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~bslracl: The RecurSive Decomposition Ordering, a simplificalion ordering 

on terms, is uselul 10 prove lerminalion of lerm rewriling systems. In this 

paper we give the definilion of Ihe decomposilion ordering and prove that it 

is a well-founded simplification ordering containing Dershowitz's Recursive 

Path Ordering. We also show that the Recursive Decomposition Ordering 

h8$ a very interesting incremental property. 

Resllnle: L'ordre récursif de décomposilion est un ordre de simplification 

ulilisé pour prouver la terminaison des systèmes de réécriture de termes. 

Dans celle communication, nous donnons la définition de l'ordre récursif 

de decomposition, nous prouvons qu'il est bien fondé, qu'il est un ordre de 

simplification el qu'il contienl l'ordre récursif sur les chemins de 

Dershowitz. Nous montrons aussi que J'ordre récursif de décomposition a 

une intéressante proprieté d'incrémentalité. 

1. Introduction 

Term rewriting systems are an important model for non deterministic computations [21]. Therefore, 

methods for proving termination of term rewriting syStems can provide a method for proving termination in 

other areas of programming. Term r~wril:ng systems have also become a major tool in many fields related 

to programming, like abstract data type specifications (e.g., to establish Iheir completeness by the 

Kn'Jth-Bendix S'Jperposition procedure [13, 6)), program verification, theorem provers, and decision 

procedures for eQuational theories [1, 5, 24]. The Knuth·Bendix complelion algorithm completes a nO:1 

confluent sel of term rewriting "Jles into a conlf'Jent (ur.iqudy lcnniClulin'j) on,' and is used II) Î;"o~~ Ihe 
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e'lUivalence 01 abstf(l.::t data type spedficatio"s via consistcncy ()~ Iheories [3, 8. 18]. The I<nuth·Bendix 

.::ompletion algorith,n requires a universal mclliod lor proving finit') t2rminatlo", as in Huet's proof [7]. In 

o'.her worcls, if the ler;nin:lt:on 01 the Iin11 sct of rules is provf.d using a noethuian ordering, this ordering 

n'.ust be 5ufficient to prove the termin:ltion properly 01 ,,-II the intermediate .'eI5 of term rewriting rules 

g.~nerated by the algorithm. Unlortunately, Hllet <lcd Lanl<icrd have shown ti,al the linite termination 01 

tC'rm rewriting systems i5 undecirlable [a]. TIHlS. il is in',possible to find a univErsal procedure to check for 

li lite tcrmination of any system, and people have been forced to look for specil'c techni'lues (sec [la] for a 

sJrvcy). 

ln Il,at vcin Gutlag, Kapur, and tvIl,:;s{'r [4] proP(lsed a mell',od base<! on s:Jperposition of t<JrlllS which 

i~ similar to that used by Knulh and Bendix to prove conlluen.::c. Here \"e arc mostly interestcd in 

s mpliliç;llion orderings. These [Ire ord~rin<Js compatible \Vith the structure of lerms and which have the 

s'Jblerm property. Dershowitz eslalJ!dled Ihat simplification orderings are powerflll tools lor proving 

t(lrminatiGn and proposed recursive pnlh ordering [?] after Plaisled's recur5ivIJ pat" 01 sublerms ordering 

[:!Ol· Thes,) methods use nn orderin!j ol1lhe set of fU:1ction sYlTlbols. In [15] ,)nt! [lG] a new ordering was 

used to prove sim ply the well·loundedr.E:ss 01 the recursive p"th orrlering \Vll,;n the ordering on fllnction 

symbols is totnl ln ln] ancl [231 it w..s shown thnt a similar ordering could al50 1J8 defin.,d when the 

crdering on funclion symbols is only pa'tial, capluring easily the case 01 lerms wilh variables. This 

ordering is a we:l·lOllnded simplification ordcring wllich has the addilional lise lui properlies. First, il 

o,;onlains siriciiy Ihe palh recursive orcieril1g. Second, il is monolOnic with respect 10 the ordering on the 

fllnclion symbols, i.e.. il one increases the orcJering on lunction symbols then one increases the orcJering 

on tcrms. We cali the thir'! maior property incrementalily: it is easy to find an expansion 01 the ordering on 

tile function symbols when a given pair 01 te..ms needs to be ordered. This idea might be used in the 

Knuth·l3endix completion algorithm to build the required universal ordering in an increOiental and 

ilutomatic way as the set of rules is completed. 

ln the second section of this paper we gi'!€> classical del,nilions and notations about terms and 

orderings [10]. In the case of a total ordering on lunction symbO/$ the decomposition on!ering is based on 

a decomposition of te,-ms into three porls which are compared lexicographically [16]. In the case of a 

partial ordering on lunction symbols these dûcomposilions are Quadruples, and, instead 01 one 

decomposition for a term, a set of df)c-ompositions is ;J.ssocialed wilh t'ach term ûnd cornparisons of sets of 

decompositions provide the decornposition o'dering [22, 23). l he third chal'ter is devoted 10 extendin9 

these concepts to ground terms (i.e., terms wilhout variables). In Seclion 5 and Section 6 the 

decomposilion ordering is prove<! 10 he a simplilication ordering an,j a welJ·founded ordering. In Section 7 

we prove th31 the decompositil'n ordering is more powerfllilhan the recursive path ordering. An extension 

of the decomposilion ordering 10 non·ground lerrns is given in Section 8. The incrementality property is 

ilJus:rate:d in the conclusion. 
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2. Orderings and Tcrms 

2.1 SE:t "nd Mliitiset Ordcring 

An oreJeriny < on a set E can be eX'.en<fed la the sel ~~F.) of sels on E by: 

S « T ill S>oT and V ,(xE S "nd .~ll T) => ] y (yC:: T and yi! S "nd x< y). 

Inillilively, a 101IIlisei on E is an unordemd collection of elemenls of E, wilh pO'3sibly lOany occurrences of 

given e!(Jml~l\ls. A mu\liset can be seen as a mapping [_.>J( where J( is the cet 01 natllf~1 nurnbers. Let 

JlqE) be the set of "II the finite rnullisets on E, i.e., the mullisels M such I/mttLeir support (xEE 1 M(x);t.()} 

is l'nite. The Amply rnullisel ( ) is the rnulliset such thal ( }(x) ~ 0, lor ail x in E. 1\ sel is " particular case of 

a r.1ullisCI sllch \lmt S(x) is 0 or 1. Usu Illy multisets ure wrillen as lists (x l'" ,x",) with li straightforw"rd 

Interpretation. If M is a mliitiset, xEM rneans M(x» J( a. An ordering on E can be extendcd ta mullisets 

[11J by 

M« N ifl M;tN and Vy ([N(y) <.W.A(y)] = I(] xE E) y<x "nd M(x) <J(N(r.)j). 

The extension la sets is il pilrUcular caso of the extension ta mullisel:3. If the ordering is weil· founded on E 

the ext0nsions are well·founderl on Jl1,(E) and '1(E). 

2.2 Terms and Occurrences 

ln this paper we will deill wi1l1 terlns with lixed ilrity funclion symbols. But alilhe rcsulls can easily be 

extended ta varyadic terms. Suppose a sel F 01 funclion symbols and a function ar:F-·J(is given. T(F,X) is 

the set of terms on F wilh variables in X. sE T(F.X) i.s either a vari"ble or of the form l(sl',,,,sm) with.tE F 

~~Ich Ihal ar(f) = m and s, ... "s", <:Ife in T(F,~). T(F,X,D) is the 5€t of box tums. A box term is either Ihe 

symbol D or has the lorm f(s " ... ,s,) lor fE F such that ar(f) ~ m and there exisls iE[1..m] wilh s,E T(F.X.D) 

and, lor i>Oi. sr T(F,X), Intuitively, T(F, X, D) is the sel of terms with one terminal occurrence al D. The 

symbol D m))y be viewed as Ihe empty term. Il is used ta ded\ with function symbols hilving lixed arities. If 

X is empty, we will write T(F) and T(F.X) instAad of T(F,D) and T(F,X,D) and we coll these terms, ground 

lerms, 

We assume by convention th al ar(D) ~ ar(x) = a for ail xC::X, Terms may be viewed as labeled trees 

in the following way, A term is a pilrtial function of x: (the monoid over )(+ with f ilS empty ward) in 

FUX, such that Ille domain or sel 01 occurrences Occ(t) = (uE x: 1t(lI) is delined} verifies: 

(1) tE Occ(t) 

(2) uiEOcc(I(, .1, .. ) if! Vi 1~i~ar(l) = uEOcc(t j ), 

If u and v belongs ta x: then ulv is a wEX: such Ihat vw ~ u. In the following, III ~ 

1(uEOcc(t) 1(lu>O D) 1 where tlu is Ihe sublerm of t al the occurrence u. /[u<-t'] is the term obtained by 

replacing tlu by t'in t. We deline the set of path~ 01 s as the set Palh(s) = (pEOcc(s) 1ar(s(p» = a}. Given 

a path p. the set of prefixes 01 p in s is Prelix(s, p) = (pEOcc(s) 1u ~p} if ,<lp>oD and Prelix(s, p) 

= (pEOcc(s) 1u <pl if slp =D. Given a pa th p and a prefix u of p, we deline succ(u. p) a" ui if uiEPrelix(s. 

p) and succ(p, pl = 00, we will slate 1/00 = D, Ihus tlsucc(P. p) ~ D. /1 subStilulion is il rnapping (l': X

T(F,X) such lhal a(x) ~ x E:xcept le" a linde nUmber of variab\p-s xEX, It C3n be exter.ded to a mapping a: 

T(F,X)-+ T(F.X} by "(I(S, .....8",) = f(a(S,), ... ,O'(s,n»' 





335 Recursive Decomposition Ordering 

ln Ihe sume way, assume a partial ['J'lclion r:T(F)-+<j(.N:), called palll cll(';ce, such Ihal P(I)ÇPal!l(I). 

extend once more t11e defini!ion and ob!ain a set of sels 01 decompositions. d~(t) (or more simply d(l) il 

3mbiguily on P and 0), Ihal wc cali a (fccompos;lioll of 1: 

(1;(1) = (e1E)(I) 1pEP(r)}. 

!i!fl1nl<)2: III is chosen as in Example 1 and if P(I),~{111,3J, 0(r,111)={1.111} and C(r,3)={e} Ihen 
1 

. /'., g/ '~a ,9, !J. 
,/)={ {(a;':'; fol; 09.0>,sl) (,; 0; {); ,p ),..nô >}, {I; a; {~IO; '!'a}; O}}, 

r '!la 0 ;. r r 
r 

We are now able la delinc Ihe decomposition orrlcring. Notice that in uddition ta the ordering <F on 

lhis definition lises two aIller orderings *01' and <OP' *op is an order'ng on T(F) and <op is an 

'ng on decompositions which depends upon the choices P and O. In arder ta simplify nolalions, Ihe 

iset extension of <Of' and :(oP will be wrillen «oP nnd l!:*0f' instead of <oP<QP and *op*oP' 

ain Definition: Given a pmtial ordering <f' on F, a path choice P and an occurrence choice 0, we 

me the rccursive decomposilion ordering (or mure simply decomposition ordering) * in the following 

~(s) = <1; s'; 1; s") <oP d~(/) = (g; t'; '.î; t") 

in a lexicographical way:
 

(dec.l)I<Fg
 

(dec.2) d~succ(,,·p)(s') «oP d6'succ(v,q)(r')
 

(dec.3) 1**op'1 

(decA) dë(s") «op do(r"), 

arks: 1) ln general, we will have pE P(s), uE O(s, Pl. qE P(t) and qE 0(1, q). Notice, 110wever, that d~(s) 

a> d~(r) has a meaning allhough pEPalh(s) - P(s), uEPrefilf(s, p) - O(s,p), qEPa/ll(r) - P(t), 

Prelix(l, q) - O(/,q). We will use tl1is lact in further proofs. 

2) Cases (dec.2) and (decA) in Ille main delinition do not use a path choice, because the path is 

Ed. Therelore it is not necess"ry ta ex tend the concept 01 path choice loI' terms in T(F,D). 

Full examples are given in Appendix. 

eorem 1: *op and <op are strict orderings. 

~: We prove the property f('~ <CP' It will be true IGr *op which is <! multiset extension of <OP' 

The praol is easily done by induction, since the extensions 01 orderings as lexicographical ordering or sel 
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lC'llma 1: l<:1 pEPillh(s) und u E Prelix(s, pl. Then Ihere 0;<isis lI'CO .. (s, p) such Ihal d~(s) :$opcJ~.(s), 

Icr nny choice Ihal salislies the minimalily conditions. 
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1, we :>tllUY 

;)cond one 
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PmQ!: If lIEO + (s, p) then u' = u. 

Il ~q:O + (s, p) lhen lhele exits u'EQ + (s, p) such thal S(lI):$S(U'). 

If s(u) <s(u') the result is true. 

If S(LI) ~ S(lI') lhen u' <u and s/succ(u, p) is a stricl :>ubterm of s/succ(u', pl. Th'? resull lollows from (c1ec.2) 

allô Lemma 2. 

l~mmn 2: Let pEPalh(s) and k :$p. Then ct:J"(S/k) «opd~(s), lor any choices Pane! Q which satisly Ihe 

rrinimality condition. The inequality is slrict if k'" E (hal mC<lns s/k is a stlict :>ubterm of s. 

Prao!: By induction 011 IPI-Ikl 

83Sic Case: If Ipl-Ikl = 0, then s/k is a term reduced either to 0 then c1~'(S/k) = { } or to the symlJol s(p) 

",hich occurs in s. ThA result will be true il a symbol greater or equal 10 s(p) appears in the decomposition 

of s, that cornes then Imm the minimality condition . 

General Case: Let u E O(s/k, p/k). For '1ny decomposition 01 s/k in u along p/k, we want to lind il grealer 

decomposition 01 s in v along p. Two cases muy happen: 

- wE Q(s,pl. Then v = ku works. The two decomposilions are compared using case (decA) of the 

main definition applied to do(s/k[u~O]) and db'(Srku~O]). The result is obtained from Ihe induclion 

hypolhesis because the p:llh ku in s[ku'-O) has length Ikul- 1 < xlpl. Ihe suulerm occurrence being the 

same (that is k). 

- ku II. Ols, pl. Thus there exists v E Q + (s, p) = O. (l, p) Ç;;Q(s, pl such that s(v)~s.(ku). Thi:> case 

divides into two subcases: 

- s(v) > s(ku), then the result is straightforward. 

- s(v) = s(ku), then v<ku and the result is obtained using case (c1ec.2) 01 the m<lin definition applied 

10 d:J'klSUCC(U, pl')(s/k /succ(u, p/k) and d:J'sUCC(v, p)(p/SlIccfv, pl). On one h<lnd, p/k/succ(u, p/k) 

= p/succ(ku, p) is a strict sublum 01 p/succ(v. p) because v<ku. On Ihe other hand, 

Ipl-(lvl + l)-[(Ikul + 1])-(lvl + 1») = Ipl-Ikl-Iul-l <)(IPI-Ikl. 
The wished resull is Ihus truc by usi'1g induction hypolhesis. 

Proposition 1: <oP and <.P are the same ordering if the choices verily the minimalily condition. 

Proo!: We prave S<Opl if and only if s<.P t by induction on Isi + III. 80th = and = ways use Lemma 

1 in order 10 delcle the supplementary computation (for the = way) or to add the missing ones (for the = 
way). 

We now want to prove the equivalence of <'r> and < ••. Onc" more Ihe melhod i:> based lIpOr. a 

lemma wl;ic!l proves thallhe sllppleme,llary computation performed by < •• is useless. 
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l"rnma 3: let s be a term ill T(r) ~nd (J <> paIII in s. Il pl/.P + (s) Illen therc exi~t qEP ... (,,) such thal: 

d~(s) «op (l'~(s). 

Prao!: Gy induction on Isi. Il pEPath(s) - r + (s), then Illerc cxisls e, m<::.N: and i E JI" such Ihal: 

-p ~ e.i.m. 

-Ille suolenn sic belongs la a ma',irnai class of Ihû sublerms allhe deptll c. 

- si = s/e.i dnes nol oelon9 ta a fl,aximal class of the subterm al sic. 

ln addition tllcre cxists jEJ~* SU ch that 

Sj = sle.j and Si~OPSÎ 

Therefore tllere exisls nEP(si) such tllat d~'(si)«OP d~(si)' Sy induction, n can oe supposed ta 

bclong 10 P + (Ôj)' C!.carly c.j.n belongs \.; P + (ô). Let q be c.j.n, then the result 

d;im(S)« oP d;·;n(s) 

is obtained by Ihe following Icmma. 

lemma 4 Let s be a term in T(F) an'd e, n, m be in ~ and i,j be in X ... such that e.i.n and e.j.m are paths 

in s. If d~(sle.i) «op d~(sle.iJ then d;j·,"(s) «oP d;i.n(s). 

Proof:Sy induction on Ici + Iml. For ail prefix u of c.i.m, one must find a prefix v of e.j.n such Ihat 

d~jm(s)<opd~jn(e). 

Three cases can be distinguished: 

1) u <e: then suppose u = v. The result is true by case (dec.2) by using the inequality 

d;uCC(u.c.i.m)(slsuee(u ,e.i.m» «oP d;uCC(II.c.i.m)(s Isuee(u ,c .j.m» 

which is true by induction hypothesis applied ta slsuee(u. e) with lelsuee(u, e)1 ... Iml <xie! ... Iml· 

2) u =e. Then v =e and the result is true by case (dec.2) and the Ilypolhesis d~(s le .i)« opd~(sie.j). 

3) u <e. Then there exisls hE'~ such that u = e.i.h and kE~ such Ihal: d7,'(sle.i) ~opd~(slc.iJ. 

Let v be e.j.k and let us prove d~:;;'(S)<opd~!:~(s). Il (dec.l), (dec.2) or (dcc.3) are used, Ihe resull is 

straightlorward. If (dec.4) is used, that leads la prove d;·ih(S[c.i.h+--O] «oP d;ik(s[e.j.ko-O] which 

results from d~(sle.i[ho-OlJ «oP d~(sle.j[k+--OJ)by using Ihe induction hvpothesis witillei ... 1/11 <xlel 
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Proposiiion 2: <.1' and < .. are a same ordering if l' vcrifies the minimalily ccndition. 

Eill9t: We prove S;!:.pl = s2:..1 bv ind~lction 1:;1 + 1:1,80111 <.'" '\Ild =" "'<lYS l!:i()lemma 3 in order to 

dLlele the $upplementary computation (lm the t= W<.lY) or "dd the miss;ng unes (for the ,."" way). il 

Thüor.)m 2: Il the choices confirm to Il e minimalily condition. then the orde, ing -2: up and 2: •• are the 

s<Jm". In p<lrticolar. the ordcrings 2: + + <Ind;!: •• are Ihe same. 

ErQQ!: Wc uce successively Proposition 1 and Proposition 2. 

The cleli"ition of -2: + + can now he m<:ue inlrinsic. that means that inctcad of using < •• in the 

de linition 01 the maximal path and the maximal uccur;ence. we may t;:;c < + + itsell withc;Jt changing the 

oroering :Js it is proved in [22). 

ln the 101lO'f;ing. wc write -2: for any decomposition orclering whosc choices verily the minimality 

conditions. We will ose -2: •• for the most proofs. 

5. Decomposition Ordering is a Simplification Ordcring 

Sohterm Lelllma: 1-2: 1( ... ,1 •. :.). Prcol: By lemma 2.' 

Prao!: By induction on 1/( ....1, •.. )1 + 11( ...12.... )1. Let p EPalh(f( ...t , .... ») .and uEPrelix(f( ... ,1, .... ).p). Two 

C<lses may happen. 

Case 1: p = kq :lI1d 1( .. ,1 , .... )/k "'/, or u = c We obtain easily the resull d~(I( ... I, ....»<d~(I(....12.· ..» by 

IJsing case (dec.4) of the main definition and the indoction hypothesis. 

Case 2:p = kq and f( .... I, .... )/k = l, and u"'c Thosq E Pa/h(/,). As 1,-2:12, there existso' E Pi.l/h(t2) such 

that (\1 v:::;o) (3 v' :::; o') d~(t ,) < d~:(12)' If the proof of the last inequalily i:; by case (dcc,1). (dec.2) or 

(dec.3) of the main delinition. the recull is straightlorward. If the prool is by case (dec.4) 01 definition. the 

result is achieved by using the induction hypothesis. 

Co rollary: -2: is a simplification ordering. 

6. Decomposition Ordering improves over Recursive Path Ordering 

let us recall Dershowitz's definitir;n 01 the Recursi'Je Path Ordering [2]. 

Definition Congruence 01 Permuta/ion: I(s, .....sn) ~ g(/ , •...1
01 

) ilf f ~ g and there exists a permutation oESn 

•such that Sj = to(i)' 

Definition: The recursivo palh ordl.'riflg over T(F) is recursively dcfined as lollows: 

s ~ I(s , ,5;(1)< Q(t'l' .. ,1,,) = t iff 

(rpo.l) 1=g and (s, ... •5,,) <«1, 1 )
01 
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or (rpo.2) f<Fg and for ail Sj' Sj.(' 

• * or (rpo.3) -II ::;Fg and for some 'i' s<ti or.~ = 'i 

thi~ definition can be made 'ïess determinblic", by changing (rpo.3) to: 

* •(rpo.3·) for some 'j' s <'i or s ='i 

Theorem 3 (Dershowitz (2)): .( is a simplification ordering. If <F is is weil 10undecJ on F. then .( is 

well-Iounded on T(F). If <F is total on F, Ihen .( restricted to T(F)/: is totai. 

We prove now Ihat ~ contains .(. We tirst prove some technicallemmas. which prove actually Ihat ~ 

is a lixed point 01 the fUllc!ional which defines .(. 

Lernma 5: cJP(sj)«dq(g(, ' .... "n)) and 1<r 9 imply diP(f(s"""sm)) «dq(g(I 1'· ... In))· 

Prao/: By induction upon Isjl. 

Basic Case: Is;1 = 0, that is Sj = O. The result is true because the only possible decomposition takes place
 

in € and because f <F g.
 

General Case: Let u::;ip. Two cases may be distinguished:
 

- u = € then d;f(l( .. ..s;.... )) <d~(I) because f<Fg· 

- u = iv, there exist w::;q such Illat d~(s) <d:(I). If the prool is performed by case (dee.!), (dec.2) or 

(dec.3)01 the main definition, then d:~(s)<d~(/) in the same way. 

- If the praol is per/ormed by case (dec.4), then we have: dV(s;lv<-O))«cJW(I[w<-O]). 8y the 

induction hypothesis, we get djV(s[iv<-D)) «dW(/[w<-D]), which proves Ihe desired result by case (dec.4) 

of the main delinition. 

Lemma 6: For ail i. Sj~1 and f<fg implies f(SI' ....Sm)~I. 

Proo!: Straightforward From Lemma 5. 

Lemma 7: dU(sj)«dV(/ ) implies diU(f( ....si .... )) «diV(I(""'i''''))'i

emm: 8y induction on IsJ We have ta prove Ihat for any p~iu there exist q ::;jv such that 

d~(f( ....si'''')) < d~(f( ... ,li'''·))' Two case must be distinguished. 

- p = €, then q = €. The result lollows lrom the hypothesis using (dec.2). 

- p = ip'. Then there exists q' such that d~.(Si) <d~,(ti)' If it is proved by (dec.1), (dec.2) or (dec.3l of 

definition, then the desired result is proved in the same way. If it is proved by case (dec.4), then we 

obtain dP'(s;lp·..-O)) «dq'(li[q'''-O)) which proves the desired result by (dec.4). 

Lemma 8: { ....si' .. ·} ~ ~{ ... ,'j, ... } = f( ... ,t; ....)~f(... 'ti' .. ·)· 

erool: By applying Lemma 7. 

Lemma 9: Il <F is lot:'ll on F, ~ is tot;]f on T(F)/ : . 



led on F. Ihen <: is 

prove aClually thal ~ 

mposilion takes place 

ase (dec.l). (dec.2) or 

:d'V(/[w_O]J. Sy Ihe 

resull by case (decA) 

~xist q :$jv such thal 

J, (dec.2) or (dec.3) of 

case (decA). then we 

cA). • 

• 
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e!J191: Uy illd[;ction 011 m<lx(kl, 111l· Suppose <r is Icl~1 and neilhcr S~' nor I~S, let us prove that 

s : t. Sy the induclion hYPolhesis, there exisl in s a pu th p [!I\(I an occurrence U sllch thul d~:(sJ g;d~(s), for 

ail other paths p' and occurrences u'. The same Ihing happens for q a~d v in / Let d.~ he <1. s'. '1. s") und 

d~(t) be <g, l'. ':f. t"). Secause neither s~t nor t~s and by the inductioll hypothesis. 1~ g, s'~ t', :/: : ~ 

(where : : is the congruence on mullisels deduced 'rom:) and s": t". Then il is easy to see thai s: t. 1 

Theorem 4: Given a partial ordering <1' 011 F, we have -< ç ~. If <r is total then -< =~. Olherwise the 

inclusion is stricl (whenever them exisls a funclion symbol IEF such Ihal ar(')~2). 

Prool: We can "~place "if'" by "if" and -< by ~ in Ihe definilion 01 recursive palh ordering. Sy lemma 

8 ~ verifies (rpo.l), by lemma 6 ~ verifies (rpo.2), by subterm lemma and Iransilivily J( verifies (rpo.3). 

Then -< ç ~ is a consequence 01 the leilsl lixed poillt prOperlY 01 -<. That ends Ihe tirst part 01 the prool. 

To prove that -< = ~ if <r is lotal. we remark Ihat both <: and ~ are talai ordering on T(F)/: and 

do 1101 compare terms sand 1such that s: t. As -< ç ~,we necessarily have -< = ~ in Ihis case. 

Ta pro·,e thatthe inclusiOIl is slrict if <F is nollotal, we give a counter example. Ta buifd this counler 

e:<ampfe, we only need a binury funclion sYl1lbol f. Assume now a and b a·re incomparable and leI 

s r and 

=,/I~,/~ 

/\ 
f 

/\ 
f 

f/~I t/~,ab. b 

/\ /\ /\ /\
•• b b b b 

We assume wililOut loss 01 generalily thal a and b are symbols of arily o. If il is nol the case we replace a 

bya( .. ,C, .. ) Jnd b by b( ...•c, ... ). Il is nol poss:ble to compare sand t using -< because 

1 f or f 1 

/\ /\ f/~fb ~ b ~ f / ""',

1\ /\ /\ /\
a a b b b 

is taise. On Ihe other hand, 

f f 

/~ /\
f 1 ~ a b 

/\ /\
a a a 
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is :llso false. However, we h:lve s .2: t bccau:;f) d l'(S) <d ll' (I) arld d'2(s)<d21'(I). 

. d 
7. Weil foundednes of < 

The weil· foundedness is based on Ille following lemma. 

Monotonicil y Lernma:-<" ç; <F = ~ ::;; .2:. 

ENo..!: Easy, sec [22]. 

Theorem 5: .2: is well·foundf)d if and only il <F is well·founded. 

Proof: Assume ~ is nol well.I(,unded. TllUS, there exists an infinité decreasing sequence 

SI~s2~ ... ~sn~ ... Let now -<F be a total well.founcJcd ordering (i.e., a well·ordering) on F which contains 

<F (such an ordering exists by a variant of Zermelo's Theorem which can be seen as a transfinite 

. • .. • dd dd d. 
topo1oglcal sort). Usmg the monotonlclt\, lemma, we obtaln s ,>-s2>-" >-sn>-'" But -< = < by Theorcm 

3, which contradicts the well·foundedness of the recursive palh ordering [2,15). 1. 

8. Extension of the decomposition orderings to non-ground terms 

We will now deline two lormally different extensions 01 the decomposilion ordering to non·ground 

terms. These two extensions are proved to be equivalent . The first one is more tractable for prools, the 

second one leads to more efficient implemcntations. Moreover, these extensions are coherent with the 

delinition of the decomposition ordering on ground terms, i.e., 

s~t = a(s)~a(t) for any substitution a. 

Definition by extension al/he basic ordering: Let <F a partial ordering on F. The decomposition ordering 

~ on T(F) is extended to T(F, X) by simply extending <F to FUX in the lollowing way: 

a<FUXb iff aEF, bEF and a<Fb. 

ln other words, the <FUX ordering is the same as <F for functions symbols. Variable symbols can 

be compared with no other symbols using <FUX' The orderings ~ and < deduced from this definition will 

be wrillen ~ 1 and <, for the time being. This delinition 01 the decomposition ordering teads to incfficient 

computations. For instance, let us suppose that s/pEX and l/qEX and s/p~l/q. Il is quite obvious in this 

case that the two decomposition sets dP(s) and dq(t) cannot be compared using the new ~. However they 

will be recognized to be incomparable alter a lot of useless computations. We give now a new definition 01 

~ on T(F, X) which avoids this drawback. The basic idea is to modify the definitian of the multiset 

extension « in order to compare sets of decompositions <!P(s) and dq(l) only when it is necessary. 

Definition by extension 01 the decomposition de/inition: dP(s)«" dq(1) iff 

(1) s/p~X and cJP(s) «dq(l) 

(2) s/pEX and I/q = s/p and dO(s) «<1'1(1). 
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ln Ihe lollov/ing, VIe wrilc « in:;tead of «x' Using this definition of «, il is now possible 10 

u'.JCreé\S0 the size of !110 s::t Ols. p) 01 givcn occurrences in s alon9 the path p, by ruJing out the 

o,;currencesp if slp is a variable. 

Definition: Ols. p)Ç Prefix«, pl, if slp C! X 

Ols, p) ç (u( Occ(s) 1u<p), il slp EX 

a + (s, p) = {vEPrefix(s, pli (If w<v), -'(s(v)~s(w))& (lfv<w~p) -'(s(v) <s(w))), il slp<f X 

a + (s, p) = {v<p 1(If w<v) -'s(v)::::;s(w) & (lfw> v) -'s(v)<s(w)}, if slpE X. 

Notice tlte analogy between the definitions of Ols, p) and a + (s, p) when slp = 0 and wl1en slpEX. 

Tile orderings ~ and < dcuuced Irom lhis definition will be writlen ~2 and <2' It is c1em that the ordering 

lquonce ~, does nol dcpend upon tlle choices P und 0, as stalcd by Theorem 2. But it is not so obvious for the 

conlains ordering ~2' So we will prave that ~ 1 and ~2 are Ihe same ordering, which will prove the property for ~2' 

anslinite 
Theorem6:~, = ~2' 

rheorcm 

1. Praof: Let us use the samo clloice lor bolh orderings. In fact, the choice a, 01 the ordering ~, is not 

exactfy the cl10ice O~ 01 the ordering l!:2' bccause if slp E X then p E a, (s, p) and pC! 02(s, pl. 80th 

choices are the same in ail the other cases. 

I.ground 
Let us now prove that S~,1 = S~21, by induction on Is\ + III· Let pE P,(s) and qE P,(I) sucl1 that 

DOrS, the 
d.o(s) «,dq(l). Two cases can occur. 

with the 
Case 1: If slp = xE X the·, flq = x because p E O,(s, p) and x is incompar3ble with any other symbol and 

therefore x must appear in a decomposition along the palh q in 1. Thus it is possibte to compare dP(s) and 

dq(1) wilh «2' Let uE 02(S, pl· Then uE O,(s, p) and there exists v""q and vE 0,(1, q) such that 

ordering d~(s) < ld~(t). Using now the four cases 01 the delinition and the induction hypothesis, we oblain 

d~(S)<2d~(I)and thus dP(s) «2dq (f). 

Ca~: Il slp fi. X, Ihe O,(s, p) = 02(s, pl. If Ilq <f X, there is no problem because 0,(1, q) = O2(1, q). If flq 

E X Ihen q E 0,(1. q) and q il O2(1, q). However, d~(s)< Id~(I) implies that V7'q because I(q) is not 

Ibols can comparable v/ith s(u}il X. The result i::; easity obtained by induction as in Case 1. 

lilion will 
Let LIS prove now that S~2' implies S~,I by induction on Isi +ltI. In the same way as before,

lcfficient 
d~(S)<1d~(I) lollows Irom d~(S)<2 d~(I) jf slp cr X. If slp E X and tlqE X. vie have to prove the inequality: 

us in this 
<s(P); D;{) ;s[p-DJ> <, <r(q); o:{} ;r[q-Dl> 

ever Illey 
and dP(s[pt--O) «1 dq(l[qt--Dj) follows in the same way as before from dP(s)«2dQ(l).

inition of 

mullisel 
Notice lhat ail theorems proved in previous sections remain valiJ because of the definition ~,. 

(. 

Theorem 7: ~ is c10sed under inslantialion, i.e., sJ!:t = u(S)J!:U(f), for any substitution (f. 

Proç.I: Straightlorward using definition by extension of the decomposition d0linilion. 
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comparison fails when it exl13usls one ollhe Iwo 1erms. Bcciluse of lhis essenlial Icature, our ordering is 

more suilable than Dershowitz's 10 any appllcallGn which requires automalic proofs of terminalion. Our 

o(dering is thus useful in implementing the Knulh·Bendix completion algorithm. A non·incremenlal 

vHsion of Ihe dccomposition orderin9 is now implemented and we are currently implementing the 

incrementalone. 

flcliDlLv'!-'edgmenl Wc would like to lhank Nachum Dershowitz and Jean·Luc ReillY lor Iheir hnlpful 

SI ,ggcstions and John Guttag lor readin!! the manuscript. 

10. References 

1.	 Boyer R. S., Moore J S., A Camputa/ianal Lagic, Academic Press (1979). 

2.	 Dershowitl N., Ordering lar Term Rewriting Syslems, Proc. 20 lh Symposium on Foundations of 
Computer Science (1979), 123·131. 

5th3.	 Gaguen J.A., Haw /a p,ave Algebraic Inductive Hypalhesis Wîthaut Incluc/ian, conl. on 
Automôled Deduction, Lecture Notes in Computer Science, 87 (1980), 356·373. 

4.	 Guttag J.V., Kapur D., Musser D.R., On Proving Unilarm Termina/ian and Res/ric/ed Termina/ian al 
newriring Systems, 9 th Int. Coll. on Automata, Languages and Programming, Aarhus, Denmark 
(1982). 

5.	 Hsiang J., Refulatianal Thearem Proving using Term Rewriting Systems, Dept of Computer 
Science, University of Illinois at Urbana·Champaign (1981).. 

6.	 Huet G., Canfluent Reduction: Abs/rac/ Properties and Applications /0 Term Rewri/ing Systems, J. 
ACM, 27 (1080), 797·821. 

7.	 Huet G., A complete prool 01 carreclness a/ the Knuth·Bendix Campletian algarithm, J. Comp. Sys. 
Sc., 23 (1981), 11·21. 

8.	 Huet G., Hullot J., Prool by Induction in Equatianal Thearies witlJ Cans/flIctors, Proc. 21 th 

Symposium on Foundations of Computer Science (1980). 

9.	 Huet G .. Lanklord D.S., On the Unilorm Halling Prablem lar Term Rewriting Systems, Rapport 
Laboria 283, IRIA, Mars 1978, INRIA Rocquencourt, France. 

la.	 Huet G., Oppen D.C., Equatians and Rewrite Rules: a Survey, in FormaI Languages perspectives 
and Open Problems, Ed. Book R., Academic Press (1980). 

11.	 Jouannaud J.P., Lescanne P., On Multise/ Orderings, to appear in Inform. Proc. Urs. 

12.	 Kamin S., Lévy J.J., Allempts lar generalizing the Recursive Pa/h Orderitlg 10 appear. 

13.	 Knulh D.F.., Bendix P., Simple Ward Prablems in Universal Algebra, in Camputational Prablems in 
Abstract Aigebra, Ed. Leech J., Pergamon Press (1970), 263·297. 

14.	 Lescanne P., Two Implementa/ians ollhe Recursive Path Ordering an Monadic Terms, 19th Annual 
Allerton Conf. on Communication, Control, and Computing, Allerton HOLlSC, Monticello, Illinois 
(1981),63-1·643. 

15.	 Lescanne P., Same praperties 01 Decomposition Ordering, Symposium AFCET "The Mathematics 
for Computer Science", Paris, (march 16·18, 1982). 

16.	 Lescanne P., Decompasition Ordering as a Tool'; p'ave (he Terminatian of Rewriting Systems, 7th 

IJCAI, Vancouver, Canada (1981 >,548·550. 



346 J.-P. Jouannaud el al. 

17.	 LesC:1nn" 1-'., I~"ill;a r., A Well·fnunded Recllfsively Delined Ordering on Firsl Order Terms, Centre 
de Reche" il" ,~" l:l:ormatiQue d.) Nancy, France, CRIN eO·R·OOS (1980), 

18.	 Musser DL, On Pro~ill'] Inductive:: Propcrtie.$ 01 A/).'/ract Va/a Types, Proc. 7111 ACM Symposium on 
Principles 01 l', odr~lI;llning L:Jr,gu:lg',s (1 !J8D). 15'1·162. 

19.	 Plaisted D., Well·Foundcd Ordefings !cr hovillg Termination 01 Systeills 01 Rewrite Rules, Dept of 
Computer Science neport 713·!J32, University of Illinois at Urbana·Champaign, July 10713. 

20.	 Plaistcd D., A Recursively Oclincd Ordcrin'] lor Proving Tcrmination 01 Term Rewriting Systems, 
Dept of Computer Science Rcpcrt ·fil·943, University of Illinois at Urbana·Champaign, Sept. 1978. 

21.	 I~aoult J·C., Vuillemin J., Opera'ional and Seman/ic Equivalence Between Recursive Programs, J. 
i\CM., 27 (1980). 772·796. 

22.	 Reinig F., Les Ordres de Décomposition: un outil incrélllcntal pour prouver la tcrminaison linie dc 
systèmes de réécriture de /erllles, Thèse Uiliversilé do:! Nancy, Octobre 1981. 

23.	 neinig F., Jouannaud J.P., ON omposition Orderings: a new lamity 01 decampas/ion orderings, 
Centre de Recherche en Informatique de Nancy, France, CRIN 81·R·040. 

24.	 Thompson D. H., ed, AFFIRM Relerence Manuat, USC Information Science Instilute (1079). 



347 Recursive Decomposition Ordering 

nlre M)PENOIX: Examples of decomposHions 
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SESSION DISCUSSION 

Responder: G.Cousineau, Paris 

Cousineau: l wish to address the problem of implementation. My' rea50n for that is 
that l an irwolved in a project whieh implements a system which manipulates !l'athe
!l'atical theories and prograrns. sa _ should nonnally benefit fran the kind of w::>rk 
reported here. 000 The last speaker claimed he had produced an ordering which ~ 

much rrore ~rfull than recursive path ordering, and if true this will have very 
great i.mp:>rtance in =nnection with Knuth-Bendix COTlpletion. 000 sa _ must state 
precisely the problem in order ta discuss this problem of implementation of the 
recursive decanposition ordering and see what _ can do with it. 000 Our system 
deals, arrong other things with equational theories, and arrong things it can do, it 
can do Knuth-Bendix <XIT1pletion, Peter5On-Stickel COTlpletion, and al50 prave equali
ties in the initial algebra. sa the first tw::> are certainly related to the last tw::> 
papers, because in doing Knuth-Berrlix canpetion, _ do ordering on terms, this is 
crucial, and the third point is certainly related ta the talk of Padawitz. 000 

sa let me recall: what is Knuth-Bendix (KB) COTlpletion (KEr) • KBC is going fran 
an equational axian system S ta a rewriting system R Iohieh is canonical in the 
sense that _ can check equality in the system S only by rewriting rules , and see 
\ohether _ cane ta the same nonnal form. 'lb do KBC: - _ recall the method: Let us 
just look at the <XIT1pletion method. \'€ start with a set of equations. \'€ have first 
ta orient the equations in such a way that the resulting system is Noetherian. sa 
_ have the problem of praving termination. Then _ COTlpute critical pairs of the 
system. If there are none, or if they are just such that their left and right 
merrt>ers have the same normal form then the obtained system is canonical, and _ 
are finished. And for those Iohose members have different nonnal forms, _ orient 
them using again the recursive path ordering. And then add them ta the system and 
iterate the process. N:Jw, to orient the rule and prove that the rewriting system 
obtained is terminating you need sare ordering, that was' the subject of the last 
talk, and the ordering that _ have implemented is recursive path ordering.' 50 here 
(Cousineau points: ~) l just recall the definition of recursive path ordering. Vou 
start with an order on symbols, and you define recursively the order on terms using 
the definition that Jouannaud has presented. 000 It happens that _ have applied 
KBe to a lot of classical !l'athematical structures including groups, rings, nodules 
aver rings, etc. And that to be able to do ordering of terms _ had ta use rot only 
the recursive path ordering of Derschowitz, but an extension that was defined by 
Kamin & Lévy. And this is crucial. In the Kamin and Lévy extension of recursive 
path ordering each function symbol can be of either type multiset or lexicographic. 
In the definition _ have more choice. The definition is the following: if the 
head symbols of the tw::> terms are ordered by the order on symbols, then the def
inition is the same as for recursive path ordering. But if the head symbols of tw::> 
terms are the same, then _ can ccmpare sub-terms either in the multiset way or in 
the lexicographic way. This is crucial if, for example, ycA.I wa.nt to deal with 
associativity as a rewrite rule. sa, rcJW _ w::>uld like ta understand what _ =uld 
gain by using recursive decanposition ordering instead of recursive path ordering. 
sa my first question ta Jouannaud w::>uld be: is the recursive decanposition ordering 
al50 an extension of this Kamin and Lèvi ordering? 

Jcuannaud: l guess that you mean: Am l able ta define a lexicographic extension? 
OK. Up ta reM l did rot succeed, but l only w::>rked hal f a day on that problem. But 
it seems to me that it is not 50 easy. Because, using paths !l'aybe cannat fit with 
lexicographie ordering. But l am rot sure. 

Cousineau: OK. sa for the m::ment we must be careful. \'€ krcJW that recursive path 
ordering with is (~) definition w::>rks for a lot of structures, but _ are still not 
sure whether recursive decanposition ordering will w::>rk. 

Jcuannaud: l krcJW that it can be used, not with this definition, but with another 
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one ~ich is much simpler. With this simple definition, l can have a lexicographie 
extension, but it is rot as powerful as the recursive deccmposition orderin;J. 

CUnningham: Could we have a source? 

Cousineau: You should write to Jean--0acques Levy at INRIA. 000 My second point is 
that we do rot \ent ta do only KBC, but also Peterson-Stickel o:mpletion. That 
means: we want ta be able to deal with associative arrl ccmnutative theories. The 
problan here is that if you have ccmnutativity then you can no rrore have a termina
tin;J rewritin;J systan. Sa you have to deal in a different _y with ccmnutativity. 
An::1, rroreover, ~en symbols are ccmnutative you cannat deal with associativuty the 
_y you did before. Sa you have to deal with ass=iative and ccmnutative symbols in 
a special _y. An::1 that is done by an extension ta the KB algorithm ~ich is due to 
Peterson and Stickel. Now we do rot manipulate terms, but terms rrodulo ccmnutativi
ty and ass=iativity of certain symbols. CXle good point is that we have been able 
ta extend the recursive path orderin;J to deal with associativity and ccmnutativity. 
An::1 the _y to do this is very simple. Wlen we have associative and a::rnnutative 
symbols, for example, let us take binary + (plus), instead of representin;J it as a 
binary (dyadic) symbol, we represent it as a vari-adic symbol, with a list of 
arguments, and we apply the recursive path ordering defined here (c;:). The crucial 
point for doin;J that is that the recursive path orderin;J is compatible with the 
associativity and a::rnnutativity property. That is: if tv.o terms are equivalent 
rrodulo ass=iativity and ccmnutativity, they are equivalent in the equivalence 
associated with the recursive path ordering. Sa l cerne ta my secorrl question. lb 
you thinl< we can also exterrl the recursive deccmposition orderin;J to associative 
and commutative theories? 

Jouannaud: My answer in this case is: Yes, don't ask me for the paper. Because it 
has' nt been written. But there is no problan in buildin;J any equational theory inta 
the recursive deccmposition ordering. It is valid rot only for ass=iative and 
commutative theories, but for any. 

Cousineau: M3.ybe l have alast point about this paper. An::1 that is the problan of 
implenenting this order. My experience with recursive path orderin;J is very good. 
It took me one day and one night to put the recursive path ordering in our system 
includin;J the user interface. It is an order ~ich is very simple ta program. W1at 
is your opinion about the implanentation of recursive deconposition ordering? 

Jouannaud: It is very easy, because in LISP you can use functionals as argunents. 
But in that case, you get sone kind of "a brute force" implanentation. If you ....ent 
to get a really good implanentation, then you have to do much rrore. 

wagner: l am actually interested in the =nnection between term-rewriting systans 
and the v.ork on abstract data types, because of the question of implanenting (ab
stract) data types. M::>st of the systans that l am a-.re of have problans because 
they =uld' nt handle such thin;Js as ccmnutativity. But l gather that that has now 
been resolved. But does it actually provide an effective, reasonable system. 

Cousineau: Yes, very reasonable. An::1 if you are interested l have here the listing 
of sessions of the system dealing with associativuty and a::rnnutativity. You can 
have a look. 

wagner: Can you actually, in effect, run programs in this system? How far up, how 
l am also interested in the speakers cannent on this, by the _y - how they feel. 

Padawitz: VE have no system. But l think the point with commutativity and associ
ativity i8 that it is rot enough for data types. If you rernanber my example with 
arrays, there is an axian ~ich looks like ccrnmutativity, but it is not real cern
mutativity. For such examples the methods ~ich incorporate ccrnmutativity and 
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raphic	 associativity don' t vork. They do rot vork for equations wüch are a little bit 
.erirg .	 different frcro "classical" cannutativity axicro. This \..eS one reason for me to 

introduce the notion of relative oonfluence with respect to seme rules \\hich may 
be, for example, associativity and cannutativity axions, but it may be also ITOre 
than these. There is no requirenent to the basic rules except relative oonfluence. 

)int is	 Fspecially the basic rules do not need to be nonnalizing, or nonnalizing JTOdulo 
1. 'lhat	 sanething . 
~. The 
ermina Jouarmaud: l can also ans-.er this question. In my "talk" l mentioned tvo systems. 
tivity. Systan REVE lIhich is implemented by Pierre Lescanne, and the systan FORMEL - and 
utY the the system FORMEL is exactly the systan of Guy Cbusineau and Gerard Huet. 50 l 
ibols in practiced on this system. l want to say that it is a very jX)INerful system. Vou can 
1 due to perform proofs with this system. l have used it in a quite different way, lIhich was: 
ltativi -.e had to prave that an axiematization was not minimal. 50, in fact -.e suspected 
!en able one axicro to be a logical oonsequence of the others. Arx] -.e effectively proved it 
~tivity . using this system, by rerroving the axicro frcm the set of axions, arranging the 
nutative others as a set of rules and ccmputing with several hundred new rules. Arx] after 
it as a maybe half an hour MJLTICS system canputation, -.e had our axicro generated by the 
list of system. 50 it is a very po-.erful system \\hich can be used for purposes of program 
crucial proof, but also for many other purposes. l think it is very important to have such 

with the systems.
flÛvalent 
livalence Wagner: I:o yeu think you can debug specifications? 
:ion. [b 

;ociative Jouannaud: Yes, sure. Vou 1<n:lw the v.ork of M.1sser. Vou can prave (in)oonsistencies 
with these systems. Using KBe yeu can prove (in)oonsistencies. 50 it is debugging 
specifications . 

!Cause it 
:ory into Wagner: That is a very sopüsticated form of debugging. 
:tive	 and 

Jouannaud: Yes, it was a special case, but it v.orks with this case. 

:oblan of CUnningham: With seme trepidation l ask the respomer: is he aware of any v.ork that 
~ry good. extems these techniques to partial algebras. 
Ir system 
~am. v.hat Cousineau: N::>, in fact, that was also one of my questions to the secom author. 
:>rdering? The only thing -.e 1<n:lw how to do presently in our system for initial algebras is 

using the rnethod of Huet and Hullot \\hich was published in F\XS, l think in 1980. 
rgunents. This v.orks in the case lIhere you can partition yeur sets of symbols bet-.een Ilhat is 
yeu want	 called oonstructor defined symbols and the other \\hich are called differencing 

rules. In the set of axions lIhich are satisfying sane definition principles. The 
definition principle is, in a few vords: any ground term is equivalent only to 

, systems sane ground term using only oonstruetors - as one point - and the secom point: 
ting (ab- tvo ground terms using only oonstructors are equal in the theory if they are ident
o because ical. 50 in that case -.e can praved that an equation -t=e is satisfied in the 
t has now initial algebra by doing the ccmpletion method. Arx] that is a question l v.ould like 
, system. to ask to the second speaker: have yeu been interested in implementing such methods, 

and do yeu think that this kind of method oould be adapted to yeur notion of partial 
e listing algebra? Of oourse, if yeu introduce an undefined symbol, Le. it can certainly 

Vou	 can not be a oonstructor, but maybe -.e oould replace the oomition on oonstructors 
with arnther oondition lIhich is less strict. l mean: instead of requiring that tv.o 
terms are equivalent if they are identical, -.e oould ask just for a oonfluent, 

r: up, how terminating rewriting system for this ground term with oonstructors. 
hey feel. 

Padawitz: 'IVIo points: first to the partial functions. '!he aim of introducing a 
d associ discrete specification lIhich has a least elanent is to allaw oorrectness proofs 
ople with of the recursive, partial functions with respect to a discrete demain. If yeu have 
real cern- praved this oorrectness, then yeu can forget the discrete specifications. The 
lvity and discrete specification is only there to get the proof: to see that the discrete 
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danain is really specifiable. The other point is the follawing: The corrlitions l 
give for discrete specifications are also corrlitions Ir.hich are sufficient for ~t 
is called canpleteness and consistency of data types with respect ta seme basic 
data type. sa one has tw::> specifications: one is included in the other, arrl one 
wants to prove that the semantics of the enriched specification includes the seman
tics of the basic specification. Ta get this property l have similar sufficient 
corrlitions like confluence arrl normalization corrlitions lf.t11ch guarantee canplete
ness arrl consistency. Referring ta the definition principle mentioned by the re
sporrler, the constructors are just the operations of the basic specification. The 
definition principle -then says that every term can be reduced to constructars. Arrl 
if constructor terms are equivalent. then they are identical. This condition, l 
think. is tao restrictive for the follawing reason: one reason is ccmpleteness: 
this is just the property that you can reduce every term ta a constructar term. The 
other reason is consistency: this means that terms of constructors Ir.hich are con
gruent in the extended specification are already congruent in the basic specific
ation. The definition principle w::>uld require that they are already equal. But 
this is semetimes a tao restrictive. 

Culik: l have a question ta Bergstra: Different equivalences (ccrning. for instance. 
frcm Mmna's book. you mentioned unfolding, arrl he has alsa isororphism equivalence) 
can be just treated semehow. In your point of view there are special cases. l w::>uld 
like to Jcro,y sanething m::>re. Wlile function equivalence is undecidable. the iso
rrorphism equivalence is decidable. and therefore it is much rrore suitable, for in
stance. in proving the correctness of a canpiler. Can you be rrore specifie about 
the relationships arrong them, e.g. the process equivalence, is (it) really decid
able. arrl therefore alsa execution sequences? Arrl, because we are constructing the 
ccmpiler \Ile can allMlys restrict ourselves ta this decidable case. But, however 
decidable. it still can be unfeasible. Can you cœment on that? 

Bergstra: That is not sa easy for me. l have not said anything about feasibil ity . 
Arrl this is. maybe. the key point (of course). sa l assune this kirrl of isororph
ism equivalence is within the scope of these met.hods. Wlat gets lost is the modu
larity of the issue. Arrl this is already a problem in pencil-arrl-paper w::>rk. sa 
mathematically it is within the scope of our method. 

Culik: \\èll. l assuned you could tell us imnediately how ta formulate isororphism 
in the Mmna sense (ps: there is an incaccuracy in his definition) in your frame
w::>rk, because it w::>uld help me to understaOO that. 

Bergstra: \\èll. that is not my interest. l want a general theory. not nice trans
formations . 

Cousineau: (ta Bergstra:) J-bw should \Ile take your paper. ~ould \Ile take it as a 
theoretical result relating tw::> different proof systems, or praof met.hods for 
programs. or should \Ile take it as sanething that could help. in sone sense. in 
doing the proofs? 

Bergstra: sa you are asking me: Ir.hat the applications of this kind of w::>rk w::>uld 
be? N:M, of course. l prepared myself for that question. because you said you w::>uld 
ask it. (Laughter) In the time l w::>rked toget.her with John 'fucker \Ile had long dis
cussions on the applicability of our w::>rk. Arrl \Ile came ta the conclusion that arrong 
the many kinds of applications that one can imagine one application is the applica
tion to teaching - Ir.hich is big business tao. The clear mathematical analysis that 
\Ile aim at could have an application ta teaching. Just explaining these notions and 
their relations. If it has a spin-off in terms of providing efficient proof systems. 
then it is not up ta me ta predict this in any IMlY. l w::>uld recall the fact that 
caroinatary logic lMlS invented to get around set theory. arrl is _reM applied to get 
around sequential progranrning. Schônfinckel w::>uld not have predicted that presune
ably. sa - l am not ranking our w::>rk ta these kirrl of issues - but nevert.heless 
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1 am making the point that on principle 1 have not had the idea that in ...natsoeverns 1 
way this will lead ta applicable systens. 1 think that these mathematical factsIoklat 
are such that their main application (is) in the developnent of the field and in>asic 
teaching. Because in teaching itself it is rot 50 essential that everything has anooe 

man application. 15 that an answer? 

~ient 
Cousineau: Yes, 01 yes . .ete

re
Culik: 1 was teaching a program correctness course ta graduate students 2 years aga'!he 
using Manna's book. 1 could lecture on Greatest Cammon Divisor all-right, and prove1Irrl 
it correct. But ...nen challenged, by my students, ta produce other examples, 1 hadn, 1 
ta say: sarry, but 1 did rot prepare myself - constructing proper assertions, andIe5S: 
50 on. 000 \'€ are in this business faced, ultimately, with proving correctness of . '!he 
real programs. An::] 1 do rot think we have succeeded in doing 50. This is the realc:m
difficulty. Even for teaching, the practicability of proof ...es, and is, 50 dis-apLfic
pointing. 1 have very deep doubts that it can be overcane. \'€ are here (w.r.t.But 
Bergstra' s talk) on the second floor: in the meta-theory. Trying ta formalize 
proofs. \'€ are forgetting (mathematically) about the difficulties, the real dif
ficulties in problem-solving. It just disappeared sanehON. But if you are thinl<ingmce, 
about real problens, this difficulty will be there. An::] my opinion is that there is 
no way ta believe that all these formalized proofs will succeed. It failed in Ml.the

~nce) 

oIOUld 
matics 50 years aga. An::] therefore we should look for sonething else.iso

r in
Reynolds: In response ta the question that was just raised. 1 have been teaching a'!bout 

;!Cid course in programning for graduate students for a decade now in ...nich 1 have always 
presented considerable material on program proving in the style of Hoare. An::] myl the 
answer ta your objections, ...nich 1 have al50 heard fran my students as well, is/lever 
that we do rot rea50nable expect a professional prograrnner ta formally prove every 
program that he writes, but (we) expect him ta understand formai proofs as ground 
~rk for the intuition needed for producing actual, informai proofs. W1en a mathelity. 
matician is presenting a proof he will write down sone formulae. He will certainly:>rph
rot pr=eed ta give the details of the forma! proof at the level that: here we userodu
cammutativity, and we here we use associativity, and there distributivity, and 50:. sa 
on. But he understands how ta do that. Everyone in his audience understands haN ta 
do that. An::] there is a a:mron agreanent that given a little bit of good will, he 
~n' t try ta pull the 1r.CX:>1 over anybody' 5 eayes. It is an entirely different thingphism 
...nen one starts ta fiddling such equations, without knawing such things as distrirMle
butivityor associativity or carmutativity, ta an audience with the same characte
ristics. Then one can very easily get informai proofs of quite incorrect programs. 
Anytime one prograrnner walks into another and says: ...ny does this program ~rk, therans
response he gets is a proof. An::] the problen is ta train programners in such a way 
that they do not convince each other that incorrect prograrns are correct. An::] 

forma! proofs help in that. N:>t because people are going ta do formai proofs of asa 
every program, they write, but because it gives then the necessary ground ~rk ta: for 
build up intuitions about haN much they have ta think, and in ...nat areas they have 

~, in 
ta thinl<, about ...nether their programs are right or not. 

Bergstra: Ml.y 1 add one rrore carment (ta my previous rernarks): Of course, the prime
~uld 

difficulty in many cases is ta find intermediate assertions, invariants, and 50 on.
~uld 

But in our paper we provide a calculus ...nere these things are just treated as vardis
iables. sa you just have Rl ....nich is a variable ....nich stands for an assertion, R2 arrong 
and sa on. An::] then one gets a calculus about assertions. An::] the nice thing islica
that one gets ta conclusions even without ever actually finding such an assertion.that 
sa the point of our paper is that you need not imnediately turn ta finding ansand 
assertion: as saon as you spot a point ....nere an assertion couid be written down ittE!1T5 , 
need not be the actual next step ta find such an assertion. You can al50 introducethat 
a variable ....nich stands for it, and then you start the forma! calculations with:> get 
that variable - and cane ta conclusions ....nich are relevant ta the problen. sa that sune
~uld be my technical response ta Culik' 5 question.eless 




