
CS125 Lecture 12 Fall 2016

12.1 Nondeterminism

The idea of “nondeterministic” computations is to allow our algorithms to make “guesses”, and only require that

they accept when the guesses are “correct”. For example, a simple nondeterministic polynomial-time algorithm to

decide whether a number N is composite would nondeterministically guess a factorization L,M of the number, and

then verify that L ·M = N. (It turns out that there is also a deterministic polynomial-time algorithm for deciding

compositeness, discovered in 2002, but it is much more complicated.)

Nondeterminism is not a realistic or physical computational resource, but turns out to be very useful for captur-

ing many computational problems of interest and better-understanding realistic deterministic models of computation.

Just like introducing the imaginary number i =
√
−1 turns out to be very useful in answering questions about the

ordinary real numbers.

12.2 Nondeterministic Finite Automata

A language for which it is hard to design a DFA:

L = {aab,aaba,aaa}∗ = {x1x2 · · ·xk : k ≥ 0 and each xi ∈ {aab,aaba,aaa}}.

But it is easy to imagine a “device” to recognize this language if there sometimes can be several possible transitions!

a
b

a
a

a

a

b
a

a

a
OR

b

a

a

a a b
OR

a

ε

a

a a b

Def: An NFA is a 5-tuple (Q,Σ,δ,q0,F), where

• Q,Σ,q0,F are as for DFAs

• δ : Q× (Σ∪{ε})→ P(Q).

12-1

Lecture 12 12-2

When in state p reading symbol σ, can go to any state q in the set δ(p,σ).

• there may be more than one such q, or

• there may be none (in case δ(p,σ) = /0).

Can “jump” from p to any state in δ(p,ε) without moving the input head.

Computations by an NFA

N = (Q,Σ,δ,q0,F) accepts w ∈ Σ∗ if we can write w = y1y2 · · ·ym where each yi ∈ Σ∪{ε} and there exist

r0, . . . ,rm ∈ Q such that

1. r0 = q0,

2. ri+1 ∈ δ(ri,yi+1) for each i = 0, . . . ,m−1, and

3. rm ∈ F .

Nondeterminism: Given N and w, the states r0, . . . ,rm are not necessarily determined.

Example of an NFA

q0 q1 q2 q3

b

a

a

a a bN :

N = ({q0,q1,q2,q3},{a,b},δ,q0,{q0}), where δ is given by:

a b ε

q0 {q1} /0 /0

q1 {q2} /0 /0

q2 {q0} {q0,q3} /0

q3 {q0} /0 /0

Lecture 12 12-3

Tree of computations

Tree of computations of NFA N on string aabaab:

An NFA N accepts w if there is at least one accepting computation path on input w, so we could check all

computation paths to determine whether N accepts w. But the number of paths may grow exponentially with the

length of w! Can the exponential search be avoided?

NFAs vs. DFAs

NFAs seem more “powerful” than DFAs. Are they?

Theorem 12.1 For every NFA N, there exists a DFA M such that L(M) = L(N).

Proof by Construction: Given any NFA N, we construct a DFA M such that L(M) = L(N). The idea is to have the

DFA M keep track of the set of states that N could be in after having read the input string so far.

Before writing it down formally, we illustrate with an example. Recall our NFA N for L = {aab,aaba,aaa}∗.

q0 q1 q2 q3

b

a

a

a a bN :

Lecture 12 12-4

N starts in state q0 so we will construct a DFA M starting in state {q0}:

Formal Description of the Subset Construction

Given an NFA N = (Q,Σ,δ,q0,F), we construct a DFA M = (Q′,Σ,δ′,q′0,F
′) where

Q′ = P(Q)

q′0 = E({q0})

F ′ = {R⊆ Q : R∩F 6= /0} (that is, R ∈ Q′)

δ
′(R,σ) = E({q ∈ Q : q ∈ δ(r,σ) for some r ∈ R})

=
⋃
r∈R

E(δ(r,σ)),

where for a set S⊂ Q, E(S) is the set of states that can be reached starting from a state in S and following 0 or more

ε transitions.

It can be shown by induction on |w| that for every string w, running M on input w ends in the state {q ∈ Q :

some computation of N on input w ends in state q}.

Rabin & Scott, “Finite Automata and Their Decision Problems,” 1959

Lecture 12 12-5

Home ACM Awards Nominations Process Advanced Grades of Membership Guide to
Establishing an Award Awards Committees SIG Awards

Awards

 1976 – Michael O. Rabin See the ACM Author Profile in the Digital

Library

Citation
For their joint paper "Finite Automata and Their Decision Problem," which
introduced the idea of nondeterministic machines, which has proved to be an
enormously valuable concept. Their (Scott & Rabin) classic paper has been a
continuous source of inspiration for subsequent work in this field.

Biographical Information

Michael O. Rabin (born 1931 in Breslau, Germany) is a noted computer scientist
and a recipient of the Turing Award, the most prestigious award in the field.

Rabin was born as the son of a rabbi in what was then known as Breslau (it
became Wroclaw, and part of Poland, after the Second World War). He received
an M. Sc. from Hebrew University of Jerusalem in 1953, and a PhD from
Princeton University in 1956.

The citation for the Turing Award, awarded in 1976 jointly to Rabin and Dana
Scott for a paper written in 1959, states that the award was granted:

For their joint paper "Finite Automata and Their Decision Problem," which
introduced the idea of nondeterministic machines, which has proved to be
an enormously valuable concept. Their (Scott & Rabin) classic paper has
been a continuous source of inspiration for subsequent work in this field.

Nondeterministic machines have become a key concept in computational
complexity theory, particularly with the description of complexity classes P and NP,
as the most well-known example.

In 1975, Rabin also invented a randomized algorithm, the Miller-Rabin primality
test, that could determine very quickly, but with a tiny probability of error, whether
a number was a prime number. Fast primality testing is key in the successful
implementation of most public-key cryptography.

In 1987, Rabin, together with Richard Karp, created one of the most well-known
efficient string search algorithms, the Rabin-Karp string search algorithm, known
for its rolling hash.

Rabin's more recent research has concentrated on computer security. He is
currently the Thomas J. Watson Sr. Professor of Computer Science at Harvard
University.

Turing Paper

Additional Links
Michael O. Rabin DEAS Research Profile
Short Description in a Information Science Hall of Fame at University of
Pittsburgh.

Using NFAs for Pattern Recognition

NFAs can express quite complicated pattern-recognition problems. Indeed, it is easy to construct an NFA N

that accepts exactly the strings generated by any given regular expression, such as

R = ((a∪b)∗(c∪d)(a∪b)∗(c∪d)(a∪b)∗)∗.

This regular expression R generates the set L(R) of strings over alphabet Σ = {a,b,c,d} that have an even number of

occurrences of “c” or “d”. We can easily convert R (or any regular expression, for that matter) into an NFA N such

L(N) = L(R):

Formally, a “regular expression” is a language defined inductively via the following rules:

(1) {σ} is a regular expression for any σ ∈ Σ

(2) {ε} is a regular expression, where ε is the empty string

Lecture 12 12-6

(3) /0 is a regular expression

(4) If R is a regular expression, then so is R∗ = {x1 . . .xk : k ≥ 0,∀i xi ∈ R}

(5) If R1,R2 are regular expression, then so is R1 ◦R2 = {x1x2 : x1 ∈ R1,x2 ∈ R2}

(6) If R1,R2 are regular expressions, then so is R1∪R2 = {x : x ∈ R1, or x ∈ R2}

It turns out that L is a regular expression iff L is regular (i.e. some DFA accepts it). Since DFAs can simulate

NFAs, it is equivalent to say that L is a regular expression iff some NFA accepts it.

One direction of the proof is more straightforward: namely to show that any regular expression is the language

accepted by some NFA N. Those NFAs can be created as in the image below (for (4)-(6), we show how to use NFAs

for R,R1,R2 to construct a new NFA after applying some rule).

The converse is also true (but harder to prove): for every DFA M, one can construct a regular expression R

such that L(R) = L(M). So DFAs, NFAs, and Regular Expressions all describe exactly the same set of languages! If

you’re interested in the full proof, see the recommended text by Sipser. The basic idea is to define something called

Lecture 12 12-7

a GNFA (generalized nondeterministic finite automaton), which is like an NFA except that edges can be labeled with

arbitrary regexps and not just Σ∪{ε}. We insist upon a GNFA of a specific format:

• There is only one start and one accept state.

• The start state has no incoming edges, and has outgoing edges to every other state.

• The accept state has no outgoing edges, and has incoming edges from every other start state.

• All states other than the start and accept states have all the possible (|Q|−2)2 edges to each other, in addition

to each one of them having a self loop.

Given a DFA M, we can convert it to this format quite easily. First, we make a new accept state such that every other

accept state has an ε-transition to it, and all other non-accept states have /0 transitions to it. We also make a new start

state with an ε-transition to the original start state, and with /0 transitions to all other states. Then for each other state,

we add a self-loop with a ε-transition. Also if states q,q′ other than the accept/start states had no edge from q to q′

before, then we add one with edge label /0. Now we obtain a GNFA M′ accepting exactly L(M). The main idea is

this: if M′ has exactly k = 2 states, then we are done! This is because there is a single edge from the start to accept

state, and we can simply read off the regexp written as its label. Otherwise, if k > 2, there is some state q∗ which

is neither the accept nor the start state. Then we will remove q∗ from the GNFA to obtain one with one less state.

We have to alter existing edges to make sure the language accepted by the GNFA doesn’t change. Suppose q,q′ are

two other states (we may have q = q′). Suppose the edge from q to q′ is labeled R4, and q to q∗ is labeled R1, q∗

has a self-loop labeled R2 and q∗ to q′ is labeled R3. Then we replcae the edge from q to q′ with a new edge labeled

R1R∗2R3∪R4, since we could either get from q to q′ through q∗, or not using q∗. Induction shows that this works.

So to decide whether a given string w ∈ Σ∗ matches a given regular expression R, we can convert R to an NFA

N, convert N to a DFA M, and then run M on R.

Q: What’s the problem with this approach? How can we do better?

Theorem 12.2 Given an NFA N = (Q,Σ,δ,q0,F) and a string w, we can decide whether w ∈ L(N) in time O(|Q|2 ·

|w|).

Proof: For a subset R ⊆ Q of states, recall the definition of E(R) above as the set of states reachable from those in

R using only ε-transitions. Note E(R) can be computed in time O(|Q|2) using, say, breadth-first search, since the

underlying graph has |Q| vertices and at most |Q|2 edges. We initialize R0 = E({q0}). Then for each i = 1, . . . , |w|,

Lecture 12 12-8

we can compute Ri = ∪q∈Ri−1E(δ(q,wi)), which is the set of states our NFA could possibly be in after processing the

prefix w1 . . .wi. Then N accepts w iff R|w|∩F is non-empty.

