
THE UNIVERSITY OF CHICAGO

IMPLEMENTING MATHEMATICAL EXPRESSIVENESS IN DIDEROT

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

CHARISEE CHIW

CHICAGO, ILLINOIS

JUNE 2017

Copyright c© 2017 by Charisee Chiw

All Rights Reserved

To my family

TABLE OF CONTENTS

LIST OF FIGURES . vii

LIST OF TABLES . viii

ACKNOWLEDGMENTS . ix

ABSTRACT . x

1 INTRODUCTION . 1
1.1 Diderot . 2

1.1.1 The Diderot Language . 3
1.1.2 The Diderot Compiler . 6

1.2 Implementing Tensor Fields . 7
1.2.1 Background . 8
1.2.2 Concepts . 9
1.2.3 Field Normalization . 11

1.3 Contributions . 12
1.3.1 Implementing mathematical expressiveness 12
1.3.2 Correctness and Testing . 13
1.3.3 Extension of the language . 14

1.4 Dissertation Overview . 15

2 DESIGN . 16
2.1 EIN notation . 18
2.2 Generating EIN Operators . 24

2.2.1 Implementation . 25
2.2.2 Advantages . 26

2.3 Field Reconstruction . 28
2.4 Discussion . 30

2.4.1 The Case for a New IR . 30
2.4.2 EIN as building blocks . 33
2.4.3 Programmability . 35

3 IMPLEMENTATION TECHNIQUES . 36
3.1 Overview of implementing the EIN syntax 37
3.2 Substitution and Rewriting . 38

3.2.1 Substitution . 38
3.2.2 Rewriting . 42

3.3 Optimization and Transformations . 46
3.3.1 Shift . 49
3.3.2 Shape . 50
3.3.3 Split . 52
3.3.4 Slice . 55

iv

3.3.5 Examples . 58
3.4 Benchmarks . 61

3.4.1 Experimental Framework . 62
3.4.2 Impact on implementing Diderot . 62
3.4.3 The Effect of Compiler Settings . 64
3.4.4 First-Order versus Higher-Order . 68

4 PROPERTIES OF NORMALIZATION . 70
4.1 Type Preservation . 70

4.1.1 Typing EIN Operators . 70
4.1.2 Type preservation Theorem . 76

4.2 Value Preservation . 82
4.2.1 Value Definition . 82
4.2.2 Value Preservation Theorem . 84

4.3 Termination . 88
4.3.1 Size Metric . 88
4.3.2 Normal Form . 90
4.3.3 Termination and Normal form . 92

4.4 Discussion . 94

5 AUTOMATIC TESTING MODEL . 95
5.1 Core of testing model . 96

5.1.1 Basic structures . 97
5.1.2 Testing Frame . 101
5.1.3 Testing overview . 103

5.2 Diderot’s Automatic Testing model . 104
5.2.1 A single test case example . 106
5.2.2 Data Creation . 108
5.2.3 Diderot test program . 109
5.2.4 Analytically derived solution . 111
5.2.5 Evaluation . 112
5.2.6 Checking limitations of the Diderot programs 112
5.2.7 Advantages . 113

5.3 Visualization Verification . 114
5.3.1 Concept . 116
5.3.2 Pipeline . 116

5.4 Bugs . 118
5.5 Results and Performance . 120

5.5.1 Experimental Framework . 122
5.5.2 Exhaustive vs. Random Testing . 122
5.5.3 Breakdown of a single test case . 123
5.5.4 Visualization Results . 125
5.5.5 Snapshots of the Diderot compiler . 126

5.6 Discussion . 127

v

6 EXTENDING DIDEROT . 130
6.1 Motivation . 131

6.1.1 Background . 131
6.1.2 Creating and Visualizing FEM data 133

6.2 Our Approach . 136
6.3 Demonstration . 138

6.3.1 Communication between Diderot and Firedrake 140
6.3.2 PDE Example . 141

6.4 Discussion . 143

7 APPLICATIONS . 145
7.1 Adding operators to Diderot . 145
7.2 Exploiting Higher-order Operators . 147
7.3 Compilation of Tensor Calculus . 149

8 RELATED WORK . 151
8.1 Visualization tools and languages . 151
8.2 Einstein Index Notation . 152
8.3 Intermediate representations and optimizations 152
8.4 Evaluating a Visualization . 154
8.5 Testing . 155

8.5.1 Domain-Specific Testing . 155
8.5.2 Types of Testing . 156
8.5.3 Choosing test cases . 157

9 CONCLUSION . 158
9.1 Future Work . 158

9.1.1 Correctness and Testing . 158
9.1.2 Design and Implementation . 160
9.1.3 FEM and Diderot . 160
9.1.4 Writing directly in EIN IR . 162
9.1.5 Indicating covariant and contravariant indices 164

REFERENCES . 165

A PROOFS . 171
A.1 Type Preservation Proof . 171
A.2 Value Preservation Proof . 187
A.3 Termination . 190

A.3.1 Size reduction . 190
A.3.2 Termination implies Normal Form . 197
A.3.3 Normal Form implies Termination . 208

vi

LIST OF FIGURES

1.1 Diderot program to compute surface curvature 4
1.2 Compiler pipeline . 6

2.1 High IR EIN syntax . 21
2.2 Mid-IR EIN syntax . 24

3.1 Transformations in the EIN syntax . 37
3.2 Substitution rules . 41
3.3 Measuring the effect of implementing EIN . 63
3.4 Measurement of applying optimizations techniques 65
3.5 Size of programs at different phases of the compiler 66
3.6 Measurement of applying optimizations techniques 67
3.7 Programs written with first or higher order operators 68

4.1 Typing Judgments . 71
4.2 Typing Judgments (continued) . 72
4.3 Inversion Lemma for Typing Judgements . 76
4.4 Value definitions for EIN . 82
4.5 Value Judgements . 85

5.1 Subset of language tested with DATm . 97
5.2 Core data structures used in testing . 98
5.3 DATm: Diderot’s Automated Testing model . 105
5.4 Single Test case . 107
5.5 Visualization testing models . 115
5.6 Example of visualization testing result . 117
5.7 The average time spent creating and testing given different argument types . . . 124
5.8 The average breakdown of a single test case . 124
5.9 Measurements from applying DATm over different snapshots of the compiler. . 127

6.1 Define a field in UFL . 134
6.2 Expected results for creating and visualizing a field 134
6.3 Visualizing FEM data with different visualization tools 135
6.4 Augmented MIP program . 139
6.5 Establish communication between Diderot and Firedrake 139
6.6 Applying representation invariance principle . 141
6.7 Python code for Helmholtz problem . 142
6.8 Visualize PDE with Diderot . 143

vii

LIST OF TABLES

2.1 EIN operators . 28

4.3 Size metric . 88

5.1 Settings in testing frame . 102
5.2 Implementation steps for a single test case . 107
5.3 List of type-error bugs uncovered by DATm . 121
5.4 List of compilation bugs uncovered by DATm 121
5.5 List of numerical bugs uncovered by DATm . 121
5.6 Measurements from applying DATm using an exhaustive and random search for

test cases . 123
5.7 Results from applying DAVm . 126

viii

ACKNOWLEDGMENTS

My co-advisor, John Reppy, has been a guide to me throughout the years. He has been both

deeply involved with various aspects of our work together and trusting in my own pursuits.

The trust and freedom I got as a grad student has helped me become a better researcher.

Thank you for your patience and respect.

I would like to thank my co-advisor Gordon Kindlmann for being a mentor. He ignited my

interests in developing Diderot, work that shaped my dissertation, by sharing his expertise.

More importantly, thank you for being a true mentor and empowering me to keep going.

Thank you to my committee member Ridgway Scott and his student Hannah Morgan

for teaching me about FEM. Thank you to Andrew McRae and the rest of the Firedrake

team for their collaborative efforts. Thank you to Anne Rogers for a being a role model and

keeping her office door open. Thank you to Ginny McSwain for being an encouraging REU

advisor. Thank you to Clifton Presser for the fun programming projects. Thank you to my

fellow office mates, Lamont Samuels, Kavon Farvardin, Joe Wingerter, and Brian Hempel

for the hours of chatting about life.

I would like to thank the wonderful and supportive people in my life. My parents,

Elena and Wayne, who drove halfway across the country to move me into my apartment in

Chicago. I would like to thank Robert Singer and Anna Olson for helping me make this

place my home. I want to thank my relatives Tia Isabel, Charmaine, and Susan for their

support and kindness.

Portions of this research were supported by the National Science Foundation under awards

CCF-1446412 and CCF-1564298. The views and conclusions contained herein are those of

the authors and should not be interpreted as necessarily representing the official policies or

endorsements, either expressed or implied, of these organizations or the U.S. Government.

ix

ABSTRACT

This dissertation describes the implementation of the mathematical expressiveness in the

Diderot programming language. Diderot is a domain-specific language for scientific visual-

ization and image analysis. The datasets are produced by digital imaging technologies that

sample physical objects at discrete points. Algorithms in this domain are used to visually

explore the data and compute features and properties. Diderot is designed to enable the

translation of visualization ideas into code by providing a mathematically familiar syntax

and high-level language.

The work in this dissertation enables a high-level of programmability by designing and

implementing our intermediate representation and addressing the technical challenges that

arise. We evaluate the correctness of our implementation with two complimenting parts; for-

malizing the properties in our rewrite system and automated testing of our implementation.

Lastly, we take the first step to extend the language to another domain. As a result, the

Diderot user can write intuitive code, compile programs with complicated tensor math, and

believe in the correctness of the compiler.

It is important and challenging work to improve the expressivity of the language. We rely

on the expressivity of the Diderot language to support the implementation of visualization

ideas. With a richer language we can push the boundaries for the type of programs written

with the Diderot language.

x

CHAPTER 1

INTRODUCTION

The work in this dissertation has been fundamental to the development of Diderot. We

provide a way to implement the mathematical expressiveness in the high-level programming

language. We present our implementation techniques to solve compilation issues. We provide

a way to apply automated testing to a high-level DSL based on a ground truth.

Diderot is a parallel domain-specific language for the analysis and visualization of mul-

tidimensional scientific images. The data for these images can be created by CT and MRI

scanners. Diderot represents these datasets as tensor fields. Many visualization methods seek

to measure properties from continuous tensor fields reconstructed from the discrete image

data and not just the data itself; these algorithms require a high level of tensor mathematics.

A novel aspect of Diderot’s design is that it supports a form of higher-order programming

where tensor fields (i.e., functions from 3D points to tensor values) are first-class values that

can be directly manipulated. Diderot is designed to support algorithms that are based on

differential tensor calculus and supports a higher-order mathematical model.

The implementation challenge is taking high-level code and transforming it to efficient

executables. To address the implementation challenge, we created a new intermediate repre-

sentation, EIN to concisely represent new and existing operations in the Diderot language.

We introduce the intermediate representation and describe its execution. Adding the EIN

representation to the Diderot compiler has greatly increased the expressiveness of the lan-

guage, which, in turn, enables a richer set of algorithms to be directly programmed in

Diderot.

Unfortunately, programs written with the richer language brought along new challenges.

Transformations inside the compiler resulted in a combinatorial explosion in the size of the

IR. As a result, Diderot programs either took too long to compile or did not compile at all

because of memory limits. This problem significantly limited the use of the new features. To

address the compilation problem, we have developed a number of techniques that keep the

1

size of the IR in check while not restricting the expressivity of our language. We describe

our compilation techniques and provide examples. We measure the impact of the techniques

used together and applied at different levels of abstraction.

A key question for a high level language, such as Diderot, is how do we know that the

implementation is correct? To ensure confidence we address evaluating the correctness of our

implementation with two complimenting parts; proofs and automated testing. The normal-

ization process is a key part of the compiler but it is complicated and requires examination.

We describe the formal properties of the normalization process and prove that it is type

preserving, value preserving, and terminating.

While the proofs serve to illustrate the properties of the normalization system, they do

not validate the full compiler pipeline from source to executables. Unfortunately, manual

testing can be time-consuming, prone to biases, and insufficient to testing the large combina-

tion of possible test programs. We introduce an automated testing model for implementing

property-based testing. It successfully generates and evaluates thousands of Diderot pro-

grams based on a ground-truth.

The computational core of a visualization program written in Diderot is independent of

the source of the data. Fields, however, could only be defined by the convolution between

discrete image data and a kernel. If Diderot could define other types of fields then we could

apply visualization programs to other types of data. Diderot could then be used to debug

and visualize fields created by another domain. We describe a first step towards visualizing

fields defined by finite element data.

1.1 Diderot

The Diderot language is the platform for the research presented in this dissertation. Previous

work provided a description of the Diderot language [15, 16, 18, 44]. In this section, we

provide an overview of the computational core of the Diderot language and its compiler.

2

1.1.1 The Diderot Language

The computational core of Diderot is organized around two families of types: tensors and

tensor fields. Tensors include scalars (0th-order), vectors (1st-order), and matrices (2nd-

order), and are the concrete values that the system computes with. A value with type

“tensor[d1, . . . , dn]” is an nth-order tensor in Rd1×· · ·×Rdn ; we refer to d1, . . . , dn as the

shape of the tensor.1 Diderot supports the standard linear algebra operations on tensors,

such as addition and subtraction, inner, outer, and colon products, trace, eigenvectors, and

eigenvalues etc. Diderot’s expression syntax is designed to look similar to mathematical

notation, while still retaining the flavor of a programming notation. For example, one writes

“(u ⊗ v) / |u ⊗ v|” for the normalized outer product of two tensors.

In textbooks and research papers about visualization and analysis, methods are often

mathematically defined in terms of fields, while implementation details are presented sep-

arately in terms of the data representation [42]. In visualization algorithms, tensor fields

serve as a mathematical abstraction of the data sets produced by various digital imaging

technologies (e.g., Diffusion MRI). These imaging technologies sample physical objects at

discrete points producing a multidimensional grid of sample values called voxels. A novel

feature of Diderot is that it supports programming directly with fields, instead of with the

discrete voxels.

Figure 1.1 provides an example of a Diderot program used to measure surface curvature.

Curvature of a surface is defined by the relationship between small positional changes on the

surface and changes in the surface normal [45]. The curvature transfer function will color

more or less based on curvature. At each point we locally measure quantities that map via

transfer function to optical quantities. The first-order differentiation can enhance clarity and

produce effective renderings. The Hessian is used to compute the principles of curvature k1,

and k2. The Diderot types are described in more detail in the following text.

1. The exclusive internal use of the orthonormal elementary basis for representing tensors means that
covariant and contra-variant indices can be treated equally.

3

image (3) [] img = image (”quad−patches . nrrd ”) ;
f i e ld #2(3) [] F = bspln3 ~ img ;
f i e ld #0(2) [3] RGB = tent ~ image (”2d−bow . nrrd ”) ;
· · ·
strand RayCast (int ui , int v i) {

· · ·
update {

· · ·
vec3 grad = −∇F(pos) ;
vec3 norm = normal ize (grad) ;
tensor [3 , 3] H = ∇⊗∇ F(pos) ;
tensor [3 , 3] P = identity [3] − norm⊗norm ;
tensor [3 , 3] G = −(P•H•P) / | grad | ;
real d i s c = s q r t (2.0 ∗ |G|2 − t r a c e (G)2) ;
real k1 = (t r a c e (G) + d i s c) / 2 . 0 ;
real k2 = (t r a c e (G) − d i s c) / 2 . 0 ;
vec3 matRGB =

RGB([max(−1.0 , min (1 . 0 , 6 .0∗ k1)) ,
max(−1.0 , min (1 . 0 , 6 .0∗ k2))]) ;

}
· · ·

}

Figure 1.1: Diderot program to compute surface curvature [45] from paper[18].

Images are multi-dimensional arrays of tensor values. In our syntax “image(d)[σ], the

image has d-dimensions (d axes), and each value is a tensor with shape σ. For example, a

3D grayscale image is “image(3)[]. We use convolution (~) with kernels to reconstruct a

continuous representation from the samples, and we model the reconstruction in the language

as a continuous tensor field. A value with type “field#k(d)[d1 . . . dn]” is a Ck continuous

function (i.e., we can apply up to k levels of differentiation) in Rd → Rd1 ×· · ·×Rdn . Note,

empty brackets ‘[]’ indicate a scalar or scalar field.

As mentioned above, tensor fields can be defined by convolving a reconstruction kernel

with an image. For example, the following Diderot declaration (from Figure 1.1) defines a

3D scalar field F:

f i e ld #2(3) []F = bspln3 ~ img ;

4

The field F is reconstructed using the bspln3 kernel from the file img1.nrrd.2 The continuity

of F is C2, which is determined by the choice of the bspln3 kernel. Mathematically, fields

are functions and we can apply them to points in their domain, which we call probing the

field. For example, if p is a point in R3 (i.e., it has type tensor[3]), then F(p) will evaluate

to a scalar (since F is a scalar field).

Definition 1 (lifted operators). We call operators either tensor or field operators. Field op-

erators include differentiation and probe while tensor operators compromise the rest (•,×,+, . . .).

A P operator is tensor operator applied to tensors and returns a tensor argument (P: tensor

−→ tensor). A P ↑, or lifted operator is tensor operator applied to fields and returns a field

argument (P ↑(f) = λx.P (f(x)) where P ↑ : field −→ field).

The real power of programming with fields comes from Diderot’s support for higher-order

operators, which allows fields to be defined in terms of combinations of other fields. Just

as in mathematics, it is normal to write “A+ B” to denote λ p.(A(p) + B(p)), Diderot lifts

the addition tensor operator to work on fields, so if A and B are fields of the same type,

then A+B denotes the field that is their lifted sum. In addition to lifted operators, Diderot

supports the standard differentiation operators on fields (∇, ∇⊗, and a restricted form of

∇×).

While the original implementation of Diderot supported tensors and fields, it limited the

operations that can be applied to tensor fields. Our work in the IR (Chapter 2) removes this

limitation. Tensor operators (×,⊗, •, :,trace,transpose, . . .) can now be applied between

tensor fields and between a tensor field and a tensor. New (also lifted) tensor operators

(inv,det,normalize,sine, . . .) and field operators (∇• and a more flexible ∇×) have been

added to the language.

The operations supported in Diderot serve as ingredients to the computations created in

a visualization program. Differentiated and manipulated tensor fields are used to measure

2. We use the Teem library’s Nrrd file format to represent multidimensional data sets (both input and
output) [71].

5

Front End Code
Generation

High-IR

High-Opt

High-to-Mid

Mid-IR

Mid-to-Low

Low-IR

Figure 1.2: Diderot pipeline: Front end, optimization and lowering, and code generation.

geometric features from images. In the earlier example, the Hessian of the field F is used to

compute curvature:

tensor [3 , 3] H = ∇⊗∇ F(pos) ; .

The richer Diderot language has enabled the prototyping of new Diderot programs. Later

in this dissertation we describe some examples of visualization features enabled by Diderot’s

new expressivity (Section 7.2).

1.1.2 The Diderot Compiler

The Diderot compiler is organized into three main phases: the front-end, optimization and

lowering, and code generation (Figure 1.2). This dissertation is primarily concerned with

the optimization and lowering phase, but we include a brief description of the other phases

to provide context. The front-end consists of parsing, type checking, and simplification. Al-

though Diderot is a monomorphic language, most of its operators have instances at multiple

types. For example, addition works on integers, tensors of all shapes, fields, and combinations

of fields and tensors. The type-checker uses a mix of ad hoc overloading and polymorphism

to handle these operators. The output of type-checking is a typed AST where operators are

instantiated at specific monotypes. The typed AST is then converted into a simplified rep-

resentation, where user-defined functions are inlined and named temporaries are introduced

6

for intermediate values.

Optimization and lowering involves a series of three IRs that are based on a common

Static Single Assignment (SSA) form [24] control-flow graph (CFG) representation. High-

IR is essentially an SSA version of the source language that supports the surface language

types and operations. Specifically, fields and operations on fields are directly represented at

the High-IR level. Mid-IR supports linear-algebra operations on tensors and reconstruction-

kernel evaluation. At Mid-IR stage, higher-order types (i.e., fields) and operations (e.g.,

probes and differentiation) have been translated into concrete tensor operations. Low-IR sup-

ports basic operations on hardware-vectors (e.g., Intel’s SSE registers), scalars, and memory

objects. The optimization and lowering phase uses several different kinds of transformations

in the process of converting High-IR to Low-IR. These include traditional optimizations at

each level, such as dead-variable elimination and value numbering; domain-specific opti-

mizations that are specific the particular IRs; lowering transformations that expand higher-

level operations into equivalent sequences of lower-level operations; and normalization of the

High-IR representation to enable lowering of field operations. This last transformation is of

particular importance and we discuss it in detail in Chapter 3.

Code generation involves mapping the Low-IR CFG to a block-structured IR with ex-

pression trees. We then generate either vectorized C++ code or OpenCL code from the IR,

which is compiled to produce either a library or a standalone executable.

1.2 Implementing Tensor Fields

Operations on fields can be classified as either declarative, which are operations that define

field values, or computational, which are operations that query a field to extract a concrete

value.3 The Diderot user declares a field creating a declarative structure for the field ex-

pression. The computational expressions sample the field. Translating computational field

3. We describe probing a field to extract a value at a point. The other computational operation is testing
if a point lies in the domain of a field, which produces a boolean result.

7

operations into executable code is one of the central challenges of the Diderot compiler.

1.2.1 Background

In this section, we describe some additional mathematical concepts used by Diderot. We

define some specific operators and their properties. These concepts are used in the following

description about tensor fields and in other parts of the dissertation.

The permutation tensor or Levi-Civita tensor is represented in EIN with Eij and Eijk for

the 2-d and 3-d case, respectively.

Eij =


+1 ij is (0,1)

−1 ij is (1,0)

0 otherwise

and Eijk =


+1 ijk is cyclic (0,1,2)

−1 ijk is anti-cyclic (2,1,0)

0 otherwise

(1.1)

The kronecker delta function is δij .

δij =


1 i = j

0 otherwise

(1.2)

The Krnocker delta value has the following property when two deltas share an index:

δikδkj = δij (1.3)

and the following when the indices are equal:

δii = 3 (1.4)

We reflect on the following properties that hold in an orthonormal basis [39]. Let us define

an orthonormal basis β with unit basis vectors as bi, bj , Each basis vector is linearly

8

independent and normalized such that

δij = bi · bj =


1 i=j

0 otherwise

(1.5)

Any vector u can be defined by a linear combination of these basis vectors.

u =
∑
i

uibi

A component of a tensor can be expressed in the following way

uj = u · bj (1.6)

1.2.2 Concepts

In this section, we given an informal description of the basic techniques used to implement

the translation from computational fields to executable code.

Tensor Fields In the base case, a scalar field F is defined as the convolution V ~ H of

an image V with a reconstruction kernel H, where H is a separable kernel function over

multiple arguments.

H(x, y) = h(x)h(y)in 2D

Probing the field F at a point p involves mapping p to a region of V and then comput-

ing a weighted sum of the voxel values in the region (the weights are computed using the

kernel) [18].

Let us assume that F is a 2D field; then the probe F (p) can be computed as

(V ~H)(p) =
s∑

i=1−s

s∑
j=1−s

(V [n0 + i, n1 + j]h(f0 − i)h(f1 − j))

9

where the support of the kernel H is 2s, M is a matrix for array orientation, x is p mapped

to V ’s coordinate system (image space) using M, n = bxc,n = (n0, n1), f = x − n, and

f = (f0, f1).

Differentiating Tensor fields We use the notation ∇(i) to denote i levels of differenti-

ation, where i > 0 [18]. The superscript indicates the level of differentiation, e.g., the term

∇(2) indicates the second derivative (Hessian) and not the Laplacian (or the Trace of the

Hessian). A rewrite rule is used to track levels of differentiation.

∇(V ~∇(i)H) −→direct−style V ~∇(i+1)H (1.7)

In the Diderot language a field expression ∇F is probed at a position ∇F (p). We can

normalize the expression using direct-style operators as follows:

∇F (p) −→direct−style ∇((V ~H)(p)) −→direct−style (V ~ (∇H))(p)

Because kernels are separable, their differentiation is straightforward:

∇H(x, y) =

 ∂
∂x

∂
∂y

H(x, y) =

 ∂
∂x
H(x, y)

∂
∂y
H(x, y)

 =

 ∂
∂x

(h(x)h(y))

∂
∂y

(h(x)h(y))

 =

 (h′(x)h(y))

(h(x)h′(y))



The result of probing a differentiated tensor field is in world-space ([∇ϕ]W) but needs

to be in index-space ([∇ϕ]B). This transformation is done by multiplying the result by the

inverse transpose of the transformation matrix (M−T). The following provides the math-

ematical background for this transformation. Consider vector g made up of directional

derivatives d:

10

~g =


∇ϕ · di
∇ϕ · dj
∇ϕ · dk


Consider a component of g

g = ∇ϕ · di
= ∂

∂xj
� ϕ · (bj(bj · di)) use orthonormality of B to rewrite.

=
∑
j

(∂
∂xj
� ϕ · bj)(di · bj) by associativity of multiplication

= [di · b1 di · b2 di · b3]


∇ϕ · b1
∇ϕ · b2
∇ϕ · b3

 by unfolding summation index j

The vector form

~g =


d1 · b1 d1 · b2 d1 · b3
d2 · b1 d2 · b2 d2 · b3
d3 · b1 d3 · b2 d3 · b3



∇ϕ · b1
∇ϕ · b2
∇ϕ · b3


= MT [∇ϕ]B by variable substitution for matrix

(M−T)~g = [∇ϕ]B by dividing both sides by M

We multiply the result by the inverse transpose of the transformation matrix to covert the

result to index space.

1.2.3 Field Normalization

Part of the challenge of supporting a rich language is the complexity of the field definitions.

A Diderot user can define a tensor field either with image data and a convolution kernel or

as the result of some (simple or complicated) computation. The computations can involve a

mix of different operators and arguments making the resulting expression inside the compiler

more complicated.

Our solution is to apply a process we call field normalization, to simplify expressions

11

inside the compiler. The basic strategy of normalization is to push differentiation down to

the leaves where it can be represented using the derivatives of the kernel functions and to push

probes down to the convolutions. For example, an expression (F + G)(p) can be rewritten

as F (p) +G(p), which pushes the probe down the expression tree. This transformation has

lowered the higher-order expression (F +G) to a first-order sum of tensors. The fields terms

are then in a simple recognizable form (Definition 2 on page 12).

Definition 2 (Recognizable field term). A normalized or recognizable field term is a simple

form that represents a probed field (F (x) or (∇(i)F)(x)). In this form a probe operator is

wrapped around a field variable and there are no tensor operators.

1.3 Contributions

In this section, we describe our contributions organized by area. We improved the pro-

grammability and the expressivity of the language by supporting a higher level of math. We

will describe the formal semantics for our core rewriting system and our rigorous automated

testing model to test the new features in the language. We also provide the first step to

extending Diderot to another domain.

1.3.1 Implementing mathematical expressiveness

Our work in the compiler enables Diderot’s higher-order programming model. We created

a new intermediate representation for the Diderot compiler, called EIN. We describe the

details for the EIN IR design, implementation, and how we addressed some of the technical

challenges in its implementation.

Design and implementation of EIN

We created the EIN IR to represent the mathematical core of Diderot programs. EIN

expressions are used to concisely represent field reconstruction and operations on and between

12

tensors and tensor fields. Besides adding generality to existing operators, we are able to

extend the Diderot model to provide lifted versions of tensor operators at the field level. As

a result, Diderot is a richer and more complete language.

Our normalization process handles generic EIN operators. We created a systematic sub-

stitution process and a robust rewriting system, designed around the IR, to do necessary

domain-specific rewriting and index-inspired optimizations. Our implementation of EIN

supports the translation of high-level Diderot code into executable code. As a result, a user

can rely on the compiler to do the necessary derivations, such as differentiation and field

normalization. In Chapter 2, we describe the design of the EIN notation and the generation

of EIN operators.

Compilation Techniques

As previously discussed, compilation issues significantly restricted our use of new language

features. To handle these compilation issues, we developed a number of implementation

techniques to reduce the size of the IR in different passes of the compiler while maintaining

the mathematical meaning behind the computation. We also measure the impact of the

techniques used together and applied at different levels of abstraction. We demonstrate that

EIN cannot only compile more programs than previously possible, but also it compiles faster

and produces faster executables. Chapter 3 describes how we approach the compilation issue

and a measurement of our approach.

1.3.2 Correctness and Testing

Testing a compiler for a high-level mathematical programming language poses a number

of challenges not found in previous work on testing compilers. We describe the formal

properties of the normalization process, a core part of the Diderot compiler. We also provide

an automated model for testing the implementation of the high level language based on a

ground truth.

13

Hand-written Proofs

To increase our confidence in the compiler, we formally describe the properties of our rewrit-

ing system. We define the typing judgments on an EIN structure. We show that the rewriting

system is type preserving (Theorem 4.1.1). We show that the rewriting system is value pre-

serving (Theorem 4.2.1) for the tensor valued rules. Chapter 4 provides the details for these

proofs. We show that the rewriting system is terminating. We define a size metric on the

structure on an EIN expression. The rewriting system always decrease the size of an ex-

pression (Lemma 4.3.1). We define a subset of the EIN expressions to be normal form. We

show that termination implies normal form (Lemma 4.3.2) and that normal form implies

termination (Lemma 4.3.3). For any expression we can apply rewrites until termination, at

which point we will have reached a normal form expression (Theorem 4.3.4).

Automated Testing model

We present DATm, Diderot’s automated testing model to check the correctness of the core

operations in the programming language [17]. DATm can automatically create test programs

and predict what the outcome should be. We measure the accuracy of the computations

written in the Diderot language based on how accurately the output of the program represents

the mathematical equivalent of the computations. Chapter 5 introduces the pipeline for

DATm, a tool that can automatically create and test tens of thousands of Diderot test

programs. The model has found numerous bugs that are deep in the compiler and only

could be triggered with a unique combination of operations. Lastly, we demonstrate testing

in the context of a visualization program.

1.3.3 Extension of the language

We demonstrate our first and modest approach of visualizing FEM data with Diderot and

provide examples. Using Diderot, we do a simple sampling and a volume rendering of a

14

FEM field. These examples showcase Diderot’s ability to debug and provide a visualization

result for FEM. In addition, it provides motivation for future work. Chapter 6 describes the

extension of the Diderot language to include FEM data.

1.4 Dissertation Overview

The rest of the dissertation is organized as follows:

• Chapter 2 describes the design and motivation behind the EIN IR.

• Chapter 3 offers the implementation and compilation techniques.

• Chapter 4 describes and defends properties of the normalization phase.

• Chapter 5 introduces property-based automated testing of the compiler.

• Chapter 6 illustrates the extension of Diderot to other types of data.

• Chapter 7 provides applications of the work presented in this dissertation.

• Chapter 8 surveys related work.

• Chapter 9 concludes and describes future work

15

CHAPTER 2

DESIGN

We rely on the expressivity of the Diderot language to support the implementation of visual-

ization ideas. Visualization algorithms involve computing certain properties from a dataset.

The mathematical core of these ideas are ingrained in tensor calculus. Central to them are

operations on and between tensors fields. For a scientist or mathematician, it might be

most natural to reason about these concepts using a mathematical notation rather than in

lower-level code. For instance, we might write operations between two fields as c = a + b

while intending to compute c[x] = a[x] + b[x]. The tensor operation (+) is lifted to operate

between tensor fields. Writing computations using lifted operations is intuitive and easy.

Writing these computations with lower-level code can be difficult and tedious.

Diderot eases the transformation of mathematical ideas into workable code by allowing

the math-like notation to be written directly in the language. Our work generalizes the

Diderot model to provide lifted versions of the standard linear algebra operations (e.g.,

tensor addition, dot products, norms, determinants, etc.) on tensor fields.

By enabling lifted operations, we can enable the implementation of more complicated

computations. For example, Crest Lines are places were the surface curvature is maximal

along the curvature direction [51]. To get maximum, we need at least one level of differentia-

tion (maximal is where the derivative is 0). We can find the crest lines by taking the Hessian

of these principles (fourth derivative overall). Since crest lines and curvature are related

computations, we should be able to build on the previous Diderot program (Figure 1.1). For

conciseness we will refer to one part of the program (the definition of k1 and omit the rest).

real k1 = (t r a c e (G) + d i s c) / 2 . 0 ;

To compute crest lines, the value k1 is differentiated twice (among applying other tensor

operations). If we insert the necessary computations directly into the Diderot program

real out = ∇⊗∇ . . . k1 ;

16

it is not permitted (since k1 is a real and not a field). The easiest solution is to redefine

these values (k1 and some preceding tensors) as field types.

f i e ld#k (d) [] k1 = (t r a c e (G) + d i s c) / 2 . 0 ;
f i e ld #0(3) [] out = ∇⊗∇ . . . k1 ;

The program now includes a mix of tensor and field operators applied between tensors and

tensor fields. The program can not compiler. In the older version of Diderot, such statements

were not supported. Tensor operators trace and division can not be applied to field types.

Our work supports this program and others like this.

In the older version of Diderot, to derive this computation the work is imposed on the

user. The user would need to rewrite the program so that the derivative operator is only

applied to field types and tensor operators are only applied to tensor types. The Diderot

user would need to apply the differentiation operator by hand (by applying the chain rule,

quotient rule manually etc.) a process that is tedious, time-consuming, and error-prone.

Our work enables a new level of flexibility and expressiveness. This level of expressiveness

makes writing Diderot code easier, faster, and more intuitive. Diderot users are able to

analyze and manipulate tensor fields and then rely on the compiler to handle the necessary

derivations. The richer language allows users to focus on their ideas, rather than the difficult

and tedious implementation.

In order to support the higher level language, we designed a new intermediate represen-

tation for the Diderot compiler, called EIN. EIN provides a concise and expressive internal

representation for tensor and tensor-field operations.1 We also adapt the IR to include field

reconstruction. The EIN representation makes it possible to support a richer set of higher-

order operations, that were not feasible previously. Additionally, the implementation makes

it easy to define new operations and extend the language.

This chapter describes the design of the EIN IR. Section 2.1 introduces EIN notation.

1. Our representation was inspired by Einstein Index Notation, which is a concise written notation for
tensor calculus invented by Albert Einstein [31].

17

Section 2.2 describes the generation and creation of EIN operators. Section 2.3 illustrates

the implementation of field reconstruction in EIN. We end with a discussion of the EIN IR

design in Section 2.4.

2.1 EIN notation

We have developed a new intermediate representation, that we call EIN, which is much

more compact than the full expansion of tensor expressions, while permitting index-specific

operations. This new representation is embedded in the same SSA-based representation as

the direct-style operators, except that we now have EIN assignment nodes of the form

t = λ params〈e〉σ(args)

where

• t is a tensor or field variable being assigned.

• λ params〈e〉σ is an operator defined in the EIN IR, with formal parameters params ,

EIN expression e, and index space σ.

• σ ∈ (IndexVar
fin→ (Z×Z))∗. We key the map with an index i and get a pair (lb, ub),

where lb is the lower bound on i, ub is the upper bound, and each variable in σ is

unique. Sometimes, we show this relationship as a triple (lb, i, ub).

• args are the argument variables to the EIN operator

For example, the outer product between two n-length vectors (u⊗v) is represented in

High-IR as the assignment

==⇒
init

t1 = λ (U, V)
〈
UiVj

〉
σ(u, v) where σ = 〈1 ≤ i ≤ n, 1 ≤ j ≤ n〉

We adopt some notational conventions to keep this punctuation concise. We might combine

bounds when they are the same (e.g., σ = 〈1 ≤ i, j ≤ n〉). We will omit single or both

18

bounds for brevity (e.g., σ = 〈i : n, j : n〉 or σ = 〈̂i, ĵ〉) in cases where they are unimportant.

That is, if i is an index, we will write i : n or î to denote its corresponding triple.

One way to think of EIN expressions is that they are a compact way to represent the

loop nest that computes their result. For example, the trace of a square matrix is defined as

==⇒
init

t2 = λT

〈∑
î

Tii

〉
(t1)

Here the summation operation represents a loop indexed by i. This example illustrates that

index variables can be bound inside EIN expressions by a summation operator (as well as at

the EIN operator level).

As part of the translation process, applications of EIN operators are composed to form

larger EIN expressions, which the compiler then simplifies using rewrite rules (see Sec-

tion 3.2.2). For example, the expression trace(u⊗v) will be automatically reduced to

===⇒
subst

t2 = λ (U, V)

〈∑
î

UiVi

〉
(u, v)

thus discovering the identity: trace(u⊗ v) = u • v.

This section introduces the notation used to represent the tensor and field operations in

the Diderot compiler that replaces the old direct-style IR. The grammar of EIN operators is

given in Figure 2.1.

Defining EIN operators It is useful to define the EIN body and EIN operator separately.

out = λT
〈
Tji
〉
ij or

out = λT 〈e〉ij
e = Tji

The body of the EIN operator e is an EIN expression.

The EIN expression e has two free indices (i, j) . We use the following syntax e[ij/ab] to

19

show how the free indices are initiated (i −→ a and j −→ b).

e[ij/ba] = Tab e[ij/aa] = Taa e[ij/ab] = Tba

We use the notation Ename to define an EIN operator and refer to it later by name.

EtransposeT = λT
〈
Tji
〉
ij

The notation Ename(arg) is the application of the EIN operator to the argument (arg).

s = Ename(arg)

The variable s is bound to the application of Ename to an argument. As a shorthand, we

might refer to s as an EIN operator.

Types of Subscript A key aspect of the EIN IR is the tracking of indices. Indices can

either be variables (denoted by i, j, and k), or constants (n ∈ N). We also use α and

β to denote sequences of zero or more indices of either type. A variable index can either

be bound in a summation operator or as one of the indices that determine the shape of

the EIN operator’s result. EIN expressions include tensor variables (Tα) and field variables

(Fα), which have multi-index subscripts that specify the individual component. Summations

(
∑
σ
e) have the usual semantics. The Levi-Civita tensors (Eij ,Eijk) and Kronecker delta (δij)

are used to permute and cancel components based on their indices (defined in Section 1.2.1).

In the following, we illustrate the constructs of the EIN representation by example.

Consider the EIN operator

λ x̄

〈∑
σ′
e

〉
σ=〈1≤i≤n〉

where σ′ = 〈c ≤ j ≤ d〉

which has two indices i, j. The bound index i ranges from 1 to n and gives the expression

20

E = λ x̄〈e〉σ EIN Operator
σ = (Z× IndexVar× Z)∗ Index map
e ::= ebase | ehigh EIN expressions

ebase ::= Tα, Aα, Bα Tensor
| Fα, Gα Field
| δij Kronecker deltas
| Eij , Eijk Levi-Civita tensor
| sine(e), arcsine(e), .., arctangent(e) Trig functions
| √

e,−e, exp(e), en Unary operators
| e+ e, e− e, ee , ee Binary operators
| ∑

σ
e Summation

ehigh ::= e1@e2 Probe of a field e1 at position e2

| liftd(e) Lift tensor e to a field

| Vα ~Hβ Convolution

| ∂
∂xα

e Derivative of e

i, j, k ∈ IndexVar Variable index

n ∈ ConstVar = N Constant index

µ ∈ IndexVar ∪ConstVar Single index
α, β, γ = µ̄ Sequence of indices

Figure 2.1: The syntax of EIN operators’ E and EIN expressions e in High-IR

its shape (i.e., a vector in Rn).The summation index j ranges from c to d. Each component

in the resulting vector binds index i and j and evaluates e.

Base EIN terms EIN operators provide a mathematically sound and compact represen-

tation for tensor and field operations. EIN represents generic tensor variables T and field

variables F . In lieu of individual indices to specify a shape, an α is used to represent generic

fields and arbitrary-sized tensors (Fα and Tα). A tensor expression Tα has a list of indices

(α) that refer to the shape of the tensor (Tij is a matrix and Tijk is a third-order tensor).

Similarly, a field expression Fα has a list of indices that refer to the output shape (a scalar

field is expressed as F and a vector field is expressed as Fi).

The indices to an EIN term dictate how the components of a tensor or field are sampled.

The following are a few examples changing the type, ordering, and binding of two indices on

21

a 2x2 matrix M. Using two variable indices

λT
〈
Tij
〉
îĵ

(M) =

 M11 M12

M21 M22

 λT
〈
Tji
〉
îĵ

(M) =

 M11 M21

M12 M22


Binding the indices to a summation expression creates the trace operation

λT

〈∑
i

Tii

〉
(M) = M11 + M22

Changing one index to a constant index will slice the matrix and create a sliced term

λT 〈T2i〉̂i(M) =

[
M21 M22

]
λT 〈Ti1〉̂i(M) =

 M11

M21


Definition 3 (Sliced Terms). We use the phrase “sliced tensor” or “sliced field” to indicate

an EIN term that has at least one constant index. A constant index refers to a specific

component of a tensor or tensor field. For example, a 3x3 matrix Mij can be sliced to

create a vector Mi1, where Mi1 = [M01,M11,M21]. The tensor components are distinct (i.e.

M01 6= M11) and independent of each other. Field components are also distinct but they

depend on the same source data.

Standard arithmetic operations (∗,+,−, /) are represented in EIN. A
∑
σ

(e) indicates a

summation operation of expression e. Additionally, we added some scalar operators such as

trigonometric functions (we omit the full set of arithmetic operators for compactness).

Field Operations There are several forms of EIN expressions that are special to fields.

The representation depends on the phase of the compiler (Figure 1.2). They translate from

an abstract syntax in High-IR to computations directly on images and kernels in Mid-IR.

We describe these field terms in more detail in the following.

22

High-IR Field Terms The probe operator e1@e2 applies field e1 to the point e2. The

lift operator liftd(e) is wrapped around a tensor expression e inside a field expression. The

convolution expression Vα1 ~Hα2 is the convolution operation of an image field V , with the

range α1 and a piecewise polynomial kernel H with a level of differentiation indicated by α2.

The expression ∂
∂xα
� e denotes differentiation of the field specified by the expression e.

The representation can indicate different types of differentiation. The gradient operator (∇)

uses a variable index bound outside the EIN operator:

Egradient = λF

〈
∂

∂xi
� F
〉
î

The variable index is bound to a summation operator to support the divergence (∇•) of a

vector field:

Edivergence = λF

〈∑
î

∂

∂xi
� Fi

〉

We use two variable indices to represent the matrix output of the Jacobian (∇⊗):

Ejacobian = λF

〈
∂

∂xj
� Fi

〉
îĵ

We use a permutation tensor to support the curl (∇×):

Ecurl3 = λF

〈∑
jk

Eijk
∂

∂xj
� Fk

〉
î

Other types of differentiation can be created by applying these differentiation operators to

each other. The concise representation can be used to support a wide variety of differentiation

operations.

Mid-IR Field Terms During the Mid-IR stage of the compiler probed fields are replaced

by terms that directly represent computations on images and kernels (Figure 2.2). The

expression vα[ē] is an image field indexed at a list of integer positions ē. The val(i) notation

23

e ::= ebase Base EIN expressions
| vα(ē) Image indexed at position
| val(i) Variable represented as integer

| hψ̄(e) Kernel with differentiation

Figure 2.2: The syntax of EIN expressions e in Mid-IR. The syntax builds on definitions in
Figure 2.1.

lifts an index variable to an integer expression; e.g.,
n∑
i=0

val(i) = 0 + 1 + 2 + · · · + n. We

use the notation hn to refer to the nth derivative of univariate function h. In this EIN

expression hψ̄, the level and type of differentiation is captured in the ψ̄, which is a list of

pairs [(c, i1), . . . , (c, im)] that are interpreted like Kronecker-deltas pairs (i.e., ψ = (c, i) is

interpreted as δc,i) and added together.

Rewrites We use arrows (−→ and =⇒) to illustrate transitions into and in the EIN syntax.

We use the single arrow (−→) to show the rewrite of an EIN expression. We use the double

arrow (=⇒) to define EIN operators and show the translation of EIN operators to other EIN

operators. This includes (1) the definition of a set of EIN operators, (2) decomposition of

a single EIN operator to multiple, or (3) the composition of multiple EIN operators to a

single one. When relevant we label the arrows to indicate the result of a method or different

part of the compiler. In this chapter we use the notation ==⇒
init

to translate surface levels

operators into the EIN syntax.

2.2 Generating EIN Operators

In this section, we describe the implementation process to define EIN operators (Section 2.2.1)

and some of the benefits (Section 2.2.2).

24

2.2.1 Implementation

The Diderot compiler generates High-IR, including the EIN operators, from an explicitly

typed simplified AST representation. We provide both a set of fixed and shape polymorphic

EIN operators. We discuss how they are initialized and provide examples. In both cases,

the body of the EIN operators are made up of EIN expressions.

Instantiate generic operations For many related operations, we can define a generic

(i.e., shape polymorphic) EIN operator that gets specialized based on its type. A simple

example is the tensor addition operator, which works on tensors of any shape. We define a

generic tensor addition operation that is parameterized over a multi-index meta-variable α

and uses de Bruijn numbering:

Λαλ (A,B)〈Aα +Bα〉α

We specialize the operator to a particular shape by replacing α with a multi-index that

ranges over the shape.

Built-in operators We have a fixed set of EIN operators that are used for specific types.

For example, the following EIN operator:

λT 〈T00T11 − T01T10〉

is only used to compute the inverse of a 2-by-2 matrix. This operator relies on the use of con-

stant indices. As you may recall, constant indices are used to illustrate specific components

of tensors and tensor fields.

Building Blocks The body of an EIN operator uses EIN expressions to represent a com-

putation. EIN expressions can be used together as building blocks to represent a range of

25

computations. For instance, consider the following three ways to multiply three tensors.

EouterT = λ (A,B)
〈
AiBj

〉
îĵ

EmodT = λ (A,B)〈AiBi〉̂i
EinnerT = λ (A,B)

〈∑̂
i

AiBi

〉

The EIN operators superficially look alike, but they are fundamentally different. From up to

down they produce a matrix, vector, and scalar. EIN expressions could be used as building

blocks to describe more intricate operators such as the 2-d matrix inverse.

λF

〈(
∑̂
k

Fkkδij)− Fij

F00F11 − F01F10

〉
îĵ

2.2.2 Advantages

The implementation of EIN operators has certain advantages. It is easier to add generality

to existing operators, new operators, and lifted operators. The richer language enables a

higher-order programming model. We discuss the benefits in more detail in the following

section and provides examples.

Family of Operations It can be easy for a single generic EIN operator to represent a

family of operators. Consider the inner product operator • applied to two tensors. It has

the generic definition:

λ (A,B)

〈∑
k̂

AαkBkβ

〉
α̂β̂

(2.1)

where α and β are specialized to handle different shapes. The inner product between a

vector A and a matrix B is realized by instantiating α to the empty multi-index and β to a

single index.

==⇒
init

λ (A,B)

〈∑
k̂

AkBki

〉
î

26

This is a concise representation of a range of different operators. EIN makes it easy to add

generic versions of operators and support for arbitrary-sized tensor operators with less code.

Lifted Tensor Operations We want the Diderot programmer to be able to define a field

with a series of lifted operators on the surface language. To recall, lifted operators (P ↑) are

tensor operators that can be applied to field types (Definition 1 on page 5). The EIN IR

makes implementing lifted operators easy. Consider the P operator created for the inner

product (Equation 2.1), instead of using tensor variables (A,B) we can use field variables

(F,G) to create a P ↑ operator.

λ (F,G)

〈∑
k̂

FαkGkβ

〉
α̂β̂

The type checker then instantiates the generic definition by the field types.

==⇒
init

λ (F,G)

〈∑
k̂

FkGki

〉
î

Just as easily, an EIN operator can be applied between a tensor variable and field variable.

λ (T, F)

〈∑
k̂

TαkFkβ

〉
α̂β̂

λ (F, T)

〈∑
k̂

FαkTkβ

〉
α̂β̂

The ease of implementing lifted operators makes it easy to add a certain generality and

flexibility to the language.

Adding to the surface language Adding new (and lifted) tensor operators to the Diderot

language is simple. Once a computation is in EIN notation the compiler can translate it to

executable code. So it is easy to add new operators (using the EIN syntax) without having to

add a lot of extra code in the compiler. The new operators include shape-specific operators

(2-d inverse and scalar trig operators), support for arbitrary sized tensors and tensor fields

27

Table 2.1: EIN operators

EtrigF = λF 〈κ(F)〉 Ecurl3 = λF

〈∑̂
jk̂

Eijk ∂
∂xj
� Fk

〉
î

EnormalizeF = λF

〈
Fα̂√∑
β
FβFβ

〉
α̂

Edivergence = λF

〈∑̂
j

∂
∂xj
� Fαj

〉
α̂

EcrossTF = λT,G

〈∑̂
jk̂

EijkTjGk

〉
î

Edet3x3F = λF

〈∑̂
iĵk̂

(F0iF1jF2kEijk)

〉

Egradient = λF
〈

∂
∂xi
� F
〉
î

EnormF = λF

〈√∑̂
α
FαFα

〉

(normalize(F) and ∇•), and index-dependent operations (T × G and det(F)). Table 2.1

refers to some examples of the following EIN operators.

2.3 Field Reconstruction

During the transition from High-IR to Mid-IR, higher-order constructs get replaced by lower-

order constructs. Probed fields v ~ h(x) are replaced with terms that directly express com-

putations on images and kernels. We continue using the notation for fields, field transfor-

mation matrix M , integer position vectors n, and fractional position vector f introduced in

Section 1.2.

Design Traditional index notation [31] is not sufficient to define the reconstruction of

fields. We created the EIN term v~ h to represent the convolution operator in High-IR. We

introduce the EIN expressions vα(ē), val(i), and hψ̄(e) to represent reconstructed fields in

Mid-IR. The design details were described in Section 2.1.

Implementation We build on the exposition from our previous work [18], reproduced here

for convenience, to explain how field reconstruction is represented in the EIN syntax. Let F

be a 2-d vector field defined as follows:

field#0(2)[2] F = tent ~ img(‘‘i.nrrd”);

28

vec2 out = F(p);

The result of probing vector field is evaluated as


s∑

i,j:1−s
v0[n0 + i, n1 + j]h(f0 − i)h(f1 − j)

s∑
i,j:1−s

v1[n0 + i, n1 + j]h(f0 − i)h(f1 − j)


In High-IR the operation is represented as a single EIN operator

==⇒
init

λ (V,H, T)〈Vi ~H(T)〉〈i:2〉(F, tent,P) (2.2)

The field F is reconstructed in EIN notation as

===⇒
recon

λ (v, h, n, f)〈e〉〈i:2〉(v, tent, n, f)

e =
s∑

jk=1−s
vi[n0 + val(j), n1 + val(k)]h(f0 − val(j))h(f1 − val(k))

(2.3)

We use notation ===⇒
recon

to represent the application of field reconstruction. The specific axis

for the fractional f and integer n position are represented with a constant index, such as f0.

The EIN notation tracks the differentiation component applied to the convolution kernel

by keeping a list of indices.

∂

∂xi
�H(x, y) = hδ0i(x)hδ1i(y)

A second derivative adds another variable index:

∂

∂xij
�H(x, y) =

∑
î

∑
i

hδ0i+δ0j (x)hδ1i+δ1j (y)

Generally, applying differentiation operators creates an expression of the form

∂

∂xα0,α1,..,αn
�H(x, y) = hδ0α0+δ0α1 ..+δ0αn (x)hδ1α0+δ1α1 ..++δ1αn (y) (2.4)

29

As discussed in Section 1.2, the result is a value in image-space, not in world-space, and

it must be transformed back to world-space with transformation matrix P, where P=[M−T].

More generally the field term: ∂
∂xα0,α1,..,αn

�F is multiplied by P for each index of convolution

measured in the derivatives:
∑
β
Pα0β0Pα1β1 . . . Pαnβn(∂

∂xβ
� F).

Example The Hessian of a scalar field out= ∇⊗∇ϕ(x); is represented with EIN operator

===⇒
recon

out = P • T0 • P

T0 = λ(v, h, n, f)〈e〉̂
iĵ

(img, bspln3, n,F)

e =
s∑

k,l=1−s
v[n0 + val(k), . . .]hδ0i+δ0j (f0 − val(k))hδ1i+δ1j (f1 − val(l))

(2.5)

In out (Equation 2.5) we multiply by matrix P twice for each index in image-space to convert

the result to world-space.

2.4 Discussion

In this section, we discuss the design of the EIN IR. The original compiler used a direct-

style notation inside of the compiler. In Section 2.4.1 we describe the direct-style notation

and compare it to the EIN syntax. We imagine creating an EIN expression that could

more directly represent big computations, called“direct-EIN”. We describe and discuss that

approach in Section 2.4.2. Lastly, we discuss and summarize the results of creating the new

IR for the Diderot user.

2.4.1 The Case for a New IR

Our initial implementation of Diderot used a direct representation of tensor operations (i.e.,

tensor operations, such as ∇, were primitive operators) in its intermediate representation

(IR) [18]. Using a series of lowering transformations combined with standard compiler opti-

mizations, the representation was translated into a simple vectorized language, from which

30

we generated C or OpenCL code. While sufficient to prototype the design ideas of Diderot,

the first version of the Diderot compiler suffered from several limitations and was unable to

illustrate a large range of programs. This section compares the direct-style compiler and the

EIN syntax.

Direct-Style: The first design of Diderot used direct-style notation using italics. In direct-

style we treat operators as opaque operations, that are later reduced to lower level primitives.

As an example, the inner product of a two vectors of length 2 is represented in direct-style

as InnerP VecVec2 (u,v).

u • v = (u[0] ∗ v[0]) + (u[1] ∗ v[1]) (2.6)

Direct-style notation gives a compact representation, but requires more tensor-shape specific

operators (e.g., InnerP Vec2Mat22, InnerP Vec2Mat23 (u,m), and InnerP Mat2Mat2 (m,m)).

EIN aims to be almost as compact as the direct-style notation while revealing internal details

that enable the translation and optimization of a broader range of operators.

Expressive IR While the direct-style version of the compiler provides an expressive lan-

guage for image analysis and visualization, it is lacking when trying to develop algorithms

that rely heavily upon higher-order operations. Diderot could not easily support tensor op-

erators as lifted operators (Definition 1 on page 5). In order to lift a tensor operator to

the field level (e.g., F • G) we would have to define a similar set of shape-specific opera-

tors but for the different field types. Each of these new operations in the compiler would

need special-handling to be translated and optimized, adding complexity to the compiler

transformations.

The normalization process must also deal with the combination of probes and differen-

tiation with the lifted operators. Our earlier implementation used direct-style tensor and

field operators in the High-IR with specific rewrite rules to handle the various combinations

31

of operations (e.g., ∇(e1 + e2) −→direct−style ∇e1 + ∇e2). This approach suffered from

a combinatorial blowup in the number of rules, which made it difficult to add new lifted

operators. Furthermore, the direct-style IR did not support index-dependent operations in

a general way.

The direct-style approach for applying the differentiation operator is adequate for the

basic differentiation of scalar and tensor fields (∇,∇⊗), but it does not easily generalize to

the full range of higher-order operators that we would like to support. For instance, the

divergence cannot be supported with direct-style rewriting (Equation 1.7);

i.e., ∇•F −→direct−style ∇• (V ~H) 6= V ~H(1). In this dissertation, we describe a better

approach to representing tensor and tensor field operations that has allowed us to greatly

enrich the expressiveness of Diderot.

Index-Dependent Operators Direct notation completely avoids dependence on any par-

ticular choice of basis for representing tensor components (like scaling vector field F with

4*F), while index-dependent means the evaluation of the operation (like curl or determinant)

explicitly refer to individual components. In other words, direct-style operators are index

free, but there are certain operations, such as the curl of a vector field, whose semantics

depend on the indices of components and thus are not index free.

To see the problem consider a vector field F and let Fi indicate the ith axis of F. Differen-

tiating the 3-d curl (∇⊗(∇×F)) is needed for shading renderings of curl-related quantities.

Mathematically, the computation is represented as:


∂2

∂x∂yF2 − ∂2

∂x∂zF1,
∂2

∂y∂yF2 − ∂2

∂y∂zF1,
∂2

∂z∂yF2 − ∂2

∂z∂zF1

∂2

∂x∂zF0 − ∂2

∂x∂xF2,
∂2

∂y∂zF0 − ∂2

∂y∂xF2,
∂2

∂z∂zF0 − ∂2

∂z∂xF2

∂2

∂x∂xF1 − ∂2

∂x∂yF0,
∂2

∂y∂xF1 − ∂2

∂y∂yF0,
∂2

∂z∂xF1 − ∂2

∂z∂yF0

 (2.7)

As can be seen from the matrix above, the terms refer to components of the field and partial

differentiation operators, they are index-dependent. Since direct-style operators are opaque

32

with respect to the component indices, they cannot express these sorts of operations. Lacking

a way to describe individual indices, the previous direct-style IR could not handle composi-

tions of index-dependent operations except in ad hoc ways. We handled this restriction in

the direct-style compiler, by limiting the differentiability of the range of these operators. For

example, we give the 3D curl operator the type

∇× : field#k(3)[3]→ field#0(3)[3]

instead of the mathematically correct type

∇× : field#k(3)[3]→ field#(k−1)(3)[3]

By giving the result a differentiability of 0, we prevent it from being used as the argument

of a differentiation operator and, thus, our direct-style compiler cannot handle the example.

EIN can handle the example by using the following compact representation:

t = λF
〈

Σ{1≤k,l≤3}Eikl ∂
∂xjk

Fl

〉
σ

(F) σ = 〈1 ≤ i, j ≤ 3〉 (2.8)

2.4.2 EIN as building blocks

In the following section, we analyze how EIN operators are created for more complicated

operators. Each time a new operator is implemented in EIN we first consider using the

existing EIN syntax to create it rather than creating a new EIN expression. By using the

existing EIN IR, there is no other code that needs to be added to the compiler. The rest

of the compiler can then handle these EIN expressions generically, instead of enduring the

implementation costs of adding a completely new constructor.

If we are defining more complicated operations then we might consider creating a new EIN

expression (“Direct-Ein”) instead of creating the computation with existing ones (“Building

blocks”). “Direct-Ein” notation would be used to directly represent the computation, (in-

33

spired by the Direct-Style syntax of the original compiler) but created as an EIN expression

so it can be used as a building block in another operator. Consider possible representations

of the 3-d determinant and 2-d inverse.

Building blocks Direct-Ein

Edet-d3

〈
Σ
î
(F0iΣĵ(F1jΣk̂(F2kEijk)))

〉
îĵk̂

〈DET-3d(F)〉̂
iĵ

Einv-d2

〈
(Σ

k̂
Fkkδij)−Fij

FiiFjj−FijFji

〉
îĵ

〈INV-2d(F,ij)〉̂
iĵ

The Direct-Ein structure offers a concise representation in place of a more complicated EIN

operation and it could enable new rewrites such as INV-2d (INV-2d(e)) −→direct−style e,

which could be significant given a large e. One setback is that their careful design would

still need to keep track of EIN indices when the result of the operation is a non-scalar. The

tracking of indices in Direct-Ein structures could make the rewriting system more compli-

cated.

While the Direct-Ein structure can offer a printer-friendly representation, the concise

representation may not be sustainable. In fact, the Direct-Ein structure may inevitably need

to be broken into smaller pieces for three reasons. First, realizable field terms (Definition 2 on

page 12) need to be identified before field reconstruction (Section 2.3). Second, new rewrite

rules might lead to a term that is difficult to express in the Direct-Ein structure. Lastly,

decomposing Direct-Ein structures into smaller pieces may be the best way to apply compiler

optimizations (such as finding common subexpressions). Considering, the limitations and

the implementation costs to adding a new EIN expression we choose to represent new EIN

operators with existing EIN expressions, but in the future it would be interesting to evaluate

the choice further.

34

2.4.3 Programmability

By enabling lifted operations, the Diderot code can refer to its fields and its spatial derivatives

in a mathematically idiomatic way. For instance, Canny edges [12] find optimal smoothing

and edge components where the image gradient magnitude is maximized with respect to

motion along the (normalized) gradient direction. The rich language allows the computation

core of the concept to be used directly in a field definition.

f i e ld #2(3) []C = −∇ (| ∇F |) • ∇F/ |∇F | ;
f i e ld #1(3)[σ]D = ∇ C . . . ;

There is a bottleneck to implementing new ideas in a scientific visualization program.

Diderot offers a fast way to write new ideas without having to worry about the low-level

details of the code. The work in this chapter expands the expressiveness of the Diderot

language and pushes the boundaries of the type of programs that can be written. It is easier

for a user to develop algorithms that rely heavily upon higher-order operations. Section 7.2

demonstrates visualization applications enabled by the work described in this chapter.

35

CHAPTER 3

IMPLEMENTATION TECHNIQUES

Developing the EIN IR has made Diderot a more complete language. Code can be written

in a high level and more accurately represent how a user thinks about her ideas. By writing

at a high level, the user is relying on the compiler to do the necessary derivations.

The implementation of EIN has raised new technical challenges. Part of the implemen-

tation process includes rewriting a computation on high-level field terms so that they are

in a form that the compiler can recognize and translate to lower-level field terms. Fields

terms need to be normalized before field reconstruction (Section 1.2.3). Field normalization

includes applying rewrites to push the probe operator down directly around field terms. All

EIN expressions with operations at the field level need to be normalized in this way. The

process of field normalization drives the normalization of EIN expressions (Section 3.2).

The initial implementation of EIN had a significant space issue. The source of the problem

occurred during the rewriting and composition on EIN operators. During normalization the

IR expands quickly, makes large complicated expressions and breaks sharing. As a result,

programs took a long time to compile or did not compile at all. This problem significantly

limited the use of the full expressivity of the language. To address the compilation issue,

we have developed a number of techniques to keep the size of the program under control

(Section 3.3).

To evaluate the impact and cost of the compilation techniques we measure the compilation

and execution time for various benchmarks (Section 3.4). For the benchmarks we use a mix

of Diderot programs with varying degrees of tensor math. We offer three experiments. The

first evaluates the impact of implementing the EIN IR by comparing the results to the

original compiler. The second measures the impact of different compiler setting (by turning

compilation techniques on and off). The third experiment compares first and higher-order

versions of programs. Overall, the implementation of EIN can allow programs with higher-

level of math than was previously possible.

36

High-IR High-Opt High-to-MidFront-End

Shift and Split

Substitution

Shift

Slice

Rewrite Rules

Initialize EIN

Field reconstruction

Split
Surface-level

Mid-to-Low

EIN to scalar/
vector ops

Figure 3.1: Transformations that are applied in the EIN syntax in the Diderot pipeline

We describe the normalization process in Section 3.2 and introduce the compilation tech-

niques we developed in Section 3.3. Lastly we evaluate the techniques in Section 3.4. We use

the notation introduced in Section 2.1. To recall, at times we might define an EIN expression

separately from the EIN operator. As a shorthand, we refer to an EIN operator bound to a

variable s as EIN operator s.

3.1 Overview of implementing the EIN syntax

We provide a diagram of different stages of the implementation process in Figure 3.1. The

larger box represents a step in the Diderot compiler and corresponds to compiler phases as

introduced in Figure 1.2. The white boxes in the diagram represent different implementation

methods and steps that are introduced in this dissertation.

The Diderot language supports a surface level syntax of different operators (Section 1.1.1).

The computations are mapped to EIN operators that are initiated by the type-checker (Sec-

tion 2.2.1). High-IR represents each tensor or field computation as an EIN operator. In High-

Opt the EIN operators are normalized (Section 3.2) by applying the substitution method

(Section 3.2.1) and rewriting rules (Section 3.2.2).

In High-to-Mid we apply additional optimizations. We apply methods by the name of

Shift (Section 3.3.1), Split (Section 3.3.3), and Slice (Section 3.3.4). Afterwards, field terms

are reconstructed (Section 2.3). Shift and Split are applied again after field reconstruction

(described in an example in Section 3.3.5). Lastly, the EIN operators are converted to

scalar and vector operators in the Mid-to-Low phase. The translation is omitted from this

37

dissertation but was described in a previous paper [15].

As defined in Section 2.1 we make a distinction between defining a set of EIN operators

(=⇒) and rewriting an EIN expression (−→). When applicable we label the arrow with

a method name or other phrase to indicate the part of the implementation process (as

shown in Figure 3.1). We use notation ==⇒
init

to translate surface levels operators into the

EIN syntax. We use the notation ===⇒
subst

,===⇒
split

, and ===⇒
slice

to indicate the application of the

method substitution, split, and slice, respectively. We use notation ===⇒
recon

to indicate field

reconstruction. We use the notation −−−→
shift

and −−−→
rule

to indicate a rewrite after applying

shift and a rewrite rule, respectively. We use the arrow −−−→
rule

∗ to indicate a rewritten term

after applying multiple rewrite rules.

3.2 Substitution and Rewriting

This section describes how EIN operators are normalized. First we use a systematic approach

to compose EIN operators with each other, called substitution. Substitution creates a single

EIN operator that is easier to normalize. The rewriting system then rewrites the body of

the EIN operator to normalize the EIN expressions. The rewriting system applies field-

normalization, domain-specific rewriting, index-based rewriting, and other rewriting that

can optimize or reduce the terms.

In Section 3.2.1 we describe substitution process. In Section 3.2.2 we present the rewriting

rules. This composition of operators and rewriting can create a very large expression. We

discuss and address this size problem in further detail in Section 3.3.

3.2.1 Substitution

The method of substitution involves composing EIN operators into one operator that rep-

resents the computation. An EIN operator is applied to some arguments and we expand

uses of the arguments with its binding. The method effectively inlines definitions with this

38

method. In this section, we describe the implementation of the substitution process followed

by an example. We use the notation ===⇒
subst

to indicate the application of the substitution

method on EIN operators.

Implementation Consider the following scenario. The EIN operator t is an argument to

EIN operator r where the binding for variable t is λ(s̄)
〈
e′′
〉
α(s̄). Substitution creates the

following top-level rewrite:

r = λ(T)〈e〉σ(t)

t = λ(s̄)
〈
e′′
〉
α(s̄)

===⇒
subst

r = λ(s̄)
〈
e′
〉
σ(s̄)

As a result a single EIN operator that represents the computation. The implementation

requires some additional bookkeeping that we omit in the description.

Replace Parameter The parameters of an EIN operator indicate how an argument is

represented inside the EIN expression. At the top level there is a mapping from parameter

to EIN expression.

Γ(T) =
〈
e′′
〉
α̂

Γ ` Tβ ⇀ e′′[α/β]

Γ(F) =
〈
e′′
〉
α̂

Γ ` Fβ ⇀ e′′[α/β]

where Γ : Parameter −→ EinExp

The method scans the body of EIN expression (e) and looks for terms with a matching

parameter. It replaces the matching term with the body of the substitution (e′′) after some

rewriting.

Rewriting substitution term The next step takes the substitution term and rewrites it.

The indices in the substitution term are instantiated by the (indices of the) term it is re-

placing (β). In the following we use the arrow ⇀ to indicate a substitution rewrite on EIN

expressions.

39

In a base term (tensor and field) we remap the indices.

if αk = i then x = βk else x = i

Ti[α/β] ⇀ Tx

(3.1)

If variable index i is in α then we look at β otherwise the expression stays the same. Similarly,

the same is done for field terms.

Substitution is distributed over operators and examines the embedded subexpression(s).

The following is an example of the differentiation operator.

if αk = i then j = βk else j = i Γ ` e1 ⇀ e′1

(
∂

∂xi
� e1)

[α/β]
⇀ (

∂

∂xj
� e′1)

(3.2)

The substitution method examines subexpression e1 and it rewrites the indices on the partial

derivative term. Figure 3.2 summarizes the rest of the substation rewrites. We assume the

variable convention [6].

Example In the following example we use arbitrary-sized tensors to demonstrate a general

approach of substitution with arbitrary-sized tensor operators. The following computation

uses the outer product and addition operator on tensor arguments.

tensor a [ς] ;
tensor b [ς] ;
tensor c [σ] ;
tensor t1 [ς] = a + b ;
tensor t2 [σς]= c ⊗ t1 ;

expressed in High-IR as two EIN operators.

==⇒
init

t1 = λ(A,B)
〈
Aγ +Bγ

〉
γ̂ (a, b) where ∀γi ∈ γ. 1 ≤ γi ≤ ςi

t2 = λ(C, T)
〈
CαTβ

〉
α̂β̂

(c, t1) where ∀αi ∈ α. 1 ≤ αi ≤ σi

and ∀βi ∈ β. 1 ≤ βi ≤ ςi

40

h

1)
if αk = i then x = βk else x = i

Ti[α/β] ⇀ Tx

2)
if αk = i then x = βk else x = i and if αk = j then y = βk else y = j

Vi ~ hj [α/β] ⇀ Vx ~ hy

3)
if αk = i then x = βk else x = i and if αk = j then y = βk else y = j

δij [α/β] ⇀ δxy
Note the same is done for Eij and Eijk

4)

∑
i

(e)

[α/β]∑
i

(e[α/β])
note i 6∈ β

5)
if αk = i then j = βk else j = i Γ ` e1 ⇀ e′1

∂

∂xi
� e1

[α/β]
⇀ (

∂

∂xj
� e′1)

6)
Γ ` e1 ⇀ e′1

Γ ` �1e1 ⇀ �1 e
′
1

Γ ` e1 ⇀ e′1 Γ ` e2 ⇀ e′2
Γ ` e1 �2 e2 ⇀ e′1 �2 e

′
2

where �1 = {liftd(·)
√
·, sine(·), . . . } �2 = {+,−, ∗, ·· ,@}

Figure 3.2: Substitution rules

41

A substitution is made by replacing the term Tβ with the body of the EIN operator t1. The

variable indices in the body of t1 are remapped to Tβ .

===⇒
subst

t2 = λ(C,A,B)
〈
Cα(Aβ +Bβ)

〉
σς

(c, a, b) where γ is initialized by β

The result is a single EIN operator to represent the composition of the two EIN operators.

3.2.2 Rewriting

Our transformation rules do domain-specific rewriting and apply optimizations. Domain-

specific and tensor calculus based rewriting are applied to normalize field terms (Definition 2

on page 12). Index-based and algebraic rewrites are used to simplify EIN terms.

In the following section, we present the rewrites organized by area: domain-specific,

differentiation, index-based rewriting, and algebraic rewriting. We use the notation from

Chapter 2 to represent EIN expressions. We use the notation −−−→
rule

to indicate a rewrite

rule.

Domain-specific rewrites involve pushing a probe operation towards the field terms.

The probe operation is pushed past unary operators by the following rewrite rules:

(−Fα)@x −−−→
rule

−(Fα@x)
√
Fα@x −−−→

rule

√
Fα@x

sine(Fα)@x −−−→
rule

sine(Fα@x) arcsine(Fα)@x −−−→
rule

arcsine(Fα@x)

The probe operator is distributed over binary operators by the following rewrite rules:

(e1 + e2)@x −−−→
rule

(e1@x) + (e2@x) (e1 ∗ e2)@x −−−→
rule

e1@x ∗ e2@x

(e1 − e2)@x −−−→
rule

(e1@x)− (e2@x) (e1e2)@x −−−→
rule

e1@x
e2@x

42

The probe of a non-field term is reduced.

liftd(e)@x −−−→
rule

e δij@x −−−→
rule

δij

Eij@x −−−→
rule

Eij Eijk@x −−−→
rule

Eijk

We push the field expression past tensor operators, which changes a higher-order term

to a first-order term. For example, consider scaling field Fβ by a scalar s:

(sFβ)(x) −−−→
rule

s(Fβ(x))

The rewriting changes the probe of the scaling of a field Fβ by a scalar s to the scaling of a

tensor resulting from probing Fβ(x).

Differentiation The rewrites push the differentiation operator to the field leaves in an

EIN expressions. We demonstrate rewriting rules based on tensor calculus that are used to

apply the differentiation operator on EIN expressions. In the following we label each identity

on the left and rewrite the EIN syntax on the right.

Product rule: ∂
∂xi
� (e1e) −−−→

rule
e1(∂

∂xi
� e) + e(∂

∂xi
� e1)

Quotient rule: ∂
∂xi
� e1e2 −−−→rule

(∂
∂xi
�e1)e2−e1(∂

∂xi
�e2)

e22

Power Rule: ∂
∂xi
� (en) −−−→

rule
liftd(n)en−1(∂

∂xi
� e)

Chain Rule: ∂
∂xi
� (exp(e)) −−−→

rule
exp(e)(∂

∂xi
� e)

Power and Chain Rule: ∂
∂xi
� (
√
e) −−−→

rule

∂
∂xi
�e

liftd(2)
√
e

The rewrites include the differentiation of constants

∂
∂xi
� (liftd(0)) −−−→

rule
liftd(0)

∂
∂xi
� (δij) −−−→

rule
liftd(0)

43

and trigonometric identities.

∂
∂xi
� cosine(e) −−−→

rule
−sine(e)(∂

∂xi
� e)

∂
∂xi
� arccosine(e) −−−→

rule

−liftd(1)(∂
∂xi
�e)√

(liftd(1)−(e∗e)
∂
∂xi
� sine(e) −−−→

rule
cosine(e)(∂

∂xi
� e)

∂
∂xi
� arcsine(e) −−−→

rule

liftd(1)(∂
∂xi
�e)√

liftd(1)−(e∗e)
∂
∂xi
� tangent(e) −−−→

rule

∂
∂xi
�e

cosine(e)cosine(e)

∂
∂xi
� arctangent(e) −−−→

rule

liftd(1)(∂
∂xi
�e)

liftd(1)+(e∗e)

The differentiation operator is distributed over an arithmetic operator in the following rewrite

rules:
∂
∂xi
� (−e) −−−→

rule
−(∂

∂xi
� e)

∂
∂xi
� (e1 − e2) −−−→

rule
(∂
∂xi
� e1)− (∂

∂xi
� e2)

∂
∂xi
� (e1 + e2) −−−→

rule
(∂
∂xi
� e1) + (∂

∂xi
� e2)

The EIN syntax can simplify the total number of rewrites that need to be created.

Rewrite rules can stand for different computations. For example, the rewrite written in EIN

notation

∂

∂xα
� (e1 + e2) −−−→

rule

∂

∂xα
� e1 +

∂

∂xα
� e2

represents multiple direct-style rewrites

∇(ϕ1 + ϕ2) −→direct−style (∇ϕ1) + (∇ϕ2),

∇× (F +G) −→direct−style (∇× F) + (∇×G), and

∇ • (F +G) −→direct−style (∇ • F) + (∇ •G)

We simplify the differentiation of a field term by moving the indices on the differentiation

44

operator onto the kernel inside a convolution expression.

∂

∂xµ
� (Vα ~Hβ) −−−→

rule
Vα ~Hβµ (3.3)

By using a list of variable indices to represent differentiation (rather than just an integer)

we can represent different types of differentiation. The direct style version of this rule

(Equation 1.7) limited the type of differentiation operators that could be supported and

differentiated to only gradient ∇ and Hessian ∇⊗∇.

Index based optimizations Unlike in the direct-style IR, the EIN IR allows us to express

index-based reductions. Applying one of these optimizations removes at least one summation

from the operation. For example, the variable indices on a differentiation operator could

match two indices as an epsilon term.

Eijk
∂

∂xij
� e −−−→

rule
liftd(0)

This rewrite enables the compiler to find identities:

∇×∇ϕ −→direct−style 0 and ∇ •∇× F −→direct−style 0 (3.4)

Two epsilons in an expression with a shared index can be rewritten to deltas [20].

EijkEilm −−−→
rule

δjlδkm − δjmδkl (3.5)

A δij expression can be applied to tensors, fields, and the del operator.

δijTj −−−→
rule

Ti δijFj −−−→
rule

Fi
∂

∂xj
� δije −−−→

rule

∂

∂xi
� e (3.6)

45

Algebraic rewrites The remaining rewrites are used to make simplifications and reduc-

tions.

−0 −−−→
rule

0 e1 − 0 −−−→
rule

e1 0 ∗ e1 −−−→
rule

0

0 + e2 −−−→
rule

e2 0 + e2 −−−→
rule

e2

√
(e)
√

(e) −−−→
rule

e
e1
e2
e3
−−−→
rule

e1
e2e3

e1
e2
e3

−−−→
rule

e1e3
e2

e1
e2
e3
e4

−−−→
rule

e1e4
e2e3

(3.7)

3.3 Optimization and Transformations

As discussed earlier in this chapter, field normalization drives the normalization of EIN

expressions. We chose to simplify rewriting by first composing EIN operators and then

applying rewrites to a single body. Unfortunately, during substitution and normalization we

replicate code and break sharing, which causes a blowup in the size of the IR.

The code replication issue can be caused by term rewriting. Rewriting can create multiple

instances of the same term. Consider the expansion of the gradient of the norm of the

gradient:

f i e ld#k (d) [] f ;
f i e ld#k−1(d) [d] g = ∇ f ;
f i e ld#k−1(d) [d] n = |g| ;
f i e ld#k−2(d) [d , d] h = ∇n ;

The surface-level operators are mapped (Section 2.2) to the following EIN operators (defined

in Figure 2.1).

==⇒
init

g = Egradient(f)

n = EnormF(g)

h = Egradient(n)

Substitution (Section 3.2.1) composes the EIN operators into the following EIN operator.

===⇒
subst

h = λf〈e〉i(f)

e = ∂
∂xi
�
√∑

j
(∂
∂xj
� F)(∂

∂xj
� F)

46

Normalization rewrites (Section 3.2.2) on the EIN body e. In the following we write the EIN

expression on the left-hand-side and add a description on the right.

e −−−→
rule

∗
∂
∂xi
�∑
j

(∂
∂xj
�F)(∂

∂xj
�F)

liftd(2)
√∑

j
(∂
∂xj
�F)(∂

∂xj
�F)

Apply chain rule

−−−→
rule

∗
∑
j

∂
∂xi
�(∂
∂xj
�F)(∂

∂xj
�F)

liftd(2)
√∑

j
(∂
∂xj
�F)(∂

∂xj
�F)

Push derivative past summation

−−−→
rule

∗
∑
j

(∂
∂xj
�F) ∂

∂xi
�(∂
∂xj
�F)+(∂

∂xj
�F) ∂

∂xi
�(∂
∂xj
�F)

liftd(2)
√∑

j
(∂
∂xj
�F)(∂

∂xj
�F)

Apply product rule

−−−→
rule

∗
∑
j

(∂
∂xj
�F)(∂

∂xij
�F)+(∂

∂xij
�F)(∂

∂xj
�F)

liftd(2)
√∑

j
(∂
∂xj
�F)(∂

∂xj
�F)

Compact differentiation term

To more clearly see the redundancies we replicate the expanded computation using a famil-

iar syntax. We use notation
EIN−−−−−→

Surface
to translate an operator in the EIN syntax into a

mathematically friendly syntax.

h
EIN−−−−−→

Surface

(t1•t2)+(t2•t1)
2
√
t1•t1

where t1 is the gradient of f and t2 is the Hessian of f.

The expressions t1 and t2 are mentioned multiple times, but ideally each would only be

translated to lower-level constructs once.

Reducing the IR by common computations is commonly known as common subexpression

elimination (CSE). In order to apply CSE inside an EIN operator we must be able to compare

computations in the EIN syntax efficiently and correctly. EIN notation adds a level of

complexity to comparing EIN expressions since so much of the meaning of an expression is

captured in the indices.

47

We could factor common subterms but it is more complicated than just looking at syn-

tactic equality. In a single EIN operator, the same expression can be used multiple times

but not sampled in the same way. For example, consider the expression:

e[·/ij]e[·/k1] − e[·/0i]e[·/jk] + (e[·/ij]e[·/k1])(
∑
l

e[·/ll]).

If you recall, e[ab/ij] indicates that the expression e is parameterized with different indices.

In this expression e is instantiated in different ways (we omit a, b for simplify). Variation

in indices occur because different operators create different variable bindings. Comparing

the EIN expressions structurally we can find terms that are exactly the same (such as e[·/ij]

and e[·/ij]). This approach is limited because it misses other common computations that are

embedded inside the EIN operator. To be able to systematically find common computations

we need to consider an EIN expression in the context of the whole EIN operator. It is with

this context that we can distinguish between terms that just have shifted indices (such as

e[·/ij] and e[·/jk]), those that create a subset of the same computations (such as
∑
l
e[·/ll] and

e[·/ij]), and those that are not equivalent (such as e[·/k1], and e[·/0i]).

Our goal is to reduce the size of an EIN operator and reduce the number of computations

created by an EIN operator. This section describes the two techniques we developed while

preserving the mathematical meaning of the computation. The first technique, called Split, is

used to split large EIN operators into a series of simple and small operators (Section 3.3.3).

As we split we use hash consing to find equivalent computations.The second technique,

called Slice, finds nonequivalent fields terms that create many of the same lower-level base

computations (Section 3.3.4).

There are other potential benefits to simplifying EIN operators with our approach. The

best way to generate code from a large complicated EIN expressions can be unclear. A general

code generator would need to expand every operation to work on scalars, which could miss

the opportunity for vectorization and lead to poor code generation. Our implementation

48

decomposes large and complicated EIN operators into many small and simple ones that are

easier to analyze.

The remainder of this section describes our compilation techniques. First, to enable these

techniques we simplify EIN terms with some rewriting (Section 3.3.1) and impose a formal

sense of shape to handle indices correctly (Section 3.3.2). We then describe the implementa-

tion details for the Split method (Section 3.3.3) and the Slice method (Section 3.3.4). Lastly,

we present some examples of the methods (Section 3.3.5).

3.3.1 Shift

The goal of the Shift method is to move invariant terms outside a summation. Consider the

term
∑
σ

(Tα ∗ e) if the property ∀i ∈ α.i 6∈ σ holds then we do the following rewrite.

∑
σ

(Tα ∗ e) −−−→
shift

Tα ∗
∑
σ

(e)

This simple rewrite can help simplify expressions before the next optimizations passes. We

use the notation −−−→
shift

to indicate the application of the shift method on an EIN expression.

We do an analysis on the structure of the EIN body. Most of the method is made up of a

series of rewrites to move the summation operator. When there is an embedded summation

(at least two variable indices bound at the summation operator) then the method applies

more analysis. The analysis can also turn an embedded summation into two independent

loop nests and remove summation loops.

Example The best way to rewrite or implement a computation can be unclear. Consider

the operation (s*(v⊗x)) • u represented in the EIN syntax as

surface
=====⇒
norm

t = λ(S, V,X, U)〈e〉i(s, v, x, u)

e =
∑
j

(SViXjUj)

49

We move the invariant terms outside the summation operator.

e −−−→
shift

SVi
∑
ĵ

(XjUj)

By moving the invariant term outside the summation operator the dot product

∑
j

(XjUj)
EIN−−−−−→

Surface
x • u

is recognizable and compiler has the option to generate vector code.

3.3.2 Shape

To enable some of the compilation techniques, we need to impose a concept of shape on an

EIN expression, called Eshape and Tshape.

Tshape : EIN expression × σ × σ → IndexVar list

Eshape : EIN expression → IndexVar list

The Eshape is an ordered list of free index variables used by the EIN expression. The Tshape

puts that list in context of a full EIN operator. As input the Tshape function takes an EIN

expression and two index maps and returns a list of indices. The first map is bound outside

the EIN operator and the second map is bound by a summation.

Consider the following application of Tshape:

〈∑
σ1

e . . .

〉
σ0

and Tshape(e, σ0, σ1) = {β}

Tshape(e, σ0, σ1) = ∀i ∈ Eshape(e). if i 6∈ σ0 and i 6∈ σ1 then i ∈ β

The method Eshape does a case analysis of the body and returns the ordered free indices.

The result is the list of variable indices used by e but bound outside of it.

50

The following are examples of extracting the Eshape from EIN expressions. The shape

extracted needs to reflect simple operations A+B.

Eshape(Aijk +Bijk) = {i, j, k}

when sub-terms do not have the same indices F ⊗G,

Eshape(FiGj) = {i, j}

the order that the indices appear Transpose(a⊗b),

Eshape(AjBi) = {j, i}

if the indices repeat in the same term Trace(V ~ H),

Eshape(
∑
i
Vii ~H) = {}

if the indices repeat in multiple terms modulate(a,b),

Eshape(AijBij) = {i, j}

remove indices bound by a summation as in a : b

Eshape(
∑
ij
AijBij) = {}

or embedded summation (V ~H) ·M ,

Eshape(
∑
j

(V ~ ∂
∂xj

H)Mji) = {i}

and with summation operators a ⊗(F· C),

Eshape(Ai(
∑
k
FkCkj)) = {i, j}.

For example, consider the following computation

tensor [d] a ;
tensor [d , d] b ;
f i e ld#k (d) [] F = v ~ h ;
tensor [d , d] t2 = a ⊗ (∇ F· b) ;

After normalization the compiler represents the computation with a single operator:

surface
=====⇒
norm

t2 = λ(V,H,A,B)

〈
Ai
∑
k

((V ~ (
∂

∂xk
�H))Bkj)

〉
îĵ

(v, h, a, b) (3.8)

51

We define a subterm e2 as

e2 =
∑
k̂

((V ~ (
∂

∂xk
�H))Bkj)

The Tshape of the subterm e2 is j (Tshape(e2, {i, j}, {}) = {j}). Variable index k is not

included because it is bound inside the sub-term.

3.3.3 Split

A single EIN operator can be used to concisely represent many different computations. These

figures can easily become large and do not maintain sharing. The translation of these EIN

operators to lower-level code can create a lot of common constructs.

To eliminant the number of redundant constructs created we want to enable comparisons

in the EIN syntax. Comparing EIN expressions is insufficient since the same computation can

have different variable indices (structurally unequal). Therefore, the Split method compares

EIN operators to identify common computations.

The Split method decomposes a large EIN operator into smaller and simple ones. Split

finds an EIN expression and creates a new EIN operator around it. It is then possible to

compare the new EIN operator to existing ones and enable CSE. In this section, we describe

the implementation details followed by an example. We use the notation ===⇒
split

to indicate

the application of the method split to an EIN operator.

The Split method does the following decomposition.

t2 = λA,B

〈∑
σ1

e1 � e
〉
σ0

(a, b) ===⇒
split

t1 = λB
〈
e′1
〉
α̂(b)

t2 = λA, T

〈∑
σ1
Tα � e

〉
σ0

(a, t1)

where Tshape(e1) = α

An EIN operator t2 is decomposes into two EIN operators. The inner EIN expression e1

52

is pulled out to create a new EIN operator t1. In the original EIN operator t2 the EIN

expression e1 is replaced with a tensor variable Tα. The implementation is described in

more detail next using the variable names in this example.

split : binding→ bindings.

is Split : EIN expression × σ → bool

split core : EIN expression × σ → bindings

where binding = variable× EIN operator× arguments

As input the split () method receives a variable, an EIN operator, and arguments. The input

to split () has the form:

t2 = λA,B

〈∑
σ1

e1 � e
〉
σ0

(args).

We use method is Split () to scan the EIN body to find an embedded EIN subexpression.

We call function split core () when we find a term e1 to lift out. In the following we provide

a sketch of split core ().

1. The implementation uses Tshape (introduced in Section 3.3.2)

Tshape(e1, σ0, σ1) = {α}

where e1 is the subexpression that is pulled out and σ1 is a list of indices bound by a

summation. The outshape α̂ is found by looking up the indices α in σ0.

2. A new operator is created for the EIN expression e1. We remap the body’s parameter

ids and indices to only those included in the new EIN operator.

λB.
〈
e′
〉
α̂(b)

A complete representation of the computation is needed before comparing it to other

computations. Creating an EIN operator around the subexpression provides the miss-

53

ing details. The method can then check the hash table to see if the computation has

been derived previously before assigning a variable (t1).

t1 = λB.
〈
e′
〉
α̂(b)

3. The original EIN operator t2 is rewritten. The expression e1 is replaced with term

Tα in the EIN body to create Tα � e. A reference to the t1 is added.

t2 = λA, T

〈∑
σ1

Tα � e
〉
σ

(a, t1)

As a result the subexpression is lifted out of the original EIN operator.

Splitting example Continuing the example from the previous section (3.8).

===⇒
split

t1 = λ(V,H,B)

〈∑
j

((V ~ (∂
∂xj
�H))Bji)

〉
î

(v, h, b)

t2 = λ(A, T)
〈
AiTj

〉
îĵ

(a, t1)

The Split method pulls out the sub-term e2 (3.8). A new EIN operator is created using the

sub-term e2 as its body. The variable indices and parameters are remapped accordingly. In

the original operator, the sub-term e2 is replaced with a tensor variable TTshape(e2).

Substitution and Split In a way, the Split method is the inverse of the Substitution

method (Section 3.2.1). Substitution composes several EIN operators into a single one. Split

transforms a single EIN operator into several pieces. Both methods require some parameter

clean-up and index-analysis to maintain the integrity of the representation.

54

3.3.4 Slice

Field terms can be transformed into a large number of lower-level constructs (during field

reconstruction Section 2.3). Different sliced fields can generate many of the same lower-level

constructs (base computations between image data and kernels). To avoid this redundancy,

we use Slice to transform a sliced field term, called OptSlice), into a pair of an unsliced field

probe and a tensor-valued EIN operator that extracts the components of the probe that are

of interest. We use the notation ===⇒
slice

to indicate the application of the method slice on the

EIN operator.

Definition 4 (OptSlice). As a reminder, a sliced field (Definition 3 on page 22) is a field

term that has at least one constant index (c). The components are distinct (i.e., F01 6= F11)

and independent of each other but they depend on the same source data. A OptSlice term

wraps a probe operator around a sliced field term and has the following structure: ∂
∂xβ
�Fcα(x).

We scan the the body of an EIN operator to identify OptSlice terms (Definition 4 on

page 55). The slice method creates the following decomposition of an EIN operator.

g = λF

〈
∂

∂xβ
� Fcα(x)

〉
α̂β̂

(f) ===⇒
slice

g = λT
〈
Tcαβ

〉
α̂β̂

(t)

t = λF
〈

∂
∂xβ
� Fµ(x)

〉
µ̂β̂

(f)

where |α|+ 1 = |µ|

and ∀i ∈ |cα| if (i == 0)

then u[i] = n0(described by field type)

else u[i] = α[i− 1]

We create a new EIN operator (t) to represent unsliced versions of the field term. The field

term Fcα is changed by converting the constant index to a variable index Fµ(x). The slice

operation is pushed to a tensor term (Tcαβ). The new operator g samples a tensor, created

as a result of the probe operator.

55

Example Consider the determinant of a second-order tensor field m

f i e ld#k (3) [3 , 3]m;
tensor [3] p ;
tensor [3 , 3] t = m(p) ;
tensor [] g = det (m) (p) ;

transformed to EIN as

surface
=====⇒
norm

t = λ(F, T)
〈
Fij(T)

〉
îĵ

(m, p)

g = λ(F, T)

〈∑
ijk
EijkF0i(T)F1j(T)F2k(T)

〉
îĵ

(m, p)
(3.9)

The compiler creates two EIN operators to represent the computation. EIN operator t can

not be further reduced. EIN operator g is more complicated and can be split into multiple

pieces. The Split method creates EIN operators for each field term (F0i, F1j , F2k).

===⇒
split

t = λ(F, T)
〈
Fij(T)

〉
îĵ

(m, p)

g = λ(A,B,C)

〈∑
ijk
EijkAiBjCk

〉
(t0, t1, t2)

t0 = λ(F, T) 〈F0i(T)〉̂
i

(m, p)

t1 = λ(F, T) 〈F1i(T)〉̂
i

(m, p)

t2 = λ(F, T) 〈F2i(T)〉̂
i

(m, p)

(3.10)

A naive implementation of EIN would stop here. The individual terms (Fij , F0i, F1i, F2i) are

unique and could not be further reduced with Slice. In the next phase of the compiler, each

field term (Fij , F0i, F1i, F2i) is transformed to lower-level constructs that will have many

common computations.

Our goal is to reduce the number of fields terms that need to be transformed. To do

56

that, we apply the split method. Slice defines the following operators (with some rewriting).

===⇒
slice

g = λ(T)

〈∑
ijk
EijkT0iT1jT2k

〉
îĵ

(t)

t = λ(F, T)
〈
Fij(T)

〉
îĵ

(m, p)

There is only one field term Fij instead of four. This one field term does the bulk of field

computations just once. Consider another example, if the program computed the Hessian of

the determinant

tensor [3 , 3] u = ∇⊗∇ det (m) ;

then the following ten EIN operators are created:

surface
=====⇒
split

//Defined in Equation 3.10

t, t0, t1, and t2 =. . .

//First derivative

g0 = λP
〈

∂
∂xj
� F0i(T)

〉
îĵ

(m, p)

g1 = λP
〈

∂
∂xj
� F1i(T)

〉
îĵ

(m, p)

g2 = λP
〈

∂
∂xj
� F2i(T)

〉
îĵ

(m, p)

//Second derivative

h0 = λP
〈

∂
∂xjk

� F0i(T)
〉
îĵk̂

(m, p)

h1 = λP
〈

∂
∂xjk

� F1i(T)
〉
îĵk̂

(m, p)

h2 = λP
〈

∂
∂xjk

� F2i(T)
〉
îĵk̂

(m, p)

(3.11)

57

Our method reduces the ten field terms down to three unique field terms (one for each level

of differentiation).

===⇒
slice

t = λ(F, T)
〈
Fij(T)

〉
îĵ

(m, p)

g = λ(F, T)
〈

∂
∂xk
� Fij(T)

〉
îĵk̂

(m, p)

h = λ(F, T)
〈

∂
∂xkl
� Fij(T)

〉
îĵk̂l̂

(m, p)

The difference can be more significant when considering more complicated tensor com-

putations. The slice method creates a smaller representation of the computation while

maintaining mathematical meaning.

Slice and Split comparison The goal of Split is to find common computations embedded

in an EIN expression. The goal of slice is to find a specific type of computation and create a

general EIN operator (that can be sampled). In other words, Split reduces expressions that

are exactly the same and slice reduces terms that are not the same but create many of the

same basic operators later on. The Split method is beneficial to any program that creates

redundant terms. Slice is only helpful to programs that create sliced tensor fields in an EIN

body (such as the determinant operator).

3.3.5 Examples

In the following section, we provide some examples of the methods used in this chapter.

The first example illustrates an index-based simplification. The second example illustrates

the implementation steps and by chance it reduces a tensor computation and finds a tensor

identity. The third example applies the compilation methods to a computation created at a

later stage of the compiler.

Index-based optimization Inlining exposes the opportunity for other optimizations. The

compiler takes advantage of index-base optimizations. The trace of the Hessian (Tr(∇⊗∇ϕ))

58

is mapped to two EIN expressions in High-IR as

==⇒
init

t1 = λ(F)
〈

∂
∂xjk

F
〉
ĵk̂

(ϕ)

t2 = λ(T)

〈∑
i
Tii

〉
(t1)

During substitution the outer indices for t1 (j, k) are mapped to indices in term Tii.

===⇒
subst

t2 = λ(F)

〈∑
i

∂
∂xii

F

〉
(ϕ)

where j is mapped to i and k is mapped to i

When these operations are applied, the result will be the Laplacian (typically noted in math

textbooks with 4).

Tensor Identity The following is an example of a tensor term being rewritten using our

methods and revealing a tensor identity. Consider the expression (a×b) · (c×d), which is

represented with a single EIN operator as

surface
=====⇒
subst

t = λ(A,B,C,D)〈e〉(a, b, c, d)

e =
∑
i

((
∑
jk
Eijkajbk)(

∑
lm
Eilmcldm))

The body is normalized using the rewrites in Equation 3.5 and Equation 3.6 and then unused

indices are removed to produce:

e −−−→
rule

∗∑
jk

((AjBkCjDk)− (AjBkCkDj))

The Shift method moves the invariant terms outside of the outer loop.

e −−−→
shift

(
∑
j

(AjCj)
∑
k

(BkDk))− (
∑
j

(AjDj)
∑
k

(BkCk))

59

The Split method then creates four simple EIN operators.

===⇒
split

w = λ(A,C)

〈∑
i

(AiCi)

〉
(a, c)

x = λ(B,D)

〈∑
i

(BiDi)

〉
(b, d)

y = λ(A,D)

〈∑
i

(AiDi)

〉
(a, d)

z = λ(B,C)

〈∑
i

(BiCi)

〉
(b, c)

t = λ(W,X, Y, Z)〈(W ∗X)− (Y ∗ Z)〉(w, x, y, z)

As a result the compiler has discovered the tensor identity:

(a× b) · (c× d) −→direct−style (a · c) ∗ (b · d)− (a · d) ∗ (b · c).

Post field reconstruction The next phase of the compiler translates EIN operators into

scalar and vector operators. The way a computation is written using the EIN syntax can

determine how it is translated. A bulky EIN operator might translate entirely into scalar

operators, while a simple one is easier to translate to vector operators. In the following we

show three different ways to represent a computation in EIN and measure the compile and

run times of each representation.

Consider the transformation out = P ·t0· P and probed field expression e from Equa-

tion 2.5. The following three equations defines three ways to represent this computation.

The first approach is by representing the entire computation in one EIN operator

=⇒ out = λ(v, h, n, f, P)

〈
1∑

kl=0
e[ijkl/klmn]PikPjl

〉
îĵ

(img, bspln3, n, f,P) (3.12)

The second approach applies Split to Equation 3.12 and as a result creates two EIN operators.

60

===⇒
split

t0 = λ(v, h, n, f)
〈
e[ijkl/ijkl]

〉
îĵ

(img, bspln3, n, f)

out = λ(T, P)〈e2〉̂iĵ(t0, P)

e2 =
2∑

kl=0
TklPikPjl

(3.13)

The third approach applies Shift to EIN expression e2 before splitting

e2 =
2∑

kl=0

TklPikPjl −−−→
shift

2∑
k=0

Pik

2∑
l=0

TklPjl

and as a result Equation 3.13 becomes three EIN operators.

===⇒
split

t0 = λ(v, h, n, f)
〈
e[ijkl/ijkl]

〉
îĵ

(img, bspln3, n, f)

t1 = λ(T, P)

〈
1∑

k=0
TikPjk

〉
îĵ

(t0, P)

out = λ(T, P)

〈
1∑

k=0
PikTkj

〉
îĵ

(t1, P)

(3.14)

Equation 3.14 uses simple terms to represent the computation. This is easier for the compiler

to analyze. As a result, the representation also compiles and runs faster (Section 3.4.3).

3.4 Benchmarks

Implementing the EIN IR has caused many technical and compilation challenges. Addressing

those challenges has enabled a richer language that can be used to support richer visualization

programs (Section 7.2). It is useful to evaluate the impact of our work. In this section, we

present three sets of benchmark results. The first is an evaluation of implementing EIN over

the original direct-style compiler. The second measures the effect of the techniques described

in Section 3.3. The third is a comparison of using the higher-order features of the language

versus equivalent first-order implementations.

61

3.4.1 Experimental Framework

The benchmarks were run on an Apple iMac with a 2.7 GHz Intel core i5 processor, 8GB

memory, and OS X Yosemite (10.10.5) operating system. Each benchmark was run 10 times

and we report the average time in seconds.

The benchmarks are presented in the figures in order of increasing mathematical com-

plexity. Some of the visualization concepts that inspired the benchmarks are described in

Section 7.2. Benchmarks “illust-vr,” “lic2d,” “Mandelbrot,”“ridge3d,” and “vr-lite-cam”

are small examples that could run on the original compiler [18]. The benchmarks “mode,”

“canny,” and “moe” are used to create figures in previous work [44]. “Mode” finds lines of

degeneracy in a stress tensor field revealed by volume rendering isosurface of tensor mode;

“Canny-edges” computes Canny Edges; and “Moe” volume renders isocontours found using

Canny Edges [12].

The benchmarks “dec-crest,” “dec-grad,” “rsvr,” and“mode-rig’ were not featured in

previous work, because they previously could not compile. Programs “dec-crest” and “dec-

grad” are approximations to illustrate the crest lines on a dodecahedron. Programs “mode-

rig” and “rsvr” are both programs created to measure ridge lines. The micro-benchmarks

“det-grad,”“det-hess,” and “det-trig” compute a single property: the gradient, hessian, and

various functions computed on the determinant of a field. Unlike the previous benchmarks,

these program are not visualization programs. Their run times are negligible and are omitted.

3.4.2 Impact on implementing Diderot

Our experiments consist of eighteen benchmarks run on three versions of the compiler. The

first is the original direct-style compiler that does not use EIN. The second and third include

the design and implementation techniques included in this chapter, but the second version

imposes restrictions that are meant to reflect a more naive implementation of the design. We

measure the time it takes for the programs to compile. For the programs that compile on at

62

0.1

1

10

100

1000
lic
2d

m
an
de
lb
ro
t

rid
ge
3d

vr
Dli
te
Dc
am

ill
us
tDv

r

ca
nn

yD
fir
st

m
oe
Dfi
rs
t

m
od

eD
fir
st

ca
nn

yD
hi
gh

m
oe
Dh
ig
h

m
od

eD
hi
gh

de
tDg

ra
d

de
tDh

es
s

de
tDt
rig

de
cD
gr
ad

de
cD
he
ss

rs
vr

m
od

eD
rig

Se
co
nd

s((
lo
g(
sc
al
e)

Programs

Design(of(EIN:(Compile(Times
Original- EIN-w/o-CSE EIN-w-CSE

1

10

100

lic
2d

m
an
de
lb
ro
t

rid
ge
3d

vr
Dli
te
Dc
am

ill
us
tDv

r

ca
nn

yD
fir
st

m
oe
Dfi
rs
t

m
od

eD
fir
st

ca
nn

yD
hi
gh

m
oe
Dh
ig
h

m
od

eD
hi
gh

Ti
m
e(
(lo

g(
s)

Programs

Design(of(EIN:(Run(Times
Original- EIN-w/o-CSE EIN-w-CSE

D10
10
30
50
70
90

110
130
150

lic
2d

m
an
de
lb
ro
t

rid
ge
3d

vr
Dli
te
Dc
am

ill
us
tDv

r

ca
nn

yD
fir
st

m
oe
Dfi
rs
t

m
od

eD
fir
st

ca
nn

yD
hi
gh

m
oe
Dh
ig
h

m
od

eD
hi
gh

Ti
m
e(
(se

co
nd

s)

Programs

Design(of(EIN:(Run(Times
Original- EIN-w/o-CSE EIN-w-CSEnot supported

size issue

D10
10
30
50
70
90

110
130
150

lic
2d

m
an
de
lb
ro
t

rid
ge
3d

vr
Dli
te
Dc
am

ill
us
tDv

r

ca
nn

yD
fir
st

m
oe
Dfi
rs
t

m
od

eD
fir
st

ca
nn

yD
hi
gh

m
oe
Dh
ig
h

m
od

eD
hi
gh

Ti
m
e(
(se

co
nd

s)

Programs

Design(of(EIN:(Run(Times
Original- EIN-w/o-CSE EIN-w-CSE

not supported
size issue

Figure 3.3: The “Original”version of the compiler does not use the EIN IR. “EIN with
restrictions” is the more naive implementation of EIN.“EIN ” is the baseline with the EIN
IR with full optimizations applied. Fully implementing EIN allows more programs to compile
than previously possible.

63

least two versions, we also measure the run times. We use a hexagon symbol to indicate that

the compiler does not have the feature support to run this program. We use a star symbol

to indicate a compiler crash.

Figure 3.3 compares the application of EIN with the “original compiler”. The “original

compiler” did not have the feature support required to run many of the benchmarks. The

development of EIN has affected the type and complexity of programs that we can write in

Diderot.

Figure 3.3 compares the application of EIN with full or restricted level of optimizations.

We can summarize that fully implementing the optimizations enables Diderot to compile

programs that otherwise cannot compile. At worst EIN with CSE is comparable to original

compiler, but mostly faster, and is more expressive

3.4.3 The Effect of Compiler Settings

As we have discussed previously, a näıve application of our transformations causes unaccept-

able space blowup. To address the space problem we developed techniques to reduce the

size of the IR resulting from lowering passes. While their implementation might allow more

complicated Diderot programs to be compiled, we want to evaluate the cost and benefit they

might impose on the programs that could already compile. In the following, we evaluate the

effectiveness of these techniques together and isolated at different steps in the compiler.

Application to higher-order constructs Techniques Split and Slice are effective at re-

ducing the size of the program by finding common subexpressions or reducing field terms.

Figure 3.4 measures the effectiveness of applying Split and Slice on a high-IR EIN operator.

The Slice technique is necessary to compile three of the thirteen benchmarks. Split is the

most consequential technique. Limiting the application of the method stops five of the pro-

grams from being able to compile. Techniques Split and Slice do not add take a considerably

longer time to run.

64

1

10

100

1000
ca
nn

y5
fir
st

m
oe
5fi
rs
t

m
od

e5
fir
st

ca
nn

y5
hi
gh

m
oe
5h
ig
h

m
od

e5
hi
gh

de
t5g

ra
d

de
t5h

es
s

de
t5t
rig

de
c5
gr
ad

de
c5
he
ss

rs
vr

m
od

e5
rig

Ti
m
e%
(lo

g%
s)

Programs

Slice%and%Split:%Compile%Times
Minimal(Split No(slice(EIN

0.1

1

10

100

ca
nn

y5
fir
st

m
oe
5fi
rs
t

m
od

e5
fir
st

ca
nn

y5
hi
gh

m
oe
5h
ig
h

m
od

e5
hi
gh

de
c5
gr
ad

Ti
m
e%
(lo

g%
s)

Programs

Slice%and%Split:%Run%Times
Minimal(split No(slice(EIN

size issue

1

10

100

1000

ca
nn

y5
fir
st

m
oe
5fi
rs
t

m
od

e5
fir
st

ca
nn

y5
hi
gh

m
oe
5h
ig
h

m
od

e5
hi
gh

de
t5g

ra
d

de
t5h

es
s

de
t5t
rig

de
c5
gr
ad

de
c5
he
ss

rs
vr

m
od

e5
rig

Ti
m
e%
(lo

g%
s)

Programs

Slice%and%Split:%Compile%Times
Minimal(Split No(slice(EIN

0.1

1

10

100

ca
nn

y5
fir
st

m
oe
5fi
rs
t

m
od

e5
fir
st

ca
nn

y5
hi
gh

m
oe
5h
ig
h

m
od

e5
hi
gh

de
c5
gr
ad

Ti
m
e%
(lo

g%
s)

Programs

Slice%and%Split:%Run%Times
Minimal(split No(slice(EIN

size issue

Figure 3.4: Compile and run time measurements when implementing Slice and Split on
High-IR. Doing no amount of splitting prevents most of these programs from compiling so
instead we measure its impact by limiting it, “Minimal Split”. EIN is the baseline with both
Split and Slice enabled.

65

1

10

100

1000

10000

1 2 3 4 5 6

lo
g$(
Si
ze
/1
00

0)

Phase

Sizeofrsvr$program
Restricted Minimal.Split No.Shift No.Slice EIN

1

10

100

1000

10000

1 2 3 4 5 6

lo
g$(
Si
ze
/1
00

0)

Phase

Sizeofdec9grad$program
Restricted Minimal.Split No.Shift EIN/No.Slice

1

10

100

1000

10000

1 2 3 4 5 6

lo
g$(
Si
ze
/1
00

0)

Phase

Sizeofrsvr$program
Restricted Minimal.Split No.Shift No.Slice EIN

1

10

100

1000

10000

1 2 3 4 5 6

lo
g$(
Si
ze
/1
00

0)

Phase

Sizeofdec9grad$program
Restricted Minimal.Split No.Shift EIN/No.Slice

Figure 3.5: The graphs shows the size of the dec-grad (left) and rsvr (right) programs at
different phases in the compiler. “EIN” is the baseline with full optimizations.

Size Reduction To take a closer look at how the optimizations are affecting the size of

programs, we measure the size of a Diderot program at six different phases of the compiler

under five different settings. Figure 3.5 illustrates the size of two programs at different phases

of the compiler. Each setting has a set of optimizations turned on, off, or restricted. Missing

data or a line that terminates before Phase 6 indicates that the program stopped during

compilation.

Some programs depend on a combination of the optimizations to compile. The program

“rsvr” stops as early as Phase 4 without Slice and unless all the optimizations are imple-

mented program “rsvr” cannot compile. Program “dec-grad” is less demanding. It can

compile without Shift and Slice but it stops when Split is not fully applied.

Application to lower-order constructs We measured the effect of optimizations at a

later phase of the compiler. Section 3.3.5 demonstrates the transformation of differentiation

indices in a reconstructed field term. We can write this computation in three different

ways: in place Equation 3.12, by applying Split Equation 3.13, or by applying Shift and

Split together Equation 3.14. Figure 3.6 measures the impact of these optimizations on this

computation.

The implementation of the techniques directly affect compile time. Applying optimiza-

tions Shift and Split together offers a consistent speed-up on the execution time and compile

66

1

10

100

1000

ca
nn

y5
fir
st

m
oe
5fi
rs
t

m
od

e5
fir
st

ca
nn

y5
hi
gh

m
oe
5h
ig
h

m
od

e5
hi
gh

de
t5g

ra
d

de
t5h

es
s

de
t5t
rig

de
c5
gr
ad

de
c5
he
ss

rs
vr

m
od

e5
rig

Ti
m
e%
(lo

g%
s)

Programs

Shift%and%Split:%Compile%Times
No)Split)and)No)Shift No)Shift EIN

0.1

1

10

100

ca
nn

y5
fir
st

m
oe
5fi
rs
t

m
od

e5
fir
st

ca
nn

y5
hi
gh

m
oe
5h
ig
h

m
od

e5
hi
gh

de
c5
gr
ad

de
c5
he
ss

rs
vr

m
od

e5
rig

Ti
m
e%
(lo

g%
s)

Programs

Shift%and%Split:%Run%Times
No)Split)and)No)Shift No)Shift EIN

size issue

1

10

100

1000
ca
nn

y5
fir
st

m
oe
5fi
rs
t

m
od

e5
fir
st

ca
nn

y5
hi
gh

m
oe
5h
ig
h

m
od

e5
hi
gh

de
t5g

ra
d

de
t5h

es
s

de
t5t
rig

de
c5
gr
ad

de
c5
he
ss

rs
vr

m
od

e5
rig

Ti
m
e%
(lo

g%
s)

Programs

Shift%and%Split:%Compile%Times
No)Split)and)No)Shift No)Shift EIN

0.1

1

10

100

ca
nn

y5
fir
st

m
oe
5fi
rs
t

m
od

e5
fir
st

ca
nn

y5
hi
gh

m
oe
5h
ig
h

m
od

e5
hi
gh

de
c5
gr
ad

de
c5
he
ss

rs
vr

m
od

e5
rig

Ti
m
e%
(lo

g%
s)

Programs

Shift%and%Split:%Run%Times
No)Split)and)No)Shift No)Shift EIN

size issue

Figure 3.6: Compile and run time measurements for implementing Shift and Split techniques
on reconstructed field terms. EIN baseline includes the application of both Shift and Split .

67

time for all thirteen benchmarks. Five programs experienced at least a 20-times improve-

ment in compile time speed-up and four of the benchmarks offered at least a 1.3 speed up

on execution time while the rest saw no change in the execution time.

1

10

100

ca
nn

y

m
oe

m
od

e

Ti
m
e%
(lo

g%
s)

Programs

First%vs.%High%order:%Compile%Times
First,order.on.Original First,order.on.Ein High,order.on.Ein

1

10

100

ca
nn

y

m
oe

m
od

e

Ti
m
e%
(lo

g%
s)

Programs

First%vs.%High%order%program:%RunTimes
First,order.on.Original First,order.on.Ein High,order.on.Ein

size issue
not supported

1

10

100

ca
nn

y

m
oe

m
od

e

Ti
m
e%
(lo

g%
s)

Programs

First%vs.%High%order:%Compile%Times
First,order.on.Original First,order.on.Ein High,order.on.Ein

1

10

100

ca
nn

y

m
oe

m
od

e

Ti
m
e%
(lo

g%
s)

Programs

First%vs.%High%order%program:%RunTimes
First,order.on.Original First,order.on.Ein High,order.on.Ein

size issue
not supported

Figure 3.7: A comparison of hand-derived first-order programs with their high-order equiva-
lent. The original compiler can only compile the first-order versions, while the compiler with
EIN can compile both versions.

3.4.4 First-Order versus Higher-Order

In this experiment we wrote two version of three programs. For each program the higher-

order version of the program lifted tensor operators to the field level, while first-order versions

68

only uses tensor operators on tensors. The higher-order version of the program are easier

and faster to write. Their first-order counterparts require more lines of code and require that

the user do tricky derivations by hand, which is time-consuming, tedious, and error-prone.

Figure 3.7 reports the compile and run time for two versions of the programs.

This experiment actually tests two things: (1) the original compiler versus the EIN

compiler and (2) comparing the first-order and higher-order versions of a program using the

same compiler. The first order programs compiled and ran faster on EIN than on the original

compiler. The first-order program “mode-vr” slightly compiled faster than the high-order

counterpart but the rest of the programs are comparable. Ultimately, it is more feasible to

skip the hassle of writing first-order versions of programs and use the higher-order versions

on the EIN compiler.

69

CHAPTER 4

PROPERTIES OF NORMALIZATION

The Normalization transformation (Section 3.2.2) plays a key rôle in the compilation of

Diderot programs. The transformation is complicated and it would be easy for a bug to

go undetected. To increase our confidence in normalization part of the compiler we provide

the following formal analysis. We define a type system for EIN operators in Section 4.1 and

provide evaluation rules in Section 4.2. We prove that normalization preserves types. We

also prove that the rewrite system is terminating in Section 4.3. We include full proofs in

the appendix.

4.1 Type Preservation

4.1.1 Typing EIN Operators

At the level of the SSA representation, we have types θ ∈ Type that correspond to the

surface-level types:

θ ::= Ten[d1, . . . , dn] tensors

| Fld(d)[d1, . . . , dn] fields

| Img(d)[d1, . . . , dn] images

| Krn kernels

An EIN operator λ x̄〈e〉σ can then be given a function type (θ1 × · · · × θn)→ θ, where θ is

either Ten[d1, . . . , dn] or Fld(d)[d1, . . . , dn] and σ is 1 < i1 < d1, . . . , 1 < in < dn. The

EIN expression (e) is the body of the operator, cannot be given a type θ, however since it

represents a computation indexed by σ. Thus the type system for EIN expressions must

track the index space as part of the context.

70

[TYJUD1]
Γ(T) = Ten[d1, . . . , dn] |α| = n σ ` α < [d1, . . . dn]

Γ, σ ` Tα : (σ)T
Γ(F) = Fld(d)[d1, . . . , dn] |α| = n σ ` α < [d1, . . . dn]

Γ, σ ` Fα : (σ)Fd

[TYJUD2]

Γ(V) = Img(d)[d1, . . . , dn] Γ(H) = Krn
|αβ| = n σ ` αβ < [d1, . . . dn]

Γ, σ ` Vα ~Hβ : (σ)Fd

[TYJUD3]
i 6∈ dom(σ) σ′ = σ[i 7→ (1, n)] Γ, σ′ ` e : (σ′)τ0

Γ, σ `
n∑
i=1

e : (σ)τ0

[TYJUD4]
σ(i) = d σ′ = σ \ i Γ, σ′ ` e : (σ′)Fd

Γ, σ ` ∂

∂xi
e : (σ)Fd

[TYJUD5]
i, j ∈ dom(σ)

Γ, σ ` δij : (σ)T
Γ, σ ` ok

Γ, σ ` δ·δ· : (σ)T

[TYJUD5]
σ′ = σ[j 7→ (1, d)]/ i Γ, σ′ ` e : (σ′)τ0

Γ, σ ` (δij ∗ e) : (σ)τ0

[TYJUD6]
∀i ∈ α.i ∈ dom(σ)

Γ, σ ` Eα : (σ)T Γ, σ ` EijkEilm : (σ)T

Γ, σ ` e : τ

Γ, σ ` (Eα ∗ e) : τ

Figure 4.1: Typing Rules for each EIN expression.

71

[TYJUD7]

Γ, σ ` δij : τ
Γ, σ ` x : Ten[d]

Γ, σ ` δij@x : τ

Γ, σ ` Eα : τ
Γ, σ ` x : Ten[d]

Γ, σ ` Eα@x : τ

Γ, σ ` e : (σ)Fd
Γ, σ ` x : Ten[d]

Γ, σ ` e@x : (σ)T

[TYJUD8]
Γ, σ ` e : (σ)T

Γ, σ ` liftd(e) : (σ)Fd

[TYJUD9]
Γ, σ ` e : ()τ0 �1 ∈ {√,−, κ, exp, (·)n}

Γ, σ ` �1(e) : ()τ0

[TYJUD10]
Γ, σ ` e1 : τ Γ, σ ` e2 : τ �2 ∈ {+,−}

Γ, σ ` (e1 �2 e2) : τ

Γ, σ ` e : τ

Γ, σ ` −e : τ

[TYJUD11]
Γ, σ ` e1 : τ Γ, σ ` e2 : τ

Γ, σ ` (e1 ∗ e2) : τ

[TYJUD12]
Γ, σ ` e1 : (σ)τ0 Γ, σ ` e2 : ()τ0

Γ, σ ` e1

e2
: (σ)τ0

Figure 4.2: Typing Rules for each EIN expression.

We define the syntax of indexed EIN-expression types as

τ0 ::= T | Fd

τ ::= (σ)τ0

where (σ)T is the type of indexed tensors and (σ)Fd is the type of indexed d-dimensional

fields. We define our typing contexts as Γ, σ ∈ (Var
fin→ τ)∗× (IndexVar

fin→ (Z×Z))∗. The

typing context Γ, σ includes both the index map and an assignment of types to non-index

variables.

With Γ we key the map with a variable. The notation

Γ(V) = Img(d)[d1, . . . , dn]

indicates that we can look up parameter id V in Γ and find the resulting type.

We first introduced σ in Section 2.1. We key the map with an index σ ∈ (IndexVar
fin→

72

(Z × Z))∗. To recall, the notation i : n represents the upper boundary 1 < i < n. We use

notation

σ(i) = n

to indicate that we can look up variable (i) in σ and the upper bound of the variable is n. It

is helpful to view σ as defining a finite map from index variables to the size of their range.

To indicate the addition of a binding we use “σ = σ′[i 7→ (1, n)]”. The domain of σ is a

sequence, which has to be disjoint (dom(σ) = {i1, . . . , in}). We use i 6∈ dom(σ) to show that

i is not in σ. We use “σ = σ′ \ i” to indicate that i is not in σ′ but it is in σ.

We state ` Γ, σ ok to show that the environment is okay and the following apply

• with σ we key the map with an index and index variables do not repeat ∈ dom(σ).

• in Γ we key the map with a unique variable parameter.

We define judgement form Γ, σ ` e : τ to mean that if the environment is okay then EIN

expression e has type τ .

We define the judgement σ ` α < [d1, . . . dn] as a shorthand for the following judgement.

∀µi ∈ α, either µi ∈ N and 1 ≤ µi ≤ di or σ(µi) = di

σ ` α < [d1, . . . dn]

Recall that an EIN index µ is either a constant (µ ∈ N) or a variable index µ ∈ dom(σ)

We present a few typing rules next and refer the reader to Figure 4.1 and Figure 4.2 for

a complete list of the rules. First consider the base case of a tensor variable Tα; the typing

rule is

Γ, σ(Tα) = Ten[d1, . . . , dn] |α| = n σ ` α < [d1, . . . dn]

Γ, σ ` Tα : (σ)T

The antecedents of this rule state that Tα has a type that is compatible with both the

multi-index α and the index map σ. A similar rule applies for field variables. The rule for

73

convolution yields an indexed field type.

Γ(V) = Img(d)[d1, . . . , dn] Γ(H) = Krn

|αβ| = n σ ` αβ < [d1, . . . dn]

Γ, σ ` Vα ~Hβ : (σ)Fd

Note that the index space covers both the shape of the image’s range and the differenti-

ation indices. Consider the following typing judgement for the EIN summation form:

i 6∈ dom(σ) σ′ = σ[i 7→ (1, n)] Γ, σ′ ` e : (σ′)T

Γ, σ `
n∑
i=1

e : (σ)T

Here we extend the index map with i : n when checking the body of the summation e. This

rule reflects the fact that summation contracts the expression. We use a similar rule for

differentiation.

σ(i) = d σ′ = σ \ i Γ, σ′ ` e : (σ′)Fd

Γ, σ ` ∂

∂xi
e : (σ)Fd

We can look up index i in σ with σ(i) = d which indicates 1 ≤ i ≤ d. The term σ′ = σ \ i

indicates that the index map σ′ has all the same index bindings as σ except i.

The term δij does not change the context.

i, j ∈ dom(σ)

Γ, σ ` δij : (σ)T

Γ, σ ` ok

Γ, σ ` δ·δ· : (σ)T

The application of a Kronecker delta function δij adds index j to the context and removes

index i.

σ′ = σ[j 7→ (1, d)]/ i Γ, σ′ ` e : (σ′)τ0

Γ, σ ` (δij ∗ e) : (σ)τ0

74

Similarly, the E term by itself does not change the context.

∀i ∈ α. i ∈ dom(σ)

Γ, σ ` Eα : (σ)T
Γ, σ ` EijkEilm : (σ)T

When applying E to another term we preserve that term’s type.

Γ, σ ` e : τ

Γ, σ ` (Eα ∗ e) : τ

The Probe operation probes an expression and a tensor Ten[d].

Γ, σ ` δij : τ

Γ, σ ` x : Ten[d]

Γ, σ ` δij@x : τ

Γ, σ ` Eα : τ

Γ, σ ` x : Ten[d]

Γ, σ ` Eα@x : τ

Γ, σ ` e : (σ)Fd

Γ, σ ` x : Ten[d]

Γ, σ ` e@x : (σ)T

Consider lifting a tensor term to the field level:

Γ, σ ` e : (σ)T

Γ, σ ` liftd(e) : (σ)Fd

The sub-term e has a tensor type (σ)T but the lifted term liftd(e) has a field type (σ)Fd. The

rest of the judgements are quite straightforward. Some unary operators {√,−, κ, exp, (·)n}

can only be applied to scalar valued terms such as reals and scalar fields.

Γ, σ ` e : ()τ0 �1 ∈ {√,−, κ, exp, (·)n}

Γ, σ ` �1(e) : ()τ0

75

Γ, σ ` Tα : τ 7→ τ = (σ)T
Γ, σ ` Fα : τ 7→ τ = (σ)Fd

. . .

Figure 4.3: The inversion lemma makes inferences based on a structural type judgements.
Given a conclusion (left), we can infer something about the type τ (right).

The subexpressions in an addition or subtraction expression have the same type as the result.

[TYJUD10]
Γ, σ ` e1 : τ Γ, σ ` e2 : τ �2 ∈ {+,−}

Γ, σ ` (e1 �2 e2) : τ

The full set of typing judgements and corresponding inversion lemmas are contained in

Figure 4.1, Figure 4.2, and Figure 4.3, respectively.

σ = i1 : d1, . . . , im : dm(σ, {xi 7→ θi | 1 ≤ i ≤ n}) ` e : (σ)T

` λ (x1 : θ1, . . . , xn : θ1)〈e〉σ : (θ1 × · · · × θn)→ Ten[d1, . . . , dm]

4.1.2 Type preservation Theorem

Given the type system for EIN expressions presented above, we prove that types are preserved

by normalization.

Theorem 4.1.1 (Type preservation). If ` Γ, σ ok, Γ, σ ` e : τ , and e −−−→
rule

e′, then

Γ, σ ` e′ : τ

Given a derivation d of the form e −−−→
rule

e′ we state T(d) as a shorthand for the claim

that the derivation preserves the type of the expression e. For each rewrite rule (e −−−→
rule

e′),

the structure of the left-hand-side (LHS) term determines the last typing rule(s) that apply

in the derivation of Γ, σ ` e : τ . We then apply a standard inversion lemma and derive the

type of the right-hand-side (RHS) of the rewrite. Provided below are key cases of the proof

(Section A.1).

76

R4 The rewrite rule (R4) has the form (
n∑
i=1

e1)@x −−−→
rule

n∑
i=1

(e1@x).

The left hand side of the rewrite rule is a tensor type because it is the result of a probe

operation. The LHS has the following type.

Γ, σ ` (
n∑
i=1

e1)@x :(σ)T

We want to show that the RHS has the same type.

Γ, σ `
n∑
i=1

(e1@x):(σ)T .

The type derivation for the LHS is the following structure.

Γ, σ[i 7→ (1, n)] ` e1 : (σ[i 7→ (1, n)])Fd[TYINV3]

Γ, σ ` (
n∑
i=1

(e1)) : (σ)Fd[TYINV7]

Γ, σ ` x : Ten[d]

Γ, σ ` (
n∑
i=1

(e1))@x : (σ)T

From that we can make the RHS derivations.

Given that Γ, σ ` e1 : (σ[i 7→ (1, n)])Fd

then Γ, σ ` e1@x : (σ[i 7→ (1, n)])T by [TYJUD7]

and Γ, σ `
n∑
i=1

(e1@x) : (σ)T by [TYJUD3]

T(R4) OK

R6 The rewrite rule (R6) has the form ∂
∂xi
� (e1 ∗ e2) −−−→

rule
e1(∂

∂xi
� e2) + e2(∂

∂xi
� e1).

The left hand side of the rewrite rule is a field type because it is the result of a field

operation. The LHS has the following type.

Γ, σ ` ∂
∂xi
� (e1 ∗ e2) :(σ)Fd

We want to show that the RHS has the same type.

Γ, σ ` e1
∂
∂xi
� e2 + e2

∂
∂xi
� e1:(σ)Fd.

The type derivation for the LHS is the following structure.

We use inversion to find the type for subexpressions e1 and e2.

77

Γ, σ \ i ` e1 e2 : (σ \ i)Fd, [TYINV11]

(Γ, σ \ i ` e1 ∗ e2 : (σ \ i)Fd[TYINV4]

Γ, σ ` ∂

∂xi:d
� (e1 ∗ e2) : (σ)Fd

From that we can make the RHS derivations.

Given that Γ, σ ` e1, e2 : (σ \ i)Fd

then Γ, σ ` ∂
∂xi
� (e1), ∂

∂xi
� (e2) : (σ)Fd by [TYJUD4],

Γ, σ ` e1 ∗ ∂
∂xi
� (e2), e2 ∗ ∂

∂xi
� (e1) : (σ)Fd by [TYJUD11] ,

and Γ, σ ` e1 ∗ ∂
∂xi
� (e2) + e2 ∗ ∂

∂xi
� (e1) : (σ)Fd by [TYJUD10].

T(R6) OK

R7 The rewrite rule (R7) has the form ∂
∂xi
� (e1e2) −−−→

rule

(∂
∂xi
�e1)e2−e1(∂

∂xi
�e2)

e22
. The left hand

side of the rewrite rule is a field type because it is the result of a field operation. The

LHS has the following type.

Γ, σ ` ∂
∂xi
� (e1e2) :(σ)Fd

We want to show that the RHS has the same type.

Γ, σ `
(∂
∂xi
�e1)e2−e1(∂

∂xi
�e2)

e22
:(σ)Fd.

The type derivation for the LHS is the following structure.

We use inversion to find the type for subexpressions e1 and e2.

Γ, σ \ i ` e1 : (σ \ i)Fd Γ, σ ` e2 : ()Fd, [TYINV12]

(Γ, σ \ i ` e1
e2

: (σ \ i)Fd[TYINV4]

Γ, σ ` ∂

∂xi:d
� (
e1

e2
) : (σ)Fd

From that we can make the RHS derivations.

We use a type judgement to get the type of the subexpressions (e2 ∗ e2) in the right

hand side of the rewrite rule.

Given that Γ, σ ` e2 : ()Fd then Γ, σ ` e2 ∗ e2 : ()Fd by [TYJUD11]

We use a type judgement to get the type of the subexpressions (∂
∂xi:d

� e2) in the right

hand side of the rewrite rule.

78

Given that Γ, σ ` e2 : ()Fd then Γ, σ[i 7→ (1, d)] ` ∂
∂xi:d

� e2 : (i)Fd by [TYJUD4]

Next, we use a type judgement to get the type of the subexpressions (e1 ∗ ∂
∂xi:d

� e2)

in the right hand side of the rewrite rule.

Given that Γ, σ[i 7→ (1, d)] ` ∂
∂xi:d

� e2 : (i)Fd

and Γ, σ ` e1 : (σ \ i)Fd

then Γ, σ ` e1
∂

∂xi:d
� e2 : (σ)Fd by [TYJUD11]

The same is done to find Γ, σ ` e2
∂

∂xi:d
� e1 : (σ)Fd

Given that Γ, σ ` ((∂
∂xi
� e1) ∗ e2), (e1 ∗ ∂

∂xi
� e2) : (σ)Fd

and Γ, σ ` e2 ∗ e2 : ()Fd

then Γ, σ ` ((∂
∂xi
� e1) ∗ e2)− (e1 ∗ ∂

∂xi
� e2) : (σ)Fd by [TYJUD10]

and Γ, σ `
(∂
∂xi
�e1)e2−e1(∂

∂xi
�e2)

e22
: (σ)Fd by [TYJUD12]

T(R7) OK

R10 The rewrite rule (R10) has the form ∂
∂xi
� (sine(e1)) −−−→

rule
(cosine(e1)) ∗ (∂

∂xi
� e1).

The left hand side of the rewrite rule is a field type because it is the result of a field

operation. The LHS has the following type.

Γ, σ ` ∂
∂xi
� (sine(e1)) :(i)Fd

We want to show that the RHS has the same type.

Γ, σ ` (cosine(e1)) ∗ (∂
∂xi
� e1):(i)Fd.

The type derivation for the LHS is the following structure.

We use inversion to find the type for subexpression e1.

Γ, σ ` e1 : ()Fd[TYINV9]

Γ, σ ` sine(e1) : ()Fd

Γ, σ[i 7→ (1, d)] ` ∂

∂xi
� (sine(e1)) : (i)Fd

From that we can make the RHS derivations.

Given that Γ, σ ` e1 : ()Fd

then Γ, σ[i 7→ (1, d)] ` ∂
∂xi
� e1 : (i)Fd by [TYJUD4],

79

Γ, σ ` cosine(e1) : ()Fd by [TYJUD9],

and Γ, σ[i 7→ (1, d)] ` (cosine(e1)) ∗ (∂
∂xi
� e1) : (i)Fd by [TYJUD11].

T(R10) OK

R27 The rewrite rule (R27) has the form

e1
e2
e3
−−−→
rule

e1
e2e3

.

We use inversion to find the type for subexpression e1, e2, e3.

The LHS has the following type.

Γ, σ `
e1
e2
e3

:(σ)τ0

We want to show that the RHS has the same type.

Γ, σ ` e1
e2e3

:(σ)τ0.

The type derivation for the LHS is the following structure.

Γ, σ ` e1 : (σ)τ0,Γ, σ ` e2 : ()τ0[TYINV12]

Γ, σ ` e1

e2
: (σ)τ0

e3 : ()τ0[TYINV12]

Γ, σ `
e1
e2

e3
: (σ)τ0

From that we can make the RHS derivations.

Given that Γ, σ ` e1 : (σ)T ,Γ, σ ` e2, e3 : ()T

then Γ, σ ` e2 ∗ e3 : ()T by [TYJUD11],

and Γ, σ ` e1
e2e3

: (σ)T by [TYJUD12].

T(R27 for τ = (σ)T)

T(R27) OK

R40 The rewrite rule (R40) has the form δij
∂
∂xj
� e1 −−−→

rule

∂
∂xi
� (e1).

We define a few variables σ2 = σ′/ ij , σj = σ′j/ i, and σi = σ′i/ j

We claim the type for the subexpression (e1).Γ, σ2 ` e1 : (σ2)Fd

We use a type judgement to get the type of the subexpression (∂
∂xj
� e1).

Given that Γ, σ2 ` e1 : (σ2)Fd then Γ, σj ` ∂
∂xj
� e1 : (σj)Fd by [TYJUD4]

We switch the indices when applying the δ·

so that Γ, σi ` δij(∂
∂xj
� e1) : (σi)Fd by [TYJUD5]

80

From that we can make the RHS derivations.

Given that Γ, σ2 ` e1 : (σ1)Fd then Γ, σi ` ∂
∂xi
� e1 : (σi)Fd by [TYJUD4]

T(R40) OK

R41 The rewrite rule (R41) has the form
∑

(se1) −−−→
rule

s
∑
e1.

We use inversion to find the type for subexpression s and e.

The LHS has the following type.

Γ, σ `∑(se1) :(σ)τ0

We want to show that the RHS has the same type.

Γ, σ ` s∑ e1:(σ)τ0.

The type derivation for the LHS is the following structure.

Γ, σ′ ` s : ()τ0, [TYINV11] Γ, σ′ ` e1 : (σ′)τ0

σ′ = σ[i 7→ (1, n)] Γ, σ′ ` s ∗ e1 : (σ′)τ0[TYINV3]

Γ, σ ` (
n∑
i=1

(s ∗ e)) : (σ)τ0

From that we can make the RHS derivations.

Given that Γ, σ ` e1 : (σ[i 7→ (1, n)])τ0 and Γ, σ ` s : ()τ0

then Γ, σ `
n∑
i=1

(e1) : (σ)τ0 by [TYJUD3]

and Γ, σ ` s ∗
n∑
i=1

(e1) : (σ)τ0 by [TYJUD11].

T(R41) OK

81

4.2 Value Preservation

4.2.1 Value Definition

To show that the rewriting system preserves the semantics of the program, we must give a

dynamic semantics to EIN expressions. We assume a set of values (v ∈ Value) that include

reals, permutation tensor, Kronecker delta functions, and tensors. Rather than define the

meaning of an expression to be a function from indices to values, we include a mapping ρ

from index variables to indices as part of the dynamic environment. We define a dynamic

environment to be Ψ, ρ ∈ (IndexVar
fin→ Z)×(Var

fin→ Value), where Value is the domain

of computational values (e.g., tensors, etc.). We define the meaning of an EIN expression

(for a subset of EIN expressions) using a big-step semantics Ψ, ρ ` e ⇓ v, where v is a value.

We describe values next and present evaluation rules Figure 4.5.

v ::= Real(n) n ∈ R
| Tensor[p · b1 . . . bn] index tensor argument p using basis values b
| Eα Reduces Levi-Civita tensor
| Kij Reduces Kronecker delta function

Figure 4.4: Value definitions (v) for a subset of EIN expression

We assume an orthonormal basis function. Inspired by Equation 1.6, we use bi to repre-

sent a basis vector inside a value expression. The value of a vector is defined as

Ψ, ρ ` Ti ⇓ Tensor[T · bi]

A term bi is created for each variable index i in the EIN expressions. The full tensor

judgement

Ψ, ρ ` Tα ⇓ Tensor[T · bα1 . . . bαn]

is used to represent an arbitrary sized tensor. The lift operation is used to lift a tensor to a

82

field. The value of a lifted term is the value of that term.

Ψ, ρ ` e ⇓ v

Ψ, ρ ` liftd(e) ⇓ v

We support arithmetic operations on and between u. The summation expression can be

evaluated with the following judgement:

Ψ, ρ ` e ⇓ v

Ψ, ρ `
n∑
i=1

e ⇓ Σni=1v

The summation operator is applied to the u. Generally, the judgement for unary operators

(�1 ∈ {Σ | √ | − | κ | exp | (·)n}) is as follows:

Ψ, ρ ` e1 ⇓ Real(r1)

Ψ, ρ ` �1e1 ⇓ Real(�1r1)

Ψ, ρ ` e1 ⇓ Tensor[e1 · b1]

Ψ, ρ ` �1e1 ⇓ �1(Tensor[e1 · b1])

The binary operators (�2 = + | − | ∗ | /) can be applied between u. .

Ψ, ρ ` e1 ⇓ Real(r1) Ψ, ρ ` e2 ⇓ Real(r2)

Ψ, ρ ` (e1 �2 e2) ⇓ Real(r1 �2 r2)

Ψ, ρ ` e1 ⇓ Tensor[e1 · b1] Ψ, ρ ` e2 ⇓ Tensor[e2 · b2]

Ψ, ρ ` (e1 �2 e2) ⇓ Tensor[e1 · b1]�2 Tensor[e2 · b2]

The epsilon and Kronecker delta functions are each reduced to a distinct permutation

value (Eα or Kij).

83

Ψ, ρ ` Eijk ⇓ Eijk Ψ, ρ ` δij ⇓ Kij

The value for Eijk is subject to Equation 1.1. The value for δij is subject to Equation 1.2,

Equation 1.3, and Equation 1.4.

We use notation v1 7→ v2 to indicate a value that is reduced or rewritten. We combine

permutation values with tensor values as

Kij ∗ Tensor[T · β] 7→ Tensor[T · bi · bj · β]. (4.1)

The full set of evaluation rules are given in Figure 4.5.

4.2.2 Value Preservation Theorem

Our correctness theorem states the rewrite rules do not change the value of an expression with

respect to a dynamic environment, assuming that the expression and dynamic environment

are both type-able in the same static environment and their value is defined.

Theorem 4.2.1 (Value Preservation). If ` Γ, σ ok, Γ, σ ` e : τ , Γ, σ ` Ψ, ρ ok, e −−−→
rule

e′,

and Ψ, ρ ` e ⇓ v, then Ψ, ρ ` e′ ⇓ v

Assume Ψ, ρ ` e ⇓ v and e −−−→
rule

e′, then the proof proceeds by case analysis of the rewrite

rules. Does not include rules that involve fields terms (values for fields are not defined). We

show the full proof in Section A.2 and select a few key examples below.

R24 The rewrite rule (R24) has the form e1 − 0 −−−→
rule

e1.

Claim e1 − 0 evaluates to v.

We need to define v.

Assume that e1 ⇓ v′

then Ψ, ρ ` e1 − 0 ⇓ v′ − Real(0) by [VALJUD1], [VALJUD5].

The value of v is v′ − Real(0).

84

[VALJUD1] Ψ, ρ ` c ⇓ Real(c)

[VALJUD2] Ψ, ρ ` Tα ⇓ Tensor[T · bα1 . . . bαn]

[VALJUD3]
Ψ, ρ ` e ⇓ v

Ψ, ρ ` liftd(e) ⇓ v

[VALJUD4] �1 ∈ {
∑ | √ | − | κ | exp | (·)n}

Ψ, ρ ` e1 ⇓ Real(r1)

Ψ, ρ ` �1e1 ⇓ Real(�1r1)

Ψ, ρ ` e1 ⇓ Tensor[e1 · b1]

Ψ, ρ ` �1e1 ⇓ �1Tensor[e1 · b1]

[VALJUD5] �2 = + | − | ∗ | /
Ψ, ρ ` e1 ⇓ Real(r1) Ψ, ρ ` e2 ⇓ Real(r2)

Ψ, ρ ` (e1 �2 e2) ⇓ Real(r1�2 r2)
Ψ, ρ ` e1 ⇓ Tensor[e1 · b1] Ψ, ρ ` e2 ⇓ Tensor[e2 · b2]

Ψ, ρ ` (e1 �2 e2) ⇓ Tensor[e1 · b1]�2 Tensor[e2 · b2]

Ψ, ρ ` e1 ⇓ v1 Ψ, ρ ` e2 ⇓ v2 �2 = + | − | ∗ | /
Ψ, ρ ` (e1 �2 e2)@x ⇓ Probe(v1)[x]�2 Probe(v2)[x]

[VALJUD6]
Ψ, ρ ` e ⇓ v

Ψ, ρ ` liftd(e)@e ⇓ v
Ψ, ρ ` δij ⇓ v

Ψ, ρ ` δij@e ⇓ v
Ψ, ρ ` Eα ⇓ v

Ψ, ρ ` Eα@e ⇓ v

[VALJUD7] Ψ, ρ ` δij ⇓ Kij Ψ, ρ ` Eα ⇓ Eα
Figure 4.5: Value Judgements for each EIN expression.

85

By using algebraic reasoning: v′ − Real(0) = v′.

Since e1 − 0 ⇓ v and e1 − 0 ⇓ v′ then v = v′

The last step leads to e1 ⇓ v

V(R24) OK

R32 The rewrite rule (R32) has the form
√

(e1) ∗
√

(e1) −−−→
rule

e1.

Claim
√

(e1) ∗
√

(e1) evaluates to v.

We need to define v.

Assume that e1 ⇓ v′

then Ψ, ρ ` √e1 ⇓
√

(v′) by [VALJUD4],

and Ψ, ρ ` √e1
√
e1 ⇓

√
v′
√
v′ by [VALJUD5]

The value of v is
√
v′ ∗
√
v′

By using algebraic reasoning to analyze v

v =
√
v′ ∗
√
v′ = v′ by reduction

The last step leads to e1 ⇓ v

V(R32) OK

R35 The rewrite rule (R35) has the form EijkEilm −−−→
rule

δjlδkm − δjmδkl.

Claim EijkEilm evaluates to v.

We need to define v.

Given that Eijk ⇓ Eijk and Epqr ⇓ Epqr then EijkEpqr ⇓ EijkEpqr.

The value of v is EijkEpqr.

Consider the product of two E expressions as

EijkEpqr −→

∣∣∣∣∣∣∣∣∣∣
Kip Kiq Kir

Kjp Kjq Kjr

Kkp Kkq Kkr

∣∣∣∣∣∣∣∣∣∣
−→ Kip(KjqKkr −KjrKkq) +Kiq(KjrKkp −KjpKkr) +Kir(KjpKkq −KjqKkp)

Rewriting so that there is a shared index (p = i):

−→ KiiKjqKkr−KiiKjrKkq+KiqKjrKki−KiqKjiKkr+KirKjiKkq−KirKjqKki
86

Applying Equation 1.4:

−→ 3KjqKkr − 3KjrKkq +KiqKjrKki −KiqKjiKkr +KirKjiKkq −KirKjqKki
Applying Equation 1.3:

−→ 3KjqKkr − 3KjrKkq +KkqKjr −KjqKkr +KjrKkq −KkrKjq
Reduces to:

−→ KjqKkr −KjrKkq
Match indices to rule (q −→ l and r −→ m)

−→ KjlKkm −KjmKkl
We need to show that δjlδkm − δjmδkl evaluates to v.

Given that Ψ, ρ ` δjl ⇓ Kjl δkm ⇓ Kkm δjm ⇓ Kjm δkl ⇓ Kkl by [VALJUD7]

then Ψ, ρ ` δjlδkm ⇓ KjlKkm δjmδkl ⇓ KjmKkl by [VALJUD5]

and Ψ, ρ ` δjlδkm − δjmδkl ⇓ KjlKkm −KjmKkl by [VALJUD5]

The last step leads to δjlδkm − δjmδkl ⇓ v

V(R35) OK

R36 The rewrite rule (R36) has the form δijTj −−−→
rule

Ti.

Claim δijTj evaluates to v.

We need to define v.

Given that Ψ, ρ ` Tj ⇓ Tensor[T · bj] by [VALJUD2]

and Ψ, ρ ` δij ⇓ Kij by [VALJUD7]

then Ψ, ρ ` δijTj ⇓ Tensor[T · bj · bi · bj] by Equation 4.1

The value of v is Tensor[T · bj · bi · bj]

By using algebraic reasoning to analyze v

v = Tensor[T · bi] by reducing value bj · bj using Equation 1.5

We need to show that Ti evaluates to v.

Lastly, Ψ, ρ ` Ti ⇓ Tensor[T · bi] by [VALJUD2]

The last step leads to Ti ⇓ v

V(R36) OK

87

4.3 Termination

In this section we make the following claims:

1. Rewriting terminates

2. if e −−−→
rule

∗ e’ and 6 ∃ e” such that e’ −−−→
rule

e”, then e’ ∈ N

We prove that the normalization rewriting will terminate and that the resulting term will

be in normal form.

Our approach uses the standard technique of defining a well-founded size metric [[e]] to

show that the rewrite rules always decrease the size of an expression. The size metric guar-

antees that the normalization process terminates (Section 4.3.1). We also want to guarantee

that normalization actually produces a normal-form. We define a subset of the EIN expres-

sions that are in normal form by a grammar Section 4.3.2. We then define the terminal

expressions as T = {e | 6 ∃e′ such that e −−−→
rule

e′}. The last section (Section 4.3.3) relates

normal form expressions and terminal expressions.

Table 4.3: We define a size metric [[•]] : e→ N inductively on the structure of the grammar
in Figure 2.1.

EIN expression (e) Size metric [[[[e]]
c, Tα, Fα, (vβ ~ hµ), δij 1
Eα 4
liftd(e),

√
e, −e, exp(e), en, κ(e) 1 + [[e]]

e1 + e2 ,e1 − e2, e1 ∗ e2 1 + [[e1]] + [[e2]]
a
b 2 + [[e1]] + [[e2]]∑
e 2 + 2[[e]]

∂
∂xν
� �e 5[[e]][[e]]

e(x) 2[[e]]

4.3.1 Size Metric

We define a size metric [[e]] for EIN expressions in Table 4.3 and use it to show that rewrites

always decrease the size of the EIN expression.

88

Lemma 4.3.1. If e −−−→
rule

e′ then [[e]] > [[e′]]

Our proof does a case analysis on the rewrite rules (e −−−→
rule

e′) and compares the size

(Table 4.3) of each side of the rule. Provided below are key cases of the proof (Section A.3.1).

R1 The rewrite rule (R1) has the form (e1 �n e2)@x −−−→
rule

(e1@x)�n (e2@x).

case analysis on the operator �n
if �n = ∗

[[(e1 ∗ e2)@x]] = 2 + 2[[e1]] + 2[[e2]]

> 1 + 2[[e1]] + 2S

= [[[[(e1@x) ∗ (e2@x)]]]]

if �n = •
•

[[[[(e1e2)@x]]]] = 4 + 2[[e1]] + 2[[e2]]

> 2 + 2[[e1]] + 2[[e2]]

= [[[[e1@x
e2@x]]]]

P(d)

R9 The rewrite rule (R9) has the form ∂
∂xi
� (cosine(e1)) −−−→

rule
(−sine(e1)) ∗ (∂

∂xi
� e1).

[[∂
∂xi
� (cosine(e1))]] = (1 + [[e1]])5(1+[[e1]])

> [[e1]] ∗ (1 + 5[[e1]]) + 3

= [[(−sine(e1)) ∗ (∂
∂xi
� e1)]]

P(d)

R17 The rewrite rule (R17) has the form ∂
∂xi
� (e1 � e2) −−−→

rule
(∂
∂xi
� e1)� (∂

∂xi
� e2).

[[∂
∂xi
� (e1 � e2)]] = (1 + [[e1]] + [[e2]])5(1+[[e1]]+[[e2]])

> [[e1]]5([[e1]]) + [[e2]]5([[e2]]) + 1

= [[(∂
∂xi
� e1)� (∂

∂xi
� e2)]]

P(d)

R27 The rewrite rule (R27) has the form

e1
e2
e3
−−−→
rule

e1
e2e3

.

89

[[

e1
e2
e3

]] = 4 + [[e1]] + [[e2]] + [[e3]]

> 3 + [[e1]] + [[e2]] + [[e3]]

= [[e1
e2e3

]]

P(d)

4.3.2 Normal Form

An EIN expression is in normal form if it can not be reduced. The normal form is defined

as the subset N of EIN expressions. In the following, we describe the normal form with

the following examples. Some tensors, constants, and permutation terms that are in normal

form include:

Tα, c 6= 0, δij , Eij , and Eijk

The field forms F include:

Fα, V ~H,
∂

∂xi
� Fα

All differentiation is applied (via product rule or otherwise) so in normal form the differen-

tiation is only applied to a field term:

∂

∂xi
� Fα

until it is pushed down to the convolution kernel:

V ~ ∂

∂xi
�H

The only probed terms are field forms F :

Fα@T, (V ~H)@x, and (
∂

∂xi
� F)@x

90

Some unary operations are in normal form, as long as their sub-term e1 is in normal form:

sine(e1), liftd(e1),
√
e1, exp(e1)

Other arithmetic operations cannot have a zero constant sub-term (3.7):

−e1, e1 + e2, e1 − e2, e1 ∗ e2,
e1

e2

The division structure is subject to algebraic rewrites (3.7). The normal form of the product

and summation structure is more restricted in part because of index-based rewrites. Normal

form is presented more formally next:

Normal Form The following grammar specifies the subset N of EIN expressions that are

in normal form:

N ::= A | c

A ::= D | G

D ::= B | −G

G ::= B | DD
B ::= Tα | F | F@Tα | c 6= 0 | δij | Eij | Eijk

| A+A | A −A |
√
N

| liftd(N) | exp(N) | N c | κ(N)

| (A ∗ A)1,2,3,4

| (
∑N)5

F ::= Fα | v ~ h | ∂
∂xi
� Fα

subject to the following additional restrictions (noted in the syntax with an upper index):

1. If a term has the form Eijk ∗ Ei′j′k′ then the indices ijk must be disjoint from i′j′k′.

2. If a term contains the form Eijk ∗A and A has a differentiation component then no two

91

of the indices i, j, and k may occur in the differentiation component of A. For example,

Eijk ∗ ∂
∂xjk

� e is not in normal form and can be rewritten as Eijk ∗ ∂
∂xjk

� e −−−→
rule

∗ 0.

3. If a term has the form δij ∗A then j may not occur in A. For example, the expression

δij ∗ Tj is not in normal form, and thus δij ∗ Tj can be rewritten to Ti.

4. If a term has the form
√
e1 ∗
√
e2 then e1 6= e2.

5. If a term is of the form
∑

(e1 ∗ e2) then e1 can not be a scalar s, scalar field ϕ, or

constant c. For example, terms
∑

(s∗ e2) or
∑

(ϕ∗ e2) are not in normal form and can

be rewritten as s
∑
e2 and ϕ

∑
e2, respectively.

4.3.3 Termination and Normal form

The following two lemmas relate the set of normal forms expressions to the terminal expres-

sions. The first shows that termination implies normal form.

Lemma 4.3.2. If e ∈ T , then e ∈ N

The proof is by examination of the syntax in Figure 2.1. For any syntactic construct,

we show that either the term is in normal form, or there is a rewrite rule that applies. We

define Q(ex) ≡6 ∃e′x such that ex −−−→
rule

e′x and ex ∈ N . The following is a sample of a proof

by contradiction (full proof is available Section A.3.2).

case on structure ex

If ex = c then Q(ex) because ex is in normal form.

If ex = Tα then Q(ex) because ex is in normal form.

If ex = Fα then Q(ex) because ex is in normal form.

If ex = Vα ~H then Q(ex) because ex is in normal form.

If ex = δij then Q(ex) because ex is in normal form.

If ex = Eα then Q(ex) because ex is in normal form.

If ex = liftd(e1)

92

Prove Q(e) by contradiction.

If e1 = c then Q(ex) because ex is in normal form.

If e1 = Tα then Q(ex) because ex is in normal form.

If e1 = Fα then Q(ex) because ex is not a supported type.

If e1 = e~ e then Q(ex) because ex is not a supported type.

If e1 = δij then Q(ex) because ex is in normal form.

If e1 = Eα then Q(ex) because ex is in normal form.

If e1 = liftd(e) then Q(ex) because ex is not a supported type.

If e1 = M(e1) and assuming Q(e) then Q(ex)

Given M(e) =
√
e | exp(e) | en1 | κ(e)

If e1 = −e and assuming Q(e) then Q(ex)

If e1 = ∂
∂xα
� e then Q(ex) because ex is not a supported type.

If e1 =
∑
e and assuming Q(e) then Q(ex)

If e1 = e3 + e4 and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3 − e4 and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3 ∗ e4 and assuming Q(e3) and Q(e4) then Q(ex)

If e = e3
e4

and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3@e4 and assuming Q(e3) and Q(e4) then Q(ex)

Q(ex)

The next lemma demonstrates that normal form implies termination.

Lemma 4.3.3. If e ∈ N , then e ∈ T

We state M(e) as a shorthand for the claim that if e is in normal form then it has

terminated. The following is a proof by contradiction. CM(e): There exists an expression e

that has not terminated and is in normal form. More precisely, given a derivation d of the

form e −−−→
rule

e′ , there exists an expression that is the source term e of derivation d therefore

not-terminated, and is in normal form. Below are cases of the proof (Section A.3.3).

Case R1.(e1 �n e2)@x −−−→
rule

(e1@x)�n (e2@x)

93

Let y= (e1 �n e2)@x and since y is not in normal form then M(R1) OK

Case R2.(e0 �2 e1)@x −−−→
rule

(e0@x)�2 (e1@x)

Let y= (e0 �2 e1)@x and since y is not in normal form then M(R2) OK

Theorem 4.3.4 (Normalization). For any closed EIN expression e the following two prop-

erties hold:

1. there exists an EIN expression e′ ∈ N , such that e −−−→
rule

∗ e′, and

2. there is no infinite sequence of rewrites starting with e.

In other words, for any expression e we can apply rewrites until termination, at which point

we will have reached a normal form expression e′.

The theorem follows from Lemmas 4.3.1, 4.3.2, and 4.3.3 described in Section A.3.

4.4 Discussion

The properties that we have described demonstrate the correctness of the normalization

transformations for EIN. Unfortunately, the rewriting system is not confluent (because dif-

ferent pairings of Eijk can be rewritten and produce different normal forms). In our system,

we apply rules in a standard order, but there may be opportunities for improving performance

by tuning the order of rewrites.

While there are still many opportunities for compiler bugs, normalization is the most

critical part of compiling tensor-field expressions down to executable code, so these results

increase our confidence in the correctness of the compiler. There are other parts of the

compiler pipeline for which we hope to prove correctness in the future.

94

CHAPTER 5

AUTOMATIC TESTING MODEL

In Chapter 4 we provided proofs to state the formal properties of the rewriting system. We

showed that the rewriting system is type preserving and terminating. The compiler is much

more than just the rewriting system and includes many places where bugs can go undetected.

To test the full implementation we develop a more robust approach to testing.

Testing a compiler for a high-level mathematical programming-language poses a number

of challenges not found in previous work on testing compilers. While it is easy to write

complicated mathematical expressions to feed to the compiler, it is difficult to predict what

the correct answer should be. For this reason, manual construction of tests for the Diderot

compiler is time consuming and prone to biases (i.e., combinations of operations that were

easy for the test author to understand). Furthermore, Diderot is a rich language with many

operators, so the space of possible combinations is too large for manual exploration. Thus,

as in previous work [52, 22], it is vital that we build a testing tool that can automatically

generate test cases that provide good coverage of the features of the language.

There is extensive previous research in compiler testing. Differential testing relies on

comparing different implementations of the same language [56, 74]. There are other ap-

plications of testing. Equivalence Modulo Inputs [50] creates a family of programs that are

expected to have the same output.

Alone, these approaches do not seem sufficient in the case of Diderot. Most of the trans-

formations that occur during compilation of a Diderot program are necessary and can not

be disabled. Additionally, earlier versions of the compiler implemented a smaller language.

The current version of the compiler has introduced new operators and more expressivity to

the language. We want to create test cases that use a mix of the old and new operators.

Lastly, we want to evaluate each tests based on a ground truth.

In this chapter, we present Diderot’s automated testing model, DATm [17]. It is designed

to rigorously test the core mathematical parts of the Diderot implementation. DATm com-

95

bines the generation of test programs with the generation of synthetic data for which the

correct values and properties of the generated Diderot program output are known. For each

test program, synthetic data is used to synthesize tensors and tensor fields that are then used

by the test program. The correct solution can then be derived analytically as an operation

on polynomials. The generated test program is compiled and run on the test data, and its

output is compared with the analytically derived solution. The test passes if the answers are

within an error tolerance.

DATm can offer a full coverage of a set of operators. Our testing coverage includes

common computations that the user is expected to use and uncommon ones that a com-

piler writer is not likely to test. It has found various bugs in the Diderot compiler and

has enabled quick debugging of new operators. It is designed to aid development by sup-

porting quick reproducibility of test cases, providing exhaustive testing (which is especially

useful for new operators), and random testing (which is necessary for searching the space of

more complicated programs). It has provided other unexpected benefits, such as identifying

mathematically valid programs that were unnecessarily rejected by the compiler because of

artificial limits in the typechecker.

The remainder of the chapter is organized as follows. We first describe the basic structures

and details core to the testing model in Section 5.1. We introduce DATm and describe its

implementation in Section 5.2. In Section 5.3, we describe how the model can be extended

to automatically test a class of visualization algorithms. In Section 5.4 we report the bugs

that we found. Section 5.5 presents the results about DATm’s efficiency in generating and

running tests. Lastly, we discuss the contributions of the work in Section 5.6.

5.1 Core of testing model

In this chapter we introduce the techniques we use to test the Diderot compiler by introducing

two models: DATm (Section 5.2) and DAVm (Section 5.3). The models differ in how a

single test is executed but share an implementation core. In this section we introduce that

96

τ ::= tensor[ς] tensor with shape ς
field#k(d)[κ] tensor field with continuity k, shape κ,

and dimension d (1 ≤ d ≤ 3)
image(d)[κ] image data with shape κ, and dimension d (1 ≤ d ≤ 3)

γ ::= τ | field#k(d)[ς] broader range of shape
dn ::= 2 | 3 dimension
vn ::= 2 | 3 | 4 extended dimension
ς ::= nil’| v1, · · · , vn n ≤ 3 Tensor shape
κ ::= nil’| v1 | d1, d1 Field shape

operators ::= −, ‖ · ‖, @,
√

, ∇, ∇⊗, ∇×, ∇•, inverse normalize, trace, transpose

| +, −, ∗, /, •, : , ×, ⊗, [:,0], [1,:], [0], [1], [:,1,:], [1,0,:],
| det, sin, cos, tan, arccos, arcsin, arctan, ~, modulate, . . .

kernel ::= c4hexic, tent, ctmr, bspln3,

Figure 5.1: Subset of Diderot types and operators that can be tested with DATm

core, which includes the internal representation of our system, out testing input, and a test

generator. In Section 5.1.1 we present the basic structures that internally represent the test

cases. In Section 5.1.2 we present the testing frame and define some key concepts. Lastly,

we describe the test case generator in Section 5.1.2.

5.1.1 Basic structures

The basic structures are illustrated in Figure 5.2 with their attributes. The objects (opera-

tors, types, and kernels) are used to represent a part of the Diderot language (Figure 5.1).

The arguments represent a tensor or tensor field initiated with synthetic data and a type.

An application object applies an operator object to arguments. Lastly, the testing frame is

more detailed and described in Section 5.1.2.

Operators Operations include a mix of unary and binary operators applied to tensors

and tensor fields (Figure 5.2). The operator object has a few attributes: out, placement,

arity, and limit. The arity is the arity to the operator. The limit refers to the restriction

97

Operators
- out
- placement
- arity
- limit

Diderot Types
- dim
- shape
- k

Frame
- coeff-style
- samples
- space
- num_pos
- krn
- template
- layer,
- in_tys, rst_tys
- random_limit

Kernels
- str
- continuity
- order

Arguments
- fldty
- krn
- input
- data

Applications
- opr
- oty
- lhs
- rhs

Figure 5.2: Core data structures used in testing

to the value of arguments. The attributes (out, placement) describe how the operators are

translated into Diderot code.

For example, the unary negation operator is defined as

opnegation = {out : −, placement : left, arity : 1, limit : None}

When generating Diderot code the unicode symbol − is placed in the left of one argument.

The unary square root operator is defined as

opsqrt = {out : sqrt, placement : split, arity : 1, limit : positive} (5.1)

When generating Diderot code the function sqrt(·) is placed around a single argument. The

limitation attribute refers to the value restriction, which needs to be positive.

A binary operator, such as the outer product, is defined as

opouter = {out : ⊗, placement : middle, arity : 2, limit : None} (5.2)

98

The unicode symbol ⊗ is placed in the middle of two arguments and there are no limitations.

A field operator, such as the gradient operator, is defined as

opgrad = {out : ∇, placement : left, arity : 1, limit : None} (5.3)

Note that the gradient needs to be applied to a field where the continuity is greater than zero

but the limit attribute is “None”. Type restrictions are upheld in the internal type checker,

which is introduced in Section 5.1.3.

Types The type object has a few attributes: shape, dim, and k. A tensor type only uses

attribute shape. A vector of length 3 is defined as

tytv3 = {shape : [3], dim : Null, k : Null}

The attributes correspond to Diderot field types. This includes the tensor shape (shape),

dimension (dim), and continuity (k). The 3-d scalar field is defined as

tyfsd3 = {shape : [], dim : 3, k : Null}

the 2-d vector of length 3 is defined as

tyfv3d2 = {shape : [3], dim : 2, k : Null}

and the 3-d 3-by-3 field is defined as

tyfm33d3 = {shape : [3, 3], dim : 3, k : Null}

We have a representation for each Diderot types (γ shown in Figure 5.1). Types τ includes

reals, vectors, matrices, third-order tensors, scalar fields, vector fields, and n-by-n second

99

order tensors fields. Type γ extends it to include a broader range of shapes.

Kernel The kernel object has a few attributes: str, continuity, and order. The attributes

include the name of the kernel as it is represented in Diderot (str), the continuity (continuity),

and the kernel can accurately represent data with order (order). For example, we can define

the tent kernel as

krntent = {str : “tent”, continuity : 0, order : linear}

and the c4hexic kernel as

krnhex = {str : “c4hexic”, continuity : 3, order : cubic}

Arguments Arguments have several attributes: fldty, data, krn, and input. This refers to

the argument type (fldty) and data coefficients (data). A tensor argument can be represented

as the following:

ten1 = {fldty : tytv3, data : . . . , krn : Null, input : Null} (5.4)

A tensor field argument has a kernel (krn) and data file name (input). A 2-d scalar field

defined by a tent kernel and data file “f1” is represented as

fld1 = {fldty : tyfsd2, krn : krntent, input : “f1”, data : . . . }

and a 3-d scalar field defined by a c4hexic kernel and data file “f0” is represented as

fld2 = {fldty : tyfsd3, krn : krnkex, input : “f0”, data : . . . } (5.5)

100

The kernel defined in the field argument (Equation 5.5) is used to initialize the continuity

attribute in the field type.

tyfsd3′ = {dim : 3, shape : [], k : krnkex.continuity}

Application The application object has attributes: opr, oty, lhs, and rhs. The object

represents the application of an operator (opr) to arguments (lhs, rhs) and the result has

the type (oty). The addition of two vectors of length 3 results in a vector of length 3.

app0 = {opr : opradd, oty : tytv3, lhs : ten1, rhs : ten1} (5.6)

The application of the gradient (Equation 5.3) of a 3-d scalar field (Equation 5.5) would

result in a 3-d vector field and be represented as follows:

app1 = {opr : oprgrad, oty : tyfv3d3, lhs : fld2, rhs : None} (5.7)

We can represent nested operations such as the outer product (Equation 5.2) between the

result of app1 (Equation 5.7) and a tensor (Equation 5.4).

app2 = {opr : oprouter, oty : tyfm33d3, lhs : app1, rhs : ten1} (5.8)

5.1.2 Testing Frame

The testing frame is defined by the settings and scope. The settings indicate how to initialize

various variables used in testing. The scope describes the subset of types and operators that

are being tested. We introduce the testing frame, define exhaustive and random search, and

describe targeted testing.

101

Table 5.1: Settings in testing frame
variable description
coeff style The coefficients attribute indicate the polynomial order of synthetic data.

The data can be linear (x), quadratic (x2), or cubic (x3).
samples A diderot program is used to create a nrrd file to represent a tensor field.

The program evaluates a polynomial expression at a number of samples.
space Input to the Diderot programs include the number of samples to take

and if we randomize the “shear” and “angle” attributes in the
Diderot program. Using fewer samples and changing the orientation
of the samples creates a stronger field reconstruction test.

num pos Generated test programs probe a tensor field
at a set number of positions.

krn The test program uses a specified reconstruction kernel
layer A computation is made up of a set number of nested operators,

which can range from one to three.
in tys, rst tys Limitations to argument types and result types, such as only tensor fields.
random limit We support the random or exhaustive exploration of test cases.

The developer specifies the probability of a single test program
being executed, with exhaustive being 100%.

Settings in testing frame The settings indicate data creation factors, test program de-

tails, computation details, and type of search to find test cases. Figure 5.2 shows the testing

frame object. The settings are initialized by the variables and are defined in Table 5.1.

Scope The scope defines the set of possible programs that can be tested. The scope of the

testing is one of three modes:

1. Run all possible test cases described under the testing frame.

2. Target (defined later) a group of test cases.

3. Run a single case, i.e., the addition of two 2-d scalar fields.

The scope is independent of the type of search. The exhaustive search with generate all

the operators and arguments under the scope while the random search will randomly choose

some of them.

Exhaustive or random search We support two different types of searches; exhaustive

and random. Every possible combination of operators and arguments types are generated in

102

the exhaustive setting. It is not always practical to run an exhaustive test and create tens

of thousands of programs. In the random mode, the test generator will randomly choose the

test cases to create. Random testing does not ensure coverage, but it makes it feasible to

explore a larger set of complicated programs (with a varying number of nested operators)

in a more manageable amount of time. Experiments with random testing are presented in

Section 5.5.2.

Targeted testing We use the phrase targeting testing to mean limiting the testing scope

to subset of test cases with a label. The testing scope can be limited to a single test or a

group of tests. Each operator has an identifier. A user can use that identifier (with others)

as a label to limit the testing scope. Targeting testing can be helpful when testing a new

operator added to the language and only creating test programs that use that operator.

Being able to specify a group of relevant tests makes it easier and faster to re-test after

making changes to the compiler.

5.1.3 Testing overview

Test generation is parameterized by the testing frame (Section 5.1.2). The test case gen-

erator creates a single or thousands of test cases that fit the parameters set by the testing

frame. The internal testing typechecker is used to filter out the test cases that do not

make mathematical sense. Lastly, if single test case passes the type checker then it is

created, executed, and evaluated.

Test case Generator A key part of the implementation process is the creation of test

cases. An exhaustive generation of test cases can be found by iterating over the various types

and operators in the scope. Each test case is then defined by the application of operator(s) to

arguments. Internally, the generator represents a test case by using the application object.

103

Internal testing typechecker We created an internal typechecker to see if the application

of an operator to arguments are okay. As input the internal typechecker receives an operator

and arguments. If the computation passes then the method returns an initialized application

operator (Section 5.1.1).

For every operator, there is a set of restrictions on the arguments. Given the addition

between two tensors, the two arguments must have the same type (as seen in Equation 5.6).

Given the addition between a tensor and field then the two arguments must have the same

shape and the result has a field type. Lastly, when the arguments are both fields they must

have the same dimension.

As another example, consider the application of the gradient operator. The argument

can only be a scalar field with continuity k>0. The output type is a vector field (in the

2-d or 3-d case) or a scalar (in the 1-d case) with one less level of continuity than the input

argument. The application of the gradient of a 3-d scalar field is represented in Equation 5.7.

Single Test case In this chapter we introduce two models: DATm a model that evaluates

based on equality and DAVm a model that evaluates based on symmetry. The models share

the same internal representation, test generator, and internal testing typechecker but they

differ in how a single test is executed. We give an overview of DATm in the Section 5.2 and

describe DAVm in Section 5.3.

5.2 Diderot’s Automatic Testing model

This section introduces DATm as illustrated in Figure 5.3. The test requirements are de-

scribed in the frame and serve as input to the test generator. The testing frame defines

several key factors for DATm such as what is being tested and how to search for test cases.

The generator creates a test description for each test case. The test description describes an

application of operators to arguments with different Diderot types.

For each test case DATm creates synthetic data, a list of positions, a ground truth, and

104

Okay/Fail

Evaluate
 at points

Sympy

Sympy
expression

out.nrrd

Test description diderot

test.diderot

Equality
Check

Test
generator

Testing Frame

test.nrrd

Figure 5.3: Pipeline of Diderot’s Automated Testing model. They evaluate based on numer-
ical accuracy and equality.

105

a Diderot test program (Section 5.2.1). Synthetic data is created for each argument and

is represented both by a data file and a symbolic expression (Section 5.2.2). The symbolic

expression is used to define the ground truth for each test case (Section 5.2.4). A diderot

program a generated for each test case (Section 5.2.3). The output of the executed Diderot

program is a data file.

The test output is a nrrd file created by Diderot and a Sympy expression. We expect

that both outputs reduce to a list of numbers and evaluate the test by comparing them

(Section 5.2.5). The expected behavior is numerical equality between the output. There are

three modes of failure: type error (T), compile error (C), and numerical error (N). A type

error indicates a program could not run because there was some unexpected restriction in

the type-checker. A compile error indicates a program that otherwise could not compile. A

numerical error indicates that the numerical output is not equal to the expected value.

In this chapter we present the pipeline for DATm. We provide the steps in generating a

single test in Section 5.2.1. We describe the individual steps: data creation (Section 5.2.2),

expected solution (Section 5.2.4), generated diderot program (Section 5.2.3), and evalua-

tion (Section 5.2.5). Lastly, we discuss DATm’s restrictions (Section 5.2.6) and advantages

(Section 5.2.7).

5.2.1 A single test case example

In the following we use a single test case as an example. We compute the outer product

between a vector and the gradient of a scalar field. Internally, DATm will represent this

computation as an application of operators to arguments (reproduced Equation 5.8 here),

app2 = {opr : oprouter, oty : tyfm33d3, lhs : app1, rhs : ten1}

After creating the application to represent the computation DATm creates, runs, and eval-

uates a single test case. We present the implementation steps in Table 5.2.

106

import sympy
x,y,z =symbols(’x y z’)
T = [3, 9, 11]
F = 2 + 5x+9xy
tmp = deriv(F) # rF=[5+9y, 9x, 0]
exp = outer(T, tmp) #T⌦ rF
for pos in positions:

[posx, posy, posz] = pos
exp = exp.subs(x, posx)
exp = exp.subs(y, posy)
exp = exp.subs(z, posz)
out.append(exp)

return out

1

tensor[3] T;

field#k(3)[] F = "test.nrrd";

field#k(3)[] G = T⌦rF;

int n;

strand sample (int i) {
tensor[3,3] out;

update {
tensor[3] pos;

if(i==1) { pos = pos1; }
· · ·
else if(i==n) { pos = posn; }
out = G(pos);

}
}initially [sample(i)| i in 0..n];

1

Test Description
args: A vec3 T and a 3-d scalar field F
operators: T⌦r F

1

Diderot programPython code

Evaluation

Figure 5.4: Single test case in DATm

Table 5.2: Implementation steps for a single test case. We make a reference to variables and
names in Figure 5.4.
Description Reference in code
pull settings from the testing frame
create positions “pos” in code
create data files for arguments test .nrrd in code
generate test program “Diderot program” box
derive analytical solution “Python code” box
compare observed data to analytical data “Evaluation” box

107

Figure 5.4 illustrates the test case as four different parts: “Test Description,” “Python

Code,” “Diderot program,” and “Evaluation.” On the left-hand of the figure we show a sketch

of “Python code” that create a symbolic expression and generates the expected result. On

the right-hand side of the figure we show the “Diderot program” that creates a tensor field

and generates the observed result. The symbolic expression is evaluated and the tensor field

in the Diderot program is probed at the same series of points We compare the output for

both in “Evaluation”. The rest of this section describes the individual phases in more detail.

5.2.2 Data Creation

DATm automatically generates the synthetic data used in the testing process. Each argu-

ment in a test case is defined by a list of “coefficients.” Each argument has a representation

in Diderot and in Python.

Coefficients DATm creates random numbers to represent the test arguments. The random

numbers serve as coefficients to a linear, quadratic, or cubic polynomial expression. For

each argument in a test case, we have a list of coefficients. We use that list to create a

representation of the argument in Diderot and in Python.

Diderot representation In a Diderot program, a tensor field is defined by an image

file (in a nrrd format [71]) and a reconstruction kernel. The data file maintains sampling

orientation and discrete data points. We create a nrrd file to represent each argument that

is a tensor field.

DATm has a set of Diderot templates to create fields of type field#k(d)[κ] (τ as defined

by Figure 5.1). The template is initiated by a list of coefficients, number of samples, and

orientation. The number of samples and orientation are found in the testing frame.

The program represents the polynomial expression described by the list of coefficients.

The template takes samples from the function created from the polynomial expression and

108

saves it to a Diderot nrrd file (test.nrrd on left in Figure 5.3). It is used later as input to a

Diderot test program.

Python representation The operators we are testing are tensor calculus-based operators.

Since our operators are based on mathematics we are able to use the Python sympy package

to analytically derive the correct solution [68]. For each argument in a test case a symbolic

expression is created from the list of coefficients.

5.2.3 Diderot test program

DATm supports the creation of Diderot programs by translating the test description into

Diderot code. The test description is internally represented as data structures (defined in

Section 5.1.1). In this section we show examples of the internal representation followed by

Diderot code.

Arguments Each argument is represented with argument object. The type arguments are

translated into Diderot types. For example,the tensor argument

tenT = {fldty : tytv2, data : [expT1, expT2], krn : Null, input : Null}

is translated to the following Diderot type and the data value for tensors are inlined.

tensor [2]T = [expT1 ,expT2] ;

Field objects are translated into Diderot field types.

fldF = {fldty : tyfv2d2, krn : krnkex, input : “F”, data : . . . }

Tensor fields are set equal to the convolution between kernels and the names of the input

file (that were created in a previous step).

f i e ld#k (2) [2]T = load (‘ ‘F . nrrd ”)~ c4hex i c ;

109

Application The test description includes the application of the outer product operator

between a tensor field and tensor

app1 = {opr : oprouter, oty : tyfm22d2, lhs : fldF , rhs : tenT }

then taking the 2-d matrix inverse of the result.

app2 = {opr : oprinv, oty : tyfm22d2, lhs : app1, rhs : Null}

The application object is translated to the following Diderot code.

f i e ld#k (2) [2 , 2]G = inv (F ⊗ T) ;

The field is probed at multiple positions in the field domain.

Rest of program The rest of the program is automatically generated. The core of a test

program is a tensor field sampled at a position (pos1, pos2 . . . posn−1). A strand in a diderot

program initiates the position value (pos), while the tensor field computation remains the

same.

i f (i ==0){pos = pos1 ;}
else i f (i ==1){pos = pos2 ;}
· · ·
else i f (i==n){ pos = posn−1 ;}

An inside test is imposed to be sure the position is in the field domain.

i f (inside (F , pos)){ . . . }

The result of computation is the observed value.

tensor [2 , 2] observed = G(pos) ;

Once the Diderot program is written, it is compiled and executed. The resulting nrrd file is

converted to a text file and read as observed data.

110

5.2.4 Analytically derived solution

We translate the test description to a symbolic expression that can be evaluated. The test

description indicates the argument objects for each tensor field argument. Each argument

has a list of numbers (data) that represent coefficients to a polynomial expression. The

arguments are represented in python as expressions.

exp1 = x2 + 3x+ 4

exp2 = 7x− 1

Each test description also includes the operators that are used in the test case. Each op-

erator is matched to a function that will apply a manipulation on the polynomial expression

based on the argument types. For instance, the expression can be symbolically differentiated.

exp3 = ∇exp1 = 2x+ 3

and it can be manipulated with a series of tensor operators on and between them

exp4 = exp3 + exp2 = 9x+ 2

After the operators are applied the expression is evaluated at positions.

exp4(x = 1) = 11

The computation reduces to a series of number that represent the ground truth for a given

test case.

111

5.2.5 Evaluation

We expect to be able to compare the test output based on equality. If the output is within

some error tolerance then the test passes. There are three different possible failure modes.

• Type error.

• Compilation error

• Numerical error

A type error indicates an issue with the Diderot type checker. A type error can occur

because the Diderot implementation did not have the language support that was expected.

A compilation error could be caused by a mistake in a rewriting step that halted compilation

of the program. A numerical error indicates that the test program did compile and execute,

but the Diderot output is not within the error tolerance of the analytically derived result.

5.2.6 Checking limitations of the Diderot programs

In the past, compiler testing tools have evaluated tests by comparing the output of different

versions of a compiler [74], or have asked the human user to supply a criterion that can be

checked automatically [22]. We choose to instead evaluate based on a ground truth. Still,

the evaluation is comparing the output of floating point arithmetic done by the Diderot

compiler with an analytically derived solution. The potential rounding errors that can occur

in floating point arithmetic are well-known [26]. In DATm it is possible that numerical errors

will result in a false positive.

DATm does take some precautions against doing operations with undefined results. As

mentioned in Section 5.1.1, the operations used in the Diderot program might have certain

restrictions. The argument(s) to the operation might have to be within a certain range of

values. If so, the test program generates if statements to check that these conditions are

met. If the conditions are not met then that strand is invalid. If not enough strands pass

this condition then the test is thrown out.

112

For example, the square root operation
√
e is tagged by a condition that limits its argu-

ment to positive numbers (Equation 5.1). For each strand, if the expression evaluated for the

position is positive then the computation is evaluated and added to the output. Otherwise

the strand is not “included” in the output.

// s trand i n d i c a t e s p o s i t i o n v a l u e
i f (i ==0){pos=. . .}
else i f (i ==1){pos=. . .}
// check l i m i t a t i o n s
i f (e(pos) > 0){ observed =

√
e(pos) ; // i n c l u d e item}

else { observed=n u l l //do not i n c l u d e item}

Returning to the example (used in Section 5.2.3), an inverse operation involves dividing by

the determinant. When dividing we prefer to restrict the denominator value so its magnitude

is large than some small value (ε). That limitation is indicated in the definition of the inverse

operator. DATm generates a test on that condition

i f (| det (F⊗T)|> ε){ observed = G(pos) ; }

where the denominator in the division operator must be larger than some small value (ε).

5.2.7 Advantages

Adding new operators Once a new tensor operator is added to Diderot, it can be added

to DATm with moderate ease. The process of adding a new operator to DATm is compro-

mised of three steps:

1. Define the operator with its arity and output type (as shown in Section 5.1.1). Also,

initiate attributes placement and limitations, which facilitate the scripting process that

creates Diderot test programs.

2. Add a case to the internal type checker (Section 5.1.3).

3. Add a case to apply the operator to polynomial expression(s) (Section 5.2.4)

The new operator can then be tested exhaustively using DATm with different argument

113

types and in combination of existing operators. The slight cost of adding a new operator to

DATm is well worth the return.

Uncommon programs DATm offers more extensive testing of the language than is ex-

pected to be found in hand-written Diderot programs. In the past, the testing and develop-

ment of Diderot relied on hand-written programs centered on commonly used combinations

of computations and arguments. This kind of testing biased the discovery of bugs. DATm

expands the search for bugs from what was convenient and typical usage to what is possible

in the Diderot language.

It is worth noting that there are other uncommon field types, that can be exposed to

some amount of testing (γ in Figure 5.1). Intermediate steps in the testing process can

apply a single operator op1(τ1, τ2) −→ τ3 where the result type is outside of our scope (i.e.,

τ3 6∈ τ, τ3 ∈ γ). Application of a second operator (i.e., op2(op1(τ1, τ2)) −→ op2(τ3) −→ . . .)

tests a more extensive range of operations than can be created directly from templates.

As an example, consider the computation

tensor [3] t ;
f i e ld#k (1) [2 , 2] F ;
f i e ld#k (1) [3 , 2 , 2]G = −(t ⊗ F) ;

Synthetic data can be created for t and F, but currently not for G, which has a rarely

used type field#k(1)[3, 2, 2]. Teem [71] could not create a nrrd file of that type. In the

process of computing t ⊗ F, the compiler creates and tests this unusual field type.

5.3 Visualization Verification

This section demonstrates a modest way to do automated visual verification of the Diderot

language by using metamorphic testing. Programs written for scientific visualization or image

analysis can be more mathematically complicated than those that DATm is able to test. It is

possible that this additional complexity could bring to light more bugs. Evaluating the results

114

Okay/Fail

out.nrrd

Test description

VIS
Template

diderot

test.diderot

Symmetry
Check

Test
generator

Testing Frame

test.nrrdVIS Concept

Sample
output

Figure 5.5: vname. They evaluate based on visual verification and symmetry.

115

of a visualization program based on the numerical output can be difficult (if not impossible),

because sometimes we cannot easily know what the algebraic solution is. Therefore, each

visualization program had required an “eyeball test”, just looking at the resulting image. In

an effort to support more types of testing, we have created Diderot’s Automated Visualization

model DAVm, which uses a known property to evaluate an unknown result.

5.3.1 Concept

To test the domain-specific applications of Diderot, we need to construct a visualization

program that can be checked in an automated way. We choose to compute a simple volume

renderings of synthetic 3-D fields created by the new operators. Projecting a rotationally

symmetric 3-D field onto a plane, restricted to a spherical domain, should produce a rota-

tionally symmetric 2-D image, regardless of the point of view point and the field operations

involved. DAVm generates two Diderot programs that will do a volume rendering of the

computation and another to sample the output of the volume rendering. Figure 5.6 provides

an example of the output from these programs. In the following, we describe how DAVm

creates a single test case.

5.3.2 Pipeline

Figure 5.5 shows the pipeline for DAVm. DAVm shares much of the same basic code with

DATm. Specifically, they have the same internal representation and test generator. They

differ in the template used when writing a Diderot program and how test programs are

evaluated.

Restrictions The test generator is used to automatically create test cases but require that

the result of the computation is a 3-D scalar field, the types of the arguments are restricted

to 3-D fields, and the data generated to synthesize tensors and tensor fields is symmetric.

116

Figure 5.6: Volume rendering of a symmetric 3-D field using Summation projection (left)
and Maximal projection (right) with positions that are sampled to evaluate correctness. We
sampled 30 groups of 4 points that were equal distance from the center. Highlighted in red
is one of the groups.

VIS Template A template is used as base to create Diderot test programs. In DAVm we

use a Maximally Intensity Projection (MIP) program [43] as the base code for a basic volume

rendering program in Diderot. The core of the MIP program gets the maximum value along

a ray and stores it into the output variable out.

out = max(out , G(pos)) ;

Another template can be used to do a summation projection volume rendering by using:

out += out ;

As in DATm, the test description is translated into Diderot code. Type objects are

translated into Diderot types and the application objects are also translated into Diderot

operators.

Sample output After writing, compiling, and running the Diderot test program we sample

the output. We sample the output at groups of points that are equal distant from the center

of the image. For each point, the x-coordinate is chosen randomly, and the corresponding

y-coordinate is chosen using the distance formula. We expect that probing the output at

points equal distance from the center have the same value. We show an example of the

output and sampling an output in Figure 5.6.

117

Symmetry Check The correct numerical answers for these visualization programs are

unknown (the projections would involve potentially unwieldy symbolic integrations) but we

can still detect bugs. We test the symmetry of the results by sampling the output at points

we expect to have the same value and then compare them. If they are within some threshold

(ε) then the test passes. To establish ε we generated a few hundred programs and used an

eyeball test to determine when the difference between the value of points is meaningful.

5.4 Bugs

DATm has found various bugs in the Diderot compiler when DATm was developed. As

previously discussed in Section 5.2.5, there are three different failures modes: type errors,

compile errors, and numerical errors. DATm found eight type errors (Figure 5.3), seven

compile time errors (Figure 5.4), and five numerical errors (Figure 5.5). While the number

of bugs is not large, some of the compile-error and numerical-error bugs were caused by

unique mistakes in the compiler.

DATm discovered several bugs that could only arise with specific combinations of oper-

ators. Bugs of this nature are unlikely to be found by handwritten tests and are difficult

to identify in the code. The type-error bugs account for missing features and unexpected

restrictions in the implementation. In the following we describe five bugs: a numerical bug,

three compilation bugs, and a type error bug. The first four bugs are examples of bugs that

would have been especially difficult to find without DATm.

Numerical error caused by complicated transformation This bug (B1) is an exam-

ple of a numerical error in the output, which was exposed by computing the transpose

of the Jacobian

f i e ld#k (3) [3 , 3]G = transpose (∇⊗(V)) ;

The Diderot compiler must generate code to map derivatives from image-index space

to world space (Section 2.3). A subtle error arises in tracking the variable index that

118

represents the shape of the tensor field. Because of the use of transpose, the index is

swapped with another, which gives rise to the error. It is the unique combination of

two operators (transpose of a differentiated vector field) that triggers the bug.

Bug exposed by testing nested operators Programs with nested operators offer a more

rigorous test of the compiler than simple programs. The bigger computations are

optimized inside the compiler. Creating bigger computations with nested operators is

a way to test the optimization steps inside the compiler. The trace of the modulate

between a negation of A and B (B15) can be computed as

G = trac e (modulate(−A, B)) ;

The application of the trace operator on modulate is okay. It is the use of a third

operator that triggers to use of the Split method (Section 3.3.3). The computation

raised a compilation error because the case was not handled correctly by Split .

Design issue in EIN IR This bug (B9) emphasizes the need to test every operator in

combination with each other. The cross product × and slice operations worked cor-

rectly on their own, but combining them creates a bug. When they were combined in

a Diderot test program

(U × V) [1] ;

it created a compilation error, because the necessary rewrites were not supported. The

computation exposed a design issue in the IR of the compiler.

Parameter ids A careless error (B10) occurs when we compute the differentiation of the

subtraction of a tensor and tensor field.

f i e ld#k (d) [d ’] F ;
tensor [d ’] T;
f i e ld#k (d) [d ’]G = T − F;
f i e ld#k (d) [d ’ , d] J = ∇⊗G;

119

The differentiation of a scalar T is zero. While the EIN expression that represented

this variable went to zero the EIN parameter remained. The parameter ids need to be

reset, but were not done correctly.

Language expressivity An unexpected benefit of implementing DATm was the check

to Diderot’s advertised expressivity [44]. Previous work offered a type specification for the

Diderot language. As an example, consider the type specification for the trace operation on

fields:

t r a c e : f i e ld#k (d) [i , i] −> f i e ld#k (d) []

But in actuality, the implementation provided trace with the following more restrictive type:

t r a c e : f i e ld#k (d) [d ,d] −> f i e ld#k (d) []

This restriction (B16) did not cause numerically incorrect results, but did limit the expres-

siveness of the language.

One of the design goals of Diderot is for every tensor operator to be supported on both

tensors and tensor fields with full generality. DATm was able to find situations where the

implementation did not meet the goal. DATm has found cases where the types were overly

constrained (as with trace) and where combinations of fields and tensors were not allowed.

While these test failures are not, strictly speaking, bugs in the implementation, it is worth

noting their existence, since fixing them makes Diderot a more complete language.

5.5 Results and Performance

In this section, we present four experiments that evaluate DATm. The first is an experiment

that measures the difference between exhaustive and random search. The second experiment

measures the time it takes to implement a single test case for different argument types. The

third experiment uses DAVm. It demonstrates that it is possible to do other types of tests

with an extension of the testing model. The fourth experiment applies DATm to different

120

Table 5.3: The list of type-error bugs are categorized by the number of nested operators
needed to discover the bug, the cause of the bug, and description. The cause of the error
could be because of missing features E or other O.
Number Nested Cause Description
B1 1 O Restriction on trace
B2 1 O Restriction on transpose
B3 1 O Restriction on slice
B4 2 O Layout in using computations inline
B5 1 E Restriction on determinant
B6 1 E Restriction on modulate
B7 1 E Missing × between tensor and field
B8 1 E Generality ⊗ between tensor and field

Table 5.4: The list of compilation bugs are categorized by the number of nested operators
needed to discover the bug, cause of the bug, and description. The cause of the error could
be because of transformation rewrite R, or other O.
Number Nested Cause Description
B9 2 O Design in EIN IR indices Ex. (U × V)[1]
B10 2 R Rewrite Parameter Id Ex.∇(T + F)
B11 2 R Wrapping summation in rewrite rule
B12 2 R Check dimension in Optimization
B13 2 R Translating to vector code. Vectorize EIN without variable index
B14 2 R Optimization not generalized
B15 3 R Redundant indices in a single term Ex. trace(modulate(−U, V))

Table 5.5: The list of numerical bugs are categorized by the number of nested operators
needed to discover the bug, the cause of the bug, and description. The cause of the error
could be because of transformation rewrite R, or other O.
Number Nested Cause Description
B16 2 R Rewrite field reconstruction indices Ex. transpose(∇⊗ V)
B17 2 R Data accessed incorrectly. Reverse order for second order F
B18 1 O Algebraic error creating EIN operator. Ex. ‖ϕ‖
B19 1 O Creating the concatenation operator
B20 2 R Determinant(concat(F,G))

121

snapshots of the compiler. This experiment demonstrates that many bugs were not being

caught until we developed DATm.

5.5.1 Experimental Framework

The experiments were run on an Apple iMac with a 2.7 GHz Intel core i5 processor, 8GB of

memory, and OS X Yosemite (10.10.5) operating system. The experiments may run different

sets of tests by changing some settings in the testing frame, but the following factors in the

testing frame are constant, unless stated otherwise. Quadratic coefficients were used to

create synthetic data. The nrrd file is created by taking 70 samples and not randomizing

the sampling orientation. The generated test programs used c4hexic kernels to reconstruct

tensor fields and seven different positions to probe the fields.

5.5.2 Exhaustive vs. Random Testing

The first experiment compares exhaustive and random testing with DATm. It executes

the model by initializing the testing frame with different settings. The changes vary the

number of test programs that are created and how they are generated. We report the effect

of changing the setting by representing the time required for testing and the number of test

cases explored.

Our experiment does a single exhaustive search and four random searches for up to three

nested operators. An exhaustive search attempts all possible test programs. A random

search has a certain probability of trying each test program. Table 5.6 records the timing

measurement from doing these different searches and varying the number of nested operators.

The measurements range from seconds to hours. Table 5.6 records the number of test

programs that are created with an exhaustive search. A single operator creates hundreds of

programs, two nested operators creates tens of thousands, and three nested operator creates

hundreds of thousands of test programs.

By creating a large range of test cases it is possible to find hidden and unique bugs.

122

Table 5.6: The following offers measurements from executing DATm with different settings.
The settings are (1) the number of operators, and (2) the probability to run a single test
case. A 0% probability refers to iterating test cases only, a 100% is an exhaustive test, and
the range in-between refer to a random search with a set probability to execute each test
case. The figure records the number of test programs that are created with an exhaustive
search, and the time measurement (in minutes) for running DATm with each type of search.

Total Timing to run DATm with given probability.
No.of Operators No. of Programs 0 % 0.5 % 1% 5% 10% 100%

1 695 0.25 0.3 0.55 2.6 4.65 32.53
2 18,819 7.62 14.43 18.35 64.2 121.23 1099.16
3 495,626 58.83 246.02 393.2 - - -

DATm can create thousands of programs, but it is not feasible to do exhaustive search each

time there is a change to the compiler. To enable quicker regression testing it is necessary

to also do random testing.

5.5.3 Breakdown of a single test case

Our experiment runs a random search and generates 1% of test cases. The frame used

two layers of operators and linear elements. We run DATm twice: first using any type of

argument and second restricting arguments to tensor fields. We measure the time spent

generating a single test case in DATm. We previously showed the implementation steps in

Table 5.2, but we add more individual steps for a better analysis.

Figure 5.8 shows the average breakdown of time spent in the core part of DATm. The

data step creates data files for (field) arguments and is separated into four parts: compiling

the C compiler (41%), compiling the diderot compiler (11%), running (4%), and other (3%).

The test step generates the test program and is separated into four parts: writing (1%),

compiling the C compiler (25%), compiling the diderot compiler (1%), running (1%), and

other (2%). The analytical solution uses a Sympy package to get ground-truth solution

(9%). The evaluate step compares the observed data and the correct solution (1%). Lastly,

the other category makes up a small portion of the time (1%) but includes pulling settings

from the testing frame, creating positions, reading data from a file, and tracking results.

123

0

0.2

0.4

0.6

0.8

1

1.2

1.4

da
ta
:c
-c
om

pi
le
r

da
ta
:-d
id
er
ot
-c
om

pi
le
r

da
ta
:c
om

pi
le
r-s
et
up

da
ta
:ru

n

te
st
:w
rit
e

te
st
:c
-co

m
pi
le
r

te
st
:d
id
er
ot
-c
om

pi
le
r

te
st
:c
om

pi
le
r-s
et
up

te
st
:ru

n

an
al
yt
ic
al
-so

lu
tio

n

ev
al
ua
te

ot
he
r

Ti
m
e(
s)

Average-time-breakdown-for-a-test-case-given-argument-type-

all-args only-fields

Figure 5.7: The average time spent creating and testing given different argument types. The
average time spent for different argument types. Time is in seconds

data:c&compiler
41%

data:&diderot&
compiler
11%

data:compiler&setup
3%

data:run
4%

test:write
1%

test:c&compiler
25%

test:diderot&
compiler

1%

test:compiler&setup
2%

test:run
1%

analytical&solution
9%

evaluate
1% other

1%

Average&time&breakdown&for&a&test&program

data:c&compiler

data:&diderot&compiler

data:compiler&setup

data:run

test:write

test:c&compiler

test:diderot&compiler

test:compiler&setup

test:run

analytical&solution

evaluate

other

Figure 5.8: The average breakdown of a single test case. Time is in seconds

124

This experiment shows how the time in a single test case is spent. It can be useful

to show places for improvement. On average, 88% of the time is spent on the Diderot

programs. 66% is spent on the C compiler, 12% is spent on the Diderot compiler, 5% on

running Diderot programs, and the remaining on the setup. Other parts of the testing

infrastructure compromise just about 12%. Not substantial but it could indicate room for

improvement.

We run DATm twice: first using any type of argument and second restricting arguments

to only tensor fields. We created 179 tests in the first setting and 47 in the last. Figure 5.7

shows the results from applying DATm in these two different settings. The average total

time spent per test in the core part of DATm is 1.8 and 2.7 seconds for all arguments to just

tensor fields, respectively.

When only using field arguments the average time is longer. A Diderot template is used

to create synthetic data for tensor field arguments. That step is not necessary for tensor

arguments so when using a tensor arguments we expect the average time to be less.

5.5.4 Visualization Results

In this section, we present the results of running DAVm. The experiment created test

programs based on the MIP template. To sample the result, we created 30 groups of 4

points equal distance from the center. The right-most image in Figure 5.6 is an example of

the output from these tests. In the image, the points sampled are imposed on the volume

rendering of the test program. The experiment measures the the number of programs and

time it took to test those programs. The results are in Table 5.7.

DAVm is a prototype to illustrate DATm can be used for other types of testing. DAVm

has not found any errors in Diderot, but it was created after Diderot has already been

extensively tested with DATm. Testing with DAVm offers a few drawbacks: the testing

concept only applies to 3-d scalar fields and that restricts the type of test cases that can be

generated, and it takes longer to execute a visualization test program. As a result, DAVm

125

Table 5.7: Results from running DAVm. The time is given in minutes for both an exhaustive
and random search.

No. of No. of Time given probability.
Operators Programs 1 % 100 %

1 15 .01 16
2 216 3.13 344
3 3,151 81.63 -

does not create nearly as many tests as DATm for a given test size.

5.5.5 Snapshots of the Diderot compiler

To evaluate the effectiveness of DATm we ran the same set of programs on six different

snapshots of the compiler. The snapshots of the compiler where pulled off the Diderot

repository at four-month intervals, starting from March 2015. The experiment is a post

evaluation of the state of the compiler. We used the same settings as before and we used

exhaustive search with two nested operators, which generated almost 19,000 tests.

The results are organized by three different categories, “failed,” “compilation error,”

or “passed.” The “failed” description means that there was a bug because the numerical

result was not correct, or there was an run-time error when executing the program. The

“compilation error” descriptions indicates that the programs that did not compile because

there was an error at compile time. The compilation errors can include type errors from

testing operations that were not part of the language syntax at the time or from errors

elsewhere inside the compiler. The experiment measures the number of test programs that

fall into these different categories. Figure 5.9 provides the results from the experiment.

Over time, the number of tests that pass increases. Until DATm is introduced, the

compilation errors decrease but the numerical errors increase. It is unclear if the compilation

errors became numerical errors or there were other errors introduced during development and

not caught. The experiment does not indicate the number of bugs and we expect that many

126

0

2

4

6

8

10

12

14

16

18

20

Mar*15 Jul*15 Nov*15 1*Mar*16 1*Jul*16 Nov*16

N
um

be
r5o

f5P
ro
gr
am

s5
5(T
ho
us
an
ds
)

Date5(45months5apart)

Results'of'applying'DATm'at'snapshots'of'the'Diderot'compiler'
NA OK Did5not5compile Fail

DATm

Figure 5.9: Results when running DATm over time. Categories“OK”, “Fail”, “Did not
compiler”, and “NA” indicates a program passed, failed, it did not compile, or was thrown
out, because conditions set by the operators were not met, respectively. The vertical line
marks when DATm was introduced.

of the tests fail because of the same compiler bug. Various compilation errors may be due to

earlier versions of the implementation not fully supporting the newer language features. The

experiment shows that development of Diderot rapidly changed once DATm was introduced.

At the latest data point, Diderot did not fail any of the tests but there is a small gap of

programs that did not compile. After DATm revealed a bug (B15) when using modulate we

realized modulate should only be supported between vectors and restricted it in the Diderot

typechecker. At the time of the experiment the DATm type checker (Section 5.1.3) applied

the modulate operator to arbitrary tensors and generic fields. Therefore, DATm correctly

created Diderot test programs that applied modulate to generic arguments, but Diderot

could no longer compile them. The gap then best illustrates the mismatch in the expected

support (DATm typechecker) and the observed support (Diderot language).

5.6 Discussion

Automation DATm offers many benefits to testing Diderot. Testing offers more extensive

coverage for a set of operators than was otherwise available. It creates thousands of unique

programs, which would be unmanageable to write by hand. These programs include common

127

ones a developer might quickly write to test the language and unlikely ones that still deserve

and require examination.

Debugging DATm is designed to find bugs in the Diderot compiler but it can also aid

in the process of debugging. DATm can track failed tests and enables reproducibility. It is

possible to make copies of every program that fails, but that would be unmanageable. In

lieu of that, we use labels to apply targeted testing (Section 5.1.2). The labeling aids the

developer in the process of debugging by identifying tests that fail and enables the developer

to test them again after making changes to the compiler.

Hidden Bugs DATm has successfully found bugs in the Diderot language. The kinds of

errors range from type checking to those deep inside the compiler. Some of these bugs were

difficult to find because they only arise with a unique combination of operators (Section 5.4)

and a developer is unlikely to try those combinations.

Types of Test Programs An earlier section introduced a way to do visual verification

on programs with unknown algebraic solutions. Our application of DAVm demonstrated

how volume rendering templates can be used to generate and run test programs. The tem-

plates can be slightly altered to do different computations as long as the operations involved

maintain symmetry. We believe that it is possible to build other types of visualization test

programs by using templates.

Evaluation We have presented DATm, an automated testing tool for a high level lan-

guage. DATm provides a practical way to test the Diderot compiler by creating thousands

of tests and evaluating the results based on ground truth. We have described the details

of implementing DATm as well as an extension to create visual verification tests. We have

provided examples of bugs that DATm was able to find. The use of DATm has made the

compiler more reliable and correct. There are other types of improvements we can make

128

towards the testing process, such as including other types of testing strategies (see future

work Section 9.1.1).

129

CHAPTER 6

EXTENDING DIDEROT

The scientific community use PDEs to model a range of problem. The people in this domain

are interested in visualizing their results, but existing mechanisms for visualization can not

handle the full richness of computations in the domain. We did an exploration to see how

Diderot could be used to solve this problem. This chapter describes how we use Diderot to

visualize data created from solving PDEs.

Computational scientists compute solutions to systems of partial differential equations

(PDEs) on large finite meshes using numerical techniques, such as the finite element method

(FEM). These PDEs can be used to describe complex phenomena like turbulent fluid flow.

The solution to PDEs or the output to software that solves PDEs are sometimes referred

to as “FEM fields”. The Diderot language does not know how to solve PDEs, or represent

FEM fields, but it does have the computational model to visualize fields. The work in this

chapter takes a step towards using Diderot to visualize FEM fields. With this work we

hope to use Diderot to help debug visualizations of FEM fields and enable more interesting

visualizations.

Solving PDEs and visualizing PDEs require two different techniques and entirely different

code. To simplify the transition from solving a PDE to visualizing its solution, scientists may

turn to standard visualization tools to analyze their data. The problem with this approach

is that there is not a universal solution to accurately visualize every PDE. For example,

visualizing finite-element data created with higher order elements and a small number of

cells can lead to images that do not accurately represent the original solution. We believe

that Diderot can be useful.

We want the user to be able to use visualization programs enabled by Diderot on fields

created by FEM. Expecting users to transition from visualization toolkits to writing in a new

programming languages and developing an expertise in scientific visualization is a big ask.

Our goal is to be able to augment any existing Diderot program (written for discrete data)

130

and apply it to FEM data with minimal changes to the program. That way Diderot could

compile programs to extract interesting visualization features from FEM data (Section 7.2).

Our work demonstrates a modest step towards visualizing FEM data with Diderot. This

chapter is organized as follows. Section 6.1 offers some background about this problem area

and provides a motivating example. Section 6.2 describes the implementation details to

our approach. Section 6.3 demonstrates an application of our approach by providing one

example of the Helmholtz equation and interpolating a function. We end with a discussion

in Section 6.4.

6.1 Motivation

The Finite Element Method [10] gives a general framework for computing solutions to dif-

ferential equations. In Section 6.1.1, we more closely describe FEM fields and the software

used to create them. In Section 6.1.2 we describe the state of using visualization toolkits to

visualize a certain domain of FEM fields. We provide an example of a problem that can not

be visualized with the current state of visualization.

6.1.1 Background

FEM fields are created from a solving a PDE on a finite element mesh, which involves dis-

cretizing the domain into small finite mesh elements and using a set of basis functions (derived

from the mesh) to span the domain space. These fields approximate numeric solutions to

PDEs. Some of the related work is discussed in more detail in Chapter 8.

FEM Fields The Python code builds on the description of the problem. There are a

variety of different meshes that are built-in or could be created by outside tools. Often, we

use a unit square mesh.

m = UnitSquareMesh (2 , 2)

131

The code creates a 2x2 mesh of a square. Each smaller square is divided into two triangles

for a total of eight elements. The mesh is one of the arguments when defining a function

space.

V = FunctionSpace (m, “P” , K)

“P” refers to a family of finite element spaces (other families include “DP”, “RT”, and

“BDM”). The basis functions are linear when K=1 and cubic when K=3.

A FEM field can be created from solving a PDE, but it can also be generated by inter-

polating an analytically defined expression.

f = Function (V) . i n t e r p o l a t e (Express ion (exp))

In this chapter, when we wish to create simple examples we choose to generate fields from

expressions.

Software Computer scientists build software to solve PDEs that represent a wide range of

problems. On the surface the software (or programming language) ideally represents a high-

level math notation that is easy to understand but under the hood it is more complicated.

The translation between the notation and computer code involves several steps and pieces

of software. Solving a PDE involves the discretization of differential equations and uses

the finite element method to provide an approximate solution. Optimizing the translation

from PDE equation to approximate solution is pursed by many groups including the FEniCS

Project [28] and Firedrake [61].

The FEniCS [28, 53] project is an automated system to find solutions for partial differ-

ential equations using the finite element method. It enables users to employ a wide range

of discretization to a variety of PDEs. On the surface it uses the Unified Form Language

(UFL) [3], a domain-specific language to represent weak formulations of partial differential

equations. UFL does not provide the problem solving environment, instead it creates an

abstract representation that is used by form compilers, such as the The FEniCS Form com-

132

piler (FFC) [4], to generate low-level code. FFC can implement tensor reduction for finite

element assembly [48] and aims to accept input from any multilinear variational form and

any finite element to generate efficient code.

Firedrake [61] is a similar system that is also used to solve PDEs. In addition to UFL,

it uses a modified version of FFC [4] (and currently working on TSFC), FIAT [47] (and

replacing it with FINAT), a PyOP2 interface [62], and COFFEE [54]. FFC is the FEniCS

form compiler for generation of low-level C kernels from UFL forms. FIAT is the finite

element automatic tabulator. It presents an abstract description of elements and has a

wide range of finite element families. PyOP2 provides a framework for carrying out parallel

computations on unstructured meshes. The COFFEE compiler optimizes the abstract syntax

trees generated by FFC.

6.1.2 Creating and Visualizing FEM data

There are a number of approaches to supporting scientific visualization. A common way is

to use a toolkit such as the Visualization Toolkit (VTK) [65], ParaView [2], and the Insight

Toolkit (ITK) [40] or other languages and pieces of software we introduce in Section 8. In this

domain it is important for the visualization tool to understand how the data is represented

and that restraint limits the options available to the FEM user. Toolkits are commonly used

to visualize the solutions created by FEM software.

Existing practices to visualize FEM are insufficient. The strategy to solve PDEs is

very different from the algorithms used to visualize the result. Firedrake uses a VTK file

format for its visualization output. The format only supports linear and quadratic data.

Firedrake takes the output and writes the output to a linear file format1. Paraview might

then accurately assume linear basis functions to represent the Firedrake output even though

the original solution was created with higher-order elements. As a result the image may not

1. The images in this chapter are created when Firedrake did an L2 projection, but now Firedrake uses
interpolation to generate linear output.

133

exp = “x [0] ∗ x [0]∗(1−x [0]) ”
m = UnitSquareMesh (2 , 2)
V = FunctionSpace (m, “P” , K)
f = Function (V) . i n t e r p o l a t e (Express ion (exp))

Figure 6.1: The above code is written in Python and used to define a field by interpolating an
analytically defined expression given the function space. We define a polynomial expression
x2(1 − x) and a unit square mesh (m). The function space V is defined by a mesh (m),
the family of finite element spaces (P), and the order of the polynomial (K). The field (f)
is defined by interpolating an analytically defined expression given the function space (V).
The expression (exp) is composed with linear basis functions (when K=1) and a cubic basis
function (when K=3) using a unit square mesh (m).

WolframAlpha

Diderot

Figure 6.2: Fields created and visualized by a single source. We defined a function F (x) =
x2(1− x) where x ∈ [0, 1]. We expect the maximal point to be at x= 2

3 . WolframAlpha can
quickly and easily graph the results. In Diderot we synthesized a field by taking samples of
a function defined by F and saved the result to out.nrrd. Then a second Diderot program
was used to sample out.nrrd and visualize the result.

accurately represent the PDE solution.

In this section, we present the problem with the current state of visualizing FEM data by

providing a simple example of a how a bug can occur. We create a field using higher-order

data with a small number of cells. We present the results of using Paraview and Diderot

side by side. The implementation process that enables the communication between Diderot

and Firedrake is introduced in more detail in Section 6.2.

134

Vi
su

ali
ze

d
by

Paraview

 k=1 k=3

Diderot

Linear (k=1) Cubic (k=3)

Figure 6.3: Fields created by Firedrake using linear or cubic elements. We defined a function
F (x) = x2(1 − x) where x ∈ [0, 1]. We expect the maximal point to be at x= 2

3 . In
the following grayscale images, the maximal points are indicated by the brighter spots.
The two left images use Firedrake data created with linear elements (K=1). Regardless of
the visualization strategy we expect the images to be an inaccurate representation of the
solution.The two images on the right use Firedrake data created with cubic elements (K=3).
The image (top right) created with Paraview is incorrect, and the image (bottom right)
created with Diderot is correct.

135

Creating FEM data In the following example, we use Firedrake to create FEM data.

Instead of solving a PDE, we define a field by interpolating the expression given the function

space. We show the Python code in Figure 6.1.

We define a polynomial expression x2(1−x). Given a higher-order polynomial expression

we can also assume that linear functions will not correctly be able to represent it. On the

other hand, cubic functions should be able to offer a reasonable approximation for this

problem.

Visualizing FEM data We chose to visualize the expression several different ways in order

to provide a means of comparison. Figure 6.2 and Figure 6.3 present these visualizations.

The images in Figure 6.2 offer the ground truth for this example. Figure 6.3 uses Firedrake

data created with linear and cubic elements2. Regardless of the visualization strategy we

expect the images (left) created with linear elements to be an inaccurate representation of

the solution. On the other hand, we expect the images created with cubic elements to be

correct. The image (bottom right) created with Diderot is correct while the image (top right)

created with Paraview is not.

When the results do not represent the field it can be difficult to understand and use

visualizations to debug. From the user’s perspective the issue could be with the user’s UFL

code, Firedrake’s evaluation, or the visualization program. Our goal is to provide Diderot

as an alternative tool that can be used in these instances.

6.2 Our Approach

It is not a long term solution but we created our current prototype to establish communi-

cation between Firedrake and Diderot. Firedrake creates FEM data by solving a PDE or

interpolating an expression over a function space. Diderot visualizes the results and provides

2. As a note subdividing the field would create a more accurate solution but the context of the problem
required creating a field with higher-order elements and a small number of cells.

136

a few programs that can be initialized. Firedrake provides a way to evaluate a field at a

position and provides Diderot with a call back. In the Diderot program a field is defined

for FEM data instead of using field reconstruction and convolution. Everything else in the

Diderot program is the same. Lastly, when possible we try to evaluate the visualization

based on established visualization principles. We worked in collaboration with the Firedrake

team [61] at the Imperial College of London.

FEM data A field is created using FEM data with a Firedrake program. The field can

be the result of solving a PDE or interpolating an expression over a function space. The

Diderot syntax offers a limited way to represent tensor fields created by FEM data. The

FEM community might want to include more details in the field definition such as continuity

or mesh. We discuss design ideas in future work Chapter 9.

Diderot program The core of visualization programs is independent of the source of

data, but Diderot could only represent regular imaging grids. We addressed this limitation

by allowing the Diderot compiler to declare a field that is defined by FEM. Instead of creating

a field by using field reconstruction and convolution the user can use the following Diderot

line to indicate the new kind of field data.

input fem#0(2) [] g ;
f i e ld #0(2) []F = toF i e ld (g)

As a result, a visualization program written for regular imaging grids could be easily changed

so it is applied to the result of a PDE solution. We have created a few Diderot programs

that have been compiled to a library.

Firedrake program The Diderot program provides the framework to sample fields and

do volume rendering of 3-D fields. A Firedrake program makes a call to the Diderot library.

A field reference is used to initialize a call to the Diderot library. The following is a sample

of Python code that would be written in a Firedrake program.

137

r e s = 200 # r e s o l u t i o n to MIP program
step = 0.01 # step s i z e to ray t r a c e r
d ide ro t . mip (f i l e name , f , res , res , s t ep)

It initializes visualization parameters (such as resolution and step size) and provides a pointer

to the field.

Point Evaluation Firedrake can evaluate fields (represented as a FEM field) at arbitrary

physical points [34]. It determines which cell to look at. Diderot does not know how to

evaluate a FEM field at a given position. For each inside test, probe, and gradient operation

the field has to be evaluated at a position[34]. The generated code will use Firedrake’s point

evaluation functions for a given field and position.

Evaluate Visualization We could attempt to validate images created by Diderot. Ac-

cording to the Principle of Representation Invariance the data layout should not change the

results [46]. When possible, we can represent the data in two ways. The data is represented

either as a discrete image field convoluted with a kernel or a FEM field created by Firedrake.

If both fields are visualized using the same Diderot program, then we can expect that the

visualization of these fields to be the same.

6.3 Demonstration

We provide two examples to demonstrate results of this work. In the first example, a field is

created by interpolating an expression over an indicated function space and visualized with

a volume rendering program. In the second example, we provide a classic example of a PDE

and simply sample the result.

138

vec3 camAt = [1 , 1 , 1] ; // p o s i t i o n camera l o o k s at
input fem#0(3) [] g ;
f i e ld #0(3) []F = toF i e l d (g) ;
. . .

i f (! inSphere | | | pos−camAt|< 1){ out = max(out , F(pos)) ; }

Figure 6.4: The above is Diderot code. Diderot is used to do a volume rendering of this
3-d field by setting up a camera and doing a MIP. Diderot allows a user to define a field
by some external source. The Diderot program will generate code that will communicate to
Firedrake’s point evaluation capability to reduce F(pos).

Camera is pointed
off-center

Includes points
outside unit sphereBaseline

Firedrake
expression is

off-center

Baseline

Expression
creates

a larger sphere

D
at

e
cr

ea
tio

n
w

ith
 F

ire
dr

ak
e

MIP Diderot visualization program

Figure 6.5: Creates sphere with Firedrake. Included are examples of bugs. The centered
image is correct.

139

6.3.1 Communication between Diderot and Firedrake

Python code We create the field defined by interpolating the expression given the func-

tion space using Firedrake. We show the Python code under the “Firedrake Field” box in

Figure 6.6. We make a call to the Diderot library by passing the field and initializing the

resolution and step size (for the Diderot program).

Diderot code Diderot visualizes the result by using an augmented MIP program. MIP or

maximum intensity projection is a minimal volume visualization tool for 3-d scalar images.

The Diderot code for the Diderot program is presented in Figure 6.4.

Results We visualize the FEM field using a Diderot implementation of a MIP program.

We vary the expression created by Firedrake, where the camera in the Diderot program is

pointed, and how the data is included in the visualization program. We try these different

variations to mimic how a user might use an existing Diderot program (or template) to

visualize their data.

We provide the results in Figure 6.5. We set the camera to look at the center of the

data (center and right column) or off-center (left column). We also created fields with the

Firedrake expression centered (two top rows) and off-centered (third row).

The red box indicates the setting where the Diderot camera and firedrake expression are

both centered and result is as expected (symmetric sphere). The other images in the figure

are subject to bugs, because the function space defined by Firedrake does not match the

image space probed by Diderot (or where the camera is pointed). This example illustrates

the care that is needed when setting up the Firedrake Diderot pipeline.

Evaluate Visualization The data representation, either by FEM field, or discrete field,

should not change the visual representation (according to the Principle of Representation

Invariance). We compare the output for the field created by Firedrake and the field created

by Diderot in Figure 6.6. As can be expected, the image created by Firedrake is essentially

140

Firedrake Field

mesh = CubeMesh(l,l,l,2)
V = FunctionSpace(mesh, P, K)
exp = 0.5� ((1� x)2 +(1� y)2 +(1� z)2)
f = Function(V).interpolate(Expression(exp))
res = 200 # resolution
step = 0.01 # step size
diderot.mip(file_name, f, res, res, step)

1

Output Image

1

Diderot Field

field#k(3)[] F = bspln3 ~ "img.nrrd";
out = F(pos);

1

Mip Diderot Program

if(!inSphere || |pos-camAt|< 1)
{out = max(out, F(pos));}

1

Figure 6.6: This figure compares data created by two different sources and visualized with
the same tool. The fields are created by Firedrake and Diderot. In the Firedrake code
we create a cube mesh (m) of length 2 on each side. The function space V is defined by
a mesh (m), reference element (P), and uses cubic polynomials. The expression creates a
symmetrical sphere centered at [1,1,1] and shifted by 0.5. Field (f) is defined by interpolating
the expression given the function space (V) . We make a call to Diderot library by passing
the field and initializing the resolution and step size.

the same as that created by Diderot.

6.3.2 PDE Example

The Helmholtz problem is a symmetric problem and is a classic example of a PDE. Consider

the Helmholtz equation on a unit square Ω with boundary Γ.

−∇2u+ u = f

∇u · ~n = 0 on Γ.

The solution to the equation is some function u ∈ V for some suitable function space V that

satisfies both equations. After transforming the equation into weak form, applying a test

141

mesh = UnitSquareMesh (10 , 10)
V = FunctionSpace (mesh , “CG” , k)
u = Tria lFunct ion (V)
v = TestFunction (V)
f = Function (V)
f = #Interpolate the expression (6.2)
a = #Represents left-hand side of(6.1)
L = #Represents right-hand side of (6.1)
u = Function (V)
s o l v e (a == L , u , s o l v e r pa ramet e r s ={ ’ ksp type ’ : ’ cg ’ })
Paraview output
F i l e (“helmholtz . pvd”) << u
Call to Diderot
r e s =100
s t e p S i z e =0.01
type=1 # c r e a t e s nrrd f i l e
v i s d i d e r o t . ba s i c d2s samp l e (namenrrd , u , res , s t epS i ze , type)

Figure 6.7: We present the Python code to solve the Helmholtz problem. We omit some
details and instead provide comments for clarity.

function V , and integrating over the domain we get the following variational problem3.

∫
Ω
∇u · ∇v + uvdx =

∫
Ω
vfdx (6.1)

We choose function f4

f = (1.0 + 8.0π2)cos(2πx)cos(2πy) (6.2)

The Python code (shown in Figure 6.7) solves the PDE and connects the solution to Diderot.

The original code uses linear elements (k=1), but we choose to use linear and cubic elements.

We illustrate the results using Paraview and Diderot. The results are shown in Figure 6.8.

The image on the bottom right is a difference image and illustrates the difference between

the Diderot results. The data with higher-order elements and visualized with Diderot is the

more clear and refined. There is a smoothness captured with the higher-order data that is

3. The approach to solve PDEs with FEM is described in more detail in by Brenner and Scott[10].

4. The example and code are provided by Firedrake

142

Diderot

Vi
su

ali
ze

d
by

Paraview

K=1 K =3

Difference
Image

Figure 6.8: The data for the Helmholtz problem is created by Firedrake and visualized by
Paraview (top) and Diderot (bottom).

not in the linear data.

6.4 Discussion

The Finite-element community has difficulty visualizing fields that use higher order elements.

The communication pipeline allowed us to demonstrate Diderot’s ability to visualize FEM

data by sampling the data and doing volume renderings. We have shown that Diderot can

be used to correctly visualize fields created with higher order elements and a small number

of cells. We have also shown a way to evaluate the results for simple test cases by comparing

the result with an external data representation.

It would be beneficial if a Firedrake user could use Diderot with little hassle. We proposed

that we could ease this transition by providing a Diderot template (or existing Diderot

programs) that can be initialized by Firedrake code, however, as we have shown in example

(Section 6.3.1) this approach can still lead to errors. It takes care, by the user to ensure that

a Diderot program is set-up to correctly visualize the Firedrake data.

Our work provides motivation to further develop Diderot and incorporate it with the

143

FEM community. We have successfully established communication between Firedrake and

Diderot but it is limited. A call is made to Firedrake every time a field needs to be evaluated,

which makes the communication process expensive. If we move some of the evaluation to

Diderot it might be possible to alleviate some of the redundancy that is created with our

current method, making the communication process less expensive. In the future it then

may be possible to use more mature visualizations for FEM data. We describe ideas for

future work in Chapter 9.

144

CHAPTER 7

APPLICATIONS

We have discussed the contribution of our work in the previous chapters. We have measured

the impact of applying our implementation techniques inside the compiler in Chapter 3.

We have reported the results from applying our testing models in Chapter 5. We have

demonstrated the use of Diderot to visualize fields in another domain in Chapter 6.

In this chapter, we connect some of the work in the dissertation. In Section 7.1, we

describe how our work streamlines the process of adding new operators to the Diderot lan-

guage. In Section 7.2, we describe some of the visualization programs that benefit from

writing code at a high level. In Section 7.3 we describe some of programs that were enabled

by our implementation.

7.1 Adding operators to Diderot

Our work has made it easier and faster to add to the Diderot language. In previous chapters,

we have defined new EIN operators and presented bugs our testing model has found, but we

have not shown the full pipeline of adding something new to the surface language. When we

add an operator to the language we try to leverage our existing work. This includes a concise

representation in an expressive IR (Chapter 2), the generic implementation of operators

(Chapter 3), and a robust testing model (Chapter 5). In the following, we illustrate the

process of extending Diderot by working through an example of adding a new operator,

concat, to the language.

Goal A user can define new tensors by concatenating tensors together. A Diderot program

tensor [d1] S ;
tensor [d2]T;
tensor [d1 , d2]M = [S ,T] ;

145

A user can refer to components of tensor fields by using the slice operation as shown in

the following code. A Diderot program

f i e ld#k (d) [d1 , d2]A;
f i e ld#k (d) [d1 , d2]B;
f i e ld#k (d) [d1]F = A[: , 0] ;
f i e ld#k (d) [d1]G = B [: , 1] ;

We would like to provide a way to define new tensors fields by concatenating components

together. Using the tensor field variables F and G defined earlier in the program the Diderot

code should support the line

f i e ld#k (d) [d1 , d1]H = [F , G] ;

Design and implementation We can use EIN expressions as building blocks to represent

field concatenation. In EIN each field term is represented by an expression and it is enabled

with a delta function

==⇒
init

H = λF,G.
〈
Fjδ0i +Gjδ1i

〉
i:2,j:2(F,G)

After substitution the new EIN operator would be

===⇒
subst

H = λA,B.
〈
Aj0δ0i +Bj1δ1i

〉
îĵ

(A,B).

In the compiler we choose to create generic versions of an EIN operator that can be instan-

tiated to certain types.

λF,G.〈Fαδ0i +Gαδ1i〉i:2α̂(F,G)

λF,G,H.〈Fαδ0i +Gαδ1i +Hαδ2i〉i:3α̂(F,G,H)

To implement this operator we need to add to cases to the Diderot typechecker and add the

generic representations but not much else. Since we are solely using existing EIN expressions

146

to represent this computation, we can rely on the existing code to handle the EIN syntax.

Testing Once we have added a new operator to the surface language, it is natural to write

some test programs by hand. The tests we wrote by hand were straightforward, but limited

and unhelpful since it missed bugs. We can apply a more rigorous approach by using the

testing system, DATm. We add the concat operator to DATm (by creating a new operator

object) and used targeted testing to only generate test cases that use the concat operator.

DATm created and ran 126 test programs that use the concat operator.

We found two bugs in our implementation. One was in the creation of the EIN operator

and the second was a deeper bug. The second bug arose when computing the determinant

of the concatenation of a field. The bug was caused by the rewriting system. Our rewriting

system applies index-based rewrites to reduce EIN expressions. A specific index rewrite

is applied when the index in the delta term matches an index in tensor (or field) term.

The rewrite checked if two indices were equal and did not distinguish between variable and

constant indices. It is mathematically incorrect to reduce constant indices, because they are

not equivalent to variable indices. After fixing the bug we ran the tests again.

7.2 Exploiting Higher-order Operators

Scientists extract features to better understand inherent properties of their data. These

features can be based on individual pixels, detection of regions with specific shape, time,

and transformations of the data [41]. The work in this dissertation is designed to make it

easier for programmers to illustrate features in their data with Diderot.

Our work in the EIN IR makes it easier to develop algorithms that rely heavily upon

higher-order operations. This section describes three visualization features [44, 16] that

illustrate the impact and application of designing and implementing the EIN IR.

For scalar fields representing material properties over some scanned region (such as CT

or MRI data), the boundaries between materials are important features. To visualize the

147

continuous boundary as a connected feature of the spatial domain, we can use one of the

original definitions of edge detection due Canny [12]:a boundary is the locations in a scalar

field F where the gradient magnitude |∇ F| is maximal with respect to motion along the

gradient direction ∇ F/|∇ F| [12]. One could equivalently state that the gradient of the gra-

dient magnitude ∇ |∇ F| is orthogonal to the gradient direction i.e.,∇F/|∇F|•∇(|∇F|)=0.

The computation amounts to showing the zero-crossings of the derived scalar field C.

f i e ld #2(3) []C = −∇ (| ∇F |) • ∇F/ |∇F | ;

The new syntax supports tensor operators (magnitude, inner product, and division) on

tensor fields. This allows the user the write the core computation of this concept in high-

level Diderot code.

Vector fields arise in the analysis of fluid flow; properties of the derivatives of the vector

field characterize important features (such as vortices) in the flow. For example, the curl

∇ × V , indicates the axis direction and magnitude of local rotation. One definition of

vortices identifies them with places where the flow direction V
|V| aligns with the curl direction

∇×V
|∇×V| [25]. Normalized helicity measures the angle between these directions:

f i e ld #3(3) []H = (V/ |V |) • (∇×V/ |∇×V |) ;

in terms of the vector field V. The new syntax allows the computation to be used directly

in a field definition.

Material properties, such as diffusivity and conductivity, vary locally in magnitude, ori-

entation, and directional sensitivity, so they are modeled with second-order tensor fields.

Visualizing the structure of tensor fields typically depends on measuring various tensor in-

variants, such as anisotropy : the magnitude of directional dependence. For example, neu-

roscientists study the architecture of human brain white matter with diffusion tensor fields

computed from MRI [8]. A popular measure of diffusion anisotropy, “fractional anisotropy”

can be directly expressed in Diderot as:

f i e ld #4(3) [3 , 3]E = T − t r a c e (T)∗ identity [T] / 3 ;

148

f i e ld #4(3) []A = s q r t (3 . 0 / 2 . 0) ∗ |E | / |T |

which measures the magnitude of the purely anisotropic deviatoric tensor relative to the

tensor field T itself.

Subsequent visualization or analysis will typically require differentiation, such as the first

derivatives needed for shading renderings of isocontours, or the second derivatives needed for

extracting ridge and valley features. Generating expressions for ∇ H, and ∇ A by hand is

cumbersome and error-prone, whereas EIN allows Diderot to easily handle these and more,

such as second derivatives like ∇⊗∇ A.

7.3 Compilation of Tensor Calculus

Enriching Diderot with higher-order operations inspired a new generation of Diderot pro-

grams. Unfortunately the compiler suffered from space blow-up and many of these new

programs could not be compiled. To address the size issue, we developed compilation tech-

niques (Chapter 3) that reduce to size of the internal representation and enable compilation.

The following are some examples of visualization programs that faced the size issue when

they were first written, but can now be compiled with Diderot.

Curvature of a surface is defined by the relationship between small positional changes on

the surface and changes in the surface normal [45] (we show the program code in Figure 1.1).

We can enhance clarity and produce effective renderings in the image created by the program

by measuring Crest Lines. Crest Lines are places were the surface curvature is maximal along

the curvature direction [51]. We can find the crest lines by building on the curvature code

(as mentioned in Chapter 2) but the program stopped and could not finish compiling until

we developed the techniques mentioned in this dissertation.

Crease surfaces are two-dimensional manifolds along which a scalar field assumes a local

maximum (ridge) or a local minimum (valley) in a constrained space [30, 69]. Ridges are

defined by an extremum with a local neighborhood of points. A point is an extreme point if

149

the gradient of the field at that point is zero. Initially the programs that use a high-level of

math could not compile and suffered from a space blow-up.

The compilation issue was not just if a program would compile but how long it would

take to compile. A long compile time could negatively impact a user’s experience when using

Diderot and hinder rapid prototyping. The experiment section (Chapter 3.4) used several

benchmarks with different orders of mathematical expressivity and showed that the tech-

niques are effective at improving compile time. Implementing mathematical expressiveness

in Diderot includes addressing the technical issues that arose. By developing the compiler it

made possible to use the improved programmability of the Diderot language.

150

CHAPTER 8

RELATED WORK

In this section, we discuss related work organized by area.

8.1 Visualization tools and languages

There are a variety of domain-specific languages and frameworks that provide similar features

to those that are supported in Diderot.

• Shadie is a DSL for direct-volume rendering applications that is targeted at GPUs[38].

Similar to Diderot, shaders support the ability to perform computations on continuous

fields and their derivatives. Shadie is limited to direct-volume rendering applications,

whereas Diderot supports other visualization applications.

• Scout is a DSL that extends the data-parallel programming model with shapes (regions

of voxels in the image data) to accelerate visualization tasks on GPUs[55]. Scout is

designed for a different class of algorithms than Diderot. Specifically, algorithms that

are defined in terms of computations over discrete voxels, such as stencil algorithms,

rather than over a continuous tensor fields.

• Delite is a framework for implementing embedded parallel DSLs on heterogeneous

processors [11, 13]. While the Delite project and Diderot project share the idea that

parallel DSLs are an effective way to provide portable parallelism, they differ in the

way that the DSL is presented to the user. Delite embeds the DSL in Scala, which

limits the notational flexibility of the design, whereas the Diderot syntax is designed

to fit its application domain.

• Vivaldi is a DSL that supports parallel volume rendering applications on heterogeneous

systems [19]. It has a fixed volume rendering vocabulary and does not have the flexible

notation that Diderot provides. Specifically, Vivaldi does not support the full range

151

of higher-order field operators. ViSlang is a system to develop and integrate DSLs for

visualization [64].

8.2 Einstein Index Notation

EIN (Chapter 2) is inspired byEinstein Index Notation, which is a concise written notation for

tensor calculus invented by Albert Einstein [31]. Einstein index notation, sometimes called

the summation convention, can be used to represent a wide array of physical quantities

and algorithms in scientific computing [1, 7, 20, 27, 66, 67]. Various designers study the

ambiguities and limitations of the notation to extend its uses on paper and develop grammar

and semantics for implementation.

A part of the ambiguity in index notation is related to the implicit summation. Therefore,

various notational definitions are created to suppress summation[1]. These include using no-

tation to differentiate between types of indices, using a no-sum operator [7], and differentiate

between indices that repeat exactly twice[27, 67]. EIN notation is a compiler IR so the goal

is for the IR to supply enough information to represent the wide range of operations. EIN

notation uses an explicit summation symbol so it can explicitly set boundaries for diverse

operations. The notation leads to more book-keeping but allows more expressivity.

8.3 Intermediate representations and optimizations

Domain-specific languages can offer several benefits; the syntax and type system can be

designed to meet the practice and expectation of domain experts; the compiler can leverage

common domain-specific traits; and the programming model can abstract away from hard-

ware and operating system features. By using a domain specific language, the end-user can

write code that is familiar (to them) and let the system focus on generating high-performance

code. This notion of developing a high-level mathematical programming model is also empha-

sized in Diderot. There are various domain-specific languages that provide a link between

152

mathematical algorithms and programming. This section focuses on four domain-specific

compilers that are more closely related to our work (Spiral [60], TCE [49], COFFEE [54],

and UFL [3]).

The tensor contraction engine (TCE) created by Hartono, Albert et al. created a high-

level Mathematica style language for the quantum chemistry domain[23, 37, 49]. The class

of computations are multi-dimensional summations over products of several arrays. The

computations have a large number of nested loops and an explosively large parameter search

space. The calculations can require a larger space than available physical memory. To

address this issue, Hartono et al. developed algebraic transformations to reduce operation

counts. Like TCE, the Diderot language supports summations of products over several

arrays. Unlike TCE, Diderot supports a high level of expressiveness between tensors and

tensor fields and field differentiation.

Spiral is a DSL created for digital signal processing [35, 57, 60]. Its design encapsulates

significant mathematical knowledge of algorithms used in digital signal processing. Püschell

et al. addresses the goal of doing the right transformation at the right level of abstraction.

Its implementation uses three levels of IR: SPL to represent the signal processing language,

ΣSPL to express loops and index mapping, and C-IR for code level optimization. ΣSPL

does loop merging and create complicated terms that are simplified with a set of rewriting

rules [36]. EIN and ΣSPL both use summation expressions to represent loops, but the

Spiral IR expresses algorithms, while the EIN IR expresses general tensor calculus. As with

Spiral, Diderot allows its users to focus more on the mathematics and allowing the system

to generate high-performance code for their platform. Although Spiral provides a powerful

mathematical model, it targeted at the somewhat different domain of signal processing.

The Unified Form Language (UFL) is a domain-specific language for representing weak

formulations of partial differential equations [3]. UFL is most closely similar to EIN. At

its core both UFL and EIN support tensor algebra, high-level expressions with domain-

driven abstraction, and offer differentiation (automated vs. symbolic). The projects address

153

different domains, UFL is a language for expressing variational statements of PDEs and

Diderot is a language for scientific visualization and image analysis. UFL creates an abstract

representation that is used by several form compilers to generate low-level code. Therefore,

UFL avoids optimizations that a form compiler might want to perform and instead sticks

to a set of “safe and local” simplifications. Diderot controls the entire pipeline from surface

language to code generation and so it does have the opportunity to do optimal rewriting at

a higher level.

COFFEE is a domain-specific compiler for local assembly kernels[54]. The computation

made by COFFEE is key to finding numerical solutions to partial differential equations.

COFFEE computes the contribution of a single cell in a discretized domain for a linear

system to approximate a PDE. The entire computation is discretized into a larger number

of cells, making the time to compute this computation important. To enable better per-

formance COFFEE applies optimizations. COFFEE applies optimizations on a scalarized

tensor expression tree. Like COFFEE, EIN does loop-invariant code motion and expression

splitting on tensor expressions. Unlike COFFEE, EIN applies optimizations at a high level

to exploit the mathematical properties of the computations on higher-order tensors before

flattening

8.4 Evaluating a Visualization

Verifiable visualization allows us to apply a verification process to visualization algorithms [5,

72]. Instead of real-world datasets, one uses test cases with manufactured solutions. The

manufactured solutions could be created in a way to predict result of algorithm with its

implementation when evaluating a known model problem. Etiene et al. derives formulas for

the expected order of accuracy of isosurface features and compares them to experimentally

observed results in order to provide confidence in behavior [32].

We use the idea of verification [5, 72] as a guiding metric for evaluating testing. To

directly quote Etiene et al. “Verification is the process of assessing software correctness and

154

numerical accuracy of the solution to a given mathematical model.” [72]. The measure of

correctness for computations written in the Diderot language is based on how accurately the

output of the Diderot program represents the mathematical equivalent of the computations.

We evaluate the result of test programs written in DATm (Chapter 5) based on the previously

stated idea.

Kindlmann and Scheideggar introduce three algebraic design principles: The principle of

visual-data correspondence, the principle of unambiguous data depiction, and the principle

representation invariance [46]. The first two principles ensure that the data changes are

well-matched with visual changes, and that the changes are informative. The Principle of

Representation Invariance states that a visualization is invariant with respect to changes in

data representation. If a change is visible, then that change is a hallucinator (as defined by

[46]). We use the Principle of Representation Invariance to compare two different sources of

data in Chapter 6.

8.5 Testing

8.5.1 Domain-Specific Testing

There are a variety of domain-specific languages and frameworks that provide similar features

to those that are supported in Diderot, such as the previously mentioned Vivaldi and ViSlang.

There is no published work on testing (automated or otherwise) for these DSLs.

The importance of testing domain-specific languages has been discussed previously [63,

73]. Wu et al. introduces a framework, DUFT, to generate unit tests engines for DSLs [73]

by adding a layer of DSL unit testing on top of existing general-purpose language tools and

debugging services. DUFT tests DSL programs, but not the DSL implementation. DATm

automatically tests the DSL implementation Chapter 5 .

Ratiu et al. tested mbeddr, a set domain-specific languages on top of C built with

HetBrains MPS language workbench [63]. Language developers define assertions from the

155

specification of the DSL and defines a translation into the DSL. Unlike DATm, mbeddr

generates random models that might not pass type-checking rules.

There is work on testing specific properties of general purpose languages. Herbie is a tool

can be used automatically to improve accuracy in floating point arithmetic [59]. The work

introduces a method to evaluate the average accuracy of a floating-point expression and to

localize the source of rounding error. It randomly samples inputs, generates rewriting candi-

dates, and discovers rewrites to improve accuracy. Lindig [52] automatically tests consistency

of C compilers, specifically C calling conventions, using randomly generated programs. His

tool evaluates if the functions (that are being tested) correctly receive parameters. DATm

creates programs that are semantically more expressive than the programs created by this

tool.

8.5.2 Types of Testing

Randomized differential testing (RDT) is way of testing by examining two comparable sys-

tems [56, 74, 14, 26]. When the results differ (or one crashes), then there is a test case for a

potential bug. RDT is a widely used method for testing compilers in practice. Csmith [74]

is a tool that can generate random C programs with the goal of finding deep optimization

bugs. The programs are expressive and contain complex code. Similar to DATm, Csmith

effectively looks for deep optimization bugs in atypical combinations of language features.

Unlike DATm, Csmith evaluates results by comparing various C compilers, and so has no

ground truth.

Metamorphic testing is used to evaluate test programs when the correct solution is un-

known. With metamorphic testing the test cases are evaluated based on some known prop-

erty. Donaldson [26] et al. applies metamorphic testing to shader-language compilers by

using value injection. When comparing images, they note that small differences in rendered

images can occur even when there is no compiler bug and that makes it is hard to cre-

ate a correct solution. Mettoc creates a family of programs and compares them using an

156

equivalence relation [70]. When running DAVm, while we do not know what the correct

output of the generalized visualization programs is, we do know a property of the the result

(symmetry).

Palka et al. generates random and type-correct programs for the Glasgow Haskell com-

piler [58]. The output of optimized and unoptimized versions of the compiler are compared.

QuickCheck [22] is a widely used testing tool that allows Haskell programmers to test prop-

erties of a program. It is an embedded language for writing properties and can creates test

cases that satisfy a condition. The test case generator is limited to a number of candidate

test cases. Chen et al. [14] compares various compiler testing techniques. Besides RDT, they

use “different optimization levels” (DOL) where they compare the output for comparable

compilers at different optimization levels for the same program. They found it was effective

at finding optimization-related type bugs.

8.5.3 Choosing test cases

There is extensive work on how to create and choose test cases. McKeeman [56] describes

test case reduction and test quality with differential testing. When generating test cases

EasyCheck [21] focuses on traversal strategy. Bernardy, et al. [9] present a scheme that

leads to a reduction in the number of needed test cases. In addition to fixing types, they

also fix some arguments passed to functions, effectively avoiding meaningless tests. Feat [29]

exhaustively enumerates on the possible values of data types. A Test set diversity metric

[33] is applied to ensure a diverse set of test cases by using information distance (regardless

of datatype) when automatically creating tests.

157

CHAPTER 9

CONCLUSION

The work in this dissertation has been fundamental to the development of Diderot. The

design and implementation of the EIN IR has increased the programmability of the Diderot

language. We have made the compiler more robust with our implementation techniques and

correctness proofs. We have also made our new features more reliable by developing an

automated testing model for the language. We describe some ideas for future work in the

following section.

9.1 Future Work

9.1.1 Correctness and Testing

Testing Coverage The subset of the Diderot language that is being tested is clearly

described. DATm is testing the fundamental computations and types of the language, while

DAVm puts those computations in the core part of a visualization program. We test various

combinations of the operators and arguments in the exhaustive setting to imitate what can

be expressed in the language. We do not currently evaluate testing coverage or measure the

how many lines of the Diderot compiler are being tested. In the future it might be possible

to use existing tools to mark and measure unused paths in the Diderot compiler.

Smarter Test generation We measured the time it takes to implement a single test case

(Section 5.5.3) and we know that the majority of the time is spent on the C compiler. While

the portion of time spent in the testing infrastructure is not substantial it indicates that there

can be room for improvement. Making the testing process faster makes it more feasible to

do a larger search for test cases and as a result apply a more robust testing approach to the

language.

158

One way to cut back on time can be to focus on efficient test case generation. DATm

generates small Diderot programs, and there is not much need for minimization or reducing

the program size. There could be a need to evaluate the distribution of test case. If we

wanted to do a random search in a deep test space it might not be feasible to test every test

case we find. Instead the tests should be evaluated based on existing cases or by applying

some size metric [33, 9].

Clear Bug Reporting There is currently no way to automatically distinguish between

the various types of test failures. A single bug could cause multiple test failures and the

bug log reports each (failed) test consecutively. Instead the Diderot compiler could generate

error messages with labels. DATm could read the labels and use it categorize the test results.

The bug log would then be organized by errors and produce a more informative report.

Types of Testing It has been valuable to have an exhaustive approach to generating test

programs, since testing has exposed interesting and rare bugs, but an application of different

types of testing could complement our testing process. While it is not helpful to test against

earlier versions of Diderot (because of extensive language changes), we could possibly create

a family of test programs and do some variation of differential testing [56]. In the future,

it would be interesting to evaluate the effectiveness of different testing approaches on the

Diderot compiler [14].

Parallel Testing The time it takes to run a large number of tests is a limiting factor

in the usefulness of DATm. It takes seconds per test (depending on the test’s complexity

and input argument types), which limits its use to either long runs or very sparse random

testing. Fortunately, it should be fairly easy to run multiple tests in parallel using multiple

Unix processes on multicore servers or workstations.

159

9.1.2 Design and Implementation

New language features The work in this dissertation has made it easier to add operators

to the surface language. In (Section 7.1) we implemented a limited version of an operation

to build tensor fields. Our representation is limited to two or three tensor field arguments to

build a tensor field and is lacking generality We need to create a new structure that accepts

a generic number of arguments with a mix of tensors and field components.

There are other operators that have not yet been explored. One example includes the

various built-in math functions and the more complicated eigensystem. Applications for

these operators in a visualization program can help drive the implementation for these new

features.

Increase sharing The compilation issue has been largely solved, but there are other pos-

sible approaches to this problem. For one, we could redesign EIN with sharing in mind.

Second, we could make sharing visible during normalization. Sharing values would be effec-

tive when applying rewrites that clearly replicate expressions but it also has the potential

to hide other common computations.

9.1.3 FEM and Diderot

Debugging FEM data with Diderot The work on visualizing FEM data opens the door

to more useful applications. Diderot could potentially be used to visually debug and validate

fields created by FEM and possibly reveal hidden details in data created with higher-order

elements. We have shown an example of using Diderot to correctly visualize a field created

by Firedrake, but have not explored its full potential.

Mature visualization for FEM data We have not visualized FEM data with Diderot

programs that use higher-order code. Partly, because the EIN IR (discussed in Chapter 2)

cannot yet represent FEM data. In the future, we look forward to being able to apply more

160

complicated visualization programs to FEM fields.

The callback that Firedrake offers, to evaluate a field at a point, is also limited. As far

as we know, Firedrake does not offer a call back to take third or fourth derivatives of fields

(which is necessary in some visualization programs as shown in Chapter 7). Additionally,

the call back can only evaluate some fields. There is no callback supported for some niche

problems such as extruded meshes, manifolds, and mixed element meshes. These type of

structures could possibly require more syntax consideration on the Diderot side as well.

Better communication between Diderot and FEM When a Diderot program is

evaluating a tensor field it makes a call to Firedrake’s point evaluation functions. Each

function call creates multiple tensor operations in order to do the right transformations and

find the right cell. The change in coordinates from a reference element to one being computed

involves the calculation of the Jacobian matrix, its determinant, and its inverse.

These operations can be similar to previous calls, leading to redundant and expensive

computations. Diderot does not know how to evaluate a FEM field at a point or have the

syntax to find the right cell, but it can represent tensor computations. If we are able to move

some of the computations into Diderot then Diderot can catch these redundant computations

and the entire process is less expensive.

Describing a FEM field The current Diderot syntax to define a field is written as follows.

fem#k (d) [σ] f ;
f i e ld#k (d) [σ]F = toF i e l d (f) ;

The syntax could be more informative for someone reading the Diderot code. Instead of

using the phrase “fem” it might be more descriptive to provide different syntax to define a

field created by FEM data. We could create two new datatypes; a mesh (mesh) and a field

pointer (fptr). A mesh could note the reference element (elem) and polynomial order (o).

input string elem ;
input int o ;

161

input mesh (o) m = mesh (elem , o) ;

The field pointer (fptr) is a pointer to the field data.

input f p t r#p q (d) [σ] f ;

The syntax could reflect implementation restrictions. For example, the continuity of the

field created (noted in code as p) might be distinct from the number of derivatives available

(noted in code as q) by callback mechanisms. The field will then be defined by composing

the mesh and field pointer.

f i e ld#q (d) [σ]F = toF i e l d (m, f)

The syntax is more informative to someone reading the code than the current syntax.

9.1.4 Writing directly in EIN IR

Being able to support an index-like notation directly in Diderot could be beneficial to quick

prototyping and debugging. Writing directly in index notation allows the developer to specify

computations that may be difficult to replicate with existing surface level operators. It can

help a developer create intricate test cases to more rigorously test the implementation. It

is worth noting that the suggested syntax is for writing in the EIN IR and not to support

traditional Einstein Index notation on the surface.

Translation The translation process would convert the surface level notation to the EIN

IR. In this section we will use notation t[α0, α1, . . .] to indicate the EIN term for tensor

variable t has indices initialized with α. We use the term “Ein ∗ ” to indicate that the

syntax is now in EIN notation. We use “EinAdd” and “EinMult” to mean add and multiply,

respectively. Consider, adding two permutations of the same tensor:

tensor [2 , 3 , 3] t ;
tensor [2 , 3 , 3] out = EinAdd(t [a , b , c] , t [a , c , b]) ;

162

A direct mapping of the variable t in term t[a, b, c] can create EIN expression Tijk and a

permutation of the variable in t[a, c, b] creates term Tikj in the EIN operator:

out = λ(T)
〈
Tijk + Tikj

〉
i:a,j:b,k:c

(t)

Set of new rules The translation process would require imposing certain restrictions

on the syntax to clear up ambiguity. Such as the use of an explicit summation symbol

(Σ) instead of using an implicit summation convention. Consider writing several product

operations between two tensors (T and M) with code

tensor [d1 , d2 , d2] T;
tensor [d2 , d2] M;
// inner product
tensor [d1 , d2 , d2] i nne r = EinMult(T[a , b , d] , M[d , c]) ;
// doub le dot product
tensor [d1] double = Σbc(EinMult(T[a , b , c] , M[b , c])) ;
// augmented product
tensor [d1] augmented = Σc(EinMult(T[a , b , c] , M[c , b])) ;

Like the EIN IR, we use an explicit summation symbol (Σc) to clearly mark variable bindings.

This type of translation should be clear to the user and compiler.

inner = λ(T,M)
〈∑

l Tijl ∗Mlk

〉
i:d1,j:d2,k:d2

(T,M)

double = λ(T,M)
〈∑

jk Tijk ∗Mjk

〉
i:d1

(T,M)

augmented = λ(T,M)
〈∑

jk Tijk ∗Mkj

〉
i:d1

(T,M)

Discussion An existing operator (slice), and another (currently being developed) opera-

tor (cons) could possibly represent these computations by projecting components and then

composing them together. However the surface level syntax and internal representations (of

slice and cons) would likely be much larger than that created by writing directly in EIN.

Writing directly in EIN can then offer a more readable and concise way to refer to tensor

and field components.

163

Like the EIN IR, we use an explicit summation symbol (Σc) on the surface language to

clearly mark variable index (c) boundaries. Alternatively, we could rely on the translation

to recognize the redundant indices in the product term and create a summation operator.

However, that could be expensive and confusing to the user.

9.1.5 Indicating covariant and contravariant indices

There is a distinction between traditional Einstein index notation and what is represented

by the EIN IR. Traditional Einstein index notation is widely used in textbooks and could

be the most intuitive way for a user to write in index notation. The notation typically notes

covariant and contra-variant indices with an upper and lower index M
µ
ν .

Diderot’s coordinate system assumes an orthonormal basis and so the distinction between

indices does not matter. In the future, supporting co/contra-variant indices in EIN may be

useful for future language features. We may wish to make that distinction in the surface

language.

tensor [µ ; ν] M;

There is currently no support to distinguish between covariant and contra-variant indices in

the compiler. It is unclear if we need to create a full translation from source language to

code around the IR to be sure the mathematical value is maintained.

.

164

REFERENCES

[1] K. Ahlander. Einstein summation for multi-dimensional arrays. Computers and Math-
ematics with Applications, 44:1007–1017, October – November 2002.

[2] James Ahrens, Berk Geveci, and Charles Law. Paraview: An end-user tool for large
data visualization. In Visualization Handbook, pages 717–731. Academic Press, Inc.,
Orlando, FL, USA, 2005.

[3] Martin S. Alnaes, Anders Logg, Kristian B. Oelgaard, Marie E. Rognes, and Garth N.
Wells. Unified form language: A domain-specific language for weak formulations of par-
tial differential equations. ACM Transactions on Mathematical Software, 40, February
2014.

[4] A.Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells. FFC: the fenics form compiler.
In A. Logg, K.-A. Mardal, and G. N. Wells, editors, Automated Solution of Differential
Equations by the Finite Element Method, volume 84 of Lecture Notes in Computational
Science and Engineering, chapter 11, pages 227–238. Springer, 2012.

[5] Ivo Babuska and J. Tinsley Oden. Verification and validation in computational en-
gineering and science: Basic concepts. Computer Methods in Applied Mechanics and
Engineering, 193(36-38):4057–4066, 9 2004.

[6] H. P. Barendregt. The Lambda Calculus, volume 103 of Studies in Logic and the Foun-
dations of Mathematics. North-Holland, New York, NY, revised edition, 1984.

[7] A. Barr. The Einstein summation notation, introduction to carte-
sian tensors and extensions to the notation. Draft paper; available at
http://zeus.phys.uconn.edu/ mcintyre/workfiles/Papers/Einstien-Summation-
Notation.pdf.

[8] P J Basser and C Pierpaoli. Microstructural and physiological features of tissues eluci-
dated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance, Series B,
111(3):209–219, 1996.

[9] Jean-Philippe Bernardy, Patrik Jansson, and Koen Claessen. Testing polymorphic prop-
erties. In Proceedings of the 19th European Conference on Programming Languages and
Systems, ESOP’10, pages 125–144, Berlin, Heidelberg, 2010. Springer-Verlag.

[10] Susanne C Brenner and Ridgway Scott. The mathematical theory of finite element
methods, volume 15. Springer, 2007.

[11] K. J. Brown, A. K. Sujeeth, Hyouk J. Lee, T. Rompf, H. Chafi, M. Odersky, and
K. Olukotun. A Heterogeneous Parallel Framework for Domain-Specific Languages. In
Parallel Architectures and Compilation Techniques (PACT), 2011 International Con-
ference on, pages 89–100. IEEE, October 2011.

[12] J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8(6):679–714, 1986.

165

[13] Hassan Chafi, Zach DeVito, Adriaan Moors, Tiark Rompf, Arvind K. Sujeeth, Pat Han-
rahan, Martin Odersky, and Kunle Olukotun. Language virtualization for heterogeneous
parallel computing. SIGPLAN Not., 45(10):835–847, October 2010.

[14] Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang, and
Bing Xie. An empirical comparison of compiler testing techniques. In Proceedings of
the 38th International Conference on Software Engineering, ICSE 2016, Austin, TX,
USA, May 14-22, 2016, pages 180–190, 2016.

[15] Charisee Chiw. Ein notation in diderot. Master’s thesis, University of Chicago, April
2014.

[16] Charisee Chiw, Gordon L Kindlman, and John Reppy. EIN: An intermediate represen-
tation for compiling tensor calculus. In Proceedings of the 19th Workshop on Compilers
for Parallel Computing (CPC 2019), July 2016.

[17] Charisee Chiw, Gordon Kindlmann, and John Reppy. Datm: Diderots automated
testing model. IEEE/ACM 39th International Conference on Software Engineering
(IEEE/ACM 12th International Workshop on Automation of Software), page (to ap-
pear), 2017.

[18] Charisee Chiw, Gordon Kindlmann, John Reppy, Lamont Samuels, and Nick Seltzer.
Diderot: A parallel dsl for image analysis and visualization. SIGPLAN Not., 47(6):111–
120, June 2012.

[19] H. Choi, W. Choi, T.M. Quan, D.G.C. Hildebrand, H. Pfister, and W. Jeong. Vi-
valdi: A domain-specific language for volume processing and visualization on distributed
heterogeneous systems. IEEE Transactions on Visualization and Computer Graphics,
20(12):2407–2416, December 2014.

[20] Tai L. Chow. Mathematical Methods for Physicists : A Concise Introduction. Cambridge
University Press, Cambridge, 2000.

[21] Jan Christiansen and Sebastian Fischer. Easycheck: Test data for free. In Proceedings
of the 9th International Conference on Functional and Logic Programming, FLOPS’08,
pages 322–336, Berlin, Heidelberg, 2008. Springer-Verlag.

[22] Koen Claessen and John Hughes. Quickcheck: A lightweight tool for random testing of
Haskell programs. In Proceedings of the Fifth ACM SIGPLAN International Conference
on Functional Programming, ICFP ’00, pages 268–279, New York, NY, USA, 2000.
ACM.

[23] D. Cociorva, J. W. Wilkins, C. Lam, G. Baumgartner, J. Ramanujam, and P. Sadayap-
pan. Loop optimization for a class of memory-constrained computations. In Proceedings
of the 15th International Conference on Supercomputing, ICS ’01, pages 103–113, New
York, NY, USA, 2001. ACM.

166

[24] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently computing static single assignment form and the control dependence
graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, October 1991.

[25] D. Degani, Y. Levy, and A. Seginer. Graphical visualization of vortical flows by means of
helicity. American Institute of Aeronautics and Astronautics (AIAA) Journal, 28:1347–
1352, August 1990.

[26] Alastair F. Donaldson and Andrei Lascu. Metamorphic testing for (graphics) compilers.
In Proceedings of the 1st International Workshop on Metamorphic Testing, MET@ICSE
2016, Austin, Texas, USA, May 16, 2016, pages 44–47, 2016.

[27] Kees Dullemond and Kasper Peeters. Introduction to Tensor Calculus. Kees Dullemond
and Kasper Peeters, 1991.

[28] Todd Dupont, Johan Hoffman, Claus Johnson, Robert C Kirby, Mats G Larson, Anders
Logg, and R Scott. The FEniCS project. Chalmers Finite Element Centre, Chalmers
University of Technology, 2003.

[29] Jonas Dureg̊ard, Patrik Jansson, and Meng Wang. Feat: Functional enumeration of
algebraic types. In Proceedings of the 2012 Haskell Symposium, Haskell ’12, pages 61–
72, New York, NY, USA, 2012. ACM.

[30] David Eberly, Robert Gardner, Bryan Morse, Stephen Pizer, and Christine Scharlach.
Ridges for image analysis. Journal of Mathematical Imaging and Vision, 4(4):353–373,
1994.

[31] Albert Einstein. The foundation of the general theory of relativity. In A. J. Kox,
Martin J. Klein, and Robert Schulmann, editors, The Collected papers of Albert Einstein,
volume 6, pages 146–200. Princeton University Press, Princeton NJ, 1996.

[32] Tiago Etiene, Carlos Scheidegger, L Gustavo Nonato, Robert M Kirby, and Cláudio T
Silva. Verifiable visualization for isosurface extraction. Visualization and Computer
Graphics, IEEE Transactions on, 15(6):1227–1234, 2009.

[33] R. Feldt, S. Poulding, D. Clark, and S. Yoo. Test Set Diameter: Quantifying the
Diversity of Sets of Test Cases. ArXiv e-prints, June 2015.

[34] Firedrake. Firedrake: Point evaluation. http://firedrakeproject.org/point-
evaluation.html.

[35] Franz Franchetti, Frédéric de Mesmay, Daniel McFarlin, and Markus Püschel. Operator
Language: A Program Generation Framework for Fast Kernels, pages 385–409. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009.

[36] Franz Franchetti, Yevgen Voronenko, and Markus Püschel. Formal loop merging for
signal transforms. In Proceedings of the 2005 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’05, pages 315–326, New York, NY,
USA, 2005. ACM.

167

[37] Xiaoyang Gao, Swarup Kumar Sahoo, Chi-Chung Lam, J. Ramanujam, Qingda Lu,
Gerald Baumgartner, and P. Sadayappan. Performance modeling and optimization of
parallel out-of-core tensor contractions. In Proceedings of the Tenth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’05, pages 266–
276, New York, NY, USA, 2005. ACM.

[38] Miloš Hašan, John Wolfgang, George Chen, and Hanspeter Pfister. Shadie: A
domain-specific language for volume visualization. Draft paper; available at http:

//miloshasan.net/Shadie/shadie.pdf, 2010.

[39] Gerhard A. Holzapfel. Nonlinear Solid Mechanics. John Wiley and Sons, West Sussex,
England, 2000.

[40] Luis Ibanez and Will Schroeder. The ITK Software Guide. Kitware Inc., 2005.

[41] Richard L. Van Metter Jacob Beutel, Harold Kundel. Medical image processing and
analysis. SPIE Press., 2000.

[42] Christopher Johnson and Charles Hansen. Visualization Handbook. Academic Press,
Inc., Orlando, FL, USA, 2004.

[43] Gordon Kindlmann. Diderot-language/examples. Available from
https://github.com/Diderot-Language/examples.

[44] Gordon Kindlmann, Charisee Chiw, Nicholas Seltzer, Lamont Samuels, and John Reppy.
Diderot: a domain-specific language for portable parallel scientific visualization and im-
age analysis. IEEE Transactions on Visualization and Computer Graphics (Proceedings
VIS 2015), 22(1):867–876, January 2016.

[45] Gordon Kindlmann, Ross Whitaker, Tolga Tasdizen, and Torsten Moller. Curvature-
based transfer functions for direct volume rendering: Methods and applications. In
Proceedings of the 14th IEEE Visualization 2003 (VIS’03), VIS ’03, pages 67–, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

[46] Gordon L. Kindlmann and Carlos Eduardo Scheidegger. An algebraic process for visu-
alization design. IEEE Trans. Vis. Comput. Graph., 20(12):2181–2190, 2014.

[47] Robert C Kirby. Algorithm 839: Fiat, a new paradigm for computing finite element
basis functions. ACM Transactions on Mathematical Software (TOMS), 30(4):502–516,
2004.

[48] Robert C. Kirby, Matthew Knepley, Anders Logg, and L. Ridgway Scott. Optimizing
the evaluation of finite element matrices. SIAM J. Sci. Comput., 27(3):741–758, October
2005.

[49] Sandhya Krishnan, Sriram Krishnamoorthy, Gerald Baumgartner, Chi-Chung Lam,
J. Ramanujam, P. Sadayappan, and Venkatesh Choppella. Efficient synthesis of out-
of-core algorithms using a nonlinear optimization solver. J. Parallel Distrib. Comput.,
66(5):659–673, 2006.

168

[50] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation via equivalence modulo
inputs. In ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014, pages 216–226,
2014.

[51] R. Lengagne, P. Fua, and O. Monga. Using crest lines to guide surface reconstruc-
tion from stereo. In Pattern Recognition, 1996., Proceedings of the 13th International
Conference on, volume 1, pages 9–13 vol.1, Aug 1996.

[52] Christian Lindig. Random testing of C calling conventions. In Proceedings of the Sixth
International Symposium on Automated Analysis-driven Debugging, AADEBUG’05,
pages 3–12, New York, NY, USA, 2005. ACM.

[53] Anders Logg, Kent-Andre Mardal, and Garth Wells. Automated Solution of Differen-
tial Equations by the Finite Element Method: The FEniCS Book. Springer Publishing
Company, Incorporated, 2012.

[54] Fabio Luporini, Ana Lucia Varbanescu, Florian Rathgeber, Gheorghe-Teodor Bercea,
J. Ramanujam, David A. Ham, and Paul H. J. Kelly. Cross-loop optimization of arith-
metic intensity for finite element local assembly. TACO, 11(4):57:1–57:25, 2014.

[55] Patrick McCormick, Jeff Inman, James Ahrens, Jamaludin Mohd-Yusof, Greg Roth, and
Sharen Cummins. Scout: A data-parallel programming language for graphics processors.
J. Par. Comp., 33:648–662, November 2007.

[56] William M. McKeeman. Differential testing for software. Digital Technical Journal,
10(1):100–107, 1998.

[57] Georg Ofenbeck, Tiark Rompf, Alen Stojanov, Martin Odersky, and Markus Püschel.
Spiral in scala: towards the systematic construction of generators for performance li-
braries. In Generative Programming: Concepts and Experiences, GPCE’13, Indianapo-
lis, IN, USA - October 27 - 28, 2013, pages 125–134, 2013.

[58] Michal H. Palka, Koen Claessen, Alejandro Russo, and John Hughes. Testing an opti-
mising compiler by generating random lambda terms. In Proceedings of the 6th Inter-
national Workshop on Automation of Software Test, AST ’11, pages 91–97, New York,
NY, USA, 2011. ACM.

[59] Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary Tatlock. Auto-
matically improving accuracy for floating point expressions. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’15, pages 1–11, New York, NY, USA, 2015. ACM.

[60] Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso,
Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang
Chen, Robert W. Johnson, and Nicholas Rizzolo. SPIRAL: Code generation for DSP
transforms. Proceedings of the IEEE, special issue on “Program Generation, Optimiza-
tion, and Adaptation”, 93(2):232– 275, 2005.

169

[61] Florian Rathgeber, David A. Ham, Lawrence Mitchell, Michael Lange, Fabio Luporini,
Andrew T. T. McRae, Gheorghe-Teodor Bercea, Graham R. Markall, and Paul H. J.
Kelly. Firedrake: automating the finite element method by composing abstractions.
Submitted to ACM TOMS, 2015.

[62] Florian Rathgeber, Graham R Markall, Lawrence Mitchell, Nicolas Loriant, David A
Ham, Carlo Bertolli, and Paul HJ Kelly. Pyop2: A high-level framework for
performance-portable simulations on unstructured meshes. In High Performance Com-
puting, Networking, Storage and Analysis (SCC), 2012 SC Companion:, pages 1116–
1123. IEEE, 2012.

[63] Daniel Ratiu and Markus Voelter. Automated testing of DSL implementations: Expe-
riences from building mbeddr. In Proceedings of the 11th International Workshop on
Automation of Software Test, AST ’16, pages 15–21, New York, NY, USA, 2016. ACM.

[64] Peter Rautek, Stefan Bruckner, Meister Eduard Gr”oller, and Markus Hadwiger. Vis-
lang: A system for interpreted domain-specific languages for scientific visualization.
IEEE Transactions on Visualization and Computer Graphics, 20(12):2388–2396, 2014.

[65] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit: An Object
Oriented Approach to 3D Graphics. Kitware, Inc., Clifton Park, New York, 3rd edition,
2004.

[66] James. Simmonds. A Brief on Tensor Analysis. Springer-Verlag, New York, 1982.

[67] Ivan Stephen Sokolinkoff. Tensor Analysis. John Wiley and Sons, New York, 1960.

[68] Sympy is a python library. SymPy website at http://www.sympy.org/en/index.html.

[69] Schultz T, Theisel H, and Seidel HP. Crease surfaces: from theory to extraction and
application to diffusion tensor mri. IEEE Trans. Vis. Comp. Graph., 16:109–119, 2010.

[70] Qiuming Tao, Wei Wu, Chen Zhao, and Wuwei Shen. An automatic testing approach
for compiler based on metamorphic testing technique. In 17th Asia Pacific Software
Engineering Conference, APSEC 2010, Sydney, Australia, November 30 - December 3,
2010, pages 270–279, 2010.

[71] Teem Library. Teem website at http: // teem. sf. net .

[72] Cludio T Silva Tiago Etiene, Robert M Kirby. An Introduction to Verification of Vi-
sualization Techniques, volume 7. Morgan and Claypool Publishers, Clifton Park, New
York, 3rd edition, December 2015.

[73] Hui Wu, Jeff Gray, and Marjan Mernik. Unit Testing for Domain-Specific Languages,
pages 125–147. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[74] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding
bugs in C compilers. SIGPLAN Not., 46(6):283–294, June 2011.

170

APPENDIX A

PROOFS

A.1 Type Preservation Proof

The following is a proof for Theorem 4.1.1

Given a derivation d of the form e −−−→
rule

e′ we state T(d) as a shorthand for the claim that

the derivation preserves the type of the expression e. For each rule, the structure of the left-

hand-side term determines the last typing rule(s) that apply in the derivation of Γ, σ ` e : τ .

We then apply a standard inversion lemma and derive the type of the right-hand-side of the

rewrite . The proof demonstrates that ∀d.T (d).

Case on structure of d

Case R1.(e1 �n e2)@x −−−→
rule

(e1@x)�n (e2@x)

We will do a case analysis on the structure on the left-hand-side

where �n ={∗|/}.

First we will prove T(d) for �n =∗ then �n =/.

if �n = ∗

Find Γ, σ ` ((e1 ∗ e2)@x)

This type of structure inside a probe operation results in a tensor type.

The LHS has the following type.

Γ, σ ` (e1 �n e2)@x :(σ)T

We want to show that the RHS has the same type.

Γ, σ ` (e1@x)�n (e2@x):(σ)T .

The type derivation for the LHS is the following structure.

Γ, σ ` e1 : (σ)Fd Γ, σ ` e2 : (σ)Fd[TYINV11]

Γ, σ ` e1 ∗ e2 : (σ)Fd[TYINV7]

Γ, σ ` x : Ten[d]

Γ, σ ` (e1 ∗ e2)@x : (σ)T
171

From that we can make the RHS derivations.

Find Γ, σ ` ((e1@x) ∗ (e2@x))

Given that Γ, σ ` e1, e2 : (σ)Fd,

then Γ, σ ` e1@x, e2@x : (σ)T by [TYJUD7],

and Γ, σ ` e1@x ∗ e2@x : (σ)T by [TYJUD11]

T(R1 for �n = ∗)

if �n = /

Find Γ, σ ` ((e1e2)@x)

This type of structure inside a probe operation results in a tensor type.

Γ, σ ` (e1 �n e2)@x : (σ)T ([TYINV7])

Find Γ, σ ` (e1 and e2)

Γ, σ ` e1 : (σ)Fd, Γ, σ ` e2 : ()Fd[TYINV12]

Γ, σ ` (
e1

e2
) : (σ)Fd[TYINV7]

Γ, σ ` x : Ten[d]

Γ, σ ` (
e1

e2
)@x : (σ)T

Find Γ, σ ` (
(e1@x)
(e2@x)

)

Given that Γ, σ ` e1 : (σ)Fd,Γ, σ ` e2 : ()Fd

then Γ, σ ` e1@x : (σ)T by [TYJUD7],

Γ, σ ` e2@x : ()T by [TYJUD7],

and Γ, σ ` e1@x
e2@x : (σ)T by [TYJUD12].

T(R1 for �n = /)

T(R1) OK

Case R2.(e0 �2 e1)@x −−−→
rule

(e0@x)�2 (e1@x)

�2 = + | −

Find Γ, σ ` ((e1 �2 e2)@x)

This type of structure inside a probe operation results in a tensor type.

The LHS has the following type.

Γ, σ ` (e0 �2 e1)@x :(σ)T

172

We want to show that the RHS has the same type.

Γ, σ ` (e0@x)�2 (e1@x):(σ)T .

The type derivation for the LHS is the following structure.

Γ, σ ` e1, e2 : (σ)Fd[TYINV10]

Γ, σ ` e1 �2 e2 : (σ)Fd[TYINV7]

Γ, σ ` x : Ten[d]

Γ, σ ` (e1�2 e2)@x : (σ)T
From that we can make the RHS derivations.

Given that Γ, σ ` e1, e2 : (σ)Fd

then Γ, σ ` e1@x, e2@x : (σ)T by [TYJUD7]

and Γ, σ ` e1@x�2 e2@x : (σ)T by [TYJUD10]

Case R3.(�1e1)@x −−−→
rule

�1 (e1@x)

We will do a case analysis on the structure on the left-hand-side

where �1 ={−|M(.)}.

First we will prove T(d) for �1 =− then �1 =M(.).

if �1 = −,

Find Γ, σ ` ((−e1)@x)

This type of structure inside a probe operation results in a tensor type.

The LHS has the following type.

Γ, σ ` (�1e1)@x :(σ)T

We want to show that the RHS has the same type.

Γ, σ ` �1(e1@x):(σ)T .

The type derivation for the LHS is the following structure.

Γ, σ ` e1 : (σ)Fd[TYINV10]

Γ, σ ` −e1 : (σ)Fd[TYINV7]

Γ, σ ` x : Ten[d]

Γ, σ ` (−e1)@x : (σ)T
From that we can make the RHS derivations.

Find Γ, σ ` (−(e1@x))

173

Given that Γ, σ ` e1 : (σ)Fd

then Γ, σ ` e1@x : (σ)T by [TYJUD7]

and Γ, σ ` −e1@x : (σ)T by [TYJUD10]

T(R3 for �1 = −)

if �1 = M(e1)

Note: M(e1) =
√
e1 | κ(e1) | exp(e1) | en

Find Γ, σ ` ((M(e1))@x)

This type of structure inside a probe operation results in a tensor type.

The LHS has the following type.

Γ, σ ` (�1e1)@x :(σ)T

We want to show that the RHS has the same type.

Γ, σ ` �1(e1@x):(σ)T .

The type derivation for the LHS is the following structure.

Γ, σ ` e1 : (σ)Fd([TYINV9])

Γ, σ `M(e1) : (σ)Fd[TYINV7]

Γ, σ ` x : Ten[d]

Γ, σ `M(e1)@x : (σ)T
From that we can make the RHS derivations.

Given that Γ, σ ` e1 : (σ)Fd

then Γ, σ ` e1@x : (σ)T by [TYJUD7]

and Γ, σ `M(e1@x) : (σ)T by [TYJUD9]

T(R3 for �1 = M)

T(R3) OK

Case R4.(
n∑
i=1

e1)@x −−−→
rule

n∑
i=1

(e1@x). Included in the earlier prose.

Case R5.(χ)@x −−−→
rule

χ

We will do a case analysis on the structure on the left-hand-side

where χ={liftd(e1)|δij | Eα}.

First we will prove T(d) for χ=liftd(e1) then χ=δij | Eα.

174

case χ = liftd(e1)

Find Γ, σ ` ((χ(e1))@x)

This type of structure inside a probe operation results in a tensor type.

The LHS has the following type.

Γ, σ ` (χ)@x :(σ)T

We want to show that the RHS has the same type.

Γ, σ ` χ:(σ)T .

The type derivation for the LHS is the following structure.

Γ, σ ` e1 : (σ)Fd([TYINV8])

Γ, σ ` (liftd(e1)) : (σ)Fd[TYINV7]

Γ, σ ` x : Ten[d]

Γ, σ ` (liftd(e1))@x : (σ)T
From that we can make the RHS derivations.

Given that Γ, σ ` e1 : (σ)Fd

then Γ, σ ` e1@x : (σ)T by [TYJUD7]

and Γ, σ ` liftd(e1@x) : (σ)T by [TYJUD8]

T(R5 where χ = liftd(e1))

For the case χ = δij | Eα
Given that Γ, σ ` χ : τ then Γ, σ ` χ@x : τ by [TYJUD7]

T(R5 where χ = δij | Eα)

T(R5) OK

Case R6. ∂
∂xi
� (e1 ∗ e2) −−−→

rule
e1(∂

∂xi
� e2) + e2(∂

∂xi
� e1). Included in the earlier prose.

Case R7. ∂
∂xi
� (e1e2) −−−→

rule

(∂
∂xi
�e1)e2−e1(∂

∂xi
�e2)

e22
. Included in the earlier prose.

Case R8. ∂
∂xi
� (
√
e1) −−−→

rule
liftd(1/2) ∗

∂
∂xi
�e1√
e1

Find Γ, σ ` (∂
∂xi
� (
√
e1))

This type of structure inside a derivative operation results in a field type

and the
√
e1 term results in a scalar.

Claim: Γ ` √e1 : ()Fd then Γi ` ∇i � (
√
e1) : (i)Fd by [TYJUD4]

175

The LHS has the following type.

Γ, σ ` ∂
∂xi
� (
√
e1) :(i)Fd

We want to show that the RHS has the same type.

Γ, σ ` liftd(1/2) ∗
∂
∂xi
�e

√
e1

:(i)Fd.

The type derivation for the LHS is the following structure.

Γ, σ ` e1 : ()Fd[TYINV9]

Γ, σ ` √e1 : ()Fd[TYINV4]

Γ, σ ` ∂

∂xi
� (
√
e1) : (σ)Fd and σ = {i : d}(Claim)

From that we can make the RHS derivations.

Given that Γ, σ ` e1 : ()Fd

then Γ, σ[i 7→ (1, d)] ` ∂
∂xi:d

� e1 : (i)Fd([TYJUD4])

and Γ, σ ` √e1 : ()Fd([TYJUD9])

Additionally, Γ, σ ` liftd(−) : (σ)Fd by [TYJUD8]

Given that Γ, σ ` √e1 : ()Fd and Γ, σ[i 7→ (1, d)] ` ∂
∂xi:d

� e1 : (i)Fd

then Γ, σ[i 7→ (1, d)] `
∂

∂xi:d
�e1√
e1

: (i)Fd by [TYJUD12]

and Γ, σ[i 7→ (1, d)] ` liftd(1/2) ∗
∂
∂xi
�e

√
e1

: (i)Fd by [TYJUD11]

Case R9. ∂
∂xi
� (cosine(e1)) −−−→

rule
(−sine(e1)) ∗ (∂

∂xi
� e1)

Find Γ, σ ` (∂
∂xi
� (cosine(e1)))

This type of structure inside a derivative operation results in a field type

and the cosine(e1) term results in a scalar.

Claim: Γ ` cosine(e1) : ()Fd then Γi ` ∇i � (cosine(e1)) : (i)Fd by [TYJUD4]

The LHS has the following type.

Γ, σ ` ∂
∂xi
� (cosine(e1)) :(i)Fd

We want to show that the RHS has the same type.

Γ, σ ` (−sine(e1)) ∗ (∂
∂xi
� e1):(i)Fd.

The type derivation for the LHS is the following structure.

176

Γ, σ ` e1 : ()Fd[TYINV9]

Γ, σ ` cosine(e1) : ()Fd

Γ, σ[i 7→ (1, d)] ` ∂

∂xi
� (cosine(e1)) : (i)Fd

From that we can make the RHS derivations.

Given that Γ, σ ` e1 : ()Fd

then Γ, σ[i 7→ (1, d)] ` ∂
∂xi
� e1 : (i)Fd by [TYJUD4],

Γ, σ ` sine(e1) : ()Fd by [TYJUD9],

Γ, σ ` −sine(e1) : ()Fd by [TYJUD10],

and Γ, σ[i 7→ (1, d)] ` (−sine(e1)) ∗ (∂
∂xi
� e1) : (i)Fd by [TYJUD11]

T(R9) OK

Case R10. ∂
∂xi
� (sine(e1)) −−−→

rule
(cosine(e1)) ∗ (∂

∂xi
� e1). Included in the earlier prose.

T(R10) OK

Case R11. ∂
∂xi
� (tangent(e1)) −−−→

rule

∂
∂xi
�e

cosine(e1)∗cosine(e1)

This type of structure inside a derivative operation results in a field type

and the tangent(e1) term results in a scalar.

Claim: Γ ` tangent(e1) : ()Fd then Γi ` ∇i � (tangent(e1)) : (i)Fd by [TYJUD4]

The LHS has the following type.

Γ, σ ` ∂
∂xi
� (tangent(e1)) :(i)Fd

We want to show that the RHS has the same type.

Γ, σ `
∂
∂xi
�e

cosine(e1)∗cosine(e1)
:(i)Fd.

The type derivation for the LHS is the following structure.

Γ, σ ` e1 : ()Fd[TYINV9]

Γ, σ ` tangent(e1) : ()Fd

Γ, σ[i 7→ (1, d)] ` ∂

∂xi
� (tangent(e1)) : (i)Fd

From that we can make the RHS derivations.

Given that Γ, σ ` e1 : ()Fd

then Γ, σ[i 7→ (1, d)] ` ∂
∂xi
� e1 : (i)Fd by [TYJUD4],

177

Γ, σ ` cosine(e1) ∗ cosine(e1) : ()Fd by [TYJUD9], [TYJUD11],

and Γ, σ `
∂
∂xi
�e

cosine(e1)∗cosine(e1)
: ()Fd by [TYJUD12]

T(R11) OK

Case R12. ∂
∂xi
� (arccosine(e1)) −−−→

rule
(

−liftd(1)√
(liftd(1)−(e∗e)) ∗ (∂

∂xi
� e1)

Similar approach to R13 T(R12) OK

Case R13. ∂
∂xi
� (arcsine(e1)) −−−→

rule
(

liftd(1)√
(liftd(1)−(e∗e)) ∗ (∂

∂xi
� e1)

Find Γ, σ ` (∂
∂xi
� (arcsine(e1)))

This type of structure inside a derivative operation results in a field type

and the arcsine(e1) term results in a scalar.

Claim: Γ ` arcsine(e1) : ()Fd then Γi ` ∇i � (arcsine(e1)) : (i)Fd by [TYJUD4]

The LHS has the following type.

Γ, σ ` ∂
∂xi
� (arcsine(e1)) :(i)Fd

We want to show that the RHS has the same type.

Γ, σ ` (
liftd(1)√

(liftd(1)−(e∗e)) ∗ (∂
∂xi
� e1):(i)Fd.

The type derivation for the LHS is the following structure.

Γ, σ ` e1 : ()Fd([TYINV9])

Γ, σ ` arcsine(e1) : ()Fd

Γ, σ[i 7→ (1, d)] ` ∂

∂xi
� (arcsine(e1)) : (i)Fd

Since Γ, σ ` e1 : ()Fd then Γ, σ[i 7→ (1, d)] ` ∂
∂xi
� e1 : (i)Fd by [TYJUD4]

Find Γ, σ ` (liftd(1))

Γ, σ ` liftd(1) : (σ)Fd([TYJUD8])

From that we can make the RHS derivations.

Given that Γ, σ ` e1 : ()Fd

then Γ, σ ` e1 ∗ e1 : ()Fd by [TYJUD11],

Γ, σ ` liftd(1)− (e1 ∗ e1) : ()Fd by [TYJUD10],

Γ, σ `
√

liftd(1)− (e1 ∗ e1) : ()Fd by [TYJUD9],

Γ, σ ` liftd(1)√
liftd(1)−(e1∗e1)

: ()Fd by [TYJUD12],

178

and Γ, σ[i 7→ (1, d)] ` (
liftd(1)√

(liftd(1)−(e∗e)) ∗ (∂
∂xi
� e1) : (i)Fd by [TYJUD11]

T(R13) OK

Case R14. ∂
∂xi
� (arctangent(e1)) −−−→

rule

liftd(1)
liftd(1)+(e1∗e1)

∗ (∂
∂xi
� e1)

Similar approach to R13 T(R14) OK

Case R15. ∂
∂xi
� (exp(e1)) −−−→

rule
exp(e1) ∗ (∂

∂xi
� e1)

Find Γ, σ ` (∂
∂xi
� (exp(e1)))

This type of structure inside a derivative operation results in a field type

and the exp(e1) term results in a scalar.

Claim: Γ ` exp(e1) : ()Fd then Γi ` ∇i � (exp(e1)) : (i)Fd by [TYJUD4]

The LHS has the following type.

Γ, σ ` ∂
∂xi
� (exp(e1)) :(i)Fd

We want to show that the RHS has the same type.

Γ, σ ` exp(e1) ∗ (∂
∂xi
� e1):(i)Fd.

The type derivation for the LHS is the following structure.

Γ, σ ` e1 : ()Fd([TYINV9])

Γ, σ ` exp(e1) : ()Fd
From that we can make the RHS derivations.

Given that Γ, σ ` e1 : ()Fd

then Γ, σ[i 7→ (1, d)] ` ∂
∂xi
� e1 : (i)Fd by [TYJUD4],

Γ, σ ` exp(e1) : ()Fd by [TYJUD9],

and Γ, σ[i 7→ (1, d)] ` exp(e1) ∗ (∂
∂xi
� e1) : (i)Fd by [TYJUD11]

T(R15) OK

Case R16. ∂
∂xi
� (en1) −−−→

rule
liftd(n) ∗ en−1

1 ∗ (∂
∂xi
� e1)

This type of structure inside a derivative operation results in a field type

and the en1 term results in a scalar.

Claim: Γ ` en1 : ()Fd then Γi ` ∇i � (en1) : (i)Fd by [TYJUD4]

The LHS has the following type.

179

Γ, σ ` ∂
∂xi
� (en1) :(i)Fd

We want to show that the RHS has the same type.

Γ, σ ` liftd(n) ∗ en−1
1 ∗ (∂

∂xi
� e1):(i)Fd.

The type derivation for the LHS is the following structure.

Γ, σ ` e1 : ()Fd,Γ, σ ` n : ()T and σ = {i : d}([TYINV9])

Γ, σ \ i ` (en) : (σ \ i)Fd[TYINV4]

Γ, σ ` ∂

∂xi:d
� (en) : (i)Fd

From that we can make the RHS derivations.

Given that Γ, σ ` e1 : ()Fd then Γ, σ[i 7→ (1, d)] ` ∂
∂xi
� e1 : (i)Fd by [TYJUD4].

Given that Γ, σ ` e1 : ()Fd,Γ, σ ` n : ()T

then Γ, σ ` liftd(n) : ()Fd by [TYJUD8] and Γ, σ ` en−1 : ()Fd by [TYJUD9].

Given that Γ, σ ` en−1 : ()Fd and Γ, σ[i 7→ (1, d)] ` ∂
∂xi
� e1 : (i)Fd

then Γ, σ[i 7→ (1, d)] ` liftd(n) ∗ en−1
1 ∗ (∂

∂xi
� e1) : (i)Fd by [TYJUD11].

T(R16) OK

Case R17. ∂
∂xi
� (e1 � e2) −−−→

rule
(∂
∂xi
� e1)� (∂

∂xi
� e2)

Find Γ, σ ` (∂
∂xi
� (e1 � e2))

This type of structure inside a derivative operation results in a field type.

Given the subterm: Γ, σ/ i ` e1 � e2 : (σ/ i)Fd

then by [TYJUD4] we know it’s derivative Γ, σ ` ∇i � (e1 � e2) : (σ)Fd

The LHS has the following type.

Γ, σ ` ∂
∂xi
� (e1 � e2) :(σ)Fd

We want to show that the RHS has the same type.

Γ, σ ` (∂
∂xi
� e1)� (∂

∂xi
� e2):(σ)Fd.

The type derivation for the LHS is the following structure.

Find Γ, σ ` (τ(e1) and τ(e2))

180

Γ, σ \ i ` e1, e2 : (σ \ i)Fd[TYINV10]

Γ, σ \ i ` e1 � e2 : (σ \ i)Fd[TYINV4]

Γ, σ ` ∂

∂xi
� (e1 � e2) : (σ)Fd

From that we can make the RHS derivations.

Given that Γ, σ ` e1, e2 : (σ \ i)Fd

then Γ, σ ` ∂
∂xi
� (e1) : (σ)Fd by [TYJUD4]

and Γ, σ ` (∂
∂xi
� e1)� (∂

∂xi
� e2) : (σ)Fd by [TYINV10].

T(R17) OK

Case R18. ∂
∂xi
� (−e1) −−−→

rule
− (∂

∂xi
� e1)

Find Γ, σ ` (∂
∂xi
� (−e1))

This type of structure inside a derivative operation results in a field type.

Given the subterm: Γ, σ/ i ` −e1 : (σ/ i)Fd

then by [TYJUD4] we know it’s derivative Γ, σ ` ∇i � (−e1) : (σ)Fd

The LHS has the following type.

Γ, σ ` ∂
∂xi
� (−e1) :(σ)Fd

We want to show that the RHS has the same type.

Γ, σ ` −(∂
∂xi
� e1):(σ)Fd.

The type derivation for the LHS is the following structure.

Γ, σ \ i ` e1 : (σ \ i)Fd[TYINV10]

Γ, σ \ i ` −e1 : (σ \ i)Fd[TYINV4]

Γ, σ ` ∂

∂xi
� (−e1) : (σ)Fd

From that we can make the RHS derivations.

Given that Γ, σ ` e1 : (σ \ i)Fd

then Γ, σ ` ∂
∂xi
� (e1) : (σ)Fd by [TYJUD4]

and Γ, σ ` −(∂
∂xi
� e1) : (σ)Fd by [TYINV10]

T(R18) OK

Case R19. ∂
∂xi

n∑
v=1

e1 −−−→
rule

n∑
v=1

(∂
∂xi

e1)

181

This type of structure inside a derivative operation results in a field type.

Given the subterm: Γ, σ/ i `
n∑
v=1

: (σ/ i)Fd

then by [TYJUD4] we know it’s derivative Γ, σ ` ∇i � (
n∑
v=1

) : (σ)Fd

The LHS has the following type.

Γ, σ ` ∂
∂xi

n∑
v=1

e1 :(σ)Fd

We want to show that the RHS has the same type.

Γ, σ `
n∑
v=1

(∂
∂xi

e1):(σ)Fd.

The type derivation for the LHS is the following structure.

Γ, σ \ i, v : n ` e1 : (σ \ i, v : n)Fd([TYINV3])

Γ, σ \ i ` (
n∑
v=1

e1) : (σ \ i)Fd[TYINV4]

Γ, σ ` ∂

∂xi:d
� (

n∑
v=1

e1) : (σ)Fd

From that we can make the RHS derivations.

Given that Γ, σ ` e1 : (σ \ i, v : n)Fd

then Γ, σ ` ∂
∂xi:d

� (e1) : (σ, v : n)Fd by [TYJUD4]

and Γ, σ `
n∑
v=1

(∂
∂xi:d

� (e1)) : (σ)Fd by ([TYJUD3])

T(R19) OK

Case R20. ∂
∂xi

χ −−−→
rule

0

This type of structure inside a derivative operation results in a field type.

Given the subterm: Γ, σ/ i ` ∇χ : (σ/ i)Fd

then by [TYJUD4] we know it’s derivative Γ, σ ` ∇i � (∇χ) : (σ)Fd

Lastly,Γ, σ ` 0 : (σ)Fd by [TYJUD8]. T(R20) OK

Case R21. ∂
∂xi
� (Vα ~Hν) −−−→

rule
(Vα ~ hiν)

GivenΓ, σ ` Vα ~Hv : (σ/ i)Fd by [TYJUD2]

then Γ, σ ` ∂
∂xi
� (Vα ~Hν) : (σ)Fd by [TYJUD4].

Lastly, Γ, σ ` (Vα ~Hiν) : (σ)Fd by [TYJUD2].

T(R21) OK

182

Case R22.−− e1 −−−→
rule

e1

Find Γ, σ ` (−− e1)

Assign generic type Γ, σ ` e1 : τ

Γ, σ ` − − e1 : τ [TYINV10]

Γ, σ ` −e1 : τ [TYINV10]

Γ, σ ` e1 : τ

From that we can make the RHS derivations.

T(R22) OK

Case R23.−0 −−−→
rule

0

Find Γ, σ ` (−0)

Assign generic type Γ, σ ` −0 : τ

Find Γ, σ ` (0)

The LHS has the following type.

Γ, σ ` −0 :τ

We want to show that the RHS has the same type.

Γ, σ ` 0:τ .

The type derivation for the LHS is the following structure.

Γ, σ ` 0 : τ [TYINV10]

Γ, σ ` −0 : τ

From that we can make the RHS derivations.

T(R23) OK

Case R24.e1 − 0 −−−→
rule

e1

Find Γ, σ ` (e1 − 0)

Assign generic type Γ, σ ` e1 − 0 : τ

Γ, σ ` e− 0 : (σ)τ0

Γ, σ ` 0 : (σ)τ0 by [TYJUD1]

T(R24)

T(R24) OK

183

Case R25.0− e1 −−−→
rule

− e1

Similar approach to R24 T(R25) OK

Case R26. 0
e1
−−−→
rule

0

Similar approach to R24 T(R26) OK

Case R27.

e1
e2
e3
−−−→
rule

e1
e2e3

. Included in the earlier prose.

Case R28. e1e2
e3

−−−→
rule

e1e3
e2

Similar approach to R27 T(R28) OK

Case R29.

e1
e2
e3
e4

−−−→
rule

e1e4
e2e3

The LHS has the following type.

Γ, σ `
e1
e2
e3
e4

:(σ)τ0

We want to show that the RHS has the same type.

Γ, σ ` e1e4
e2e3

:(σ)τ0.

The type derivation for the LHS is the following structure.

Γ, σ ` e1 : (σ)τ0 Γ, σ ` e2 : ()τ0[TYINV12]

Γ, σ ` (
e1

e2
) : (σ)τ0

Γ, σ ` e3, e4 : ()τ0[TYINV12]

Γ, σ ` (
e3

e4
) : ()τ0[TYINV12]

Γ, σ `
e1
e2
e3
e4

: (σ)τ0

From that we can make the RHS derivations.

Find Γ, σ ` (e1e4e2e3
)

Given that Γ, σ ` e1 : (σ)τ0 and Γ, σ ` e2, e3, e4 : ()τ0

then Γ, σ ` e1 ∗ e4 : (σ)τ0 by [TYJUD11],

Γ, σ ` e2 ∗ e3 : ()τ0 by [TYJUD11],

and Γ, σ ` e1e4
e2e3

: (σ)τ0 by [TYJUD12].

T(R29) OK

Case R30.0 + e1, e1 + 0 −−−→
rule

e1

Similar approach to R24 T(R30) OK

Case R31.0e, e0 −−−→
rule

0

Similar approach to R24 T(R31) OK

184

Case R32.
√

(e1) ∗
√

(e1) −−−→
rule

e1

Assign generic type Γ, σ `
√

(e1) ∗
√

(e1) : τ

Find Γ, σ ` (e1)

Γ, σ ` e1 : τ([TYINV9])

Γ, σ ` √e1 : τ [TYINV11]

Γ, σ ` √e1 ∗
√
e1 : τ

T(R32) OK

Case R33.Eijk ∂
∂xi,j

� e1 −−−→
rule

liftd(0)

Similar approach to R34 T(R33) OK

Case R34.Eijk(Vα ~ hjk) −−−→
rule

liftd(0)

Given Γ, σ ` Vα ~ hjk : (σ)Fd by [TYJUD2]

then Γ, σ ` εijkVα ~ hjk : (σ)Fd by [TYJUD6].

Lastly, Γ, σ ` liftd(0) : (σ)Fd by [TYJUD8]

T(R34) OK

Case R35.EijkEilm −−−→
rule

δjlδkm − δjmδkl
We know Γ, σ ` EijkEilm : (σ)T by [TYJUD6].

Given Γ, σ ` δjlδkm : (σ)T by [TYJUD5]

then Γ, σ ` δjlδkm − δjmδkl : (σ)T by [TYJUD10].

T(R35) OK

Case R36.δijTj −−−→
rule

Ti

Find Γ, σ ` (δijTj)

Given Γ, σ ` Tj : (σ)T and σ = {j} by [TYJUD1]

then Γ, σ ` δij(Tj) : (σ)T by [TYJUD5]

and σ = {i}[TYJUD5]

Find Γ, σ ` (Ti)

Γ, σ ` Ti : (σ)Fd and σ = {i}[TYJUD1]

T(R36) OK

185

Case R37.δijFj −−−→
rule

Fi

Similar approach to R36 T(R37) OK

Case R38.δijV ~Hδcj −−−→
rule

V ~Hδci

Given Γ, σ ` V ~Hδcj : (σ)Fd and σ = {j} by [TYJUD2]

then Γ, σ ` δij(V ~Hδcj) : (σ)Fd and σ = {i} by [TYJUD5]

Γ, σ ` V ~Hδci : (σ)Fd and σ = {i}[TYJUD2]

T(R38) OK

Case R39.δijV ~Hδcj (x) −−−→
rule

V ~Hδci(x)

Similar approach to R38 T(R39) OK

Case R40.δij
∂
∂xj
� e1 −−−→

rule

∂
∂xi
� (e1). Included in the earlier prose.

Case R41.
∑

(se1) −−−→
rule

s
∑
e1. Included in the earlier prose.

Case R42. ∂
∂xα
� ∂
∂xβ
� e1 −−−→

rule

∂
∂xβα

� e1

This type of structure inside a derivative operation results in a field type.

Claim: Γ, σ/ αβ ` e1 : (σ/ αβ)Fd

The LHS has the following type.

Γ, σ ` ∂
∂xα
� ∂
∂xβ
� e1 :(σ)Fd

We want to show that the RHS has the same type.

Γ, σ ` ∂
∂xβα

� e1:(σ)Fd.

The type derivation for the LHS is the following structure.

Γ, σ ` e1 : (σ/ αβ)Fd[TYJUD4]

Γ, σ ` (
∂

∂xβ
� e1) : (σ/ α)Fd[TYJUD4]

Γ, σ ` (
∂

∂xα
� ∂

∂xβ
� e1) : (σ)Fd

From that we can make the RHS derivations.

Given that Γ, σ ` e : σ/ αβ then Γ, σ ` ∂
∂xβα

� e : (σ)Fd by [TYJUD4]

T(R42) OK T(d) Lemma 4.1.1

186

A.2 Value Preservation Proof

The following is a proof for Theorem 4.2.1 Given a derivation d of the form e −→ e′ we state

V(d) as a shorthand for the claim that the derivation preserves the value of the expression

e. The proof demonstrates that ∀d.V (d).

Case on structure of d

Case Rules R1-R5 use the probe operator.

Value representation of the probe operator is not supported.

Case Rules R6-R21 use the differentiation operator.

Value representation of the differentiation operator is not supported.

Case R22.−− e1 −−−→
rule

e1

Claim −−e1 evaluates to v.

We need to define v.

Assume that e1 ⇓ v′

then Ψ, ρ ` −e1 ⇓ −v′ by [VALJUD4],

and Ψ, ρ ` − − e1 ⇓ − − v′ by [VALJUD4]

The value of v is −− v′.

By using algebraic reasoning: −− v′ = v′. Since −− e1 ⇓ v and −−e1 ⇓ v′ then v = v′.

The last step leads to e1 ⇓ v

V(R22) OK

Case R23.−0 −−−→
rule

0

Claim − 0 evaluates to v.

We need to define v.

then Ψ, ρ ` 0 ⇓ Real()(0) by [VALJUD1] , and Ψ, ρ ` −0 ⇓ Real()(−0) by [VALJUD4]

The value of v is Real()(−0)

By using algebraic reasoning: Real()(−0) = Real()(0)

The last step leads to 0 ⇓ v

V(R23) OK

187

Case R24.e1 − 0 −−−→
rule

e1

Included in the earlier prose.

Case R25.0− e1 −−−→
rule

− e1

Claim 0− e1 evaluates to v.

We need to define v.

Assume that − e1 ⇓ v′

then Ψ, ρ ` 0− e1 ⇓ Real()(0) + v′ by ([VALJUD1], [VALJUD5]).

The value of v is Real()(0) + v′. By using algebraic reasoning: Real()(0) + v′ = v′.

Since 0− e1 ⇓ v and 0− e1 ⇓ v′ then v = v′

The last step leads to − e1 ⇓ v

V(R25) OK

Case R26. 0
e1
−−−→
rule

0

Assume that e1 ⇓ Real()(v2) then Ψ, ρ ` 0
e1
⇓ Real()(0

v2) by ([VALJUD1], [VALJUD5]).

The value of v is Real()(0
v2). By using algebraic reasoning: Real()(0

v2) = Real()(0)

Lastly, Ψ, ρ ` 0 ⇓ Real()(0) by ([VALJUD1])

The last step leads to 0 ⇓ v

V(R26) OK

Case R27.

e1
e2
e3
−−−→
rule

e1
e2e3

Claim

e1
e2
e3

evaluates to v.

We need to define v.

Assume that e1
e2e3
⇓ v′, e1 ⇓ v1, e2 ⇓ v2, e3 ⇓ v3.

then Ψ, ρ ` e1
e2
⇓ v1
v2 by [VALJUD5] and Ψ, ρ `

e1
e2
e3
⇓

v1
v2
v3 by [VALJUD5].

Given that e1 ⇓ v1 e2 ⇓ v2 e3 ⇓ v3

then Ψ, ρ ` e2e3 ⇓ v2 ∗ v3 by [VALJUD5] and Ψ, ρ ` e1
e2e3
⇓ v1
v2∗v3 by [VALJUD5].

The value of v is v1
v2∗v3 . By using algebraic reasoning: v′ = v1

v2∗v3 =
v1
v2
v3 = v.

The last step leads to e1
e2e3
⇓ v

V(R27) OK

188

Case R28. e1e2
e3

−−−→
rule

e1e3
e2

Similar approach to R27 V(R28) OK

Case R29.

e1
e2
e3
e4

−−−→
rule

e1e4
e2e3

Similar approach to R27 V(R29) OK

Case R30.0 + e1, e1 + 0 −−−→
rule

e1 Claim 0 + e1, e1 + 0 evaluates to v.

We need to define v.

Assume that e1 ⇓ v′ then Ψ, ρ ` e1 + 0 ⇓ v′ + Real()(0) by ([VALJUD1], [VALJUD5]).

By using algebraic reasoning v′ + Real()(0) = v′

The last step leads to e1 ⇓ v

V(R30) OK

Case R31.0e, e0 −−−→
rule

0

Similar approach to R26 V(R31) OK

Case R32.
√

(e1) ∗
√

(e1) −−−→
rule

e1

Included in the earlier prose.

Case R33.Eijk ∂
∂xi,j

� e1 −−−→
rule

liftd(0)

Value representation not supported

Case R34.Eijk(Vα ~ hjk) −−−→
rule

liftd(0)

Value representation not supported

Case R35.EijkEilm −−−→
rule

δjlδkm − δjmδkl
Included in the earlier prose.

Case R36.δijTj −−−→
rule

Ti

Included in the earlier prose.

Case Rules R37-R40 uses field terms

Value representation of the field terms is not supported.

Case R41.
∑

(se1) −−−→
rule

s
∑
e1

Claim
∑

(se1) evaluates to v.

189

We need to define v.

Assume that s ⇓ vs and e1 ⇓ ve
then Ψ, ρ ` s ∗ e1 ⇓ vs ∗ ve by ([VALJUD5])

and Ψ, ρ `∑(se1) ⇓∑(vs ∗ ve) by [VALJUD4]

The value of v is
∑

(vs ∗ ve)

v = vs ∗
∑

(ve) by moving scalar outside summation

We need to show that s
∑
e1 evaluates to v.

Given that s ⇓ vs and e ⇓ ve
then Ψ, ρ `∑ e ⇓∑ ve by ([VALJUD4]) and Ψ, ρ ` s∑ e1 ⇓ vs ∗

∑
ve by ([VALJUD5])

The last step leads to s
∑
e1 ⇓ v

V(R41) OK

Case R42. ∂
∂xα
� ∂
∂xβ
� e1 −−−→

rule

∂
∂xβα

� e1

Value representation not supported

A.3 Termination

A.3.1 Size reduction

If e =⇒ e’ then S(e) > S(e′) ≥ 0 (Lemma 4.3.1). The following are a few helpful lemmas

that will be referred to in the proof.

Lemma A.3.1. 5(1+x) > (16 + 5x)

5x > 4. Given x >= 1

4 ∗ 5x > 16 Multiply by 4

5 ∗ 5x − 5x > 16 Refactor left side

5 ∗ 5x > (16 + 5x) Add 5x

5(1+x) > (16 + 5x) Rewritten

Lemma A.3.2. 5([[e1]]+[[e2]]) > 5([[e1]]) > 4.

190

Lemma A.3.3. (1 + [[e1]])5(1+[[e1]]) > [[e1]](16 + 5[[e1]]) + 20

5(1+[[e1]]) > 16 + 5[[e1]] Lemma A.3.1

[[e1]]5(1+[[e1]]) > [[e1]](16 + 5[[e1]]) Multiply by [[e1]]

[[e1]]5(1+[[e1]]) + 5(1+[[e1]]) > [[e1]](16 + 5[[e1]]) + 5(1+[[e1]]) Add 5(1+[[e1]])

(1 + [[e1]])5(1+[[e1]]) > [[e1]](16 + 5[[e1]]) + 5 ∗ 5[[e1]] > [[e1]](16 + 5[[e1]]) + 20 (Lemma A.3.2)

The following is a proof for Lemma 4.3.1 Given a derivation d of the form e −→ e′ we

state P(d) as a shorthand for the claim that the derivation reduces the size of the expression

e. By case analysis and comparing the size metric provided. This proof does a case analysis

to show ∀d ∈ Deriv.P (d). Case on structure of d

Case R1.(e1 �n e2)@x −−−→
rule

(e1@x)�n (e2@x). Included in the earlier prose.

Case R2.(e0 �2 e1)@x −−−→
rule

(e0@x)�2 (e1@x)

[[(e0 �2 e1)@x]] = 2 + 2[[e1]] + 2[[e2]]

> 1 + 2[[e1]] + 2[[e2]]

= [[(e0@x)�2 (e1@x)]]

P(d)

Case R3.(�1e1)@x −−−→
rule

�1 (e1@x)

[[(�1e1)@x]] = 2 + 2[[e1]]

> 1 + 2[[e1]] = [[�1(e1@x)]]

P(d)

Case R4.(
n∑
i=1

e1)@x −−−→
rule

n∑
i=1

(e1@x)

[[(
n∑
i=1

e1)@x]] = 4 + 4[[e1]]

> 2 + 4[[e1]]

= [[
n∑
i=1

(e1@x)]]

P(d)

Case R5.(χ)@x −−−→
rule

χ

191

[[(χ)@x]] = 2S(χ)

> S(χ) = [[χ]]

Case R6. ∂
∂xi
� (e1 ∗ e2) −−−→

rule
e1(∂

∂xi
� e2) + e2(∂

∂xi
� e1)

We define [[(∂
∂xi
� (e1 ∗ e2))]]=s1 + s2 + s3

where s1 = [[e1]] ∗ 51+[[e1]]+[[e2]], s2 = [[e2]] ∗ 51+[[e1]]+[[e2]], and s3 = 51+[[e1]]+[[e2]],

We define [[(e1
∂
∂xi
� e2 + e2

∂
∂xi
� e1)]]=t1 + t2 + t3

where t1 = [[e1]](5[[e1]] + 1), t2 = [[e2]](5[[e1]] + 1), and t3 = 3

Given 4 ∗ 51+[[e1]] > 1 then

−→ 5 ∗ 5[[e1]] > 5[[e1]] + 1 by adding 5[[e1]]

−→ 51+[[e1]]+[[e2]] > 5[[e1]] + 1 by refactoring

−→ [[e1]] ∗ 51+[[e1]]+[[e2]] > [[e1]](5[[e1]] + 1) by multiplying by [[e1]]

−→ [[e2]] ∗ 51+[[e1]]+[[e2]] > [[e2]](5[[e1]] + 1) by multiplying by [[e2]]

where and so s1 > t1,s2 > t2

where Lastly, 51+[[e1]]+[[e2]] > 3 (Lm A.3.2) and so s3 > t3

Finally, [[∂
∂xi
� (e1 ∗ e2)]] > [[e1

∂
∂xi
� e2 + e2

∂
∂xi
� e1]]

P(d)

Case R7. ∂
∂xi
� (e1e2) −−−→

rule

(∂
∂xi
�e1)e2−e1(∂

∂xi
�e2)

e22

We define [[(∂
∂xi
� (e1e2))]]=s1 + s2 + s3

where s1 = [[e1]]52+[[e1]]+[[e2]], s2 = [[e2]]52+[[e1]]+[[e2]] , and s3 = 2 ∗ 52+[[e1]]+[[e2]]

We define [[(
(∂
∂xi
�e1)e2−e1(∂

∂xi
�e2)

e22
)]]=t1 + t2 + t3

where t1 = [[e1]](1 + 5[[e1]]) , t2 = [[e2]](3 + 5[[e2]]), and t3 = 6

Given 52+[[e1]]+[[e2]] > (1 + 5[[e1]])(Lm A.3.1)

where then [[e1]]52+[[e1]]+[[e2]] > [[e1]](1 + 5[[e1]]) by multiplying by [[e1]]

where so s1 > t1,s2 > t2

Given 51+[[e1]]+[[e2]] > 5[[e2]] + 3 (Lm A.3.1)

where then 2 ∗ 51+[[e1]]+[[e2]] > 2 ∗ 5[[e2]] + 6 by multiplying by 2

where so s3 > t3

192

[[source(d)]] > [[target(d)]]

P(d)

Case R8. ∂
∂xi
� (
√
e1) −−−→

rule
liftd(1/2) ∗

∂
∂xi
�e1√
e1

[[∂
∂xi
� (
√
e1)]] = (1 + [[e1]])5(1+[[e1]])

> [[e1]](1 + 5[[e1]]) + 6

= [[liftd(1/2) ∗
∂
∂xi
�e

√
e1

]]

P(d)

Case R9. ∂
∂xi
� (cosine(e1)) −−−→

rule
(−sine(e1)) ∗ (∂

∂xi
� e1). Included in the earlier prose.

Case R10. ∂
∂xi
� (sine(e1)) −−−→

rule
(cosine(e1)) ∗ (∂

∂xi
� e1)

[[∂
∂xi
� (sine(e1))]] = (1 + [[e1]])5(1+[[e1]])

> [[e1]](1 + 5[[e1]]) + 2

= [[(cosine(e1)) ∗ (∂
∂xi
� e1)]]

P(d)

Case R11. ∂
∂xi
� (tangent(e1)) −−−→

rule

∂
∂xi
�e

cosine(e1)∗cosine(e1)

[[∂
∂xi
� (tangent(e1))]] = (1 + [[e1]])5(1+[[e1]])

> [[e1]](5[[e1]] + 2) + 5

= [[
∂
∂xi
�e

cosine(e1)∗cosine(e1)
]]

P(d)

Case R12. ∂
∂xi
� (arccosine(e1)) −−−→

rule
(

−liftd(1)√
(liftd(1)−(e∗e)) ∗ (∂

∂xi
� e1)

[[∂
∂xi
� (arccosine(e1))]] = (1 + [[e1]])5(1+[[e1]])

> [[e1]](2 + 5[[e1]]) + 11

= [[(
−liftd(1)√

(liftd(1)−(e∗e)) ∗ (∂
∂xi
� e1)]]

P(d)

Case R13. ∂
∂xi
� (arcsine(e1)) −−−→

rule
(

liftd(1)√
(liftd(1)−(e∗e)) ∗ (∂

∂xi
� e1)

[[∂
∂xi
� (arcsine(e1))]] = (1 + [[e1]])5(1+[[e1]])

> [[e1]](2 + 5[[e1]]) + 10

= [[(
liftd(1)√

(liftd(1)−(e∗e)) ∗ (∂
∂xi
� e1)]]

193

P(d)

Case R14. ∂
∂xi
� (arctangent(e1)) −−−→

rule

liftd(1)
liftd(1)+(e1∗e1)

∗ (∂
∂xi
� e1)

[[∂
∂xi
� (arctangent(e1))]] = (1 + [[e1]])5(1+[[e1]])

> [[e1]](2 + 5[[e1]]) + 9

= [[1
1+(e∗e) ∗ (∂

∂xi
� e1)]]

P(d)

Case R15. ∂
∂xi
� (exp(e1)) −−−→

rule
exp(e1) ∗ (∂

∂xi
� e1)

[[∂
∂xi
� (exp(e1))]] = (1 + [[e1]])5(1+[[e1]])

> [[e1]](1 + 5[[e1]]) + 2

= [[exp(e1) ∗ (∂
∂xi
� e1)]]

P(d)

Case R16. ∂
∂xi
� (en1) −−−→

rule
liftd(n) ∗ en−1

1 ∗ (∂
∂xi
� e1)

[[∂
∂xi
� (en1)]] = (1 + [[e1]])5(1+[[e1]])

> 5 + [[e1]](1 + 5[[e1]])

= [[liftd(n) ∗ en−1
1 ∗ (∂

∂xi
� e1)]]

P(d)

Case R17. ∂
∂xi
� (e1 � e2) −−−→

rule
(∂
∂xi
� e1)� (∂

∂xi
� e2)Included in the earlier prose.

Case R18. ∂
∂xi
� (−e1) −−−→

rule
− (∂

∂xi
� e1)

[[∂
∂xi
� (−e1)]] = 51+[[e1]](1 + [[e1]])

> 1 + [[e1]]5[[e1]]

= [[−(∂
∂xi
� e1)]]

P(d)

Case R19. ∂
∂xi

n∑
v=1

e1 −−−→
rule

n∑
v=1

(∂
∂xi

e1)

[[∂
∂xi

n∑
v=1

e1]] = (2 + 2[[e1]]) ∗ 52+2[[e1]]

> 2 + 2[[e1]]5[[e1]]

= [[
n∑
v=1

(∂
∂xi

e1)]]

P(d)

194

Case R20. ∂
∂xi

χ −−−→
rule

0

[[∂
∂xi

]] = Sχ5Sχ

> 2 = [[0]]

Case R21. ∂
∂xi
� (Vα ~Hν) −−−→

rule
(Vα ~ hiν)

[[∂
∂xi
� (Vα ~Hν)]] = 5

> 1 = [[(Vα ~Hiν)]]

Case R22.−− e1 −−−→
rule

e1

[[−− e1]] = 2 + [[e1]]

> [[e1]] = [[e1]]

Case R23.−0 −−−→
rule

0

[[−0]] = 2

> 1 = [[0]]

Case R24.e1 − 0 −−−→
rule

e1

[[e1 − 0]] = 2 + [[e1]]

> [[e1]] = [[e1]]

Case R25.0− e1 −−−→
rule

− e1

Similar approach to R24 P(R25) OK

Case R26. 0
e1
−−−→
rule

0

[[0
e1

]] = 3 + [[e1]]

> 1 = [[0]]

Case R27.

e1
e2
e3
−−−→
rule

e1
e2e3

Included in the earlier prose.

Case R28. e1e2
e3

−−−→
rule

e1e3
e2

Similar approach to R27 P(R28) OK

Case R29.

e1
e2
e3
e4

−−−→
rule

e1e4
e2e3

[[

e1
e2
e3
e4

]] = 6 + [[e1]] + [[e2]] + [[e3]]

> 4 + [[e1]] + [[e2]] + [[e3]] = [[e1e4e2e3
]]

Case R30.0 + e1, e1 + 0 −−−→
rule

e1

195

[[0 + e1, e1 + 0]] = 2 + [[e1]]

> [[e1]] = [[e1]]

Case R31.0e, e0 −−−→
rule

0

Similar approach to R30 P(R31) OK

Case R32.
√

(e1) ∗
√

(e1) −−−→
rule

e1

[[
√

(e1) ∗
√

(e1)]] = 3 + 2[[e1]]

> [[e1]] = [[e1]]

Case R33.Eijk ∂
∂xi,j

� e1 −−−→
rule

liftd(0)

[[Eijk ∂
∂xi,j

� e1]] = 5 + [[e1]]5[[e1]]

> 2 = [[liftd(0)]]

Case R34.Eijk(Vα ~ hjk) −−−→
rule

liftd(0)

[[Eijk(Vα ~ hjk)]] = 6

> 2 = [[liftd(0)]]

Case R35.EijkEilm −−−→
rule

δjlδkm − δjmδkl

[[EijkEilm]] = 9

> 7 = [[δjlδkm − δjmδkl]]
Case R36.δijTj −−−→

rule
Ti

[[δijTj]] = 3

> 1 = [[Ti]]

Case R37.δijFj −−−→
rule

Fi

Similar approach to R36 P(R37) OK

Case R38.δijV ~Hδcj −−−→
rule

V ~Hδci

Similar approach to R36 P(R38) OK

Case R39.δijV ~Hδcj (x) −−−→
rule

V ~Hδci(x)

[[δijV ~Hδcj (x)]] = 4

> 2 = [[V ~Hδci(x)]]

Case R40.δij
∂
∂xj
� e1 −−−→

rule

∂
∂xi
� (e1)

196

[[δij
∂
∂xj
� (e1)]] = 2 + [[e1]]5[[e1]]

> [[e1]]5[[e1]] = [[∂
∂xi
� (e1)]]

Case R41.
∑

(se1) −−−→
rule

s
∑
e1

[[
∑

(se1)]] = 6 + 2[[e1]]

> 4 + 2[[e1]] = [[s
∑
e1]]

P(d) Lemma 4.3.1

A.3.2 Termination implies Normal Form

Termination implies normal form (Lemma 4.3.2). The proof is by examination of the

syntax in Figure 2.1. For any syntactic construct, we show that either the term is in normal

form, or there is a rewrite rule that applies (Section A.3.2). We state Q(ex) as a shorthand

for the claim that if x has terminated and is normal form. Additionally we state CQ(ex) if

there exists an expression that is not in normal form and has terminated. The following is

a proof by contradiction.

Define the following shorthand: M(e1) =
√
e1 | exp(e1) | en1 | κ(e1)

case on structure ex

If ex = c then Q(ex) because ex is in normal form.

If ex = Tα then Q(ex) because ex is in normal form.

If ex = Fα then Q(ex) because ex is in normal form.

If ex = Vα ~H then Q(ex) because ex is in normal form.

If ex = δij then Q(ex) because ex is in normal form.

If ex = Eα then Q(ex) because ex is in normal form.

If ex = liftd(e1)

Prove Q(ex) by contradiction.

case on structure e1

197

If e1 = c then Q(ex) because ex is in normal form.

If e1 = Tα then Q(ex) because ex is in normal form.

If e1 = Fα then Q(ex) because ex is not a supported type.

If e1 = e~ e then Q(ex) because ex is not a supported type.

If e1 = δij then Q(ex) because ex is in normal form.

If e1 = Eα then Q(ex) because ex is in normal form.

If e1 = liftd(e) then Q(ex) because ex is not a supported type.

If e1 = M(e) and assuming Q(e) then Q(ex)

Given M(e3) =
√
e3 | exp(e3) | en3 | κ(e3)

If e1 = −e and assuming Q(e) then Q(ex)

If e1 = ∂
∂xα
� e then Q(ex) because ex is not a supported type.

If e1 =
∑
e and assuming Q(e) then Q(ex)

If e1 = e3 + e4 and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3 − e4 and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3 ∗ e4 and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3
e4

and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3@e4 and assuming Q(e3) and Q(e4) then Q(ex)

Q(ex)

ex=M(e1)

Show Q(x) with proof by contradiction. Assume CQ(Qx)

case on structure e1

Note. M(e1) =
√
e3 | exp(e3) | en3 | κ(e3)

198

If e1 = c then Q(ex) because ex is in normal form.

If e1 = Tα then Q(ex) because ex is in normal form.

If e1 = Fα then Q(ex) because ex is in normal form.

If e1 = Vα ~H then Q(ex) because ex is in normal form.

If e1 = δij then Q(ex) because ex is in normal form.

If e1 = Eα then Q(ex) because ex is in normal form.

If e1 = liftd(e) and assuming Q(e) then Q(ex)

If e1 = M(e) and assuming Q(e) then Q(ex)

If e1 = −e and assuming Q(e) then Q(ex)

If e1 = ∂
∂xα

e and assuming Q(e) then Q(ex)

If e1 =
∑
e and assuming Q(e) then Q(ex)

If e1 = e3 + e4 and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3 − e4 and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3 ∗ e4 and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3
e4

and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3@e4 and assuming Q(e3) and Q(e4) then Q(ex)

Q(ex)

ex=−e1

Show Q(x) with proof by contradiction. Assume CQ(Qx)

case on structure e1

199

If e1 = 0 then Q(ex) because we can apply ruleR23

If e1 = c then Q(ex) because ex is in normal form.

If e1 = Tα then Q(ex) because ex is in normal form.

If e1 = Fα then Q(ex) because ex is in normal form.

If e1 = Vα ~H then Q(ex) because ex is in normal form.

If e1 = δij then Q(ex) because ex is in normal form.

If e1 = Eα then Q(ex) because ex is in normal form.

If e1 = liftd(e) and assuming Q(e) then Q(ex)

If e1 = M(e) and assuming Q(e) then Q(ex)

If e1 = −e then Q(ex) because we can apply ruleR22

If e1 = ∂
∂xα

e and assuming Q(e) then Q(ex)

If e1 =
∑
e and assuming Q(e) then Q(ex)

If e1 = e3 + e4 and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3 − e4 and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3 ∗ e4 and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3
e4

and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3@e4 and assuming Q(e3) and Q(e4) then Q(ex)

Q(ex)

ex = e1 + e2

Prove Q(x)

case on structure e1

200

If ex = 0 then Q(ex) because we can apply rule R30

If ex = c then Q(ex) because ex is in normal form.

If ex = Tα then Q(ex) because ex is in normal form.

If ex = Fα then Q(ex) because ex is in normal form.

If ex = Vα ~H then Q(ex) because ex is in normal form.

If ex = δij then Q(ex) because ex is in normal form.

If ex = Eα then Q(ex) because ex is in normal form.

If ex = liftd(e) and assuming Q(e) then Q(ex)

If ex = M(e) and assuming Q(e) then Q(ex)

If ex = −e and assuming Q(e) then Q(ex)

If ex = ∂
∂xα

e and assuming Q(e) then Q(ex)

If e1 =
∑
e and assuming Q(e) then Q(ex)

If e1 = e3 + e4 and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3 − e4 and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3 ∗ e4 and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3
e4

and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3@e4 and assuming Q(e3) and Q(e4) then Q(ex)

Q(ex)

case on structure e2

Proof same as above Q(x)

ex=e1 − e2

Show Q(x) with proof by contradiction. Assume CQ(Qx)

case on structure e1

201

If e1 = 0 then Q(ex) because we can apply rule R25

If e1 = c then Q(ex) because ex is in normal form.

If e1 = Tα then Q(ex) because ex is in normal form.

If e1 = Fα then Q(ex) because ex is in normal form.

If e1 = Vα ~H then Q(ex) because ex is in normal form.

If e1 = δij then Q(ex) because ex is in normal form.

If e1 = Eα then Q(ex) because ex is in normal form.

If e1 = liftd(e) and assuming Q(e) then Q(ex)

If e1 = M(e) and assuming Q(e) then Q(ex)

If e1 = −e and assuming Q(e) then Q(ex)

If e1 = ∂
∂xα

e and assuming Q(e) then Q(ex)

If e1 =
∑
e and assuming Q(e) then Q(ex)

If e1 = e3 + e4 and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3 − e4 and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3 ∗ e4 and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3
e4

and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3@e4 and assuming Q(e3) and Q(e4) then Q(ex)

Q(ex)

case on structure e2

If ex = 0 then Q(ex) because we can apply rule R24

Proof same as above

Q(x)
ex=e1 ∗ e2

Show Q(x) with proof by contradiction. Assume CQ(Qx)

case on structure e1

202

If e1 = 0 then Q(ex) because we can apply rule R31

If e1 = c then Q(ex) because ex is in normal form.

If e1 = Tα then Q(ex) because ex is in normal form.

If e1 = Fα then Q(ex) because ex is in normal form.

If e1 = Vα ~H then Q(ex) because ex is in normal form.

If e1 = δij

case on structure e2

If e2 = Tj then Q(ex) because we can apply rule R36

If e2 = Fj then Q(ex) because we can apply rule R37

If e2 = Vα ~H then Q(ex) because we can apply rule R38

If e2 = Vα ~H@e then Q(ex) because we can apply rule R39

If e2 = ∂
∂xα

e then Q(ex) because we can apply rule R40

else Q(ex) because ex is in normal form.

If e1 = Eij
If e1 = Eijk

case on structure e2

If e2 = ∂
∂xij

(e) then Q(ex) because we can apply rule R33

If e2 = V ~Hjk then Q(ex) because we can apply rule R34

If e2 = Eijk then Q(ex) because we can apply rule R35

else Q(ex) because ex is in normal form.

If e1 = liftd(e1) and assuming Q(e) then Q(ex)

If e1 =
√
e3

If e2 =
√
e4 then Q(ex) because we can apply rule R32

otherwise Q(ex) because ex is in normal form.

203

If e1 = −e and assuming Q(e) then Q(ex)

If e1 = ∂
∂xα
� e then Q(ex) because ex is not a supported type.

If e1 =
∑
e and assuming Q(e) then Q(ex)

If e1 = e3 + e4 and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3 − e4 and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3 ∗ e4 and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3
e4

and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3@e4 and assuming Q(e3) and Q(e4) then Q(ex)

Q(ex)

ex=e1
e2

Show Q(x) with proof by contradiction. Assume CQ(Qx)

case on structure e1

If e1 = e3
e4

If e2 = e5
e6

then Q(ex) because we can apply rule R27 otherwiseQ(ex)

because we can apply rule R29.

204

If e1 = 0 then Q(ex) because we can apply rule R26

If e1 = c then Q(ex) because ex is in normal form.

If e1 = Tα then Q(ex) because ex is in normal form.

If e1 = Fα then Q(ex) because ex is in normal form.

If e1 = V ~H and assuming Q(e) then Q(ex)

If e1 = δij , Eij , Eijk then Q(ex) because ex is in normal form.

If e1 = ∂
∂xα

e and assuming Q(e) then Q(ex)

If e1 =
∑
e and assuming Q(e) then Q(ex)

If e1 = liftd(e) and assuming Q(e) then Q(ex)

If e1 = M(e) and assuming Q(e) then Q(ex)

If e1 = −e and assuming Q(e) then Q(ex)

If e1 = e+ e and assuming Q(e) then Q(ex)

If e1 = e− e and assuming Q(e) then Q(ex)

If e1 = e ∗ e and assuming Q(e) then Q(ex)

If e1 = e@e and assuming Q(e) then Q(ex)

case on structure e2

If e2 = e4
e5

then Q(ex) because we can apply rule R28 otherwise proof same

as above

Q(ex)

ex=e1@e2

Show Q(x) with proof by contradiction. Assume CQ(Qx)

case on structure e1

205

If e1 = c then Q(ex) because ex is not a supported type.

If e1 = Tα then Q(ex) because ex is not a supported type.

If e1 = Fα and assuming Q(e) then Q(ex)

If e1 = e~ e and assuming Q(e) then Q(ex)

If e1 = δij , Eα then Q(ex) because we can apply rule R5

If e1 = liftd(e) then Q(ex) because we can apply rule R5

If e1 = M(e) then Q(ex) because we can apply rule R3

If e1 = −e then Q(ex) because we can apply rule R3

If ex = ∂
∂xα
� e and assuming Q(e) then Q(ex)

If e1 =
∑
e then Q(ex) because we can apply rule R4

If e1 = e+ e then Q(ex) because we can apply rule R2

If e1 = e− e then Q(ex) because we can apply rule R2

If e1 = e ∗ e then Q(ex) because we can apply rule R1

If e1 = e
e then Q(ex) because we can apply rule R1

If e1 = e@e then Q(ex) because ex is not a supported type.

Q(ex)

ex= ∂
∂xα

e1

Show Q(x) with proof by contradiction. Assume CQ(Qx)

case on structure e1

If e1 = c then Q(ex) because ex is not a supported type.

If e1 = Tα then Q(ex) because ex is not a supported type.

If e1 = Fα then Q(ex) because ex is in normal form.

If e1 = e~ e then Q(ex) because we can apply rule R21

If e1 = δij , Eα then Q(ex) because we can apply rule R20

If e1 = liftd(e) then Q(ex) because we can apply rule R20

If e1 = M(e2)

case on structure e2

206

If e2 = Cosine(e) then Q(ex) because we can apply rule R9

If e2 = Sine(e) then Q(ex) because we can apply rule R10

If e2 = Tangent(e) then Q(ex) because we can apply rule R11

If e2 = ArcCosine(e) then Q(ex) because we can apply rule R12

If e2 = ArcSine(e) then Q(ex) because we can apply rule R13

If e2 = ArcTangent(e) then Q(ex) because we can apply rule R14

If e2 = exp(e) then Q(ex) because we can apply rule R15

If e2 = en then Q(ex) because we can apply rule R16

If e2 =
√
e then Q(ex) because we can apply rule R8

Q(ex)

If e1 = −e then Q(ex) because we can apply rule R18

If e1 = ∂
∂xα
� e then Q(ex) because we can apply rule R42

If e1 =
∑
e then Q(ex) because we can apply rule R19

If e1 = e+ e then Q(ex) because we can apply rule R17

If e1 = e− e then Q(ex) because we can apply rule R17

If e1 = e ∗ e then Q(ex) because we can apply rule R6

If e1 = e
e then Q(ex) because we can apply rule R7

If e1 = e@e then Q(ex) because ex is not a supported type.

Q(ex)

ex=
∑

(e1)

Show Q(x) with proof by contradiction. Assume CQ(Qx)

case on structure e1

207

If e1 = c then Q(ex) because we can apply rule R41

If e1 = T then Q(ex) because we can apply rule R41

If e1 = Tα then Q(ex) because ex is in normal form.

If e1 = F then Q(ex) because we can apply rule R41

If e1 = Fα then Q(ex) because ex is in normal form.

If e1 = Vα ~H then Q(ex) because we can apply rule R41

If e1 = δij , Eα then Q(ex) because ex is in normal form.

If e1 = liftd(e) and assuming Q(e) then Q(ex)

If e1 = M(e) and assuming Q(e) then Q(ex)

If e1 = −e and assuming Q(e) then Q(ex)

If e1 = ∂
∂xα

e and assuming Q(e) then Q(ex)

If e1 =
∑
e1 and assuming Q(e) then Q(ex)

If e1 = e3 + e4 and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3 − e4 and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3 ∗ e4 and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = e3
e4

and assuming Q(e3) and Q(e4) then Q(ex)

If e1 = F@e then Q(ex) because we can apply rule R41

If e1 = V ~ h@e then Q(ex) because we can apply rule R41

If e1 = e@e then Q(ex) because ex is in normal form.

Q(ex)

A.3.3 Normal Form implies Termination

The section offers a proof for Lemma 4.3.3.

Non-terminated A term has not terminated if it is the source term of a rewrite rule.

Normal form implies Termination. (Lemma 4.3.3).

208

Proof. We state M(e) as a shorthand for the claim that if e is in normal form then it has

terminated. The following is a proof by contradiction. CM(e): There exists an expression e

that has not terminated and is in normal form. More precisely, given a derivation d of the

form e −→ e′ , there exists an expression that is the source term e of derivation d therefore

not-terminated, and is in normal form.

Case analysis on the source of each rule

Case R1.(e1 �n e2)@x −−−→
rule

(e1@x)�n (e2@x)

Let y= (e1 �n e2)@x and since y is not in normal form then M(R1) OK

Case R2.(e0 �2 e1)@x −−−→
rule

(e0@x)�2 (e1@x)

Let y= (e0 �2 e1)@x and since y is not in normal form then M(R2) OK

Case R3.(�1e1)@x −−−→
rule

�1 (e1@x)

Let y= (�1e1)@x and since y is not in normal form then M(R3) OK

Case R4.(
n∑
i=1

e1)@x −−−→
rule

n∑
i=1

(e1@x)

Let y= (
n∑
i=1

e1)@x and since y is not in normal form then M(R4) OK

Case R5.(χ)@x −−−→
rule

χ

Let y= (χ)@x and since y is not in normal form then M(R5) OK

Case R6. ∂
∂xi
� (e1 ∗ e2) −−−→

rule
e1(∂

∂xi
� e2) + e2(∂

∂xi
� e1)

Let y= ∂
∂xi
� (e1 ∗ e2) and since y is not in normal form then M(R6) OK

Case R7. ∂
∂xi
� (e1e2) −−−→

rule

(∂
∂xi
�e1)e2−e1(∂

∂xi
�e2)

e22

Let y= ∂
∂xi
� (e1e2) and since y is not in normal form then M(R7) OK

Case R8. ∂
∂xi
� (
√
e1) −−−→

rule
liftd(1/2) ∗

∂
∂xi
�e1√
e1

Let y= ∂
∂xi
� (
√
e1) and since y is not in normal form then M(R8) OK

Case R9. ∂
∂xi
� (cosine(e1)) −−−→

rule
(−sine(e1)) ∗ (∂

∂xi
� e1)

Let y= ∂
∂xi
� (cosine(e1)) and since y is not in normal form then M(R9) OK

Case R10. ∂
∂xi
� (sine(e1)) −−−→

rule
(cosine(e1)) ∗ (∂

∂xi
� e1)

209

Let y= ∂
∂xi
� (sine(e1)) and since y is not in normal form then M(R10) OK

Case R11. ∂
∂xi
� (tangent(e1)) −−−→

rule

∂
∂xi
�e

cosine(e1)∗cosine(e1)

Let y= ∂
∂xi
� (tangent(e1)) and since y is not in normal form then M(R11) OK

Case R12. ∂
∂xi
� (arccosine(e1)) −−−→

rule
(

−liftd(1)√
(liftd(1)−(e∗e)) ∗ (∂

∂xi
� e1)

Let y= ∂
∂xi
� (arccosine(e1)) and since y is not in normal form then M(R12) OK

Case R13. ∂
∂xi
� (arcsine(e1)) −−−→

rule
(

liftd(1)√
(liftd(1)−(e∗e)) ∗ (∂

∂xi
� e1)

Let y= ∂
∂xi
� (arcsine(e1)) and since y is not in normal form then M(R13) OK

Case R14. ∂
∂xi
� (arctangent(e1)) −−−→

rule

liftd(1)
liftd(1)+(e1∗e1)

∗ (∂
∂xi
� e1)

Let y= ∂
∂xi
� (arctangent(e1)) and since y is not in normal form then M(R14) OK

Case R15. ∂
∂xi
� (exp(e1)) −−−→

rule
exp(e1) ∗ (∂

∂xi
� e1)

Let y= ∂
∂xi
� (exp(e1)) and since y is not in normal form then M(R15) OK

Case R16. ∂
∂xi
� (en1) −−−→

rule
liftd(n) ∗ en−1

1 ∗ (∂
∂xi
� e1)

Let y= ∂
∂xi
� (en1) and since y is not in normal form then M(R16) OK

Case R17. ∂
∂xi
� (e1 � e2) −−−→

rule
(∂
∂xi
� e1)� (∂

∂xi
� e2)

Let y= ∂
∂xi
� (e1 � e2) and since y is not in normal form then M(R17) OK

Case R18. ∂
∂xi
� (−e1) −−−→

rule
− (∂

∂xi
� e1)

Let y= ∂
∂xi
� (−e1) and since y is not in normal form then M(R18) OK

Case R19. ∂
∂xi

n∑
v=1

e1 −−−→
rule

n∑
v=1

(∂
∂xi

e1)

Let y= ∂
∂xi

n∑
v=1

e1 and since y is not in normal form then M(R19) OK

Case R20. ∂
∂xi

liftd(e1) −−−→
rule

0

Let y= ∂
∂xi

Lift(e1) and since y is not in normal form then M(R20) OK

Case R20. ∂
∂xi

χ −−−→
rule

0

Let y= ∂
∂xi

and since y is not in normal form then M(R20) OK

Case R21. ∂
∂xi
� (Vα ~Hν) −−−→

rule
(Vα ~ hiν)

Let y= ∂
∂xi
� (Vα ~Hν) and since y is not in normal form then M(R21) OK

Case R22.−− e1 −−−→
rule

e1

Let y= −− e1 and since y is not in normal form then M(R22) OK

210

Case R23.−0 −−−→
rule

0

Let y= −0 and since y is not in normal form then M(R23) OK

Case R24.e1 − 0 −−−→
rule

e1

Let y= e1 − 0 and since y is not in normal form then M(R24) OK

Case R25.0− e1 −−−→
rule

− e1

Let y= 0− e1 and since y is not in normal form then M(R25) OK

Case R26. 0
e1
−−−→
rule

0

Let y= 0
e1

and since y is not in normal form then M(R26) OK

Case R27.

e1
e2
e3
−−−→
rule

e1
e2e3

Let y=

e1
e2
e3

and since y is not in normal form then M(R27) OK

Case R28. e1e2
e3

−−−→
rule

e1e3
e2

Let y= e1
e2
e3

and since y is not in normal form then M(R28) OK

Case R29.

e1
e2
e3
e4

−−−→
rule

e1e4
e2e3

Let y=

e1
e2
e3
e4

and since y is not in normal form then M(R29) OK

Case R30.0 + e1, e1 + 0 −−−→
rule

e1

Let y= 0 + e1, e1 + 0 and since y is not in normal form then M(R30) OK

Case R31.0e, e0 −−−→
rule

0

Let y= 0e, e0 and since y is not in normal form then M(R31) OK

Case R32.
√

(e1) ∗
√

(e1) −−−→
rule

e1

Let y=
√

(e1) ∗
√

(e1) and since y is not in normal form then M(R32) OK

Case R33.Eijk ∂
∂xi,j

� e1 −−−→
rule

liftd(0)

Let y= Eijk ∂
∂xi,j

� e1 and since y is not in normal form then M(R33) OK

Case R34.Eijk(Vα ~ hjk) −−−→
rule

liftd(0)

Let y= Eijk(Vα ~ hjk) and since y is not in normal form then M(R34) OK

Case R35.EijkEilm −−−→
rule

δjlδkm − δjmδkl
Let y= EijkEilm and since y is not in normal form then M(R35) OK

211

Case R36.δijTj −−−→
rule

Ti

Let y= δijTj and since y is not in normal form then M(R36) OK

Case R37.δijFj −−−→
rule

Fi

Let y= δijFj and since y is not in normal form then M(R37) OK

Case R38.δijV ~Hδcj −−−→
rule

V ~Hδci

Let y= δijV ~Hδcj and since y is not in normal form then M(R38) OK

Case R39.δijV ~Hδcj (x) −−−→
rule

V ~Hδci(x)

Let y= δijV ~Hδcj (x) and since y is not in normal form then M(R39) OK

Case R40.δij
∂
∂xj
� e1 −−−→

rule

∂
∂xi
� (e1)

Let y= δij
∂
∂xj
� (e1) and since y is not in normal form then M(R40) OK

Case R41.
∑

(se1) −−−→
rule

s
∑
e1

Let y=
∑

(se1) and since y is not in normal form then M(R41) OK

Case R42. ∂
∂xα
� ∂
∂xβ
� e1 −−−→

rule

∂
∂xβα

� e1

Let y= ∂
∂xα
� ∂
∂xβ
� e1 and since y is not in normal form then M(R42) OK

M(x) Lemma 4.3.3

212

