Determination of the Electronical Bandstructure by Angle Resolved Photoemission Research Seminar Surface Physics

Matthias Kreier

Humboldt Universität zu Berlin Arbeitsgruppe Elektronische Eigenschaften und Supraleitung

14. 5. 2007

[Motivation](#page-2-0)

² [Angle Resoved Photoelectron Spectroscopy](#page-4-0)

- [Introduction and Basic Principle](#page-4-0)
- [Energy Relations and Analysis](#page-10-0)
- [Design of an Energy Analyser](#page-15-0)

³ [Zero Gap Semiconductor](#page-19-0)

- **•** [Survey in Gray Tin](#page-19-0)
- [Alloys of CdTe and HgTe](#page-21-0)

[Measurements and Results](#page-23-0)

- **•** [Preparation](#page-23-0)
- **[Measurement Results](#page-26-0)**

⁵ [Summary and Outlook](#page-30-0)

- **•** [Summary](#page-30-0)
- [Outlook](#page-32-0)

Bandstructure and Fermi Surface

Experimental Results vs. Theory

Photo Electron Spectroscopy on Graphite

Introduction and Basic Principle

Step 1: Photoexcitation of the Electron

Transition Propability

The probability ω_f of the transition for an electron from initial state $|\Phi_i\rangle$ to final state $|\Phi_f\rangle$ is given by Fermis Golden Rule:

$$
\omega_{fi}=\frac{2\pi}{\hbar}|\langle\Phi_{f}|H_{WW}|\Phi_{i}\rangle|^{2}\delta(E_{f}-E_{i}-\hbar\omega)
$$

Introduction and Basic Principle

Step 1: Photoexcitation of the Electron

Transition Propability

The probability ω_f of the transition for an electron from initial state $|\Phi_i\rangle$ to final state $|\Phi_f\rangle$ is given by Fermis Golden Rule:

$$
\omega_{fi}=\frac{2\pi}{\hbar}|\langle\Phi_{f}|H_{WW}|\Phi_{i}\rangle|^{2}\delta(E_{f}-E_{i}-\hbar\omega)
$$

Hamiltonian

The interaction between electron and photon is described by the Hamiltonian H_{WW} . In Coulomb gauge and linear approximation it is

$$
H_{WW} = \frac{e}{2mc}\vec{A} \cdot \vec{p}
$$

Introduction and Basic Principle

Step 1: Photoexcitation of the Electron

Transition Propability

The probability ω_f of the transition for an electron from initial state $|\Phi_i\rangle$ to final state $|\Phi_f\rangle$ is given by Fermis Golden Rule:

$$
\omega_{fi}=\frac{2\pi}{\hbar}|\langle\Phi_{f}|H_{WW}|\Phi_{i}\rangle|^{2}\delta(E_{f}-E_{i}-\hbar\omega)
$$

Hamiltonian

The interaction between electron and photon is described by the Hamiltonian H_{WW} . In Coulomb gauge and linear approximation it is

$$
H_{WW} = \frac{e}{2mc}\vec{A} \cdot \vec{p}
$$

Introduction and Basic Principle

Step 2: Transport to the Surface

At UV excitation energies the mean free path is merely 10 Å. One has to care about surface states, clean surfaces that represent bulk material and UHV conditions. Surface sensitivity can be used for band deflection by controlled adsorption.

Secondaries

By scattering a spectra of low energy secondary electrons is generated.

Introduction and Basic Principle

Step 3: Penetration through the surface

 \vec{K} wave vector in vakuum. \vec{k} is wave vector of the final state in crystal

Dispersion of free Electron

Excited bulk state interacts with free electron state: $E_{kin} =$ \hbar^2 $\frac{n}{2m_e}\vec{K}^2$

Refraction of Electrons at Surface

Parallel component (plus lattice vector \vec{g}_{\parallel}):

$$
\vec{k}_{i_{\parallel}} = \vec{k}_{f_{\parallel}} = \vec{K}_{\parallel} = \sqrt{\frac{2m}{\hbar} E_{kin}} \sin \vartheta
$$

Final state energy and perpendicular component:

$$
E_f = \frac{\hbar^2}{2m}(\vec{k}_f + \vec{G})^2 - |V_0|
$$

$$
k_{f_{\perp}} = \sqrt{\frac{2m}{\hbar^2}(E_{kin} + |V_0|) - \vec{G}_{\parallel}^2} - G_{\perp} \quad \vartheta = 0
$$

Energy Relations and Analysis

Energy Relations during Measuring Process

Kinetic Energy

$$
E_{kin}=\frac{\vec{p}^2}{2m_e}=\frac{m_e}{2}\vec{v}^2
$$

Lorentz Force
\n
$$
\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})
$$
\n
$$
\vec{B} < 0.25\mu\text{ T}
$$

Invariance of measured Fermi-Energy on Work Function

The measured Fermi-energy does not depend on the work function of the sample. During the measuring process the entire spectrum is shifted.

Energy Relations and Analysis

Work Function and Energy Relations

 E_i energy of initial state
 E_f energy of final state energy of final state E_{VBM} valence band maximum $E_{\text{vac},S}$ vacuum level of sample $E_{\text{vac},A}$ vacuum level of analyser $\hbar\omega$ photon energy U_b binding energy
 E_{thr} threshold of ph E_{thr} threshold of photo emission
 $E_{kin,S}$ kinetic energy of eletrons kinetic energy of eletrons at the sample $E_{kin,A}$ kinetic energy of eletrons at analyser U_K contact potential Φ_S work function of sample Φ_A work function of analyser E_F Fermi energy

Fitting and resulting Band Structure

Energy Relations and Analysis

Fitting and resulting Band Structure

Design of an Energy Analyser

Retarding and Focussing

Preretarding stage

Usually a preretarding stage is used prior to the energy analysis. Electrons enter the analyser with a specified pass energy. One can decelerate (or accelerate) electrons (almost) without changing their absolute energy spread. Measured kinetic energy:

 $E_{kin,A} = E_{pass} - U_{ret}$

Negative Kinetic Energy

Design of an Energy Analyser

Energy Dispersion inside Spherical Condensator

Design of an Energy Analyser

Angle Resolution by Mapping of Entrance Point

Design of an Energy Analyser

Resolution of Spherical Analyser

Potentials on hemispheres

For transmission of electrons with initial emergy E_0 along a path with $R_0 = (R_{in} + R_{out})/2$ the potential has to be

$$
V_{out} = E_0[3 - 2(R_0/R_{out})]
$$

$$
V_{in}=E_0[3-2(R_0/R_{in})]
$$

Resolution

$$
\frac{\Delta E}{E_{\text{pass}}} = \frac{w}{2R_0} + \alpha^2
$$

w width entrance slit α acceptance angle

Survey of Narrow-Gap Semiconductors: α -Sn

- (I) cruical magnetoresistance measurements on n-type material by Ewald's group which showed no anisotropy at 4 or 77 K but a dominance of electrons of (111) symmetry at 200 K
- (II) measurements of conductivity, Hall effect and susceptibility at temperatures above 150 K, which demonstrated an activation energy of 0.08 eV
- (III) measurement of an electron mass of 0.02 m_0 which was inconsistent with a small $(\Gamma_8^+-\Gamma_7^-)$ gap
- (IV) pressure measurements which gave a high-temperature pressure coefficient consistens with conduction band minima at the L point
- (V) pressure measurements on conductivity and Hall effect at low temperatures which were inconsistent with the presence of (111) electrons and also of (000) electrons in a Γ_7^- extremum

No conventional positive-gap band structure could fit all of these criteria. William Paul & Steven Groves: Band Structure of Gray Tin, 1963, Phys. Rev. Lett. 11 194

Inverted Bandstructure

Figure 1. Variation of the energy differences $(\Gamma_{\tau}^{-} - \Gamma_{\mathbf{a}}^{+})$ and $L_6^+ - \Gamma_8^+$ in the alloy system Ge₁ _ Sn, For $x = 0$, the smallest band gap $(L_6^+ - \Gamma_6^+)$ is indirect, with a value of about 0.65 eV at room temperature; the direct gap $(\Gamma_7^- - \Gamma_8^+)$ is about 0.8 eV. For $x = 1$, the indirect gap $(L_{\rm s}^{+} - \Gamma_{\rm s}^{+})$ is ~ 0.1 eV and the direct gap $(\Gamma_{\rm s}^{-} - \Gamma_{\rm s}^{+})$ about -0.4 eV.

α -Sn paper

Results for HgTe was in S. Groves thesis, but statement about it was taken out of PRL paper in case speculations on this material they had not measured themselves would jeopardise publication.

inverted bandstructure of HgTe, measured with ARPES

Properties

CdTe and HgTe are consolute. The bandgap can be free adjusted. The alloys have a high electron mobility and a high optic absorption coefficient.

Fabrication

- **•** modified Bridgeman technique
- molecular beam epitaxy (MBE)

Application

- dual-band infrared detectors with high quantum efficiency (simultaneous detection in the MWIR and LWIR)
- CCD-array for IR-astronomy

Data of Samples

Crystal Quality - Laue Images

Polaroid and Simulation Sample Ib

image generated with LauePT 2.1 (programm for Laue Pattern, programmed by XianRong Huang, Stony Brook University, Southhampton: www.sunvsb.edu)

$Cd_{0.07}Hg_{0.93}Te$

thickness: $620 \ \mu m$ weight: 81 mg

 $40kV$ 40ma $\frac{m}{k}$ 12h
verkippin theory at

cleavage chamber by

Surface Quality after Cleavage

SEM Image **LEED** Image

Reasons for LEED

- **o** craggedness of cleavage
- **o** spot size electron beam
- **•** failure in apparature

Dispersion in Valence Band? Gap? Peak Position?

Cleavage Quality - Satellites of $Hg5d_{3/2}$

X. Yu, L. Vanzetti, G. Haugstad, A. Raisanen, A. Franciosi: Inequivalent sites for Hg at the HgTe (110) surface. Surf. Sci 275, 92-100, (1992)

Photo Electron Spectrosopy

- **•** powerfull technique to determine bandstructure and electronic properties of solids
- o detected electrons easy to analyse
- **surface sensitive**
- • UHV conditions inevitable

Photo Electron Spectrosopy

- **•** powerfull technique to determine bandstructure and electronic properties of solids
- detected electrons easy to analyse
- **surface sensitive**
- UHV conditions inevitable

$Cd_xHg_{1–X}Te$

- first angle resolved measurement
- inverted bandstructure zero gap
- complicated (110) surface preparation

Measurement

- Laue pictures of measured crystals
- **o** LEED at WESPHOA chamber
- EDX for composition
- automatic nitrogen refill system
- **•** measurements at BESSY training beamline with syncrotron light and new Scienta
- **o** cooled cleavage

More Samples ...

- \bullet samples of already grown $Cd_xHg_{1-X}Te$ crystals from Hr. Sölle
- growth of new $\mathrm{Pb_xZn_{1-X}Te}$
- **•** more samples from Moscow

Thanks for your attention!