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Abstract: In this paper, two well-founded orderings on multisets which extend strictly Dershowitz and Manna ordering are
proposed. These orderings do not verify a monotonicity property that Dershowitz and Manna does. That suggests to use
monotonicity to provide a new characterization of Dershowitz and Manna ordering. Last section proposes an -efficient and
correct implementation of that'ordering.

Résumé: Dans cette note, on propose deux ordres bien fondés qui étendent I'ordre de Dershowitz et Manna. Ces ordres ne

vérifient pas une propriété de monotonicité que 'ordre de Dershowitz et Manna vérifie. Aussi cela suggére d'utiliser la
monotonicité comme une nouvelle caractérisation de I'ordre de Dershowitz et Manna. La derniére section propose une
implantion efficace et correcte de cet ordre.

1. Introduction

The multiset ordering << proposed by Dershowitz and Manna [2] is a main tool of many
orderings used to prove the finite termination of programs and also of term rewriting systems [1]. Itis
thus important to have an efficient implementation of this ordering, and that is the problem we deal
with in this paper. As that happens often, deriving an algorithm straight from the mathematical
definition provides an inefficient implementation. Therefore a more suitable definition must be found
and the equivalence of the former definition and of the new one must be proven, that provides the
correctness of the implementation. We attempted to follow that way with multiset ordering. We tried
two definitions, both have efficient implementation but both fail to be proven equivalent. In fact they
are stronger than Dershowitz and Manna multiset ordering but do not verify a monotonicity property.
As an explanation of these facts, we give then a new definition of Dershowitz and Manna multiset
ordering based on a main characterization of this ordering: it does not exist a stronger monotonic
ordering on multisets. In the last section of this paper we propose a correct and efficient
implementation of Dershowitz and Manna ordering.

2. Dershowitz and Manna ordering

Intuitively a multiset on E is an unordered colliection of elements of E, with possibly many
occurrences of given elements. A multiset can be seen as a mapping E—=XN where XN is the set of
natural numbers. Let M(E) be the set of all the finite multisets on E, i.e. the multisets M such that
their support {x€E | M(x)#0} is finite. The empty multiset { } is the multiset such that { }(x) = 0, for all
xin E. A setis a particular case of a multiset such that S(x) is 0 or 1. Usually multisets are denoted by
lists {x,,...,x} with a straightforward interpretation. If M is a multiset, x€M means M(X)>0.
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Definition: Sum of multisets. The sum of two multisets M and N is the multiset M+ N such that
M+ N(x) = M(x)} + N(x).

Remark that if M and N are sets, M+ N is a set only if M and N are disjoint and in this case + is
the classical disjoint union or direct sum of sets. On another hand, the sum is an associative,

commutative operation on AL(E) with neutral element { }. If M1,M2,...,Mp is a family of multisets i§:1Mi

is the multiset such that (£, M, )() =, £ M(x).

Definition: Inciusion of multisets. A multiset M is included into a multiset N (written MCN) if and only
if (V x€E) M(x) <N(x).

Definition: Difference of muiltisets. If MCN, the difference N - M is defined by N — M(x).= N(x) — M(x).

In this paper, an ordering on a set is a partial or total strict ordering i.e. an irreflexive and
transitive relation on E. We use the notation x#y {o mean —(x<y or x=y or x>>y). Suppose E is
ordered by <. Dershowitz and Manna ordering << is defined in the following way:

Definition: Dershowitz and Manna Ordering.
M-<<N if there exist two multisets X and Y in AL(E) where
(i) { }#XCN
(i)M=(N-X)+Y
(iif) X dominates Y that means (V yEY)(IxEX) x>>vy.
We will refer to this definition by (DM).

The Dershowitz and Manna definition is difficult to use in order to prove that two muitisets are
not related by an inclusion. Their definition shows only how to reduce a multiset. In [3] Huet and
Oppen give another more tractable definition.

Definition: Huet and Oppen Definition.
M—=<<N iff M#N & [M(y)>N(y)=> (IXEE) x>y & M(x) <N(x)]. (HO)

Lemma 1: Dershowitz and Manna definition is equivalent to Huet and Oppen definition.

Proof: Let us denote by ~<<pm (respectively <~<H0) the ordering associated with Dershowitz
and Manna definition (respectively Huet and Oppen definition).

Suppose M<<HO N and define X and Y as follows:

X(x) = max{N(x) -~ M(x), 0}

Y(y) = max{M(y) - N(y), 0}.
Let us prove (i)

1) XCN is clear by definition.

2) Because M#N there exists z such that M(z)®=N(z). If M(z) <N(z) then zE€X, if M(z)>N(z), by

(HO) there exists x>z such that M(x) <N(x), that means x&X. In both cases X#{ }.
(ii) is true by construction. To prove (iii), let yEY. By hypothesis, there exists x, such that x>y and
M(x) <N(x), that means (IxEX)x>y.



Suppose M=<<,,, N. M#N because X#{ }. N(y)>M(y) implies yEY, thus ine secohd alternative
of (HQ) follows because X dominates Y. |

Another important property of the Dershowitz and Manna ordering is the monotonicity.
Definition: Monotonicity. Let < be a partial ordering on E and t a mapping from E X E into
M(E) X M(E). 7(<)is said to be a monotonic extension of < iff:

(1) (<) is an ordering.
(2) 7 is monotonici.e. < C < = 7(<) C 7(X).

Lemma 2: Monotonicity Lemma. The Dershowitz and Manna brdering ~< is a monotonic
extension of <.

Proof: Straightforward using Huet and Oppen definition. |

3. Partition based orderings

We define now two multiset orderings, using the same idea of building a partition from a
multiset. We say that {M, | i=1,...,n} is a partition of a multiset iff M = ; g M.. Assume now, we are able
to compare the M, using an ordering < and thus sort them such that M1EM25...EMP. It is now easy

to define a new ordering << to compare the muitisets M = i=§ M, and N= i=§I1Ni using lexicographical

extension of <<:
M—<N iff MM, M <N N, N .

In practice, we have to define the basic ordering < and the way to construct the partition of a
given multiset.

3.1 The multiset ordering << 4, -

Let us assume that the partition h~/1={Mi|i=1,...,p} of the multiset M verifies the following
properties:
(1) x€EM, = Mi(x) = M(x).
(2) x€Mi and y€Mi = x and y are incomparable.
(3) Vi€[2.p] x€M, = (IyEM,,) y>=x.

In a more intuitive way, the partition is built by first computing the multiset M, of all the maximal
elements and then recursively computing the partition of M -M,.

Example1:M={a, a,2,2,b, 1, 1} witha<b, 1<2. M, ={2,2,b} and M,={a, a, 1, 1}.
Let < be the following basic ordering on multisets.
M=< 4N iff M#Nand (Yx€M) M(x)<N(x) or (Jy€EN) y>x.

If M and N contain only incomparable elements, this definition provides an ordering equivalent to
Dershowitz and Manna ordering.

Definition: Let M and N be multisets. We say that M<<_4 N iff h~/1<"jt" N.



Example 2: If a<b and M={1, a, b} then M, = {1, b}, M,={a}. If N={1,1,b} then N, ={1,1,b} and
M << N

It is easy to see that << ¥ is an ordering because lexicographical extension preserves the
orderings. Let us show now that this ordering is more powerful than Dershowitz and Manna one.

Lemma 3: M<<N implies M<< 4 N.

Proof: Suppose M—<<N and M = M1...Mp and N = N1...Nq and prove M<< 4 N. The proof is by
induction on p+ q. The resultis obvious if M={ }. Assume now that p=0 and q#0. Three cases have
to be distinguished. ‘

- M, < 4N, the result is straightforward.

- M1 =N,. Thus M2...Mp<<mN2...Nq and the result follows by the induction hypothesis.
- M > 4N, or M, and N, are incomparable. In both cases that implies there must exist an
X € M, such that M1(x)>N1(x) and (Vy € N,) x <y. This contradicts the hypothesis M—<<N. 1

The contrary is surely not true. Let us use the last example. We see that M(a) = 1>N(a) =0.
However the only element in N greater than a, that is b, has one occurrence in both M and N. Thus M
and N cannot be compared using Dershowitz and Manna ordering. On the other hand, the multiset
ordering <<y, has a serious drawback, which forbid its use in some usual cases, where incremental
orderings are required: it is not monotonic. Let us go back to Example 2 and assume now 1<a—<b.
That increase the basic ordering by adding the new pair 1<a. We now get:

M1 = {b}’ M2 = {a}! M3 = {1}
N, = {b}, N,={1,1}.
Thus N<< 4 M!

3.2 The mulliset ordering <<y

An entirely different way to build a partition from a set is to require that different occurrences of
a same element x belong to different multisets of the partition, for example to assume that all the
multisets of the partitions are sets. Thus the partiton M = {S;li=1...p} must verify the following
properties:
(1) S;is a set, that is S(x)<1.
(2) x € S,and y € S, implies that x and y are incomparable.
(3 Vi€[2.p]x € S, implies (Y€ S, ;) y>=x.

The only difference with the previous partition definition is in condition (1). In the same way, the
partition is built by first computing the set S, of maximal elements and then recursively computing the

partition of M - S,
Example 3: M ={a,a,2,2,b,1,1} with a<b and 1<2and S, = {2,b}, S, = {2,a}, S;={1 a}, §,={1}.

Let <y be the following ordering on sets:
S<yTiff S#Tand (Vx€ S)(Iy € T) y>x.

in the following, N = {T,li=1..g} will be the partition of N. If sets are considered as a particular case
of multisets, <yis << on the sets of incomparable elements.



Definition: Let M and N be multisets. We say that M<<¢ N iff M<!$*N.

Example 4: Suppose a and b incomparable. If N={ab} then T,={ab}, if M={b,b} then S = {b},
S, ={b} and M<<¢N. :

Once more, it is easy to see that <<y is an ordering. Let us now show that this new ordering is
more powerful that <<,

Lemma 4: M<<N implies M<< N.

Proof: by induction on p and g. The result is straightforward if M={}. Else, we have to
distinguish three cases.
-8, <yT,, theresultis true.
-8, =T,, by induction hypothesis.
-S>~y T,0r S, and T, are incomparable. That implies that there must exist an x € S, such that
(Vy €T,), 7iy>=x. This contradicts the hypothesis M<<N. |

Once more, the converse is false, as it is proved by using the last example: M={b,b} and
N ={a,b}.

Suppose now a—<b with same M and N as in example 4. We get S, = {b}, M,={b} and T, = {b},
T,={a}. Thus N <<¢M. Thus <<y is not a monotonic ordering.

Now, let try to compare <<yand << 4, using two examples with a<b:
-M={1,a,b}, N={1,1,b}, M'<-<Jﬂ) Nand — M-<'<_cf N.
-M={bb}, N={1,b}, M<<yNand 7T M=<< 4 N.
Thus <<yand <<_y do not compare.

3.3 Well foundedness
We may state the following theorem.
Theorem 1: If <is well-founded on E, then <<, << 4 and <<y are well-founded on A(E).

Proof: [2] contains a proof of well-foundedness of —<. Remark now that a proof of
well-foundedness of <<y or << 4 is also a proof of well-foundedness of << by Lemma 3 and 4. A
proof of well-foundedness of <<y and << 4 is easy to obtain by proving that <y and <A are
well-founded. This can be done by using Kénig Lemma as in [2]. On another hand, it is also possible
to remark that <yand < 4 are particular cases of <<. [ |

4. A property of maximality of Dershowitz and Manna Ordering

In the previous section, we exhibited two non monotonic orderings containing the Dershowitz
and Manna ordering. Therefore a question arises naturally: Does exist monotonic orderings on AbL(E)
which contain Dershowitz and Manna ordering? The answer is negative and provides a new important
characterization of Dershowitz and Manna ordering. Let us first prove an important lemma.



femma 5: Let < be a partial ordering on E and M and N be two multisets on E sLich thaf N=< =yoM
that is -\(N=M or N<<HO M). Then there exist a partial ordering < on E suc'i that < 2 < (that is
x>y = x>y)and M <4 N.

Proof: By induction onthe set D = {(x,y)EMXN | x#yi.e. T ((x<y or x =y or x>y}.

Basic case:LetD=@. ThenN< =<,y M=> M=<< N
General case: Let D be not empty. Then either M<<,(N and the result is proved with <=<, or
M= =,o Nand there must exist a pair (x,y) such that

(1) M(x)>N(x) and (Vz € E) x<z = M(z)>N(z).

(2) M(y)<N(y) and (Vz € E) y<z = M(z)<N(z).
It follows from (1) and (2) that x # y and thus (x,y) € D. Let now < the transitive closure of the relation
union of < and the pair (x,y). < is clearly an ordering containing strictly <. Therefore <, , is an
ordering containing strictly <<,,,. As x<y, either M<K, N and the result is true or M# N and the
result follows from the induction hypothesis used with a new D, the cardinal of which is strictly less
than the previous one. |

Theorem 2 Maximality: Let < a partial ordering on E and 7(<) a monotonic extension of < such
that << C 7(=<). Then << and 7(=<) are the same ordering.

Proof: Assume first < is total. Then << is total on AL(E) and must coincide with 7(<). Assume
now that < is partial on E. Then << is partial on AL(E). Let us suppose that 7(<) 2D—<<. That
implies there must exist two multisets M and N such that M 7(<) N and M # N. Using Lemma 5 there
exists < D < such that N&M, which implies N (<) M by hypothesis. Using now the monotonicity of
the multiset extension r and the hypothesis M 7(<) N, we get M (<) N, which is a contradiction. 1

Notice that this main property of Dershowitz and Manna ordering can be used to give a simple
proof of equivalence of (HO) and (DM). In the following, we use this technique to give and prove a
new definition of <<. If < is a total ordering on E, <'®% is a total ordering on the ordered lists on E

which provides a simple definition of Dershowitz and Manna ordering in that particular case: let
list(M) = {x,,X,...,x } with Dj => ><i2-_xi be the sorted list representation of the multiset M. Then M<<N

iff list(M)~<<'®¥jist(N).
Let us now define a new multiset ordering <<, in the following way:

Definition: Given a partial ordering < on E, let M<<_,N iff for all < which is a total ordering
containing <, list(M)<'®%iist(N).

It is now quite easy to prove that this new ordering is exactly Dershowitz and Manna ordering as
an application of Theorem 2.

Lemma 6: <<, is a monotonic ordering.
Proof: It follows obviously from the definition. [ |

Lemma 7: << C <<,.



roof: Suppose M<<N and —(M-<</N). There exists a total ordering < such that < 2D < and

—(list(N)<'®Jist(M). Thus there exists y such that M{y)>N(y) and z>y => N(2} = M(z) which implies
2>y = N(z) = M(z). That implies by (HO) (M—<<N), which is a contradiction. 1

Theorem 3: <<, and << are the same multiset ordering.
Proof: It follows from Theorem2, Lemma 6 and Lemma 7.
5. An efficient implementation of Dershowitz and Manna ordering

It is easy to derive an implementation of Dershowitz and Manna ordering from Huet and Oppen
definition but it is not efficient because it supposes to try a comparison for each pair of items.
Moreover it leads to an algorithm which does not work symmetrically on the data. In this section we
propose an implementation based on the following idea. Given a pair of two multisets M, and N,, we
build a new pair Mk+1 and Nk+1 such that at least one of the two multisets decreases in number of
elements and the value of the comparison comp(M,, N,) does not change which means
comp(M,, N,) = comp(M, _ 4. N, ,4). The process is repeated until it is possible to decide easily. To
decrease M, and N, one can choose a pair (a,b)in M, X N, and do the following:

1. ifa=b and Mk(a) N, (b), ais removed from M and N,.

2. Ifa<b or a=b and M, (a)<N,(b) then we would I|ke to remove a from M, without changmg
the value of comp(M,,N,). That is possible if we know that a is maximal in M, in which case
a=<b or a=b and M(a)<N(b) implies Mk-<-<Nk or M, and N, are incomparable (denoted by
M #N,). Thus comp(M,, N,) is not changed by removing a from M,. It must be noted that in
that case, one may remove with a all the elements in Mk which are less than a.

Thus instead of choosing any elements a and b in M, and N,, we have to choose maximal
elements in M, and N,. Thus after removing a from M,, for example, we have to compute the set of
maximal elements of M, , ;. This is not difficult. Let us first define the function succ as

(x€succ(x) = x>vy) & (x>y = [I zEsucc(x)] z>y),
and then
Incase (1), M , ; =M, - {a}, then
Maximal(M, , ,) = Maximal(M, ) - {a} + {x | x€succ(a) & x@succ(a') for a#a’}.

Incase ) M, , , =M, - {x]| x€succ*(a)} where succ*(a) = : =g‘.1succ i(a), then
Maximal(M, , ,) = Maximal(M, ) - {a}.

The above discussion suggests to represent a multiset M as a directed acyclic graph
representing the relation succ. Each node contains a triple: the value of the element, the number of
occurrences nb(x,M) of the element x in the multiset M i.e. M(x) in the previous notation, the number
of antecedents nb_ant(x,M) of x in M i.e. card{y|succ(y) =x}. If this last number is 0, x belongs to
Maximal(M).

In fact the arrows deduced by transitivity are not necessary and the algorithm is more efficient if
they are not present. For example if the definition of succ is the following minimal one:
y€succ(x) = x>y & ™ (IzEM) y>~z>x.



For example if a>c, a>d, b>d, c¢>-2, c>f, d>fand M={a,a,b,b,b,c,c,d,eff}, arepresentation
of M can be:

Figure 1 gives an algorithm describing our implementation. Let us remark.that if it is not
possible to choose a new pair in the body of the loop, that means that all the elements present in
Maximal(M) and Maximal(N) are incomparable then easily M # N then by Lemma 3, M#N. The only
problem is to prove the termination of the algorithm, but it is easy to see that although Maximal(M) and
Maximal(N) can increase, they remain included in M and N which do not increase. Thus the algorithm
terminates for any choice which computes a new pair (a,b) at each iteration.
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Fig. 1. An algorithm to implement Dershowitz and Manna ordering

while "possible"” do
choose a new pair (a,b) in Maximal(M) X Maximal(N)
if a>b or [a=b and M(a)>N(b)] then

for each x in succ*(b,N) do remove(x,N)

ifa<b or [a=b and M(a)<N(b)] then
for each x in succ*(a,M) do remove(x,M)

if a=b and M(a) = N(b) then
for each xin succ(a,M) do
nb_ant(x,N): = nb_ant(x,N) - 1
if nb_ant(x,N) = 0 then ad(x,Maximal(M))
remove(a,Maximal(M))
for each xin succ(b,N) do
nb_ant(x,N): = nb_ant(x,N) - 1
if nb_ant(x,N) = 0 then ad(x,Maximal(N))
remove(b,Maximal(N))

if Maximal(M) = { } then if Maximal(N) ={ } then return(" M=N")
else return(" M<<N ")
else if Maximal(N) = { } then return("N-<<M")
elsereturn("M#N ")




