Determination of the Electronical Bandstructure by Angle Resolved Photoemission Research Seminar Surface Physics

Matthias Kreier

Humboldt Universität zu Berlin Arbeitsgruppe Elektronische Eigenschaften und Supraleitung

14. 5. 2007

Motivation	Angle Resoved Photoelectron Spectroscopy	Zero Gap Semiconductor	Measurements and Results	Summary and Outlook	
	00000000000	0000	0000000	000	
Quan	Overview				

Motivation

ver

2 Angle Resoved Photoelectron Spectroscopy

- Introduction and Basic Principle
- Energy Relations and Analysis
- Design of an Energy Analyser

3 Zero Gap Semiconductor

- Survey in Gray Tin
- Alloys of CdTe and HgTe

4 Measurements and Results

- Preparation
- Measurement Results

5 Summary and Outlook

- Summary
- Outlook

Motivation	Angle	Resoved	Photoelectron	Spectrosc

Zero Gap Semiconducto

Measurements and Results

Summary and Outlook

Bandstructure and Fermi Surface

 Motivation
 Angle Resound Photoelectron Spectroscopy
 Zero Gap Set

 0000000000
 0000

miconductor Measur

Measurements and Results 0000000 Summary and Outlook

Experimental Results vs. Theory

Photo Electron Spectroscopy on Graphite

Motivation	Angle Resoved Photoelectron Spectroscopy	Zero Gap Semiconductor	Measurements and Results	Summary and Outlook
Introduction a	nd Basic Principle			
Gene	ral Setup			

 Motivation
 Angle Resoved Photoelectron Spectroscopy
 Zero Gap Semiconductor
 M

 0●000000000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 00

Measurements and Results 0000000 Summary and Outlook

Introduction and Basic Principle

Step 1: Photoexcitation of the Electron

Transition Propability

The probability ω_{fi} of the transition for an electron from initial state $|\Phi_i\rangle$ to final state $|\Phi_f\rangle$ is given by Fermis Golden Rule:

$$\omega_{fi} = \frac{2\pi}{\hbar} |\langle \Phi_f | H_{WW} | \Phi_i \rangle|^2 \delta(E_f - E_i - \hbar \omega)$$

 Motivation
 Angle Resoved Photoelectron Spectroscopy
 Zero Gap Semicondu

 ○●○○○○○○○○○○○○○
 ○○○○○

Measurements and Results

Summary and Outlook

Introduction and Basic Principle

Step 1: Photoexcitation of the Electron

Transition Propability

The probability ω_{fi} of the transition for an electron from initial state $|\Phi_i\rangle$ to final state $|\Phi_f\rangle$ is given by Fermis Golden Rule:

$$\omega_{fi} = \frac{2\pi}{\hbar} |\langle \Phi_f | H_{WW} | \Phi_i \rangle|^2 \delta(E_f - E_i - \hbar \omega)$$

Hamiltonian

The interaction between electron and photon is described by the Hamiltonian H_{WW} . In Coulomb gauge and linear approximation it is

$$H_{WW} = \frac{e}{2mc}\vec{A}\cdot\vec{p}$$

Zero Gap Semiconducto

Measurements and Results

Summary and Outlook

Introduction and Basic Principle

Step 1: Photoexcitation of the Electron

Transition Propability

The probability ω_{fi} of the transition for an electron from initial state $|\Phi_i\rangle$ to final state $|\Phi_f\rangle$ is given by Fermis Golden Rule:

$$\omega_{fi} = \frac{2\pi}{\hbar} |\langle \Phi_f | H_{WW} | \Phi_i \rangle|^2 \delta(E_f - E_i - \hbar \omega)$$

Hamiltonian

The interaction between electron and photon is described by the Hamiltonian H_{WW} . In Coulomb gauge and linear approximation it is

$$H_{WW} = \frac{e}{2mc}\vec{A}\cdot\vec{p}$$

Motivation Angle Resoved Photoelectron Spectroscopy

Zero Gap Semiconducto

Measurements and Results 0000000 Summary and Outlook

Introduction and Basic Principle

Step 2: Transport to the Surface

Limiting Step

At UV excitation energies the mean free path is merely 10 Å. One has to care about surface states, clean surfaces that represent bulk material and UHV conditions. Surface sensitivity can be used for band deflection by controlled adsorption.

Secondaries

By scattering a spectra of low energy secondary electrons is generated. Motivation Angle Resoved Photoelectron Spectroscopy

Zero Gap Semiconducto

Measurements and Results 0000000 Summary and Outlook

Introduction and Basic Principle

Step 3: Penetration through the surface

 \vec{K} wave vector in vakuum, \vec{k}_f is wave vector of the final state in crystal

Dispersion of free Electron

Excited bulk state interacts with free electron state: $E_{kin} = \frac{\hbar^2}{2m_*}\vec{K}^2$

Refraction of Electrons at Surface

Parallel component (plus lattice vector \vec{g}_{\parallel}):

$$ec{k}_{i_{\parallel}}=ec{k}_{f_{\parallel}}=ec{K}_{\parallel}=\sqrt{rac{2m}{\hbar}E_{kin}}\sinartheta$$

Final state energy and perpendicular component:

$$E_f = rac{\hbar^2}{2m} (ec{k}_f + ec{G})^2 - |V_0|$$

$$k_{f_{\perp}} = \sqrt{rac{2m}{\hbar^2}(E_{kin}+|V_0|)-ec{G}_{\parallel}^2}-G_{\perp} ~~artheta=0$$

Motivation	Angle Resoved Photoelectron Spectroscopy	Zero Gap Semiconductor	Measurements and Results	Summary and Outloo
	0000 000 0000			
Energy Relation	ns and Analysis			

Energy Relations during Measuring Process

Kinetic Energy

L

$$E_{kin}=\frac{\vec{p}^2}{2m_e}=\frac{m_e}{2}\vec{v}^2$$

prentz Force
$$\vec{F} = q(\vec{E} + \vec{v} imes \vec{B})$$

 $\mathbf{B} \le 0.25 \mu T$

Example

$$\hbar\omega = 21.2 \text{eV}$$
 He-I
 $\Phi = 4.8 \text{eV}$ Au
 $E_{kin} = 16.4 \text{eV}$ E_F

Invariance of measured Fermi-Energy on Work Function

The measured Fermi-energy does not depend on the work function of the sample. During the measuring process the entire spectrum is shifted. Motivation Angle Resoved Photoelectron Spectroscopy

Zero Gap Semiconducto

Measurements and Results 0000000 Summary and Outlook

Energy Relations and Analysis

Work Function and Energy Relations

Ei energy of initial state Ef energy of final state E_{VBM} valence band maximum Evac.s vacuum level of sample Evac.A vacuum level of analyser $\hbar\omega$ photon energy U_h binding energy Ethr threshold of photo emission E_{kin.S} kinetic energy of eletrons at the sample E_{kin.A} kinetic energy of eletrons at analyser Uκ contact potential Φ_{S} work function of sample Φ_A work function of analyser EF Fermi energy

Motivation	Angle Resoved Photoelectron Spectroscopy	Zero Gap Semiconductor	Measurements and Results	Summary and Outlook
	00000000000			
Energy Relations	and Analysis			

Fitting and resulting Band Structure

Energy Relations and Analysis

Fitting and resulting Band Structure

Motivation

Angle Resoved Photoelectron Spectroscopy

Zero Gap Semiconducto

Measurements and Results

Summary and Outlook

Design of an Energy Analyser

Retarding and Focussing

Preretarding stage

Usually a preretarding stage is used prior to the energy analysis. Electrons enter the analyser with a specified pass energy. One can decelerate (or accelerate) electrons (almost) without changing their absolute energy spread. Measured kinetic energy:

 $E_{kin,A} = E_{pass} - U_{ret}$

Negative Kinetic Energy

E _{kin,S}	=	0.2 eV
U _{ret}	=	10.2 eV
U_K	=	-0.4 eV
E _{pass}	=	10 eV
$E_{kin,A}$	=	-0.2 eV

Motivation Angle Resoved Photoelectron Spectroscopy

Zero Gap Semiconducto

Measurements and Results 0000000 Summary and Outlook

Design of an Energy Analyser

Energy Dispersion inside Spherical Condensator

Motivation Angle Resoved Photoelectron Spectroscopy

Zero Gap Semiconducto

Measurements and Results

Summary and Outlook

Design of an Energy Analyser

Angle Resolution by Mapping of Entrance Point

Motivation

Angle Resoved Photoelectron Spectroscopy

Zero Gap Semiconducto

Measurements and Results 0000000 Summary and Outlook

Design of an Energy Analyser

Resolution of Spherical Analyser

Potentials on hemispheres

For transmission of electrons with initial emergy E_0 along a path with $R_0 = (R_{in} + R_{out})/2$ the potential has to be

$$V_{out} = E_0[3 - 2(R_0/R_{out})]$$

$$V_{in} = E_0[3 - 2(R_0/R_{in})]$$

Resolution

$$\frac{\Delta E}{E_{pass}} = \frac{w}{2R_0} + \alpha^2$$

w width entrance slit

 α acceptance angle

Motivation	Angle Resoved Photoelectron Spectroscopy	Zero Gap Semiconductor	Measurements and Results	Summary and Outlook
		0000		
Survey in Gray T	in			

Survey of Narrow-Gap Semiconductors: α -Sn

- cruical magnetoresistance measurements on n-type material by Ewald's group which showed no anisotropy at 4 or 77 K but a dominance of electrons of (111) symmetry at 200 K
- (II) measurements of conductivity, Hall effect and susceptibility at temperatures above 150 K, which demonstrated an activation energy of 0.08 eV
- (III) measurement of an electron mass of 0.02 m_0 which was inconsistent with a small $(\Gamma_8^+ \Gamma_7^-)$ gap
- (IV) pressure measurements which gave a high-temperature pressure coefficient consistens with conduction band minima at the L point
- (V) pressure measurements on conductivity and Hall effect at low temperatures which were inconsistent with the presence of (111) electrons and also of (000) electrons in a Γ_7^- extremum

No conventional positive-gap band structure could fit all of these criteria.

William Paul & Steven Groves: Band Structure of Gray Tin, 1963, Phys. Rev. Lett. 11 194

Motivation	Angle Resoved Photoelectron Spectroscopy	Zero Gap Semiconductor	Measurements and Results	Summary and Outlook
		0000		
Survey in Gray	Tin			

Inverted Bandstructure

Figure 1. Variation of the energy differences $(\Gamma_7^- - \Gamma_8^+)$ and $L_6^+ - \Gamma_8^+)$ in the alloy system $\text{Ge}_{1-x}\text{Sn}_x$. For x = 0, the smallest band gap $(L_6^+ - \Gamma_8^+)$ is indirect, with a value of about 0.65 eV at room temperature; the direct gap $(\Gamma_7^- - \Gamma_8^+)$ is about 0.8 eV. For x = 1, the indirect gap $(L_6^+ - \Gamma_8^+)$ is $\sim 0.1 \text{ eV}$ and the direct gap $(\Gamma_7^- - \Gamma_8^+)$ about -0.4 eV.

α -Sn paper

Results for HgTe was in S. Groves thesis, but statement about it was taken out of *PRL* paper in case speculations on this material they had not measured themselves would jeopardise publication.

ZnS semiconductors

bandgap definition:

$$\mathrm{E}_0 = \mathrm{E}(\Gamma_6) - \mathrm{E}(\Gamma_8)$$

(direct bandgap)

CdTe	property	HgTe
0,675	Phillips-Van Vechten ionicity f _i	0,68
6.488	lattice constant	6.445
1.56	gap	-0.283

Motivation	Angle Resoved Photoelectron Spectroscopy	Zero Gap Semiconductor	Measurements and Results	Summary and Outlook
		0000		
Alloys of CdTe	and HgTe			
CdvF	Ig ₁ vTe			

inverted bandstructure of HgTe, measured with ARPES

Properties

CdTe and HgTe are consolute. The bandgap can be free adjusted. The alloys have a high electron mobility and a high optic absorption coefficient.

Fabrication

- modified Bridgeman technique
- molecular beam epitaxy (MBE)

Application

- dual-band infrared detectors with high quantum efficiency (simultaneous detection in the MWIR and LWIR)
- CCD-array for IR-astronomy

Motivation	Angle Resoved Photoelectron Spectroscopy	Zero Gap Semiconductor 0000	Measurements and Results	Summary and Outlook
Preparation				
Samp	les of $\operatorname{Cd}_X\operatorname{Hg}_{1-X}\operatorname{Te}$	9		

Ia	Ib	II	IIIa
		8	
0 5 10			0 5 52 Millingtor
x=0,07	x=0,07	x=0,4	x=0,2
127,0 mg		130,3 mg	91,6 mg
<111>	<111>		<110>
IIIb	IV	V	VI
	U BSS		
No.	128	The second second	
		0 5 10	
x=0,2	x=0,183	x=0,1955	x=0,1046
66,9 mg	129,2 mg	248,5 mg	108,9 mg
<110>	<110>	<110>	<110>

Data of Samples Nr. Х weight Ia 0,07 127 mg Ib 0,07 Π 0,4 130 mg IIIa 0,2 92 mg IIIb 0,2 67 mg 129 mg IV 0,183 248 mg V 0.1955 VI 0.105 109 mg

Motivation	Angle Res	oved Photoe	lectron Spectroscopy	Zero Gap Semicond	uctor Measurements and Results	Summary and Outlook
					000000	
Preparation						
~						

Crystal Quality - Laue Images

Polaroid and Simulation

image generated with LauePT 2.1 (programm for Laue Pattern, programmed by XianRong Huang, Stony Brook University, Southhampton; www.sunysb.edu)

Sample Ib Cd_{0.07}Hg_{0.93}Te

thickness: 620 μ m weight: 81 mg

10KV 40mA 12h verkipp: 12h

Motivation	Angle Resoved Photoelectron Spectroscopy	Zero Gap Semiconductor 0000	Measurements and Results	Summary and Outlook
Preparation				
Surfa	ce Preparation - Cl	eavage Mecl	hanism	

cleavage chamber by N. Orlowski, assembled 2000

Motivation	Angle Resoved Photoelectron Spectroscopy	Zero Gap Semiconductor	Measurements and Results	Summary and Outlook		
			000000			
Measurement Results						

Surface Quality after Cleavage

SEM Image

LEED Image

Reasons for LEED

- craggedness of cleavage
- spot size electron beam
- failure in apparature

Dispersion in Valence Band? Gap? Peak Position?

Cleavage Quality - Satellites of Hg5d_{3/2}

X. Yu, L. Vanzetti, G. Haugstad, A. Raisanen, A. Franciosi: Inequivalent sites for Hg at the HgTe (110) surface. Surf. Sci 275, 92-100, (1992)

Motivation	Angle Resoved Photoelectron Spectroscopy	Zero Gap Semiconductor	Measurements and Results	Summary and Outlook		
				000		
Summary						
Conclusion						

Photo Electron Spectrosopy

- powerfull technique to determine bandstructure and electronic properties of solids
- detected electrons easy to analyse
- surface sensitive
- UHV conditions inevitable

Motivation	Angle Resoved Photoelectron Spectroscopy	Zero Gap Semiconductor	Measurements and Results	Summary and Outlook		
Summary						
Conclusion						

Photo Electron Spectrosopy

- powerfull technique to determine bandstructure and electronic properties of solids
- detected electrons easy to analyse
- surface sensitive
- UHV conditions inevitable

$Cd_XHg_{1-X}Te$

- first angle resolved measurement
- inverted bandstructure zero gap
- complicated (110) surface preparation

Motivation	Angle Resoved Photoelectron Spectroscopy	Zero Gap Semiconductor 0000	Measurements and Results 0000000	Summary and Outlook ○●O		
Outlook						
Outlook						

Measurement

- Laue pictures of measured crystals
- LEED at WESPHOA chamber
- EDX for composition
- automatic nitrogen refill system
- measurements at BESSY training beamline with syncrotron light and new Scienta
- cooled cleavage

More Samples ...

- \bullet samples of already grown $Cd_{\mathbf{x}}Hg_{1-\mathbf{X}}Te$ crystals from Hr. Sölle
- $\bullet~growth~of~new~{\rm Pb}_{\rm x}{\rm Zn}_{1-{\rm X}}{\rm Te}$
- more samples from Moscow

Motivation	Angle Resoved Photoelectron Spectroscopy	Zero Gap Semiconductor	Measurements and Results	Summary and Outlook
				000
Outlook				

Thanks for your attention!