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1 Introduction

This course is concerned with the development of special relativity from the attempt to
reconcile

1. The principle of relativity (PR).
In classical mechanics this is Galilean relativity: physics does not distinguish between
frames with constant relative velocities.

2. Maxwell's theory of electromagnetism in which the speed of light is a fundamental

constant.

The �rst two lectures will explain what these are and why they are in con
ict. We then
resolve the con
ict, not by sacri�cing (1) or (2), but by integrating space and time into a

single geometric structure in which a `special' principle of relativity operates, rather than

the Galilean one.

1.1 Galileo's principle of relativity Two space ships pass in empty space. In each

ship, the passengers imagine they are at rest and that the other ship is moving. Is there
some physical test that will resolve the question?
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1. Yes, if one is accelerating and the other is not: one can `feel' acceleration.

2. No if neither ship is accelerating: there is no experiment that will distinguish
`A is at rest and B is moving at constant speed'
from
`B is at rest and B : : : '

Galileo's principle: There is no absolute standard of rest; only relative motion is meas-
ureable.

1.2 Moving frames of reference Galileo's Principle follows from Newton's laws (it was
originally Newton's 4th law). In Newtonian mechanics, we can make the statement more
precise. Two frames of reference, R and R0:

i

j

k’

j’

i’

x

r r’

P

K

We have r = r0 + x ; where r = xi+ yj+ zk ; and r0 = x0i0 + y0j0 + z0k0 :
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Suppose now that

(1) R0 is not rotating relative to R and

(2) �x = 0 (uniform motion)

then (d2r=dt2)R = �rR = �r0R0 and the acceleration of P is measured to be the same in both

frames.

Then: if Newton's laws hold in R they will hold in R0.

The two coordinate systems are then related by:
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where x = vt+ c, H is the rotation from the frame (i; j;k) to (i0; j0;k0), and H, v and c

are constants.

Axiom of classical mechanics 9 a preferred class of frames of reference, called inertial

frames, which are related by transformations of the form (*) in which Newton's law holds
(Newton IV).
(We only need one, as then the transformations above give a family.)

Principle of relativity: All inertial frames are on an equal footing.
(Einstein kept principle of relativity, but changed (�)).

Galilean transformations

Clearly we can also translate the time coordinate

t = t0 + c0 ; c0 = constant

and write (*) together with this as
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This is a Galilean transformation and it is an a�ne linear transformation of space and

time.

Galilean transformations make up the symmetry group of classical space-time. To see

this we need to specify what structures the transformations are to preserve.

1.3 Classical space-time We must get accustomed to thinking of space and time as

coordinates on a single four-dimensional space.
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Space-time = f Eventsg = R4. An event is a particular place at a �xed time. With one

space dimension suppressed, we picture space-time like this: (t-axis is always upwards)

t

x

y

L

1 pm

2pm

3pm

This is a Space-time diagram. Coordinates label events. The straight line L is the
history of a particle moving with constant velocity. Greater slope gives lower speed.

Terminology: A curve in space-time representing the history of a particle is called a

worldline.

Invariant structures Galilean transformations are those transformations that preserve:

1. The time separation between two events.

2. The distance between simultaneous events.

3. Straight lines.

Let A and B be events. Consider the statements:

(1) A, B are simultaneous

(2) B happens time t after A
(3) A, B are simultaneous, distance D apart
(4) A, B happen in same place (at di�erent times)

(5) A, B happen at di�erent times and are separated by distance F .

1{3 are invariant i.e. true in every inertial frame if true in one.
Statements 4{5 are not invariant|they require a standard of rest (e.g. now &now are

separated by 19 miles in a frame �xed with respect to the sun).

Galilean transformations in 1-space dimension Two frames of reference, R and R0

related by a translation and `boost' in the x direction:
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Examples of space-time diagrams

A

(i) (ii)
Two particles in rectilinear motion
(i) meet at A  (ii) dont meet.

Uniform Acceleration
in straight line

Circular wave spread-
ing across pond

Example: Four ghosts travel in straight lines at di�erent constant speeds across a 
at
�eld. Five of the six pairs pass through each other at di�erent times. Show that the 6th

pair also pass through each other.

Solution: In 3-dim space-time, histories are straight lines. Let the ghosts be G1, : : : ,

G4. Suppose the 5 pairs are G1G2, G1G3, G1G3, G2G3 and G2G4. Then G1G2G3 must
be coplanar with G1G2, G2G3 and G1G3, so G4 lies in this plane as it intersect G1 and

G2 so must intersect G3 as its not parallel (di�erent speeds).
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2 Introduction to Maxwell's equations (Preview)

Maxwell's theory was a radical departure from previous physical theories.

The gravitational �eld g(t; r) is the force per unit mass of a test particle at the event

(t; r), and it can be obtained from a potential � with g = �r�. These were thought of
as mathematical devices to encode the 1=r2 action at a distance force law from a general

distribution of masses.

The electric �eld is the force per unit charge experienced by a charged particle. It

was also originally conceived of as a way of encoding the inverse square force law for all

electric charges present (the magnetic �eld could be de�ned analogously). This works for

electrostatics and magnetostatics.

However Faraday conjectured and Maxwell and Hertz proved that they can be non-
trivial in the absence of charges and so must be real in their own right. Indeed they

showed that electromagnetic waves exist and are light.

The objects of electromagnetic theory

1. Charged particles. Charge is denoted by e: it is an intrinsic property analagous
to mass except that we can have e > 0, e = 0 or e < 0.

In continuous media we de�ne

charge density : �(t; r) = lim
�V!0

P
e

�V

current density : j(t; r) = lim
�V!0

P
ev

�V

where v is the velocity of the charge e and the volumes �V are balls centred at r

and the sum/integral is over charges contained in �V .

2. The electric and magnetic �elds: E(t; r) and B(t; r), which are vector valued

functions of position and time.

The electric and magnetic �elds are measured using the force law below.

The equations of electromagnetism These interact according to the following equa-

tions.

(A) The charge and current densities generate electric and magnetic �elds by Maxwell's
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equations:

r �E = �="0 (1)

r �B = 0 (2)

r^B� "0�0
@E

@t
= �0j (3)

r^E+
@B

@t
= 0 (4)

where "0, �0 are constants.

(B) Electric and magnetic �elds generate forces on charges

f = e(E+ v ^B) ; v = velocity (5)

We shall see where these laws come from later.

Comparison with gravity In the static case, (4) implies that E = r for some scalar
 . Equation (1) then gives Poisson's equation r2 = �="0.

For gravity g = �r� the gravitational acceleration �eld is determined by

r � g = �r2� = �4�G�

where � is the matter density. In Gravity Poisson's equation is this `di�erential form'

of the inverse square law. In (1) the reversal of the sign gives a repulsive inverse-square
forces between like charges.

Units

We use mks units with charge e measured in Coulombs, B in Teslas, E in volts per metre.

"0 = 8:9� 10�12 ; �0 = 4� � 10�7 (exact)

The electron charge is e = �1:6� 10�19 Coulombs

The earth's magnetic �eld is 4 � 10�5 Teslas

Neutron star's magnetic �eld is 108 Teslas.

The source-free equations

In empty space � = 0 = j.
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Put c = 1=
p
"0�0 = 3� 108 metres per second. Then

r �E = 0 (6)

r � cB = 0 (7)

r^ cB� 1

c

@E

@t
= 0 (8)

r^E+
1

c

@B

@t
= 0 (9)

What we are going to see is that these equations admit wave solutions, light.

We note �rst two features of the equations:

� A) Symmetry under duality:

E 7! cB, and cB 7! �E.

� B) Consistency: We have eight equations in six unknowns, so they might be incon-
sistent. But the divergences of (8) and (9) give the time derivatives of (6) and (7)
respectively so no inconsistencies arise (see exercises).

Electromagnetic waves Recall that: r^ (r^X) = r(r �X) �r2X.
Thus curl (9) gives

r(r �E)�r2E+
1

c

@

@t
(r^ cB) = 0

so that using (6) and (8) we have

�r2E+
1

c2
@2E

@t2
= 0

and also

�r2cB+
1

c2
@2cB

@t2
= 0

from duality.

So, in empty space, the components of E and cB satisfy the wave equation:

1

c2
@2�

@t2
� @2�

@x2
� @2�

@y2
� @2�

@z2
= 0 (10)

Plane waves

This is the 3-d version of the 1-d wave equation

1

c2
@2�

@t2
� @2�

@x2
= 0

which has solutions � = f(ct � x). These generalize to give plane wave solutions in 3-d:

put v = ct� e � r where e is a constant unit vector, e � e = 1.
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Proposition 1 For any constant unit vector e and any function f of one variable � =

f(v) satis�es (10); The motion of the wave is directed along e.

Proof: r� = �f 0e ; so
r2� = �e � rf 0 = e � ef 00� = f 00:

Whereas @�
@t

= cf 0, so that @2�
@t2

= c2f 00 . 2

Example: The harmonic wave is

� = A cos(!v=c+ ") :

It has frequency !, amplitude A, phase " and travels in direction e with speed c.

Proposition 2 For any constant k with k � e = 0, and any function f of one variable

E = f(v)k ; B =
f(v)

c
e ^ k

satsi�es the source free Maxwell equations.

Proof: We have rv = e so that

r �E = �f 0(v)e � k = 0 :

r^E = �f 0(v)e^ k ; @E

@t
= cf 0(v)k

and
@B

@t
=
f 0(v)

c
e ^ k

and using e ^ (e ^ k) = �k we �nd

r^B = �f
0(v)

c2
e ^ (e ^ k) = f 0(v)

c2
k

so Maxwell's equations have (plane) wave solutions travelling with speed c in any direction.

3 Maxwell's equations and relativity

Maxwell's theory describes all the forces apart from gravity that we see in ordinary mech-

anics. It also predicts the existence of electromagnetic waves which travel with velocity
c = 1=

p
"0�0 which can be identi�ed with light and radio waves etc..

9



Question: Does Galileo's principle of relativity extend from mechanics to electromag-

netism?

At the time there were two problems with this.

(1) It is di�cult to believe that the velocity of light can be the same in all directions for

a moving observer, if it is for a stationary observer.

(2) It was di�cult to conceive of �elds as being a fundamental object in its own right.

It was thought that a �eld must be an approximation to a system of many small objects

just as we imagine 
uids to be composed of molecules of, say, water. Thus the waves are

ripples in a medium, the ether which has its own preferred rest frame.

If one attempts to derive a relativity principle, one can make it work to �rst order in

v (using the force law), but fails to order v2=c2.

3.1 The Michelson-Morley experiment According to this point of view, Maxwell's
equations should only hold exactly in the rest frame of the ether. The Michelson-Morley
experiment tested this part of the theory (although it was merely intended to distinguish

di�erent theories of the ether).

The earth must be moving through the ether as it rotates about the sun. The light
travel time is compared in two orthogonal directions.

A photon P has velocity u, u � u = c2, relative to the ether.

Make a Galilean transformation to a moving frame x = x0 + vt ; y = y0 ; z = z0 so
that (u0

1
; u0

2
; u0

3
) = (u1 � v; u2; u3).

If u1 = V , u3 = 0, then u0
1
= 0 and P travels with speed u2 = u0

2
in y0 direction where

c2 = u21 + u22 + u23 = u22 + V 2 = c2 so that

u2 = �
p
c2 � V 2 :

Whereas, if u2 = u3 = 0, u0 = (�c� v; 0; 0).
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c+v

c-v

x’

y’

D

D

Thus the time tx0 to go out and back along the x0-axis is

tx0 =
D

c� v
+

D

c+ v
=

2D

c
(1 +

v2

c2
) +O(

v4

c4
)

and the time t0y to go out and back along the y0-axis is

ty0 =
2Dp
c2 � v2

=
2D

c
(1 +

v2

2c2
) +O(

v4

c4
)

Michelson and Morley tested this picture:
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Half silvered
mirror

Mirror

Mirror

Rotate

Screen

if the apparatus moves,

Fringe Shift =
c(tx0 � ty0)

�
=
v2D

c2�

where � is the wavelength of the light. Note the cancellation at O(v=c).

12



No shift was observed!

An ether theory could be preserved if it was swept along by the earth (Stokes).

But, more profoundly, Lorentz and Fitzgerald observed that E-M implies a `Lorentz

contraction' in the direction of motion by factor of
p
1� v2=c2. E-M is responsible for all

forces and hence lengths of rods; the E-M �eld of a nucleus and hence length of an atom

is squashed by a factor of
p
1� v2=c2.

Poincar�e proposed a conspiracy theory: cancellations at all orders in all experiments

prevent the measurement of the velocity of the ether. (This indeed follows from Lorentz's

transformations that show how E-M �elds of moving bodies can be obtained from those

of stationary bodies).

Problems: (A) It is meaningless to de�ne length without reference to a procedure: If

rulers contract when you move relative to the ether, what does it mean to say that a
length should have di�erent value than that measured? (B) What does it mean to be at

rest wrt ether if measurements cannot distinguish rest frame?

3.2 Revolution: special relativity

Einstein saw that the way forward was to

(1) regard Maxwell's equations and the constancy of the velocity of light as fundamental,
(2) keep the principle of relativity, and
(3) introduce the principle that lengths etc. must be de�ned operationally using light
travel times.

Assumptions: We make two basic physical assumptions:

1. Observers carry clocks (quantum mechanical oscillations). For inertial observers
time must depend linearly on the coordinates.

2. Light rays are given as histories of the form

r(t) = vt+ c ; v � v = c2 ; v and c constant

with c2 �xed. Two events separated by (c�t;�x;�y;�z) are connected by a light

ray i�
(c�t)2 � (�x)2 � (�y)2 � (�z)2 = 0 :

Operational de�nition of space and time

We de�ne distance and time of an event A according to an inertial observer, O, by the
following radar method:
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The observer O sends out a photon at time t1 which gets re
ected back at the event A to

reach O at time t2. De�ne

The time of A is tA := 1

2
(t1 + t2)

The distance of A to be dA := c
2
(t2 � t1),

Thus light is used to assign times and distance to events that are not on O0s worldline

automatically building in the light travel time.

A

Photon out

Photon back
History or 
‘Worldline’
of O

t

t

2

1

O

Relativity of simultaneity

The �rst surprising sacri�ce is the concept of absolute simultaneity
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t=t’=0

BA

t
t

t O3

1

2

O’

’

Observer O0 assigns t0A = t0B = 1

2
t01: A and B are simultaneous.

However, O assigns tA = 1

2
t3 > tB = 1

2
t2: A happens after B according to O.

Bondi's k-calculus

We can deduce elementary aspects about S-R in 1 spatial dimension as follows.

Consider space-ships O and O0, O0 moving directly away from O. Each sends the other

a stream of radio messages.

A signal sent by O at � (on O clock) arrives at time k� (on O0 clock). Assume

1. k constant (indept of � , since non-accelerating)

2. Principle of relativity: k depends only on relative motion (Bondi's k-factor).
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O’

O

A

B

τ

2 τk

τk

Then signal from B arrives at O at k2� (according to O). Thus O measures:

tB =
1

2
(k2 + 1)� and dB =

c

2
(k2 � 1)�:

Thus velocity of O0 measured by O is

u =
dB

tB
= c

k2 � 1

k2 + 1
< c

Hence

k =

r
c+ u

c� u
> 1 :

Time dilation: De�ne the time dilation 
 by


 :=
time from A to B meausured by O

time from A to B meausured by O0

Thus dilation (dilatation) is


 =
tB

k�
=

1

2

(k2 + 1)�

k�
=

1p
1� u2=c2

e.g. for u =
p
3c=2, 
 = 2.
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4 The Lorentz transformation

We shall �rst consider just one space dimension in this lecture. We consider non-accelerating

particles and observers moving on a line.

DerivationWe have seen how an observer O can measure the distance and time of distant

events. He/she can therefore set up a coordinate system (t; x) on space-time, taking his

own location as x = 0.

t, x( )

τ

Worldline

Photon back

Photon out

x

τ
t

De�nition: We call this an inertial coordinate system (ICS).

How are inertial coordinate systems (ICS's) related?

Two observers O, O0, pass at event A which they take as their common origin. Let O

O0 assign coords (t; x), (t0; x0) to B respectively.

Proposition 3 The coordinates are related by the Lorentz transformation:

�
ct

x

�
= 
(u)

�
1 u

c
u
c

1

��
ct0

x0

�
; 
(u) =

1p
1� u2=c2

;

and u = speed of O0 measured by O.

Proof:
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 t=t’=0

t’=k

B

t’=  ’

t=k  ’

t=

O
O’

τ
τ

τ

τ

The coords of B measured by O are

t =
1

2
(k� 0 + � ) ; x =

c

2
(k� 0 � � ) (11)

and the coords of B measured by O0 are

t0 =
1

2
(� 0 + k� ) ; x0 =

c

2
(� 0 � k� ) : (12)

Eqn (11) implies

�
ct

x

�
=
c

2

�
1 k

�1 k

��
�

� 0

�

and (12) implies �
ct

x

�
=

1

2k

�
1 k

�1 k

��
1 �1
k k

��
ct0

x0

�

=
1

2

�
k + k�1 k � k�1

k � k�1 k + k�1

��
ct0

x0

�

But k =
q

c+u
c�u

so k + k�1 = 2c=
p
c2 � u2 and k � k�1 = 2u=

p
c2 � u2 so

�
ct

x

�
= 
(u)

�
1 u

c
u
c

1

��
ct0

x0

�
:

Properties of Lorentz transformations
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1. It reduces to GT when u� c:�
t

x

�
= 
(u)

�
1 u

c2

u 1

��
t0

x0

�
�
�
1 0

u 1

��
t0

x0

�

if we ignore u2=c2 (since 
 � 1).

2. Diagrammatic relationship between coord systems:

x0 = 0 corresponds to x = ut and t0 = 0 corresponds to x = c2t=u.

t’, O’t, O

Simultaneity for O’
x’, {t’=const.} 

x, {t=const.} 
Simultaneity for O

Compare with Galilean Tranformation

t t’

x

x’

{t’=const.}
={t=const.}
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3. The inverse transformation is�
ct0

x0

�
= 
(u)

�
1 �u

c

�u
c

1

��
ct

x

�

which is a LT with u replaced by �u.

4. Time dilation revisited Note that if x0 = 0 (events on O0 worldline) then t =


(u)t0, which is again the time dilation formula. Note asymmetry arises from the

fact that we are looking at events on worldline of O0, not O.

Transformation of velocity Consider a nonaccelerating particle moving with speed v

relative to O in negative x-direction, i.e. x = �vt+a (a is constant). In the O0 coordinates

t0 = 
t� 
u

c2
(�vt+ a) ; x0 ��
ut+ 
(�vt+ a)

so speed relative to O0 is

w = �dx0

dt0
=


(v + u)


(1 + uv
c2
)
=

u+ v

1 + uv
c2

Remarks:

1) This di�ers from the classical formula w0 = v + u.
2) if v = c then w = c.
3) If jvj < c, juj < c then jw0j < c.
Proof:

(c� u)(c� v) > 0 =) u+ v < c(1 + uv=c2)

(c+ u)(c+ v) > 0 =) u+ v > �c(1 + uv=c2)

Composition of Lorentz transformations Suppose that O, O0 and O00 set up coordin-

ates (t; x), (t0; x0) and (t00; x00) and that O0 has velocity u relative to O and O00 has velocity

v relative to O0.

Then

�
ct

x

�
= 
(u)

�
1 u

c
u
c

1

��
ct0

x0

�

and

�
ct0

x0

�
= 
(v)

�
1 v

c
v
c

1

��
ct00

x00

�

So

�
ct

x

�
= 
(u)
(v)

�
1 u

c
u
c

1

��
1 v

c
v
c

1

��
ct00

x00

�

= 
(w)

�
1 w

c
w
c

1

�
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where w = u+v
1+uv=c2

. To see this use


(u)
(v)(1 + uv=c2) = 
(w) :

Rapidity

De�nition: The rapidity is �(u) = tanh�1(u=c).

With this de�nition, the Lorentz transformation becomes

�
ct

x

�
=

�
cosh� sinh�

sinh � cosh �

��
ct0

x0

�

An LT is thus a `pseudo' or `hyperbolic' rotation.

Note that 
(u) = cosh � and k = exp�.

Under the composition of Lorentz transformations, the rapidities add, �(w) = �(u) +
�(v).
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