", "tmp1", "tmp2") [revS]

"acc" ← 0;;
[∀ ls, ∀ accLs,
PRE[V ] sll ls (V "x") ∗ sll accLs (V "acc")
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POST[R] sll (rev append ls accLs) R ]

While ("x" 6= 0) {

"tmp2" ← "x";;
"tmp1" ← "x" + 4;;
"x" ← ∗ "tmp1";;
"tmp1" ∗ ← "acc";;
"acc" ← "tmp2"

};;

Return "acc"
end

}}.

Note that the function implementation contains aWhile loop with a loop invariant before
it. As for all instances of invariants appearing within Bedrock programs, we put the loop
invariant within square brackets. We must be slightly clever in stating what is essentially
a strengthened induction hypothesis. Where the overall function is speci�ed in terms of
the function rev, reasoning about intermediate loop states requires use of the rev append

function. (There is also something else quite interesting going on in our choice of invariant.
We reveal exactly what in discussing a simpler example in a later section.)

Tactics like sep auto take care of most reasoning about programs and memories. A
�nished Bedrock proof generally consists of little more than the right hints to �nish the
rest of the process. The hints package we created above supplies rules for reasoning about
memories and abstract predicates, and we can use Coq's normal hint mechanism to help
with goals that remain, which will generally be about more standard mathematical domains.
Our example here uses Coq's list type family, and the only help Bedrock needs to verify
"rev" will be a lemma from the standard library that relates rev and rev append, added to
a hint database that Bedrock uses in simplifying separation logic-style formulas.

Hint Rewrite ← rev alt : sepFormula.

Now the proof script is almost the same as before, except we call Bedrock tactic sep

instead of sep auto. The former takes a hint package as argument.

Theorem revMOk : moduleOk revM.
Proof.
vcgen; sep hints.

Qed.

2 Foundational Guarantees

What does moduleOk really mean? The Bedrock library de�nes it in a way that can be used
to generate theorems about behavioral properties of programs in an assembly-like language
(the Bedrock IL), such that the theorem statement only depends on a conventional oper-
ational semantics for this language. This means we can apply Coq's normal proof checker
to validate our veri�cation results, without trusting anything about the process whereby the
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32-bit machine words w ∈ W
Code labels ` ∈ L
32-bit registers r ::= Sp | Rp | Rv
Locations l ::= r | w | r + w
Lvalues L ::= r | l
Rvalues R ::= L | w | `
Binops o ::= + | − | ×
Instructions i ::= L← R | L← R o R
Tests t ::= =|6=|<|≤
Jumps j ::= goto R | if R t R then goto ` else goto `
Blocks B ::= i∗; j
Programs P ::= B∗

Figure 1: Syntax of the Bedrock IL, where ∗ denotes zero-or-more repetition

proofs were constructed. When the trusted code base of a veri�cation system is so small, we
call the system (or the theorems it produces) foundational.

This section of the tutorial explains exactly what is the �nal product of a Bedrock ver-
i�cation. Here and throughout the tutorial, we omit fully detailed formalizations, since the
Coq source code already does a more thorough job of that than we could hope to do here.

2.1 The Bedrock IL

Figure 1 gives the complete syntax of the Bedrock IL, which is meant to be a cross between an
assembly language and a compiler intermediate language. Like an assembly language, there
are a �xed word size, a small set of registers, and direct access to an array-like �nite memory.
Like a compiler intermediate language, the Bedrock IL is designed to be compiled to a variety
of popular assembly languages, though this compilation process is more straightforward than
usual. There is no built-in notion of local variables or calling conventions, but code labels
are maintained with special syntactic treatment, to allow compilation to perform certain
jump-related optimizations soundly.

The IL has a standard operational semantics, implemented in Coq. A global parameter
of a program execution maps code labels to machine words, so that memory and register
values may be treated uniformly as words, even with stored code pointers. The semantics
gets stuck if a program tries to jump to a word not associated with any code label. Further,
another piece of global state gives a memory access policy, identifying a set of addresses
that the program may read from or write to. Execution gets stuck on any memory access
outside this set. One consequence of verifying a whole-program Bedrock module is that we
are guaranteed lack of stuckness during execution, starting in states related appropriately to
the module's specs.
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Second-order variables α
Coq propositions P ∈ Prop
Machine states s ∈ S
State assertions f ∈ S→ PropX
Coq terms v
PropX φ ::= dP e | Cptr w f | φ ∧ φ | φ ∨ φ | φ ⊃ φ | ∀x, φ | ∃x, φ

| α(v) | ∀α, φ | ∃α, φ

Figure 2: Syntax of the XCAP assertion language

2.2 The XCAP PropX Assertion Logic

It is one of the surprising facts of formal semantics that merely stating an operational
semantics for a programming language is not enough to enable modular program veri�cation.
That is, we want to verify libraries separately and then compose their correctness theorems
to yield a theorem about the �nal program. We must �x some theorem format that enables
easy composition, and a program logic may be thought of as such a format.

Bedrock adopts an adapted version of the XCAP program logic by Ni and Shao. The
central novel feature of XCAP is support for �rst-class code pointers in a logic expressive
enough to verify functional correctness, not just traditional notions of type safety. However,
XCAP's insight is to apply the syntactic approach to type soundness in this richer setting.
We no longer think in terms of assigning types to the variables of a program, but we retain
the key idea of establishing a global invariant that all reachable program states must satisfy,
where the invariant is expressed in terms of a syntactic language of assertions. In Coq, this
notion of syntactic means deep embedding of a type of formulas.

Figure 2 gives the syntax of PropX, XCAP's language of formulas, otherwise known
as an assertion logic when taken together with the associated proof rules. The standard
connectives ∧, ∨, ⊃, ∀, and ∃ are present, but a few other cases imbue the logic with a richer
structure. First, the lifting operator d e allows injection of any Coq proposition.

One may wonder what is the point of de�ning a layer of syntax like this one, instead of
just using normal Coq propositions. The surprising answer is that it is di�cult to support
modular theorems about �rst-class code pointers without some extra layer of complication,
and for XCAP, that layer is associated with formulas Cptr w f. Such a formula asserts that
word w points to a valid code block, whose speci�cation is f, a function from machine states
to formulas. The idea is that f (s) is true i� it is safe to jump to w in state s.

It may be unclear how this logic connects to our earlier examples. We only have a way
to say when it is safe to jump to a code block, which does not directly yield the discipline
of functions, preconditions, and postconditions. The explanation is that we encode such
disciplines using higher-order features. Bedrock IL programs, like assembly programs, are
inherently in continuation-passing style, and it is possible to lower direct style programs to
this format and reason about them in a logic that only builds in primitives for continuations,
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not functions. The freedom to work with continuations when needed will be invaluable in
implementing and verifying systems components like thread schedulers.

The second line of the grammar for PropX gives some more interesting cases: those associ-
ated with impredicative quanti�ers, which may range over assertions themselves. With these
quanti�ers, we can get around an apparent de�ciency of Cptr, which is that its arguments
must give the exact spec of a code block, whereas we will generally want to require only that
the spec of the code block be implied by some other spec. We de�ne an in�x operator @@
for this laxer version of Cptr.

Notation "w @@ f" := (∃, Cptr w #0 ∧ ∀ s, f s ⊃ #0 s)%PropX.

This syntax is complicated by the fact that we represent impredicative quanti�ers with
de Bruijn indices. Unraveling that detail, we can rephrase the above de�nition as: program
counter w may be treated as having spec f if there exists α such that (1) α is the literal spec
of w and (2) any state s satisfying f also satis�es α.

A PropX φ is translated to a Prop using the interp function, applied like interp specs

φ, where specs is a partial function from code addresses to specs. Under the hood, interp
is implemented via an explicit natural deduction system for PropX. This system is unusual
in that the impredicative quanti�ers have introduction rules but no elimination rules. As a
result, we may really only reason non-trivially about those quanti�ers at the level of the meta-
logic, which is Coq. One consequence is that we cannot transparently and automatically
translate uses of interp into normal-looking Coq propositions. However, this can be done
for formulas that do not use implication. A Bedrock tactic propxFo handles that automated
simpli�cation, where it applies.

The most commonly used Bedrock tactics are designed to hide the use of PropX where
feasible, though sometimes details creep through. It is important that we have this machinery
around, to allow modular reasoning about programs with �rst-class code pointers.

One further foundational point is worth making: while most separation logics outside of
Coq build into their assertion languages such constructs as 7→ and ∗, with XCAP and related
systems, we instead de�ne these as derived operators, with de�nitions in terms of the basic
PropX connectives.

2.2.1 A Note on the Format of Invariants

Recall the beginning of the While loop from our last example:

[∀ ls, ∀ accLs,
PRE [V ] sll ls (V "x") ∗ sll accLs (V "acc")
POST [R] sll (rev append ls accLs) R ]

While ("x" 6= 0) {

The loop invariant is strange, since it includes both a precondition and a postcondition.
Standard Hoare-logic loop invariants only represent assertions over single program states.
How should an invariant like the above be interpreted?

One answer is to consider it a new notation in separation logic, as in a VSTTE 2010 paper
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by Thomas Tuerk. One way to think of it is: an invariant's precondition describes what the
machine state looks like upon entering a loop iteration, and the postcondition describes what
the state must be transformed into before it is legal to return from the current function.

It also turns out that this idea of loop invariant is actually more natural for assembly
language than the more common notation is. It all has to do with the idea that assembly
programs are naturally thought of as in continuation-passing style, since call stacks and
return pointers are represented explicitly via memory and registers. Thus, the natural idea
of speci�cation for a function is just a precondition, not a precondition plus a postcondition.

Using a more informal notation, the surface syntax for loop invariants could be written
like:
∀~x. {P} {Q}
There are both a precondition and a postcondition, potentially with both mentioning

some variables quanti�ed at the top level. We desugar such invariants to underlying Bedrock
IL speci�cations (preconditions) like so:
{∃~x. P ∧ {Q}Rp}
We use a nested Hoare double, writing {Q}Rp to assert that register Rp holds a pointer to

a code block whose precondition is compatible with Q. That is, we mention the return pointer
explicitly, rather than keeping it as implicit in our use of a postcondition.

Actually, to support separation logic reasoning, the desugaring is a bit more complex. It
is more accurate to write as:
{∃~x, α. P ∗ α ∧ {Q ∗ α}Rp}
We build the frame rule into the desugaring scheme. Some piece of memory is described

by an unknown predicate α on entry and must still be described by α on exit.
So there is a �rst-principles explanation of what Bedrock loop invariants mean.
This treatment of invariants is natural in continuation-passing style; implementing the

conventional notation would actually require more work for the Bedrock authors. However,
the alternate notation is actually quite useful in concert with separation logic. Invariants in
this style can provide very e�ective hints on where the frame rule ought to be applied.

Speci�cally, suppose that the state upon entry to a loop is described by an invariant with
precondition P ∗ R and postcondition Q ∗ R. In other words, the loop will transform some
state from satisfying P into satisfying Q, and there is some additional state satisfying R

that need not be touched. In such a state, we can write a loop invariant with precondition
based only on P and postcondition based only on Q. We forget about R for the rest of this
function's veri�cation.

Such a technique is very helpful in traversals of linked data structures. For instance,
consider a loop over the cells of a linked list. Traditional separation logic requires a loop
invariant that splits the full list into a pre�x list segment that has already been visited and a
su�x list that has not yet been visited. In Bedrock, we can instead use a loop invariant that
only mentions the unvisited su�x. Automatic application of the frame rule lets us gradually
hide list elements from the invariant as we visit them.

For a lengthier explanation of this pattern, see again Tuerk's VSTTE 2010 paper.
The next section gives an example program containing one invariant, which triggers a
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similar use of the frame rule, but for a function call rather than a loop. That is, after the
call, we no longer need to know about certain parts of memory, so we need not mention
those parts in the invariant. It may be a useful exercise to consider the invariant in light of
the desugaring to continuation-passing style.

2.3 The XCAP Program Logic

Now we are �nally ready to describe the end product of a Bedrock veri�cation (though, as
forewarned, we will stay fairly sketchy, since details abound in the Coq code). A veri�ed
program is nothing more than a normal Bedrock IL program, where each basic block is

annotated with a PropX assertion. For the program to be truly veri�ed, two conditions must
be proved for each block b with spec f. First, a progress condition says: for any initial state
satisfying f, if execution starts at the beginning of b, then execution continues safely without
getting stuck, at least until after the jump that ends b. Second, a preservation condition
says: for any state satisfying f, if execution starts at the beginning of b and makes it safely to
another block b', then b' has some spec that is satis�ed by the machine state at this point.

The terms progress and preservation are chosen to evoke the syntactic approach to type

soundness, which is based around a small-step operational semantics and an inductive invari-
ant on reachable states: each state (program term) is well-typed, according to an inductively
de�ned typing judgment. In XCAP, we follow much the same approach, where a single small-
step transition is one basic block execution, and the inductive invariant is that the current

machine state satis�es the spec of the current basic block.
Thus, adapting the almost trivial syntactic type soundness proof method, we arrive at

some theorems about veri�ed Bedrock programs. First, if execution begins in a block whose
spec is satis�ed, then execution continues forever without getting stuck. Second, if execution
begins in a block whose spec is satis�ed, then every basic block's spec is satis�ed whenever

control enters that block. The �rst condition is a sort of memory safety, while the second is
a kind of functional correctness.

The moduleOk theorems we established in the last section are actually about a higher-
level notion, that of structured programs and what it means for them to be correct. We defer
details of structured programs to a later section. For now, what matters is that structured
programs can be compiled into veri�ed Bedrock IL programs, at which point their code and
the associated guarantees can be understood as in this section.

3 Interactive Program Veri�cation

A central design point of Bedrock is to provide tactics to make the veri�cation of individual
programs be as automatic as possible. Realistic programs involve many details, few of which
are interesting, so why ask the programmer to account for them manually? The programmer
helps Bedrock by providing hints that can come in many varieties. There are the normal
auto and autorewrite hints familiar to most Coq users, but there are also new notions like
unfolding rules and symbolic evaluators. Bedrock veri�cations of serious programs will tend
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to use all of these notions in concert.
Final proofs may be automated, but, during development, it is usually helpful to step

through proofs incrementally. Of course, this is a mode that Coq supports very well. How-
ever, with Bedrock, there is no need to work at such �ne granularity as is found in the
average Coq proof script. Instead, there is a small vocabulary of automation procedures
that modify proof states in ways that a human can follow.

The workhorse sep tactic is essentially de�ned as the following:

Ltac sep hints := post ; evaluate hints ; descend ; repeat (step hints ; descend).

The tactic is parameterized on hints, which provides a set of abstract predicate unfolding
rules. There is a default hints package auto ext, and sep auto is de�ned as sep auto ext.

A few basic steps make up the sep procedure. First, post does post-processing on the re-
sults of vcgen's veri�cation condition generation, trying to eliminate as much explicit PropX
notation as possible. Next, evaluate implements symbolic execution, modifying a block's
precondition to re�ect the e�ects of a piece of straightline code, possibly including the equiv-
alents of assume statements to record the results of conditionals. The descend tactic is a
generic simpli�er; among other steps, it descends under existential quanti�ers and conjunc-
tions in the conclusion, introducing new uni�cation variables for the quanti�ers. The rest
of the procedure is a loop over step and descend, where the former implements a variety of
basic steps in a Bedrock proof.

It is probably easiest to illustrate the basic steps by example. To make things interesting,
consider this function which calls our earlier swap function. In �lling out the new reserving

clause, we keep in mind that the new function will call "swap", and we plan not to use any
private local variables. Therefore, the only reserved stack space that we need is that for the
function call, computed by this recipe: one slot for each function argument, plus one for a

saved return pointer, plus the callee's number of reserved stack slots. The notation p
?7→ n

indicates an allocated memory region of unknown contents, beginning at p and spanning n

words.

Definition sillyS := SPEC("p", "q") reserving 5

PRE[V ] V "p"
?7→ 1 ∗ V "q"

?7→ 1

POST[R] d R = 3 e ∗ V "p"
?7→ 1 ∗ V "q"

?7→ 1.

Definition sillyM := bimport [[ "swap"!"swap" @ [swapS] ]]

bmodule "silly" {{

bfunction "main"("p", "q") [sillyS]

"p" ∗ ← 3;;
"q" ∗ ← 8;;

Call "swap"!"swap"("p", "q")
[ ∀ v,
PRE[V ] V "q" 7→ v

POST[R] d R = v e ∗ V "q" 7→ v ];;
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"q" ← ∗ "q";;
Return "q"

end

}}.

We use the Call notation, which always requires an invariant afterward. That invariant
position is often a convenient place to simplify the state that we are tracking. The invariant
above is an example: we forget about the pointer p, remembering only q, since the rest of the
function only touches q. Bedrock's tactics automatically justify this state reduction, with
a reasoning pattern reminiscent of separation logic's frame rule. That pattern and many
others are encapsulated in the de�nition of step.

To demonstrate the recommended interactive veri�cation approach, we will step through
a more manual proof of the most challenging veri�cation condition, the one associated with
the Call command. Interested readers may step through this proof script in Coq, so we
will not dump the gory details of subgoal structure into this tutorial. Instead, we give a
high-level account of what each subgoal means and how it is dealt with.

Theorem sillyMOk : moduleOk sillyM.
Proof.
vcgen.

Focus 5.
This is the subgoal for the function call. We always begin with post-processing the

veri�cation condition.

post.

Next, we need to execute the instructions of the prior basic block symbolically, to re�ect
their e�ects in the predicate that characterizes the current machine state.

evaluate auto ext.

At this point, we are staring at the spec of "swap", which begins with some existential
quanti�ers and conjunctions. One of the conjuncts comes from a use of the @@ derived
PropX operator, to express the postcondition via a fact about the return pointer we pass to
"swap". We call descend to peel away the quanti�ers and conjunctions, leaving the conjuncts
as distinct subgoals.

descend.

This subgoal is the precondition we gave for "swap", with an extra fact added to charac-
terize the stack contents in terms of values of local variables. There are uni�cation variables
in positions that were previously existentially quanti�ed. This sort of goal is just what step
is designed for.

step auto ext.

We are thrown back another goal, this time stated as an implication between separation
logic assertions. One of the uni�cation variables has been replaced with a known substitution
for local variable values, which will enable step to discharge the subgoal completely this time.
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step auto ext.

Here is an easy subgoal. It asks us to �nd a spec for the return pointer we pass in the
function call, and exactly such a fact was given to us by vcgen.

step auto ext.

We have �nished proving the precondition of "swap". Now we must prove that its post-
condition implies the invariant we wrote after the function call. The form of the obligation
is an implication within PropX, where the antecedent is the postcondition of "swap" and
the consequent is the invariant we wrote after the call. Recall that simplifying PropX im-
plications into normal-looking Coq formulas is di�cult. However, we can rely on step to
simplify the implication into some more basic subgoals, some of which will still be PropX
implications.

descend ; step auto ext.

The �rst resulting subgoal is an implication between the postcondition of "swap" and
the PRE clause from the post-call invariant. Again, this is exactly the sort of separation
logic simpli�cation that step handles predictably.

step auto ext.

Now we are asked to �nd a speci�cation for the original return pointer passed to "main".
Again, vcgen left us a matching hypothesis.

step auto ext.

We are in the home stretch now! The single subgoal asks us to prove an implication P

⊃ Q ⊃ R, where P is the POST clause of the post-call invariant, Q is the postcondition of
"swap", and R is the literal speci�cation of the original return pointer for "main". In fact,
R is an application of a second-order variable to the current machine state. We also have a
hypothesis telling us that R is implied by the postcondition we originally ascribed to "main"
in its spec.

Our �rst step is to reduce the implication to just P ⊃ R, augmented with extra pure

(memory-independent) hypotheses that we glean from Q. The intuition behind this step is
that we already incorporated in P any facts about memory that we will need.

descend ; step auto ext.

Now we prove P ⊃ R using the hypothesis mentioned above, which can be thought of as
a quanti�ed version of U ⊃ R. That means step can help us by reducing the subgoal to P

⊃ U.

step auto ext.

Here is another PropX implication, which we want to simplify to convert as much structure
as possible into normal Coq propositions.

step auto ext.

The �rst of two new subgoals is an equality between the current stack pointer and the
value that the spec of "main" says it should have. We call a library tactic for proving
equalities between bitvector expressions.
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words.

The last subgoal is an implication between the POST clause of the post-call invariant
and the overall postcondition of "main". This is just a separation logic implication, so we
make short work of it.

step auto ext.

This concludes our proof of the most interesting veri�cation condition. Let's back up to
the high level and prove the whole theorem automatically.

Abort.

A manual exploration like the above is about learning which hints will be important in
proving the theorem. One might even do this exploration using more usual manual Coq
proofs. In the end, we distill what we've learned into hint commands. In the script above,
we saw only one place where sep wouldn't be su�cient, and that was an equality between
machine words. Therefore, we register a hint for such cases.

Hint Extern 1 (@eq W ) ⇒ words.

Now it is easy to prove the theorem automatically.

Theorem sillyMOk : moduleOk sillyM.
Proof.
vcgen; (sep auto; auto).

Qed.

We might even make small changes to the program speci�cation or implementation, and
often a proof script like the above will continue working.

4 More

This tutorial will likely grow some more sections later. One topic worth adding is Bedrock's
structured programming system, which includes support for extending the visible program-
ming language with new control �ow constructs, when they are accompanied by appropriate
proofs.
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