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ABSTRACT

Although traded as distinct products, caps and swaptions are linked by
no-arbitrage relations through the correlation structure of interest rates.
Using a string market model framework, we solve for the correlation ma-
trix implied by the swaptions market and examine the relative valuation
of caps and swaptions. The results indicate that swaption prices are gen-
erated by four factors and that implied correlations are generally lower
than historical correlations. We find evidence that long-dated swaptions
are priced inconsistently and that there were major distortions in the
swaptions market during the hedge-fund crisis of late 1998. We also find
that cap prices periodically deviate significantly from the no-arbitrage
values implied by the swaptions market.



1. INTRODUCTION

The growth in interest-rate swaps during the past decade has led to the creation
and rapid expansion of markets for two important types of swap-related derivatives:
interest-rate caps and swaptions. These OTC derivatives are widely used by many
firms to manage their interest-rate risk exposure and collectively represent the largest
class of fixed-income options in the financial markets. The International Swaps and
Derivatives Association (ISDA) estimates that the total notional amount of caps and
swaptions outstanding at the end of 1997 was over $4.9 trillion, which was more than
300 times the $15 billion notional of all Chicago Board of Trade Treasury note and
bond futures options combined.

Caps and swaptions are generally traded as separate products in the financial mar-
kets, and the models used to value caps are typically different from those used to
value swaptions. Furthermore, most Wall Street firms use a piecemeal approach
in calibrating their models for caps and swaptions, making it difficult to evaluate
whether these derivatives are fairly priced relative to each other. Financial theory,
however, implies no-arbitrage relations which must be satisfied by cap and swaption
prices. Specifically, a cap can be represented as a portfolio of options on individual
forward rates. In contrast, a swaption can be viewed as an option on a portfolio
of individual forward rates. Because of this, standard option pricing theory such
as Merton (1973) implies that the relation between cap and swaption prices, or be-
tween different swaption prices, is driven primarily by the correlation structure of
the forward rates. Given a unified valuation framework capturing these correlations,
the no-arbitrage relations among cap and swaption prices can be tested directly.

This paper conducts an empirical analysis of the relative valuation of caps and
swaptions using an extensive data set of interest-rate option prices. As the valuation
framework, we use a string market model of the term structure of interest rates
which blends the market-model framework of Brace, Gatarek, and Musiela (1997)
and Jamshidian (1997) with the string-shock framework of Santa-Clara and Sornette
(2000), Goldstein (2000), and Longstaff and Schwartz (2000). This approach has
the important advantages of incorporating correlations directly into the model in a
simple way and providing a unified framework for valuing fixed-income derivatives.
The empirical approach taken in the paper consists of first solving for the covariance
matrix implied by the market prices of all traded swaptions. This is the matrix
equivalent of the familiar technique of solving for the implied volatility of an option.
Once the implied covariance matrix has been identified, we can directly examine the
implications for the relative values of caps and swaptions.

The empirical results provide a number of interesting insights into the fixed-income
derivatives market. We find evidence of four statistically significant factors in the
covariance matrix implied from market swaption prices. This contrasts with results
based on historical covariance matrices which typically find only two to three factors,
but is consistent with more recent evidence by Knez, Litterman, and Scheinkman
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(1994). Our results indicate that the market considers factors that contribute little
to the unconditional volatility of term structure movements, but represent a major
source of conditional volatility during periods of market stress. Our results also
indicate that the correlations among forward rates implied from swaption prices
tend to be lower than those observed historically.

We then examine the relative valuation of swaptions and find that most swaptions
tend to be valued fairly relative to each other. The major exception is during the
twelve-week period immediately following the announcement in September 1998 of
massive trading losses at Long Term Capital Management. During this turbulent
period, there is strong evidence of significant distortions in the quoted prices of many
swaptions, a finding independently corroborated by interviews with many fixed-
income derivatives traders. We also find that long-dated swaptions generally tend
to be undervalued relative to other swaptions throughout the sample period.

Turning to the relative valuation of caps and swaptions, we find that the median
differences between model and market cap prices are close to zero. The distribution
of differences, however, is skewed towards the right and all of the mean differences are
positive and significant. This suggests that caps are typically valued fairly relative
to swaptions, but that there are periodically large discrepancies between the two
markets. This is particularly true during the hedge-fund crisis during late 1998.

Finally, we contrast the hedging performance of the string market model with that
of the standard Black model often used in practice. Despite using only four hedging
portfolios to hedge all of the swaptions in the sample, the string market model
performs slightly better than the Black model which uses a different hedge portfolio
for each of the 34 swaptions in our sample.

The remainder of this paper is organized as follows. Section 2 provides a brief
introduction to cap and swaption markets. Section 3 describes the string market
model framework used to value interest-rate derivatives. Section 4 discusses the data.
Section 5 presents the empirical results. Section 6 compares the implications of the
string model for fixed-income derivatives with those of the Black model. Section 7
summarizes the results and makes concluding remarks.

2. THE CAPS AND SWAPTIONS MARKETS

This section provides a brief introduction to the caps and swaptions markets. We
first describe the characteristics of caps and explain how they are used in the financial
markets. We then discuss the features of swaptions and their uses.

2.1 The Caps Market.

Many financial market participants enter into financial contracts in which they pay or
receive cash flows tied to some floating rate such as Libor. To hedge the risk created
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by the variability of the floating rate, firms often enter into derivative contracts that
are essentially calls or puts on the level of the Libor rate. These types of derivatives
are known as interest-rate caps and floors.

Specifically, a cap gives its holder a series of European call options or caplets on the
Libor rate, where each caplet has the same strike price as the others, but a different
expiration date.1 Typically, the expiration dates for the caplets are on the same
cycle as the frequency of the underlying Libor rate. For example, a five-year cap
on three-month Libor struck at six percent represents a portfolio of 19 separately
exercisable caplets with quarterly maturities ranging from 1/2 to five years, where
each caplet has a strike price of .06.2 The cash flow associated with a caplet expiring
at time T is (a/360)max(0, L(τ, T )−K) where a is the actual number of days during
the period from τ to T , L(τ, T ) is the value at time τ of the Libor rate applicable
from time τ to T , and K is the strike price. Note that while the cash flow on this
caplet is received at time T , the Libor rate is determined at time τ , which means
that there is no uncertainty about the cash flow from the caplet after Libor is set at
time τ . The series of cash flows from the cap provides a hedge for an investor who is
paying Libor on a quarterly or semiannual floating-rate note, where each quarterly
or semiannual caplet hedges an individual floating coupon payment. In addition
to caps, market participants often use interest-rate floors. These are similar to
caps, except that the cash flow from an individual floorlet with expiration date T
is (a/360)max(0, K −L(τ, T )). Thus, floors are essentially a series of European put
options on the Libor rate. The market for interest-rate caps and floors is generically
termed the caps market.

Market prices for caps and floors are universally quoted relative to the Black (1976)
model. Specifically, letD(t, T ) denote the value at time t of a discount bond maturing
at time T , and let F (t, τ, T ) denote the value at time t for the Libor forward rate
applicable to the period from time τ to T . Since L(τ, T ) = F (τ, τ, T ), a caplet can be
viewed as an option on an individual Libor forward rate. Applying the Black model
to this forward rate results in the following closed-form expression for the time-zero
value of a caplet with expiration date T

D(0, T )
a

360

h
F (0, τ, T )N(d)−K N

¡
d−

√
σ2τ/2

¢i
, (1)

where

d =
ln
¡
F (0, τ, T )/K

¢
+
√
σ2τ/2√

σ2τ

1For many currencies, the market convention is for the cap to be on the three-month
Libor rate. In some markets, however, caps may be on the six-month Libor rate.
For example, Yen caps with maturities greater than one year are usually on the
six-month Libor rate.
2The standard market convention is to omit the first caplet since the cash flow from
this caplet is set at time t = 0 and is not stochastic.
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and

F (0, τ, T ) =
360

a

µ
D(0, τ)

D(0, T )
− 1
¶

and where σ is the volatility of changes in the logarithm of the forward rate. With
this closed-form solution, the price of a cap is given by summing the values of the
constituent caplets. Thus, a cap is simply a portfolio of individual options, each on a
different forward Libor rate. The market convention is to quote cap prices in terms
of the implied value of σ which sets the Black model price equal to the market price.
Note that the convention of quoting cap prices in terms of the implied volatility from
the Black model does not necessarily mean that market participants view the Black
model as the most appropriate model for caps. Rather, implied volatilities from
the Black model are simply a more convenient way of quoting prices, since implied
volatilities tend to be more stable over time than the actual dollar price at which a
cap would be traded.

2.2 The Swaptions Market.

The underlying instrument for a swaption is an interest rate swap. In a standard
swap, two counterparties agree to exchange a stream of cash flows over some specified
period of time. One counterparty receives a fixed annuity and pays the other a
stream of floating cash flows tied to the three-month Libor rate. Counterparties are
identified as either receiving fixed or paying fixed in the swap. Although principal
is not exchanged at the end of a swap, it is often more intuitive to think of a swap
as involving a mutual exchange of $1 at the end of the swap. From this perspective,
the cash flows from the fixed leg are identical to those from a bond with coupon rate
equal to the swap rate, while the cash flows from the floating leg are identical to
those from a floating rate note. Thus, a swap can be viewed as exchanging a fixed
rate coupon bond for a floating rate note.3

At the time a swap is initiated, the coupon rate on the fixed leg of the swap is
specified. Intuitively, this rate is chosen to make the present value of the fixed
leg equal to the present value of the floating leg. To illustrate how the fixed rate is
determined, designate the current date as time zero and the final maturity date of the
swap as time T . The fixed rate at which a new swap with maturity T can be executed
is known as the constant maturity swap rate and we denote it by FSR(0, 0, T ), where
the first argument refers to time zero, the second argument denotes the start date
of the swap which is time zero for a standard swap, and T is the final maturity date
of the swap. Once a swap is executed, then fixed payments of FSR(0, 0, T )/2 are

3For discussions about the economic role that interest-rate swaps play in finan-
cial markets, see Bicksler and Chen (1986), Turnbull (1987), Smith, Smithson, and
Wakeman (1988), Wall and Pringle (1989), Macfarlane, Ross, and Showers (1991),
Sundaresan (1991), Litzenberger (1992), Sun, Sundaresan, and Wang (1993), and
Gupta and Subrahmanyam (2000).
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made semiannually at times .50, 1.00, 1.50, . . . , T − .50, and T . Floating payments
are made quarterly at times .25, .50, .75, . . . , T − .25, and T and are equal to a/360
times the three-month Libor rate at the beginning of the quarter, where a is the
actual number of days during the quarter. This feature is termed setting in advance
and paying in arrears. Abstracting from credit issues, a floating rate note paying
three-month Libor quarterly must be worth par at each quarterly Libor reset date.
Since the initial value of a swap is zero, the initial value of the fixed leg must also
be worth par. Setting the time-zero values of the two legs equal to each other and
solving for the swap rate gives

FSR(0, 0, T ) = 2

∙
1−D(0, T )
A(0, 0, T )

¸
, (2)

where A(0, 0, T ) =
P2T

i=1D(0, i/2) is the present value of an annuity with first pay-
ment six months after the start date and final payment at time T . Swap rates are
continuously available from a wide variety of sources for standard swap maturities
such as 2, 3, 4, 5, 7, 10, 12, 15, 20, 25, and 30 years.

For many swaptions, the underlying swap has a forward start date. In a forward
swap with a start date of τ , fixed payments are made at time τ + .50, τ + 1.00, τ +
1.50, . . . , T − .50, and T and floating rate payments are made at times τ + .25, τ +
.50, τ+.75, . . . , T−.25, and T . At the start date τ , the value of the floating leg equals
par. Discounting this time-τ value back to time zero implies that the time-zero value
of the floating cash flows is D(0, τ). Since the forward swap has a time-zero value of
zero, the time-zero value of the fixed leg must also equal D(0, τ). This implies that
the forward swap rate FSR(0, τ, T ) must satisfy

FSR(0, τ, T ) = 2

∙
D(0, τ)−D(0, T )

A(0, τ, T )

¸
. (3)

After a swap is executed, the coupon rate on the fixed leg may no longer equal the
current market swap rate and the value of the swap can deviate from zero. Let
V (t, τ, T, c) be the value at time t to the counterparty receiving fixed in a swap with
forward start date τ ≥ t and final maturity date T , where the coupon rate on the
fixed leg is c. The value of this forward swap is given by

V (t, τ, T, c) =
c

2

2(T−τ)X
i=1

D(t, τ + i/2) +D(t, T )−D(t, τ), (4)

where the first two terms in this expression represent the value of the fixed leg of the
swap, and the third term is the present value of the floating leg which will be worth
par at time τ . For t > τ , the swap no longer has a forward start date and the value
of the swap on semiannual fixed coupon payment dates is given by the expression
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V (t, τ, T, c) =
c

2

2(T−t)X
i=1

D(t, τ + i/2) +D(t, T )− 1. (5)

Note that in either case, the value of the swap is just a linear combination of zero-
coupon bond prices.

Swaptions or swap options allow their holder to enter into a swap with a prespecified
fixed coupon rate, or to cancel an existing swap. Intuitively, swaptions can also
be viewed as calls or puts on coupon bonds. Natural end users of swaptions are
government agencies and firms coming to the capital markets to borrow funds. These
entities use swaptions for the same reasons many firms issue callable or puttable
debt–to cancel a swap with an above-market coupon rate or to enter into a new
swap at a below-market coupon rate.

There are two basic types of European swaptions.4 The first is the option to enter a
swap and receive fixed. For example, let τ be the expiration date of the swaption, c
be the coupon rate on the swap, and T be the final maturity date on the swap. The
holder of this option has the right at time τ to enter into a swap with a remaining
term of T − τ , and receive the fixed annuity of c. Since the value of the floating
leg will be par at time τ , this option is equivalent to a call option on a bond with
a coupon rate of c and a remaining maturity of T − τ where the strike price of the
call is $1. This option is generally called a τ into T − τ receivers swaption, where τ
is the maturity of the option and T − τ is the tenor of the underlying swap. This
swaption is also known as a τ by T receivers swaption. Note that if the option holder
is paying fixed at rate c in a swap with a final maturity date of T , then exercising
this option has the effect of canceling the original swap at time τ since the two fixed
and two floating legs cancel each other out. Observe, however, that when the option
is used to cancel the swap at time τ , the current fixed for floating coupon exchange
is made first.

The second type of swaption is the option to enter a swap and pay fixed, and the
cash flows associated with this option parallel those described above. An option
which gives the option holder the right to enter into a swap at time τ with final
maturity date at time T and pay fixed is generally termed a τ into T − τ or a τ
by T payers swaption. Again, this option is equivalent to a put option on a coupon
bond where the strike price is the value of the floating leg at time τ of $1. A τ by
T payers swaption can be used to cancel an existing swap with final maturity date
at time T where the option holder is receiving fixed at rate c.

From the symmetry of the European payoff functions, it is easily shown that a long
position in a τ by T receivers swaption and a short position in a τ by T payers

4For a discussion of the characteristics of American-style swaptions, see Longstaff,
Santa-Clara, and Schwartz (2000).
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swaption with the same coupon has the same payoff as receiving fixed in a forward
swap with start date τ and coupon rate c. A standard no-arbitrage argument gives
the receivers/payers parity result that at time t, 0 ≤ t ≤ τ , the value of the forward
swap must equal the value of the receivers swaption minus the value of the payers
swaption. When the coupon rate c equals the forward swap rate FSR(t, τ, T ), the
forward swap is worth zero and the receivers and payers swaptions have identical
values. In this case, the swaptions are said to be at the money forward.

As in the caps markets, the convention in the swaptions market is to quote prices
in terms of their implied volatility relative to a standard pricing model. In swaption
markets, prices are quoted as implied volatilities relative to the Black (1976) model
as applied to the forward swap rate. Again, this does not mean that the market
views this model as the most accurate model for swaptions. To illustrate how prices
are quoted in the swaptions market, consider a τ by T European payers swaption
where the fixed coupon rate equals c. Under the assumption that the forward swap
rate follows a lognormal process under the annuity measure (the measure where the
value of the annuity A(t, τ, T ) is used as the numeraire), the Black model implies
that the value of this swaption at time zero is

1

2
A(0, τ, T )

h
FSR(0, τ, T )N(d)− cN(d− σ√τ)

i
, (6)

where

d =
ln(FSR(0, τ, T )/c) + σ2τ/2

σ
√
τ

,

whereN(·) is again the cumulative standard normal distribution function and σ is the
volatility of the logarithm of the forward swap rate. The value of the corresponding
receivers swaption is given from the receivers/payers parity result. In the special
case where the swaption is at-the-money forward, c = FSR(0, τ, T ) and equation (6)
reduces to

¡
D(0, τ)−D(0, T )¢ £2N ¡σ√τ/2¢− 1¤ . (7)

Since this receivers swaption is at the money forward, the value of the corresponding
payers swaption is identical. When an at-the-money-forward swaption is quoted
at an implied volatility of σ, the actual price that is paid by the purchaser of the
swaption is given by substituting σ into equation (7).5

5Smith (1991) describes the application of the Black (1976) model to European
swaptions. Jamshidian (1997), Brace, Gatarek, and Musiela (1997), and others
demonstrate that the Black model for swaptions can be derived within an internally-
consistent no-arbitrage model of the term structure in which the numeraire is the
value of an annuity.
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In the previous section, we showed that caps are simple portfolios of options on indi-
vidual forward rates. In contrast, swaptions can be viewed as options on portfolios
of forward rates. To see this, recall that a swaption is an option on the forward swap
rate in the Black (1976) model. Furthermore, forward swap rates can be expressed as
nearly linear functions of individual forward rates, where the weights are related to
the durations of the cash flows from the fixed leg of the swap.6 From this, it follows
that the swaption can be thought of as an option on a linear combination or portfo-
lio of forward rates. Merton (1973) presents a number of no-arbitrage propositions
including the well-known result that the value of an option on a portfolio must be
less than or equal to that of a corresponding portfolio of options. This inequality is
strict if the assets underlying the individual options are not perfectly correlated. Al-
though the forward swap rate is only approximately linear in the individual forward
rates, the key implication of the Merton result, namely that the relative value of a
portfolio of options and an option on a portfolio is determined by the correlations
between the underlying assets, is directly applicable to caps and swaptions. This key
implication motivates many of the empirical tests later in the paper. In particular,
we solve for the correlation matrix among forwards implied by a set of swaption
prices, and then examine the extent to which other fixed-income options satisfy the
no-arbitrage restrictions imposed by the correlation structure of forwards.

Finally, while both caps and swaptions are quoted in terms of the Black (1976) model,
it should be recognized that the Black model is being actually used in different ways
in these markets. In particular, the caps market uses the forward short-term Libor
rate as the underlying state variable in the Black model, while the swaptions market
uses longer-term forward swap rates. Since forward swap rates are nearly linear in
individual forward rates, the lognormality assumption implicit in the Black model
cannot hold simultaneously for both individual forward rates and forward swap rates,
since a linear combination of lognormal variates is not lognormal. This is the sense in
which the two markets use different models; the inputs used in the Black model differ
across the two markets. In addition, since the volatilities used in the Black model
are for fundamentally different rates, direct comparisons between the quoted implied
volatilities of caps and swaptions are invalid. This has important implications for
the risk management of portfolios of caps and swaptions.

3. THE VALUATION FRAMEWORK

In this section, we develop a general string market model for valuing fixed-income
derivatives such as caps and swaptions. We then describe how to invert the model
to solve for the implied covariance matrix that best fits observed market prices.

6This well-known rule of thumb or approximation can be obtained by differentiating
the expression for the forward swap rate in equation (3) with respect to either spot
or forward rates. For example, see Fabozzi (1993, Chapter 5).
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3.1 The String Market Model.

In a series of recent papers, Jamshidian (1997), Brace, Gatarek, and Musiela (1997),
and others develop term structure models in which either Libor forward rates or
forward swap rates are taken to be fundamental and their dynamics modeled di-
rectly using a Heath, Jarrow, and Morton (1992) framework. This class of mod-
els is often referred to as market models since they are based on the forwards of
observable term rates in the market rather than on instantaneous forward rates.
This approach has the advantage of solving some technical problems associated with
continuously-compounded lognormal rates as well as paralleling the standard practi-
tioner approach of basing models on term rates. Libor-based and swap-based market
models have been applied to a variety of interest-rate derivative valuation problems.
Because the structure of these models is closely related to that of the Heath, Jarrow,
and Morton framework, they share many of the same calibration issues and have
typically only been implemented with a small number of factors.

In another recent literature, Kennedy (1994, 1997), Santa-Clara and Sornette (2000),
Goldstein (2000), and Longstaff and Schwartz (2000) model the evolution of the term
structure as a stochastic string. In this approach, each point along the term structure
is a distinct random variable with its own dynamics, but which may be correlated
with the other points along the term structure. Thus, string models are inherently
high-dimensional models. Surprisingly, however, string models can actually be much
easier to calibrate than models with fewer factors. The reason for this is that string
models are directly parameterized by the correlation function for the points along the
string. This direct approach is generally much more parsimonious than the standard
approach of parameterizing the elements of a matrix of diffusion coefficients. The
advantages of the string model approach to parameterization become increasingly
important as the number of factors driving the term structure increases. Santa-Clara
and Sornette show that the string model approach generalizes the Heath, Jarrow,
and Morton (1992) framework for instantaneous forward rates while preserving its
intuitive structure and appeal.

In this paper, we blend the market model setup with the string model approach
of calibration to develop a valuation framework for fixed-income derivatives. This
approach has the advantage of allowing us to develop the model in terms of the
forward Libor rates which underlie the prices of caps and swaptions. At the same
time, this approach makes it possible to directly model the correlation structure
among Libor forwards in a simple way even when there are a large number of factors.
Capturing the correlation structure is particularly important in this study; recall
from earlier discussion that the correlation structure among forwards plays a central
role in determining the relative valuation of caps and swaptions. We designate this
valuation framework the string market model (SMM).

In this model, we take the Libor forward rates out to ten years Fi ≡ F (t, Ti, Ti +
1/2), Ti = i/2, i = 1, 2, . . . , 19, to be the fundamental variables driving the term
structure. Similarly to Black (1976), we assume that the risk-neutral dynamics for
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each forward rate are given by

dFi = αi Fi dt+ σi Fi dZi, (8)

where αi is an unspecified drift function, σi is a deterministic volatility function,
dZi is a standard Brownian motion specific to this particular forward rate, and
t ≤ Ti.

7 Note that while each forward rate has its own dZi term, these dZi terms
are correlated across forwards. The correlation of the Brownian motions together
with the volatility functions determine the covariance matrix of forwards Σ. This is
different from traditional implementations of multi-factor models which use several
uncorrelated Brownian motions to shock each forward rate. This seemingly minor
distinction actually has a number of important implications for the estimation of
model parameters from market data.

To model the covariance structure among forwards in a parsimonious but economi-
cally sensible way, we make the assumption that the covariance between dFi/Fi and
dFj/Fj is time homogeneous in the sense that it depends only on Ti− t and Tj − t.8
Furthermore, since our objective is to apply the model to swaps which make fixed
payments semiannually, we make the simplifying assumption that these covariances
are constant over six-month intervals. With these assumptions, the problem of cap-
turing the covariance structure among forwards reduces to specifying a 19 by 19
time-homogenous covariance matrix Σ.

One of the key differences between this string market model and traditional multi-
factor models is that our approach allows the parameters of the model to be uniquely
identified frommarket data. For example, if there areN forward rates, the covariance
matrix Σ has only N(N + 1)/2 distinct parameters. Thus, market prices of fixed-
income derivatives contain information on at most N(N + 1)/2 covariances, and no
more than N(N +1)/2 parameters can be uniquely identified from the market data.
Since the string market model is parameterized by Σ, the parameters of the model
are econometrically identified. In contrast, a typical implementation with constant
coefficients of a traditional N-factor model of the form

7We assume that the initial value of Fi is positive and that the unspecified αi terms
are such that standard conditions guaranteeing the existence and uniqueness of a
strong solution to equation (8) are satisfied. These conditions are described in
Karatzas and Shreve (1988, Chapter 5). In addition, we assume that αi is such
that Fi is non-negative for all t ≤ Ti.
8Although the assumption of time homogeneity imposes additional structure on the
model, it has the advantage of being more consistent with traditional dynamic
term structure models in which interest rates are determined by the fundamental
state of the economy. In addition, time homogeneity facilitates econometric estima-
tion because of the stationarity of the model’s specification. For discussions of the
advantages of time-homogeneous models, see Andersen and Andreasen (2000) and
Longstaff, Santa-Clara, and Schwartz (2000).
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dFi = αiFidt+ σi1FidZ1 + σi2FidZ2 + . . .+ σiNFidZN , (9)

would require N parameters for each of the N forwards, resulting in a total of N2

parameters. Given that there are only N(N + 1)/2 < N2 separate covariances
among the forwards, the general specification in equation (9) cannot be identified
using market information unless additional structure is placed on the model. Similar
problems also occur when there are fewer factors than forwards. By specifying the
covariance or correlation matrix among forwards directly, the string market model
avoids these identification problems. String models also have the advantage of being
more parsimonious. For example, up toN×K parameters would be needed to specify
a traditional K-factor model. In contrast, only K(K + 1)/2 parameters would be
needed to specify a string market model with rank K.9

Although the string is specified in terms of the forward Libor rates, it is much more
efficient to implement the model using discount bond prices. By definition,

Fi =
360

a

∙
D(t, Ti)

D(t, Ti + 1/2)
− 1
¸
. (10)

Thus, the forward rates Fi can all be expressed as functions of the vector of discount
bond prices with maturities .50, 1, . . . , 10. Conversely, these discount bond prices
can be expressed as functions of the string of forward rates, assuming that standard
invertibility conditions are satisfied.10 Applying Itô’s Lemma to the vector D of
discount bond prices gives

dD = r D dt+ J−1 σ F dZ, (11)

where r is the spot rate, σ F dZ is the vector formed by stacking the individual
terms σi(t, Ti) Fi dZi in the forward rate dynamics in equation (8), and J

−1 is the
inverse of the Jacobian matrix for the mapping from discount bond prices to forward
rates. Since each forward depends only on two discount bond prices, this Jacobian
matrix has the following simple banded diagonal form.11

9These types of identification problems parallel those which occur in general affine
term structure models. The specification and identification issues associated with
affine term structure models are discussed in an important recent paper by Dai and
Singleton (2000).

10The primary condition is that the determinant of the Jacobian matrix for the map-
ping from discount bond prices to forward swap rates be non-zero. If this condition
is satisfied, local invertibility is implied by the Inverse Function Theorem.

11For notational simplicity, discount bonds are expressed as functions of their matu-
rity date in the Jacobian matrix. The Jacobian matrix represents the derivative of
the 19 forwards F.50, F1.00, F1.50, . . . , F9.50 with respect to the discount bond prices
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J =



− D(.50)
D2(1.00) 0 0 . . . 0 0 0

1
D(1.50) − D(1.00)

D2(1.50) 0 . . . 0 0 0

0 1
D(2.00) − D(1.50)

D2(2.00) . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . 1
D(9.50) − D(9.00)

D2(9.50) 0

0 0 0 . . . 0 1
D(10.00) − D(9.50)

D2(10.00)


It is important to observe that the drift term rD in equation (11) does not depend
on the drift term αi in equation (8). The reason for this is that discount bonds
are traded assets in this complete markets setting and their instantaneous expected
return is equal to the spot rate under the risk-neutral measure.12 Thus, this string
market model formulation has the advantage of allowing us to avoid specifying the
complicated drift term αi, making the model numerically easier to work with than
formulations based entirely on forward rates. Again, since our objective is a discrete-
time implementation of this model, we make the simplifying assumption that r equals
the yield on the shortest-maturity bond at each time period.13

The dynamics forD in equation (11) provide a complete specification of the evolution
of the term structure. This string market model is arbitrage free in the sense that it
fits the initial term structure exactly and the expected rate of return on all discount
bonds equals the spot rate under the risk-neutral pricing measure. Furthermore, the
model allows each point along the curve to be a separate factor, but also allows for

D(1.00), D(1.50), D(2.00), . . . , D(10.00). Since σ(Ti − t) = 0 for Ti ≤ .50, D(.50)
is not stochastic and does not affect the diffusion term in equation (11).

12The bond market is complete in the sense that there are as many traded bonds
as there are sources of risk. Thus, while no discount bond is a redundant asset, the
market is complete and all fixed income derivatives can be priced under a risk-neutral
measure in which the expected returns on all bonds equals the riskless rate. For a
discussion of this point, see Santa-Clara and Sornette (2000).

13Extensive numerical tests indicate that this discretization assumption has little
effect on the results; we find that this approach gives values for European swaptions
that are virtually identical to those implied by their closed-form solutions.
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a general correlation structure through Σ. To complete the parameterization of the
model, we need only specify Σ in a way that matches the market or the historical
behavior of forward rates.

3.2 Implied Covariance Matrices.

Rather than specifying the covariance matrix Σ exogenously, our approach is to
solve for the implied matrix Σ that best fits the observed market prices of some
set of market data. Specifically, we imply the covariance matrix from the set of all
observed European swaption prices.

In solving for the implied covariance matrix, it is important to note that a covari-
ance matrix must be positive definite (or at least positive semidefinite) to be well
defined. This means that care must be taken in designing the algorithm by which the
covariance matrix is implied from the data to insure than this condition is satisfied.
Standard results in linear algebra imply that a matrix is positive definite if, and only
if, the eigenvalues of the matrix are all positive.14

Motivated by this necessary and sufficient condition, we use the following procedure
to specify the implied covariance matrix. First, we estimate the historical correlation
matrix of percentage changes in forward rates H from a time series of forward rates
taken from a five-year period prior to the beginning of the sample period used in
our study.15 We then decompose the historical correlation matrix into its spectral
representation H = UΛU 0, where U is the matrix of eigenvectors and Λ is a diagonal
matrix of eigenvalues. Finally, we make the identifying assumption that the implied
covariance matrix is of the form Σ = UΨU 0, where Ψ is a diagonal matrix with non-
negative elements. This assumption places an intuitive structure on the space of
admissible implied covariance matrices.16 Specifically, if the eigenvectors are viewed
as factors, then this assumption is equivalent to assuming that the factors that gen-
erate the historical correlation matrix also generate the implied covariance matrix,
but that the implied variances of these factors may differ from their historical values.
Viewed this way, the identification assumption is simply the economically intuitive
requirement that the market prices swaptions based on the factors which drive term
structure movements. Extensive numerical tests suggest that virtually any realistic
implied correlation matrix can be closely approximated by this representation.17

14For example, see Noble and Daniel (1977).

15We implement this procedure using the historical correlation matrix rather than
the covariance matrix to simplify the scaling of implied eigenvalues. We have also
implemented this procedure using the historical covariance matrix. Not surprisingly,
the eigenvectors from the historical covariance matrix are very similar to those ob-
tained from the historical correlation matrix.
16This assumption is equivalent to requiring that the historical correlation matrix H
and the implied covariance matrix Σ commute, that is, HΣ = ΣH. We are grateful
to Bing Han for this observation.

17We note that there are alternative ways of specifying the correlation matrix. For
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Given this specification, the problem of finding the implied covariance matrix reduces
to solving for the implied eigenvalues along the main diagonal of Ψ that best fit the
market data. Since there are typically far more swaptions than eigenvalues, we solve
for the implied eigenvalues by standard numerical optimization where the objective
function is the root mean squared error (RMSE) of the percentage differences be-
tween the market price and the model price, taken over all swaptions. Specifically,
for a given choice of the elements of the diagonal matrix Ψ, we form the estimated
covariance matrix UΨU 0 and then simulate 2,000 paths of the vector of discount
bond prices using the string market model dynamics in equation (11). In simulating
correlated Brownian motions, we use antithetic variates to reduce simulation noise.
The time homogeneity of the model is implemented in the following way. During
the first six-month simulation interval, the full 19 by 19 versions of the matrices Σ
and J are used to simulate the dynamics of the 19 forward rates. After six months,
however, the first forward becomes the spot rate, leaving only 18 forward rates to
simulate during the second six month period. Because of the time homogeneity of
the model, the relevant 18 by 18 covariance matrix is given by taking the first 18
rows and columns of Σ; the last row and column is dropped from the covariance
matrix Σ. Similarly, the first row and column are dropped from the Jacobian since
they involve derivatives with respect to the first forward which has now become the
spot rate. This process is repeated until the last six-month period when only the
final forward rate remains to be simulated.

Using the paths generated, we then value the individual at-the-money-forward Eu-
ropean swaptions by simulation and evaluate the RMSE. In simulating the prices of
swaptions, we use the following procedure. First, recall that since we simulate the
evolution of the full vector of discount bond prices of all maturities ranging up to
10 years, these bond values are available at the expiration date τ of the swaption
for each of the simulated paths of the term structure. From these discount bond
prices at time τ , we can calculate the value of the underlying swap for each path.
Specifically, the value of the swap V (τ, τ, T, c) at time τ is given by the expression

V (τ, τ, T, c) =
c

2

2(T−τ)X
i=1

D(τ, τ + i/2) +D(τ, T )− 1, (12)

example, Rebonato (1999) independently offers a method to construct correlation
matrices among forward rates. In the context of our framework, however, Rebonato’s
approach would require optimizing over a large number of parameters (e.g. in a four-
factor model, his approach would require optimization over a set of 19× (4−1) = 57
parameters) and is computationally infeasible. We also explored alternative ways
of specifying the implied covariance matrix. For example, we examined a variety of
specifications where the covariance between the i-th and j-th forwards is of the form
ea+bTiea+bTje−λ|Ti−Tj |, where a, b, and λ are calibrated to best fit swaption prices
based on a RMSE criterion. These and other similar types of specifications generally
performed poorly in terms of their RMSEs relative to the specification used in this
paper.
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where c is the fixed coupon rate of the swap which is equal to the forward swap rate
FSR(0, τ, T ) defined by equation (3). Thus, the value of the underlying swap at the
expiration date τ of the swaption is easily calculated using the vector of discount
bond prices. Once the value of the underlying swap at time τ is determined, the
cash flow from the swaption at time τ is simply max(0, V (τ, τ, T, c)) for a receivers
swaption and max(0,−V (τ, τ, T, c)) for a payers swaption. For each path, we then
discount the cash flow from the option by multiplying by the compounded money-
market factor

Q2τ−1
i=0 D(i, i + 1/2). Finally, we average the discounted cash flows

over all paths. Since at-the-money-forward receivers and payers swaptions have the
same value, we use the average of the simulated receivers and payers swaptions as
the simulated value of the swaption.

We iterate this entire process over different choices of the eigenvalues until conver-
gence is obtained, using the same seed for the random number generator at each
iteration to preserve the differentiability of the objective function with respect to
the eigenvalue. Although 19 implied eigenvalues are required for the covariance ma-
trix Σ to be of full rank, implied covariance matrices of lower rank can easily be
nested in this specification by solving for the first N eigenvalues and then setting
the remaining 19−N equal to zero.18

4. THE DATA

In conducting this study, we use three types of data: Libor and swap data defining the
term structure of interest rates, market implied volatilities for European swaptions,
and market implied volatilities for Libor interest-rate caps. Together with the term
structure data, these implied volatilities define the market prices of swaptions and
caps. The source of all data is the Bloomberg system which collects and aggregates
market quotations from a number of brokers and dealers in the OTC swap and
fixed-income derivatives market.

18Although the numerical optimization is conceptually straightforward, there are a
number of ways in which the search algorithm can be accelerated. For example,
a least squares algorithm similar to Longstaff and Schwartz (2000) can be used to
approximate forward swap rates as linear functions of the individual forward rates.
Given a covariance matrix, this linear approximation then implies closed-form ex-
pressions for the variance of individual forward swap rates at the expiration dates of
the swaptions, which can then be used to provide a closed-form approximation to the
value of the swaption. This closed-form approximation can then be corrected for bias
by an iterative process of comparing the simulated values given by the string market
model to those implied by this approximation, and then adjusting the approxima-
tion. The implied eigenvalues can then be determined by optimizing the closed-form
approximation rather than having to resimulate paths of the term structure at each
iteration. With this type of algorithm, solving for the implied eigenvalues typically
takes less than 10 seconds using a 750 MHz Pentium III processor.
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The term structure data consists of weekly observations (Friday closing) for the six-
month and one-year Libor rates as well as midmarket two-year, three-year, four-year,
five-year, seven-year and ten-year par swap rates for the period from January 17,
1992 to July 2, 1999. These maturities are the standard maturities for which swap
rates are quoted in the market. From these rates, we solve for the term structure
of six-month Libor forward rates out to ten years in the following way. We first
use the six-month and one-year Libor rates to solve for the six-month and one-
year par rates. We then use a standard cubic spline algorithm to interpolate the
par curve at semiannual intervals. Finally, we solve for six-month forward rates by
bootstrapping the interpolated par curve.19 Table 1 reports summary statistics for
the Libor forward rates for the in-sample period from January 24, 1997 to July 2,
1999. The term structures of Libor forward rates from this period are also graphed
in Figure 1. The term structure data for the five-year ex-ante period from January
17, 1992 to January 17, 1997 is used to estimate the historical correlation matrix H
from which the eigenvectors used in solving for the implied covariance matrices are
determined. This ex-ante correlation matrix is shown in Table 2; all of the in-sample
results are based on this ex-ante correlation matrix. Note that the correlations
are generally smooth monotonically-decreasing functions of the distance between
forward rates. One interesting exception is the correlation between the first and
second forwards; the first two forwards display a significant amount of independent
variation, hinting at money-market factors not present in longer-term forward rates.

The swaption data consists of weekly midmarket implied volatilities for 34 at-the-
money-forward European swaptions for the in-sample period from January 24, 1997
to July 2, 1999. These 34 swaptions represent all of the standard quoted τ by
T European swaption structures where the final maturity date of the underlying
swap is less than or equal to ten years, T ≤ 10. As described earlier, the market
convention is to quote swaption prices in terms of their implied volatility relative
to the Black (1976) model for at-the-money-forward European swaptions given in
equation (7); the market prices of these swaptions are given by substituting the
implied volatilities into the Black model. Table 3 provides summary statistics for
the implied volatilities. Figure 2 graphs the implied volatilities over time; Figure 3
shows a number of examples of the shape of the swaption implied volatility surface
at different points in time during the sample period.

Observe that there is a significant spike in these implied volatilities during the Fall of
1998. This spike coincides with the hedge-fund crisis precipitated by the announce-
ment in early September 1998 of massive trading losses by Long Term Capital Man-
agement (LTCM). The sudden threat to the solvency of LTCM, which had been
widely viewed as a premier client by many Wall Street firms, created a near panic in

19Following the market convention, we discount cash flows using the swap curve as
if it were the riskless term structure. Since the cash flows from both legs of a swap
are discounted using this curve, however, this convention has little or no effect on
valuation results.
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the financial markets. In the subsequent weeks, a number of other highly-leveraged
hedge funds also announced that they had experienced large trading losses on posi-
tions similar to those held by LTCM. Examples of these funds included Convergence
Capital Management, Ellington Capital Management, D. E. Shaw & Co., and MKP
Capital Management. In an effort to stabilize the market, the Federal Reserve Bank
of New York persuaded a consortium of 16 investment and commercial banks to
inject $3.6 billion into LTCM in exchange for virtually all of the remaining equity
in the fund. The prompt action by the Federal Reserve, announced to the markets
on September 24, 1998, allowed LTCM to avoid insolvency and reduced the pressure
on the fund to unwind trading positions at illiquid fire-sale prices, which would have
exacerbated the problems at other hedge funds to which the consortium members
had considerable risk exposure.

The interest-rate cap data consists of weekly midmarket implied volatilities for two-
year, three-year, four-year, five-year, seven-year, and ten-year caps for the same
period as for the swaptions data, January 24, 1997 to July 2, 1999. By market
convention, the strike price of a T -year cap is simply the T -year swap rate. To
parallel the features of swaptions and to simplify the analysis, we assume that caps
are on the six-month Libor rate rather than the three-month rate.20 The market
prices of caps are then given by substituting the implied volatility into the Black
model (1976) given in equation (1), where T − τ = 1/2. Table 4 presents summary
statistics for the market cap volatilities during the sample period. The implied
volatilities display a time series pattern similar to those observed for swaptions.
Figure 4 also graphs the time series of cap volatilities.

5. THE EMPIRICAL RESULTS

In this section, we report the empirical results from the study. First, we examine
how many implied factors are required to explain the market prices of swaptions. We
then study the relative valuation of swaptions in the string market model. Finally,
we examine the relative valuation of both caps and swaptions in the string market
model.

5.1 How Many Implied Factors?

Many researchers have studied the question of how many factors or principal com-
ponents are needed to capture the historical variation in the term structure. For
example, recent papers by Litterman and Scheinkman (1991) and others find that

20This assumption is relatively innocuous. We have spoken with several caps dealers
who indicated that the implied volatilities for caps on six-month Libor would typi-
cally be equal to or perhaps an eighth to a quarter below the implied volatility for
a cap on three-month Libor. Diagnostic tests presented later in the paper indicate
that this assumption has virtually no effect on the empirical results.
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most of the variation in term structure movements is explained by two or three fac-
tors. One important recent exception is Knez, Litterman, and Scheinkman (1994)
who find evidence of a significant fourth factor affecting short-term interest rates.

An important advantage of our approach is that it offers a completely different
perspective on this issue. Rather than focusing on the number of factors in historical
term structure data, we infer from swaption prices the actual number of factors that
market participants view as important influences on the term structure. Since the
implied factor structure is forward looking, the number of implied factors need not
be the same as those obtained historically. Intuitively, this approach is analogous to
the familiar technique of solving for the implied volatility in option prices; implied
volatilities typically do not equal estimates of volatility based on historical data, and
often provide more accurate forecasts of future volatility.21

We estimate the implied number of factors using an incremental likelihood ratio test
based on all 128 weekly observations for each of the 34 European swaptions in the
data set. Recall that when all but the first N eigenvalues in the diagonal matrix Ψ
are equal to zero, the implied covariance matrix is of rank N , or equivalently, the
implied covariance matrix is generated by N factors. For a given value of N , and
for the i-th week i = 1, 2, . . . , 128, we use the procedure described in Section 3.2 to
solve for the N implied eigenvalues that minimize the sum of squared percentage
swaption pricing errors, where the percentage errors are defined as the differences
between the simulated and market values of each swaption, expressed as a percentage
of the market value of the swaption. Note that these pricing errors arise because
we are trying to fit 34 swaption prices with only N < 34 parameters. Thus, these
errors have an interpretation very similar to that of the residuals from a non-linear
least squares regression. We repeat the process of solving for the N eigenvalues that
minimize the sum of squared percentage pricing errors for each of the 128 weeks in
the sample period. Adding the sum of squared errors over all 128 weeks gives the
total sum of squared errors. We then repeat this entire procedure for the case of
N +1 eigenvalues, where the same seed for the random number generator is used for
all values of N to insure comparability in the results. Under the null hypothesis of
equality, 128× 34 = 4, 352 times the difference between the logarithms of the sum of
squared errors for N and N +1 factors is asymptotically distributed as a chi-square
variate with 128 degrees of freedom.

21We note that other researchers have also used the approach of backing out factors
from asset prices such as bonds. Important recent examples of this approach include
Longstaff and Schwartz (1992), Chen and Scott (1993), Pearson and Sun (1994),
Duffie and Singleton (1997), de Jong and Santa-Clara (1999), Dai and Singleton
(2000), Duffee (2000), and many others. Our approach differs in that we use the
information in swaption prices to address the question of the number of factors.
Intuitively, it is clear that since swaptions have nonlinear payoffs, their prices may
contain more information about market estimates of the conditional volatility of
factors than can be recovered from bond prices alone.
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Table 5 reports the results from the incremental pairwise comparisons as N ranges
from one to seven. As shown, the pairwise comparisons are statistically significant
for two vs. one, three vs. two, and four vs. three factors, and are insignificant
for all of the other comparisons. These results imply that there are four significant
factors underlying the covariance matrix of forwards used by the market in the
pricing of European swaptions. These results contrast with the earlier empirical work
mentioned above which finds only two to three factors in historical term structure
movements. It is important to mention, however, that most of these earlier studies
focus on Treasury bonds while our results apply to the swap curve. Thus, it is
possible that the existence of a credit factor influencing swap rates but not Treasury
rates could reconcile our results with those obtained by earlier researchers. Because
of these results, all of our subsequent analysis is based on implied covariance matrices
generated by four eigenvalues, resulting in four-factor or rank-four implied covariance
matrices.

As a robustness check, we also conduct the incremental likelihood ratio tests using
only the first half of the sample period (64 weeks) and also using only the second
half of the sample period (64 weeks). Since the hedge-fund crisis of Fall 1998 oc-
curred entirely during the second half of the sample period, this diagnostic addresses
whether the results about the number of factors are specific to this volatile period.
As shown, however, the subperiod results are similar to those for the entire period.
In both the first and second subperiod, the likelihood ratio tests find evidence of
four statistically significant factors. Thus, the results about the number of factors
are not artifacts of the hedge-fund crisis of Fall 1998.22

To provide some insight into the four implied factors that market participants view as
driving the term structure, Figure 5 graphs the first four eigenvectors, which define
the weights of the first four factors, from the historical correlation matrix in Table 2.
As illustrated, these factors closely resemble those found in earlier papers. The first
factor essentially generates parallel shifts in the term structure. The second factor
generates shifts in the slope of the term structure. The third factor is a curvature
factor which generates movements in the term structure where short-term and long-
term rates move in opposite directions from the mid-term rates. Finally, the fourth
factor primarily affects the shape of the very short end of the term structure, possibly
reflecting the influence of the Federal Reserve or other monetary authorities. Thus,
this fourth factor has an interpretation very similar to the fourth factor found by
Knez, Litterman, and Scheinkman (1994) in their study of short-term rates.

22It is interesting to note that the four significant factors during the first half of
the sample are the first, second, third, and fifth, while the four significant factors
during the entire sample period and during the second half of the sample period
are the first, second, third, and fourth. Thus, one could argue that as many as five
factors could occasionally be needed to describe swaption prices. We take the more
parsimonious view that there are only four significant factors based on the results
for the full sample period.
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Since the eigenvectors used in solving for the implied covariance matrix have the
interpretation of term structure factors, the fitted eigenvalues can be viewed as the
implied variances of the factors. To illustrate this, Figure 6 graphs the time series
of fitted values for each of the four eigenvalues used to define the implied covariance
matrix. The first eigenvalue shows the relative volatility over time of the parallel shift
factor. The volatility of this factor was very stable during much of 1997, decreased
somewhat during the early part of 1998, and then increased significantly during the
Fall of 1998 when the financial stability of a number of highly-visible hedge funds
was threatened by severe trading losses. The volatility of the term structure slope
factor decreased significantly during 1997, and was quite low during most of 1998. In
the Fall of 1998, however, the volatility of this factor suddenly increased by a factor
of nearly ten, but then quickly returned to levels near those at the beginning of the
sample period. The volatility of the curvature factor shows a pattern similar to that
of the slope factor; the volatility decreases significantly during 1997, is generally low
during most of 1998, and then spikes dramatically during the Fall of 1998. The be-
havior of the volatility of the short-term or fourth factor suggests one possible way of
reconciling these results with the historical evidence on the number of factors. The
implied volatility of this fourth factor is often quite small and can actually be zero.
During periods of market stress such as the Fall of 1998, however, the volatility of
this factor can suddenly increase and become a major source of term structure move-
ments. Thus, the time series pattern of the volatility of the fourth factor suggests
that this may be more of an event-related factor that only becomes important in
periods of extreme market stress. Since historical analysis of the number of factors
is typically based on unconditional tests, factors which have time-varying volatilities
that are usually small or zero may not show up in these types of standard tests.
Despite this, these factors could represent a serious source of conditional volatility
risk to market participants who would appropriately incorporate their effects into
the market prices of swaptions. Recent papers by Jagannathan and Sun (1999)
and Hull (1999) independently confirm that three factors are not sufficient to fully
capture the pricing of interest rate caps and swaptions. Peterson, Stapleton, and
Subrahmanyam (2000) find that going from one to two term structure factors has a
significant effect on the valuation of swaptions.

5.2 The Implied Correlation Matrix.

As discussed, the implied eigenvalues uniquely determine the implied covariance
matrix. In this sense, our approach is simply the matrix version of the familiar tech-
nique of inverting option prices to solve for the implied volatility of the underlying
asset. One natural question that arises is how closely the implied correlation matrix
matches the historical correlation matrix. To compare the two, we do the following.
Based on the results of the likelihood ratio tests in the previous section, we set N = 4
and use the corresponding four implied eigenvalues for each week to define a diagonal
matrix Ψ for each week. This diagonal matrix Ψ has the four implied eigenvalues
as the first four elements along the diagonal, and zeros as the remaining diagonal
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elements. From Ψ and the historical matrix of eigenvectors U , the implied covariance
matrix for that week is defined by Σ = UΨU 0. Standardizing the covariance matrix
gives the implied correlation matrix for that week. We repeat this process for all 128
weeks in the sample, resulting in a series of 128 implied correlation matrices.

To obtain summary measures of implied correlations, we then compute the matrix of
average implied correlations by simply taking the time series average of each element
in the implied correlation matrix over all 128 weeks. We then take the difference
between the matrix of average implied correlations and the historical correlation
matrix in Table 2 and report these differences in Table 6. To provide some sense of
the time series variation in these differences, Table 7 reports the matrix of standard
deviations of the implied correlations.

As shown in Table 6, there are clearly systematic differences between the histori-
cal and implied correlations. The differences along the main diagonal are all zero,
of course, since the main diagonals of both the implied and historical correlation
matrices consist of ones. As we move away from the main diagonal, however, the
differences are almost all negative, which means that the implied correlations tend
to be lower than the historical correlations. Most of the differences are on the order
of .05 to .10, but a few are as large as .20. The largest differences are typically for
the correlation of two to three year forwards with seven to nine year forwards. The
only notable positive difference is for the correlation between the first and second
forwards.

Table 7 shows that there is a fair amount of time series variation in the implied
correlations, indicating that the implied correlation matrix is not constant over time.
In general, however, the standard deviations do not appear to be excessively variable;
most of the standard deviations range from .05 to .20. The largest standard deviation
is for the correlation between the first and second forward. Intuitively, however, it
is this correlation that is likely to be the hardest to estimate since it only affects one
of the swaptions; all of the other correlations affect multiple swaption values.

5.3 The Relative Valuation of Swaptions.

The structure of the string market model imposes a number of constraints on the
dynamic evolution of the term structure. Because of this, it is important to examine
how well the model is able to describe the underlying structure of market swaption
prices. Recall that the string market model is attempting to explain the cross-section
of 34 swaption prices using only four parameters each period. Thus, the model places
a number of overidentifying restrictions of swaption prices and the pricing errors from
fitting the string market model provide insights into how well these overidentifying
restrictions are satisfied by the data.

To address this issue, Figure 7 graphs the RMSEs for the 34 swaptions in the sam-
ple for each of the 128 weeks in the sample period. Recall that these RMSEs are
computed by first estimating the four eigenvalues that best fit the market swaption
prices for that week, pricing the swaptions by simulating paths of the string market
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model, and then taking the percentage differences between the market and model
prices. As illustrated, the RMSEs from this time-homogeneous string market model
are generally very small; the model typically captures the shape of the swaption
volatility surface quite closely. Leaving out the exceptional period in the Fall of
1998, the RMSEs are generally between two to three percent. These RMSEs are
roughly about one-third to one-half of the size of the bid-offer spread.23 The median
RMSE is 3.10 percent and the standard deviation of the RMSEs is 2.98 percent.

Although the string market model fits the swaptions market well during most of
the sample period, the Fall of 1998 is clearly a major outlier. During this period,
the RMSE spikes up to as high as 16 percent. The period during which the RMSE
exceeds five percent begins with the week of September 11, 1998. Interestingly, this is
just a few days after the well-publicized letter from John Meriwether to the investors
of LTCM informing them that the fund had lost 52 percent of its capital through
the end of August due to major trading losses in a number of markets. The RMSEs
remain consistently above five percent for the ten-week period from September 11,
1998 to November 13, 1998, which closely align with the period during which most
of the uncertainty about the survival of many of the hedge funds involved in the
crisis was being resolved.

The failure of the string market model to capture the shape of the swaptions volatil-
ity surface during this period raises two possibilities: either the time-homogeneous
specification of the string market model is too restrictive, or quoted prices in the
swaptions market were inconsistent with the absence of arbitrage. Although we
cannot completely resolve this classical “joint-hypothesis” problem, we have con-
ducted extensive interviews with many swaptions traders who experienced this pe-
riod. These traders generally made two points. First, because of the turbulence in
the market, the liquidity in the swaptions market was less than typical, and the qual-
ity of the market quotations collected by Bloomberg could be questioned. Secondly,
there was an almost uniform belief among traders that there were in fact arbitrage
opportunities in the markets. Many traders during this period felt that the fear of
a complete market meltdown prevented them from executing trades that otherwise
would have been viewed as highly profitable during ordinary circumstances.24

Going beyond the overall RMSEs, it is also useful to examine the valuation errors for
individual swaptions. While the overall RMSEs are generally small and the fitting
procedure requires pricing errors to have a mean close to zero, individual swaptions

23Bloomberg reports that the typical bid-offer spread for these swaptions is about one
unit of Black-model implied volatility; for a typical implied volatility of 16 percent,
a one-percent volatility bid-offer spread represents about six percent of the value of
an at-the-money-forward swaption.
24Liu and Longstaff (2000) demonstrate that rational investors facing realistic margin
constraints may actually choose to underinvest in arbitrages, or avoid investing in an
arbitrage altogether, because of the risk that the arbitrage opportunity may widen
further before it ultimately converges.
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could still potentially display systematic patterns of mispricing. To investigate this
possibility, Table 8 reports summary statistics for the pricing errors of individual
swaption structures.

As shown, there are some clear patterns in the valuation errors. First of all, many of
the valuation errors are highly serially correlated, implying that deviations between
the model and market prices are persistent. Generally, the most persistent errors are
for the swaptions with five years to maturity, while the least-persistent errors occur
for the swaptions with one, two, or three years to maturity.25

Table 8 shows that while many of the means for the individual swaption valuation
errors are significantly different from zero (after correcting the standard errors for
serial correlation), the largest valuation errors occur for the swaptions with five years
to maturity. In addition, the means for these five-year swaptions are all positive and
greater than four percent. Note that the large positive means for these swaptions
results in most of the other means being negative since there is an implicit adding-up-
to-zero constraint imposed by the fitting procedure. Although smaller in magnitude,
the mean differences for the swaptions with two years to maturity are also generally
significantly different from zero. Another interesting feature of the valuation errors
is that they tend to be skewed. This can easily be seen by comparing the mean
valuation errors with the median errors. Note that the distribution of valuation
errors tends to be skewed towards smaller values for short-maturity swaptions and
towards larger values for long-maturity swaptions. Taken together, these results
strongly suggest that there are significant and predictable valuation errors.

5.4 The Relative Valuation of Caps and Swaptions.

In the string market model, cash flows from fixed-income derivatives can be expressed
in terms of the fundamental forward rates defining the term structure. Thus, once
the covariance matrix Σ has been estimated from the market prices of swaptions,
the values of other fixed-income derivatives such as caps are uniquely determined by
the string market model. In this sense, by parameterizing the model with swaption
prices, which are essentially options on baskets of forwards, the model implies prices
for caps, which can be viewed as baskets of options on individual forward rates. As in
Merton (1973), the covariance matrix Σ determines the relation between the prices
of options on portfolios and portfolios of options. It is important to note that the
relation between swaption and cap prices implied by the model is a contemporaneous
one; the prices of caps at time t in the model are implied from the prices of swaptions
at time t. In this sense, the relative value relation implied by the model between caps
and swaptions is similar to the put/call parity formula for options which also places

25It is important to note, however, that some of the persistence in these pricing errors
may arise because the data consists of weekly observations of swaption prices where
the maturities are typically multiple years. Thus, the overlapping nature of the data
may induce serial correlation in the estimated pricing errors. We are grateful to
the referee for pointing out this potential source of serial correlation in the pricing
errors.
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restrictions on the relative values of simultaneously-observed call and put prices.

The main diagonal of the implied covariance matrix represents the implied variance
of the individual forward rates as they roll down in maturity and become the spot
rate. In particular, the implied variance of each forward rate during the last period
before it becomes the spot rate is the first element on the diagonal, the implied
variance of each forward rate during the next-to-last period before it become the
spot rate is given by the second element on the diagonal, etc. Since this provides a
complete specification of the volatility of all forwards, the main diagonal uniquely
determines the values of individual caplets (conditional on the number of eigenvalues
fitted), which then determine the values of caps. Thus, once the model is fitted to
the swaptions market, we can directly examine the implications for the valuation of
caps. In the absence of arbitrage, the values of caps implied by the swaptions market
should match the actual market prices of caps.

To examine the relative valuation of caps and swaptions, we use the main diagonal
of the implied covariance matrix and solve for the implied values of two-year, three-
year, four-year, five-year, seven-year, and ten-year at-the-money caps, using the
Black model given in equation (1) and the initial term structure to value individual
caplets. Since the Black model gives a closed-form expression for caplet prices, we do
not need to solve for caps prices by simulation. The use of the Black model for pricing
caplets is appropriate here since the lognormal dynamics for forward rates given in
equation (8) imply that the Black model holds for individual caplets, since caplets
are simple European options on individual forward rates. Note that the variance
used in the Black model for valuing a caplet is simply the average variance for the
corresponding forward rate from the present until the forward becomes the spot rate.
Thus, the variance for the caplet maturing in six months is the first diagonal element,
the variance for the caplet maturing in twelve months is the average of the first and
second diagonal elements, etc. We repeat this procedure for each of the 128 weeks
in the sample period and report summary statistics for the differences between the
market and implied prices in Table 9.

As illustrated, the hypothesis that market cap prices match the values implied by the
swaption market is rejected for all of the maturities. The mean percentage pricing
errors range from a high of 23.326 for the two-year caps down to 5.665 for the five-
year caps. The positive means imply that the market cap prices are undervalued
relative to swaptions. Note that these percentage pricing errors also tend to display
a significant amount of persistence as evidenced by their first-order serial correlation
coefficients.

A different perspective is obtained by focusing on the median values of the pricing
differences. The median pricing errors are all within three percent of zero, and the
overall median is only .862, which suggests that the caps and swaptions markets
are usually consistent; the significant mean percentage pricing are primarily due to
periodic large positive errors, resulting in a skewed, somewhat bimodal distribution
of errors.
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As an additional diagnostic, we also recompute the pricing errors under the assump-
tion that the Black volatilities for caps on six-month Libor are .25 volatility points
below those for caps on three-month Libor. Recall from the earlier discussion that
there could be a slight difference in the quoted volatilities for caps on six-month Li-
bor rather than on three-month Libor. The results, however, are virtually the same
as those reported in Table 9.

As another test of the Merton (1973) no-arbitrage bounds, we recompute the per-
centage pricing differences under the assumption that the correlations between all
forwards equals one. This is done by fitting only a single implied eigenvalue to the
market prices of the swaptions; all of the remaining eigenvalues are set equal to zero.
This specification results in a rank-one covariance matrix, which in turn, implies
perfect correlation among all forward rates. Following Merton, it is easily shown
that the model price from the one-factor model should provide a lower bound for the
value of a cap. This is directly an implication of the fact that the value of a portfolio
of options should be greater than or equal to the value of an option on a portfolio.
Thus, no-arbitrage considerations imply that the percent pricing differences from
the one-factor model should all be positive. Table 10 reports summary statistics for
these one-factor pricing differences. As shown, virtually all of the cap prices satisfy
this no-arbitrage bound. The mean and median values of the percentage pricing
differences are now all negative. Of the 128× 34 = 4, 352 observations, only 8 or .18
percent are positive.

In summary, the evidence suggests that while caps and swaptions almost always
satisfy the strictest no-arbitrage restriction of Merton (1973), the values of caps and
swaptions are frequently inconsistent with each other. This is consistent with Hull
(1999) who independently finds that a set of cap and swaptions prices for a single
day in August 1999 cannot be reconciled within the context of a three-factor model.
Similarly, Jagannathan and Sun (1999) find that caps and swaptions appear signif-
icantly mispriced in a three-factor Cox, Ingersoll, and Ross (1985) framework. Our
results suggest the possibility that while buy-and-hold arbitrages may not be feasi-
ble, dynamic trading strategies exploiting inconsistencies in the relative valuation of
caps and swaptions may be profitable.

6. A COMPARISON TO THE BLACK MODEL

In this paper, we have examined the relative valuation of caps and swaptions using
a multi-factor string market model of the term structure. As an additional issue, it
is also useful to contrast the performance of the multi-factor string market model
with the standard Black model often applied to caps and swaptions in practice.

Before making any comparisons, however, it is important to first understand the
key differences between the two modeling approaches. The string market model
is a unified multi-factor framework in which the same calibration is used, for ex-
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ample, in pricing and hedging all of the swaptions in the sample. In contrast, 34
separate specifications of the Black model are needed to price and hedge the 34
swaptions in the sample, each specification with a different forward swap rate as the
underlying factor, and each with a distinct volatility calibration. In this context,
the Black model is more appropriately viewed as a collection of different univariate
models, where the relationship between the underlying factors is left unspecified.26

In contrast, the string market model provides a complete unified description of the
multivariate relationships among all points along the term structure.

The piecemeal way in which the Black model is typically used results in many limita-
tions to its applicability. Because the Black model requires a different calibration for
each swaption, it does not place any overidentifying restrictions on swaption prices.
For example, even if 34 different versions of the Black are fitted exactly to the prices
of the 34 swaptions in the sample, these calibrations tell us nothing about what
the price of a 35th swaption would be if it were introduced into the sample. Thus,
the Black model cannot be extended to other swaptions with different maturities,
expiration dates, or strike prices. In practice, the volatilities or prices of the 34
original swaptions would be interpolated or extrapolated to price a 35th swaption.
It is important to note, however, that it is the assumptions about interpolation or
extrapolation that determine the pricing of the 35th swaption in this situation, not
the Black model. In contrast, once calibrated, the string market model can be used
to price any other fixed-income derivative such as a swaption with a different matu-
rity, exercise date, or strike price, interest-rate caps, exotic interest rate options with
payoffs that depend on multiple forward rates, and even American-style swaptions.

Another problem with the way that the Black model is applied in practice is that
it cannot be used to hedge portfolios of options. Since each swaption has its own
underlying asset in the Black model, a swaption can only be hedged with its own
associated forward swap. Thus, hedging the 34 swaptions in the sample requires 34
distinct hedging instruments. Since the relationships between different forward rates
are left unspecified in the Black framework, there is no clear way in which the risks of
different swaptions can be aggregated without making ad hoc auxiliary assumptions
unrelated to the Black model itself. In a strict sense, it is not appropriate to aggregate
the hedge ratios that are computed using different calibrations of the Black model
since there is no guarantee that the different calibrations will be internally consistent.
Thus, the Black model provides no guidance on how one swaption can be hedged
with another. This implies that cross-hedging is not possible using only the Black

26Because the 34 forward swaps underlying the 34 swaptions in our sample can be
expressed in terms of just 19 distinct forward rates, it is tempting to argue that the
dimensionality of the Black model cannot be higher than the number of forward rates.
Since Black model volatilities can be specified arbitrarily, however, these volatilities
may not be linked by the dependence of the forward swap rates on a common set
of forward rates. Hence, the Black model is best viewed as a collection of models
which may not be strictly compatible with each other.
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model.27 In contrast, the string market model implies that all risks can be hedged
using four factors and that the risks of different types of fixed-income derivatives can
be directly aggregated at a portfolio level.

While the Black model places no overidentifying restrictions on prices, it is possible
to contrast the two models in terms of their abilities to hedge fixed-income deriva-
tives. The Black model implies that changes in swaption values are driven entirely
by changes in the corresponding underlying forward swap rate.28 This means that
changes in 34 distinct forward swap rates would be needed to explain the variation
in the prices of the 34 swaptions in the sample. In contrast, the string market model
implies that the variation in the prices of the 34 swaptions can be explained in terms
of the changes of only four factors. Thus, the string model attempts to explain the
variation in swaption prices using far fewer state variables than this interpretation
of the Black model.

To compare the two models, we do the following. Using only information available
at time t, we solve for the hedge ratios for each swaption with respect to the state
variables. In the Black model, the underlying state variable is the forward swap rate
and the hedge ratio is given analytically by differentiating the pricing expression.
In the string market model, the hedge ratios for the four factors are computed by
simulation by varying the initial curve at time t and recomputing swaption prices.
In doing this, we use the eigenvalues from time t and the eigenvectors determined
from the ex ante period prior to the beginning of the sample period; all of the
information used in computing hedge ratios at time t in the string market model is
observable at time t. We then solve for the pricing errors for both models by taking
the change in swaption prices from time t to t+1 and subtracting the change in the
hedging portfolio over the same period, where the change in the hedging portfolio
is given from the hedge ratios and the changes in the individual state variables.
Since we only have data on at-the-money-forward swaptions rather than repeated
observations on the prices of a specific swaption, we make the identifying assumption
that the volatility for the swaption at time t+ 1 is the same as the volatility for the
at-the-money-forward swaption at time t + 1 in computing price changes.29 These
differences directly measure the hedging errors resulting from using the hedge ratios
and hedging instruments implied by the two models over a one week horizon.

27In practice, the risk of fixed income derivative portfolios are often calculated by
computing the sensitivity of Black model prices to changes in individual forward
rates. Note, however, that this approach is much more consistent with the string
market model than with the Black model.
28It is easily shown from the Black model expression in equation (6) that changes
in the forward swap rate are spanned by the returns on two separate portfolios of
zero-coupon bonds with values D(t, τ)−D(t, T ) and A(t, τ, T ) respectively.
29This assumption is not very restrictive. We have also repeated the tests using only
the subsample for which the swaption is at the money at both times t and t+1. The
results are very similar to those reported.
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Intuitively, one might suspect that the Black model would perform much better in
this hedging analysis since it hedges with the 34 specific underlying forward swaps
while the string market model uses only four hedges for all 34 swaptions. Surprisingly,
however, the string market model actually performs slightly better than the Black
model. For the case of receivers swaptions, the Black model explains 89.28 percent
of the variability in the price changes for the 34 swaptions over the 127 week period.
In contrast, the string market model explains 89.35 percent of the variability in the
price changes.30 For the case of payers swaptions, the Black model explains 92.46
percent of the variability in the price changes while the string market model explains
92.48 percent. We acknowledge, of course, that the differences in the explanatory
power between the two models is economically quite small and only affect the fourth
decimal place. Nevertheless, they are still impressive when one considers that the
string market model is able to result in a slightly better hedge while using 30 fewer
hedging instruments.

Intuitively, the reason why the common factors driving term structure movements in
the string market model have incremental power in explaining swaption price changes
is not hard to understand. In the Black model, the volatility of forward swap rates
is assumed to be constant. In the string market model, however, forward swap rates
are essentially baskets of individual forward rates. As the composition of the basket
changes over time, either as the option approaches maturity or as the swaption moves
away from being at-the-money forward, the string market model captures the fact
that the revised basket should have a different volatility. Thus, the string market
model is better able to capture the variation in swaption implied volatilities over
time.31 Several recent papers also confirm that the hedging performance of single-
factor term-structure models is inferior to that of multi-factor models; for example,
see Gupta (1999) and Driessen, Klassen, and Melenberg (2000).

30The percent of variability is computed by simply taking one minus the ratio of the
variance of the hedging errors divided by the variance of the actual price changes.
This measure is essentially the R2 for the hedge.

31We acknowledge, of course, that some of the variation in implied volatilities is
probably due to stochastic volatility, which neither the Black nor the string market
model incorporate.
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7. CONCLUSION

Using a string market model framework calibrated to swaptions market data, we
study the relative pricing of swaptions and interest-rate caps. We find evidence
that the market considers the risk of four factors in the valuation of swaptions.
This contrasts with earlier work documenting that two to three factors captures
the historical behavior of term structure movements. Our results suggest that the
market may consider factors that may contribute little to the unconditional variance
of term structure movements, but may periodically contribute in a major way to the
conditional variance of term structure movements.

Focusing on the valuation of swaptions, we find that swaption prices are generally
well described by the time-homogeneous string market model with the exception of
the short period during the hedge-fund crisis of late 1998. We also find evidence
that long-dated swaptions in particular appear to be slightly undervalued by the
market. While we stop short of claiming that there are arbitrage opportunities in
this market, the results clearly suggest the need for additional research.

Finally, we examine the relative valuation of caps and swaptions using the time-
homogeneous string market model. Once the covariance structure among forwards
has been implied from the market prices of swaptions, cap prices are determined from
the main diagonal of the implied covariance matrix. This simple restriction is tested
directly by comparing the prices of caps implied by the fitted string market model
to their market prices. We find that while the median differences between the two
markets are close to zero, there can be large differences between the two, particularly
during periods of market stress. Again, since our results are based on market quo-
tations rather than actual transactions, we cannot definitively conclude that there
are arbitrage opportunities across the caps and swaptions market. These results,
however, clearly indicate the possibility that differences in the way that models are
calibrated and used in the caps market and the swaptions market may introduce a
wedge between the relative prices of these important fixed-income derivatives.
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Table 1

Summary Statistics for Six-Month Libor Forward Rates. The data set consists of weekly observations for each of the indicated six-month
Libor forward rates for the period from January 24, 1997 to July 2, 1999. The forward rates are computed from the six-month and one-year Libor
rates as well as the two-year, three-year, four-year, five-year, seven-year and ten-year midmarket swap rates using a cubic spline to interpolate the
par curve and then bootstrapping the forward curve. All data is obtained from the Bloomberg system. The weekly data for interest rates represents
Friday closing rates. The forwards are denoted by the number of years until the beginning of the period covered by the six-month forward rate. The
total number of observations in the sample is 128.

Standard Serial
Forward Mean Deviation Minimum Median Maximum Correlation

.50 5.752 .501 4.406 5.840 6.714 .974
1.00 5.917 .522 4.511 5.941 7.004 .950
1.50 5.993 .614 4.367 5.982 7.275 .962
2.00 6.071 .615 4.549 6.042 7.374 .962
2.50 6.129 .557 4.885 6.061 7.324 .964
3.00 6.184 .513 5.130 6.086 7.289 .965
3.50 6.248 .519 5.212 6.122 7.373 .964
4.00 6.307 .524 5.285 6.152 7.449 .963
4.50 6.361 .529 5.349 6.192 7.518 .962
5.00 6.409 .534 5.402 6.232 7.579 .962
5.50 6.451 .538 5.445 6.260 7.632 .961
6.00 6.488 .540 5.478 6.296 7.677 .961
6.50 6.519 .542 5.499 6.322 7.713 .960
7.00 6.543 .541 5.509 6.351 7.740 .958
7.50 6.561 .540 5.508 6.357 7.757 .954
8.00 6.572 .538 5.494 6.373 7.765 .949
8.50 6.576 .535 5.467 6.396 7.761 .941
9.00 6.573 .533 5.428 6.413 7.746 .929
9.50 6.562 .531 5.376 6.413 7.719 .912



Table 2

Correlation Matrix of Log Changes in Six-Month Libor Forward Rates. The correlation matrix is based on weekly changes in the logarithm
of individual six-month Libor forward rates for the ex ante period from January 17, 1992 to January 17, 1997. The forward rates are computed from
the six-month and one-year Libor rates as well as the two-year, three-year, four-year, five-year, seven-year and ten-year midmarket swap rates using
a cubic spline to interpolate the par curve and then bootstrapping the forward curve. All data is obtained from the Bloomberg system. The weekly
data for interest rates represents Friday closing rates. The horizons of the six-month forward rates used to compute the correlation matrix range from
.50 years to 9.50 years forward, giving a total of 19 time series of forward rates. The total number of observations is 262.

.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50

.50 1.000
1.00 .340 1.000
1.50 .579 .950 1.000
2.00 .547 .946 .995 1.000
2.50 .544 .904 .964 .983 1.000
3.00 .519 .812 .883 .918 .975 1.000
3.50 .476 .771 .841 .884 .954 .996 1.000
4.00 .440 .731 .800 .849 .929 .984 .996 1.000
4.50 .410 .692 .762 .815 .901 .967 .986 .997 1.000
5.00 .388 .656 .727 .781 .871 .944 .969 .986 .996 1.000
5.50 .373 .621 .693 .747 .838 .914 .943 .966 .983 .995 1.000
6.00 .365 .585 .659 .711 .798 .873 .905 .933 .957 .978 .994 1.000
6.50 .360 .546 .621 .668 .747 .816 .850 .882 .912 .942 .970 .991 1.000
7.00 .358 .501 .576 .615 .681 .739 .773 .807 .844 .882 .922 .960 .988 1.000
7.50 .355 .448 .522 .551 .600 .643 .674 .709 .749 .796 .847 .901 .950 .986 1.000
8.00 .349 .391 .462 .479 .507 .531 .557 .591 .634 .686 .748 .816 .884 .944 .986 1.000
8.50 .340 .333 .400 .404 .411 .414 .434 .465 .508 .564 .633 .712 .797 .879 .945 .987 1.000
9.00 .329 .279 .341 .333 .320 .302 .315 .343 .385 .442 .515 .603 .700 .799 .886 .952 .989 1.000
9.50 .317 .233 .290 .271 .239 .202 .209 .232 .271 .329 .404 .497 .603 .714 .819 .903 .961 .991 1.000



Table 3

Summary Statistics for OTCMarket At-The-Money-Forward European Swaption Volatilities.
The data set consists of 128 weekly observations from January 24, 1997 to July 2, 1999 of midmarket implied
Black-model volatilities for the indicated N into M at-the-money-forward European swaption structure,
where N denotes years until option expiration and M denotes the length of the underlying swap in years.

Standard Serial
N M Mean Deviation Minimum Median Maximum Correlation

.50 1.00 14.60 3.37 9.70 13.50 27.00 .926
1.00 1.00 16.10 2.98 11.80 15.35 11.80 .945
2.00 1.00 16.66 2.27 13.10 16.20 13.10 .940
3.00 1.00 16.42 1.99 13.00 16.10 13.00 .932
4.00 1.00 16.08 1.72 13.00 15.95 13.00 .941
5.00 1.00 15.73 1.48 12.90 15.70 12.90 .933

.50 2.00 15.35 3.10 10.40 14.45 10.40 .919
1.00 2.00 16.08 2.59 12.20 15.50 12.20 .943
2.00 2.00 16.31 2.05 13.00 16.00 13.00 .936
3.00 2.00 16.02 1.74 12.90 15.85 12.90 .939
4.00 2.00 15.70 1.51 12.80 15.70 12.80 .931
5.00 2.00 15.38 1.34 12.70 15.50 12.70 .925

.50 3.00 15.34 2.93 10.60 14.65 10.60 .913
1.00 3.00 15.89 2.35 12.20 15.30 12.20 .937
2.00 3.00 16.00 1.84 12.90 15.70 12.90 .933
3.00 3.00 15.72 1.57 12.80 15.65 12.80 .927
4.00 3.00 15.42 1.37 12.70 15.50 12.70 .929
5.00 3.00 15.09 1.23 12.60 15.20 12.60 .920

.50 4.00 15.32 2.73 10.80 14.70 10.80 .906
1.00 4.00 15.67 2.14 12.10 15.30 12.10 .930
2.00 4.00 15.72 1.64 12.80 15.65 12.80 .933
3.00 4.00 15.45 1.42 12.70 15.50 12.70 .930
4.00 4.00 15.14 1.27 12.60 15.20 12.60 .918
5.00 4.00 14.80 1.14 12.50 15.00 12.50 .917

.50 5.00 15.30 2.57 11.00 14.70 11.00 .897
1.00 5.00 15.42 1.93 12.00 15.20 12.00 .926
2.00 5.00 15.45 1.49 12.70 15.40 12.70 .924
3.00 5.00 15.18 1.32 12.60 15.25 12.60 .932
4.00 5.00 14.85 1.18 12.50 15.00 12.50 .919
5.00 5.00 14.48 1.04 12.50 14.70 12.50 .909

.50 7.00 15.09 2.41 11.00 14.60 11.00 .887
1.00 7.00 15.10 1.71 12.00 15.00 12.00 .914
2.00 7.00 15.03 1.38 12.40 15.05 12.40 .921
3.00 7.00 14.77 1.24 12.30 14.90 12.30 .913



Table 4

Summary Statistics for OTC Market Libor Interest-Rate Cap Volatilities. The data set consists of 128 weekly observations from January
24, 1997 to July 2, 1999 of midmarket implied Black-model volatilities for the indicated cap maturities. All data is obtained from Bloomberg.

Cap Standard Serial
Maturity Mean Deviation Minimum Median Maximum Correlation

2 Year 15.34 3.19 10.60 14.25 28.00 .945
3 Year 16.43 2.75 12.10 15.60 25.20 .940
4 Year 16.75 2.41 12.50 16.10 23.50 .932
5 Year 16.84 2.21 12.90 16.30 22.75 .941
7 Year 16.46 1.86 12.75 16.15 20.87 .933
10 Year 15.97 1.55 12.60 15.90 19.75 .919



Table 5

Likelihood Ratio Tests for the Number of Implied Factors in European Swaption Prices.
This table reports the likelihood ratio test statistics from pairwise incremental comparisons of the
number of factors. In each case, we solve for the N implied eigenvalues that minimize the sum of
squared errors for the swaption prices and then compare with the sum of squared errors obtained by
solving for the N + 1 implied eigenvalues that best fit the data. The difference between the sum of
squared errors is asymptotically χ2128 under the null hypothesis of equality for the full sample, and
χ264 for the two half samples. For a given vector of eigenvalues, the sum of squared errors is given by
first forming the implied covariance matrix from the diagonal matrix of eigenvalues and the historical
eigenvectors, simulating 2,000 paths of evolution of the term structure using the string model, and
then solving for the individual swaption values by simulation. In generating simulated paths, the same
seed for the random number generator is used to insure comparability across the number of factors.
The data set consists of 128 weekly observations of 34 swaption values for the period from January
24, 1997 to July 2, 1999, giving a total of 4,352 observations. The critical value of χ2128 is 168.1332 at
the 99% level. The critical value of χ264 is 93.2169 at the 99% level.

N Factors N + 1 Factors Test Statistic p-Value

Full Sample Period

1 2 3352.183 .000
2 3 2220.194 .000
3 4 284.847 .000
4 5 86.211 .998
5 6 13.204 1.000
6 7 21.991 1.000
7 8 3.959 1.000

First Half of the Sample Period

1 2 4481.614 .000
2 3 1699.481 .000
3 4 76.549 .135
4 5 137.540 .000
5 6 24.084 1.000
6 7 24.516 1.000
7 8 7.324 1.000

Second Half of the Sample Period

1 2 2377.247 .000
2 3 922.156 .000
3 4 162.201 .000
4 5 17.689 1.000
5 6 2.048 1.000
6 7 7.505 1.000
7 8 .607 1.000



Table 6

Differences between the Average Implied Correlations and the Historical Correlations of Six-Month Libor Forward Rates. These
differences are calculated by averaging the 128 weekly implied correlation matrices from January 24, 1997 to July 2, 1999 obtained by fitting the
model to the swaption data, and then subtracting the historical correlations shown in Table 2.

.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50

.50 .000
1.00 .054 .000
1.50 .002 .007 .000
2.00 -.000 .008 .000
2.50 -.012 -.011 -.006 -.004 .000
3.00 -.030 -.047 -.027 -.021 -.007 .000
3.50 -.044 -.058 -.038 -.032 -.015 -.002 .000
4.00 -.057 -.070 -.049 -.043 -.023 -.005 -.001 .000
4.50 -.068 -.082 -.061 -.055 -.033 -.012 -.006 -.002 .000
5.00 -.076 -.095 -.074 -.068 -.046 -.022 -.014 -.007 -.002 .000
5.50 -.083 -.112 -.091 -.085 -.064 -.039 -.028 -.018 -.009 -.003 .000
6.00 -.088 -.130 -.111 -.107 -.088 -.064 -.051 -.039 -.026 -.014 -.005 .000
6.50 -.090 -.150 -.133 -.132 -.118 -.098 -.085 -.070 -.053 -.037 -.020 -.006 .000
7.00 -.090 -.168 -.154 -.156 -.150 -.136 -.124 -.109 -.090 -.069 -.046 -.023 -.006 .000
7.50 -.085 -.177 -.167 -.172 -.175 -.170 -.160 -.145 -.125 -.103 -.075 -.047 -.021 -.004 .000
8.00 -.080 -.178 -.174 -.181 -.189 -.192 -.183 -.170 -.152 -.129 -.101 -.068 -.036 -.013 -.003 .000
8.50 -.073 -.172 -.172 -.179 -.193 -.200 -.193 -.181 -.164 -.142 -.114 -.080 -.046 -.020 -.005 -.001 .000
9.00 -.067 -.159 -.164 -.171 -.187 -.196 -.191 -.181 -.166 -.145 -.117 -.084 -.049 -.020 -.003 .001 .001 .000
9.50 -.057 -.142 -.150 -.156 -.172 -.183 -.179 -.170 -.155 -.137 -.110 -.078 -.043 -.013 .003 .008 .005 .002 .000



Table 7

Standard Deviations of the Implied Correlations of Six-Month Libor Forward Rates. This table reports the standard deviations of the
individual elements of the 128 weekly implied correlation matrices from January 24, 1997 to July 2, 1999 obtained by fitting the model to the swaption
data, and then subtracting the historical correlations shown in Table 2.

.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50

.50 .000
1.00 .602 .000
1.50 .404 .054 .000
2.00 .380 .056 .002 .000
2.50 .251 .097 .014 .007 .000
3.00 .116 .155 .047 .037 .013 .000
3.50 .120 .146 .072 .054 .026 .004 .000
4.00 .139 .140 .099 .076 .045 .013 .003 .000
4.50 .159 .139 .124 .099 .065 .025 .010 .002 .000
5.00 .174 .143 .146 .121 .085 .041 .022 .010 .003 .000
5.50 .183 .151 .166 .142 .107 .061 .039 .024 .012 .004 .000
6.00 .181 .161 .183 .162 .132 .088 .066 .048 .031 .017 .005 .000
6.50 .169 .174 .196 .181 .160 .123 .103 .083 .064 .044 .024 .007 .000
7.00 .151 .182 .201 .195 .185 .161 .144 .125 .104 .081 .055 .028 .007 .000
7.50 .139 .183 .197 .199 .200 .189 .177 .161 .142 .118 .089 .056 .026 .006 .000
8.00 .144 .176 .185 .193 .204 .203 .196 .184 .168 .146 .117 .082 .047 .019 .004 .000
8.50 .163 .165 .169 .180 .196 .203 .200 .193 .180 .161 .134 .101 .064 .032 .012 .003 .000
9.00 .188 .152 .151 .163 .181 .194 .194 .190 .181 .166 .142 .111 .075 .043 .021 .008 .002 .000
9.50 .214 .140 .135 .146 .165 .180 .184 .183 .177 .165 .145 .117 .083 .053 .030 .016 .006 .001 .000



Table 8

Summary Statistics for Percentage Swaption Valuation Errors. The summary statistics reported
are for the differences between the fitted model price and the market price expressed as a percentage of the
market price. The data set consists of 128 weekly observations from January 24, 1997 to July 2, 1999 for
the indicated N into M at-the-money-forward European swaption structures, where N denotes years until
option expiration and M denotes the tenor or length of the underlying swap in years. The t-statistic for
the mean and the standard deviation reported are adjusted for first-order serial correlation. The overall
statistics are simple averages of the corresponding columns with the exception of the overall minimum,
median, and maximum which are computed from all observations.

t-Stat Standard Serial
N M Mean Mean Deviation Minimum Median Maximum Correlation

.50 1.00 -2.456 -1.26 1.954 -19.623 -1.032 6.406 .906
1.00 1.00 -1.123 -1.45 .775 -12.922 -1.560 5.423 .727
2.00 1.00 -2.124 -3.57 .595 -8.583 -2.006 4.383 .776
3.00 1.00 -.924 -1.30 .712 -5.146 -1.127 6.726 .845
4.00 1.00 .501 .38 1.304 -4.030 -.177 11.406 .917
5.00 1.00 4.815 1.95 2.475 -1.209 3.470 24.683 .935

.50 2.00 -1.312 -1.06 1.238 -16.379 -1.033 5.057 .853
1.00 2.00 -.538 -1.43 .375 -9.588 -.273 3.654 .575
2.00 2.00 -1.542 -3.24 .476 -5.757 -1.577 2.163 .809
3.00 2.00 .289 .42 .685 -3.487 -.131 9.523 .855
4.00 2.00 1.906 1.35 1.411 -3.041 1.005 14.468 .916
5.00 2.00 5.612 2.51 2.239 -.995 4.289 24.027 .924

.50 3.00 -.030 -.01 2.332 -22.139 1.786 8.077 .907
1.00 3.00 -1.696 -2.01 .843 -13.825 -1.294 2.517 .871
2.00 3.00 -1.920 -7.08 .271 -4.701 -1.907 .794 .745
3.00 3.00 .328 .71 .461 -6.406 .112 6.868 .793
4.00 3.00 2.033 1.69 1.201 -2.552 1.323 14.843 .895
5.00 3.00 5.446 2.51 2.168 -.193 3.976 22.971 .934

.50 4.00 -.547 -.19 2.815 -27.444 1.191 9.925 .899
1.00 4.00 -2.523 -1.68 1.503 -16.314 -2.057 3.209 .923
2.00 4.00 -2.209 -8.81 .251 -5.382 -2.141 -.034 .763
3.00 4.00 .151 .40 .373 -2.371 .014 5.346 .804
4.00 4.00 1.775 1.56 1.137 -2.494 1.124 12.965 .912
5.00 4.00 5.409 2.64 2.045 -.317 3.839 19.778 .939

.50 5.00 -1.529 -.50 3.079 -32.517 .387 9.693 .897
1.00 5.00 -3.013 -2.62 1.149 -18.546 -2.631 6.900 .814
2.00 5.00 -2.402 -6.42 .374 -7.244 -2.148 -.087 .817
3.00 5.00 -.446 -1.70 .263 -3.433 -.396 3.546 .743
4.00 5.00 1.239 1.21 1.026 -1.963 .383 10.447 .915
5.00 5.00 5.615 2.79 2.013 -.444 4.609 18.406 .944

.50 7.00 -3.604 -.91 3.941 -40.981 -1.438 9.483 .909
1.00 7.00 -5.365 -1.93 2.779 -26.164 -3.978 4.643 .937
2.00 7.00 -5.096 -4.36 1.170 -16.876 -4.053 -2.015 .909
3.00 7.00 -3.382 -15.35 .220 -7.276 -3.154 -1.265 .669

Overall -.255 -1.38 1.343 -40.981 -.416 24.683 .852



Table 9

Summary Statistics for Percentage Cap Valuation Errors. The summary statistics reported are for the percentage difference between the
model price implied from fitting the string market model to the swaptions market and the market price expressed as a percentage of the market
price. The data set consists of 128 weekly observations from January 24, 1997 to July 2, 1999 for the indicated maturities. The t-statistic for the
mean and the standard deviation of the mean reported are adjusted for first-order serial correlation. The overall statistics are simple averages of the
corresponding columns with the exception of the overall minimum, median, and maximum which are computed from all observations.

t-Stat Standard Serial
Maturity Mean Mean Deviation Minimum Median Maximum Correlation

2.00 23.326 3.50 6.669 -19.484 2.589 113.307 .663
3.00 11.782 2.73 4.319 -11.359 -.705 63.361 .664
4.00 7.666 2.36 3.245 -9.739 -2.120 47.687 .646
5.00 5.665 2.14 2.644 -9.191 -2.385 38.071 .641
7.00 6.021 2.58 2.332 -8.941 -.054 32.379 .685
10.00 7.864 3.57 2.200 -4.592 2.883 32.578 .734

Overall 10.387 2.81 3.568 -19.484 .862 113.307 .672



Table 10

Summary Statistics for Percentage Cap Valuation Errors from a One-Factor Model. The summary statistics reported are for the
percentage difference between the model price implied from the one-factor version of the string market model in which the correlations between all
forward rates are assumed to equal one and the market price expressed as a percentage of the market price. The data set consists of 128 weekly
observations from January 24, 1997 to July 2, 1999 for the indicated maturities. The t-statistic for the mean and the standard deviation of the mean
reported are adjusted for first-order serial correlation. The overall statistics are simple averages of the corresponding columns with the exception of
the overall minimum, median, and maximum which are computed from all observations, and number positive which is the total over all observations.

t-Stat Standard Number Serial
Maturity Mean Mean Deviation Minimum Median Maximum Positive Correlation

2.00 -25.286 -7.76 3.259 -62.054 -23.639 -9.359 0 .885
3.00 -23.400 -14.12 1.657 -46.757 -22.431 -8.721 0 .827
4.00 -20.288 -24.39 .832 -33.633 -19.423 -13.697 0 .717
5.00 -17.500 -31.59 .554 -26.244 -16.969 -6.238 0 .631
7.00 -11.320 -27.77 .408 -20.658 -11.132 3.732 1 .529
10.00 -5.884 -8.63 .682 -13.457 -5.954 12.071 7 .716

Overall -17.279 -19.04 1.232 -62.054 -17.371 12.071 8 .718



Figure 1: Time Series of Six-Month Libor Forward Rates.

The data set consists of weekly observations for six-month Libor forward rates starting at 0.5 to
9.5 years, for the period from January 24, 1997 to July 2, 1999. The forward rates are computed
from the six-month and one-year Libor rates as well as the two-year, three-year, four-year, five-year,
seven-year and ten-year midmarket swap rates using a cubic spline to interpolate the par curve and
then bootstrapping the forward curve. All data is obtained from the Bloomberg system. The weekly
data for interest rates represents Friday closing rates. The forwards are denoted by the number of
years until the beginning of the period covered by the six-month forward rate. The total number of
observations in the sample is 128.
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Figure 2: Time Series of Swaption Volatilities.

The data set consists of 128 weekly observations from January 24, 1997 to July 2, 1999 of midmarket
implied Black-model volatilities for the indicated N into M at-the-money-forward European swap-
tion structure, where N denotes years until option expiration (time to maturity) and M denotes the
length of the underlying swap in years (the tenor). The sub-plots show, for each tenor, the implied
volatilities of options with different times to maturity.
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Figure 3: Examples of Swaption Volatility Surfaces.

This figure plots the quoted volatilities of swaptions on four different dates of the sample. Each
figure shows quotes for swaptions with maturities between 0.5 and 5 years on underlying swaps with
horizons at the maturity of the options between 1 and 7 years. Note that we do not use the 4 into
7 and the 5 into 7 swaptions in the empirical study since they are less liquid.
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Figure 4: Time Series of Cap Volatilities.

The data set consists of 128 weekly observations from January 24, 1997 to July 2, 1999 of midmarket
implied Black-model volatilities for the indicated cap maturities.
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Figure 5: Eigenvector Weights.

The four subplots show the weights of the first four eigenvectors of the historical correlation matrix.
The correlation matrix is based on weekly changes in the logarithm of individual six-month Libor
forward rates for the ex ante period from January 17, 1992 to January 17, 1997. The forward rates
are computed from the six-month and one-year Libor rates as well as the two-year, three-year, four-
year, five-year, seven-year and ten-year midmarket swap rates using a cubic spline to interpolate the
par curve and then bootstrapping the forward curve. The weekly data for interest rates represents
Friday closing rates. The horizons of the six-month forward rates used to compute the correlation
matrix range from 0.50 years to 9.50 years forward, giving a total of 19 time series of forward rates.
The total number of observations is 262.
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Figure 6: Time Series of Eigenvalues.

The four subplots show the eigenvalues computed from the 128 weekly implied correlation matrices
from January 24, 1997 to July 2, 1999 obtained by fitting the model to the swaption data, keeping
fixed the eigenvectors of the historical correlation matrix.
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Figure 7: Time Series of Swaptions RMSE of Four-Factor String Market
Model.

The graph shows the RMSE of the the differences between the fitted model swaptions prices and the
market prices expressed as a percentage of the market prices. The data set consists of 128 weekly
observations from January 24, 1997 to July 2, 1999 for 34 at-the-money-forward European swaption
structures.
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