
331 Formai Description of Programming Concepts - Il
D. Bj;,rner (ed.)
North-HoUand Publishing Company
© IFIP, 1983

~kcursj'lc Decomposition Ordering

,'pan·l'iolle .JOU/INNAUD

Centre ,:0 Ilechcrche (·n Inform•• lique de Nancy

Campu~ Scie.l:ifique, BP 239

5·10[;0(· V<1I1c!ocuvre·lè"·Nancy,FRANCE

Pier,,:; tfSCI1NNE
Cen!re de :~ecI10rcheen Informalique de Nancy

anci

Laboralory for COITl,",ut('r Scienr:e, Massachusells [nstitute of Technology,

545 Technology Square

Cambri,jac. M~ssachusells,02139, U.S.A.

Fernand RflNIG
Centre dc Recherche en Informalique de Nancy

Campus Scientifique, BP 239

54050(; Vandoeuvre-lès·NuncY,FRANCE

~bslracl: The RecurSive Decomposition Ordering, a simplificalion ordering

on terms, is uselul 10 prove lerminalion of lerm rewriling systems. In this

paper we give the definilion of Ihe decomposilion ordering and prove that it

is a well-founded simplification ordering containing Dershowitz's Recursive

Path Ordering. We also show that the Recursive Decomposition Ordering

h8$ a very interesting incremental property.

Resllnle: L'ordre récursif de décomposilion est un ordre de simplification

ulilisé pour prouver la terminaison des systèmes de réécriture de termes.

Dans celle communication, nous donnons la définition de l'ordre récursif

de decomposition, nous prouvons qu'il est bien fondé, qu'il est un ordre de

simplification el qu'il contienl l'ordre récursif sur les chemins de

Dershowitz. Nous montrons aussi que J'ordre récursif de décomposition a

une intéressante proprieté d'incrémentalité.

1. Introduction

Term rewriting systems are an important model for non deterministic computations [21]. Therefore,

methods for proving termination of term rewriting syStems can provide a method for proving termination in

other areas of programming. Term r~wril:ng systems have also become a major tool in many fields related

to programming, like abstract data type specifications (e.g., to establish Iheir completeness by the

Kn'Jth-Bendix S'Jperposition procedure [13, 6)), program verification, theorem provers, and decision

procedures for eQuational theories [1, 5, 24]. The Knuth·Bendix complelion algorithm completes a nO:1

confluent sel of term rewriting "Jles into a conlf'Jent (ur.iqudy lcnniClulin'j) on,' and is used II) Î;"o~~ Ihe

332 J.-P. Jouannaud el al.

e'lUivalence 01 abstf(l.::t data type spedficatio"s via consistcncy ()~ Iheories [3, 8. 18]. The I<nuth·Bendix

.::ompletion algorith,n requires a universal mclliod lor proving finit') t2rminatlo", as in Huet's proof [7]. In

o'.her worcls, if the ler;nin:lt:on 01 the Iin11 sct of rules is provf.d using a noethuian ordering, this ordering

n'.ust be 5ufficient to prove the termin:ltion properly 01 ,,-II the intermediate .'eI5 of term rewriting rules

g.~nerated by the algorithm. Unlortunately, Hllet <lcd Lanl<icrd have shown ti,al the linite termination 01

tC'rm rewriting systems i5 undecirlable [a]. TIHlS. il is in',possible to find a univErsal procedure to check for

li lite tcrmination of any system, and people have been forced to look for specil'c techni'lues (sec [la] for a

sJrvcy).

ln Il,at vcin Gutlag, Kapur, and tvIl,:;s{'r [4] proP(lsed a mell',od base<! on s:Jperposition of t<JrlllS which

i~ similar to that used by Knulh and Bendix to prove conlluen.::c. Here \"e arc mostly interestcd in

s mpliliç;llion orderings. These [Ire ord~rin<Js compatible \Vith the structure of lerms and which have the

s'Jblerm property. Dershowitz eslalJ!dled Ihat simplification orderings are powerflll tools lor proving

t(lrminatiGn and proposed recursive pnlh ordering [?] after Plaisled's recur5ivIJ pat" 01 sublerms ordering

[:!Ol· Thes,) methods use nn orderin!j ol1lhe set of fU:1ction sYlTlbols. In [15] ,)nt! [lG] a new ordering was

used to prove sim ply the well·loundedr.E:ss 01 the recursive p"th orrlering \Vll,;n the ordering on fllnction

symbols is totnl ln ln] ancl [231 it w..s shown thnt a similar ordering could al50 1J8 defin.,d when the

crdering on funclion symbols is only pa'tial, capluring easily the case 01 lerms wilh variables. This

ordering is a we:l·lOllnded simplification ordcring wllich has the addilional lise lui properlies. First, il

o,;onlains siriciiy Ihe palh recursive orcieril1g. Second, il is monolOnic with respect 10 the ordering on the

fllnclion symbols, i.e.. il one increases the orcJering on lunction symbols then one increases the orcJering

on tcrms. We cali the thir'! maior property incrementalily: it is easy to find an expansion 01 the ordering on

tile function symbols when a given pair 01 te..ms needs to be ordered. This idea might be used in the

Knuth·l3endix completion algorithm to build the required universal ordering in an increOiental and

ilutomatic way as the set of rules is completed.

ln the second section of this paper we gi'!€> classical del,nilions and notations about terms and

orderings [10]. In the case of a total ordering on lunction symbO/$ the decomposition on!ering is based on

a decomposition of te,-ms into three porls which are compared lexicographically [16]. In the case of a

partial ordering on lunction symbols these dûcomposilions are Quadruples, and, instead 01 one

decomposition for a term, a set of df)c-ompositions is ;J.ssocialed wilh t'ach term ûnd cornparisons of sets of

decompositions provide the decornposition o'dering [22, 23). l he third chal'ter is devoted 10 extendin9

these concepts to ground terms (i.e., terms wilhout variables). In Seclion 5 and Section 6 the

decomposilion ordering is prove<! 10 he a simplilication ordering an,j a welJ·founded ordering. In Section 7

we prove th31 the decompositil'n ordering is more powerfllilhan the recursive path ordering. An extension

of the decomposilion ordering 10 non·ground lerrns is given in Section 8. The incrementality property is

ilJus:rate:d in the conclusion.

Recursive Decomposition Ordering 333

2. Orderings and Tcrms

2.1 SE:t "nd Mliitiset Ordcring

An oreJeriny < on a set E can be eX'.en<fed la the sel ~~F.) of sels on E by:

S « T ill S>oT and V ,(xE S "nd .~ll T) =>] y (yC:: T and yi! S "nd x< y).

Inillilively, a 101IIlisei on E is an unordemd collection of elemenls of E, wilh pO'3sibly lOany occurrences of

given e!(Jml~l\ls. A mu\liset can be seen as a mapping [_.>J(where J(is the cet 01 natllf~1 nurnbers. Let

JlqE) be the set of "II the finite rnullisets on E, i.e., the mullisels M such I/mttLeir support (xEE 1 M(x);t.()}

is l'nite. The Amply rnullisel () is the rnulliset such thal (}(x) ~ 0, lor ail x in E. 1\ sel is " particular case of

a r.1ullisCI sllch \lmt S(x) is 0 or 1. Usu Illy multisets ure wrillen as lists (x l'" ,x",) with li straightforw"rd

Interpretation. If M is a mliitiset, xEM rneans M(x» J(a. An ordering on E can be extendcd ta mullisets

[11J by

M« N ifl M;tN and Vy ([N(y) <.W.A(y)] = I(] xE E) y<x "nd M(x) <J(N(r.)j).

The extension la sets is il pilrUcular caso of the extension ta mullisel:3. If the ordering is weil· founded on E

the ext0nsions are well·founderl on Jl1,(E) and '1(E).

2.2 Terms and Occurrences

ln this paper we will deill wi1l1 terlns with lixed ilrity funclion symbols. But alilhe rcsulls can easily be

extended ta varyadic terms. Suppose a sel F 01 funclion symbols and a function ar:F-·J(is given. T(F,X) is

the set of terms on F wilh variables in X. sE T(F.X) i.s either a vari"ble or of the form l(sl',,,,sm) with.tE F

~~Ich Ihal ar(f) = m and s, ... "s", <:Ife in T(F,~). T(F,X,D) is the 5€t of box tums. A box term is either Ihe

symbol D or has the lorm f(s " ... ,s,) lor fE F such that ar(f) ~ m and there exisls iE[1..m] wilh s,E T(F.X.D)

and, lor i>Oi. sr T(F,X), Intuitively, T(F, X, D) is the sel of terms with one terminal occurrence al D. The

symbol D m))y be viewed as Ihe empty term. Il is used ta ded\ with function symbols hilving lixed arities. If

X is empty, we will write T(F) and T(F.X) instAad of T(F,D) and T(F,X,D) and we coll these terms, ground

lerms,

We assume by convention th al ar(D) ~ ar(x) = a for ail xC::X, Terms may be viewed as labeled trees

in the following way, A term is a pilrtial function of x: (the monoid over)(+ with f ilS empty ward) in

FUX, such that Ille domain or sel 01 occurrences Occ(t) = (uE x: 1t(lI) is delined} verifies:

(1) tE Occ(t)

(2) uiEOcc(I(, .1, ..) if! Vi 1~i~ar(l) = uEOcc(t j),

If u and v belongs ta x: then ulv is a wEX: such Ihat vw ~ u. In the following, III ~

1(uEOcc(t) 1(lu>O D) 1 where tlu is Ihe sublerm of t al the occurrence u. /[u<-t'] is the term obtained by

replacing tlu by t'in t. We deline the set of path~ 01 s as the set Palh(s) = (pEOcc(s) 1ar(s(p» = a}. Given

a path p. the set of prefixes 01 p in s is Prelix(s, p) = (pEOcc(s) 1u ~p} if ,<lp>oD and Prelix(s, p)

= (pEOcc(s) 1u <pl if slp =D. Given a pa th p and a prefix u of p, we deline succ(u. p) a" ui if uiEPrelix(s.

p) and succ(p, pl = 00, we will slate 1/00 = D, Ihus tlsucc(P. p) ~ D. /1 subStilulion is il rnapping (l': X

T(F,X) such lhal a(x) ~ x E:xcept le" a linde nUmber of variab\p-s xEX, It C3n be exter.ded to a mapping a:

T(F,X)-+ T(F.X} by "(I(S,8",) = f(a(S,), ... ,O'(s,n»'

335 Recursive Decomposition Ordering

ln Ihe sume way, assume a partial ['J'lclion r:T(F)-+<j(.N:), called palll cll(';ce, such Ihal P(I)ÇPal!l(I).

extend once more t11e defini!ion and ob!ain a set of sels 01 decompositions. d~(t) (or more simply d(l) il

3mbiguily on P and 0), Ihal wc cali a (fccompos;lioll of 1:

(1;(1) = (e1E)(I) 1pEP(r)}.

!i!fl1nl<)2: III is chosen as in Example 1 and if P(I),~{111,3J, 0(r,111)={1.111} and C(r,3)={e} Ihen
1

. /'., g/ '~a ,9, !J.
,/)={ {(a;':'; fol; 09.0>,sl) (,; 0; {); ,p),..nô >}, {I; a; {~IO; '!'a}; O}},

r '!la 0 ;. r r
r

We are now able la delinc Ihe decomposition orrlcring. Notice that in uddition ta the ordering <F on

lhis definition lises two aIller orderings *01' and <OP' *op is an order'ng on T(F) and <op is an

'ng on decompositions which depends upon the choices P and O. In arder ta simplify nolalions, Ihe

iset extension of <Of' and :(oP will be wrillen «oP nnd l!:*0f' instead of <oP<QP and *op*oP'

ain Definition: Given a pmtial ordering <f' on F, a path choice P and an occurrence choice 0, we

me the rccursive decomposilion ordering (or mure simply decomposition ordering) * in the following

~(s) = <1; s'; 1; s") <oP d~(/) = (g; t'; '.î; t")

in a lexicographical way:

(dec.l)I<Fg

(dec.2) d~succ(,,·p)(s') «oP d6'succ(v,q)(r')

(dec.3) 1**op'1

(decA) dë(s") «op do(r"),

arks: 1) ln general, we will have pE P(s), uE O(s, Pl. qE P(t) and qE 0(1, q). Notice, 110wever, that d~(s)

a> d~(r) has a meaning allhough pEPalh(s) - P(s), uEPrefilf(s, p) - O(s,p), qEPa/ll(r) - P(t),

Prelix(l, q) - O(/,q). We will use tl1is lact in further proofs.

2) Cases (dec.2) and (decA) in Ille main delinition do not use a path choice, because the path is

Ed. Therelore it is not necess"ry ta ex tend the concept 01 path choice loI' terms in T(F,D).

Full examples are given in Appendix.

eorem 1: *op and <op are strict orderings.

~: We prove the property f('~ <CP' It will be true IGr *op which is <! multiset extension of <OP'

The praol is easily done by induction, since the extensions 01 orderings as lexicographical ordering or sel

LunUll,

fer an~

!3
Ibl{O,

Ifs(ul

If seul

and L

of s.

Gene

deco

main

hypo'

Pro

1 in

way:

lem

lC'llma 1: l<:1 pEPillh(s) und u E Prelix(s, pl. Then Ihere 0;<isis lI'CO .. (s, p) such Ihal d~(s) :$opcJ~.(s),

Icr nny choice Ihal salislies the minimalily conditions.

Recursive Decomposition Ordering 337

1, we :>tllUY

;)cond one

laIAI). The

s, but they

~orrespond

dcfined by

of do. and

• nnd P.

Ihs and the

edby:

associaled

s;rave thal

PmQ!: If lIEO + (s, p) then u' = u.

Il ~q:O + (s, p) lhen lhele exits u'EQ + (s, p) such thal S(lI):$S(U').

If s(u) <s(u') the result is true.

If S(LI) ~ S(lI') lhen u' <u and s/succ(u, p) is a stricl :>ubterm of s/succ(u', pl. Th'? resull lollows from (c1ec.2)

allô Lemma 2.

l~mmn 2: Let pEPalh(s) and k :$p. Then ct:J"(S/k) «opd~(s), lor any choices Pane! Q which satisly Ihe

rrinimality condition. The inequality is slrict if k'" E (hal mC<lns s/k is a stlict :>ubterm of s.

Prao!: By induction 011 IPI-Ikl

83Sic Case: If Ipl-Ikl = 0, then s/k is a term reduced either to 0 then c1~'(S/k) = { } or to the symlJol s(p)

",hich occurs in s. ThA result will be true il a symbol greater or equal 10 s(p) appears in the decomposition

of s, that cornes then Imm the minimality condition .

General Case: Let u E O(s/k, p/k). For '1ny decomposition 01 s/k in u along p/k, we want to lind il grealer

decomposition 01 s in v along p. Two cases muy happen:

- wE Q(s,pl. Then v = ku works. The two decomposilions are compared using case (decA) of the

main definition applied to do(s/k[u~O]) and db'(Srku~O]). The result is obtained from Ihe induclion

hypolhesis because the p:llh ku in s[ku'-O) has length Ikul- 1 < xlpl. Ihe suulerm occurrence being the

same (that is k).

- ku II. Ols, pl. Thus there exists v E Q + (s, p) = O. (l, p) Ç;;Q(s, pl such that s(v)~s.(ku). Thi:> case

divides into two subcases:

- s(v) > s(ku), then the result is straightforward.

- s(v) = s(ku), then v<ku and the result is obtained using case (c1ec.2) 01 the m<lin definition applied

10 d:J'klSUCC(U, pl')(s/k /succ(u, p/k) and d:J'sUCC(v, p)(p/SlIccfv, pl). On one h<lnd, p/k/succ(u, p/k)

= p/succ(ku, p) is a strict sublum 01 p/succ(v. p) because v<ku. On Ihe other hand,

Ipl-(lvl + l)-[(Ikul + 1])-(lvl + 1») = Ipl-Ikl-Iul-l <)(IPI-Ikl.
The wished resull is Ihus truc by usi'1g induction hypolhesis.

Proposition 1: <oP and <.P are the same ordering if the choices verily the minimalily condition.

Proo!: We prave S<Opl if and only if s<.P t by induction on Isi + III. 80th = and = ways use Lemma

1 in order 10 delcle the supplementary computation (for the = way) or to add the missing ones (for the =
way).

We now want to prove the equivalence of <'r> and < ••. Onc" more Ihe melhod i:> based lIpOr. a

lemma wl;ic!l proves thallhe sllppleme,llary computation performed by < •• is useless.

338 f.-P. Jouannaud el al.

l"rnma 3: let s be a term ill T(r) ~nd (J <> paIII in s. Il pl/.P + (s) Illen therc exi~t qEP ... (,,) such thal:

d~(s) «op (l'~(s).

Prao!: Gy induction on Isi. Il pEPath(s) - r + (s), then Illerc cxisls e, m<::.N: and i E JI" such Ihal:

-p ~ e.i.m.

-Ille suolenn sic belongs la a ma',irnai class of Ihû sublerms allhe deptll c.

- si = s/e.i dnes nol oelon9 ta a fl,aximal class of the subterm al sic.

ln addition tllcre cxists jEJ~* SU ch that

Sj = sle.j and Si~OPSÎ

Therefore tllere exisls nEP(si) such tllat d~'(si)«OP d~(si)' Sy induction, n can oe supposed ta

bclong 10 P + (Ôj)' C!.carly c.j.n belongs \.; P + (ô). Let q be c.j.n, then the result

d;im(S)« oP d;·;n(s)

is obtained by Ihe following Icmma.

lemma 4 Let s be a term in T(F) an'd e, n, m be in ~ and i,j be in X ... such that e.i.n and e.j.m are paths

in s. If d~(sle.i) «op d~(sle.iJ then d;j·,"(s) «oP d;i.n(s).

Proof:Sy induction on Ici + Iml. For ail prefix u of c.i.m, one must find a prefix v of e.j.n such Ihat

d~jm(s)<opd~jn(e).

Three cases can be distinguished:

1) u <e: then suppose u = v. The result is true by case (dec.2) by using the inequality

d;uCC(u.c.i.m)(slsuee(u ,e.i.m» «oP d;uCC(II.c.i.m)(s Isuee(u ,c .j.m»

which is true by induction hypothesis applied ta slsuee(u. e) with lelsuee(u, e)1 ... Iml <xie! ... Iml·

2) u =e. Then v =e and the result is true by case (dec.2) and the Ilypolhesis d~(s le .i)« opd~(sie.j).

3) u <e. Then there exisls hE'~ such that u = e.i.h and kE~ such Ihal: d7,'(sle.i) ~opd~(slc.iJ.

Let v be e.j.k and let us prove d~:;;'(S)<opd~!:~(s). Il (dec.l), (dec.2) or (dcc.3) are used, Ihe resull is

straightlorward. If (dec.4) is used, that leads la prove d;·ih(S[c.i.h+--O] «oP d;ik(s[e.j.ko-O] which

results from d~(sle.i[ho-OlJ «oP d~(sle.j[k+--OJ)by using Ihe induction hvpothesis witillei ... 1/11 <xlel

... Iml. 1

Pro

cid,

The

sail

dd

ord

cor

5.

Su

Co

ca~

Ca:

usi

Ca.

tha

(dE

re~

Co

6.

Le

DE

SUI

D,

339

hat:

.upposed ta

•
mare paths

h that

Iml·
.pd~(slc.j).

(slc.j).

:he result is

,0) which

t Ihl <xlcl

•

Recursive Decomposition Ordering

Proposiiion 2: <.1' and < .. are a same ordering if l' vcrifies the minimalily ccndition.

Eill9t: We prove S;!:.pl = s2:..1 bv ind~lction 1:;1 + 1:1,80111 <.'" '\Ild =" "'<lYS l!:i()lemma 3 in order to

dLlele the $upplementary computation (lm the t= W<.lY) or "dd the miss;ng unes (for the ,."" way). il

Thüor.)m 2: Il the choices confirm to Il e minimalily condition. then the orde, ing -2: up and 2: •• are the

s<Jm". In p<lrticolar. the ordcrings 2: + + <Ind;!: •• are Ihe same.

ErQQ!: Wc uce successively Proposition 1 and Proposition 2.

The cleli"ition of -2: + + can now he m<:ue inlrinsic. that means that inctcad of using < •• in the

de linition 01 the maximal path and the maximal uccur;ence. we may t;:;c < + + itsell withc;Jt changing the

oroering :Js it is proved in [22).

ln the 101lO'f;ing. wc write -2: for any decomposition orclering whosc choices verily the minimality

conditions. We will ose -2: •• for the most proofs.

5. Decomposition Ordering is a Simplification Ordcring

Sohterm Lelllma: 1-2: 1(... ,1 •. :.). Prcol: By lemma 2.'

Prao!: By induction on 1/(....1, •..)1 + 11(...12....)1. Let p EPalh(f(...t , ») .and uEPrelix(f(... ,1,).p). Two

C<lses may happen.

Case 1: p = kq :lI1d 1(.. ,1 ,)/k "'/, or u = c We obtain easily the resull d~(I(... I,»<d~(I(....12.· ..» by

IJsing case (dec.4) of the main definition and the indoction hypothesis.

Case 2:p = kq and f(.... I,)/k = l, and u"'c Thosq E Pa/h(/,). As 1,-2:12, there existso' E Pi.l/h(t2) such

that (\1 v:::;o) (3 v' :::; o') d~(t ,) < d~:(12)' If the proof of the last inequalily i:; by case (dcc,1). (dec.2) or

(dec.3) of the main delinition. the recull is straightlorward. If the prool is by case (dec.4) 01 definition. the

result is achieved by using the induction hypothesis.

Co rollary: -2: is a simplification ordering.

6. Decomposition Ordering improves over Recursive Path Ordering

let us recall Dershowitz's definitir;n 01 the Recursi'Je Path Ordering [2].

Definition Congruence 01 Permuta/ion: I(s,sn) ~ g(/ , •...1
01

) ilf f ~ g and there exists a permutation oESn

•such that Sj = to(i)'

Definition: The recursivo palh ordl.'riflg over T(F) is recursively dcfined as lollows:

s ~ I(s , ,5;(1)< Q(t'l' .. ,1,,) = t iff

(rpo.l) 1=g and (s, ... •5,,) <«1, 1)
01

340 J.-P. Jouallnaud el al.

or (rpo.2) f<Fg and for ail Sj' Sj.('

• * or (rpo.3) -II ::;Fg and for some 'i' s<ti or.~ = 'i

thi~ definition can be made 'ïess determinblic", by changing (rpo.3) to:

* •(rpo.3·) for some 'j' s <'i or s ='i

Theorem 3 (Dershowitz (2)): .(is a simplification ordering. If <F is is weil 10undecJ on F. then .(is

well-Iounded on T(F). If <F is total on F, Ihen .(restricted to T(F)/: is totai.

We prove now Ihat ~ contains .(. We tirst prove some technicallemmas. which prove actually Ihat ~

is a lixed point 01 the fUllc!ional which defines .(.

Lernma 5: cJP(sj)«dq(g(, ' "n)) and 1<r 9 imply diP(f(s"""sm)) «dq(g(I 1'· ... In))·

Prao/: By induction upon Isjl.

Basic Case: Is;1 = 0, that is Sj = O. The result is true because the only possible decomposition takes place

in € and because f <F g.

General Case: Let u::;ip. Two cases may be distinguished:

- u = € then d;f(l(.. ..s;....)) <d~(I) because f<Fg·

- u = iv, there exist w::;q such Illat d~(s) <d:(I). If the prool is performed by case (dee.!), (dec.2) or

(dec.3)01 the main definition, then d:~(s)<d~(/) in the same way.

- If the praol is per/ormed by case (dec.4), then we have: dV(s;lv<-O))«cJW(I[w<-O]). 8y the

induction hypothesis, we get djV(s[iv<-D)) «dW(/[w<-D]), which proves Ihe desired result by case (dec.4)

of the main delinition.

Lemma 6: For ail i. Sj~1 and f<fg implies f(SI'Sm)~I.

Proo!: Straightforward From Lemma 5.

Lemma 7: dU(sj)«dV(/) implies diU(f(....si)) «diV(I(""'i''''))'i

emm: 8y induction on IsJ We have ta prove Ihat for any p~iu there exist q ::;jv such that

d~(f(....si'''')) < d~(f(... ,li'''·))' Two case must be distinguished.

- p = €, then q = €. The result lollows lrom the hypothesis using (dec.2).

- p = ip'. Then there exists q' such that d~.(Si) <d~,(ti)' If it is proved by (dec.1), (dec.2) or (dec.3l of

definition, then the desired result is proved in the same way. If it is proved by case (dec.4), then we

obtain dP'(s;lp·..-O)) «dq'(li[q'''-O)) which proves the desired result by (dec.4).

Lemma 8: {si' .. ·} ~ ~{ ... ,'j, ... } = f(... ,t;)~f(... 'ti' .. ·)·

erool: By applying Lemma 7.

Lemma 9: Il <F is lot:'ll on F, ~ is tot;]f on T(F)/ : .

led on F. Ihen <: is

prove aClually thal ~

mposilion takes place

ase (dec.l). (dec.2) or

:d'V(/[w_O]J. Sy Ihe

resull by case (decA)

~xist q :$jv such thal

J, (dec.2) or (dec.3) of

case (decA). then we

cA). •

•

Recursive Decomposition Ordering 341

e!J191: Uy illd[;ction 011 m<lx(kl, 111l· Suppose <r is Icl~1 and neilhcr S~' nor I~S, let us prove that

s : t. Sy the induclion hYPolhesis, there exisl in s a pu th p [!I\(I an occurrence U sllch thul d~:(sJ g;d~(s), for

ail other paths p' and occurrences u'. The same Ihing happens for q a~d v in / Let d.~ he <1. s'. '1. s") und

d~(t) be <g, l'. ':f. t"). Secause neither s~t nor t~s and by the inductioll hypothesis. 1~ g, s'~ t', :/: : ~

(where : : is the congruence on mullisels deduced 'rom:) and s": t". Then il is easy to see thai s: t. 1

Theorem 4: Given a partial ordering <1' 011 F, we have -< ç ~. If <r is total then -< =~. Olherwise the

inclusion is stricl (whenever them exisls a funclion symbol IEF such Ihal ar(')~2).

Prool: We can "~place "if'" by "if" and -< by ~ in Ihe definilion 01 recursive palh ordering. Sy lemma

8 ~ verifies (rpo.l), by lemma 6 ~ verifies (rpo.2), by subterm lemma and Iransilivily J(verifies (rpo.3).

Then -< ç ~ is a consequence 01 the leilsl lixed poillt prOperlY 01 -<. That ends Ihe tirst part 01 the prool.

To prove that -< = ~ if <r is lotal. we remark Ihat both <: and ~ are talai ordering on T(F)/: and

do 1101 compare terms sand 1such that s: t. As -< ç ~,we necessarily have -< = ~ in Ihis case.

Ta pro·,e thatthe inclusiOIl is slrict if <F is nollotal, we give a counter example. Ta buifd this counler

e:<ampfe, we only need a binury funclion sYl1lbol f. Assume now a and b a·re incomparable and leI

s r and

=,/I~,/~

/\
f

/\
f

f/~I t/~,ab. b

/\ /\ /\ /\
•• b b b b

We assume wililOut loss 01 generalily thal a and b are symbols of arily o. If il is nol the case we replace a

bya(.. ,C, ..) Jnd b by b(...•c, ...). Il is nol poss:ble to compare sand t using -< because

1 f or f 1

/\ /\ f/~fb ~ b ~ f / ""',

1\ /\ /\ /\
a a b b b

is taise. On Ihe other hand,

f f

/~ /\
f 1 ~ a b

/\ /\
a a a

342 J.-P. Jouannaud el al.

is :llso false. However, we h:lve s .2: t bccau:;f) d l'(S) <d ll' (I) arld d'2(s)<d21'(I).

. d
7. Weil foundednes of <

The weil· foundedness is based on Ille following lemma.

Monotonicil y Lernma:-<" ç; <F = ~ ::;; .2:.

ENo..!: Easy, sec [22].

Theorem 5: .2: is well·foundf)d if and only il <F is well·founded.

Proof: Assume ~ is nol well.I(,unded. TllUS, there exists an infinité decreasing sequence

SI~s2~ ... ~sn~ ... Let now -<F be a total well.founcJcd ordering (i.e., a well·ordering) on F which contains

<F (such an ordering exists by a variant of Zermelo's Theorem which can be seen as a transfinite

. • .. • dd dd d.
topo1oglcal sort). Usmg the monotonlclt\, lemma, we obtaln s ,>-s2>-" >-sn>-'" But -< = < by Theorcm

3, which contradicts the well·foundedness of the recursive palh ordering [2,15). 1.

8. Extension of the decomposition orderings to non-ground terms

We will now deline two lormally different extensions 01 the decomposilion ordering to non·ground

terms. These two extensions are proved to be equivalent . The first one is more tractable for prools, the

second one leads to more efficient implemcntations. Moreover, these extensions are coherent with the

delinition of the decomposition ordering on ground terms, i.e.,

s~t = a(s)~a(t) for any substitution a.

Definition by extension al/he basic ordering: Let <F a partial ordering on F. The decomposition ordering

~ on T(F) is extended to T(F, X) by simply extending <F to FUX in the lollowing way:

a<FUXb iff aEF, bEF and a<Fb.

ln other words, the <FUX ordering is the same as <F for functions symbols. Variable symbols can

be compared with no other symbols using <FUX' The orderings ~ and < deduced from this definition will

be wrillen ~ 1 and <, for the time being. This delinition 01 the decomposition ordering teads to incfficient

computations. For instance, let us suppose that s/pEX and l/qEX and s/p~l/q. Il is quite obvious in this

case that the two decomposition sets dP(s) and dq(t) cannot be compared using the new ~. However they

will be recognized to be incomparable alter a lot of useless computations. We give now a new definition 01

~ on T(F, X) which avoids this drawback. The basic idea is to modify the definitian of the multiset

extension « in order to compare sets of decompositions <!P(s) and dq(l) only when it is necessary.

Definition by extension 01 the decomposition de/inition: dP(s)«" dq(1) iff

(1) s/p~X and cJP(s) «dq(l)

(2) s/pEX and I/q = s/p and dO(s) «<1'1(1).

Recursive Decomposi/ion Ordering

ln Ihe lollov/ing, VIe wrilc « in:;tead of «x' Using this definition of «, il is now possible 10

u'.JCreé\S0 the size of !110 s::t Ols. p) 01 givcn occurrences in s alon9 the path p, by ruJing out the

o,;currencesp if slp is a variable.

Definition: Ols. p)Ç Prefix«, pl, if slp C! X

Ols, p) ç (u(Occ(s) 1u<p), il slp EX

a + (s, p) = {vEPrefix(s, pli (If w<v), -'(s(v)~s(w))& (lfv<w~p) -'(s(v) <s(w))), il slp<f X

a + (s, p) = {v<p 1(If w<v) -'s(v)::::;s(w) & (lfw> v) -'s(v)<s(w)}, if slpE X.

Notice tlte analogy between the definitions of Ols, p) and a + (s, p) when slp = 0 and wl1en slpEX.

Tile orderings ~ and < dcuuced Irom lhis definition will be writlen ~2 and <2' It is c1em that the ordering

lquonce ~, does nol dcpend upon tlle choices P und 0, as stalcd by Theorem 2. But it is not so obvious for the

conlains ordering ~2' So we will prave that ~ 1 and ~2 are Ihe same ordering, which will prove the property for ~2'

anslinite
Theorem6:~, = ~2'

rheorcm

1. Praof: Let us use the samo clloice lor bolh orderings. In fact, the choice a, 01 the ordering ~, is not

exactfy the cl10ice O~ 01 the ordering l!:2' bccause if slp E X then p E a, (s, p) and pC! 02(s, pl. 80th

choices are the same in ail the other cases.

I.ground
Let us now prove that S~,1 = S~21, by induction on Is\ + III· Let pE P,(s) and qE P,(I) sucl1 that

DOrS, the
d.o(s) «,dq(l). Two cases can occur.

with the
Case 1: If slp = xE X the·, flq = x because p E O,(s, p) and x is incompar3ble with any other symbol and

therefore x must appear in a decomposition along the palh q in 1. Thus it is possibte to compare dP(s) and

dq(1) wilh «2' Let uE 02(S, pl· Then uE O,(s, p) and there exists v""q and vE 0,(1, q) such that

ordering d~(s) < ld~(t). Using now the four cases 01 the delinition and the induction hypothesis, we oblain

d~(S)<2d~(I)and thus dP(s) «2dq (f).

Ca~: Il slp fi. X, Ihe O,(s, p) = 02(s, pl. If Ilq <f X, there is no problem because 0,(1, q) = O2(1, q). If flq

E X Ihen q E 0,(1. q) and q il O2(1, q). However, d~(s)< Id~(I) implies that V7'q because I(q) is not

Ibols can comparable v/ith s(u}il X. The result i::; easity obtained by induction as in Case 1.

lilion will
Let LIS prove now that S~2' implies S~,I by induction on Isi +ltI. In the same way as before,

lcfficient
d~(S)<1d~(I) lollows Irom d~(S)<2 d~(I) jf slp cr X. If slp E X and tlqE X. vie have to prove the inequality:

us in this
<s(P); D;{) ;s[p-DJ> <, <r(q); o:{} ;r[q-Dl>

ever Illey
and dP(s[pt--O) «1 dq(l[qt--Dj) follows in the same way as before from dP(s)«2dQ(l).

inition of

mullisel
Notice lhat ail theorems proved in previous sections remain valiJ because of the definition ~,.

(.

Theorem 7: ~ is c10sed under inslantialion, i.e., sJ!:t = u(S)J!:U(f), for any substitution (f.

Proç.I: Straightlorward using definition by extension of the decomposition d0linilion.

343

345

,el of rewrite

perly with an

propositional

Ilion of the rule

1 exchanging the

}nt the rule (iv).

ovides success1ully

hose conditions we

ously be pcrformed

,atic construction 01

1 IWO symbolS i and 9

') are incomparable.

ld to be comparable.

r 10 get comparable

rdering because the

Recursive Decomposilian Ordering

comparison fails when it exl13usls one ollhe Iwo 1erms. Bcciluse of lhis essenlial Icature, our ordering is

more suilable than Dershowitz's 10 any appllcallGn which requires automalic proofs of terminalion. Our

o(dering is thus useful in implementing the Knulh·Bendix completion algorithm. A non·incremenlal

vHsion of Ihe dccomposition orderin9 is now implemented and we are currently implementing the

incrementalone.

flcliDlLv'!-'edgmenl Wc would like to lhank Nachum Dershowitz and Jean·Luc ReillY lor Iheir hnlpful

SI ,ggcstions and John Guttag lor readin!! the manuscript.

10. References

1.	 Boyer R. S., Moore J S., A Camputa/ianal Lagic, Academic Press (1979).

2.	 Dershowitl N., Ordering lar Term Rewriting Syslems, Proc. 20 lh Symposium on Foundations of
Computer Science (1979), 123·131.

5th3.	 Gaguen J.A., Haw /a p,ave Algebraic Inductive Hypalhesis Wîthaut Incluc/ian, conl. on
Automôled Deduction, Lecture Notes in Computer Science, 87 (1980), 356·373.

4.	 Guttag J.V., Kapur D., Musser D.R., On Proving Unilarm Termina/ian and Res/ric/ed Termina/ian al
newriring Systems, 9 th Int. Coll. on Automata, Languages and Programming, Aarhus, Denmark
(1982).

5.	 Hsiang J., Refulatianal Thearem Proving using Term Rewriting Systems, Dept of Computer
Science, University of Illinois at Urbana·Champaign (1981)..

6.	 Huet G., Canfluent Reduction: Abs/rac/ Properties and Applications /0 Term Rewri/ing Systems, J.
ACM, 27 (1080), 797·821.

7.	 Huet G., A complete prool 01 carreclness a/ the Knuth·Bendix Campletian algarithm, J. Comp. Sys.
Sc., 23 (1981), 11·21.

8.	 Huet G., Hullot J., Prool by Induction in Equatianal Thearies witlJ Cans/flIctors, Proc. 21 th

Symposium on Foundations of Computer Science (1980).

9.	 Huet G .. Lanklord D.S., On the Unilorm Halling Prablem lar Term Rewriting Systems, Rapport
Laboria 283, IRIA, Mars 1978, INRIA Rocquencourt, France.

la.	 Huet G., Oppen D.C., Equatians and Rewrite Rules: a Survey, in FormaI Languages perspectives
and Open Problems, Ed. Book R., Academic Press (1980).

11.	 Jouannaud J.P., Lescanne P., On Multise/ Orderings, to appear in Inform. Proc. Urs.

12.	 Kamin S., Lévy J.J., Allempts lar generalizing the Recursive Pa/h Orderitlg 10 appear.

13.	 Knulh D.F.., Bendix P., Simple Ward Prablems in Universal Algebra, in Camputational Prablems in
Abstract Aigebra, Ed. Leech J., Pergamon Press (1970), 263·297.

14.	 Lescanne P., Two Implementa/ians ollhe Recursive Path Ordering an Monadic Terms, 19th Annual
Allerton Conf. on Communication, Control, and Computing, Allerton HOLlSC, Monticello, Illinois
(1981),63-1·643.

15.	 Lescanne P., Same praperties 01 Decomposition Ordering, Symposium AFCET "The Mathematics
for Computer Science", Paris, (march 16·18, 1982).

16.	 Lescanne P., Decompasition Ordering as a Tool'; p'ave (he Terminatian of Rewriting Systems, 7th

IJCAI, Vancouver, Canada (1981 >,548·550.

346 J.-P. Jouannaud el al.

17.	 LesC:1nn" 1-'., I~"ill;a r., A Well·fnunded Recllfsively Delined Ordering on Firsl Order Terms, Centre
de Reche" il" ,~" l:l:ormatiQue d.) Nancy, France, CRIN eO·R·OOS (1980),

18.	 Musser DL, On Pro~ill'] Inductive:: Propcrtie.$ 01 A/).'/ract Va/a Types, Proc. 7111 ACM Symposium on
Principles 01 l', odr~lI;llning L:Jr,gu:lg',s (1 !J8D). 15'1·162.

19.	 Plaisted D., Well·Foundcd Ordefings !cr hovillg Termination 01 Systeills 01 Rewrite Rules, Dept of
Computer Science neport 713·!J32, University of Illinois at Urbana·Champaign, July 10713.

20.	 Plaistcd D., A Recursively Oclincd Ordcrin'] lor Proving Tcrmination 01 Term Rewriting Systems,
Dept of Computer Science Rcpcrt ·fil·943, University of Illinois at Urbana·Champaign, Sept. 1978.

21.	 I~aoult J·C., Vuillemin J., Opera'ional and Seman/ic Equivalence Between Recursive Programs, J.
i\CM., 27 (1980). 772·796.

22.	 Reinig F., Les Ordres de Décomposition: un outil incrélllcntal pour prouver la tcrminaison linie dc
systèmes de réécriture de /erllles, Thèse Uiliversilé do:! Nancy, Octobre 1981.

23.	 neinig F., Jouannaud J.P., ON omposition Orderings: a new lamity 01 decampas/ion orderings,
Centre de Recherche en Informatique de Nancy, France, CRIN 81·R·040.

24.	 Thompson D. H., ed, AFFIRM Relerence Manuat, USC Information Science Instilute (1079).

347 Recursive Decomposition Ordering

nlre M)PENOIX: Examples of decomposHions

non La t f < 9 <h and a < b.

~I of

, . r l • r
lJms, /1 /I~

9 9 a h h a
lB. 1 1/ \ l "

m a m a b
IS, J. 1 1 1

b

ie de

Pc,) • (111. 12) pel) • {Ill. 2111}
O(,. 111) • (1. 1 \, 111) O(l. 111) • {I. 11. Ill}

ings, 01'. 12) • (1. 12) 0(1. 2111} • (2. 21)

111 111
d (,) d (1)
o o

r r
111 m 111 m /1\/1"

d (,). <9: (a) ; o 9 a, d (1)' <h; () o ha,
1 /\ 1 1

m a b

1 1
b

1

r r
111 111 /1\/," , • <m; r; (};h ha,'

11 11 1
0 l') • <In; r : (); 9 9 a (1)

/1 1\ 1
Dam a 0 b

1 1
b

1
a

rr
111 /1"- 111 /1\

d (,) • <r: (): 9 9 a 0 (1) • <r; : (): h h a

111 /1 1\ 111 1 1
m b

1 1 1

0 0 b

m a m a

1
a

•
1

0w •w0w
111 Il \1 \/ II

<• ~~ :0 :Q : Q> • (1)p <• 6 6:0 : v> • (s) p
IIIl II \11 \'1 JJ

J

1
• •

1
ww
1 1 l \ / 1

<. 0 ~:O :Q : 4> • (1)p < •6 0 : {I} :.: (i> c-(s) p
IIIl UI II \1/ 1 \1/ JQ J

00
(1) P (S) P

llll II

ïV la pnvuuvnor °d-or

349

SESSION DISCUSSION

Responder: G.Cousineau, Paris

Cousineau: l wish to address the problem of implementation. My' rea50n for that is
that l an irwolved in a project whieh implements a system which manipulates !l'athe
!l'atical theories and prograrns. sa _ should nonnally benefit fran the kind of w::>rk
reported here. 000 The last speaker claimed he had produced an ordering which ~

much rrore ~rfull than recursive path ordering, and if true this will have very
great i.mp:>rtance in =nnection with Knuth-Bendix COTlpletion. 000 sa _ must state
precisely the problem in order ta discuss this problem of implementation of the
recursive decanposition ordering and see what _ can do with it. 000 Our system
deals, arrong other things with equational theories, and arrong things it can do, it
can do Knuth-Bendix <XIT1pletion, Peter5On-Stickel COTlpletion, and al50 prave equali
ties in the initial algebra. sa the first tw::> are certainly related to the last tw::>
papers, because in doing Knuth-Berrlix canpetion, _ do ordering on terms, this is
crucial, and the third point is certainly related ta the talk of Padawitz. 000

sa let me recall: what is Knuth-Bendix (KB) COTlpletion (KEr) • KBC is going fran
an equational axian system S ta a rewriting system R Iohieh is canonical in the
sense that _ can check equality in the system S only by rewriting rules , and see
\ohether _ cane ta the same nonnal form. 'lb do KBC: - _ recall the method: Let us
just look at the <XIT1pletion method. \'€ start with a set of equations. \'€ have first
ta orient the equations in such a way that the resulting system is Noetherian. sa
_ have the problem of praving termination. Then _ COTlpute critical pairs of the
system. If there are none, or if they are just such that their left and right
merrt>ers have the same normal form then the obtained system is canonical, and _
are finished. And for those Iohose members have different nonnal forms, _ orient
them using again the recursive path ordering. And then add them ta the system and
iterate the process. N:Jw, to orient the rule and prove that the rewriting system
obtained is terminating you need sare ordering, that was' the subject of the last
talk, and the ordering that _ have implemented is recursive path ordering.' 50 here
(Cousineau points: ~) l just recall the definition of recursive path ordering. Vou
start with an order on symbols, and you define recursively the order on terms using
the definition that Jouannaud has presented. 000 It happens that _ have applied
KBe to a lot of classical !l'athematical structures including groups, rings, nodules
aver rings, etc. And that to be able to do ordering of terms _ had ta use rot only
the recursive path ordering of Derschowitz, but an extension that was defined by
Kamin & Lévy. And this is crucial. In the Kamin and Lévy extension of recursive
path ordering each function symbol can be of either type multiset or lexicographic.
In the definition _ have more choice. The definition is the following: if the
head symbols of the tw::> terms are ordered by the order on symbols, then the def
inition is the same as for recursive path ordering. But if the head symbols of tw::>
terms are the same, then _ can ccmpare sub-terms either in the multiset way or in
the lexicographic way. This is crucial if, for example, ycA.I wa.nt to deal with
associativity as a rewrite rule. sa, rcJW _ w::>uld like ta understand what _ =uld
gain by using recursive decanposition ordering instead of recursive path ordering.
sa my first question ta Jouannaud w::>uld be: is the recursive decanposition ordering
al50 an extension of this Kamin and Lèvi ordering?

Jcuannaud: l guess that you mean: Am l able ta define a lexicographic extension?
OK. Up ta reM l did rot succeed, but l only w::>rked hal f a day on that problem. But
it seems to me that it is not 50 easy. Because, using paths !l'aybe cannat fit with
lexicographie ordering. But l am rot sure.

Cousineau: OK. sa for the m::ment we must be careful. \'€ krcJW that recursive path
ordering with is (~) definition w::>rks for a lot of structures, but _ are still not
sure whether recursive decanposition ordering will w::>rk.

Jcuannaud: l krcJW that it can be used, not with this definition, but with another

350 Session Discussion

one ~ich is much simpler. With this simple definition, l can have a lexicographie
extension, but it is rot as powerful as the recursive deccmposition orderin;J.

CUnningham: Could we have a source?

Cousineau: You should write to Jean--0acques Levy at INRIA. 000 My second point is
that we do rot \ent ta do only KBC, but also Peterson-Stickel o:mpletion. That
means: we want ta be able to deal with associative arrl ccmnutative theories. The
problan here is that if you have ccmnutativity then you can no rrore have a termina
tin;J rewritin;J systan. Sa you have to deal in a different _y with ccmnutativity.
An::1, rroreover, ~en symbols are ccmnutative you cannat deal with associativuty the
_y you did before. Sa you have to deal with ass=iative and ccmnutative symbols in
a special _y. An::1 that is done by an extension ta the KB algorithm ~ich is due to
Peterson and Stickel. Now we do rot manipulate terms, but terms rrodulo ccmnutativi
ty and ass=iativity of certain symbols. CXle good point is that we have been able
ta extend the recursive path orderin;J to deal with associativity and ccmnutativity.
An::1 the _y to do this is very simple. Wlen we have associative and a::rnnutative
symbols, for example, let us take binary + (plus), instead of representin;J it as a
binary (dyadic) symbol, we represent it as a vari-adic symbol, with a list of
arguments, and we apply the recursive path ordering defined here (c;:). The crucial
point for doin;J that is that the recursive path orderin;J is compatible with the
associativity and a::rnnutativity property. That is: if tv.o terms are equivalent
rrodulo ass=iativity and ccmnutativity, they are equivalent in the equivalence
associated with the recursive path ordering. Sa l cerne ta my secorrl question. lb
you thinl< we can also exterrl the recursive deccmposition orderin;J to associative
and commutative theories?

Jouannaud: My answer in this case is: Yes, don't ask me for the paper. Because it
has' nt been written. But there is no problan in buildin;J any equational theory inta
the recursive deccmposition ordering. It is valid rot only for ass=iative and
commutative theories, but for any.

Cousineau: M3.ybe l have alast point about this paper. An::1 that is the problan of
implenenting this order. My experience with recursive path orderin;J is very good.
It took me one day and one night to put the recursive path ordering in our system
includin;J the user interface. It is an order ~ich is very simple ta program. W1at
is your opinion about the implanentation of recursive deconposition ordering?

Jouannaud: It is very easy, because in LISP you can use functionals as argunents.
But in that case, you get sone kind of "a brute force" implanentation. If youent
to get a really good implanentation, then you have to do much rrore.

wagner: l am actually interested in the =nnection between term-rewriting systans
and the v.ork on abstract data types, because of the question of implanenting (ab
stract) data types. M::>st of the systans that l am a-.re of have problans because
they =uld' nt handle such thin;Js as ccmnutativity. But l gather that that has now
been resolved. But does it actually provide an effective, reasonable system.

Cousineau: Yes, very reasonable. An::1 if you are interested l have here the listing
of sessions of the system dealing with associativuty and a::rnnutativity. You can
have a look.

wagner: Can you actually, in effect, run programs in this system? How far up, how
l am also interested in the speakers cannent on this, by the _y - how they feel.

Padawitz: VE have no system. But l think the point with commutativity and associ
ativity i8 that it is rot enough for data types. If you rernanber my example with
arrays, there is an axian ~ich looks like ccrnmutativity, but it is not real cern
mutativity. For such examples the methods ~ich incorporate ccrnmutativity and

351 Session Discussion

raphic	 associativity don' t vork. They do rot vork for equations wüch are a little bit
.erirg .	 different frcro "classical" cannutativity axicro. This \..eS one reason for me to

introduce the notion of relative oonfluence with respect to seme rules \\hich may
be, for example, associativity and cannutativity axions, but it may be also ITOre
than these. There is no requirenent to the basic rules except relative oonfluence.

)int is	 Fspecially the basic rules do not need to be nonnalizing, or nonnalizing JTOdulo
1. 'lhat	 sanething .
~. The
ermina Jouarmaud: l can also ans-.er this question. In my "talk" l mentioned tvo systems.
tivity. Systan REVE lIhich is implemented by Pierre Lescanne, and the systan FORMEL - and
utY the the system FORMEL is exactly the systan of Guy Cbusineau and Gerard Huet. 50 l
ibols in practiced on this system. l want to say that it is a very jX)INerful system. Vou can
1 due to perform proofs with this system. l have used it in a quite different way, lIhich was:
ltativi -.e had to prave that an axiematization was not minimal. 50, in fact -.e suspected
!en able one axicro to be a logical oonsequence of the others. Arx] -.e effectively proved it
~tivity . using this system, by rerroving the axicro frcm the set of axions, arranging the
nutative others as a set of rules and ccmputing with several hundred new rules. Arx] after
it as a maybe half an hour MJLTICS system canputation, -.e had our axicro generated by the
list of system. 50 it is a very po-.erful system \\hich can be used for purposes of program
crucial proof, but also for many other purposes. l think it is very important to have such

with the systems.
flÛvalent
livalence Wagner: I:o yeu think you can debug specifications?
:ion. [b

;ociative Jouannaud: Yes, sure. Vou 1<n:lw the v.ork of M.1sser. Vou can prave (in)oonsistencies
with these systems. Using KBe yeu can prove (in)oonsistencies. 50 it is debugging
specifications .

!Cause it
:ory into Wagner: That is a very sopüsticated form of debugging.
:tive	 and

Jouannaud: Yes, it was a special case, but it v.orks with this case.

:oblan of CUnningham: With seme trepidation l ask the respomer: is he aware of any v.ork that
~ry good. extems these techniques to partial algebras.
Ir system
~am. v.hat Cousineau: N::>, in fact, that was also one of my questions to the secom author.
:>rdering? The only thing -.e 1<n:lw how to do presently in our system for initial algebras is

using the rnethod of Huet and Hullot \\hich was published in F\XS, l think in 1980.
rgunents. This v.orks in the case lIhere you can partition yeur sets of symbols bet-.een Ilhat is
yeu want	 called oonstructor defined symbols and the other \\hich are called differencing

rules. In the set of axions lIhich are satisfying sane definition principles. The
definition principle is, in a few vords: any ground term is equivalent only to

, systems sane ground term using only oonstruetors - as one point - and the secom point:
ting (ab- tvo ground terms using only oonstructors are equal in the theory if they are ident
o because ical. 50 in that case -.e can praved that an equation -t=e is satisfied in the
t has now initial algebra by doing the ccmpletion method. Arx] that is a question l v.ould like
, system. to ask to the second speaker: have yeu been interested in implementing such methods,

and do yeu think that this kind of method oould be adapted to yeur notion of partial
e listing algebra? Of oourse, if yeu introduce an undefined symbol, Le. it can certainly

Vou	 can not be a oonstructor, but maybe -.e oould replace the oomition on oonstructors
with arnther oondition lIhich is less strict. l mean: instead of requiring that tv.o
terms are equivalent if they are identical, -.e oould ask just for a oonfluent,

r: up, how terminating rewriting system for this ground term with oonstructors.
hey feel.

Padawitz: 'IVIo points: first to the partial functions. '!he aim of introducing a
d associ discrete specification lIhich has a least elanent is to allaw oorrectness proofs
ople with of the recursive, partial functions with respect to a discrete demain. If yeu have
real cern- praved this oorrectness, then yeu can forget the discrete specifications. The
lvity and discrete specification is only there to get the proof: to see that the discrete

352 Session Discussion

danain is really specifiable. The other point is the follawing: The corrlitions l
give for discrete specifications are also corrlitions Ir.hich are sufficient for ~t
is called canpleteness and consistency of data types with respect ta seme basic
data type. sa one has tw::> specifications: one is included in the other, arrl one
wants to prove that the semantics of the enriched specification includes the seman
tics of the basic specification. Ta get this property l have similar sufficient
corrlitions like confluence arrl normalization corrlitions lf.t11ch guarantee canplete
ness arrl consistency. Referring ta the definition principle mentioned by the re
sporrler, the constructors are just the operations of the basic specification. The
definition principle -then says that every term can be reduced to constructars. Arrl
if constructor terms are equivalent. then they are identical. This condition, l
think. is tao restrictive for the follawing reason: one reason is ccmpleteness:
this is just the property that you can reduce every term ta a constructar term. The
other reason is consistency: this means that terms of constructors Ir.hich are con
gruent in the extended specification are already congruent in the basic specific
ation. The definition principle w::>uld require that they are already equal. But
this is semetimes a tao restrictive.

Culik: l have a question ta Bergstra: Different equivalences (ccrning. for instance.
frcm Mmna's book. you mentioned unfolding, arrl he has alsa isororphism equivalence)
can be just treated semehow. In your point of view there are special cases. l w::>uld
like to Jcro,y sanething m::>re. Wlile function equivalence is undecidable. the iso
rrorphism equivalence is decidable. and therefore it is much rrore suitable, for in
stance. in proving the correctness of a canpiler. Can you be rrore specifie about
the relationships arrong them, e.g. the process equivalence, is (it) really decid
able. arrl therefore alsa execution sequences? Arrl, because we are constructing the
ccmpiler \Ile can allMlys restrict ourselves ta this decidable case. But, however
decidable. it still can be unfeasible. Can you cœment on that?

Bergstra: That is not sa easy for me. l have not said anything about feasibil ity .
Arrl this is. maybe. the key point (of course). sa l assune this kirrl of isororph
ism equivalence is within the scope of these met.hods. Wlat gets lost is the modu
larity of the issue. Arrl this is already a problem in pencil-arrl-paper w::>rk. sa
mathematically it is within the scope of our method.

Culik: \\èll. l assuned you could tell us imnediately how ta formulate isororphism
in the Mmna sense (ps: there is an incaccuracy in his definition) in your frame
w::>rk, because it w::>uld help me to understaOO that.

Bergstra: \\èll. that is not my interest. l want a general theory. not nice trans
formations .

Cousineau: (ta Bergstra:) J-bw should \Ile take your paper. ~ould \Ile take it as a
theoretical result relating tw::> different proof systems, or praof met.hods for
programs. or should \Ile take it as sanething that could help. in sone sense. in
doing the proofs?

Bergstra: sa you are asking me: Ir.hat the applications of this kind of w::>rk w::>uld
be? N:M, of course. l prepared myself for that question. because you said you w::>uld
ask it. (Laughter) In the time l w::>rked toget.her with John 'fucker \Ile had long dis
cussions on the applicability of our w::>rk. Arrl \Ile came ta the conclusion that arrong
the many kinds of applications that one can imagine one application is the applica
tion to teaching - Ir.hich is big business tao. The clear mathematical analysis that
\Ile aim at could have an application ta teaching. Just explaining these notions and
their relations. If it has a spin-off in terms of providing efficient proof systems.
then it is not up ta me ta predict this in any IMlY. l w::>uld recall the fact that
caroinatary logic lMlS invented to get around set theory. arrl is _reM applied to get
around sequential progranrning. Schônfinckel w::>uld not have predicted that presune
ably. sa - l am not ranking our w::>rk ta these kirrl of issues - but nevert.heless

Session Discussion 353

1 am making the point that on principle 1 have not had the idea that in ...natsoeverns 1
way this will lead ta applicable systens. 1 think that these mathematical factsIoklat
are such that their main application (is) in the developnent of the field and in>asic
teaching. Because in teaching itself it is rot 50 essential that everything has anooe

man application. 15 that an answer?

~ient
Cousineau: Yes, 01 yes . .ete

re
Culik: 1 was teaching a program correctness course ta graduate students 2 years aga'!he
using Manna's book. 1 could lecture on Greatest Cammon Divisor all-right, and prove1Irrl
it correct. But ...nen challenged, by my students, ta produce other examples, 1 hadn, 1
ta say: sarry, but 1 did rot prepare myself - constructing proper assertions, andIe5S:
50 on. 000 \'€ are in this business faced, ultimately, with proving correctness of . '!he
real programs. An::] 1 do rot think we have succeeded in doing 50. This is the realc:m
difficulty. Even for teaching, the practicability of proof ...es, and is, 50 dis-apLfic
pointing. 1 have very deep doubts that it can be overcane. \'€ are here (w.r.t.But
Bergstra' s talk) on the second floor: in the meta-theory. Trying ta formalize
proofs. \'€ are forgetting (mathematically) about the difficulties, the real dif
ficulties in problem-solving. It just disappeared sanehON. But if you are thinl<ingmce,
about real problens, this difficulty will be there. An::] my opinion is that there is
no way ta believe that all these formalized proofs will succeed. It failed in Ml.the

~nce)

oIOUld
matics 50 years aga. An::] therefore we should look for sonething else.iso

r in
Reynolds: In response ta the question that was just raised. 1 have been teaching a'!bout

;!Cid course in programning for graduate students for a decade now in ...nich 1 have always
presented considerable material on program proving in the style of Hoare. An::] myl the
answer ta your objections, ...nich 1 have al50 heard fran my students as well, is/lever
that we do rot rea50nable expect a professional prograrnner ta formally prove every
program that he writes, but (we) expect him ta understand formai proofs as ground
~rk for the intuition needed for producing actual, informai proofs. W1en a mathelity.
matician is presenting a proof he will write down sone formulae. He will certainly:>rph
rot pr=eed ta give the details of the forma! proof at the level that: here we userodu
cammutativity, and we here we use associativity, and there distributivity, and 50:. sa
on. But he understands how ta do that. Everyone in his audience understands haN ta
do that. An::] there is a a:mron agreanent that given a little bit of good will, he
~n' t try ta pull the 1r.CX:>1 over anybody' 5 eayes. It is an entirely different thingphism
...nen one starts ta fiddling such equations, without knawing such things as distrirMle
butivityor associativity or carmutativity, ta an audience with the same characte
ristics. Then one can very easily get informai proofs of quite incorrect programs.
Anytime one prograrnner walks into another and says: ...ny does this program ~rk, therans
response he gets is a proof. An::] the problen is ta train programners in such a way
that they do not convince each other that incorrect prograrns are correct. An::]

forma! proofs help in that. N:>t because people are going ta do formai proofs of asa
every program, they write, but because it gives then the necessary ground ~rk ta: for
build up intuitions about haN much they have ta think, and in ...nat areas they have

~, in
ta thinl<, about ...nether their programs are right or not.

Bergstra: Ml.y 1 add one rrore carment (ta my previous rernarks): Of course, the prime
~uld

difficulty in many cases is ta find intermediate assertions, invariants, and 50 on.
~uld

But in our paper we provide a calculus ...nere these things are just treated as vardis
iables. sa you just have Rlnich is a variablenich stands for an assertion, R2 arrong
and sa on. An::] then one gets a calculus about assertions. An::] the nice thing islica
that one gets ta conclusions even without ever actually finding such an assertion.that
sa the point of our paper is that you need not imnediately turn ta finding ansand
assertion: as saon as you spot a pointnere an assertion couid be written down ittE!1T5 ,
need not be the actual next step ta find such an assertion. You can al50 introducethat
a variablenich stands for it, and then you start the forma! calculations with:> get
that variable - and cane ta conclusionsnich are relevant ta the problen. sa that sune
~uld be my technical response ta Culik' 5 question.eless

