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Abstract

Vector Microprocessors

by

Krste Asanovic
Doctor of Philosophy in Computer Science

University of California, Berkeley
Professor John Wawrzynek, Chair

Most previous research into vector architectures has concentrated on supercomputing applications
and small enhancements to existing vector supercomputer implementations. Thisthesis expands the body of
vector research by examining designs appropriate for single-chip full-custom vector microprocessor imple-
mentations targeting a much broader range of applications.

| present the design, implementation, and evaluation of TO (Torrent-0): the first single-chip vector
microprocessor. TO is a compact but highly parallel processor that can sustain over 24 operations per
cycle while issuing only a single 32-bit instruction per cycle. TO demonstrates that vector architectures
are well suited to full-custom VLS| implementation and that they perform well on many multimedia and
human-machine interface tasks.

The remainder of the thesis contains proposals for future vector microprocessor designs. | show
that the most area-efficient vector register file designs have several banks with several ports, rather than many
banks with few ports as used by traditional vector supercomputers, or one bank with many ports as used by
superscalar microprocessors. To extend the range of vector processing, | propose a vector flag processing
mode! which enables speculative vectorization of “while” loops. To improve the performance of inexpensive
vector memory systems, | introduce virtual processor caches, anew form of primary vector cache which can
convert some forms of strided and indexed vector accesses into unit-stride bursts.

Professor John Wawrzynek
Dissertation Committee Chair
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element group is written to the vector register file. The fourth cycle completes the write of
the second el ement group intothe vector register file. . . . . . . . ... ... ...
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Rake cache structure. In this example, the machine has 16 vector registers and 4 rake cache
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Example of multiplerakesin the same loop. The example C code multipliestwo submatrices
toyield aresult in athird submatrix. The compiler stripmines the inner loop, then performs
a loop interchange such that the matrices are processed in strips of VLMAX rows. The
innermost i loop can now be performed with single vector instructions, while the middle
j loop needs only one rake entry for each rake. The assembler code for the middlej loop
shows how careful alocation of rake accesses to vector registers avoids conflicts between the
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Chapter 1

| ntroduction

Ever since their introduction over twenty five years ago, vector supercomputers have been the most
powerful computers in the world. Recently, however, microprocessor-based systems have approached or
even exceeded the performance of vector supercomputers on some tasks and a much lower costs. Modern
mi croprocessors have superscalar architectureswhich appear more flexibl e than the vector model and so many
now believe that vector machines are a dying breed, being pushed aside by the astonishingly rapid evolution
of these “killer micros’[Bro89].

But the improved cost/performance of microprocessor-based systems is due primarily to their use
of commodity silicon CMOS fabrication technology. What if we implement vector architectures using the
same technology? In thisthesis, | argue that the resulting vector microprocessors may actually be the fastest,
cheapest, and most energy-e€fficient processors for many future applications. My argument is based on two
claims. First, that these future compute-intensive tasks will contain an abundance of data paralelism. And
second, that vector architectures are the most efficient way of exploiting that parallelism.

Over the last decade, there has been little published research into vector architecture compared
with the large body of work on superscalar and VLIW architectures. Further, most of that vector research
has concentrated on supercomputing applications and small enhancements to existing vector supercomputer
designs. Thisthesisis a step towards expanding the body of vector research, examining designs appropriate
for single-chip CMOS vector microprocessors targeting a broader range of applications.

Thesis Overview

Chapter 2 provides motivation and background for thiswork. | review vector instruction sets and
show that they are acompact, expressive, and scal able method for executing data parallel code. | aso discuss
how vectors can be applied to much wider range of tasks than traditional scientific and engineering super-
computing, including new application areas such as multimedia and human-machine interface processing. |
then show that most of the rapid improvement in microprocessor performance on non-vector code over the



last decade can be ascribed to technology improvements rather than microarchitectura innovation. | aso
present results that show that modern superscalar microprocessors are inefficient at driving existing memory
systems. Because of the expense of supporting increasing degrees of scalar instruction-level paralelism,
current superscalar designs cannot manage enough parallelism to saturate available pin bandwidth and mem-
ory bandwidth while tolerating memory latencies. By adding a vector unit to a microprocessor design, we
sacrifice asmall improvement in scalar performance for alarge improvement in performance on data paralel
code. The resulting vector microprocessor has different characteristics than existing vector supercomputers.
In particular, intra-CPU latencies are much better while memory bandwidthsare relatively worse.

Chapter 3 describesthedesign and implementation of TO: thefirst single-chip vector microprocessor.
TOisahighly paralel processor that can sustain over 24 operationsper cycle whileissuing only asingle 32-bit
instruction per clock cycle. The reductionin startup overhead made possible by a single-chip implementation
allows TO to achieve high efficiency with vector instructions that last only four clock cycles. The duration
of a vector instructionin clock cycles is known as a chime, and these short chimes are akey difference from
previous vector supercomputer implementations.

The next few chapters build on the experience of the TO implementation and propose designs for
various components within future vector microprocessors. Chapter 4 describes pipeline designs for vector
mi croprocessors and shows how short chimessimplify theimplementation of virtual memory. The chapter also
discusses pipeline designs that can mostly hide memory latency even with short chimes. An important topic
is techniques to handl e the cases where memory latency is exposed to software. Chapter 5 describes vector
register files and presents the design of a compact vector register file suitable for a full-custom VLS| vector
microprocessor implementation. Chapter 6 presents a vector flag processing model which supports vector
speculative execution in addition to the traditiona use of flags for conditional execution. Vector speculative
execution expands the range of vector processors by enabling the vectorization of loops containing data-
dependent loop exits (“while” 1oops) while preserving correct exception behavior. Chapter 7 discusses the
implementation of vector arithmetic units, including | EEE floating-point and support for narrower datatypes,
as well as comparing vector instruction set extensions with commercial multimedia extensions.

Chapter 8 discusses the implementation of vector memory systems. The chapter includes areview
of previous studies that have measured vector memory access patterns at the level of individual instructions.
| then identify higher level access patterns contained in sequences of vector memory instructionsand discuss
how these can be used to improve the performance of memory systems. Chapter 9 introducesvirtua processor
caches, a new type of vector cache which can take advantage of certain forms of these higher level vector
memory access patterns to reduce address and data bandwidth demands. In particular, virtua processor
caches can convert some forms of strided and indexed vector accesses into unit-stride bursts. This reduction
in address bandwidth is particularly important for low cost memory systems. Chapter 10 describes vector
instructionsthat allow communication between element positions without passing through memory.

Chapter 11 evauates the TO design by presenting performance results for severa applications
which have been ported to TO. The applicationsare drawn from a wide range of mostly non-supercomputing
applications, with an emphasis on taskslikely to form the bulk of future workloads, including multimediaand



human-machineinterface tasks. Chapter 12 analyzes these application portsto extract statisticsto help guide
future vector microprocessor designs.
Chapter 13 concludes the thesis, summarizing its contributions and suggesting future work.






Chapter 2

Background and Motivation

Microprocessors have adopted many architectural techniques originally developed for earlier su-
percomputers and mainframes including pipelining, caching, branch prediction, superscalar, and out-of -order
execution [HP96]. But commercial microprocessors have not adopted vector units, even though vector
supercomputers were introduced over twenty five years ago and remain the fastest computers for many tasks.

All current high-performance microprocessors [Gwe94a, VKY +96, CDd+95, Gwed6c, Gwedsh,
Gwedsc] have superscalar architectures, where hardware dynamically extracts instruction-level parallelism
(ILP) from asingleinstruction stream [Joh91]. Because superscalar architecturescan extract parallelismfrom
both vectorizable and non-vectorizable code and because the cost/performance of microprocessors has been
improving at adrametic rate, the prevailing belief in the computer architecture community today isthat vector
instructionsare now redundant. In this chapter, | argue that vector architectures retain unique advantages and
deserve further study, particularly when implemented in the form of single-chip vector microprocessors.

Section 2.1 compares variousforms of machine parallelism, including instruction-level parallelism,
thread-level parallelism, and vector data parallelism. Although vectors are the least flexible form of machine
paralelism they suffice to capture the parallelism present in many tasks, and their inflexibility makes vectors
the cheapest form of machine parallelism.

Section 2.2 reviews vector instruction sets and shows how they package large numbers of parallel
operations into single short instructions. The regular nature of vector instructions alows implementations
with simple control logic and compact datapaths to sustain high levels of operation-level parallelism.

Of course, vector instructions can only improve throughput on vectorizable code. Section 2.3
discusses how many new compute-intensive applications outside of the traditiona areas of scientific and
engineering supercomputing are also amenable to vector execution. With the increasing emphasis on multi-
media processing and intelligent human-machine interfaces, it is likely that the fraction of vectorizable code
in computing workloadswill grow.

As well as determining the benefit of including a vector unit for codes that can be vectorized, it
is important to determine the penalty for codes that cannot. The main impact of adding a vector unit is



the additiona die area required, which could otherwise be used to improve scalar performance. Section 2.4
examines the performance of superscalar processors on SPECint95, a set of benchmarks with low levels of
vectorization. The results show that sophisticated superscalar microarchitectures require a large growth in
diearea but yield only a modest improvement in performance on these types of code. Because it isexpensive
to scale superscalar hardware to support more paralelism and because it becomes increasingly difficult to
find more ILP, further increases in die areayield ever diminishing returnsin scalar performance. In theworst
case, when an application has no vectorizable code, alocating die area for acompact vector unit should have
only aminor impact on scalar performance relative to a machine that uses the additiona die area for scalar
processing. In practice, even “scalar” codes often contain somelevel of dataparallelism that can be exploited
by vector units.

Because vector execution is effective a removing other obstacles to high performance on data
paralel code, raw functiona unit throughput is exposed as the primary constraint. The memory system
often limits vector performance because memory bandwidth is expensive to provide. Although it iswidely
believed that current superscalar microprocessors are often constrained by pin and memory bandwidths, |
show that existing microprocessors can use only a fraction of available bandwidths; pin bandwidths and
memory bandwidths are not the bottleneck!

This surprising result is a consequence of the tremendous cost of managing parallelism expressed
solely with scaar instructions, each of which usually describes only a single primitive operation. Because of
this cost, current superscalar microprocessors cannot expl oit enough parallelism to maintain high throughput
while tolerating large main memory latencies. For data parallel code, vector units are an inexpensive way of
managing large numbers of parallel operations and hence alow vector machines to saturate avail able band-
widths. Thisshould alow vector microprocessors to provide higher throughput from existing microprocessor
memory systems. Recent devel opmentsin high-bandwidth DRAMSs, described in Section 2.5, enablelow-cost
high-bandwidth but high latency memory systems which should further increase the relative advantage of
vector processing.

Portable computing is becoming increasingly important, and Section 2.6 discusses how vectors
could provide improvements in energy efficiency, by simultaneously improving throughput while reducing
switched capacitance per operation.

Section 2.7 summarizes the main arguments made in this chapter.

2.1 Alternative Formsof Machine Parallelism

Computer architectshave employed variousformsof parallelismto provideincreasesin performance
above and beyond those made possible just by improvements in underlying circuit technologies. Pipelining
[HP96, Chapter 3] is the simplest form of machine parallelism and is now universally applied in all types of
computing system. Beyond simple pipelining, there are several ways in which processor designs can exploit
parallelism to improve performance. Figure 2.1 illustrates the three major categories:



e Instruction-level paralldism (ILP) is where multiple instructions from one instruction stream are
executed simultaneously. Superscalar machines dynamically extract ILP from a scalar instruction
stream.

e Thread-leve parallelism (TLP) is where multiple instruction streams are executed simultaneously.
Multiprocessor machines exploit TLP by scheduling multipleinstruction streams onto separate proces-

SOrs.

e Vector data parallelism (DP) is where the same operation is performed simultaneously on arrays
of elements. Vector machines exploit DP by executing multiple homogeneous operations within one
vector instruction at the same time.

These various forms of machine paralelism are not mutually exclusive and can be combined to
yield systems that can exploit al forms of application paralelism. For example, the NEC SX-4 vector
supercomputer [HL96] is a pipelined superscalar vector multiprocessor architecture which can exploit ILP,
TLPR and DP.

Data pardlelism is the least flexible form of machine parallelism. Any pardlelism that can be
expressed in a DP manner can also be expressed using ILP or TLP. For example, a superscalar processor can
perform DP operations by scheduling multipleindependent scalar instructionsto execute in parale, whilea
multiprocessor can perform DP operations by dividing elements among separate parallel instruction streams.
But it is precisaly thisinflexibility that makes DP the cheapest form of machine parallelism. A data parallel
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Figure2.1: Different formsof machine parallelism. Withineach diagram, each box representsoneinstruction,
and each shape within a box represents one operation. Boxes are grouped by instruction stream.



machine need only fetch and decode a single instruction to describe a whole array of paralel operations.
This reduces control logic complexity, whilethe regular nature of vector instructionsallows compact paralle
datapath structures.

Vector machines scale well to more highly paralel implementations. A single instruction man-
agement unit can be amortized over greater numbers of independent parallel datapaths. ILP machines scale
poorly because the possible interactions between concurrent instruction grows quadratically with the number
of parale instructions. TLP machines scale better than ILP machines, but incur the expense of duplicating
instruction management logic for each instructionstream. TLP machines a so suffer overheadsfor inter-thread
synchronization and communication. For these reasons, machines without vector support should have poorer
cost/performance on data parallel codes compared to vector machines.

2.2 Vector Processing

This section reviews the vector processing model and vector instruction set architectures (ISAs) in
general, and defines someterms used intherest of thethesis. Patterson and Hennessy have published alonger
introduction to vector processors [HP96, Appendix B].

Most current microprocessors have scalar instruction sets. A scalar instruction set is one which
requires a separate opcode and related operand specifiers for every operation to be performed. VLIW (Very
Long Instruction Word) [Fis83] machines typically also have scalar instruction sets, with multiple separate
scalar operations packed together into one long instruction.

Vector processors provide vector instructionsin additionto scalar instructions. A vector instruction
specifies operand vectors and a vector length, and an operation to be applied element-wise to these vector
operands. For example, avector addition instruction would take two vectors A and B, and produce a result
vector C":

C;=A;+ B, t=0,..,VL-1

where VL isthe vector length. A singlevector instruction specifies VL independent operations.

In this thesis, the term scalar processor is used to describe both a system that can only execute
scalar instructions and the scalar component of a vector processor. To avoid confusion, the term vectorless
processor is used when describing a system that does not provide vector instructions.

2.2.1 Vector Memory-Memory versusVector Register Architectures

Therearetwo main classes of vector architecturedi stinguished by thelocati on of thevector operands.
Vector memory-memory architectures, such as the CDC STAR 100 [HT72] and successors [Lin82], provide
instructionsthat operate on memory-resi dent vectors, reading source operandsfrom vectorslocated in memory
and writing resultsto a destination vector in memory. Vector register architectures, including the Cray series
and all of the supercomputers from Japan, provide arithmetic instructions that operate on vector registers,



reading source operands from vector registers and writing results to vector registers, while separate vector
load and store instructions move data between vector registers and memory.

Vector register architectures have several advantages over vector memory-memory architectures. A
vector memory-memory architecture hasto writeal intermediate resultsto memory and then hasto read them
back from memory. A vector register architecture can keep intermediate resultsin the vector registers closeto
the vector functional units, reducing temporary storage requirements, memory bandwidth requirements, and
inter-instruction latency. If avector result is needed by multiple other vector instructions, a memory-memory
architecture must read it from memory multipletimes, whereas a vector register machine can reuse the value
from vector registers, further reducing memory bandwidth requirements. For these reasons, vector register
machines have proven more effective in practice, and | restrict discussion to vector register architectures for
therest of thisthesis.

2.2.2 Vector Register ISA

The user programming model of atypical vector register architectureis shownin Figure 2.2. The
scalar unit of a vector processor is similar to a conventional vectorless processor. It contains some number
of genera purpose scalar registers, which may be sub-divided into specia-purpose sets, e.g., integer and
floating-point, or address and data. The scalar processor instruction set defines the usua complement of
scalar instructionsthat operate on scalar registers and that transfer data between scalar registers and memory.
The vector machines described in thisthesis are based on the scalar MIPS RISC | SA [Kan89].

The vector unit containssome number of vector dataregisters, each comprised of VLMAX e ements,
where VLMAX isapower of 2. A specia control register, the vector length register (VLR), isused to set the
number of elements processed by each vector instruction. VLR can be set to values between 0 and VLMAX.
In addition, some machines may provide a separate set of vector flag registers which have a single bit per
element and which are used to control conditional execution.

Vector arithmetic instructionstake source values from vector registers and write resultsto a vector
register. In addition, vector-scalar instructionformsare provided that replace one operand with ascalar value,
eg.,

C;=A;0pS, t=0,..,VL-1

For non-commutative operations, such as subtraction, a scalar-vector form may a so be provided,
C; = Sop 4, t=0,..,VL-1

The vector-scalar and scal ar-vector forms coul d be synthesized with asingle* copy scalar to vector” instruction
followed by a regular vector-vector instruction, but this would require an extra instruction and an extra
temporary vector register. These operations are used frequently enough to justify both forms.

Vector memory instructionstransfer val ues between memory and a vector register. There are three
ways in which the elements can be addressed. If the elements are contiguousin memory, then thisistermed
a unit-stride access. If the elements are separated by a constant displacement then thisis a strided access.
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Integer Float Vector Data Registers
Registers Registers v/
r7 f7
vO
ro fO [0] [1] [2] [VLMAX-1]
Scalar Unit Vector Unit Vector Length Register

Vector Arithmetic Instructions
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Figure 2.2: Typical user programming model of a vector register architecture. In addition to the standard
scalar integer and fl oating-point registers, thereisabank of vector registers. In thiscase there are eight vector
data registers VRO-VR7 each with a capacity of VLMAX dements. Vector arithmetic instructions perform
element-wise operations on vector registers while vector load and store instructions transfer data between
vector registers and memory. A vector addition instruction is shown as an example of a vector arithmetic
instruction, while a strided load is shown as an exampl e of a vector memory instruction. The effective length
of avector instructionis set by writing the VLR register.
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Unit-strideaccesses are obviously just aspecial case of strided accesses and are sometimes handled as such in
vector |SAs, but, because they occur so often and areamenabl e to specia case handling, | retain the distinction
between unit and non-unit stride. In indexed accesses, the elements may be located at arbitrary locationsin
memory with the addresses of the elementsindicated by the contents of a second vector register. Thisisaso
known as gather or scatter in itsload or store forms respectively.

Masked vector instruction execution is usually provided to allow vectorization of 1oops containing
conditionally executed statements. A mask vector controlsthe element positionswhere avector instructionis
allowed to update the result vector. The mask vector may be held in one or more special flag or mask registers,
or may be held in another vector register. If there is more than a single flag register, then instructions may
be provided to perform boolean operations between flag values, or aternatively the scalar unit can operate on
packed flag bit vectors.

Instructions are usually provided to allow the scalar processor to access single elements within a
vector register. These are useful for partialy vectorizableloops. A common example iswhere aloop contains
memory accesses that can be vectorized but where the computation contains a dependency between loop
iterationsthat requires scalar execution.

Compressand expand are another commonly implemented pair of vector instructions. The compress
instruction compacts elements at locations indicated by a flag register from a source vector register to
contiguous elements at the start of a destination vector register. The packed elements can then be processed
with subsequent vector instructions more efficiently than if masked instructionswere used throughout. The
expand operation isused to insert contiguouselements from the start of avector register to locationsindicated
by a flag register in the destination vector register. Expand can be used to write elements selected with a
compress back into the original vector. An aternative way to implement the functionality of compress, as
used on Crays, isto calculate a compressed index vector based on the flag bits, then use a gather to bring in
the compressed data. Similarly, scatters can be used to perform expands.

The above instructions represent a basic vector ISA, and are sufficient to vectorize most [oops.
To increase the range of loopsthat can be vectorized, various other more specialized instructions have been
proposed and implemented on vector machines.

2.2.3 TheVirtual Processor View

Whilethe above gives thetraditional view of avector register architecture, an important aternative
view isto regard the vector unit as a collection of virtual processors (VPs) [ZB91], as shown in Figure 2.3.
The number of VPsisequal to the maximum vector length (VLMAX). Thisview treats the vector register file
as an array of loca register files, one per VP. Each vector instruction performs a SIMD (Single Instruction
Multiple Data) [Fly66] operation, one operation per VP,

These processors are “virtual” because their operations are time multiplexed across the available
physical processing elements in the vector unit. For example, the Cray-1 [Rus78] vector unit can be viewed
as containing 64 virtual processors, whose addition instructions are time multiplexed over a single physica
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Figure 2.3: Virtual processor view of the vector machine shown in Figure 2.2. This view treats a vector
meachine as a collection of VLMAX virtual processors, each of which contains a set of scalar data registers.
Vector instructions specify SIMD operations across the array of virtua processors.
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hardware addition pipeline.
Throughout this thesis | use either the traditional or the virtua processor view of a vector unit
depending on the topic under discussion.

2.24 Vector |SA Advantages

A vector | SA packages multiple homogeneous, independent operationsinto a single short instruc-
tion. Theresult is compact, expressive, and scalable code.

The codeiscompact because asingleshort vector instruction can describe N operationsand address
3N register operands. This dramatically reduces instruction bandwidth requirements. Moreover, many of
the looping constructs required to iterate a scalar processor over the N operations are implicit in the vector
instruction, reducing instruction bandwidth requirements even further.

The code is expressive because software can pass on much valuable information to hardware about
thisgroup of N operations. In particular:

e These N operations are homogeneous. This saves hardware in the decode and issue stage. The
opcodeis decoded once, and all V operations can beissued as a group to the same functiona unit.

e These N operations are independent. This avoids hardware for dependency checking between the
N operations within one instruction. The N operations can be executed using an array of N parallel
functional units, or asingle very deeply pipelined functional unit, or any intermediate configuration of
paralel and pipelined functional units.

e These N operations will access elements within the vector registers in a regular pattern. For
example, a vector multiply instruction can only multiply element ¢ of one source vector register by
element i of a second source vector register, and must store the result in element ¢ of the destination
vector register. A subsequent vector add will have similar restrictions on the location of its operands.
Thisconstraint allowsahighly parallel vector unitto beimplemented as multipleindependent laneseach
containing one portion of the vector register file and an associated group of functional unit pipelines.
Section 3.4 describes the implementation of lanes in the TO vector microprocessor. This regular
access pattern also alows a highly multi-ported vector register file to be constructed inexpensively
from multiple interleaved storage banks with fewer ports per bank as described later in Section 5.2.
Another advantage of this regular access pattern is that dependencies between instructions need only
be checked once per vector register operand, not for every elemental operand within each instruction.
This dramatically reduces the amount of control logic required to manage large numbers of parallel
operations.

e Vector memory instructionstouch N operandsin aknown pattern. A memory system can imple-
ment important optimizationsif it is given accurate information on the reference stream. In particular,
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astream of N unit-stride accesses can be performed very efficiently using large block transfers. Chap-
ters 8 and 9 describe how knowledge of various other vector memory access patterns can be used to
improve memory system performance.

The code is scalable because performance can be increased by adding paraléel pipelines, or costs
reduced by decreasing the number of pipelines, while retaining full object-code compatibility. Figure 2.4
compares execution of the same vector addition instruction on two different vector functiona unit (VFU)
implementations. The first VFU has a single pipeline, while the second VFU has four pipelines. The
component operations of a vector instruction are striped across the available pipelines and peak throughput
improves linearly with the number of pipelines. For a VFU with P paralle pipelines, on clock cycle O of an
instruction’sexecution, operation 0 begins execution in pipeline 0, operation 1 begins execution in pipeline 1,
..., and operation P — 1 begins execution in pipeline P — 1. On clock cycle 1, operation P begins execution
in pipeline 0, operation P 4+ 1 in pipeline 1, and so on. | use the term element group to refer to the set of
elements that are processed at the same time by a set of parallel pipelines. While most element groups will
have P dements, an element group may contain fewer than P dementsif it isthelast element group from a
vector instruction with avector length that is not amultiple of P.

One final important advantage is that vector instructions can be added as extensions to existing
standard scalar instruction sets. This preserves software investment and enables a smooth transition to vector
code.

2.3 Applications

To what extent can future workloads can be vectorized? Thisisthe single most important question
regarding the viability of vector machines. Although the success of vector supercomputers has proven that
scientific and engineering applications often contain substantial portions of vectorizable code, there has been
little investigation of vectorizability outside this domain.

Due to the lack of inexpensive vector machines, there has been little incentive to write non-
supercomputing codes with vectorization in mind. It is therefore unsurprising that many existing codes
appear unvectorizable at first. But, asshown in Chapter 11, many of the compute-intensive tasks envisaged in
future workloads can be readily vectorized. In particular, the growing interest in multimediaand intelligent
human-machine interfaces seems likely to cause a continuing growth in the fraction of desktop and portable
computing workloads which can be vectorized.

Databases are commercially the most important application for large servers. While there has been
little work in vectorizing database applications, a significant fraction of this workload also appears to be
vectorizable. Sorting [ZB91] and hash-join operators [Mar96] are vectorizable. Database mining is highly
compute-intensive, and involves applying multiple statistical techniques to features extracted from database
entries. Many of the basic statistical agorithms, including neura networks (Section 11.5), are vectorizable.
Databases are now being extended to manage richer media types including video and audio. Querying such
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Figure 2.4: Execution of the same vector addition instruction (C = A + B) in two different vector functional
units. The first unit (8) has a single pipeline and completes one operation per cycle, while the second unit
(b) has four parallel pipelinesand completes up to four operations per cycle. An element group is the set of
elements that are processed at the same time but in different pipelines.
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databases involves various forms of pattern recognition and many such agorithms are a so vectorizable.

2.3.1 Software Effort

Even when application tasks are vectorizable, a further issue is the software effort required to
gain the benefit of vector execution. One lesson learned from the scientific and engineering communities
experiencein using vector supercomputersisthat many “dusty-deck” codes cannot be automatically vectorized
as written. Old programs often require some degree of annotation, modification, or even a complete rewrite.
Nevertheless, many scientific and engineering applications have been successfully converted to vector form.
The incentive for this coding effort was to obtain efficient code for the fastest computers available.

If inexpensive vector microprocessors of the type described in this thesis become commonplace,
the effort of vectorizing software should be rewarded in several ways:

e Vector architectures should remain the highest-performance, lowest-cost, and most energy-efficient
way to execute data parallel tasks.

e Vectorized source code should provide portable high performance across a range of different vector

machines.

¢ Vectorized source code can scale to take advantage of future vector execution engines with increased
numbers of parallel pipelines.

Vectorization can be accomplished incrementally. If vector extensions are added to a standard
scalar instruction set, then existing scalar binary code can run unchanged. Even in this case, a vector
unit can improve performance by accelerating dynamically-linked libraries and operating system functions.
Unmodified source code can be recompiled with a vectorizing compiler to yield some degree of performance
improvement through automatic vectorization. Further improvements in vectorization will require source
code modifications, ranging from programmer annotati ons through to major restructuring.

If anew application isbeing written, the combination of mature vectorizing compilers with avector
execution engine offers astrai ghtforward performance-programming model with aclear rel ationship between
code structure and execution time,

2.3.2 The Continuing Importance of Assembly Coding

While the above discussion and much contemporary computer architecture research focuses on
applications written in a portable high-level language, for some tasks a significant fraction of time is
spent executing routines written in assembly code. Such routines are written in assembly because they
are performance-critical and because modern compilers do not generate optima code. Examples include
database software, desktop productivity applications, and libraries for scientific, graphics, multimedia, and
cryptographic operations. Indeed, during the recent spate of multimedia extensions for existing 1SAs, com-
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panies have assumed coding will be performed in assembler and thus have no plansto provide full compiler
support.

While it is currently unfashionable to discuss ease of assembly coding in instruction set design, a
vector |SA does have advantages over other highly paralle aternatives. Compared with assembly program-
ming of wide out-of-order superscaar architectures, or tightly-coupled multiprocessors, or VLIW machines
with exposed functiona unit latencies, vectors offer a compact, predictable, single-threaded assembly pro-
gramming model with loop unrolling performed automatically in hardware. Moreover, scheduled vector
obj ect code can directly benefit from new implementationswith greater parallelism, though achieving optimal
performance on new microarchitectures will likely require some rescheduling.

2.4 Scalar Performance

Theindustry standard SPECint benchmarks are often used to measure performance on scalar integer
code. Intheten year period between 1986 and 1996, the integer performance of microprocessors as measured
by the highest performing system on these benchmarks has improved over 100 fold, or roughly 60% per year
[HP96].

Itisdifficult to apportion credit for thisdramati cimprovement among advancesin devicetechnol ogy,
circuit design, ingtruction set architecture, memory systems, CPU core microarchitecture, and compiler
technology. But in this section, | show that sophisticated superscalar microarchitectures have had only a
modest impact when compared to these other factors.

In Table 2.1, | compare the performance of two systems from Silicon Graphics Incorporated
(SGI): the SGI O2 using the QED R5000 microprocessor, and the SGI Origin 200 using the MIPS R10000
microprocessor. The R5000 is an in-order dual-issue superscalar processor, but it can only issue a single
integer instruction per cycle and the processor stalls during cache misses [Gwed6€]. |n contrast, the R10000
has a sophisticated microarchitecture which can issue up to four integer instructions per cycle, with register
renaming, speculative and out-of-order execution, and non-blocking primary and secondary caches [Yea96,
VKY196]. The R10000 can only execute and retire up to three integer instructions per cycle.

The more sophisticated microarchitecture of the R10000 incurs a considerable expense in die area,
design time, and energy consumption. The R10000 requires over 3.4 times the die area of the R5000 as well
as using an extra metal layer. If we ignore caches, memory management units, externa interfaces, and pad
ring, and consider only the CPU core circuitry, the arearatioiscloser to 5. Most of theareaincrease isdueto
the complex structuresrequired to support specul ative and out-of -order superscalar execution. Approximately
122 mm? out of the 162 mm? of CPU logic is devoted to instruction fetch, decode, register renaming control,
and the instruction window components. The integer and floating-point datapaths, including the area for the
renamed register file and bypass circuitry, occupy only around 40 mm?.

The two machines are otherwise very similar. Both microprocessors implement the MIPS-1V |SA,
are built in 0.35 ym CMOS processes, and are available at the same clock rate. They have the same on-chip



18

| | SGI O2R5000SC | SGI Origin200 | Origin/O2 |
Processor Die Details
Processor R5000 R10000
Clock Rate (MH2z) 180 180 1
ISA MIPS-1V MIPS-1V
Process Technology (p:m) 0.35 0.35
Metal layers 3 4 1.33
Polysilicon layers 1 1
Tota Die Area (mm?) 87 298 343
CPU Die Area (mm?) ~33 ~162 4.9
Power Supply (V) 3.3 3.3
Maximum Power at 200MHz (W) 10 30 3
Out-of -order execution? No Yes
Branch prediction? No Yes
L1 caches (I/D KB) 32/32 32/32
L1 associativity 2-way 2-way
L1 non-blocking? No Yes
Integer instructions per cycle 1 3 3
System Details
L2 capacity (off-chip, unified, KB) 512 1024 2
L2 associativity direct mapped 2-way
L2 non-blocking? No Yes
SPEC disclosure date October '96 | November *96
Compilers MIPSPRO 7.1 | MIPSPRO 7.1
SPECint95 (peak) 4.82 8.59 1.78
SPECint95 (base) 4.76 7.85 1.65

Table2.1: Comparison betweenthe QED R5000 and M1 PS R10000 microprocessors. The R5000 areanumber
is for the version manufactured in a single-poly process with 6 transistor cache SRAM cells, some vendors
manufacture the R5000 in a dua-poly process with smaller 4 transistor cache SRAM cells [Gwed6e]. The
CPU area numbers are estimates obtai ned from annotated die micrographs, and exclude areafor clock drivers,
caches, memory management units, and external interfaces.
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L1 cache organization with split 32 KB two-way set-associative instruction and data caches. Both systems
are built by the same company and benchmark results were reported at almost the same time using the same
compiler. The R10000 system has afaster, larger, and more set-associative L2 cache.

The SPECint95 benchmark results show that the R10000 system, even with a superior L2 cache, is
only 1.65-1.78 times faster than the R5000 system. The R5000 has an integer microarchitecture very similar
to that of one of the earliest commercia RISC microprocessors, the MIPS R2000 which shipped in 1986
running at 8 MHz. The R5000 shipped in 1996 with a clock rate of 200MHz, a factor of 25 improvement
in clock frequency. Itis clear that superscalar microarchitecture has had far less impact than simple clock
frequency scaling over this decade.

Thislarge expenditureof dieareafor a sophisticated superscal ar microarchitecture gives poor return
in performance because it isdifficult to extract ILP from these codes. While microarchitectures and compilers
will continue to improve, futureincreases in die area will likely result in diminishing returns for this class of
codes.

24.1 Scalar Performance of Vector Supercomputers

The scalar performance of vector supercomputers has improved much more slowly than that of
microprocessor systems. The Cray-1 was the fastest scalar processor at the time it was introduced, but in
a recent study [AAWT96], a 300MHz Digital Alpha 21164 microprocessor was found to be as much as
five times faster than a 240 MHz Cray C90 vector supercomputer on non-vectorized codes taken from the
SPECfp92 suite.! Table 2.2 liststhe performance data from the study and Figure 2.5 plots the speedup of the
C90 over the 21164. On the vectorized codes, the C90 was up to four times faster even though the SPECfp92
benchmarks fit into the caches of the Alpha 21164 [GHPS93, CB94b].

There are many factors that contribute to the Alpha’s superior scalar performance. The 21164 has
both a higher clock rate and shorter latenciesin clock cycles through almost all functional units®. The 21164
can issue up to four instructionsin one cycle whereas the C90 cannot i ssue more than oneinstruction per cycle
and requires multiple cycles to issue many common scalar instructionsincluding scalar memory references
and branches. The 21164'slarger primary instruction cache and underlying cache hierarchy combined with
instruction prefetching reduces the impact of instruction cache misses. The C90 experiences full memory
latency on every missin its small primary instruction cache, and has no instruction prefetching beyond that
provided by long instruction cache lines. Even on cache hits, extra delay cycles are incurred when switching
between the eight banks of the C90 instruction cache. The Alpha architecture has 32 integer and 32 floating-
point registers accessible by any instruction, while the Cray architecture has only 8 primary address and 8
primary scalar registers, withafurther 64 address backup and 64 scalar backup registersthat require additional
instructionsto access. The 21164 has a data cache hierarchy which reduces the impact of memory latency for
applicationswith smaller working sets. The C90 has no scalar data cache (apart from the explicitly managed

1At the time of writing, faster versionsof both architectures are in production, the 600 MHz Digital 21164A, and the 460 MHz Cray
T90.
2Detailed functional unit timingsfor the C90 are considered Cray proprietary and are not reproduced here [Cra93)].
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| System Details

System Cray C90 Digital 8400

Processor Cray C90 Alpha21164

Clock Rate (MHz) 240 300

Peak 64-bit MFLOPS 960 600

Peak MIPS 240 1200

Benchmark Benchmark Times (seconds) | C90 speedup
spi ce2g6 498.6 102.5 0.21
doduc 15.0 4.9 0.33
f pppp 75.8 141 0.19
ora 32.8 19.7 0.60
mdl j dp2 21.1 15.6 0.74
wave5 14.2 11.8 0.83
mdl j sp2 21.7 14.1 0.65
al vi nn 4.8 8.0 1.67
nasa’7 105 26.5 252
ear 12.9 20.0 155
hydr o2d 6.2 238 3.84
su2cor 43 17.6 4.09
tontatv 10 37 3.70
sw256 8.2 29.0 354

Table 2.2: Performance results for SPECfp92 [AAW96]. Two results were reported for the Alphain this
study, the vendor-opti mized SPECfp92 disclosure and results using the experimental SUIF compiler, and here
| use the better number for each benchmark. The Cray results were not optimized by the vendor and could
potentialy be further improved.

4.5

C90 Speedup Over Alpha 21164

spc ddc fpp ora mdd wav mds alv nas ear hyd su2 tom swm
Benchmark

Figure 2.5: Speedup of asingle Cray C90 processor against single Alpha 21164 processor on the SPECfp92
benchmark suite [AAWT96].
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scalar backup registers) and experiences the full memory latency (over 20 cycles) on every scalar load.

The Cray vector supercomputers suffer from the need to keep backwards compatibility with an |SA
designed two decades earlier, while the Alphal SA benefits from recent research into the interaction of scalar
CPU design and compilation technology. The Cray supercomputers are built with a low-density gate array
technology that requires the CPU be split across multiplechips. In contrast, the 21164 isafull-custom design
implemented in high-density CMOS process, which enables a high-performance scalar CPU plus the upper
levels of the memory hierarchy to be integrated together on the same die, significantly lowering latencies.

2.4.2 Scalar versus Vector Performance Tradeoff

If we base a vector architecture on a modern scalar 1SA and implement thisin a modern CMOS
process, we can expect the scalar core of the resulting vector microprocessor to have scalar performance
comparable to that of a conventional scalar microprocessor built in the same die area. But adding a vector
unit takes away die area that could otherwise be used to increase scalar performance.

The R10000 SPECInt95 results above suggest that it is difficult to improve scalar performance
significantly even withlargeincreasesin diearea. At some point, depending on the workload, adding avector
unit to give large increases in throughput on data parallel code should be more attractive than continuing to
add hardware to give incrementa speedups on scalar code. Furthermore, in Chapter 11, | present results for
vectorizing SPECint95 which show that vector units can improve cost/performance even for codes with low
levels of vectorization.

2.5 Memory Systems

By removing other bottlenecks, vector architectures expose raw functional unit throughput as the
primary limitation on vector performance. Asdevice density increases, it is straightforward to increase vector
arithmetic throughput by replicating pipelines. Balancing this arithmetic throughput with sufficient memory
system bandwidth is more difficult, particularly in low-cost systems which must use DRAM main memories.

In Section 2.5.1, | use numbers from the STREAM benchmark to show that current superscalar
mi croprocessors makeinefficient use of avail able pin and memory bandwidths, even on code that does nothing
except copy memory. Because of the expense of managing scalar instructions, existing superscalar machines
cannot exploit enough parallelism to saturate pin bandwidths and memory bandwidths while tolerating main
memory latency. Even with current memory system designs, a vector machine could potentialy improve
application memory bandwidth by supporting enough parallelism to saturate pinsand DRAMS.

Section 2.5.2 describes advances in high-bandwidth DRAMs that should enable even grester mem-
ory bandwidths a low cost, while Section 2.5.3 describes the possibility of removing pin and memory
bandwidth bottlenecks completely by moving main memory on to the same die as the processor.
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C Copy kernel C Sum kernel
DO30j =1,n DO50j =1,n
c(j) = a(j) c(j) = a(j) + b(j)
30 CONTI NUE 50 CONTI NUE
C Scal e kernel C Triad kernel
DO40 j = 1,n DO60j = 1,n
b(j) = scalar*c(j) a(j) = b(j) + scalar*c(j)
40 CONTI NUE 60 CONTI NUE

Figure 2.6: STREAM benchmark kernels [McC95].

251 STREAM Benchmark

The STREAM benchmark [ M cC95] measuresthe sustai nabl e application memory bandwidth during
long unit-stride vector operations within the four FORTRAN kernels shown in Figure 2.6. Performance on
this benchmark correlates well with performance measured on certain scientific applications[McC].

Thedatain Table 2.3 isfor three multiprocessor servers[McC97h], and two parall el vector processor
systems. | use multiprocessor systems in this analysis because measurements made by running multiple
processors simultaneously can saturatethe shared memory system and yi el d the maximum sustai nable memory
bandwidth. Each server isbuilt around ashared backplane interconnect, with all memory modul es equi distant
fromall processors. Cache coherence acrossall processors and memory modulesis managed by bus snooping
hardware. The Sun UE 6000 system has two processors on each system board sharing a single 1.328 GB/s
connection to the backplane.

The third column gives the peak data pin bandwidth for the CPU. This is the maximum rate at
which data can cross the chip boundary. The 300MHz 21164 processors in the AlphaServer 8400 have a
16-byte L3 cache bus that cycles at a 75MHz clock rate [FFG195]. The 75MHz R8000 processors in the
Power Challenge have a 16-byte L2 cache bus cycling a 75 MHz. The R8000 is split into two chips with the
separate floating-point unit chip connected directly to the L2 cache [Gwe93]. All the floating-point loads and
stores used in the STREAM benchmark do not access the L1 cache on the integer unit chip. The 167 MHz
UltraSPARC processors in the Sun UE 6000 system have a 16-byte L2 cache bus cycling at 167 MHz.

The fourth column gives the maximum aggregate application memory bandwidth sustained on any
onekernel of the STREAM benchmark when using all of the given number of CPUsrunningin paralel. This
is a measure of the usable bandwidth of the shared memory system on these machines. The write alocate
policy of the caches in the Digital and SGI systems impliesthat each destination vector cache line has to be
read before being immediately overwritten. Thisraisesthe actual physical memory traffic by up to 50% over
that measured by the STREAM kernels, but we use the same measurement for multipleand single processors,
so thiseffect cancels out when we take ratios. The Sun results use VIS assembly code to bypass the cache on
writesto the destination vector.
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The fifth column gives the maximum application memory bandwidth sustained by a single CPU
running the STREAM benchmark with other processorsidle. In al cases, asingle CPU can only exploit a
small fraction of both its available pin bandwidth and the available shared memory system bandwidth. The
ratio of sustained single CPU application memory bandwidthto single CPU datapin bandwidthvaries between
11.2-16.5%. Theratio of sustained single CPU application memory bandwidth to sustainable memory system
bandwidth varies between 14.3-20.3%.

These numbers suggest that current microprocessors cannot efficiently convert available CPU data
pin bandwidth and available memory system bandwidth into sustained application memory bandwidth. The
primary reason isthat current microprocessors cannot control enough parallelism to tolerate latenciesto main
memory.

The vector processors shown in Table 2.3 sustain a much greater fraction of raw processor pin
bandwidth. The J90 processor has two memory pipelineseach of which can move one 8-byteword per cycle,
giving a peak memory bandwidth of 1600MB/s. The J90 processor ddlivers up to 1442MB/s STREAM
bandwidth, 90% of its peak pin bandwidth. Thisis over a factor of seven greater than the Alpha 21164
processor inthe Digital 8400, despite both machines having amemory system built from commodity DRAMS
with roughly the same system cost per CPU [SB95]. The memory pipelinesin a C90 processor can move
6 words per cycle, for a peak of 11.5GB/s, and ddivers 9.5GB/s STREAM bandwidth, 82% of peak pin
bandwidth. Compared to the microprocessor systems, the C90 has a much higher cost due to the use of
SRAM for main memory.

System CPUs Single CPU | Maximum Maximum
DataPin Aggregate Single CPU
Bandwidth STREAM STREAM
(MB/s) Bandwidth Bandwidth
(MB/s) (MB/s)
Digital 8400 8x300MHz 1,200 978.8 198.3
Alpha21164
SGI 8x75MHz 1,200 749.3 134.9
PowerChallenge MIPS R8000
Sun UE 6000 16x 167 MHz 2,672 2,551.0 366.8
(VIS assembly code) UltraSPARC (Maximum to
one CPU is
1,328)
Cray J916 8x100MHz 1,600 10,274.4 14417
Cray C916 i%g 240MHz 11,520 105,497.0 9,500.7
Ca0

Table 2.3: STREAM benchmark results. These results show that commercial microprocessors can only use
afraction of the pin and memory system bandwidth available to them. The Sun UE6G000 bus structure limits
the shared bandwidth available to one CPU. Vector processors, such as the Cray J90 and Cray C90, sustain a
much greater fraction of peak processor pin bandwidth.
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A popular falacy is that superscalar microprocessors would deliver vector-like performance if
given high-performance vector memory systems [HP96, Appendix B.8]. But the STREAM results(Table2.3)
demonstratethat superscal ar microprocessors make poor use of existing | ow-bandwidthmemory systems. The
problemisthat the moreflexible parallel execution model of the superscalar processors comes at considerable
cost, which limits the number of parale operations that can be supported and hence the memory latency
that can betolerated. In contrast, Espasa [EV96] presents simulation results for vector machines which show
that, even with relatively simple microarchitectures, they can attain high memory system efficiencies while
tolerating 100 cycle memory latencies.

252 High Performance DRAM Interfaces

With each DRAM generation, capacity has increased by afactor of four while cost per bit has only
dropped by a factor of two [Prz96]. Because memory sizes are often constrained by cost, the number of
DRAMs per system halves with each DRAM generation [PACt 97]. This exacerbates the bandwidth problem
by reducing the number of separate DRAM s across which memory accesses can be interleaved.

Driven by the needs of graphics adaptors, which demand high bandwidth from small memories,
various high-performance DRAM interfaces have been devel oped, including synchronousDRAM (SDRAM),
Rambus DRAM (RDRAM), MoSys DRAM (MDRAM), and SyncLink (SLDRAM) [Prz96]. These can
deliver hundreds of megabytes per second of raw main memory bandwidth per device when driven with an
appropriate stream of memory references.

One outstanding demonstration of the capabilities of these new high-performance DRAMs is the
Nintendo N64 video game [Top97] currently selling for less than $200. The N64 has grester main memory
bandwidth than most contemporary workstations. The single 562.5 MHz Rambus DRAM channel inthe N64
can provide sustained unit-stridebandwidths of around 390 MB/swhilerequiring only 31 pinson the memory
controller. Asof September 1997 [McC97b], the leading microprocessor figuresfor STREAM werethe IBM
RS6000family led by the 591 model at 800 M B/s, and the Fujitsu HAL family withthe HAL 385 at 523 MBY/s.
Other systems, such as those from Digital, HR, Sun, SGI, and Intel, achieve well under 400 MB/s. Note that
STREAM operates on long unit-stride vectors — an access pattern that should allow any high-performance
DRAM to attain pesk transfer rates.

A further example is the low-cost SGI O2 workstation, which is built around a single bank of
synchronous DRAM memory used both for graphics acceleration as well as for CPU main memory [Kil97].
This memory system has a 256-bit data bus cycling at 66 MHz providing up to 2.1 GB/s of main memory
bandwidth. Unfortunately, the R5000 processor in the O2 only manages to ddiver a patry 70MB/s on
STREAM [McC974] .2

Thereisanatura synergy between these new DRAM technol ogiesand vector architectures. DRAMs
can provide high bandwidth but at high latencies, and for optimum performance they require that as many op-

3The SGI 02 also supports a higher performance R10000 processor, but a bad interaction between the R10000 and the O2 memory
controller limits STREAM memory bandwidth of this configuration to around 55 MB/s[McC97a).
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erationsas possibleare performed on one DRAM row before therow addressischanged. Vector architectures
can saturate the available memory bandwidth while tolerating high latency, and vector memory instructions
naturally group scores of related accesses to improve spatial locality. Even where DRAM accesses remain the
bottleneck, the vector memory unit should be able to deliver reference streams which maximize the sustained
bandwidth.

25.3 IRAM: Processor-Memory Integration

Asthenumber of DRAM s per system continuesto drop, anincreasingly largefraction of applications
will have working sets that fit onto a single DRAM. This observation motivates the development of IRAM
technology which integrates processor and DRAM together on the same die [PACt97]. With the removal of
the pin bottleneck, attainable bandwidths may increase 50-fold whilelatency is reduced 5-fold.

Vectors appear a natural match to IRAM technology [KPPt97]. An IRAM processor must be
small to leave room for DRAM, but must also make good use of the increased memory bandwidth to justify
devel opment of thetechnology. A vector processor isacompact devicethat can neverthel ess convert available
memory bandwidth into application speedup.

2.6 Energy Efficiency

While the previous arguments have concentrated on performance, another increasingly important
factor in computer system design is energy consumption. Astheir capabilitiesimprove, portable computing
devices, such as laptops, pamtops, and personal digita assistants (PDAS) are becomingly increasingly
popular. Unfortunately, battery technol ogy isimproving much more slowly than CMOS technology [Rei95],
so emphasis isnow being placed on architectural techniquesthat exploit increased transistor countsto reduce
power [CCB92]. Even for line-powered computers, lowering energy consumption is important to reduce
die packaging and cooling costs, to improve ergnomics by eliminating fan noise, and to support “green”
computing.

Energy consumption is a measure of how much energy is required to perform a certain task. The
lower the energy consumption, the greater the battery life in a portable device. But most simple techniques
to lower energy consumption also lower performance, and response time may be as important as energy per
operation for portable computers. Burd and Broderson [BB96] show that Energy to Throughput Ratio (ETR)
is an appropriate measure for the energy efficiency of alow-power processor operating in either maximum
throughput mode, or burst mode with some form of idle mode power reduction:

Energy Power
ETR = =
Throughput — Throughput®

ETR is a measure similar to MIPS*/Watt or the energy-delay product. The power consumption in a well-
designed CMOS circuit can be approximated as:

2
Power = Vpp“ - fcLk - CEFF
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where fc k isthesystem clock frequency, Vpp isthesupply voltage, and Cgpp isthe effective capacitance
switched each cycle [CCB92].

One way to increase energy efficiency isto increase the parallelism present in an microarchitecture
[CCB92]. With perfect paralélization, if N operations are completed in paralel, the energy consumption
per operation will be unchanged, but throughput will increase, hence ETR improves. In practice, making
hardware more parallel incurs overheads which reduce ETR.

For example, an in-order superscalar processor exploits parallelism but increases Cgpp per in-
struction. In the issue stages, multiplefetched instructions must be aligned to multipleinstruction decoders,
inter-instruction dependencies must be checked, and multiple instructions must be dispatched over an in-
struction crossbar to the multiple functional units. In the execute stage, there are larger multiported register
files and more capacitative bypass busses between multiple functional units. Also, thelarger size of the core
increases clock distribution energy.

An out-of-order processor further increases Cgpp per instruction. Register renaming, buffering
instructionsin the instruction window before issue, arbitrating amongst ready instructions for issue, broad-
casting resultsback to theinstructionwindow, buffering compl eted resultsinthereorder buffer before commit,
and comparing load addresses to bypass outstanding stores in the store buffer, al cause additiona energy
overhead.

Both in-order and out-of-order superscaar processors amost invariably perform speculative ex-
ecution, which also increases the Cgpp overhead per completed instruction, by adding branch prediction
hardware and by performing and buffering operations whose results will later be discarded.

For there to be an improvement in ETR, the speedup obtained from these techniques must be
greater than theincrease in Cgpp per operation [BB96]. Thereis evidence that even for alimited dual-issue
superscalar processor, the speedup is matched by increased C'gpp overhead [GH95]. Because Cgpp tendsto
increase quadratically withissue width while speedup increases sublinearly, it isunlikely that more aggressive
superscalar designswill improve ETR.

In contrast, a vector machine has the potential to both increase performance and reduce Cgpg per
operation. One distinct advantage of adding avector unit isthat it can imposelittle overhead on purely scalar
code. If the clocks to the vector unit are gated off when there are no vector instructions executing, the only
additiona energy consumption should be a few gates in the instruction decoder checking for the presence of
new vector instructions. Incontrast, aggressive superscaar architectures consume extraenergy per instruction
even when thereislittle parallelismto exploit.

While a complete quantitative analysis of the energy efficiency of vector architectures is beyond
the scope of thisthesis, it is possible to highlight several areas where there are potentia savings in Cgpp
overhead:

¢ Instruction fetch. Perhaps the most obvious reduction is in instruction fetch, decode, and dispatch.
For vectorizable code, a vector unit drastically reduces the number of instruction fetches. Vector
instructions also remove much of the interlock and dispatch logic overhead. To illustrate the potential
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| Unit | Power |
I-cache 27%
I-box 18%
D-cache 16%
Clock 10%
IMMU 9%
E-box 8%
DMMU 8%
Write Buffer 2%
Bus Interface 2%
PLL 1%

Table 2.4: Breskdown of power consumption of Digital SA-110 StrongARM processor when running Dhry-
stone[MWAT96].

for energy savings, Table 2.4 shows a breakdown of the power consumption of the Digital SA-110
StrongARM microprocessor while running the Dhrystone benchmark [MWA*96]. If we add together
the power consumed in theinstruction cache, the instruction MMU, and the instruction decode (1-box),
we see that 54% of the power is consumed in fetching and decoding instructions.

e Register file access. Because operations within a vector instruction access the vector register file in
aregular pattern, a high-bandwidth vector register file can be built from smaller, fewer-ported banks
(Chapter 5). In contrast, a superscalar architecture with its flexibility to access any combination of
registersfor any operation requires full multiported access to the entire register file storage.

e Datapath data. Because vector instructions group similar operations, it is likely that there is much
greater bit-level correlation between successive e ements in a vector than between successive instruc-
tions executed in a vectorless processor. This should reduce datapath switching energy [BB96].

¢ Datapath control lines. Because a vector functional unit executes the same operation on a set of
elements, datapath control signals are only switched once per vector. This should reduce Cgpp
compared to avectorless architecture where different types of operation are time multiplexed over the
same functional units, and hence datapath control lines are toggled more frequently.

e Memory accesses. Vector memory operations present regular access patterns to the memory system,
which enables further energy savings. For example, unit-stride vector memory accesses may only
require one, or at most two, TLB accesses per vector of operands.

The main sources of potential increases in C g per operation are in structures that provide inter-
lane communication, including control broadcast and the memory system crossbar. This inter-lane cost can
be reduced by using highly vectorizable agorithms that avoid inter-lane communication, and by adding VP
caches (Chapter 9) that reduce lane interactions with memory crossbars.
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2.7 Summary

This chapter presented a case for including vector units on future microprocessors. Vector instruc-
tionsare sufficient to represent much of the parallelism present in future compute-intensive applications, such
as media processing and intelligent human-machine interfaces. Rather than only adding hardware to provide
incremental improvement in scalar performance, we can instead spend some of the hardware budget on a
vector unit to attain large speedups on data parallel codes.

Because scalar instructionsare an expensive way to implement machine parallelism, current micro-
processors cannot exploit enough parallelismto saturate existing pin and memory bandwidthswhiletol erating
memory latency. Vector instructionsallow asmall amount of logicto control large amounts of operation-level
parallelism, thereby enabling the processor totol eratelatency and saturate avail able memory bandwidths. This
facility will become increasingly important both for off-chip memory, where tolerating latency isimportant,
and for high-bandwidth on-chip memory, where providing high throughput isimportant.

Vector architectures exhibit anatural synergy with IRAM technol ogies, providing alow-cost, high-
performance, energy-efficient processor to match the low-cost, high-bandwidth and energy-efficient on-chip
memory system. Vector IRAMS have the potential to become the standard processors for |ow-cost portable
computing systems.

Vector architectures have been commercialy available for twenty five years, but only in the form
of multi-chip vector supercomputers. This thesis expands the body of vector research by investigating the
changes in the design space when vector architectures are integrated on a single die to form low-cost vector
microprocessors. The most important changes are that intraCPU latencies are improved while off-chip
memory bandwidths are reduced.
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Chapter 3

T0: A Vector Microprocessor

A typica vector supercomputer is built from hundreds of low-density ECL logic chips coupled
with severa thousand BIiCMOS SRAM memory chips, supports multiple CPUs, resides in a purpose-built
room, requires a liquid cooling system, and is in continual use running scientific and engineering batch
jobs. In contrast, a typical future vector microprocessor will be built on a single high-density CMOS die,
possibly coupled with a few commodity DRAM memory chips, and will occasiondly be turned on by a
single user to run multimedia applications in a battery-powered portable computer. This chapter presents a
detailed description of the design and implementation of TO (Torrent-0), the first compl ete single-chip vector
microprocessor.!

Section 3.1 provides the background to the project. Section 3.2 gives a short overview of the
Torrent vector | SA implemented by TO, while Section 3.3 isadetail ed description of the TO microarchitecture.
Section 3.4 describes the VLS| implementation of TO and shows how vector processors are well suited to
VLSl implementationwitharegular compact datapath structureand minimal control logic. Section 3.5 relates
the design methodol ogy used to build TO.

Section 3.6 discusses the most important difference between TO and vector supercomputer designs.
Because TO isasingle-chip implementation it has much lower intra-CPU latencies, and can avoid the startup
penalties which force designersto use long running vector instructionsin vector supercomputers. Thisallows
TO to use much shorter chimes, with most maximum length vector instructionscompleting in only four clock
cycles. Aswill be described in the next chapter, short chimes simplify the implementation of virtual memory
as well as reduce the size of the vector register file.

3.1 Project Background

The background to the TO project was a series of systems developed within ICSI, and later in
collaboration with U. C. Berkeley, to train neural networks for phoneme probability estimation in speech

1Theimplementation of TOwasjoint work with JamesBeck, Bertrand I rissou, David Johnson, Brian Kingsbury, and John Wawrzynek.
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recognition research. The first system was the RAP (Ring Array Processor) [MBK*92], which contained
multiple off-the-shelf TM S320C30 DSPs connected in a ring topology. The RAP proved to be much more
cost-effective than contemporary workstations for these computationally intensive algorithms. We began
investigating application-specific VLS| architectures [AKMW9Q] to provide even larger cost/performance
improvements, but soon realized that the algorithms used in speech recognition research were changing
far more rapidly than we could redesign silicon. We then changed our emphasis to more general-purpose
programmable processors, and designed a programmabl e processor named SPERT [ABK 192]. SPERT wasa
VLIW/SIMD processor that was partialy realized intheform of the SQUIRT test chip[WAM93]. For tackling
larger problems, we were aso interested in building large scale parallel machines using our processor hodes
[ABC*93]. Because it exposed the machine organization to software, the VLIW/SIMD SPERT design was
difficult to program and would not have been object-code compatible with future enhanced i mplementations.
We began considering the idea of extending a conventional scalar instruction set architecture (ISA) with a
vector instruction set to reduce software effort while retaining the advantage of efficient parallel execution of
critical kernels. The subsequent devel opment of the Torrent ISA [AJ97] and the TO implementation [AB97]
led directly to thisthesiswork.

Our goals for the system design were to provide a high-performance workstation accelerator that
could be replicated inexpensively. Ideally, the entire system would be just a single internally-mounted card
to save the additional engineering work of constructing an external enclosure.

As we began to work through possible system designs, one proposa wasto just implement a vector
coprocessor attached to a commercial MIPS R3000 core, in a manner similar to that of the Titan graphics
supercomputer [DHM*88]. R3000 cores available at the time had clock rates up to 40MHz with a well-
defined coprocessor interface. Although the later MIPS R4000 was al so becoming avail able around thistime,
it'sexterna interfaces could not have supported atightly coupled off-chip coprocessor. Werejected thisidea
of attaching our vector coprocessor to acommercia scalar unit because it would have seriously complicated
overal system design, particularly the design of the memory system. The scalar CPU runs out of caches, and
the vector coprocessor would requireits own wide, fast, and coherent connection to memory around the side
of the high speed cache interface used by the scalar unit. This would add considerably size, complexity, and
cost to the resulting circuit board. Also, the coprocessor package would have required more pinsto connect
to both the processor cache bus to receive instructions and the memory system to receive data.

Another drawback would have been the relatively loose coupling between the vector unit and the
scalar CPU. The limited coprocessor semantics meant that some vector instructionswould have required two
or more scalar instructionsto issue. Thisreductionin effective vector issuerate would rai se the vector lengths
required to sustain peak performance.

A further problem would be the speed of inter-chip signal paths. On a more practical note, our
simulation environment would not have been able to simulate the complete system, and so we faced the
possibility of requiring severa lengthy silicon design revisionsto fix bugs.

We decided that TO would be a complete single chip microprocessor requiring minimal external
support logic. Our initia estimates suggested we could make the design fit onto a large die in the process
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available to us. The scalar MIPS core would not require much die area, and by designing our own scalar
unit we retained the maximum flexibility when adding our tightly-coupled vector unit. The high level of
integration dramatically simplified the system board design, and allowed usto simul ate the compl ete system’s
operation using just our own chip simulators. The resulting system fits on a double-slot SBus card which we
named Spert-11 [WAK*96].

3.2 Torrent Instruction Set Architecture

The goalsof theTorrent | SA design [AJ97] wereto provide aflexible, scalable architecture suitable
for a wide range of digital signal processing tasks. Our first design decision was to base the vector 1SA
on an existing industry standard scalar ISA. This would enable us to leverage an existing software base
for development. We considered several RISC instruction set architectures, including SPARC [WG94], HP
Precision Architecture [Hew89], PowerPC [WS94], and Alpha [Sit92], before deciding on MIPS [Kan89].
Our main reasons for selecting MIPS were the simplicity of the architecture, the well-defined coprocessor
interface, and the large body of freely available development tools. Other contributing reasons included our
own familiarity withthe MIPS I SA, theavailability of several MIPS-based Unix workstationsfor devel opment
purposes, and the existence of a 64-bit instruction set extension.

We added the vector unit instructions as coprocessor 2 in the MIPS model. Coprocessors 0 and
1 were already in use as the standard system coprocessor and floating-point coprocessor respectively, and
coprocessor 3 was used by other MIPS extensions.

Torrent is mostly a conventional vector register architecture [Rus78]. The instruction encoding
allowsfor 32 vector registers, but TO only implements 16 to save area. Vector register zero is hardwired to
return zero. The TO implementation has a maximum vector length of 32, with each element holding 32 bits.

Vector memory instructionsare divided into separate unit-stride, strided, and indexed classes. Unit-
stride operations could have been encoded as strided operations with a stride of 1. However, the ISA design
anticipates that most hardware would be optimized for unit-stride accesses. The separate encoding smplifies
dispatch and aso alows a post-increment of the scalar base address to be specified in the same instruction.
This post-increment is an arbitrary amount taken from any scalar register, and register zero can be specified
if no post-increment is required. The post-increment can be executed in the scalar adder as the vector
instruction passes down the scalar pipeline. The post-increment avoids a separate scalar add instruction, and
SO saves instruction issue bandwidth. Without the fol ded auto-increment, the TO implementation would have
required either longer vector registers or superscaar issue to keep the vector functional units busy during
many important loops. Vector memory instructions can load and store 8-bit, 16-bit, or 32-bit values. Both
sign- and zero-extended versions of 8-bit and 16-bit loads are provided, and memory store operands are taken
from the least significant bits of the vector register element.

Perhaps the biggest difference from a conventional vector 1SA is that only fixed-point arithmetic
instructions were defined. Our primary intended application domain was neural net training for speech
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recognition work, and our previous studies [AM91] had shown that 16-bit fixed-point multipliers and 32-bit
ALUs were sufficient for thistask. A full set of integer arithmetic, logical, and shift instructions operate on
thefull 32-bit element width. The multiply instructionwas defined to multiply thelow 16 bitsfrom the source
operands producing a 32-bit result. In addition, support for fixed-point arithmetic with scaling, rounding,
and result saturation was added. The fixed-point support alows multiple cascaded arithmetic operations to
be performed in one vector instruction under control of configuration bitsin a separate scalar configuration
register.

Another difference from conventional vector ISAsisthat conditional execution is performed using
conditional move operationswith mask values held in regular vector registers (see Section 6.3). In addition,
separate flag registers were provided to communicate packed flag bit vectors back to the scalar unit. There
arethreeflag registers: vcond reports compare results, vovf holds sticky integer overflow flags, and vsat
holds sticky fixed-point saturation flags.

3.3 TOMicroarchitecture

Figure 3.1 shows an overall block diagram of TO. TO integrates an integer scaar unit, a 1KB
instruction cache, a vector unit, an externa memory interface, and a serial host interface port. The externa
memory interface has a 128 bit data bus, and a 28 bit address bus, supporting up to 4 GB of industry standard
asynchronous SRAM. The TO serid interface port (TSIP) has eight bit wide datapaths, and provides DMA
into TO memory as well as access to on-chip scan chains for testing and debug. The scalar unit executes the
MIPS-I1 32-bitinstruction set [Kan89], and containsa hardwareinteger multiplier and divider. The vector unit
contai nsthree vector functional units(VFUs), VMP, VPO, and V P1, which communicate viathe central vector
register file. VMP isthevector memory unit, which executes scalar memory and vector extract instructionsas
well as vector memory instructions. VPO and VP1 are two vector arithmetic units, which areidentical except
that only VPO contains a multiplier. All three VFUs contain eight parallel pipelines and can produce up to
eight results per cycle.

The vector unit isstructured as eight parallel lanes, where each |ane contains a portion of the vector
register file and one pipeline for each VFU. The lane is a key concept in vector microarchitecture. A well-
designed vector instruction set constrains most communication between vector instructionsto occur locally
within a lane. This limits the amount of inter-lane communication required, reducing the cost of scaling a
vector unit to large numbers of paralld lanes.

3.3.1 External Memory

The memory system isthe most critical part of any vector machine. Our 1.0 zm CMOS technol ogy
would not allow much on-chip memory, so we required alarge capacity, high bandwidth commodity memory
part. Fast page-mode DRAM was the highest speed DRAM readily available at the time we began the
designin 1992. With amaximum column cycle rate of 25 MHz, we would have required multipleinterleaved
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DRAM banksto reach our cycle time goa. Thiswould have required externa data multiplexing buffers and
more complicated control. At the time there was much discussion in the industry about new higher speed
DRAM interfaces including EDO, SDRAM, Rambus DRAM, and various graphics RAMSs, but it was not
clear which of these new optionswould survive through to the end of our design cycle. The only commodity
hi gh-bandwidth memory part we could rely on was SRAM.

Using SRAM would a so reduce the design effort required in the memory system, and allow ahighly
integrated design with few external parts. Severa vendors had pre-announced fast 4 Mb SRAM parts which
would provide sufficient capacity on a small circuit board. These were pin-compatible with existing 1Mb
parts so that we could prototypeearly systemswith a2 MB memory systems, and move to an 8 MB memory
system aslarger parts became available. Vendors had also promised that future 16 Mb SRAMswould also be
pin-compatible, alowing a 32 MB memory with the same board design. The external SRAM interfaceon TO
has asingle 28-bit addressbusma[ 31: 4] , and a 128-bit wide databusnd[ 127: 0] . Each 8-bit byte of the
data bus has a separate bytewrite enable signal, bwen[ 15: 0] .

Memory accesses are pipelined over two cycles. During the first cycle, the effective address is
calculated and multiplexed out over the externa address bus. On the same cycle, a “not-killed” read/write
signal (nkr wb) indicatesif the access could potentialy be awrite. Thissignal isused to control the SRAM
output enables. When used with conventiona asynchronous SRAM, an external address register is necessary
to pipelinethe address. An externa clock generator generates the address register clock, latching the address
early to allow wave-pipelining of the asynchronous SRAM access. During the second cycle datais driven
out from TO on awrite, or received into on-chip latchesfor aread. During this cycle the dataal so crosses the
rotate network inside the TO memory unit.

Asynchronous SRAMSs require a write pulse. TO provides two inputs, wenb[ 1: 0], driven in
tandem with the same pul se, that modul ate the byte write enables. Two inputsare provided to reduce on-chip
wiring delays. The write enable pulseis generated by the external clock phase generator.

332 TSIP

For fabrication test purposes, we initially adopted the IEEE 1149.1 (JTAG) standard [IEE9QQ] for
scan chains. We had successfully used JTAG before on SQUIRT and other test chips. The processor was to
be mounted on aboard inside a host workstation and so we had to provideinterfaces for host control and host
datal/O. For host data 1/0O, one approach would have been to provide a second time-multiplexed port into the
externa SRAM. Thiswould have provided a high performance path to TO memory, but would have required
multiple external data buffer parts to bridge the host bus to the TO memory data bus. These externa buffers
would add electrical oad to the memory data buslines, as well asincrease board area and power dissipation.
Instead, we expanded the functionality of the JTAG scan chain to alow direct memory access. We kept the
same JTAG TAP state machine and protocol, but widened the scan chainsfrom one bit to eight bitsto improve
1/0 bandwidth. We called the new interface TSIP (TO Serid Interface Port). A shift register is built into the
TO memory system. A parallel path into the shift register can transfer a complete 128-bit block to or from
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memory in one cycle. The block can then be shifted between TO and the host at the rate of eight bits per
cycle whileleaving the memory port free for other accesses. All other chip test, debug, control, and host-TO
synchronization are a so performed over TSIP.

3.3.3 Instruction Fetch and Decode

Figure 3.2 shows the pipeline structure of TO. The fetch and decode stages are common to all
instructions. The fetch stage (F) is used to access the instruction cache. The 1 KB instruction cache is direct-
mapped with 16 bytelines. Although the cache isrelatively small, the autonomousfetch stage processing and
low refill times reduce theimpact of misses. During vector loops, theinstruction cache frees the memory port
for data accesses. A similar combination of awide bus to external memory and a small on-chip instruction
buffer isused in the HP PA 7100LC design [BKQW95].

During the F stage, the next instruction address is determined and fed to the cache, which returns
an ingtruction by the end of the cycle. If the externa memory port is free, the same address is sent off-chip
to prefetch the instruction cache linein case there is acache miss. If there was a prefetch, instruction cache
misses take two cycles, otherwise misses take three cycles. The fetch stage operates independently of later
stages and so cache miss processing can be overlapped with interlocks and memory pipe stalls. Each cache
refill stealsonly asinglecycle from the external memory port, limiting theimpact on ongoing vector memory
accesses.

Scalar

unit vl M| Nl w

VMP

|

Figure 3.2: TO pipeline structure. Each of the three vector functiona units (VMP, VPO, and VP1) contains
eight parallel pipelines.
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A more aggressive prefetching scheme might significantly improve instruction fetch performance,
especialy on scalar code. If the sequentially next cache line was prefetched whenever the memory port was
free, there would be no miss penalties on sequential code provided there was at |east one memory access slot
available every four cycles. Additionally, if the prefetched instructionsreturnin timeto avoid stalls, they need
not be allocated in the cache, thereby reducing cache evictions[ASPF92]. However, this scheme would have
required extra circuitry, some of which might be in critica paths, and was conceived too late in the design
cycleto be added to TO.

During the decode stage (D) the scalar register fileisread and bypassed and interlocks are checked.
If there are no interlocks, the instruction is dispatched to the appropriate unit for execution. If there are
interlocks, theinstruction isheld in the D stage until interlocksclear. All instructionsuse the scalar pipeline
to perform exception checking. Vector instructionsmay occupy avector functional unit for multiple cycles.

3.3.4 Scalar Unit

Scalar ALU instructionsare executed inthe X stage. All integer ALU operations are bypassed with
single cycle latency, apart from integer multipliesand divides.

The scalar integer multiply/divideunit contains aseparate 34-bit adder, and can operate concurrently
with further instruction issue. The multiply/divide unit performs integer multiplies using a 2-bit Booth
encoding and takes 18 cyclesto complete a 32-bit x 32-bit — 64-bit multiply. Dividesproduceasinglebit per
cycle usinganon-restoringdivisionalgorithm, and take 33 cyclesto perform a32-bit/32-bit — 32-bit+ 32-hit
divide. Multiply and divideresults are placed in the two specia 32-bit registers, hi and| o.

Thelogic unitinthe scalar datapath eval uates during the end of the D stage, and is used to perform
an XOR operation to set up the inputsto the zero comparator used for branch tests. Thisis one of the critical
paths in the processor because the output of the zero comparator is used to control the program counter
multiplexor that selects the instruction address to feed to the instruction cache. The zero comparator is
implemented as a 32-input precharged NOR gate to speed evaluation.

The fast externa memory means that no scalar data cache is required. The external memory is
fully pipelined, and returns scalar loads with a 3 cycle latency. A separate address adder is used to generate
addresses for dl scaar and vector loads and stores. During vector memory operations, the address adder
operates concurrently with further instruction execution. Addresses are generated during thefirst haf of the
X stage and are sent off chip to an externa registered buffer. Load dataisreturned across the memory system
crossbar and into latches within the vector unit by the end of the M stage. The N stage is used to align and
sign-extend the data, and to transmit it from the vector memory pipeline datapath to the scalar unit bypass

network.

Thefirst half-cycle of the W stage is used to write back scalar resultsto the register file. These may
be read out from the register file on the subsequent half-cycle.
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3.35 Vector Register File

The TO vector register file contains 16 vector registers, each holding 32 32-bit elements. Vector
register 0 ishardwired to the value zero. The vector register fileis split into eight parallel 32-bit wide slices,
one for each of the eight parallel lanes in the vector unit. Each lane contains atota of 60 read/write 32-bit
registers (15 vector registers with four elements per vector register) and one 32-bit zero register (read or
written four times for accesses to vector register zero).

The vector register file provides one read and one write port for VMP, and two reads and a write
port for each of VPO and VP1, making atotal of five read ports and three write ports. Each functional unit
has dedicated ports, and so there are never any inter-unit vector register access conflicts. To save area, the
register file bit cells are time-multiplexed to providefive read accesses when the clock is high, and three write
accesses when the clock islow. The time multiplexing scheme adds complexity to the precharge and sensing
control logic. To speed reads, it is necessary to precharge bit lines before enabling the row select lines. Also,
to avoid spuriouswritesthe row lines must settleto the correct value beforethe write driversare turned on. A
self-timed circuit controlled by dummy cell rowsis used to provide the extra control edges within the single
cycle.

The address decoders for the vector register file are also time-multiplexed to reduce area. There
are atota of five address decoders. The address decoding is pipelined one clock phase ahead of the bit
cell access. When the clock is high, five separate read addresses are decoded and latched into five groups
of 61 read-enable pipeline latches. When the clock is low, the decoding is latched into five groups of 61
write-enable pipeline latches. During the write decode phase, pairs of single-ended port decoders are driven
with the same address to open a differentia write port on the chosen bit row.

3.3.6 Vector Memory Unit

Vector memory instructions are dispatched to the vector memory unit controller at the end of the
D stage. An individua vector memory instruction may take many cycles to complete. The controller is
a small state machine that generates the pipeline control signas for the remainder of the vector memory
pipeline. There are a further three stages: vector register file read R, memory access M, and vector register
file write W. The vector memory unit also executes scalar load and store, scaar insert/extract, and vector
extract instructions using the same pipeline stages.

Inthefirst haf of the R stage, the vector register file read address is determined and passed to the
register address decoders. The vector register file isread in the second half of the cycle. The memory rotate
network control and byte write enable signals are also calculated during this stage. Scalar store and scaar
insert instructionstransmit data from the scalar datapath to the vector unit during thiscycle. Scaar storesare
always performed by lane zero.

During the M stage, store data from different lanes is rotated to the correct byte position by the
store alignment crossbar, and then passes out through the pinsto the external memory. On aload cycle, data
isreturned from the external memory, rotated into position by the load alignment crossbar, and then latched
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in registers within the vector memory pipeline.

During the first half of the W stage, the latched load data is aligned within the datapath, zero- or
sign-extended, and written into the vector register file. In the second haf of the W stage, scalar datafrom a
scalar load or ascalar extract instruction is transmitted back across the scbus to the bypass multiplexorsin
the scalar datapath. Scalar load datais aways returned from lane zero, while scalar extract datais forwarded
from the appropriate lane.

The vector memory unit has separate read and write portsinto the vector register file. Only asingle
read or write port isrequired for most vector memory operations, but a single combined read-write port woul d
not have reduced register file area significantly due to the time-multiplexed vector register file design. The
number of bit linesis set by the number of write ports, and the number of address decoders and word lines
is set by the number of read ports. Stores and loads access the vector register file at the R and W stages
respectively, and separate read and write ports avoid structural hazards that would otherwise occur when
switching between back-to-back vector loads and stores. The vector extract instruction uses both the read and
the write port simultaneoudly, and the two ports al so simplify vector indexed loads.

The load and store data aignment networks employ a two-stage scheme as described later in
Section 8.4 on page 150. All eight 32-bit lanes connect to the 128-bit nd data bus with a crossbar supporting
arbitrary 32-bit word routing. Within each lane, additional rotate networks handle subword accesses. Both
the load and store alignment crossbars are composed of three overlaid networks, one each for 8-, 16-, and
32-hit operands. Only the vector extract instruction uses both alignment crossbars simultaneously and then
only transfers 32-bit words. This instruction requires that there are separate control lines for load and store
alignment of 32-bit words, but for 8-bit and 16-bit operands alignment control lines can be shared between the
load and store aignment networksto reduce routing area. The alignment control lines are routed diagonally
through the crossbar matrix asin aclassic barrel shifter design.

We intended to use an SGI workstation for devel opment and to depl oy the completed boardsin Sun
Sparcstation hosts. Both of these environments are big-endian, and so we adopted a big-endian addressing
model for TO. The control lines in the memory aignment crossbars would have to be duplicated to allow
bi-endian operation.

Unit-strideloads and stores of 16-bit and 32-bit values transfer 16 bytes per cycle between memory
and the vector register file, saturating the external memory bus. Unit-strideloads and stores of 8-bit operands
transfer eight elements per cycle limited by the eight avail able portsinto the vector register file, and so only
use haf the external memory bandwidth. Unit-strideloads and stores may start at any natural alignment of
the element type being transferred. The number of cycles taken by the memory pipeline equals the number
of 16-byte memory linesthat are accessed (8-byte memory linesfor 8-bit transfers). Vector unit-strideloads
have atwo cycle latency, unlessthe first element isnot 16-byteaigned (8-byteaigned for 8-bit transfers), in
which case the latency increases to three cycles.

TO has only asingleaddress port, and so strided and indexed loads and stores move a most asingle
element per cycle regardless of operand size. The alignment networks rotate datato match each lane with the
appropriate bytes of the memory bus.
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Vector indexed loads and stores are complicated by the need to transmit indices from the vector
register file to the address generator in the scalar datapath. Indexed loads have a start up penalty of three
cycles to wait for vector register indices to arrive at the address generator. Indexed stores require both an
index and a data value for each element stored and these accesses must be multiplexed over the single VMP
vector register read port. The store delay register used for misaligned unit-stride storesis reused as a buffer
for vector indices. A group of eight indicesis read into the store delay register, adding an extra stall cycle
every eight elements. Store indices are passed to the address generator from the store delay register while
storedataisread directly from the register file. Vector indexed stores are the longest running instructionson
TO and take 38 cycles to compl ete execution with the maximum vector length of 32.

The vector extract instruction was added primarily to speed reduction operations, but can also used
to copy vector registers when the vector memory unit is otherwiseidle. Vector extract reads el ements from
the end of one vector register and writesthem to the beginning of a second vector register. The start point for
theread is given in a scalar register, while the number of elements to be read is given by the vector length
register. Extracts that begin at source eements O, 8, 16, and 24 do not require inter-lane communication,
and are handled with a specia sneak bypass path within each lane. These extracts run at the rate of eight
elements per cycle. Other extracts move e ements at the rate of four e ements per cycle across the nd bus,
and are treated as a combination of a vector store and a vector load. The first portion of the memory pipeline
places four elements on the internal 128-bit rd, while the second portion of the memory pipeline reads four
elements from nd. The vector extract instruction alows arbitrary start positions within the source register,
and these are handled in the same manner as non-16-byte-aligned unit-stride word |oads.

3.3.7 Vector Arithmetic Units

TO has two vector arithmetic units (VAUSs), VPO and VP1. These areidentical except that only VPO
has a multiplier. Allowing VPO to execute al instructions as well as multiplies did not require a significant
areaincresse, yet providesalarge performance improvement on many codesthat do not require multipliesbut
which have alarge compute to memory operation ratio. Together, the two VAUs allow TO to sustain sixteen
32-bit ALU operations per cycle.

Vector arithmetic instructions are dispatched to one of the two VAUs at the end of the D stage. For
non-multiply instructions, if both units are free, the dispatch logic issues the instructionto VP1. Otherwise,
the dispatch logic issues the instruction to the first available VAU that can execute theinstruction.

Vector arithmetic operations continue execution down four further pipdine stages: R, X1, X2, W.
The vector register file is read in the second half of the R stage, and written in the first half of the W stage,
giving athree cycle latency for dependent arithmetic operations.

The vector arithmetic pipelines operate on 32-bit data, taking two 32-bit operands and producing
a 32-bit result plus a single bit flag value. Each VAU has two dedicated vector register file read ports and a
single dedicated vector register file write port. Vector arithmetic instructionsinclude a full complement of
32-bit integer arithmetic and logical operations, together with fixed-point arithmetic support. To implement
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these functions, each arithmetic pipeline contains six functional units: a 32-bit logic unit, a 32-bit left shifter,
a 33-bit adder, a 33-bit shift right unit, a 33-bit zero comparator, and a 33-bit clipper. VPO also contains a
16-bitx 16-bit multiplier that produces 32-bit results.

The structure of VPO is shown in Figure 3.3. Data flows through all functiona units for all
instructions, with unused functiona units set to pass data unchanged. An aternative design would multiplex
dataaround thevarious functional units, but thiswould require more areafor bypass bussing and multiplexors.
A further important advantage of the current scheme is that multiple operations may be performed inasingle
pass down the vector arithmetic pipeline.

To take advantage of thisfeature, aset of arithmetic pipelineinstructionswere defined that allowed
multiple operations to be cascaded within a single vector instruction under control of a configuration value
heldinascalar register [ABI*96]. Thisfeature was originally added to support fixed-point scaling, rounding,
and clipping in one instruction, but was extended to alow any arbitrary combination of the functiona unit
operations. The arithmetic pipeline instructions have a fourth scalar register argument which contains a
configuration value for the arithmetic pipeline. The configuration register contents are decoded to drive the
arithmetic pipeline control signals allowing the equivalent of up to 6 basic operationsto be performed with a
singleinstruction. By using valuesheld in ascalar register, the cascade of functiona units can be dynamically
reconfigured on an instruction by instruction basis with no cycle time penalty.

The pipeline can be configured to perform a complete scaled, rounded, and clipped fixed-point
operationin asinglepass. The pipelines can aso be reconfigured to provide other composite operations such
as absolute value, max/min, and bit field extract. A complete |EEE single-precision floating-point vector
library has been implemented for TO using the reconfigurabl e arithmetic pipelines, and this achieves around
14.5MFLOPS at 40 MHz despite no other hardware support for floating-point arithmetic.

During thefirst half of the X1 stage, the two inputsto the arithmetic pipeline are multiplexed from
the two vector register read ports and the scalar register to give either a vector-vector, vector-scalar, or a
scalar-vector operation. The logic unit, |eft shifter, and multiplier all complete operation during the X1 stage.
The logic unit can perform all 16 possible 2-input binary logic functions. The left shifter includes circuitry
that shiftsin arounding bit at the 1/2 LSB position. The multiplier is structured as a signed 17-bitx 17-bit
multiplier producing a 33-bit result. The multiplier inputs are taken from the low 16 bits of each operand and
are either sign- or zero-extended to 17 bits. The left shifter is used to add in a rounding bit during multiply
instructions. The multiplier produces a sum and carry vector, that is added to the |eft shifter output using a
3:2 carry save stage. Towards the end of the X1 stage the adder inputs are set up. The adder input circuitry
includes sign- or zero-extending logic that extends the 32-bit operands to 33-bit values. The extrabit isused
to manage overflow conditions.

At the start of the X2 stage, the precharged adder carry chain evaluates and the adder produces a
33-bit sum value. The adder output is fed to a 33-bit zero comparator. The sign bit and the output of the
zero comparator are used to control conditional writes of the result and to control the final clipper unit. The
adder output a so flowsthrough a 33-bit right shifter. Theright shifter can perform either logical or arithmetic
shifts. The right shifter also includes sticky bit logic that ORs together dl bits that are shifted out. Thisis
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used together with a small adder output correction circuit to implement various rounding modes including
round-to-nearest-even.

Either the right shifter result, or the logic unit result, is fed to the final clipper unit. The clipper
prepares the final 32-bit vaue that is written to the vector register file, and aso produces a single bit flag
value that is written to one of the flag registers. The clipper can saturate the 33-bit input to a 32-bit, 16-bit,
or 8-bit value. The flag value is set whenever a saturation is actually performed. This flag value is usualy
OR-ed into thevsat flag register. The clipper can also generate boolean values if the input was zero or
negative, writinga 0 or 1 tothe 32-bit vector register. The corresponding flag values are usually written to the
vcond register. Finaly, the clipper can produce boolean values if the input would overflow a 32-bit signed
integer representation. Thisis used to write the vovf flag register during vector signed integer arithmetic
operations. The clipper input is set up at the end of the X2 stage, but the wide precharged OR gates in the
clipper are evaluated at the beginning of the W stage. The clipper completes evaluation in time to write the
vector register file by the end of the first half of the W stage. A write enable signal is generated based on the
zero comparator and sign of the adder output. These are used to implement conditional move operations. All
eight possible write enable conditions are supported.

3.3.8 Chaining

Vector chaining was first introduced in the Cray-1 [Rus78]. Chaining reduces latencies and allows
increased execution overlap by forwarding result values from one vector instruction to another before thefirst
instruction has compl eted execution. The Cray-1 design had very restricted chaining capabilitiesbecause each
vector register had only a single port, and so chaining was only possibleif the second instruction was issued
before results started appearing from the first instruction. Later Cray models added more flexible chaining
capability by adding more read and write portsto each vector register.

TO provides completely independent vector register ports for each VFU and supports chaining for
all vector register data hazards: Read-After-Write (RAW), Write-After-Read (WAR), and Write-After-Write
(WAW). Chaining RAW hazards reduces |atencies and allowsgreater overlap between dependent instructions.
Chaining WAR hazards reduces vector register pressure by alowing a vector register to be reused earlier.
Chaining WAW hazards is important to reduce the latency between conditiona move instructionsthat write
the same vector register. TO has no chaining restrictions; chaining may begin at any time after it isfirst safe
to do so. To save areg, there are no vector register file bypass multiplexors; chaining occurs through the
vector register file storage. The separate read and write ports for each vector functional unit remove vector
register access conflicts and allow a single vector register to ssmultaneously support up to five readers and
three writers.

Chaining is controlled by the D stage interlock logic. An instruction is only dispatched when all
chaining requirements will be met for the duration of that instruction’s execution. If an on-going vector
memory instruction stallsdue to an instruction cache refill or ahost DMA memory access, both VPO and VP1
are also stalled to preserve the chaining relationships set up at instruction dispatch.
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Chaining is supported even between vector instructionsthat run at different rates. Most TO vector
instructions run at the rate of eight eements per cycle but some vector memory instructions run at slower
rates: four elements per cycle for unit-strideword loads and stores and non-4-aligned vector extracts, and one
element per cycle for indexed and strided loads and stores. Chaining between instructionsthat run at different
ratesisonly begunwhenitiscertain that the dependency will be preserved. For example, consider aunit-stride
word load which moves four elements per cycle from memory into a vector register and a dependent vector
add instruction that reads the elements at the rate of eight elements per cycle. It is safe to start the vector add
when itis certain that thelast four wordswill be written by the vector 1oad in the haf-cycle before the vector
add reads the last eight values. In this case, chaining reduces the latency from nine cyclesto six.

3.3.9 Exception Handling

TO handles severad forms of disruption to norma program flow: reset, interrupts (asynchronous
exceptions), and synchronousexceptions. Reset and i nterruptscan beconsidered to occur betweeninstructions.
Synchronous exceptions occur during execution of a particular instruction. Exceptions are checked at the
start of the M stage of the pipeline.

Reset has priority over interrupts which have priority over synchronous exceptions. There are five
sources of interrupt, in decreasing order of priority: a host interrupt that can be accessed via a TSIP scan
register, the vector unit address error interrupt, the timer interrupt, and two externa interrupt pins.

TO has a 32-hit cycle counter with an associated compare register that can be used to generate timer
interrupts. Two input pins, ext i nt b[ 1: 0] , provide a fast interrupt path for external hardware. The two
pins have separate dedicated interrupt vectors and were intended to support an inter-processor messaging
interface.

Synchronous exceptions include address errors, coprocessor unusable errors, reserved instruction
errors, syscalls, breakpoints, scalar integer arithmetic overflows, and vector length errors. All synchronous
exceptionson TO are handled in a precise manner, except for address errors on vector memory instructions.

TO has no memory management unit, and so performsno trand ationfromvirtua to physica address
spaces. For its intended use as a workstation accelerator, a full MMU would have added little value, but
would have added considerable design effort. To help debugging, a smple address protection scheme is
implemented which restricts user virtual addresses to thetop half of the virtual address space (0x8000000—
Oxffffffff). Thischeck only requiresinspection of the top bit of the user virtual address, but catches
many stray pointer errors including the common case of dereferencing a NULL pointer. Address aignment
errorsin scalar and vector memory operations are a so trapped.

Vector address errors can occur many cycles after a vector load or store instruction is dispatched,
and after a chained arithmetic operation has started to write results back to the vector register file. TO doesn’t
support virtual memory, and so there is no need to restart a process after it experiences a vector memory
address error. To simplify the implementation, these synchronous exceptions are not handled precisely but
instead cause afatal asynchronousinterrupt to be raised.



The vector length exceptionisraised if avector instructionisissued when the contents of the vector
length register are larger than the maximum alowed. This trap was added to aid debugging and to support
upward compatibility with future implementations that might have longer vector registers.

The remaining synchronous exceptions were added to allow the TO kernel to provide a standard
MIPS programming environment. Instructionsfor the MIPS standard floating-point coprocessor are trapped
and emulated in software on TO. Also, severa rarely used MIPS integer instructions (MIPS-| misaligned
load/store and MIPS-11 trap instructions[Kan89]) were omitted from the TO implementation and are trapped
and emulated by the kernel. Syscall instructions are used to provide a standard Unix OS interface, and the
breakpoint instructionsare used by the gdb debugger.

3.3.10 Hardware Performance Monitoring

TO has a hardware performance monitoring port with eight pads that bring out internal events so
externa hardware can provide non-intrusive hardware performance monitoring. The events that are tracked
include instruction cache misses, interlocks, memory stalls, exceptions, and the busy status of each vector
functional unit.

3.4 TOImplementation

Figure 3.4 shows a die photo of TO while Figure 3.5 is a detailed schematic of the chip’sinternal
structure and external signal pads. Figure 3.6 is an annotated die photo showing the location of the major
components, while Figure 3.7 shows how virtual processors are mapped to lanes.

These die photos clearly illustratesthe advantages of a vector processor over other forms of highly
parallel processor. First, only asmall amount of control logic is required to control alarge array of parallel
functional units. Second, vector instructions alow the vector unit datapath logic to be constructed as a
collection of distributed parallel lanes. The vector instruction set guarantees that no communication is
required between lanes for arithmetic instructions, reducing wiring overhead and inter-instruction latencies.
The only communication between lanesis for vector memory instructionsand for vector extract instructions,
both of which are handled by the vector memory crossbar located in VMP.

3.4.1 Process Technology

As we begun design, we had access through MOSIS to a 1.0 pm two-layer meta CMOS process
fabricated by HP (CMOS26B). Our layout followed MOSIS SCMOS design rules. Initially, thereticlelimited
diesizeto 14 mm. Asthe design progressed, it became clear that our original eight lane design would not fit.
Fortunately, alarger 17 mm reticle became available, so we could retain thefull eight lanes. The process also
improved to 0.8 m process with 3 metd layers (CMOS26G) latein the design phase. The cellswe'd dready
designed in SCMOS rules could not be shrunk automatically to take advantage of the reduced feature size,
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Component Area(M)?) | Area(mm?) | Area (%)
Control logic 135.6 33.9 12.1%
MIPS-11 datapath 58.7 14.7 5.2%
Instruction cache 171 43 1.5%
Vector registers 167.6 41.9 14.9%
VPO 224.9 56.2 20.0%
VP1 106.2 26.5 9.5%
VMP 136.5 34.1 12.2%
(Crossbar inVMP) (70.6) (17.6) | (6.29%)
TSIPDMA 12.6 3.2 1.1%
Clock driver 14.9 3.7 1.3%
Large bypass capacitors 225 5.6 2.0%
Logos 6.5 16 0.6%
Coreto pad routing and empty space 133.6 334 11.9%
Pad ring 84.5 211 7.5%
Tota 1121.2 280.5 | 100.0%
| Vector Unit Datapath Total | 635.1 | 1588 | 56.6% |

Table 3.1: Breakdown of TO die area. The bypass capacitor figure only includes the separate large bypass
capacitors, many other small bypass capacitors are placed underneath power rails around the chip.

and we aso had not used a third metal layer. Our only benefit from the new process was somewhat faster
transistors, and perhaps a so better yield from our now effectively coarser design rules.

3.4.2 Die Statistics

The dieoccupies 16.75x 16.75 mm?, and contains 730,701 transistors. A breskdown of the die area
isgivenin Table 3.1. The TO die has a peak clock rate of around 45 MHz, but isrun at 40 MHz in the Spert-I|
system to allow theuse of dower and cheaper SRAMsand to provideextratiming margin. The chip dissipates
around 12 W worst case from a5V supply when running at 40 MHz; typical power dissipationisaround 4W.

34.3 Spert-11 System

Spert-11 [WAK*96] isadouble-slot SBus card that packages one TO together with 8 MB of external
SRAM to form an attached processor for Sun-compatible workstations. The integrated design results in
a simple circuit board layout that is inexpensive to replicate. A block diagram of the system is shown in
Figure3.8.

TO is mounted directly to the board using Chip-On-Board packaging. Most of the glue logic is
contained in asingle Xilinx FPGA that interfaces TSIP to the host SBus, providing apeak DMA 1/0O transfer
rate of around 10MB/s. An on-board thermometer monitors system temperature and resets the processor if
the temperaturerisestoo high. This prevents damage if the board isinstalled in aworkstationwith inadequate
cooling.
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The software environment for the Spert-11 system is based on the GNU tools. The gcc scaar
cross-compiler, gas cross-assembler, and gdb symbolic debugger were all ported to Spert-11. The assembler
was extended to support the new vector instructions.

3.5 TO0Design Methodology

TO was a completely new custom VLS| design, using full-custom datapath circuitry and standard
cell place and route for control logic. The TO design methodology built on our experiences with previous
processor implementations.

35.1 RTL Design

The RTL design of the processor was written in C++. The RTL model was the “golden reference”
for thewhole TO chip design. The chip was model ed with sufficient accuracy to alow thevaluein every latch
on the chip to be calculated on either phase of any clock cycle. There were two main reasons for writing the
model in C++ rather than a hardware description language. First, C++ isapowerful programming language
which helped in building our verification environment. Second, high execution rates were achieved, around
1,500 cycles per second on a Sparcstation-20/61, which enabled us to run alarge number of cycles for RTL
verification.

A TO ISA simulator was aso written which interprets instructions and simulated their effects on
architectural state. The ISA simulator could simulate program execution at around 500,000 instructions per
second on a Sparcstation-20/61, depending on the mix of scalar and vector code. The ISA simulator was used
to verify the RTL design and was also used to enable software development to proceed concurrently with
hardware design.

Spert-ll -
Board  |TOChP| [ [ [ [ [ | |
Vector Arithmetic Pipeline
MIPS ‘ VPO ‘ ‘ St 8MB SRAM
Core | -
T T T 1 s .
Vector Registers c
———— A
Xilinx . Vector Arithmetic Pipeline g | 512K x8
e KON | I
8 T e Address
f ) Inst. Vector Memory Pipeline
Host Workstation cache]| | vwp | i

Figure 3.8: Spert-11 Block Diagram.
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3.5.2 RTL Verification

The verification environment was built on the concept of writing assembl er test programs for virtual

test machines (VTMS). Each VTM hides differences across different implementationsof aVTM by defining:

a common set of registers and instructions that are available, which exceptions can be generated, which

portions of memory can be accessed, the way the test program starts and stops execution, the way that test

dataisread, the way that test resultsare written, and theway that any errorsare signaled. Theimplementation

of each VTM on each platform randomizes uninitialized state to improve the chances of exposing errors.
Severa different VTMs were specified:

nm ps. This was the first VTM, and only supported the subset of user-mode MIPS-I1 instructions
implemented by the TO hardware. Programs written for the mi ps VTM could be assembled and run
on an SGI workstation as well as the ISA and RTL models. By running the same code on al three
platformsand comparing outputs, we could verify that the TO scalar |SA and RTL was compatiblewith
thereal MIPS hardware.

t Ou. This VTM added the user-mode vector instructions to the m ps VTM. The largest set of test
programs were written for thet Ou VTM. The RTL was compared against the ISA model for thet Ou
tests.

t Or aw. ThisVTM exposes most of thekernel state and was used to verify TO exception handling. Test
programs are responsible for initializing the processor after reset and for handling any exceptions. A
few parts of the machine state cannot be model ed accurately by the | SA simulator and so were omitted
from thismodel.

t 0di e. TO was designed to run test programs from the instruction cache, reporting back results over
the TSIP connection. In thisway, we could test the die when external RAM was not present, both at
wafer sort and after initial bonding to the Spert-I1 circuit board. A very restricted VTM was defined
that would operate out of 1-cache with no external SRAM and return signaturesover the TSIP port. Test
programs could be verified on the ISA and RTL simulatorsrunning in a special zero memory mode.

t Ocyc. ThisVTM isliket Or awexcept now all machine state is visible, including el ements such as
the counter and exception registers whose va ues depend on exact machine cycle count. Because the
ISA simulator does not model execution to cycle accuracy, it could not run these test programs. The
RTL was the only implementation available before chip fabrication, and so these test programs were
written to be self-checking.

t 0di ecyc. ThisVTM isthe cycle accurate equivaent tothet 0di e VTM.

The directed tests were designed to cover every piece of logic in isolation, and in total nearly

100,000 lines of hand-written assembler test code were generated for these various VTMs.
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Even this large number of directed tests is not enough to cover dl the interactions possiblein a
highly parallel microprocessor such as TO. Complementing the directed testswas an effort to generate focused
random test codes for the mi ps and t Ou VTMs. The main difficulty with generating random test codes is
ensuring that the generated code obeys the various constraints of a VTM. The first random test program was
named r ant or 2, and thisincrementally built up test programs by tracking valuesin registers. Thisapproach
was inflexible and error prone because of the difficulty in generating some sequences and in vaidating that
the output wasvalid VTM code. Even so, severa bugswere found early in the design process with thistool.

A second test program generator t or t ur e was written to overcome the problemswith r ant or .
t or t ur e took an alternative approach, providing a central scheduling module that interleaved the output
of user-specified instruction sequence generators. Each instruction sequence generator is a C++ object that
produces arandom instruction thread with some number of registers marked as either visibleor invisible. The
central module allocating registers to the various threads, interleaves their execution, and ensures that only
visibleregisters are reported in thefina output state. Thet or t ur e approach allowed more control over the
types of sequences generated, and also dramatically simplified the task of generating complicated instruction
sequences that neverthel ess obeyed VTM constraints.

Using the random test generators, many billionsof RTL verification cycles were run on the network
of workstationsat ICS| using a parallel make tool. When random tests uncovered RTL bugs, a directed test
was written to reproduce the bug and added to the directed test suite. A total of 26 bugs were found by the
random testing.

3.5.3 Circuit and Layout Design

TO uses a single wire two-phase clocking scheme [AS90]. An input clock at twice the operating
frequency is divided down to ensure a 50% duty cycle, buffered up through a tree-structured driver chain,
then driven across the chip using a single gridded node. A clock output is provided to synchronize external
circuitry to the TO internal clock.

The Berkeley magi ¢ layout editor was used for leaf-cell editing and to build the final design. A
standard set of datapath cells were defined and assembled into datapaths using a custom-written procedural
layout generators that produced nagi ¢ layout. The globa routing of the whole chip was aso performed
using procedural layout generators.

Small cellswere ssimulated at the circuit level using HSPICE. Larger circuit level simulations used
the CaZM table-driven simulator. The entire vector register file, containing over 250,000 transistors, was
simulated at the circuit level using CaZM. Severa cycles of operation were simulated to help verify the
self-timed read and write circuitry.

A full transistor level schematic wasbuilt using ViewLogic. This schematic was simulated with the
i rsi mswitch level simulator using test vectors generated automatically from the RTL model as it ran test
programs. This switch level simulation ran at nearly 2 cycles per second on a Sparcstation-20/61 and took

2Written by Phil Kohn.
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just over 100 MB of physical memory. A parallel make facility was used to run these switch level simulations
with automatic checkpointing and restart. Some switch-level simulation runstook over aweek to compl ete.

Thefinal layout was extracted using magi ¢ and checked against the full transistor level schematic
usingthegemni ni LVStool. Thefina DRC check was performed using Dracula.

354 Control Logic Design

The control logic was implemented as two standard cell blocks. A tiny block provided the TSIP
test access circuitry, whiletherest of the control logic was placed in asinglelarge L-shaped region onthedie.

The control logic was assembled using a mixture of hand-entered and synthesi zed schematics. The
control logic was split into around 20 logic blocks, each manually converted from the C++ RTL into the
BDS hardware description language. The BDS for the block was converted into bl i f and fed into thesi s
synthesis package. For each block, the si s synthesis script was hand-optimized for either area or power.
The control schematic stitched the synthesized control blocks together with hand-entered logic and storage
elements.

A gate-level net-list generated from the top-level schematic for the entire control block was fed to
the TimberWolf tool for standard cell place and route. Extensive massaging of the TimberWolf parameters
was required to fit the control logic into the available space on the die. This phase took two months to
compl ete after the rest of the design had been frozen.

The leaf standard cells were mostly hand-picked from an existing library, but modified to provide
better power, ground, and clock distribution. New standard cells were designed to provide fast latches and
flip-flops.

355 Timing Analysis

A crude static timing analysis was performed manualy across the entire chip. A set of scriptswere
written to flag signal s that might not meet timing constraints. These scripts combined automatically extracted
net RC delays and manually-entered block timing data. The timing analysis revealed severa critica paths,
mainly located in the synthesized control logic and in driving control signa outputs across the datapaths.
These paths were reworked by retiming control logic, improving synthesis scripts, increasing control line
driver size and/or using thicker metal control wires.

35.6 Timdineand Status

The design of the Torrent ISA began in November 1992. The TO VLSI design was completed by 2
graduate studentsand 1 staff VLS| engineer. A full timehardware engineer designed the Spert-11 board, while
afull time software engineer developed the software environment and application programs for the project.

The design taped out on February 14, 1995, and three wafers of the first silicon were received on
April 3. Forty good die were obtained from thisfirst batch and the first program was run on a completed
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Spert-11 board on June 12. No bugs have been discovered in the first-pass silicon. A second run of eight
wafers using the same masks was delivered 18 March, 1996, yielding a further 201 good die.

A total of 34 Spert-11 boards are currently in operation at 9 sitesin Europe and the USA. The boards
are in daily production use providing a substantial speedup over commercial workstations (e.g., Six times
faster than an IBM RS/6000-590) for our speech recognition work [WAK*96].

3.6 Short Chimes

The most distinguishing feature of the TO implementation versus earlier vector supercomputer
designs is that chimes are much shorter. This is made possible by the single chip implementation which
reduces intra-CPU latencies and allows higher performance control logic.

Vector supercomputer designers are faced with the dilemmaillustratedin Figure 3.9. A single-chip
CPU implementation would reduce intra- CPU latencies and provide better cost/performance, but would limit
memory bandwidth to that which can crossthe pinsof asingledie. But vector supercomputer customersjudge
machines primarily on sustainable single CPU memory bandwidth and competitive pressure forces designers
to select multi-chip implementations, which increase intra-CPU latencies and give worse cost/performance
[SchoTh].

Multi-chip CPU implementationsare responsiblefor the startup penaltiesin vector supercomputers.
Asillustrated in Figure 3.10, vector startup latencies have two separate components: functional unit latency
and dead time. Functional unit latency isthe time taken for one operation to propagate down the functional
unit pipeline. Dead timeisthetimerequired to drain the pipelinesof avector functional unit after it completes
avector instruction before a subsequent vector instruction can begin execution in the same unit.

Functiona unit latency is relatively benign, because independent vector instructions can be sched-
uled to cover thislatency and keep the machine's pipelines saturated. This process is similar to instruction
scheduling to cover pipeline latencies for a pipelined scalar processor. Dead time has more serious perfor-
mance implications because instruction scheduling cannot recover the lost pipeline cycles.

Dead timerepresents afixed overhead on every instruction startup. Vector supercomputer designers
use longer chimes in attempts to amortize this dead time overhead over longer periods of useful work. For
example, the Cray C90 [Cra93] has four cycles of dead time inbetween issuing two vector instructionsto the
same vector functional unit. The Cray C90 vector registers hold up to 128 elements and the vector unit hastwo
lanes, so chimes are 64 clock cycleslong. The four cycle dead time overhead limits attai nable functional unit
efficiency to 94% even with the longest 128-element vectors. Efficiency on short vectorsis correspondingly
worse. Vectors of length eight can never achieve more than half the peak performance of two elements per
cycle from avector functiond unit.

In contrast, the tightly integrated control logic on TO eiminates dead time. Operations from two
different vector instructionscan follow each other down afunctional unit pipelinewith no intervening pipeline
bubbles. This allows TO to saturate a vector functional unit producing eight results per cycle by issuing one
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Figure 3.9: The vector supercomputer designer’s dilemma Single chip processors offer lower intraCPU
latencies and better cost/performance, but multi-chip CPUs enable greater absol ute memory bandwidth which
isone of the main criteriain supercomputer purchase decisions.
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eight element vector instruction per cycle.

TO hasthreevector functiona units(VFUs) each capabl e of generating eight results per cycle. With
the maximum vector length of 32, a vector instruction takes only four clock cycles to execute. This vector
length was chosen to be just long enough to alow a single instruction issue per cycle to saturate the three
VFUs.

Figure 3.11 illustrates how a segment of code is executed on TO with the vector length set to the
maximum 32 elements. Every four clock cycles, oneinstruction can be issued to each VFU, leaving asingle
issuedot availablefor thescalar unit. Inthismanner, TO can sustain 24 operationsper cyclewhileissuingonly
asingle32-hit instruction every cycle. The diagram also shows how TO overlaps execution of multiple vector
instructionsto take advantage of vector instruction-level parallelism, as well as intra-vector data parallelism.

Functional Unit
Latency

—

R [X1|X2|X3|W
R (X1 X2|X3|W First Vector Instruction
R [X1

[ —

Dead Time

[ E—

wW
Dead Time \ R [X1[X2|X3|W Second Vector Instruction
R [X1/x2/x3|wW |

Figure 3.10: Pipeline diagram of one vector functiona unit showing the two components of vector startup
latency. Functional unit latency isthe time taken for thefirst operation to propagate down the pipeline, while
dead time is the time taken to drain the pipelines before starting another vector instructionin the same vector
functional unit.
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CPU VMP VPO VP1
lhai.v EEEEEEEE
hmul.vv EEEEEEES
sadd.vv EEEEEEEE S>AAAAAAAA
addu OEEEEEEER AAAAAAAA
lhai.v > AAAAAAAA
hmul.ww B> AAAAAAAAAAAAAAAAL
sadd.wv AAAAAAESAAAAAAAA
addu AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
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time
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Figure 3.11: Execution of a code fragment on TO with vector length set to 32 elements. A vector load is
issued to VMP on the first cycle, and begins execution of eight operations per cycle for four cycles. A vector
multiply isissued on the subsequent cycle to VPO, and the execution of thisvector multiply overlaps with the
vector load. Similarly, avector add isissued on the third cycle to VP1, and execution of the add overlaps the
load and multiply. On the fourth cycle a scalar instructionisissued. On the fifth cycle the vector memory
unitis ready to accept anew vector load instruction and the pattern repeats. In this manner, TO sustains over
24 operations per cycle whileissuing only a single 32-bit instruction per cycle.
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Chapter 4

Vector I nstruction Execution

Although TO provides the first example of a complete vector microprocessor, it does not support
long latency main memories and lacks virtual memory and floating-point arithmetic. This chapter presents
vector instruction execution pipelinessuitablefor future vector microprocessors. These pipelineorgani zations
can tolerate long memory latencies even with short vector chimes and can provide the exception handling
required for virtual memory and floating-point arithmetic.

Section 4.1 first reviews the overall structure of a typical vector microprocessor. Section 4.2 then
describes the changes required to a scalar unit when coupled with a vector coprocessor.

Section 4.3 considersvariouswaysto tolerate memory latency and describes how dynamic schedul-
ing is particularly attractive for a vector microprocessor. Section 4.4 reviews decoupled execution [Smi89],
alimited form of dynamic scheduling that is particularly appealing for vector machines [EV96]. Section 4.5
examines full out-of-order execution for vector machines [EV S97], describing the problemsinherent in vector
register renaming and presenting solutions at the instruction set level. One of the main advantages of vector
register renaming isthat it provides a scheme to provide precise exceptions in a vector machine. Section 4.6
introduces aternative techniques which define architectural exceptions so that vector register renaming is
not necessary to provide high vector throughput while supporting virtual memory and | EEE floating-point
arithmetic.

Section 4.7 presents the detailed design of a decoupled vector pipeline which supports virtual
memory, showing how it can tolerate large memory latency even with short chimes.

Section 4.8 enumerates the few classes of instruction which expose memory latency to softwarein
adynamically scheduled vector machine, and proposes techniquesto reduce the effects of memory latency in
those cases.

The chapter concludesin Section 4.9 with a description of the logic required to control interlocking
and chaining for the decoupled pipeline. This describes how the control logicis very similar to that for TO,
but with the addition of instruction queues and a set of interlocks related to address generation.
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4.1 Overall Structure of a Vector Microprocessor

The genera structure of a vector processor is shown in Figure 4.1. The magor components of a
vector processor are the scalar unit, scalar caches, the vector unit, and the memory system.

The scalar unit for a vector machine can be single-issue, superscaar, or VLIW. For the purposes of
thisthesis, | assume the scalar unit isbased on a conventiona RISC load/store architecture and code samples
are based on the MIPS scalar RISC instruction set. The scalar unit fetches and dispatches instructionsto the
vector unit. The scalar unit has an instruction cache and a scalar data cache. Hardware keeps the scalar data
cache coherent with vector unit memory accesses.

The vector unit contains some number of vector data registers and vector flag registers coupled
to some number of vector functional units (VFUs). When a vector instruction is dispatched, it is sent to a
particular VFU for execution. If there is more than a single VFU, the microarchitecture can exploit inter-
instruction parallelism by overlapping execution of two or more separate vector instructionsin separate VFUs.
VFUs are divided into three broad categories. vector arithmetic units (VAU), vector memory units (VMU),

. Flag
Instruction Registers
Cache ]
VAU VAU
VFFU
[}
Scalar Unit
Vector Registers
Scalar VMY o
Data Cache

Memory System

Figure4.1: Generic vector processor architecture. This machine hastwo vector arithmetic units (VAUS), one
vector memory unit (VMU), and one vector flag functiona unit (VFFU).
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and vector flag functional units(VFFUs). TheVFUscommunicate with each other viathevector dataregisters
and the vector flag registers.

4.2 Scalar Instruction Execution in a VVector Processor

The scalar unit in a vector processor is responsible for running non-vectorizable code and for
supporting the execution of vector code. Only minor changes to a conventional scalar processor are required
to support a vector coprocessor. These modifications requirelittle additiona logic and should not affect cycle
time.

Theinstruction cache and instruction fetch stages are largely unaffected by the addition of a vector
unit, provided the instruction format of the vector extensionsis compatiblewith that of the base scalar ISA. If
thereislimited opcode space avail ablefor adding the vector extensions, theinstructionencoding could become
complex and require severa levels of logic to decode. It might then be beneficial to predecode instructions
during instruction cache refills, storing a decoded version in the cache to speed instruction dispatch. Such
predecoding is common in modern superscalar CPU designs [Yea96, Gwed6e, Gwed6a].

The instruction decoder must be modified to parse vector instructions, retrieve any scalar operands
they require, and dispatch the decoded instruction and scalar operands to the vector unit. There should
be no increase in scalar register ports or interlock and bypass logic provided vector instructions require no
more scalar operands than a scalar instruction. Instructionsthat read state back from the vector unit require
synchronization with the vector unit pipeline and a data path back intothe scalar unit registers. This path may
already exist to support other coprocessors. The scalar unit manages control flow and its pipelineis used to
handl e exceptions, so there must be a mechanism for synchronizing exception-generating vector instructions
with the scalar pipeline. Such mechanisms will usually exist for serializing accesses to non-bypassed system
registers.

An in-order non-speculative vector unit can be attached to an aggressive speculative and out-of-
order scaar unit. The scalar unit can fetch and dispatch vector instructions to reservation stations to await
the arrival of any scalar operands. When all scalar operands arrive and the vector instruction reaches the
head of the reorder buffer, it can be issued to the vector unit non-speculatively. The vector instruction can
be committed after al possible vector exceptions have been checked. The machine organizations described
below alow vector exceptions to be checked in a few cycles regardless of memory latency. This allows
vector instructionsto be removed from the scalar reorder buffer many cycles before they compl ete execution,
[imiting theimpact of long vector unit latencies on scalar reorder buffer size.

We should expect the workload for a scalar unit within a vector machine to be somewhat different
from that of a vectorless machine. Based on data from Wall’s study [Wal91], Lee [Lee92, Chapter 3] found
that many applicationswith high ILP are vectorizable, and that many non-vectorizable applications have low
ILP. Smith et. al. [SHH90] suggest that the non-vectorizable portion of the workload might best be handled
by ascalar processor that emphasizes [ow latency rather than parallel instructionissue. Based on hisanalysis
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of Cray Y-MP performance, Vgjapeyam [Vaj91, Chapter 5] also argues for a less highly pipelined and lower
latency scalar unit to handle the non-vectorizable portion of the workload. Free of the burden of providing
high throughput on vectorizable code, such a scalar processor should aso be simpler to design. Because
cycle time might be reduced and because resources are freed for larger caches and lower latency functional
units, it is possiblethat such a scalar processor would have a performance advantage over awide superscaar
processor for tasks with low ILP.

Scalar processors typicaly employ a hierarchy of data caches to lower average memory latency.
Vector memory accesses will usually bypass the upper levels of the cache hierarchy to achieve higher
performance on the larger working sets typica of vector code. Extra logic is required to maintaining
coherence and consistency between vector and scalar memory accesses, but thiswill aso usually be required
for multiprocessor support or for coherent 1/O devices.

4.3 Vector Instruction Execution

This section considers instruction execution pipelinesfor a vector microprocessor.

Unlikehigh-performancescalar processor designs, where considerableeffort isexpended on paralle
scalar instruction issue, vector instruction i ssue bandwidth isnot aprimary concern. A singlevector instruction
issue per cycleissufficient to saturate many parallel and pipelined functional units, as shown by the TO design
in Section 3.6.

Memory bandwidth is often the primary constraint on vector performance. To sustain high band-
width, it is necessary to generate a continuous stream of memory requests. Vector microprocessors may often
be coupled with commodity DRAMs which have higher latencies than the SRAMs used in vector supercom-
puters, memory latencies of 100 cycles or more may betypical for fast microprocessors connected to off-chip
DRAM. Sustaining high bandwidth with these high latencies requires the generation of many independent
memory requests.

There are four main techniques used to tolerate main memory latencies in machines today:

e Static scheduling requires the least hardware support. Software schedules independent operations
between aload and operations that use the load data. The machine can then overlap processing of a
load request to memory with execution of independent operations later in the same instruction stream.
Vector instructionsareaform of static scheduling, where multipleindependent operations are scheduled
into one instruction.

e Prefetching can be accomplished in software or hardware. In either case, data is requested from
memory before the load instruction is issued, which reduces the latency visible to the load. Prefetch
schemes require a buffer in which to place prefetched data before it is requested by aload instruction.
Software data prefetch [SGH97] requires the least hardware; prefetch instructions are scheduled by
software and prefetch data into the caches. Hardware data prefetch techniques [CB944] attempt to
predict future references based on the pattern of previous references.
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e Dynamic scheduling covers various hardware techniques which execute instructions out of program
order. Rather than alowing an instruction to block the issue stage when its operands are unavailable, it
isplaced in an instruction buffer to await their arrival. The issue stage is then free to find independent
instructionslater in the same instruction stream.

¢ Multithreading [BH95] findsindependent instructions by interleaving the execution of multiple parallel
instruction streams.

Traditional vector supercomputers rely on a combination of static instruction scheduling and long-
running vector memory instructionsto tolerate memory latency. Thisworked well for early vector machines,
where memory latencies were around 10-20 clock cycles and a single vector instruction might execute for
64 clock cycles. For vector microprocessors, latencies could rise to over 100 clock cycles, and chimes might
shrink to last only 4-8 clock cycles. Moreaggressive static vector instruction scheduling can hel p compensate
for short chimes, by loop unrolling and software pipelining stripmineloopsfor example. Because scheduled
instructions tie up architectural registers while waiting for results, the number of available architectural
registers places a limit on the amount of static instruction scheduling possible. Software prefetch is realy
another form of static instruction scheduling whose main advantage isthat datais brought into buffers rather
than into architectura registers. Because regular load instructions are till required to move data from the
prefetch buffersintothearchitectural registers, softwareprefetch has thedi sadvantage of increasing instruction
bandwidth.

A limitation common to al forms of static instruction scheduling is that unpredictable program
control flow and separate compilation of code reduce the number of instructions the compiler can consider
for rescheduling and hence the amount of latency that can betolerated. Thisproblemisexacerbated by vector
execution which can dramatically reduce the number of cycles taken to execute a section of code compared
with scalar execution.

Hardware prefetch schemes have the advantage of exploiting the dynamic information in run-time
program reference streams and a so do not tie up architectural registers or require extrainstruction bandwidth
for prefetch instructions. The main disadvantages of hardware prefetch schemes are that they are specul ative
and so can generate excess memory traffic. This is less of a problem for scalar machines which cannot
otherwise saturate their memory systems, but is a severe drawback for vector machines which are often
congtrained by hardware bandwidths. Another problem with hardware prefetch is that it can only react to
observed reference patterns and so can have high startup latencies, especially if a prefetch filter [PK94] is
employed to reduce usel ess specul ative prefetches. Hardware prefetching isalso only effective on predictable
strided reference streams.

The great advantage of dynamicinstruction schedulingisthat it can overlap execution of instructions
across unpredictabl e branches and separately compiled code boundaries. The main disadvantage of dynamic
instruction scheduling is the expense of the control logic and the extensive design effort required. A source
of much complexity isthe desire to maintain precise exception handling despite out-of-order execution.

Multithreaded machines interleave execution of instructions from separate instruction streams to
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hide latencies. The main disadvantage of multithreaded machines is the cost of providing separate state for
each interleaved thread of execution.

All of these techniques can be combined to help tolerate memory |latency in vector microprocessors.
Hardware and software vector prefetching schemes are not considered further here, because vector memory
instructions subsume most of their functionality.

Espasa and Vaero [EV97b] explore dynamic scheduling and multithreading for vector machines
and documents the benefits of these techniques for binaries compiled for a Convex C3 vector architecture.
Dynamic scheduling and multithreading are much simpler to implement for vector instructionsthan for scal ar
instructions because the large granul arity of vector instructionsmeans they require lessinstruction bandwidth
and much smaller instruction buffers.

For the remainder of this chapter, | concentrate on the design of dynamically scheduled pipelines
for vector machines. Espasa’s thesis [Esp97b] describes two forms of dynamically scheduling: decoupled
architectures [Smi89], which provide alimited form of dynamic scheduling by separating address generation
from data computation, and full out-of-order execution with vector register renaming.

4.4 Decoupled Vector Execution

A decoupled vector machine [EV96] splitsthe vector unit into address generation and data compu-
tation components and connects the two with data queues.

All vector arithmetic instructions are sent in-order to the computation instruction queue. Once at
the head of the queue and once all operands are ready, they are dispatched to an arithmetic functional unit and
begin execution on data in vector registers asin a conventiona vector machine.

Vector memory instructions are split into two components: one which generates addresses and
moves data between memory and internal vector data queues, and one which moves data between the vector
data queues and the vector register file. The first component is dispatched in-order to the address generation
instruction queue. Once at the head of the queue and assuming any address operands are avail able, the address
generation component begins generating a stream of memory requeststo fill or empty avector data buffer. In
paralel, the second component is sent to to the computation instruction queue, where it is interleaved with
vector arithmetic instructionsin program order. When this second component is at the head of the queue and
itsoperand isready, it is dispatched and begins execution, moving data between a data queue and the vector
register file. From the perspective of the vector register file, al operations happen in program order.

The advantage of a decoupled pipeline compared to the standard in-order issue pipeline common
in vector supercomputers, is that vector arithmetic instructions waiting on vector memory operands do not
block theissue stage. The vector arithmetic instructionis sent to an instruction queue, freeing the issue stage
to run ahead to find more vector memory instructionslater in the instruction stream; these can begin address
generation before earlier vector arithmetic instructions have begun execution. The design and operation of a
decoupled pipelineis described in greater detail in Section 4.7 bel ow.
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45 OQut-of-Order Vector Execution

Espasa et. a. [EVS97] found significant benefits to full out-of-order vector execution with vector
register renaming for binaries compiled for a Convex C3 architecture. The C3 has only eight architectural
vector registers and no load chaining. For machines with more vector registers, load chaining, and acompiler
capable of aggressive static scheduling, it is unclear how large the benefits would be over simpler decoupled
schemes.

Although not addressed by Espasa et. a. [EVS97], conventiona vector |SAs such as the Convex,
severely complicate theimplementation of vector register renaming because of partial vector register updates.
Similar problems occur in scalar machines that alow partial scalar register updates. These partial updates
can occur inthree waysin avector machine;

¢ Reduced vector lengths. Conventional vector instruction sets are defined such that when vector length
is set below maximum, the valuesin vector register e ements above the current vector length setting are
left undisturbed. This behavior isdesirable asit allows a straightforward implementation of reduction
operations (Section 10.1) for vectors that are not multiples of the maximum vector register length.
With vector register renaming, the valuesin the upper eements of the physical destination register will
initialy bevaluesleft over fromtheprevioususe of that register. These must be updatedto thetail values
fromthearchitectural vector register stateto preserve theorigina vector ISA semantics. Unfortunately,
thiswould appear to requirethat all vector instructions effectively run for the maximum vector length
regardless of current vector length setting. In defining a new vector ISA, it would be prudent to
specify that destination el ements past the current vector length become undefined. Reductions can be
implemented by using a mask to control effective vector length (see Section 6.8), with the aid of an
instruction that setsthefirst V bitsin a mask register.

e Masked vector instructions. Each element of a new physical destination vector register for a masked
vector instruction must be written, either with the result of the operation where unmasked or with the
original architectura register value where masked. This can imply athird vector register read port for
each VFU to read the old value of each destination element. Vector merge instructions, as defined in
the Cray instruction set [Cra93], avoid the extra read port because they aways write one of the two
sources to the destination.

e Scalar insert into vector register. One approach to handle inserting a scalar element into a vector
register would beto copy over al valid elementsintothe new physical register, merging the new element
into the appropriate position, but this can tie up a VFU for multiple just to insert a single element.
An alternative scheme is to reuse the same physical register by updating in place rather than copying
datato anewly alocated physical register, but thisrequires waiting until all previousinstructionshave
committed. Scalar insertsinto avector register are usually performed as part of apartially vectorizable
loop where a whole vector of scalar vaues will be produced. Software can avoid scalar inserts by
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writing values to atemporary memory buffer instead. The buffer can then be read into the vector unit
as one compl ete unit.

Although these |SA-level solutions reduce the cost of vector register renaming, they also imply a
performance penalty for implementations without vector register renaming.

Apart from vector data registers, vector flag registers must also be renamed. As described in
Chapter 6, some vector instructions might update multipleflag registers. Because flag registers are relatively
small, itisperhaps simplest to rename theentireflag register set. All flag operationsthenread al flag registers
and write al flag registers to a new renamed flag set. The flag register design described in Section 6.11
already provides read and writes of the entire flag set. Flag storage must be increased by an integer factor to
hold multiple renamed versions of the flag set.

4.6 Exception Handling for Vector Machines

Handling exceptions can be problematic in vector machines. One solution, adopted by the IBM
vector facility [Buc86], isto execute all vector instructionssequentially. Thisreduces performance compared
with schemes that allow multiple vector instructionsto overlap in execution. Another approach that alows
vector instruction overlap isto provide vector register renaming with away of rolling back state changesinthe
event of an exception on an earlier instruction. As described above in Section 4.5, vector register renaming
incurs overheads in instruction set design and implementation complexity.

This section explores an alternative approach which rel axes the requirements for precise exception
handling to alow simpler implementations to attain high performance. In particular, these techniques are
suited to decoupled vector pipeline designs with no vector register renaming.

Note that the only exceptions which require specia treatment are synchronous data-dependent
exceptions that occur after instruction issue [HP96, Chapter 3]. Asynchronous exceptions, such as device
interrupts, can be handled by converting any instruction beforetheissue stagein thepipelineintoatrap pseudo-
instruction. Similarly, al synchronous exceptions detected during fetch and decode, such as instruction page
faultsorillegal instructions, can behandled by converting thefaultinginstructionintoatrap pseudo-instruction.
Thetroublesomeexceptions can bedividedintotwo categories: arithmetictrapsto support | EEE floating-point
arithmetic [ EE85] and data page faults.

4.6.1 Handling Vector Arithmetic Traps

Without some form of revocable register renaming, a vector machine will not be able to provide
precise vector arithmetic traps without a large performance loss. Some scalar systems make precise traps
a user-selectable mode [WD93, Gwe93]. In this mode, further instruction issue must be delayed until al
ongoing operations are known not to require a trap. This scheme can aso be used in a vector machine.
Whereas ascalar machine must delay after every operation, avector machineisonly delayed once per vector,
but thisdelay can be longer given alarge instruction queue between instruction issue and execution.
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Oneimprovement isto specify that vector arithmeticinstructions cannot themsel ves cause traps but
can only write sticky exception flags. Vector floating-point instructions are defined to write |EEE-mandated
default values [IEE85] into the destination data register at element locations where exceptions occur. A
separate trap barrier instruction can be inserted by software in the cases where a user-level resumable vector
arithmetic trap handler isrequired. The trap barrier checks the exception flag register for any set exception
flags of the appropriate type. This technique alows a simple implementation to continue issuing further
instructions after a vector arithmetic instruction without worrying about traps, and only requires that the
machine stall issue at the explicit trap barrier instructions. Software must ensure that sufficient machine state
ispreserved so that ahandler can process any trapsthat occur. This scheme issimilar to that employed inthe
Alphaarchitecture[Sit92], except that it avoids the problem of requiring trap barriersjust toimplement |EEE
compliant default results.

Trap barriers are only used when normal execution hasto resume after taking an arithmetictrap. An
implementation can a so provide support for trap debugging, which allowsthelocation where an exception was
raised to be determined accurately without requiring additional trap barriers be inserted in the code. Severd
levels of exception checking can be provided which trade performance for trap accuracy. In decreasing level
of accuracy these could include:

A precise trap mode which can trap at every vector arithmetic instruction as well as every trap barrier.
Thiswould provide the most accurate information at the lowest performance.

e A basic-block level trap mode which can only trap at jumps and branches or at an explicit trap barrier.
This allows exceptions to be traced to the basic block responsible, while only checking exception flags
once per basic block.

e A subroutinelevel trap mode which can only trap at a subroutinereturn or an explicit trap barrier. This
allows exceptions to be traced to the subroutine responsible, while only checking exception flags once
per subroutine.

e The default execution mode which only traps at an explicit trap barrier.

Section 7.2 on page 130 contains further details on arithmetic trap handling in the context of |IEEE
floating-point arithmetic. In particular, it discusses how exception flags and conditional operations can be
used to support some applications that would otherwise require precise trap handling.

4.6.2 Handling Vector Data Page Faults

Handling data page faultsis one of the more difficult design problemsin a vector machine. Most
modern operating systems support multiprogramming and demand paging. Once one task experiences a page
fault, its state is saved, and a second task can then use the CPU while the first task awaits the arrival of the
missing page from disk. When the page arrives, thefirst task can then resume execution after restoring state.
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Most vector machines have avoided the problem by requiring that all pages accessed by the vector
unit are pinned into physica memory during execution [Rus78, UIT94]. These restrictions have been
acceptable in the supercomputing market for two reasons. First, vector supercomputers primarily run large
batch jobswhich can be swapped rather than demand-paged. Second, their expensewarrantstuning application
code to fit into real memory with explicit handling of data movement to and from fast solid-state secondary
storage. It islikely, however, that demand-paged virtua memory will be a requirement for more general -
purpose, low-cost, vector microprocessor systems running popular operating systems. Demand-paging can
provide better response in a time-shared interactive environment, and simplifies coding when an application
has a data set larger than available real memory.

There have been afew commercia vector machines that provide a demand-paged virtual memory
[HT72, DEC90a, Buc86]. Providing precise traps on al vector memory accesses would cause a large
performance lossfor vector machines without some form of revocable register renaming. Fortunately, precise
data page fault trapsare not required for demand paging. It is sufficient that enough machine state be saved to
allow execution to resume after the operating system has retrieved the missing page from secondary storage.
For example, the vector unit in the DEC Vector VAX extensions can save and restore its interna state to
memory [DEC90a]. The operating system code only needs to know the maximum size of the vector machine
state, not theinterpretation of thebits. Thefollowingdiscussion of pipelinestructureassumes adatapagefault
model that saves vector unit internal state, with instruction continuation after the faulting page is reloaded.

4.7 Example Decoupled Vector Pipeline Design

This section develops an in-order, decoupled pipéline structure which can sustain peak pipeline
throughput while supporting demand paging in a high latency main memory. This design is used to show
the control complexity required and is later used to explain where inter-instruction latencies are exposed to
software.

Figure 4.2 shows details of the design. The configuration shown has a single load or store VMU
with two VAUs. The VMU is shown with memory data buffers to decouple vector memory instructionsfrom
arithmetic instructions [Esp97b]. Vector instructions pass through three queues before being dispatched to
the vector functional units.

4.7.1 Instruction Queues

The scalar unit fetches vector instructions and issues these to the pre-address instruction queue
(PAIQ). Provided the PAIQ is not full, the scalar processor can continue execution. |If the instructionis a
scalar unit read of vector unit state, the scalar processor must interlock any use of the destination register until
the datais returned by the vector unit. If the instruction might report an arithmetic trap, the scalar unit must
delay further issue until the trap condition is resolved.

For each instruction, the PAIQ holds the instruction encoding and program counter value, plusthe
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Figure 4.2: Example decoupled pipeline structure. Vector instructions pass through three queues during
execution. The scalar unit issues vector instructions to the pre-address check instruction queue (PAIQ).
Vector memory instructionsare taken from the head of the PAIQ and split into two portions. The first portion
begins generating and checking addresses, while the second portion is a register move pseudo-instruction
inserted into the address check instruction queue (ACIQ). All other vector instructionsare simply passed from
the PAIQ to the ACIQ in program order. Once a memory instruction clears address checks, the associated
register move portion is passed on to the committed instruction queue (ClQ) along with any following non-
memory instructions. From there, instructionsare dispatched to the VFUs for execution. If adata page fault
isencountered, only instructionsin PAIQ and ACIQ need to be saved and restored.
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value of the vector length register and any other scalar operands to the vector instruction. Typicaly, the
maximum number of scalar operands is two, for example, base and stride for a strided memory operation.
The PAIQ must hold a copy of these values because the scalar unit is free to change vector length and scalar
registers after the vector instructionisissued to the PAIQ but before it begins execution.

The vector unit takes instructionsin order from the head of the PAIQ. Vector memory instructions
begin execution here, while other instructions are simply passed to the second queue, the address check
instructionqueue (ACIQ). Each vector memory instructionis splitinto two components, an address generation
component that begins execution in the address generators of aVMU at the start of the pipeline, and alinked
register move pseudo-instructionwhich ispassed into the ACIQ. The register move pseudo-instruction moves
data from the memory data buffersinto the vector register file.

The purpose of the ACIQ is to buffer instructions that follow a vector memory instruction until
it is known that the vector memory instruction will not generate a data page fault. The wait in the ACIQ
represents extra delay for al vector instructions. In particular, the register move for the first element of a
vector memory operation must wait in the ACIQ until the last element address in the vector is checked. But
during thiswaiting period, the address for the first el ement can proceed down the memory pipeline, alowing
the address check latency to be overlapped with memory latency.

Because a vector microprocessor will have short running vector instructions, address checks do not
take long. A typical vector microprocessor will have chimes lasting around eight clock cycles, and thisis
the length of time required to generate and check all the memory addresses in a vector memory instruction
assuming there is an address generator and TLB port per lane. Thisdelay is approximately the latency to a
large cache and only a small fraction of expected latency to main memory, allowing address check timeto be
completely hidden behind memory access latencies.

Instructions are committed in-order from the ACIQ to thefinal committed instruction queue (CIQ).
Any non-memory instructions at the head of the ACIQ are simply passed along to the CIQ. The register
move component of a vector memory instructionis not dispatched to CIQ until the entire vector of effective
addresses has been checked for page faults in the address generators. This ensures that if a vector memory
instruction experiences a data page fault, only the state in the PAIQ and ACIQ has to be saved and restored
for instruction continuation. Because they occurred earlier in program order than the faulting instruction, any
instructionsaready in the CIQ can compl ete execution.

Onapagefault, onedetail isthat theregister moveinstructionat the head of the ACIQ corresponding
to the faulting vector memory instruction should be dispatched to the CIQ but with atruncated vector length.
This truncated register move pseudo-instruction reads out vaid data in the memory buffers for eement
positions before the faulting element. As part of process restart, a register move pseudo-instruction, with a
non-zero starting element position, isissued asthefirst instruction. In the worst case, a singlevector memory
instruction could experience a separate trap per element.

Also, when the page fault is taken, there may be instructions which write scalar registers (e.g.,
popcount) buffered in the PAIQ or ACIQ which have created interlocks that would block a read of a scaar
register. These interlocks must be cleared when taking the trap to allow the scalar state to be saved. When
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Instruction Issueto | Issueto | Issueto | Dispatch | Complete
PAIQ ACIQ ClQ | fromCIQ
ld.v 1 2 14 102 114
ld.v 2 14 26 114 126
frul . d.vv 3 15 26 115 127
Id.v 4 26 38 126 138
fadd. d. vv 5 27 38 127 139
sd. v 6 38 50 138 150
nmenbar 7 39 50 139 151
Id.v 8 50 62 150 162
ld.v 9 62 74 162 174
fadd. d. vv 10 63 74 163 175
sd. v 11 74 86 174 186
nmenbar 12 75 86 175 187

Table 4.1: Time line of execution of code example on decoupled pipeline. This machine hasa single VMU
with a 100 cycle memory latency, and floating-point units with six cycle latency. Note how the memory
pipeineis kept busy with a vector length of twelve despite the 100 cycle memory latency. After a vector
memory instruction finishes executing, the ACIQ head pointer jumps over multiple instructionsto the next
vector memory instruction; hence the multipleissuesto CIQ in the same cycle.

execution resumes after the page fault, the interlocks can be restored as PAIQ and ACIQ are rel oaded.

When atrap isencountered inthescalar pipeline, there may be multiple pending vector instructions
held in the PAIQ and ACIQ which could potentialy cause vector data page faults. One approach isto save
and restore the vector instruction queues as for a data page fault on every scaar trap. Alternatively, because
vector data page faults are rare, the hardware can simply alow these queues to drain before servicing the
scalar trap. If adatapage fault occurs during the draining process, the scalar trap is converted to a vector data
page fault. The scalar trap will be handled when execution resumes after servicing the data page fault.

Another scheme, adopted in the DEC Vector VAX [DEC904], is to associate a process ID with
the vector unit state, and to delay saving the state until another process attempts to use the vector unit. If
no intervening process attempts to use the vector unit, the vector unit can continue executing instructions
from the original process. Any pending vector page fault traps will be handling when the original processis
reschedul ed, without requiring a queue drain or save of vector unit state.

4.7.2 Execution Example

Toillustrate the operation of the decoupled pipeline, consider the example C code in Figure 4.3 and
the resulting string of dynamically executed vector instructions.

Table 4.1 shows how the execution of this string of instructions unfolds in time on a single-lane
machine with a single VMU with a 100 cycle memory latency, and separate floating-point multiply and add
VAUs with six cycle floating-point latencies. Figure 4.4 shows the same information graphically.

Note that the scalar pipeline finishes issuing instructions for the second routine bar before the
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/*
foo(int n, const double *a,
{ . .
int i;
for (i=0; i<n; i++)
{ cl[i] +=a[i] * b[i];
}
bar (i nt n,
{ . .
int i;
for (i=0; i<n; i++)
{ b[i] +=a[i]; }
}
static double A[34], B[34],
mai n()
{
foo(12, A, B, O;
bar (12, D, ©;
}
*/
f oo: Id.v vvl, al
Id.v vw2, a2
frrul . d.vv vv3, vvi,
Id.v vv4, a3
fadd. d.vv vvh, vv3,
sd.v vvh, a3
nmenbar
bar : Id.v vvl, al
Id.v vw2, a2
fadd.d.vv vv3, vvli,
sd.v vv3, a2
nmenbar

const double *b, double *c)

}

d34],

vv2

vv4

vv2

H o H O HH R

HHHHH

const double *a, double *hb)

O 34] ;

Get A val ues.

Get B val ues.

Cal cul at e product.

Get C val ues.

Cal cul at e sum

Store result.

Make store val ues visible.

Get A val ues.
Get B val ues.
Cal cul ate sum
Store result.
Make store val ues visible.

Figure 4.3: Sample code to illustrate tolerance to memory latency of skewed pipeline. For brevity only the
assembly code for the dynamically executed vector instructionsis shown.
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Figure 4.4: Execution of example code on skewed pipeline. Each shaded bar represents the stay of an
instruction within the given instruction queue or functional unit. A dice across the trace shows the location
of each instruction during each cycle of execution. Notethat the scalar unit isfree to continue execution after
filling the PAIQ in thefirst few cycles.
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second memory instruction in the first routine has starting checking addresses, and long before data for the
firstloadinf oo hasreturned from memory. The VMU address and data structuresare kept continuously busy
during the series of vector memory instructions, although the address and data portions are separated by 100
cycles. Further vector memory instructions could continue to saturate the VMU, even with these relatively
short vectors (12 elements) and long memory latency (100 cycles).

4.7.3 Queuelmplementation

While the PAIQ, ACIQ and CIQ have been described as if they were three separate structures, in
practice they can be implemented as asingle circular buffer held in a RAM structure. Four address pointers
represent the head of CIQ, the head of the ACIQ, the head of PAIQ, and the tail of PAIQ. Once a vector
memory instruction clears address checks, the head of ACIQ can be advanced over multipleinstructionsin
one cycleto point to the next waiting vector memory register move pseudo-instruction (thiswill be at the head
of PAIQ if thereisasingle VMU). The location of the next enqueued vector memory instruction can be held
inasecond smaller RAM list.

Figure 4.5 shows the structure of the vector instruction queue. The instruction at the head of CIQ
is waiting for register and functional unit hazards to clear before being dispatched. The instruction at the
head of ACIQ istheregister move instructionfor the vector memory instruction currently undergoing address
checks. Theinstruction at the head of PAIQ isthe next vector memory instructionwaiting to enter the address
generation phase.

To sustain throughput of a single vector instruction issued per cycle, the FIFO RAM must support
one write of a new instruction, one read from the head of CIQ to dispatch an instruction, and one read from
the head of PAIQ to dispatch a memory instruction to the address generatorsin a VMU. Each entry in these
gueues requires roughly 29 bytes on a 64-bit processor: eight bytes for program counter, four bytes for
instruction, one byte for vector length, and eight bytes for each of two scalar operands. The program counter
is used to identify the instruction that caused the trap for debugging purposes, but could possibly be omitted
to save area. A queue with the same number of entries as the number of cycles of main memory latency will
allow the memory pipelineto remain saturated even with short vectors. With 100 entries total, the queue will
require just under 3KB of storage.

Note that only the instructionsin the PAIQ and ACIQ need be saved on a context swap. Address
checks take only one short chime and this sets the maximum length of the ACIQ; atypical vaue might be 8
instructions. The length of the PAIQ might be limited by the hardware, for example, to 16 instructions. Only
these 24 instruction sl otswoul d then have to saved and restored on context swap. Assuming a high bandwidth
path to cache capable of transferring 32 bytes per cycle, saving the state would only require 24 cycles.



73

Vien / Dispatch
PC Inst. Scalar 1 / Scalar 2

/
/
/

ClQ head
ACIQ head _
Pointers
To Vector
head Memory
PAIQ head — Instructions
PAIQ tail — /
/
/
Issue

Figure 4.5: The three instruction queue structures can be implemented as a single circular buffer in RAM.
Four pointers mark the boundaries between the queues. A second circular buffer holds pointersto the vector
memory instructionsin the queues.
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4.8 Inter-Instruction Latencies

In this section, | consider the cases where memory latency is made visible to vector instructions
executing in adynamically scheduled vector pipeline. Most vector code begins with loads from memory, and
S0 we can expect that theinstructionqueueswill often stretch out to the point where datareturnsfrom memory;,
asshownin Figure4.6. For most instructions, val ues are produced and consumed by unitsexecuting at the end
of the pipeline. This makes these inter-instruction latencies independent of memory latency and dependent
primarily on much shorter functional unit latencies. This genera behavior occurs either with decoupled or
out-of-order vector machines.

There are three classes of instruction that require values produced at the end of the pipelineto be
read at the beginning of the pipelinethereby exposing memory latency to software:

e Scalar reads of vector state cannot complete until the value of the vector state is known. The scaar
unit can continue execution after issuing the read provided it does not try to use the destination register
value beforeit’s received.

¢ Indexed vector memory instructions cannot begin address generation until theindex vector is known.

e Masked vector memory instructions cannot generate page faults until the value of the flag register is
known.

Another way in which memory latency isexposed is for scalar operands fed to vector instructions.

Scalar Unit |F |D | X | M|W

Queues
VMU Load AT | mm == sff\y
Memory
Latency
VMU Store AT == = =R
VAUO IR XIX2X3X4X5X6/W
VAUl TR X1X2X3X4X5X6/W

Figure 4.6: In normal operation, the execution of the vector arithmetic unitsis delayed relative to the scal ar
unit and vector memory address generation (stage A) and trandation (stage T). Most vaues are produced
and consumed amongst functional units executing at the end of the pipeline and are therefore insensitive to
memory latency. Only instructionsthat require values produced at the end of the pipelineto be read at the
beginning of the pipeline experience the full memory latency.
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Vector codes often include a stream of scalar operands for scalar-vector instructions, which can serioudly
impact performance if these scalar operands cannot fit in cache and the scalar unit is poor at tolerating main
memory latency.

These instructions deserve special attention because they potentially expose long memory latencies
to software. Two simple techniques can be used to improve performance. First, where possible, the latencies
can betolerated with longer vectors or by scheduling independent instructions. Second, if the application has
a small working set, effective memory latency can be reduced by caching. Some more advanced techniques
can further reduce the impact of the long memory latency.

Scalar unit reads of vector unit state are primarily used for two purposes: to help execute partialy
vectorizableloops, and to affect control flow inloopswith data-dependent exits. We can convert morepartially
vectorizable loops into fully vectorizable loops by adding better support in the ISA for such operations
as scatter/gather, compress/expand, and conditional execution. Another approach for handling partially
vectorizable loopsisto provide a decoupled scalar unit [Smi89] that lives at the end of the memory pipeline
in the same way as the vector unit. This approach can aso solve the latency problem for scalar operands
streams in cases where the scalar address stream does not depend on the scalar values loaded. Where scalar
unit reads are used to affect control flow in the scalar unit, branch prediction and specul ative scalar execution
can be used to help reduce the impact of theread latency. To help hide the latency of the scalar unit reads of
vector statein data-dependent-exit loops, Section 6.8 introduces flag priority instructionto make more vector
instructionsavailable for static scheduling during the read latency.

Where vector indices are loaded from memory, or cal culated based on val ues |oaded form memory;,
there is a dependency that includes full memory latency; thisis the vector form of pointer-chasing. Apart
from using longer vectors, scheduling independent instructions, and using caches to reduce memory latency,
thereislittlethat can be doneto bresk this dependence.

Itis possibleto reduce the effects of the latency for masked vector memory operations by specula
tively generating and checking addresses. |f no page faults are encountered, execution can proceed. If apage
fault is encountered, the speculative address generation and checking must wait until flag values are known
before taking atrap.

Speculative masked loads bring data values into the load data buffer, and only move these into
the register file when the mask values are known later in the pipeline. Speculative masked unit-stride load
accessesareunlikely to encounter page faults (assuming theworking set fitsin memory), and will generatelittie
additional memory traffic assuming some of the words in the unit-stride span are used. Speculative strided
load accesses are also unlikely to encounter page faults, but could generate significant excess speculative
memory traffic potentialy slowing execution due to extra memory system conflicts. Speculative indexed
accesses are more likely to encounter page faults (e.g., following NULL pointers), and will also generate
significant extra speculative memory traffic.

Specul ative masked stores can buffer up the physical addresses in awrite address buffer, and only
retrieve data val ues and send these to memory later in the pipeline when the mask values are known. Because
they do not access the memory system until after the mask values are known, speculation on masked stores
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will not generate excess memory traffic.

One possible design point is to speculate on all masked vector memory instructions except strided
and indexed load instructions.

The application studies in Chapter 11 report on the frequency of these memory latency-sensitive
instructions. Theresultsthere show that scalar operands streams are the most common way in which memory
latencies could be exposed to vector execution. In all of these cases, however, the scalar address stream was
independent of the scalar values loaded and so could be hidden with a decoupled pipeline.

4.9 Interlocking and Chaining

Inthissection, | consider thedesign of interlock and chaining control logic for thein-order decoupled
pipeline described above. | show that only a small amount of control logic is required to eliminate dead time
and provide flexible chaining of al types of hazard, even with along memory latency.

For correct execution, hardware must preserve data dependencies between vector instructions.
The possible hazards between two vector instructions for each vector register operand are: read-after-write
(RAW), write-after-read (WAR), and write-after-write (WAW). | assume dependencies on memory operands
are expressed explicitly with memory barrier instructions (see Section 8.3 on page 147).

49.1 Typesof Chaining

Chaining reducesinter-instructionlatencies by alowing avector instructionwith a dependency on a
vector register operand accessed by an earlier instruction to begin execution before the earlier instruction has
completed. The second instruction accesses earlier element positions concurrent with the first instruction’s
accesses to later element positions.

Chaining is usually used to refer to the case where the second instruction is reading the results of
thefirst instruction, i.e., a vector RAW hazard. In thisthesis, | also use chaining to refer to the accel eration
of WAR and WAW hazards.

Chaining a WAR hazard (also known as tailgating in the literature) involves writing new values
into a vector register while a previousinstructionis still reading old values. Chaining WAR hazards reduces
vector register pressure by allowing vector registers to be reused earlier.

Chaining a WAW hazard involves writing new values into a vector register before a previous
instruction has finished writing earlier values. While performance-critical WAW hazards are uncommon in
scalar code, they occur frequently in vector code containing conditional updates. For example, two conditional
statements representing two sidesof avectorized i f statement might write different elements within the same
vector register, but this would appear as a WAW hazard to interlocking hardware which manages interlocks
at the granularity of whole vector registers.

Chaining requires a vector register file capable of supporting multiple concurrent accesses to the
same vector register. The element-partitioned vector register files described in Chapter 5 alow flexible



77

chaining of all types of hazard.

49.2 Interlock Control Structure

Figure 4.7 shows the structure of the interlock checking hardware for the vector unit shown in
Figure 4.2. Interlocks are required in two places. Firgt, a the start of the VMU pipeline. Second, where
instructions are dispatched from the CIQ to the VFUs. By splitting these interlocks into two sets, with
an instruction queue in between, we avoid reserving vector registers during the long memory latency and
similarly avoid tracking most dependencies across thislong pipeine delay.

The late pipeline interlock and chaining organization described below is very similar to that used
for TO, which has avery short memory latency. The instruction queues and early pipe interlocksare the only
additional control logic required to extend TO'sinterlock and chaining to handle higher memory latencies.

Decrement

Destination
Counts
Decrement Buffers
#VReg| #FReg
Writers | Writers -
VMU ]
| — Load H
Inst. Reg. ] vDest
To Memory Pipeline -
VMU H
| o Store ] VSrc
Check Inst. Reg. H
H_ Sources g 0
Issue L Ef [
N — H . VAUO [
PAIQ Increment [ — Inst. Reg. VDest —l»
Destination Commit| | | | [ e e~
Counts ] -
Early Pipe Interlock Checks ACIQ CIQ =
> VAUL [
st e e e
= FDest —»
le. VFFU [
Inst. Reg. H
=] FDest

Late Pipe Interlock Checks

Figure4.7: Structure of interlock check logic for sample vector pipeline.
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49.3 Early Pipelnterlocks

Thefirst set of interlocks covers structural hazards on the VMU, aswell asasmall set of RAW data
hazards corresponding to cases where vector state isread early in the pipeline. These include vector indexed
memory operations, vector masked operations, and scalar extract instructionsthat read one element from a
vector register. Flag processor operations that return a scalar value are not handled here but in the late pipe
interlocksfor reasons discussed below in the next section.

To keep track of these RAW hazards, a record of pending writes to vector data and flag registers
is kept in a scoreboard as instructions pass from PAIQ to ACIQ. To improve performance, we require that
multiple writers of each register can be present in the ACIQ and CIQ. Otherwise, instructions could not
enter ACIQ if there was an outstanding write to the same vector register. With long memory latencies, short
chimes, and small loop bodies, thiswould limit loop repeat rate. To allow multiplewritersin the queues, the
scoreboard keeps track of the number of outstanding writes to each register in ACIQ and CIQ. The counts
are incremented as instructions enter ACIQ, and decremented at the point where the address generator can
chain onto the results produced by the instruction. When a data page fault is encountered, this scoreboard is
cleared and instructionsin CIQ are allowed to complete. At instruction continuation, the required scoreboard
interlocks are restored as the ACIQ is refilled.

The scoreboard can be implemented as two multiported RAMs, onefor the vector data registers and
onefor the vector flag registers. Note that a vector arithmetic instruction can write a vector dataregister and
generate exceptional conditionsthat write vector flag registers. Each scoreboard RAM requires one read port
for source interlock checking, one read port and one write port for incrementing destination counts, and one
read port and one write port for decrementing destination counts. This gives a total of three read ports and
two write ports. The reads can happen in thefirst phase of the clock cycle, with increments and writesin the
second phase. The counter structureis small and so should alow these operations to complete in one cycle.

A check must be made for asimultaneousincrement and decrement to the same register, with both
writebacks annulled if thisisthe case. Also, acheck must be made that the count is not already at maximum
— if so the new instruction cannot be issued to ACIQ but must wait for one of the outstanding writes to
decrement the write counter. The number of bitsof in each counter should be chosen to limit the performance
impact of these write counter overflows.

Even though vector instructions are issued one at a time to the VFUs, multipleinstructions might
reach the point a which they alow chaining on the same cycle, either because vector lengths changed or
because someinstructionsallow chaining at different points. But theaverage rate cannot exceed one decrement
per cycle, and so small buffersfor outstanding decrements can be provided to smooth out burstsin decrement
requests. If the buffers could fill, dispatch from CIQ is suspended.

Interlocks of scalar el ement extract instructions, which read a single element from a vector register,
can aso be handled inthisset of interlocks. Itisnatura for the scalar extract instruction to use the VMU read
port and datapath used for vector indices, since both perform reads in the early part of the pipeline.

Because scalar extracts can randomly access any element from a vector data register, they cannot
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be chained in the same way as other instructions but should wait until all elements are written. This can be
handled in severa ways:

¢ Only decrement thewrite countersin the scoreboard when an instruction completely finishes execution.
This causes a performance loss because chaining is now prevented for indexed and masked vector
memory operations.

e Delay scalar extracts after issue for the worst-case number of cycles required to vector the last writer
will complete execution. While inexpensive to implement, thispenalizes all scalar extracts with added
latency.

e Provideaseparate set of write countersfor scalar extracts which are only decremented asan instruction
finishes execution. Thisincurs additional cost, but gives the best performance.

494 LatePipelnterlocks

The second set of interlocks is more complicated. Instructions dispatching from CIQ can alter
vector unit state and so al three types of data hazard are possible (RAW, WAR, WAW). There are also
structural hazards on the VFUs, on the vector register file access ports, and on the buffer hol ding write counter
decrements.

Flag processor instructionsthat return ascalar value are also handled in the second set of interlocks.
This is because these operations require the use of a VFFU and will typically be chained onto other vector
operations, whereas scalar extracts require only a vector register read port and will typically occur in the
scalar portion of a partially-vectorized loop when the vector unitisidle.

After instructionsare dispatched from the CIQ to the VFU controllers, each instructionis expanded
into multiple dement groups. Each VFU controller has an instruction register that holds the instruction
currently being expanded into element groups. Each active VFU produces one element group’s control
signals each cycle and these propagate down the VFU control pipelines and execute across the lanes. For
the VAUSs, the pipelineis severa stages long corresponding to the functional unit latency, whereas the VMU
register moves are shown here executing in asingle cycle.!

To remove dead time between different vector instructionsexecuting inthesame VFU, itisnecessary
to provide pipelined control signas so that each stage can be executing a different vector instruction. In
addition, it is necessary to keep track of the element group being written in each pipe stage for interlock
checking. Thisrequiresthat each VFU has a shift register that mirrorsthe datapath pipeline and which holds
destination vector data and flag register element group numbersfor each pipe stage. Inthe example, there are
six stages in the each VAU pipeline, and so up to six different vector data el ement groups and/or six different
vector flag element groups could have outstanding writes in each VAU pipeline. This machine has a single
VFFU, with asingle pipe stage.

Inpractice, it may be desirableto includeseveral cyclesof the memory latency in the register movecomponent rather than accounting
for al the memory latency before the register moveinstruction is dispatched. This allows skewing of store vector register reads versus
load vector register writes to accommodate differencesin the latency for store data versusread data in the memory system.
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495 Chaining Control

Chaining control issimplest for instructionsthat access operands starting with element group 0 and
stepping through one element group per cycle. | term these regular vector instructions.

Consider first the case where there are only regular vector instructions and full chaining support.
In this case, a new instruction in the example machine would be guaranteed no RAW hazards provided only
that there were no outstanding writes to the first element group of any of its source operands, either in the
VFU instruction registers or in the VFU pipdines. The example machine has no WAR hazards for regular
instructions because writes always follow reads across all VFU pipelines. A WAW hazard is possible because
theVMU load unitsand the VFFU have much shorter pipelinesthanthe VAUs. With only regular instructions,
anew VMU load or VFFU instruction would be guaranteed no WAW hazards provided there were no writes
outstanding to thefirst e ement groupsof any of itsdestinations. Oncethese hazardsare cleared, aninstruction
can be dispatched to a VFU and execute to completion with no further stalls.

Irregular vector instructions are those that do not execute at the same rate and/or do not follow
the usual vector register access pattern; these complicate chaining control. Vector memory instructions can
experience stalls during execution caused by memory system conflicts or cache misses. If thereis only a
singleVMU, one approach isto stall the entire vector unit whenever the VMU stalls, so preserving theregular
structure across al instructionsin execution.

Andternativeapproachisto regularizevector memory instructionsby using databuffersto decouple
vector register file access from the memory system. For vector loads, the register move from the data buffers
into the register fileis not dispatched from the CIQ until it isknown that all e ements in the vector will arrive
intimeto prevent stalling. This can usualy be determined early in the pipeline based on effective addresses
and so does not necessarily add to memory latency or prohibit chaining. Similarly for vector stores, awrite
buffer can isolate the drain of data from the vector register file from the write to the memory system.

Some other irregular vector instructionsare more difficult to handle. Theseincludethescaar extract
described earlier, as well as scalar element insert and vector register permutes (Section 10.3) which access
elements with irregular access patterns. Scalar insert can write any element in a vector register according
to the element index, and so might stall in dispatch until all outstanding read or write accesses to the target
vector register will complete. Vector register permutes can read and write vector element groupsin arbitrary
patterns.

Some irregular instruction can support some forms of chaining to regular vector instructions. For
example, compress can guarantee to read its source a normal rate and so can support RAW or WAR chains
on itsinput. Compress cannot guarantee that the result will be produced at normal rate so cannot be RAW
chained on its destination, but can be WAR or WAW chained because it can only produce values slower than
aregular instruction.

The final important set of irregular instructionsare dow arithmetic instructions such as divides and
square roots. These can simply reserve destination registers until al values are completed, or until the point
at which it isknown that aregular instruction could not overtake and violate a dependency.
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4.9.6 Interlockingand Chaining Summary

Efficient pipelinecontrol isimportant for vector microprocessors. By delaying arithmeticinstruction
execution until data arrives from memory and by eiminating dead time, we remove the main reasons
for providing longer vector registers. By hiding memory latency and by providing flexible chaining, we
increase the efficiency of executing short vector instructionson parallel lanes, thereby increasing the range of
applications which achieve speedups through vectorization.

The control logic required to provide this efficient pipeline control is small, consisting of a few
kilobytes of queue information and a few dozen comparators and incrementers, yet allows for sustained
execution of dozens of operations per cycle whiletolerating a 100 cycle main memory latency.
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Chapter 5

Vector Register Files

The vector register file lies at the heart of a vector unit. It provides both temporary storage for
intermediate values and the interconnect between VFUs. The configuration of a vector register file is the
programmer-visible partitioning of the vector el ement storageinto vector registers of agiven length. Thefirst
part of thischapter discusses the choice of vector register configuration, and in particular, how configurations
for vector microprocessors will tend to have more vector registers but with fewer elements per vector register
compared to vector supercomputers.

The second part of thischapter reviews several microarchitectural techniques which have been used
in commercia systems to reduce the cost of implementing a large high-bandwidth vector register file, and
then presents savera full-custom VLS| designs suitable for avector microprocessor. The most area-efficient
vector register file design is shown to have several banks with several ports, rather than many banks with few
portsasin atraditional vector supercomputer, or one bank with many portsasin superscalar register files.

5.1 Vector Register Configuration

The number and length of vector registersto provideisakey decisionin the design of avector unit.
Table 5.1 shows the configuration of vector register files for a variety of existing vector processors. Some
machines alow afixed number of elementsto be dynamically repartitioned to form either alarge number of
short vector registers or fewer longer vector registers.

5.1.1 Vector Register Length

We can place a lower bound on required vector register length if we desire that at least some
application codes can keep al of the VFUs busy. Thisrequiresthat we can issue an instructionto every VFU
before the first VFU finishes execution. The peak number of element operations completed per cycle isthe
product of the number of VFUs and the number of lanes. Equation 5.1 expresses the constraints on minimum



Number of Vector Element Total
System vector register size storage | Reference
registers length (bits) (KB)
Vector Supercomputers
Cray 1,2,3,4 8 64 64 4 | [Rus78]
Cray X-MP, Y-MP 8 64 64 4 | [ABHS89]
Cray C90, T90 8 128 64 8 | [Crad3]
Fujitsu VP-200 8-256 | 1024-32 64 64 | [MU84]
Fujitsu VPP500, VPP300 8-256 | 2048-64 64 128 | [UIT94]
Hitachi S810 32 256 64 64 | [LMM85]
NEC SX-2 8+32 256 64 80 | [Laz87]
Unisys Sperry ISP 16 32 72" 4.6 | [Cor89]
IBM 3090 Vector Facility 16 128 32 8 | [Buc86]
Vector Minicomputers
Cray J90 8 64 64 4
Convex C1, C2 8 128 64 8 | [Jon89]
Convex C4/XA 16 128 64" 16 | [Con94]
DEC Vector VAX 16 64 64 8 | [DEC90b]
Ardent Titan 8 x 32° 32 64 64 | [DHM*8g]
Single-chip Vector Coprocessors
NEC VPP 4+4 64+96 64 5.1 | [OHOT9]1]
Fujitsu uVP 864 | 128-16 64* 8 | [AT93]
CM-5 Vector Units 4-16 164 64* 0.5 | [WACT92]
Vector Microprocessors
TO | 16 | 32 | 32 | 2 | Chapter 3

Table 5.1: Vector register file configurations for different vector processors. Several machines allow the
element storage to be dynamically reconfigured as a fewer number of longer vector registers or a greater
number of shorter vector registers. *The machine can sub-divide these elements into sub-words to allow
grester element capacity for operations requiring less precision. “The IBM 370 vector architecture made
the vector length an implementation detail, not visible to the user instruction set architecture. Also, vector
registers can be paired to give 64-bit elements. * The Ardent Titan operating system partitionsits register file
into 8 process contexts each with 32 vector registers of 32 elements each.
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vector register length if wewish to keep al of the VFUs busy:

. Number of lanes x Number of VFUs
Vector register length > x

- - - 51
— Number of vector instructionsissued per cycle (1)

In practice, vector code also require some bookkeeping scalar instructions. We can either make the vector
registerslonger to keep the VFUs busy whilethe scalar instructionsareissued, or supply additiona instruction
bandwidth to issue scalar instructionsin parallel with vector instructions.

There are several advantages to further increases in vector register length:

e Any vector startup overhead isamortized over agreater number of productivecycles. Similarly, energy
efficiency can improve because instructionfetch, decode, and dispatch energy dissipationare amortized
over more datapath operations.

¢ Instruction bandwidth requirements are reduced. Also, because each instruction buffers up more work
for the vector unit, the scalar unit can get further ahead of the vector unit for a given length of vector
instruction queue.

e Longer vector registerswill tend to increasethe spatial locality withinvector memory reference streams,
by taking more elements from one array before requesting elements from a different array.

o If the maximum possible iteration count of a vectorizable loop is known to be less than or equal to
the maximum vector register length at compile time, then stripmining code can be completely avoided;
lengthening the vector registerswill increase the probability of thisoccurring.

e Longer vector registers can reduce memory bandwidth requirements by enabling more scalar operand
reuse. For example, in the tiled vector-transpose-by-matrix multiply described in Section 11.1.2,
increasing vector register length would linearly reduce the number of scalar memory accesses to the
source vector.

We see diminishing returnsfor further increases in vector register length for two reasons. First, for
all sources of fixed overhead per vector (startup cycles, instructionenergy consumption, instructionbandwidth,
scalar data bandwidth, or memory subsystem address bandwidth) each doubling of vector register length will
give ever smaller reductionsin the amortized overhead. Second, it is only possibleto improve performance
for applications with natural vector lengths grester than the existing vector register length and these become
fewer as vector register length grows.

5.1.2 Number of Vector Registers

There are several advantages to increasing the number of vector registers:

¢ Increasing the number of vector registers provides more storagefor intermediate values. Thisdecreases
the number of vector register spillsand thereby reduces memory bandwidth requirements.



86

Espasa and Vaero [EV97a] analyzed vector register spill traffic for severa codes taken from the
SPECfp92 and PERFECT benchmark suitesrunning on aConvex C3 architecturewith 8 vector registers.
The three most affected programs were su2cor and t ontat v from SPECfp92, and bdna from
PERFECT. For su2cor, 20% of al memory traffic was vector register spills, which would mostly
be avoided with an increase to 16 vector registers. For t ontat v, spills were 40% of memory traffic
and could be diminated with an increase to 32 vector registers. The worst offender was bdna, where
spills accounted for 70% of al memory traffic. Here the traffic was partly due to vector register save
and restore overhead around a large number of calls to vectorized mathematical library routines such
as SIN and EXP. Increasing the vector register count might allow a more sophisticated vector function
calling convention with both call er-save and callee-save vector registersto reduce spills. Severa other
codes had spills accounting for 10-15% of total memory traffic.

Chapter 12 reportsthat increasing the number of vector registers to 32 would improve the performance
of severa multimedia codes running on TO by 5-26%, but none of these codes would show significant
improvement past 32 vector registers.

In her thesis, Lee [Lee92] found that decreasing the amount of register spill code was not an important
reason to increase the number of registers, but her study used a Cray Y-MP vector supercomputer with
two load units and one store unit. That the register spill code did not contribute to execution time
is an indication that the multiple memory ports were otherwise poorly utilized [Esp97b]. A vector
microprocessor will likely operate in an environment with relatively limited memory bandwidth and
hence reducing vector register spillsisimportant.

Matrix operations can make use of more vector registers to hold larger rectangular portions of matrix
operands in the vector register file, reducing memory bandwidth requirements by allowing greater
operand reuse. For example, in the tiled matrix-by-vector multiply in Section 11.1.2, increasing the
number of vector registers would linearly reduce the number of accesses to the source vector.

A larger number of vector registersmakesit easier to perform moreaggressive scheduling of i ndependent
vector instructions. Whileregister spilling did not contributesignificantly to execution timeonthe Cray
Y-MP, Lee [Lee92, Chapter 5] did find that increasing the number of registers improved performance
by alowing instruction scheduling to expose a greater degree of inter-instruction paralelism. The
independent instructions can then be executed in paralel on multiple VFUs. Similarly, with enough
registers, stripmined loops can be unrolled and software pipeined to hide functional unit latencies or a
lack of chaining hardware [MSAD91].

For an element storage of fixed capacity, the main disadvantage of increasing the number of vector

registersisthat more instruction bits are needed to encode the vector register specifier. In Table 5.1, the only

machines that have more than 64 user visible vector registers are the Fujitsu supercomputers VP-200, and
VPP500/VPP300. The machines without reconfigurable element storage provide between 8 and 32 vector



87

registers. The Torrent ISA [AJ97] demonstrates that a conventional 32-bit RISC instruction format can
comfortably support 32 vector registers within the opcode space aloted for a coprocessor.

5.1.3 Reconfigurable Register Files

Having examined the advantages of both longer vector registersand more numerousvector registers,
the appeal of areconfigurable vector register fileis clear. Where there are many temporary values, the vector
register file can be configured to provide more vector registers to avoid register spills. Where there are few
temporary values, the register file can be configured to provide longer vector registers to better amortize
overheads. But there are several disadvantages to a reconfigurable vector register file:

e Control logic to manage vector register dependencies, chaining, and vector register file access conflicts
is more complex.

e The configuration must either be held as extra state in the processor status word or be encoded in extra
instruction bits.

o |If the configuration is part of the machine state, a routine must set the configuration before issuing
vector instructions (unless it can determine the previous configuration, or requires no more than the
minimum possible number of vector registers and no more than the minimum possible vector register
length).

5.14 Implementation-dependent Vector Register Length

Oneof thegoa sof 1 SA designismakean architecture scal abl e, so astotake advantage of technology
improvements over time and to enabl e both low-cost and high-performance i mplementations within the same
technology generation. From Equation 5.1 on page 85, we see that as we scale up the number of lanes
or the number of functional units, we must either increase vector instruction issue bandwidth or increase
vector register length to sustain peak throughput. Increasing vector instruction issue rate alows the same
vector length to be maintained across a range of implementations, but this can require expensive issue logic.
Rather than fix avector register length for al implementations, we can instead make the vector register length
implementation dependent. High-performance many-lane vector units can then use longer vector registers
than low-cost few-lane vector units.

For compatibility, an efficient run-time scheme is required to allow the same object code to run
on machines with different vector register lengths. A machine's standard ABI (application binary interface)
could define a dynamically-linked library holding constants related to machine vector register length. This
requires no hardware support, but does require an operating system capabl e of supporting dynamically-linked
libraries. Also, loading thisinformation from memory before using it to make thefirst control decision for a
stripmined |oop adds startup overhead.

The IBM 370 vector architecture supported implementation vector register lengths between 8 and
512 dlements, and added a “load vector count and update” (VLVCU) instruction to control stripmine loops
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[Buc86]. Thisinstruction has a single scalar register operand which specifies the desired vector length. The
vector length register is set to the minimum of the desired length and the maximum avail able vector length,
and thisvalueisalso subtracted fromthe scalar register, setting the condition codesto indicateif the stripmine
loop should be terminated. Thisinstruction has two problems for amodern RISC pipeline. Firgt, it places a
comparison and a subtraction in series which is unlikely to complete in a single machine cycle. Second, it
requires several additional instructionsto determine the vector length currently being processed; thislength
is often required in more complex vector code to update address pointers or to check for early exits from
speculative vector loops.

An dternative scheme more appropriate for a RISC pipelineisto provide a“ saturate to maximum
VL" scalar instruction. This“set vl r <dest> <src>" instruction takes a scalar register as the only source
operand, and writes a destination scalar register with the minimum of VLMAX and the scalar source value
treated as an unsigned integer. The same result value is simultaneoudy written to VLR. When the saturated
vector length isnot required in a scalar register, the result can be dumped to the scalar zero register. The use
of such an instruction is shown in Figure 5.1. Although a separate subtract instruction is needed with this
scheme, the subtract can be scheduled after vector instructions have been dispatched to the vector unit. Note
that the ISA should specify that vector instructions perform no operationsif VLR is set to zero.

The set vl r operation requires only the evaluation of one wide precharged NOR gate before
driving multiplexer control lines over afew bits of the datapath width. The precharged NOR gate checks for
the case where the scalar value is greater than VLMAX — 1 by looking for any set bits at the top of the scalar
operand. The high bits of the result are always zero, so the output multiplexer only needs to drive either
the scalar operand or VLMAX onto the low bits of the result bus. The whole operation should evaluate in
less than a single processor cycle. The zero comparator can be part of the branch or conditional move zero
comparators in the integer datapath.

Whilewriting both VLR and ascalar register with the same result is straightforward for an in-order
machine, for machines that perform register renaming it can be troublesomefor an instruction to produce two
results. The operation can be split into two parts, one that performs the saturation in a scalar register and a
conventional move-to-VLR instruction, but these then have a true dependency which adds a cycle of latency
before vector instructions can be dispatched.

Theset vl r instruction can aso be used to provide a branch prediction hint for stripmined [oops.
Loop-closing branches in stripmined vector loops are much more difficult to predict than those in scalar
versions of the same loops because there are many fewer taken branches for every not-taken branch. While
branch mispredicts might not impose a large penalty in highly vectorized code with long vectors, in mixed
scalar and vector code, accuratestripmined loop branch predi ctionscan avoid polluting scal ar branch prediction
tables with vector loop branches. The next backward branch after aset vl r instruction is predicted taken
if the scalar source of theset vl r instruction was greater than VLMAX.! This provides perfect prediction

1In addition to the existing comparator that detects that the source was greater than VLMAX — 1, another comparator is required
to check if the sourceis exactly equal to VLMAX. This second comparator requires a wired-OR across the least significant bits of the
source.
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/*
C source for routine:
foo(size_t n, const double*A, const doubl e*B, doubl e*C)
{
size t i;
for (i=0; i<n; i++)
di] = Ali] * Bli];
}
*/

### Regi ster allocation at function entry:
### a0 holds n

### al hol ds A pointer

### a2 hol ds B pointer

### a3 hol ds C pointer

f oo:

setvlr t0, a0 # Wite vir and tO with strip length.
Id.v vwO, al # Load A vector.

sl t1, t0, 3 # Miltiply vector length by 8 bytes.
addu a1, t1 # I ncrement A pointer.

ld.v vvl, a2 # Load B vector.

addu a2, t1 # Increment B pointer.

foul . d.vv vv2, vv0, vvl # Miltiply.

sd.v vv2, a3 # Store C vector.

addu a3, t1 # Increment C pointer.

subu a0, to # Subtract el enents conpleted this tine.
bnez a0, foo # Continue loop if any elenents |eft.

j ra # Return from subrouti ne.

Figure5.1: Example of stripminecode showing use of set vl r instruction to make object code independent
of implementation vector length. Only a single non-branch instruction is required before issuing the first
vector instruction in the routine.
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for the loop-closing branch in most stripmined loops. As described below in Section 6.7, where there are
data-dependent loop exits, forward branches may appear before the loop-closing branch in stripmined code.
To handlethis case, theset vl r branch prediction isignored after any taken forward branches.

To manage implementati on-dependent vector lengths, it is also desirable to provide instructionsto
read VLMAX and log,(VLMAX) into a scalar register. The value log,(VLMAX) can be used as a shift
amount to perform multipliesand dividesby VLMAX. Stridesneed to be multiplied by the number of el ements
to update pointersin a stripmined loop, while iteration counts sometimes need to be divided by the number
of elements to caculate stripmine loop trip counts. An implementation can simplify instruction decode by
converting these instructions that read machine constants into “load immediate” instructions at instruction
cache refill time.

In some cases, vector lengths are known at compile time. To avoid stripmining overhead for short
constant length vectors, it is desirable to architect a minimum vector register length that must be provided by
all implementations.

It is possible to support implementation-dependent vector register length with a reconfigurable
vector register file. The configuration would first be set by selecting the number of vector registers, then the
above techniques can be used to determine configuration vector lengths.

5.15 Context-Switch Overhead

Both lengthening vector registersand adding more vector registersincreases theamount of processor
state that must be saved and restored on a context switch. Although vector machines have high memory
bandwidth to help speed these transfers, they might still represent appreciable overhead. Severa techniques
can be used to minimize thisimpact. All of these techniques keep information about the usage of the vector
register file in separate hardware state hits.

Onetechniqueisto add ahardware valid bit for each vector register. Thevalid bitswould be cleared
on process startup, and set whenever a vector instruction writes a vector register. This approach reduces
register save and restore overhead for a process that doesn’t need to use all the vector registers. A user-level
“vector state invalidate’ instruction can be provided, whose semantics are to make the vaue of all vector
state undefined. Thisinstruction clears al the valid bits to inform the kernel that the user process no longer
requires the state in the vector registers. Programming conventions usually classify vector register state as
caller-save, and so software can add a vector state invalidateinstruction at the exit of every subroutine.

Further reductionsin register save overhead are possible if we also keep track of a hardware dirty
bit per vector register which is set whenever a vector register is written. The operating system kernel can
check these bits and only save those registers that have been modified since the last context swap. These
enhancements are particularly useful for rea-time multimedia applications where high-priority processes
are invoked repeatedly to process frames of data but do not need vector register state preserved between
activations. To support efficient user-level context switching, thedirty and valid bitsshould be made available
to user code. Both valid and dirty bitswere part of the IBM 370 vector architecture [Buc86].
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The valid and dirty bits work at the granularity of whole vector registers. To aso avoid overhead
on processes that use only short vectors, we can keep track of the maximum vector register lengths used by
aprocess. We can keep a single maximum length for al vector registers, an individua maximum length for
each vector register, or some intermediate grouping of vector registers to maximum length values. To save
logic, we may only track the high order bits of the maximum vector length, for example, by only countingthe
number of element groups. The kernel can then use only the observed maximum length to save and restore a
vector register.

5.1.6 Vector Register File Configuration for a Vector Microprocessor

Vector supercomputers have vector register files built from multiple small discrete SRAM compo-
nents interconnected to the functional units using further discrete parts [Lee92, Chapter5]. The main factors
in determining cost are the number of packages and the number of pins per package. With current packaging
technologies, the cost of a smal SRAM will be limited by the number of input and output pads required,
not by the size of the on-chip memory array. Adding more wordsto a small SRAM array will have a minor
effect on cost because each additional address pin doubles the number of storage elementsthat can be placed
on adie. Because longer vector registers increase performance in their designs and because the incremental
cost islow, some of the vector supercomputer manufacturers provide very large vector register files holding
64-128KB (Table 5.1).

For afull-custom VLS| microprocessor, die area dominates cost. Aswill be shown later, the vector
register fileareaisprimarily determined by the number of storage cellsand the number of portsfor theVFUs.
The following arguments suggest that it is best to divide lement storage into afixed large number of vector
registers, rather than either fewer longer vector registers, or a reconfigurable vector register file:

¢ The higher integration of avector microprocessor makes it easier to eliminate dead time (Section 3.4).
This removes the main advantage of providing longer or reconfigurable vector registers because there
ishow no startup overhead to amortize.

o A fixed vector register configuration simplifies control logic, and avoids the overhead of setting the
configuration before use.

e Adding more vector registers decreases the number of vector register spills, and vector microprocessors
may have limited memory bandwidth compared to vector supercomputers.

e Increasing the number of vector registers alowsthe use of more aggressive loop unrolling and software
pi pelining techniques to expose more independent vector instructions. Future technology scaling will
allow more VFUs to be added to exploit thisinter-instruction parallelism.

e Short fixed vector register lengths help reduce maximum interrupt latency, which can be important for
real-time applications.



92

e Whilelonger or reconfigurable vector registers can also reduce memory bandwidth requirements with
certain patterns of datareuse, thiseffect can dways be synthesized by grouping multiple shorter vector
registersin software. In contrast, longer vector registers cannot be used to synthesize the reuse patterns
possible with more numerous vector registers (register spillsare just one example of this).

e Wecan unroll astripmined loop and schedul etogether multi plevector memory instructionsfor the same
memory stream to get the same memory reference locdity benefits as with longer or reconfigurable
vector registers.

e While longer vector registers buffer more work per instruction, and thus alow the scalar unit to get
further ahead of the vector unit, we can increase vector work buffering less expensively by enlarging
the vector instruction queue.

If an application has longer natural vector lengths, then longer or reconfigurable vector registers
give greater energy efficiency by executing fewer instructions per operation, but as vector register length
grows, the savings per element become less significant. Longer or reconfigurable vector registers are also
more effective at avoiding stripmine code when aloop’s maximum iteration count is known at compiletime.
But in practice these tend to be short loops, and for longer loopsthereisrelatively | ess advantage to removing
stripmining overhead.

To summarize, a vector microprocessor 1SA should favor afixed large number of vector registers
over fewer longer vector registers or a reconfigurable vector register file. Ideally, the vector register length
should beimplementation dependent to allow scaling. Animplementation should ensure vector register length
is sufficient to saturate all VFUs given the available vector instruction issue bandwidth. Further increases
in vector length can bring some benefits but these should be weighed against increases in die area, interrupt
latency, and context switch overhead.

5.2 Vector Register File I mplementation

A vector register file must provide storage for register elements and access ports for VFUs. The
number of register elements is determined by the number of vector registers and their length. The number
of portsis determined by the mix of functional units. Each VAU usualy requires two read ports and one
write port. Each load unit requires a write port and each store unit requiresaread port. In addition, a vector
memory functional unit requires an extraread port to supply indices for indexed loads and stores.

For example, TO has two VAUs and one VMU that performs both loads and stores. Each VAU has
two read portsand onewrite port. The VMU has separate read and write ports. Both VMU ports are used for
indexed loads and vector extract instructions, while the single VMU read port is time multiplexed between
indices and data for indexed stores. This givesatota of 5 read portsand 3 write ports.

A straightforward, but expensive, implementation of a vector register file would be as a single
multiported memory. This would give each VFU independent access to any element of any vector register
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at any time. We can reduce implementation costs considerably by using two complementary techniques that
take advantage of the regular pattern in which vector instructionsaccess register elements. First, we can split
the vector register file storage into multiplebanks, with each bank having fewer ports. Second, we can make
each bank wider to return more than a single el ement per access.

52.1 Register-Partitioned versus Element-Partitioned Banks

There are two orthogonal ways in which we can divide the vector register storage into banks.
The first places elements belonging to the same vector register into the same bank; | term this register
partitioned. The second places elements with the same element index into the same bank; | term this element
partitioned. Figure 5.2 illustrates both forms of vector register file partitioning for an example vector register
file with 4 vector registers each 8 elements long. Figure 5.2 aso shows a hybrid of register-partitioned and
element-partitioned. All configurations have been divided into 4 memory banks.

By interleaving vector register storage across multiple banks, we can reduce the number of ports
required on each bank. A separate interconnection network connects banks and VFU ports. In effect, al of
these bank partitioning schemes reduce the connectivity between element storage and VFU ports from afull
single-stage crosshar to a more limited two-stage crosshar. This introduces the possibility of element bank
access conflicts between two VFUSs.

With a register-partitioned scheme, aVFU reserves a bank port for the duration of an instruction’s
execution. If another VFU tries to access the same bank using the same port, it must wait for the first
instruction to finish execution. Figure 5.3 illustrates this stall for the register-partitioned vector register file
shown in Figure 5.2.

Because a single VFU monopolizes a single bank port, opportunities for chaining through the
register file are limited to the number of available ports on a single bank (plus any additiona bypass paths
around the functional units themselves). Also, complications arise in a register-partitioned scheme if there
isonly a single read port per bank and there is more than one vector register per bank. The hardware will
either be unable to execute a vector instruction with both vector register operandsin the same bank, in which
case software must avoid this condition [Lee92, Chapter 6], or the instruction will run at half speed (due to
time-multiplexing of the single read port) which will complicate chaining with other instructions. Similarly,
if abank can only support oneread or onewrite, then avector register cannot be used as both a source operand
and a destination operand within a single vector instruction.?

With an element-partitioned scheme, a VFU executing a single instruction cycles through al the
banks. This allows al VFUs to be performing multiple chained accesses to the same vector register even
though each bank has alimited number of ports. Figure 5.4 shows how an element-partitioned scheme avoids
the stall experienced by the register-partitioned scheme for the same pair of vector instructions shown in

2The Cray-1 implementation had a register-partitioned scheme with only a single read or write port per vector register. Users soon
discoveredthat if a vector register was used for both input and output that the machine would recirculate function unit outputsback into
the inputsin away that could be used to speed reduction operations. Some users were disappointed when the Cray X-MP design added
separate read and write ports to each vector register bank, and so lost this capability [ABHS39].
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V3[0]
V2[0]

V3[1]
V2[1]

V3[2]
V2[2]

V3[3]
V2[3]

V3[4]
V2[4]

V3[5]
V2[5]

V3[6]
V2[6]

V3[7]
V2[7]

V1[0] | V1[1] | V1[2] | V1[3] | V1[4] | V1[5] | V1[6] | V1[7]

VO[O] | VO[1] | VO[2] | VO[3] | VO[4] | VO[5] | VO[6] | VO[7]
Register Partitioned
V3[1] | V3[5] V3[3] | V3[7]
V2[1] | V2[5] V2[3] | V2[7]
V1[1] | V1[5] V1[3] | V1[7]
VO[1] | VO[5] VO[3] | VO[7]
Element Partitioned
V3[0] | V3[2] | V3[4] | V3[6] ' V3[1] | V3[3]| V3[5] | V3[7]
V2[0] | V2[2] | V2[4] | V2[6]} | V2[1] | V2[3] | V2[5] | V2[7]
V1[0] | V1[2] | V1[4] | Vi[6]] @ V1[1]| V1[3]| V1[5]| V1][7]
VO[O] | VO[2] | VO[4] | VO[6]} @ VOI[1] | VO[3] | VO[5] | VO[7]

Register and Element Partitioned

Figure5.2: Different waysof partitioningthe element storagewithin avector register fileinto separate el ement
memory banks. In this example, the vector register file has 4 vector registers, V0-V3, with 8 elements per
vector register, 0—7, and there are atotal of four e ement memory banks. The element banks are represented by
thethick linesinthediagram. Thefirst schemeisregister partitioned, with each vector register assigned to one
bank. The second scheme, element partitioned, stripes vector registers across al banks, with corresponding
elements assigned to the same bank. The third schemeisahybrid of the two.
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Figure 5.3. This element-partitioned scheme has two read ports per bank, which would aso have avoided
the conflict in the register-partitioned scheme; however, the e ement-partitioned scheme would allow further
VFUs to read the same register without any additiona read ports on each element bank.

If there are more elements than banks, then the VFU will make multiple accesses to each bank. A
subsequent vector instruction beginning execution in a second VFU might have to stall while the first VFU
performs an access to the first bank, but this stall will only last for one cycle. After thisinitial stall, both
VFUs are now synchronized and can complete further register file accesses without conflicts. An example of
such aconflict is shown in Figure 5.5.

One complication with an element-partitioned scheme is that some operations (vector-vector arith-
metic and indexed stores) require two el ements with the same index but from different vector registers each
cycle. There are three possible approaches to solving this problem:

e The simplest approach isto have at least two read ports on each bank as shown in the examples above.

e Another solutionisto read element 0 of thefirst vector operand in one cycle and hold thisin a buffer,
then read element O of the second operand in the next cycle while simultaneously reading element 1
of the first operand from the second bank and into a buffer [IBM87]. This adds one cycle of startup
latency if there are no conflictswith other ongoing vector instructionshbut thereafter the vector accesses
complete at the rate of one per cycle.

o If the number of banksis at least equal to the number of vector registers, then a third approach isto
place element 0 of each vector register in a different bank [DEC90b]. This stripes vector elements
over the banks in a helical barber-pole pattern and allows element O of both operands to be obtained
from element banks with singleread ports, without any additional startup latency, and with subsequent
accesses cycling across the banks as before.

The main disadvantage of element partitioning versus register partitioning is that control is more
complicated, especially inthe presence of VFUsthat run at different rates, or that experience different patterns
of stall cycles. Stallsare usually only generated for memory accesses by VMUSs, but thesewill aso cause any
chained VAUs to stall.

Time

{viror | {varay | varar | {varar | fvarar | fvaist | fveier | vei7 |
v2ro] | iverag | lverzr |iversr | lverar |versy | verel | ver g

Ve Vi< R - o]
Stall on V1 register bank

Figure5.3: Example of vector register file access stall in register-partitioned scheme. If thereisonly asingle
read port on the bank holding V1, the shift instruction must wait until the end of the add before it can begin
execution. Only vector register read accesses are shown.

VO <- V1 + V2
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VO

V3

VO

R4
R7

R5

V3

<- V1 + V2

<- V1 << R1

Time
V1[ 0] V1[ 1] V1[ 2] V1[ 3] V1[ 4] V1[ 5] V1[ 6] V1[ 7]
V2[ 0] V2[ 1] V2[ 2] V2[ 3] V2[ 4] V2[ 5] V2[ 6] V2[ 7]
V1[ 0] Vi[ 1] V1[ 2] V1[ 3] V1[ 4] V1[ 5] V1[ 6] V1i[ 7]

Figure 5.4: The e ement-partitioned scheme avoids the stall seen by the register-partitioned scheme.

<- V1 + V2

<- R4 + 10
<- R6 - R3

< [R2]

<- V3 << R1

V1[ 0]

V2[ 0]

Vi[ 1]

V2[ 1]

V[ 2]

V2[ 2]

Time
V1[ 3] V1[ 4] V1[ 5] V1[ 6] V1[ 7]
V2[ 3] V2[ 4] V2[ 5] V2[ 6] V2[ 7]
V3[ 0] V3[ 1] V3[ 2] V3[ 3]
Stall

Figure5.5: Thisinstruction sequence causes one cycle stall with the element-partitioned schemes because the
second vector instruction needs to access the e ement 0 bank on the same cycle as thefirst vector instruction
is returning to the same bank to retrieve element 4. After the single cycle stall, the VFUs are synchronized
and experience no further conflicts.
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For systemswith asingle VMU, a simple solutionisto stall the whole vector unit on any memory
stall thereby preserving the rel ative access pattern of al VFUs. Thisallowsall potential vector register access
conflictsto be resolved once at instruction issue time.

Another simple approach is to use a fixed rotating schedule to connect element banks to VFUs
[AT93]. Again, thisallows conflictsto be resolved at issuetime, and al so guarantees good performance when
all VFUs are active. The main disadvantage of this approach is that it increases the length of any register
access conflicts stalls. The startup latency increases because a VFU has to wait until the schedule rotates
around to give it access to the first bank, even if no other VFU was currently active. For example, a system
with 4 banks may have up to 3 cycles of wait time until a VFU can access the first bank. This performance
impact can be reduced by alocating slots such that two VFUs that are often chained together (e.g., load to
arithmetic) perform writes then reads in successive time slots. The time spent waiting for the access dot is
then overlapped with the time spent waiting on the dependency. A more significant source of performance
loss can occur during execution. If a VMU experiences a stall, it might have to wait for the element bank
access port to cycle around again. Whileit is possible to simply stall the whole vector unit to avoid the long
stall for systems with one VMU, for systems with multiple VMUS, it is desirable to allow one VMU to dlip
ahead of another in the case that both are hitting the same sequence of memory banks.

An alternative approach that till allows al conflicts to be resolved at issue time is to disallow
chaining of loadsinto other operationsand provide separate dedicated ports on each bank for VMU accesses.
No VMU gall can then affect the operation of other VFUSs. Stores can still be chained onto other operations.

The most general solution is to resolve access port conflicts cycle by cycle, giving priority to the
oldest instructions for any stall. One problem with this scheme is that a dynamically assigned port access
schedule may be suboptimal, i.e., a certain dynamic assignment of VFUs to element banks might prevent
a further VFU from beginning execution whereas a different assignment could support al simultaneoudly.
Increasing the number of available bank ports relative to the required number of VFU ports decreases the
probability of hittingabad port access schedule (as does providing separate read and write ports).

5.2.2 Wider Element Bank Ports

Another way of increasing vector register file bandwidth is to make each access port wider, trans-
ferring more than one element per cycle. Each VFU read port needs a buffer to hold the multiple words read
per cycle until they are needed, and each VFU write port needs a buffer to hold result e ements until awhole
line of elements can be written to the element storage. An example using this scheme is described below in
Section 5.2.4.

Themain drawback of thisschemeisthat it can increase the latency of chaining throughtheregister
file, as a vector register read must wait for al elements in arow to be written. Bypass multiplexers can help
by alowing a dependent instruction to read a value as it is written to the write buffer. This will only work
if the chained instruction issues at the right time, or if the write buffer has only two elements. For example,
with four elements per write buffer, if the dependent instruction issues after the first element has been written
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System Number Vector Register Ports per Cycles | Elements
of Register Banks bank per per
Vector Length X access access
Registers Element
Banks

Cray-1 8 64 8x1 1Ror 1IW 1 1
Cray X-MP, Y-MP 8 64 8x1 1R and 1W 1 1
Cray-2 patent 8 64 8x4 1R or 1W 2 1
IBM 3838 16 64 1x4 1Ror 1IW 1 1
Unisys Sperry 3068-0 16 32 1x8 2Ror 1W 1 1
Stellar 4x6 32 1x1 1Ror 1IW 1| 16Ror 8W
Titan 8x32 32 4x1 1Ror 1IW 1 1
DEC Patent 16 64 1x16 1R and 1W 1 1
Fujitsu uVP 864 128-16 1x4 2R and 1W 1 1
NEC VPP 4+4 64+96 8x1 1R and 1W 1 1
CM-5VU 4-16 164 1x1 5R and 3W 1 1
TO 16 32 1x1 5R and 3W 1 1

Table 5.2: Details of vector register fileimplementations.

to the write buffer, the first eement will already have passed over the write bus and so the second instruction
will have to wait three cycles before the write buffer is written to the element bank. With only two e ements
per port, the dependent instruction can always either read the val ue from the element bank or catch the value
passing over the write bus.

The use of wide access ports can be combined with any bank partitioning scheme. The available
read or write bandwidth from a vector register file must be at least equa to the bandwidth required by the
attached VFUs. The following inequalities summarize the requirements:

read ports

total number of banks x
bank

x width of read ports > " read ports
VFUs

write ports

total number of banks x
bank

x width of writeports> >~ write ports
VFUs

Table 5.2 gives vector register fileimplementation details for several vector processors.

5.2.3 Element Bank Partitioningfor a Vector Microprocessor

A vector microprocessor is likely to be configured with a large number of vector registers and
with vector lengths not much longer than the minimum required to keep the VFUs busy with the available
instruction bandwidth. We can rearrange Equation 5.1 on page 85 to determine the minimum number of
elements per vector register per lane required to enable a given vector instruction issue rate to saturate the
VFUs:

Vector register length
Number of lanes

Register elements per lane = (5.2
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Number of VFUs
Number of vector instructionsissued per cycle

(5.3)

A typical single-issue vector microprocessor might have roughly 3—6 VFUs (including VAUs, VMUSs, and
VFFUs), and so require at |east 4-8 elements per lane per vector register. If we assume the machine has 32
vector registers, we get a total of 128-256 register elements per lane. An dternative view is that each lane
will hold 4-8 virtual processors, with each virtual processor possessing 32 registers.

As will be shown below, the vector register file within alane will only contain afew banks (2—4),
but a vector microprocessor will have many vector registers (16—-32). This represents a disadvantage for a
register-partitioned scheme. Multiple vector registers must share the same bank which increases the number
of potential register access conflicts. With aregister-partitioned scheme, each of these conflicts can last for the
entire duration of avector instruction’sexecution. Adding more portsto each bank will reduce the severity of
these conflicts but isinefficient if the existing port bandwidth would otherwise suffice. While a compiler can
be made aware of the vector-register-to-bank mapping and attempt to avoid conflicts, this exposes software
to low-level implementation details which will likely change in future designs.

An element-partitioned scheme is better suited to a large number of vector registers with few
elements per lane. In effect, the ports on all banks are time-shared across al ongoing vector instructions.
While an element-partitioned scheme experiences its own forms of register file access conflict, these are
less restrictive and only require a most a few clock cycles to resolve. Again, a compiler could try to
schedule around the conflicts present in a given implementation. There is additiona control complexity with
an element-partitioned scheme, particularly in the presence of load-chaining and multiple VMUSs, but this
represents relatively little overhead in terms of die area. For these reasons, | assume an el ement-partitioned
scheme in the following.

Thewidthof theaccess portsisprimarily determined by detail ed datapath layout considerations. For
example, to reduce datapath wiring area the vector register file will likely be pitch-matched to the functional
unit datapaths. Multiplesmall multiported SRAM cells can fit into atypical datapath bit pitch, and thiswould
tend to favor retrieving several words per element bank access.

524 VLSl Implementation of Vector Register Files

In thissection, | compare five designs for a vector register file suitablefor avector microprocessor.
The purpose of working through these designsisto provide estimates of the area required for avector register
filein amodern CMOS process, and to show the effects of various design parameters.

The general layout of dl the vector register file designs is as shown in Figure 5.6. Vector register
file storage is partitioned across all the lanes. The register file address decoders are shared, and drive global
decoded word select lines across al lanes. The global word selects are gated locally with a per-lane enable
signal to formlocal word selects. Thishierarchical select distributionreduces broadcast del ays by minimizing
the load on the global word lines, and al so saves energy in inactive lanes. Broadcasting decoded globa word
linesismoreenergy efficient than broadcasting encoded addresses because thereis no duplication of decoding
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circuitry and because each cycle only a single decoded word line will transition per bank per port. Because
the vector register file storage issimply replicated across each lane, | describejust one lane in the following.

Figure5.7 shows layout for asingle lane dice of the vector register file. Each lane's vector register
file is split into some number of eement banks, with each bank having a few ports. At the periphery of
each bank isthe circuitry that connects the bank portsto the VFU ports. The read ports from each bank are
connected viatristate buffersto the read port busses for each VFU, with each bank having at least one tristate
buffer for each read port bus. The write port busses from each VFU are connected via multiplexers to the
write portsof the bank, with each bank having one multiplexer input for each write bus. Though not shownin
thefigure, multiplexers could be added to bypass the register file storage by allowing result data on the write
busses to be passed directly into the read ports.

There is a tradeoff between ports per element bank, and element banks per lane. With more ports
per bank, larger multiported cells are required but there are fewer banks and hence less overhead circuitry.
With fewer ports per bank, each cell is smaller, but more banks are required and hence more bank overhead
circuitry. In the following, | compare five aternative designs for the storage within one vector register file
lane, varying the number of banks and ports per bank.

Table 5.3 presents details of each design. The design point isfor atypical lane configuration with
256 elements (corresponding to 32 vector registers with el ght e ements per lane), and five read portsand three
write ports. This configuration of portsisthe same as TO and supports two VAUS, each with two read ports
and one write port, and one VMU with a single read and write port. Alternatively, the VMU ports could

Register
Addresses
Global
Word
Local @ Local @ Local
Word Local Word Local Word

Selects
Enable Selects Enable Selects Enable Selects Enable Selects

Address
Decoders Local
Local Word Local

Figure 5.6: General layout of avector register file. Storageis distributed across lanes, while register address
decoders are shared by al lanes. The decoders broadcast globa word select lines that are gated with local
enable signas, one per lane, to form the per-lane local word select lines. In practice, each lan€'s storage is
partitioned into banks, with each bank having a separate set of decoders. Also, this figure only shows one
bank of decoders on theleft side of the lanes, whereas the decoders will likely be placed on both sides of the
lanes to reduce routing costs.
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Figure 5.7: Layout of vector register file within one lane. In this example, four banks, each with two read
ports and one write port, are used to support two VAUs and one VMU with a tota requirement of 6 reads
and 3 writes per cycle. With some extra port periphera logic and more operand busses, the same number of

element banks could support up to 8 reads and 4 writes per cycle.
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| Design 1 2 3 4 5
Banks 1 2 4 2 4
Elements/Bank 256 128 64 128 64
Cdl Ports 5R+3W 3R+2W 2R+1W 2R+1W 1R+1W
Words per Port 1 1 1 2 2
Total Bandwidth 5R+3W 6R+4AW 8R+4W 8R+4W 8R+8W
Cdl Word Lines 5 3 2 2 1
Cdl BitLines 6 4 2 2 2
Cdl Area (A x A) 57 x 72 41 x 64 46 x 28 46 x 28 40 x 28
Datapath pitch (1) 72 64 56 56 56
Cdlsper Bitline 256 128 32 64 32
Cédlsper Wordline 64 64 128 128 128
Areaper Bank (A x A) | 16419x4608 | 6316x4096 | 3532x 3584 | 5332x 3584 | 3443x 3584
Storage (%) 88.9 83.1 417 52.7 35.9
Overhead (%) 11.1 16.9 58.3 47.3 64.1
Tota Area (MA?) 75.7 51.7 50.6 40.0 51.2

Table 5.3: Comparison of five different schemes to implement the target 256-el ement vector register filewith
five read portsand three write ports.

support separate |oad and store VMUSs. Because an indexed store needs both index and store data, indexed
stores take two cycles per element. | consider theimpact of providing two read ports for the VMU at the end
of thissection.

Figure 5.8 shows the layouts of the storage cells used in these designs.® The cdlls use two layers
of metal, with theword linesin metal 1 and the bit linesin metal 2. The busses carrying read and write data
from the VFUsto the bankswill pass over the storage cellsin the bitlinedirection using athird level of metal.
In the designs below, | assume that 8 operand buses can be routed over the cell within the datapath pitch. The
global word select lines cross over themain word linesin afourth metal layer. The cellsall have single-ended
read portsand differential write ports.

| assume in al cases that the word and bit lines are time-multiplexed at twice the clock rate as
in the TO vector register file to provide both a read and a write access in the same cycle.  Commercial
microprocessors also use this technique to multiport caches, with examples including double cycling for the
forthcoming Alpha 21264 [Gwed64a] and triple cycling for the IBM P2SC [Gwe96c]. This technique saves
area but requires sdlf-timing with dummy rows to provide the extra timing edges necessary to control read
precharge and write drive. Although this adds extra design effort, the vector register file is a large regular
array where arelatively small design effort can be rewarded with considerable area savings. Table 5.4 lists
the area savings from time-multiplexing word and bit lines.

Design 1 has a single bank, capable of supporting 5 reads and 3 writes per cycle, and is similar to
the vector register file design used in TO. This approach isthe largest of those considered here, but does have
the advantage of avoiding register file access conflicts between VFUs. This design requires one fewer metal

3These cells were designed by Brian Kingsbury and Bertrand Irissou.
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Figure 5.8: Layout for the multiported storage cells used in the vector register file designs. Moving top to
bottom and left to right these are: the single-ported instruction cache cell, 2 read port and 1 write port scalar
register cell (can also be used as 3 read port or 2 write port cell), 5 read port or 3 write port vector register cell,
all from TO, together with the 2 read port or 1 write port cell discussed in the text. These were al designed
using MOSI S scalable CMOS design rules with two levels of metal and have been drawn to the same scale.
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Ports AreaNon-multiplexed | AreaMultiplexed | Savings
Required (A xA) (A xA)

2R+1W 41 x 64 46 x 28 2.04
3R+2W 57 x 78 41 x 64 1.69
5R+3W 79.5 x 104.5 57 x 72 2.02

Table 5.4: Area savings by time-multiplexing read and write accesses on same word and bit lines.

layer than the others because al operand busses already run through the cells. The large number of cells
connected to each bitlinewill lengthen the read cycle time,

Design 2 splits the storage into two banks. Each bank must have the same number of ports, and
so must provide at least 3 reads and 2 writes per cycle to meet the design goal of 5 reads and 3 writestotal.
With doublecycling, the storage cell requires 4 bit linesand 3 word lines. This scheme al so requires crosshar
circuitry to connect the two banks to the VFU operand busses. This adds extra overhead to each bank. The
design dedicates one read port and one write port on each bank to the VMU. This reduces the amount of
multiplexing circuitry required, and also simplifies control logic design because the VMU isusually the only
VFU that experiences stalls during execution. The two VAUs aternate between the two banks, each of which
has a further two reads and one write port available.

Design 3 has four banks, with each bank capable of supplying 2 reads and 1 write. With double
cycling, the storage cell requires 2 word lines and 2 bit lines. Whereas the layout for the preceding cells
would occupy most of a conventiona datapath bit pitch, thissmaller cell can be comfortably packed two per
datapath bit slice. This packing does require an extra column multiplexer in the read datapath, and separate
write enables for the two wordsin the write datapath.

Design 4 isadight variant on Design 3. Because we have two storage cells per datapath bit slice,
we can now fetch two elements per access to each bank. This halves the number of banks needed to match
the VFU port bandwidth, but requires additional latches and multiplexing circuitry in the periphery of each
bank. Because writes must wait for two el ements to be produced before writing values into the storage cells,
this double wide access port adds one cycle of latency when chaining through the vector register file. This
latency can be avoided by providing bypass multiplexers between the VFU write and read busses as described
above in Section 5.2.2. Thisadditional bypassareaisincluded in thisdesign.

Design 5 issimilar to Design 4, except that it uses a standard SRAM cell with only one word line
and two bitlines. With double cycling, this allows one two-element read and one two-element write per bank
per cycle. This design needs four banks to provide enough read bandwidth for al the VFUs. This design
has the disadvantage of only providing a single read port per bank. For an element-partitioned scheme, this
introduces an extra cycle of startup latency because the two zeroth elements live in the same bank. Banks
with asingleread port also suffer an extra area penalty because the singleread port must connect to al VFU
read busses. With two read ports per bank, each read port need only connect to one of the two read operand
busses for a VFU. For example, Design 4 requires only 10 tristate read buffers, while Design 5 requires 20.
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Scaled layout of the five designsis shown in Figure 5.9. The shaded regions represent overhead
circuitry. The overhead on each bank includes the write port muxes, write latches for designsthat write two
elements per cycle, write drivers, dummy rows for the self-timing scheme, read sense amplifiers, read data
latches for the schemes that return two elements per port, read data multiplexers for the cases that pack two
bits per datapath bit slice, read port tristate drivers, and bypass muxes for the designs with double width
access ports. Designs 4 and 5 have extra overhead for bypass circuitry to avoid the extra latency of writing
twowords at atime. The areas of al of these components were based on cellsused in the TO design.

These area estimates are approximate only. In area design, layout of celsislikely to change to
match the datapath pitch and number of metals available. For some cases, the drivers have not been optimally

1 2 3 4 S

Figure5.9: Scale comparison of thefive vector register file designs, al of which have the same total storage
capacity and number of VFU ports. The clear regions represent the storage cells while the shaded regions
represent the overhead circuitry in each bank. For the purposes of thisfigure, al the overhead circuitry for a
bank has been lumped together into a single rectangle; in area design, the overhead circuitry would be split
between the top and bottom of each bank. The darker shading at the bottom of Designs 4 and 5 is the area
required for the additional bypass multiplexers which remove the extra latency caused by the two e ement
write port width.
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sized. While detailed tradeoffs will change with process technology, the overdl trends should remain the
same.

Among the five designs examined, the most compact was Design 4, with 2 banks using a cell
capable of two reads and one write per cycle and with each port returning two words per access. This was
almost haf the area of the fully multiported design, and less than 80% of the area of the design that used the
smallest cells. This suggests that the minimum vector register file area is obtained using storage cells with
severa ports arranged into a few banks, rather than a single bank with many ports or many banks with few
ports.

This design also has only 64 elements per bitline which should still alow reasonable speed with
a single-ended read sensing scheme. The available bank bandwidth is eight reads and four writes which
provides some slack compared to the peak VFU bandwidth of five reads and three writes. This slack should
reduce the occurrence of bank access conflicts.

The two level hierarchy within the vector register file design allows the number of ports and the
amount of storage to be scaled independently. For example, a sixth read port can be added to enable indexed
storesto run at full speed. Because there is sufficient bank bandwidth, this only requires adding additional
read port buffers to each bank and would increase the area of Design 4 by only 3.5%. Adding an additional
write port to alow two load VMUSs, would only further increase the area by another 1%. Thisis assuming
that the 10 operand buses can still fit over the cellsin higher metal layers. Alternatively, doubling the amount
of vector element storage would only increase the total size of the vector register file by roughly 50%.
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Chapter 6

Vector Flag Processing

Unlike scalar processors, the virtual processors within a vector unit cannot branch and so other
forms of conditional execution are required to vectorize code containing conditiona statements. In this
chapter, | begin by reviewing techniques that have been used to provide conditional execution in vector
machines. | then propose a scheme for flag processing in vector machines that extends the traditional vector
mask register functions to handle floating-point exceptions and to support vector speculative execution in
software. Thisincreases the range of vector processors by alowingloopswith data-dependent exits (“while”
loops) to be vectorized while preserving correct exception behavior. | then compare various techniques for
improving theexecution speed of masked vector instructionsand conclude with a proposal for aflag processor
implementation.

6.1 Formsof Vector Conditional Execution

Conditional execution in vector units has much in common with predicated execution in scalar pro-
cessors. Virtual processors require conditional execution because they cannot branch, whilescalar processors
are employing increasingly sophisticated predicated execution schemes to reduce the number of branches.

Mahlkeet. al.[MHM*95] compare various levels of support for predicated execution in scalar
machines. They outlinetwo levelsof support for conditional execution, conditional move and fully predicated
execution. Conditional moves are simpler to add to an existing instruction set. Only a few register-
register instructionsare required which can have the same number and types of operand as regular arithmetic
instructions. Predicated execution requires that every instruction have an extra predicate source operand
specifier.

Theperformanceof conditional execution schemescan beimprovedif thereissupport for specul ative
execution, i.e., providing a version of an instruction that cannot raise exceptions. Speculative execution
considerably reduces the overhead of emulating fully predicated execution with conditional moves, and
also improves performance of fully predicated schemes by allowing operations to be scheduled before their
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predicates are known.

Among vector architectures, an example of partial support is the Cray architecture, which sup-
ports conditional execution with various forms of vector merge [Cra93], but does not provide speculative
instructions. A vector merge is more powerful than a conditional move, in that it writes a destination vector
register with valuestaken from one or other source operand according to thevaluesin the mask vector. Vector
merge is equivalent to the scalar select described by Mahlkeet. a. [MHM*95]. Another example of partia
support isthe Torrent instruction set [AJ97] used for TO. Torrent uses vector conditional moves to implement
conditiona operations but does not support speculative instructions. Full support for masked operationsis
provided in several commercia vector mainframes, including the Fujitsu VPP series [UIT94], though these
do not provide speculative instructions.

Conditional move or merge schemes in vector units share many of the same disadvantages as
conditional move schemesin scalar processors| MHM *95]. They execute moreinstructionsthan fully masked
schemes, especially when thereis no support for specul ativeinstructions. Operandsto speculatively executed
instructions must be modified to ensure no exceptions are generated if the predicate isfalse [MHMT95].

Figure 6.1 shows an example of this technique, using the vector conditional move operations in
the Torrent instruction set [AJ97]. Here, masked vector loads are synthesized by converting unit-stride and
strided operationsinto gatherswhere masked el ement addresses have been changed to aknown safe locations,
such as on the stack.

The routine begins with a load of an index vector which contains the word offset in bytes for
each element in a unit-stride memory access. A vector of safe addresses is generated pointing to locations
on the stack. A vector of safe addresses is used rather than a single address to avoid bank conflicts when
multiple consecutive elements need to access a safe address. The load of the unit-stride index vector and
the calculation of the safe stack addresses can be performed outside a stripmined loop. Note how effective
address vectors must be calculated explicitly for al vector memory operations to alow the per element
substitution of a safe effective address at masked element positions. Aside from the increase in the number
of vector instructionsexecuted, performance isimpacted by the transformation of unit-stride vector memory
operations into indexed vector memory operations. Because this requires much greater address bandwidth
(see Section 8.1 on page 140) thisis likely to cause a further slowdown over the masked version for which
the microarchitecture is aware of the underlying unit-stride access pattern.

For the example shown in Figure 6.1, the compiler may be able to determine through program
analysis or programmer annotations that the loop count would not exceed array bounds for the B, D, and
E vectors. In this case the compiler can optimize the code as shown in Figure 6.2. Here unmasked unit-
stride operations are performed, and unused element positionsare simply ignored. The masked store is now
performed as an unmasked unit-stride read, conditional move, unmasked unit-stride write sequence. Note
that the indexed operation accessing the C vector till requires explicit address masking.

Even with this optimization, the conditional move version can generate significant additional mem-
ory traffic over that required by the masked version for sparse mask vectors. Another concern isthe additional
energy consumption. Operations are performed regardless of mask setting, and additional instructions are
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for (i=0; i<n; i++)
{
if (Ali] '=0)
} E[i] =DOi] + dB[i]];

# Wth masked operations.

Iw. v vvl, al # Load A vector

fnez.v vfO, vvl # Generat e nmask.

Iw. v, mvv2, a2, vfO # Load B vector

li t0, 2

sll.vs,mvv2, vv2, tO, vfO # Miltiply indices by 4 bytes.
Iw. v, mvv4, a4, vfO # Load D vector

I wx.v, mvv3, a3, vv2, vfO # I ndexed | oad of C.
addu. vv, mvv5, vv3, vv4, vi0 # Do add.

sw.v, mvvhs, a5, vfO # Store E.

# Wth just conditional noves (Torrent code).

la t0, word_i ndex_vec # Load i ndex vector containing
lw. v vv10, tO # 0, 4, 8, ... into vvlO0.

addiu t0, sp, safev # Address of safe vector on stack
addu. vs vv9, vv10, tO # Get vector of safe addresses.
Iw. v vvl, al # Load A vector

snez.v vv8, vvl # Cenerate mask

addu. vs vv12, vv10, a2 # Generate index vector for B
cnveqgz.vv vv12, vv8, vv9 # Wite safe address where nasked.
lwx.v vv2, zero, vv12 # Gat her unmasked B val ues.
addu. vs vv14, vv10, a4 # Generate index vector for D
cnveqgz.vv vvl4, vv8, vv9 # Wite safe address where nasked.
| wx.v vv4, zero, vvl4 # Gat her unmasked D val ues.

li t0, 2

sllv.vs vv2, vv2, t0
addu. vs vv2, vv2, a3
cnveqz.vv vv2, vv8, vv9
| wx.v vv3, zero, vv2
addu. vv vv5, vv3, vv4
addu. vs vv15, vv10, ab
cnveqz. vv vv1lh, vv8, vv9
SWX.V vvh, zero, vvl5

# Multiply indices by 4 bytes.

# Add in C base address.

# Wite safe address where nmasked.

# Gat her C val ues.

# Do add.

# Cenerate index vector for E

# Wite safe address where nmasked.

# Store val ues.

Figure 6.1: Example of synthesizing masked loads and stores with conditional moves. Stripmining code has
been omitted. The unit-stride loads and stores are converted into scatter/gathers with a safe address on the
stack substituted for addresses at masked element positions.
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required to synthesize masked support. For these reasons, it is likely that a newly defined vector instruction
set would include masked operations.

To handle nested conditional statements and to interleave execution of multiple conditiond state-
ments, it is desirable to provide severa mask registersin a vector 1SA. Because these mask registers can be
used for purposes other than masking, | use the more general term flag registers. Flag registers can be set by
vector arithmetic compare instructions. Masked instructionstake a flag register as one source operand, and
only complete operations at element positionswhere the corresponding flag bit is set.

There is some overhead to supporting full masking in a vector machine, mostly for masked vector
memory instructions. To guard against Read-After-Write hazards on the flag registers used in masked vector
memory operations, extra interlock circuitry is required early in the pipeline as described in Section 4.9 on
page 76. Speculative address checking and load and store buffering can be employed to reduce the visibility
of memory latency on masked vector memory instructionsas described in Section 4.8 on page 74.

Another overhead with full masking isthe instruction bits required to name the flag vector source.
With a new ISA design, this should not be of great concern, because vector ISAs aready significantly
reduce instruction bandwidth requirements. But where a vector extension isadded to an existing fixed-width
instruction format, the instruction encoding may not alow an additiona arbitrary flag register source to be
specified on every instruction. If there are no bits available in the instruction encoding, all instructions can
be masked by a single designated flag register. If a single instruction bit is available for mask encoding, it
can be used to signal masked/not masked or to switch between two designated flag registers. Additional flag

# Torrent code.
# |f known that all arrays can be read w thout exceptions.
la t0, word_i ndex_vec # Load i ndex vector containing
Iw. v vv10, tO # 0, 4, 8, ... into vvlO0.

addiu t0, sp, safev # Address of safe vector on stack
addu. vs vv9, vv10, tO # Get vector of safe addresses.
Iw. v vvl, al # Load A vector

snez.v vv8, vvl # Cenerate mask
Iw. v vv2, a2 # Load B vector
li t0, 2

sllv.vs vv2, vv2, t0
addu. vv vv2, vv2, a2
cnveqz.vv vv2, vv8, vv9
lw. v vv4, a4

| wx.v vv3, zero, vv2
addu. vv vv15, vv3, vv4
Iw. v vvb, ab

crmvnez.vv vv5, vv8, vvlh
sSw. v vv5, ab

Mul tiply indices by 4 bytes.
Cenerate indices into C.

Wite safe address where masked.
Load D vector.

Load C vector.

Do add.

Load E.

Mer ge new val ues.

Wite back E.

H o HHHHHHF R

Figure6.2: Thisversion of conditional move code assumes that the compiler could determinethat any element
in the array could be read without causing exceptions.
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move instructionscan be used to move flag values into a designated flag register before use. These flag move
operations can have single cycle latency and can support flexible chaining. Because vector flag functional
units (VFFUs) are relatively cheap, more can be added to support the increased number of flag moves if
necessary. The extrainstruction bandwidth required for this explicit flag register renaming could be hidden
with longer chimes.

6.2 Vector Flag Register Organization

Table 6.1 presents the flag register organi zation used for the examplesin this chapter. Thismachine
has 32 flag registers for each virtual processor. The first flag register, vf 0, isused as theimplicit source of
mask values for masked instructions. The next seven flag registers, vf 1-vf 7, hold sticky exception signals.
Five of the sticky exception flags report |EEE floating-point exceptions. Another two are integer sticky
exception signals reporting integer overflow and fixed-point saturation. A further eight flag registers, vf 8—
vf 15, are speculative sticky exception signals. These hold the exception results of speculatively executed
vector operations; their use is described below in Section 6.7. The remaining 16 flag registers are available
for general use.

6.3 Flag Combining Operations

Complex conditional statements can be handled by combining mask vectors using logical operations
on flag registers. Some vector 1SASs, including the Cray [Cra93], use scalar instructions to perform flag
operations. The scalar unit reads vector mask vectors into scalar registers, performs regular scalar logica
operations, then writes results back to the vector mask registers. The main advantage of thisapproach isthat
it requires no additiona instructionsin the ISA and no additional hardware in the implementation. But this
approach has three significant disadvantages:

e Scaar reads of vector flag state expose memory latency, as described in Section 4.8 on page 74. Flag
values are generated and used late in the vector pipeline. Memory latency is exposed when the scalar
unit at the beginning of the pipelinemust stall to read the value.

e Themask vector isproduced and consumed incrementally by vector instructions, one el ement group at
atime. The scalar unit reads the mask vector in larger chunks, e.g., 64 bitsat atime. Thiswide read
cannot be chained to the production of the flag bits. Similarly, if the bit vector is wider than a single
scalar word, a dependent masked instruction cannot be issued until the scalar unit has written al of the
wordsin the mask vector.

o If thenumber of elementsin avector register isgreater than the number of bitsin ascaar register, then
each flag operation must be broken down into multiple scalar instructions. This makes it difficult to
scale vector length for future implementations while retai ning object-code compatibility.
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The Torrent I1SA [AJ97] avoids these problems by holding flag values in vector data registers and
by using regular vector logica operations to combine flag values. The main disadvantages of this approach
are that wide vector data registers are used for single bit predicate values and wide arithmetic datapaths are
occupied with single bit predicate cal culations.

Flag registersand associated VFFUs arere atively small structuresthat offload predicate cal cul ations
from more expensive vector data registers and VAUs. The VFFUs can operate in the late part of the vector
pi pelinewherethey can be chained flexibly to both producersand consumers of flag operands, further reducing
inter-instruction latencies. For these reasons, therest of thissection assumes the | SA has multiple vector flag
registers, with separate vector flag instructions executed by dedicated VFFUs.

6.4 Masked Flag Generation

Flags must be generated under mask to support nested conditionas. In particular, |EEE floating-
point compares [IEE85] are used to generate flags but can also generate invalid operation exceptions which
should not be reported at masked element positions.

Flag Register | Symbolic Function
Specifier Name
Genera Purpose Flags
vf16-vf 31 | | Undedicated
Speculative Exception Flags

vf 15 vf sf pv | Speculative Floating-point Invalid Operation
vf 14 vf sfpz | Speculative Floating-point Division by Zero
vf13 vf sf po | Speculative Floating-point Overflow
vf12 vf sf pu | Speculative Floating-point Underflow
vf1ll vf sf px | Speculative Floating-point | nexact

vf 10 vfssat | Speculative Fixed-point Saturation
vf9 vfsovf | Speculative Integer Overflow

vf 8 vf sl ae | Speculative Load Address Error

Non-Specul ative Exception Flags

vf7 vffpv | Floating-pointInvalid Operation

vf 6 vffpz | Floating-point Division by Zero

vf5 vffpo | Floating-point Overflow

vf 4 vffpu | Floating-point Underflow

vf 3 vffpx | Floating-point|nexact

vf 2 vf sat Fixed-point Saturation

vfil vf ovf Integer Overflow

Mask Register
vfO | vfmask | Implicit Mask Source

Table6.1: Flag register assignment in example machine design. vf 0 istheimplicit mask source. Seven flag
registers (vf 1—vf 7) hold non-specul ative exception flags. Eight flag registers (vf 8—vf 15) hold specul ative
exception flags. The remaining 16 flag registers are available for genera use.



Mask Compare or

Unconditional AND-Write OR-Write

Logic Op Result | Write(u. *) (and. *) (or.=*)
0 0 0 - -
0 1 0 - -
1 0 0 0 -
1 1 1 - 1
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Table 6.2: Table showing how flags are updated with result of masked compare or masked flag logica
operations. Dashes (“-") indicate that the destination flag bit is unchanged.

Aswithscalar predicategeneration[MHM ™ 95], variousformsof masked flag generationinstruction
are possible. Flag results can either be generated by compares on values in vector data registers, or through
logical operationson flag registers. There are many possible ways in which the flag results can be combined
with mask values to update the destination flag register.

Table 6.2 presents a proposal for masked flag updates which is used for examples in this chapter.
This scheme is based on that proposed by Mahlke et.al.[MHM™95], but is somewhat simpler. There are
three forms of flag update: masked unconditional flag updates write Os where the mask is false, masked OR
flag updates only write 1s when the mask istrue, and masked AND flag updates only write Oswhen the mask
istrue. These flag writes match the semantics of ANSI C logica-AND (&&) and logica-OR (] | ). Only
one flag is written by an instruction and only one polarity of AND and OR is provided. Additiona logica
instructions can be used to generate multiple flag values based on the same comparison, and the comparison
type can change the compare result polarity.

Figure 6.3 shows an example of using these flag instructionsfor a complex conditional oop body.
This example assumes that only a single bit is used to encode masked/not masked with an implicit mask
source of flag register 0 (vf 0). If the machine had arbitrary mask sources, then the three explicit flag moves
intovf O could be eliminated. But in avector machine with one VMU, two VAUS, and two VFFUs, and with
sufficiently long vectors, these extraflag operationswoul d not be a bottleneck for thiscode. For short vectors,
the additional cycle of latency caused by the extra flag operations could impact performance.

6.5 FlagLoad and Store

A vector |SA must provided some mechanism to save and restore flag registers, if only to support
context switching. One approach is to use regular masked instructions to move flag values between flag
registers and vector registers, and then use regular vector loads and stores. This has the advantage of requiring
no additional instructions or hardware. For context switching, vector arithmetic shift and logica operations
can be used to pack multipleflag vectorsinto vector dataregister elements. Alternatively, if the flag registers
are implemented as described below, then it is relatively inexpensive to provide instructions that move the
entire vector flag set to or from vector dataregisters.

Whiletheseinstruction speed context swap, they do not provideamechani sm for efficient generation
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for (i=0; i<n; i++)

{
if (Ali] > threshold || B[i] < max)
{
qi] += 1,
if (di] >1limt)
gi] =limt;
el se
B[i] *= al pha;
}
}
Id.v vvl, al # Load A
u.fle.d.vs vf0, vvl, fO # Unconditional flag A <= threshol d.
u.not.f vfi16, vfO # Invert mask into vf16.
ld.v, mvv2, a2 # Load B under nmask.
or.flt.d.vs, mvfl16, vv2, f1 # O in B condition under mask.
u.nmov.f vf0o, vflé # Move conbi ned nask to vfO.
ld.v, mvv3, a3 # Load C under nmmask.
addu. vs, mvv3, vv3, t2 # I ncrement C under nask.
u.fgt.vs, mvf1l7, vv3, t3 # Check for C> linit under mask.
u.nov. f vfo, vfl7 # Set predicate for nested then.
nmov.vs, mvv3, t3 # Set C=1limt under nask.
u.nov.f vfo0, vfl6 # Restore outer predicate.
sd.v, mvv3, a3 # Store C under nask.
u.andnot.ff, mvf0, vf16, vfl7 # Set predicate for nested el se.
mul . d.vs, mvv2, vv2, f2 # B *= al pha under mask.
sd.v, mvv2, a2 # Store B under nask.

Figure 6.3: Example showing vectorization of complex conditional statement. This example assumes a
machine with only a single hit to indicate masked or not masked with an implicit mask source of vf 0.
Stripmining and other scalar code has been omitted. Note that the load and compare of B[ i ] must be
performed under mask because of the short-circuit evaluation semantics of the logical OR (| | ) operator in
ANSI C. Theload and compare of B[ i ] must not signa any exceptionsif A[ i ] isgreater than thethreshold.
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of apacked bit vector fromasingleflag register. Thisoperationisimportant for codesthat operateon condition
vectorsin memory. One approach isto move the flag register into vector data registers, then perform variable
shiftsand an OR reduction to pack the bitstogether.

Alternatively, dedicated flag load and store instructions can be provided for this purpose. These
can be restricted to unit-stride loads and stores aligned at some bit boundary convenient for the memory
subsystem implementation. The bit alignment should be chosen to be no greater than the number of elements
in the guaranteed minimum vector length, otherwise it will not be possible to stripmine aloop that produces
a contiguous packed bit vector in memory. For example, if a machine specifies the minimum vector register
length is 16, the flag load-store instruction should allow the bit vector to be written a any 16-bit-aligned
location in memory. For stores, the hit string can padded out with zeros if the vector length is not a multiple
of the bit alignment.

6.6 Flagto Scalar Unit Communication

Apart from providing masking of elemental operations, flag registers can be used to report vector
conditions to the scalar unit. There are two main operations required: population count and find first bit.
Population count (“popcount™) returns a count of the number of bits set in a flag register. Popcounts are
often used in conjunction with the compress instruction, where the popcount gives the vector length after the
compress. Findfirst bit givestheindex of thefirst set bitin aflag register and is often used to identify the exit
iteration for loops with data-dependent [oop exits (“while” loops).

Boththeseinstructionsread aflag register source and writeascalar register destination. The masked
version of both instructionstreats masked el ements as zero. Because they can build their result incrementaly,
they can chain to flag-producing instructions to reduce latency. In addition, find first bit can exit as soon as
a set flag is encountered. This early-out can significantly speed execution of data-dependent exit loops by
reducing the latency of the scalar read. The implementation of these instructionsrequires that flag values are
transmitted from the individual lanes to a central position, likely located close to the scalar unit.

TheCray architectureimplementsthese operationsusing scal ar processor instructionsfor popul ation
count and leading zero count (the mask vector is transferred in bit-reversed order so that the leading zero
count gives the same result as afind first bit on the mask register). This scheme has the same drawbacks with
using the scalar unit for inter-flag operations as mentioned above in Section 6.3, but in addition prevents the
early-out optimization on find first bit. The Torrent I1SA provides a packed flag register that can be read by
the scalar unit, but no other support for population count or find first bit.

To help handle floating-point flags, a further instruction can be provided that merges the vector
floating-point exception flags into the scalar exception flag register. This simplifies retrieval of globa flag
state and frees the vector exception flags for other uses.
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foo(size t n,
const doubl e* A, double mn,
doubl e *C, doubl e scale)

{
for (i=0; i<n; i++)
{
if (Ali] < mn)
br eak;
di] *= scale;
}
}
f oo:
setvlr t0, a0 # Set vector |ength.
ld.v vvl, al # CGet A vector.
u.flt.d.vs vf0, vvl, f2 # Conpare A
first.f t1, vfO # Find any set bits.
ctvu t1, vlr # Trimvector |ength.
ld.v vv3, a3 # Load C.
mul . d.vs vv3, f4 # Multiply by scale.
sd.v vv3, a3 # Store C
bne t1, t0, exit # Break occured.
sl t2, t0, 3 # Multiply by 8 bytes.
addu al, t2 # Bunp A pointer.
addu a3, t2 # Bunp C pointer.
subu a0, toO # Subtract el enents conpl et ed.
bnez a0, foo # More?
exit:
j ra # Exit subroutine.

Figure 6.4: Example of speculative execution past data-dependent loop exit. Thefind first set flag instruction
(first.f) will return the current vector length if there are no bits set in the source flag. The load and
compare of A can generate spurious exceptions.

6.7 Speculative Vector Execution

Inthissection, | propose an extension of the flag processing model to support specul ative execution
of vector instructions. Speculative vector execution can be used to improve the scheduling of conditionally
executed vector statements by moving instructions above mask dependencies in the same way speculative
execution isused to increase ILP for ascalar processor by moving instructions above control dependencies.

Another use for speculative vector execution isto allow vectorization of loops with data-dependent
loop exits. Consider the code in Figure 6.4. The vector assembly code speculatively loads and compares
valueswhich can be past the exit iteration, and so can generate exceptionsthat would not be present in aserial
execution of the loop iterations.

Figure 6.5 illustrates how vector instructions execute multiple iterations of this loop in parallel,
and shows which operations are executed speculatively. In this example, the machine has eight el ements per
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vector register and the loop exits on the iteration i =5. The load and compares for iterationsi =6 and i =7
were a so executed and could potentialy have caused spurious exceptions.

One limited approach to providing specul ative memory loads isto provide aread-ahead buffer area
after every memory segment. This read ahead would guarantee that reads to some region after avalid pointer
would not cause address errors. The operating system can implement the read-ahead region by mapping
in a zeroed page at the end of every alocated memory segment. To alow code that speculates loads to be
portabl e across i mplementationswith different vector lengths, the size of thisregion can be specified as some
integer multiple of the maximum vector length. Although this software technique only provides speculation
for unit-strideand small stride loads, it has zero hardware cost and no performance overhead, and can be used
in combination with more sophisticated specul ation schemes.

Another approach for handling both speculative arithmetic and memory exceptions is define a
protocol between compiled code and the operating system that would identify speculative instructions. The
operating system coul d determi nethat an exception was specul ativeand nullify theexception signal generated.*
Speculative vector load exceptions can be nullified, even without precise traps, but reporting exceptions on a
subsequent non-speculative use of the value read is more difficult. Speculative arithmetic exceptions might
be impossibleto undo if the speculative instruction has already modified sticky exception flag bits.

These problems can be solved by adding speculative vector instructions to the vector ISA. This
proposal adds two types of speculative vector instructions: speculative vector loads and speculative vector
arithmetic instructions. A speculative vector load instruction executes normally, but if there is an address
error, adefined value (e.g., 0 or floating-point NaN) iswritten to the target vector dataregister element and a
liswritten to the corresponding € ement in adedicated specul ative |oad address error exception flag register.
The speculative load address error flag is only set onillegal address errors. If a data page fault is encountered
during a speculative vector load, it is handled normally with the faulting page brought into memory. This
can result in extra paging traffic, but the effect is expected to be minor for most programs. A speculative
vector arithmetic instruction executes normally but writes exception flags into specul ative sticky exception
flags mapped into different flag registers from regular non-specul ative sticky flags.

Table 6.1 above shows how the specul ative sticky flags are assigned in the example machine. These
speculative vector instructions allow operations to be performed before it is known if they are required by

1This technique can also be used to tackle read-ahead errors off the end of the machine stack in operating systems that use these
errorsto automatically extend stack size.

i =0 i=1 i=2 i =3 i =4 i =5 i =6 i =7
Id.v ~ 4
uf . 1t.d.vs ~ 0 ]'4
ld.v |
mul . d.vs Speculative Operations
sd. v

Figure6.5: Executing the example code on amachinewith VLMAX=8, and where the exit condition happens
ati=5.
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the origina program control flow. Because no speculative vector stores are alowed, only vector registers
can be speculatively modified. Software can alocate vector registers to prevent incorrect speculation from
destroying essential machine state.

Oncethe correct program control flow isknown, specul atively generated exceptionsshould beeither
reported or discarded as appropriate. In this proposal, speculative vector exceptions are committed with a
vconmi t instruction, which is maskable and controlled by vector length. Thisinstruction executes within a
VFFU and can be chained to the exception flag writes of a speculative instruction. Thevcommi t instruction
performstwo actions:

e Speculative arithmetic exception flags are OR-ed into the corresponding non-specul ative arithmetic
exception flags. A separate trap barrier instruction must be inserted after the vconmi t if a precise
arithmetic trap isdesired when the new val ue of the non-specul ative arithmetic exception flags contains
set flags.

o If any speculativeload exception bitsare set, an addresserror trapistakenonthevcommi t . Tosimplify
normal execution, vconmi t does not provide precise traps by default. Software can insert a separate
trap barrier instructionif a precisetrap isrequired for vcormm t address errors. The speculative load
address error flag register can be used to determine which VPs received an address error exception.
Alternatively, a precise trap debugging mode can be enabled (see Section 4.6 on page 64) to give precise
trapsonvconmi t address errors.

To support complex speculative or conditional flag code, this proposal adds a further set of instruc-
tions to move groups of eight flag registers at atime. These instructionsread eight flag registers and write
them into another group of eight flag registers, supporting the three forms of flag write described in Table 6.2.
These instructions are named u. nov8. f, or . nov8. f, and and. nov8. f. To help initidizeflags at the
start of complex conditional sequences, au. cl r 8. f instructionis provided which clears a set of eight flag
registers. The operands for these flag group instructions must be eight consecutive flag registers starting at
vf 0, vf 8, vf 16, or vf 24. These instructions can also be masked.

Figure 6.6 shows the previous example rewritten to use the vector commit instruction. A more
complicated example with nested exit conditionsis shown in Figures 6.7—6.8.

6.7.1 Speculative Overshoot

When vector speculative execution is used for data-dependent exit loops, software must balance
vector length against “ speculative overshoot” [Smi94]. The speculative overshoot of aloop is the number
of excess iterations executed by speculative vector instructions. If the speculative overshoot is too large,
performance may suffer dueto the excess operationsperformed. If thevector lengthistoo small, performance
may suffer because the execution unitsare not kept busy. For short-chimevector microprocessors, speculaive
overshoot should be less problematic than in long-chime vector supercomputers, because even full length
vector instructions completein afew cycles.
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f oo:
setvlr t0, a0 # Set vector |ength.
u.clr8.f vf8 # Cl ear specul ative fl ags.
I'fd.v vvl, al # Get A vector specul atively.
sl t2, t0, 3 # Multiply by 8 bytes.
addu al, t2 # Bunp A pointer.
lu.flt.d.vs vfO, vvl, f2 # Conpare A specul atively.
first.f t1, vfO # Find any set bits.
addu t2, t1, 1 # Set vector length for
setvlr zero, t2 # commit operation.
vconmi t
ctvu t1, vlr # Trimvector |ength.
ld.v vv3, a3 # Load C.
mul . d.vs vv3, f4 # Multiply by scale.
sd.v vv3, a3 # Store C
bne t1, t0, exit # Break?
addu a3, t2 # Bunp C pointer.
subu a0, toO # Subtract el enents conpl et ed.
bnez a0, foo # Any nore?

exit:
j ra # Exit subroutine.

Figure6.6: Using specul ativeinstructionsand vector commit to handl e the data-dependent loop exit example.
Specul ative vector instructionsare preceded witha! . Notethat thevector commit instructionvconti t must
have a vector length one greater than that of instructions following the exit br eak. The second set vi r
instruction saturates the commit vector length to VLMAX if there were no successful compares.

for (i=0; i<n; i++)

{
if (A[i] < max)
if (il > B[i])
break; /* Inner break. */
el se
di] *= scale;
}
el se
{
J[i] += 1;
break; /* Quter break. */
}
}

Figure 6.7: Source code of complex speculative execution example.



| oop:

setvlr t0, a0 # Set vector |ength.

u.clr8.f vf8 # Cl ear specul ative fl ags.

# Find outer exit iteration.

I'd.v vvl, al # Load A vector.

lu.fge.d.vs vf0, vvl, f2 # Conpare A

first.f t2, vfO # CGet outer exit iteration.

ctvu t2, vlr # Trimvector |ength.

# Find inner exit iteration.

I'd.v vv3, a3 # Load C vector.

d.v vw2, a2 # Load B vector

lu. fgt.d.vv vf1l7, vv3, vv2 # C > B?

first.f t3, vfl7 # Cet inner exit iteration.

ctvu t3, vlr # Trimvector |ength.

mul . d.vs vv3, vv3, f4 # Multiply C by scale.

sd.v vv3, a3 # Store C

addu t5, t3, 1 # Commit | ength.

setvlr zero, t5 # Set comit |ength.

vconmi t # Conmmit exceptions.

bne t3, t2, exit # I nner break before outer.

bne t3, t0, outer # Quter break.

sl t1, t0O, 3 # Multiply by 8 bytes.

addu al, t1 # Bunp A pointer.

addu a2, t1 # Bunp B pointer.

addu a3, t1 # Bunp C pointer.

addu a4, t1 # Bunp J pointer.

subu a0, toO # Subtract el enents conpl et ed.

bnez a0, | oop # More?

b exit # No breaks encountered.
outer:

# Must be outer break before inner break.

[d.v, mvv4, a4 # Get J[i].

li t5, 1

addu. vv, mvv4, vv4, t5
sd.v, mvv4, a4

exit:

# Increment J[i].
# Store[i].

Figure 6.8: Assembly code for complex specul ative execution example.
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Appropriatevector lengthsfor vector specul ation can be determined by compiler anaysis, profiling,
or programmer annotation. Alternatively, a dynamic software scheme can adapt speculative vector lengths
according to those observed at run-time. For example, software can use the previous exit iteration for aloop
to predict the next exit iteration, perhaps rounding up to the next integral number of element groups.

6.8 Flag Priority Instructions

As the example above shows, handling data-dependent exit 1oops requires frequent scalar reads of
the flag state using the find first flag instruction. These reads can be a performance bottleneck because they
expose memory latency as described in Section 4.8 on page 74.

The scaar unit reads the find first flag value for two purposes. First, to determine that an exit
condition has been encountered and that the stripmine loop should terminate, and second, to reset vector
lengths so that subseguent vector instructions can be executed non-speculatively. Because the vector unit
must wait for the vector length to be reset, vector execution stallswhilethe scalar unit reads the exit iteration
index.

But note that the vector unit already possesses the information regarding the new vector length in
the form of flag values. We can eliminate the round-trip to the scalar unit by adding flag priority instructions
that create mask vectors of the required lengths. These mask vectors are then used to trim the effective vector
length of subsequent instructions.

This proposal includes three forms of flag priority instruction, al controlled by vector length and
mask, and all of which support the various flag update forms described above in Table 6.2 for compares and
flag logical operations:

e Flag beforefirgt, *. f bf . f, reads a source flag register and writes 1sinto a destination flag register in
all element positionsbefore the location of thefirst set flag in the source flag register, and Os thereafter.
If no flags are set in the source, then 1s are written to all destination element positions.

e Flagincludingfirst, *. fif.f,isamost identical to*. f bf . f except that a 1 is also written to the
location corresponding to the first set flag in the source flag register.

e Flagonlyfirst, *. f of . f, writesal to thelocation corresponding to thefirst set flag in the source flag
register, and Os at all other element positions.

Figure 6.9 shows the result of applying these instructionsto the code from Figure 6.6. All vector
instructions can now be issued without waiting for the scaar unit to receive the vector length from the
first.f ingruction. Thisvalueisnow only used by the scalar unit to determine whether another stripmine
loop isrequired. Figure 6.10 shows a sample execution of thisloop, which can be compared with Figure 6.5.

As afurther example, Figure 6.11 shows how the complex nested break statements in Figure 6.7
can be trandated using flag priority instructions. Note how theand. * form of the flag priority instructionis
used to nest the setting of the flag vectors marking the break iteration.
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foo:
setvlr t0, a0 # Set vector |ength.
u.clr8. f vf8 # Cear specul ative exception flags.
I'fd.v vvl, al # Get A vector specul atively.
sl t2, t0, 3 # Multiply by 8 bytes.
addu al, t2 # Bunp A pointer.
lu.flt.d.vs vf16, vvl, f2 # Conpare A specul atively.
first.f t1, vfl6 # Issue find of set bit.
u. fif.f vfo, vf16 # I ncl usi ve mask.
veconmit, m # Conmmit under mask.
u. fbf.f vfo, vfl16 # Excl usi ve mask.
ld.v, mvv3, a3 # Load C.
mul . d.vs, mvv3, f4 # Multiply by scale.
sd.v, mvv3, a3 # Store C
bne t1, t0, exit # Break encountered.
addu a3, t2 # Bunp C pointer.
subu a0, toO # Subtract el enents conpl et ed.
bnez a0, foo # More?
exit:
j ra # Exit subroutine.

Figure 6.9: Using flag priority instructions to eliminate round-trip latency to the scalar unit to set vector
lengths for aloop with data-dependent loop exit. Note how al vector instructionsfollowingthefirst . f
can be issued before the scalar unit receives theresult of thef i r st . f instruction.

i=0 i=1 i=2 i=3 i=4 i=5 i =6 i=7
ld.v | Speculative
uf.1t.d.vs =~ | Operations
Id.v
mul . d. vs
sd. v
Squashed Operations

Figure 6.10: Executing the example code on a machine with VLMAX=8, and where the exit condition
happensat i =5.
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| oop:
setvlr t0, a0 # Set vector |ength.
u.clr8.f vf8 # Cl ear specul ative fl ags.
# Find outer exit interation.
I1d.v vvl, al # Load A vector.
lu.fge.d.vs vf16, vvl, f2 # Conpare A
first.f t2, vfl6 # Get outer exit iteration.
u.fbf.f vf0o, vfi16 # Set outer nask.
# Find inner exit iteration.
I1d.v, mvv3, a3 # Load C vector.
Ild.v, mvv2, a2 # Load B vector.
lu. fgt.d. vy, mvf17, vv3, vv2 # C > B?
first.f, mt3, vfl7 # Get inner exit iteration.
and. fbf.f, mvf0O, vfl7 # Set inner nask under outer.
mul . d.vs, mvv3, vv3, f4 # Multiply C by scale.
sd.v, mvv3, a3 # Store C.
u.fif.f vf0o, vfi1é6 # Quter conmmt mask.
and. fif.f, mvf0O, vfi17 # I nner commt mask.
vcommit, m # Conmmit exceptions.
bne t3, t0, exit # I nner break before outer.
bne t2, t0, outer # Quter break.
sl t1, t0O, 3 # Multiply by 8 bytes.
addu al, t1 # Bunp A pointer.
addu a2, t1 # Bunp B pointer.
addu a3, t1 # Bunp C pointer.
addu a4, t1 # Bunp J pointer.
subu a0, toO # Subtract el enents conpl et ed.
bnez a0, | oop # More?
outer:
# Must be outer break before inner break.
ctvu t2, vlr # Length available, so trim
u. fof.f vfo, vfl6 # Single flag at exit iteration.
ld.v, mvv4, a4 # CGet J[i].
li t5, 1
addu. vv, mvv4, vv4, t5 # Increment J[i].
sd.v, mvv4, a4 # Store J[i].

exit:

Figure6.11: Using flag priority instructionswith complex nested exit example.
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6.9 Density-Time Il mplementations of Masked Vector |nstructions

Masked vector instructionsallow the vectorization of conditional code, but thisform of conditional
execution can beinefficient if themask vector issparse. A conventional vector-length [ Smi94] implementation
of masked vector execution simply nullifies writebacks and exception reporting at masked locations, and so
takesa constant amount of time (VL cycles, where VL isthe current vector length) to execute a masked vector
instruction regardless of the number of set bitsin the mask vector.

For sparse mask vectors, dternative conditional execution techniques using compress instructions
or scatter/gather can be more efficient [HP96, Appendix B]. But these techniques requireeither fast inter-lane
communication or extra address bandwidth, and & so have additional programming overhead which limit their
use to very sparse mask vectors.

An dternative approach is to improve the efficiency of masked vector execution through the use
of adensity-timeimplementations [Smi94]. A full density-timeimplementation executes only the unmasked
operationsin avector instruction by skipping over zeros in the mask vector. In asingle-laneimplementation,
execution time would be reduced from VL cycles to one cycle per set bit in the mask register.

Full density-time is difficult to implement as a design scales to multiple lanes. If each laneisto
skip over zeros independently, it requiresits own set of vector register file address decoders and its own set
of interlock checks, rather than sharing decoders and interlock checks with other lanes (see Figure 5.6 on
page 100). Because each lane can now have a different amount of work to do for each instruction, thereis
the potential for load imbalance across the lanes. In theory, lanes need only resynchronize for instructions
that require inter-lane communication, but in practice control complexity will increase rapidly if lanes are not
resynchronized after each instruction.

For multi-lane designs, simpler density-time implementations are possible which improve the
efficiency of masked vector execution whileavoiding the complexities of full density-time. | present two such
schemes here: element-group skipping and masked vector length trimming.

e Element-group skipping checksthemask vector at thegranularity of element groups(see Figure2.4 on
page 15). If al the mask bitsin an element group are zero, the el ement-groupis skipped. If oneor more
mask bitsare set in an e ement group, the element group is dispatched to all 1anes, but result writeback
and exception reporting is disabled in inactive lanes. Element-group skipping simplifies control logic
compared with full density-time and allows sharing of central vector register address generation and
interlock control.

e Vector length trimmingisan even simpler technique; hardware simply tracksthelocation of thelast set
bitin amask register and reduces effective vector length when a masked instructionis dispatched. The
main advantage of vector length trimming over element group skippingis that el ements are accessed in
the usual regular pattern, simplifying chaining.

Both element-group skipping and vector length trimming require that central logic keep track of
the contents of the mask registers. The example machine has only one designated mask register (vf 0) which
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simplifies implementations, because only writesto vf 0 need to be tracked.

In generd, these smpler density-time schemes offer fewer savings than full density-time, but in
two common cases their performance is equivalent. The first case is when dl the mask bits are clear. This
case isimportant for code that handles rare conditions using inline vector masked instructions. The second
case iswhere thefirst N bitsin a mask register are set. This case isimportant as it reflects the output of the
flag-priority instructions described above.

Some classes of vector instruction may run much more slowly than regular vector instructions, for
example, floating-point divides, or scatter/gather instructionsin machines with limited address bandwidth.
Because these instructions cannot support regular chaining in any case and because they would benefit most
from skipping over masked operations, they may be candidates for specia case density-time optimizations
even if regular masked instructions use a simple vector-length implementation.

6.10 FlagLatency versusEnergy Savings

Flag values are not strictly required until the end of the execution pipelineswhere they can control
writeback of architectural state. By only using flags to control writeback, we minimize the latency between
flag definition and use. While this increases performance, it incurs an energy cost because the operation
is till performed even though its result will be discarded. If the flag value is known sufficiently early, the
entire operation pipeline can be switched off to save energy. An energy conscious design might provide an
early flag read port that would turn off pipeline stages that were known not be required, perhaps defaulting to
speculatively executing operations when flag values are not known in time.

6.11 Vector Flag Implementation

In this section, | present a flag register file implementation which supports the proposed flag
processing model. The vector flag register file has to support reads and writes from the VAUs, VMUSs, and
VFFUs. The target machine used here to describe the implementation has one VMU, two VAUSs, and two
VFFUs, with eight virtual processors (VPs) per lane. The logical flag organization istaken from Table 6.1.

Because each flag register is only a single hit, an implementation can spread al 32 bits of flag
storage for one VP across the least significant half of a 64-bit datapath. All flags for one VP can be read
together inasingle cycle, and written together in asinglecycle. This approach simplifiestheimplementation
of complex flag instructions that require multiple reads and writes of different flag registers. Each VFU
requires only a single read port and a single write port regardless of the number of flag registers read and
written.

For thetarget machine, we can implement theflag register storage as two element-partitioned banks
(see Section 5.2 on page 92). Each bank holdsthe 32 flag registers for 4 VPs. To satisfy the total VFU port
requirements, each bank needs three read ports and three write ports. One read port and one write port on
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each bank isdedicated to the VFFUs. Another read port and write port on each bank is dedicated to the VAUSs.
Theremaining portsare used by the VMU. The overall structure of one el ement bank isshownin Figure6.12.

The flag read ports for the VAUs and the VMU multiplex one of the 32 flags onto a single bit
mask bus fed into the control pipeline for the VFU. Floating-point arithmetic instructions update either the
5 speculative or the 5 non-speculative sticky exception flags using an OR-write, which only writes 1sto the
cell by turning on the appropriate pull-down driver. Arithmetic compare instructions combine the compare
result with the mask value and update a singleflag result according to Table 6.2. Floating-point compares also
OR-writethe specul ative or non-specul ativeinvalid exception flags. OR-writesare al so used to set fixed-point
saturation, integer overflow, and specul ative |oad address error exception flags.

The VFFUs implement a wide variety of operations, severa of which reguire examining multiple
flag registers at once. Basic logical operations among flag registers are handled with flag logic built into the
VFFU read and write ports of each bank. This reduces latency and should allow a flag read-operate-write to
happen within asingle clock cycle. To implement flag logical operations, the VFFU hardware has three bit
buses carrying two source flag values and the mask value across every bit position. Each write port has logic
to combine these values for writeback. A single flag instruction executing within a VFFU will aternately
access thetwo flag el ement banks, using theflag logic at each element bank to perform flag operationsfor VPs
within the bank. A second flag instruction will execute within the second logical VFFU, accessing € ement
banksinterleaved with thefirst flag instruction.

Aswell as providing single bit flag operations, the VFFUs provide some operations on groups of
eight flag bitsat atime. Thevconmm t instruction reads the eight specul ative exception flags and OR-writes
them to the saven non-speculative flags. This requires an 8-bit bus running across the data path to carry the
values from the speculative execution flags to the non-specul ative execution flags. This bus is aso used to
implement the* . nov8. f flag group move instructions. The value of the speculative |oad address error flag

VAU Vector Register File Ports

32
VAU Mask % . <=2 VAU Exceptions
vfO Update::] VAU flag logic ~— VAU Compare
VMU Mask =~ i i VMU flag logic [|] Address Exception
Y I
VP6 [vfO |vf1l vf 8 vf31
VP4 |vf0 |vfl vf 8 vf31l
EREERE
VP2 |vf0 |vfl Il.llvf8 . llllvf31
VPO |vfO |vfl vf 8 vf31l
Read Flag ::] H H ‘ VEEU flaa logic i ﬁWrite Flag

vf 0 Update 999

Figure 6.12: Overal structure of example flag register and flag processing hardware for one element bank.
This element bank holds all the flag registers for VPs 0, 2, 4, 6. The other element bank would hold flag
registersfor VPs 1, 3,5, 7.
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is sent to the central instruction issue mechanism to signal load address error traps.

The trap barrier instruction is similar to veormi t and uses a VFFU to check for floating-point
traps by scanning the five non-specul ative floating-point exception flags looking for set bits corresponding to
enabled traps.

Assuming the flag registers are arranged across the lane datapath, a path can be provided from the
flag unit to the vector register file ports of a vector arithmetic unit. Thisalowsthe entire flag register set for
aVPto be transferred to a single vector data element in one cycle to speed context switching. All flags can
be cleared by transferring zero into the vector data register and then moving thisinto the flag registers.

There are several flag instructionsthat require inter-lane communication of flag values. Population
count and find first flag instructions use the read port within a VFFU to send single flag bitsto a central logic
block located by the scalar unit, where bit strings are counted and results passed to the scalar register file.
The flag priority instructionsrequire inter-lane communication to determine if aset bit has been encountered.
The read port of a VFFU is used to send flag bits to a centra logic block which then redistributes the flag
priority vector. This inter-lane communication will likely add a cycle or more of latency to the flag priority
instructions.

Because at any time aVFFU can only be executing one of either a commit, trap barrier, popcount,
find first flag, or flag priority instruction, the same read wire can be used to transmit either exception status or
flag values to a central location in the control logic. The density-time optimizationsdiscussed in Section 6.9
above require that all writesto vf O are tracked (only vf O can be a mask source in the example machine).
The VAU and VFFU write ports send the result of any vf O writeto logic in the issue mechanism that tracks
the effective vector lengthin vf 0. The VMU can only write the specul ative address error flag (vf sl ae or
vf 8) and so VMU writes do not need to be tracked.
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Chapter 7

Vector Arithmetic Units

This chapter discusses the design of arithmetic units for a vector microprocessor. Section 7.1
describes how vector arithmetic units can trade increased latency for increased throughput per unit area
Section 7.2 discusses the design of vector floating-point pipelines that can support the |EEE floating-point
standard exceptions. Section 7.3 presents a proposal for increasing throughput on lower precision arithmetic
inavector unit by allowing virtual processor widthsto vary. Section 7.4 compares vectors to the multimedia
instructions which have recently become popular as extensions to commercial microprocessor instruction
sets.

7.1 Vector Arithmetic Pipelines

Arithmetic pipelines for a vector processor can be made identical to those for a scalar processor.
Indeed, alow-cost design will likely share expensive floating-point units between scalar and vector units.

A higher performance design can provide separate functional unitsfor scalar and vector operations,
enabling separate optimization. The scalar functional unitscan be optimized for low latency, while the vector
functional units can be optimized for maximum throughput per unit area. Beginning with a scalar functional
unit design, there are two complementary techniques which trade increased latency for improved throughput
per unit area. The first saves area by removing latency reduction hardware, increasing the number of cycles
required to produce aresult at the same clock rate. The second increases clock rate by deepening the pipeline
with extra latches.

Current CMOS scalar floating-point units require considerable resources to reduce latencies, to
as low as 2 clock cycles in some cases [Yea96, Gwedsh]. If latency is allowed to increase while keeping
throughput fixed, the floating-point unit can be reduced in area [UHMB94]. Some possible savings include:
using simpler multiplier trees with less wiring; waiting until magnitudes are calculated before normalizing
rather than predicting leading-zero positionsin adders; and interleaving independent operationsto reduce the
impact of inter-iteration dependenciesin iterative dividers.
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Because back-to-back dependent operationsare common in scalar workl oads, scal ar mi croprocessor
clock cycletimesare generaly fixed by thetimeto propagate through an integer add and an operand bypassing
network. In contrast, vector operations are known to be independent and so functional units can be pipelined
more deeply to alow a higher clock rate. One way to reconcile these opposing clock cycle demands in a
tightly coupled system is to use amultiple of the scalar clock frequency in the vector unit. For example, the
Cray-2 [Sch87], Fujitsu VP-200 [MU84], Hitachi S810 [LMM85] all run the vector unit at twice the scalar
clock rate, while the Hitachi S-3800 runs the vector unit at three times the scalar clock rate [KISt94]. To
simplify interfacing with the scalar unit and to allow arelaxed timing specification for the vector unit control
logic, a vector functional unit running at twice the scalar clock rate can be treated asif there were twice as
many lanes running at the normal clock rate.

Alternatively, the greater degree of pipelining in the vector unit can be used to maintain the same
clock rate while the supply voltageis reduced. This approach reduces energy dissipation in the vector unit,
while allowing the scalar unit to run with a higher supply voltage to maintain low latency.!

7.2 Vector | EEE Floating-Point Support

The |EEE floating-point standard [IEE85] has received wide acceptance in the computing industry.
The standard defines a rich set of features to handle exceptional conditions in floating-point calculations.
Scalar floating-point units often rely on atrap to software to dea with these exceptional conditions. It is
more difficult to use software trap handlers to handle arithmetic exceptions in a vector machine. Although
most features of the standard — including infinities and NaNs (Not-a-Number) — are straightforward and
inexpensive to provide in hardware in a vector arithmetic unit, there are two features which require special
attention: denormalized numbers and trap handling.

7.2.1 Denormalized Arithmetic

Support for arithmetic on subnormalsisarequirement for compliance with the | EEE floating-point
standard. Subnormalshave been acontroversial feature of thel EEE standard primarily because of the expense
involved in their implementation.

Most existing microprocessors do not support subnormal operandsin hardware, but take a machine
trap to a handler which performs the required subnormal arithmetic in software. Some architectures, such as
the Alpha[Sit92], cannot perform the required trap handling without the insertion of trap barrier instructions,
which cause significant slowdowns in current implementations. Enabling subnormal support on the Alpha
gives lower performance even if no subnormals occur.

Some systems abandon compliance with the standard and flush subnormal values to zero. These
include some vector machines such as the Fujitsu VPP series [UIT94] and the | EEE floating-point option for

1suggested by Dan Dobberpuhl at the IRAM retreat, June 1997. Dan also suggested an alternative technique of doubling the number
of lanes and halving the clock rate to allow alower vector supply voltage.
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the Cray T90. This non-compliant handling of subnormals is also often provided as an optional mode for
systems that otherwise support subnormals. This mode is used to reduce the variability of performance for
real-time applications, to eliminate the run-time penalty of subnormal trap handling, or to emulate systems
that always flush subnormals.

Handling subnormal swith softwaretrapsisdifficultin avector machine. Without revocableregister
renaming hardware, handling subnormals with precise traps will entail alarge loss in performance. Instead
of using precise traps, subnormal values can be serviced with a special handler that is aware of the vector
unit microarchitectural state. Unfortunately, subnormal operands may only be discovered when executing
arithmetic operationsat theend of along decoupled pipeline. Freezing the vector unit requiresstallingalarge
amount of microarchitectural state both in instruction and data queues and in datapaths across multiplelanes,
and driving such a stall signal might adversely affect cycle time. Also, the microarchitecture would need to
make all of this state visible to a software handler and providing the necessary access paths could increase
areaand cycletime.

Alternatively, subnormal values can be handled entirely in hardware, such as in the SuperSPARC
processor [Sun92]. There are at least two schemes for handling subnormals in hardware. One scheme
reformats floating-point data in registers, so that values are internally handled with a wider exponent range
and only converted to and from subnormals on input and output. The disadvantage of this scheme are that
either integer operations would incur extra area and latency to undo the reformatting, or loads and stores
would need to be typed, requiring more instruction encoding and also complicating context save and restore.
This scheme is not considered further here, primarily because vector registers can hold either integer or
floating-point values at multiple different data widths (see Section 7.3 below).

The second scheme retains the standard binary representation in machine registers, and handles
all subnormal operations within the floating-point arithmetic units. Handling subnormals in addition and
subtraction requires little additiona hardware. For subnormal source operands, it is sufficient to mask the
introduction of the hidden bit into the significand during unpacking, as isaready required to handle zeros. If
asubnormal result is produced, thefinal normalizing shift must be modified to align result bitscorrectly. This
requires additional |ogic between the normalization leading zero count and the shift control, which could add
some delay.

Handling subnormal values for multiplicationis more difficult. A multiply with normalized source
andresult valuesrequiresat most asinglebit shift of thefull-widthsignificand product for result normalization,
whereas subnormal values require larger shifts. One approach is to take extra cycles for subnormal values
to handle these shifts (perhaps even using datapath hardware from the floating-point adder) while retaining
reduced latency for normal values. This approach was used in SuperSPARC, where subnorma multiplies
were handled in hardware but could take up to 5 extra cycles over norma multiplies[Sun92]. If used in a
vector machine, this scheme would require that the whole vector unit stalls while subnormals are handled for
an element group, and istherefore unlikely to scale to many lanes and high clock rates.

For avector machine, perhapsthe simplest approach to supporting subnormal multipliesisto provide
fully pipelined support in the floating-point multiplier. The penaty ismore arearequired for the extra shifters
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and sticky bit logic, and additional latency for al multiplies. The area penalty should become increasingly
insignificant with advances in fabrication technol ogies, whilethe latency impact is ameliorated by the vector
execution model. An advantagefor real -time applicationsisthat onefurther source of unpredictabl eexecution
timeiseliminated.

Hardware for Fully-Pipelined Subnormal Multiplies

There arethree cases to consider. Thefirst caseisamultiply of two normalized values that produces
asubnormal result. This requiresthat the significand product be shifted right by as much as one significand
width before rounding. Apart from the additional significand-width right shifter, this case requires more
flexible generation of the sticky bit for rounding.

The second case is a multiply of two subnormal values which, depending on the rounding mode,
produces either zero or the smalest subnormal. This case is no more difficult to handle than infinities or
NaNs.

The third case is the most complicated and involves the multiplication of one subnormal and one
normal value, which can result in either anormal or a subnormal result. This can be pipelined in two ways:

o |f the subnormal source significand isshifted | eft beforethesignificand multiply, the significand product
will have no leading zeros. A normal result then requires no special handling. A subnormal result
can be handled with a single rounded shift right as above when the product of two normals produces a
subnormal.

o Alternatively, the unpacked source significands can be fed directly to the multiplier, which will resultin
leading zeros in the significand product. The full width multiplier product must be generated, instead
of just a sticky bit for the lower half. A normal result will now require that the full width product be
left shifted by up to one significand width to normalize the result value. The sticky bit logic must also
be able to generate sticky bits for some variable number of bitsin the lower half of the product. A
subnormal result may require either aleft or right shift depending on the source exponent values.

The first scheme has the advantages of a narrower |eft shifter and only requiring sticky bit logic
for right shifts of the result, but it introduces additional latency before the multiplier input to alow for the
exponent compare, operand multiplexing, and normalizing left shift.

The second scheme hasthe advantage of reduced latency because the shift amount can be determined
by examining the subnormal significand in parallel with the multiply, but requires the full width significand
product, awider left shifter, and sticky bit logic to handle both |eft and right shiftsat the output. Althoughthe
second scheme has an extra area penalty, the additional circuitry might be shared with additional functions.
For example, the full width product can be used to provide both high and low words of the result for
integer multiplies, while the normalizing left shifter is in the later stages of the pipeline which matches
the requirements for floating-point addition; this should alow a multiply VAFU pipeline to implement both
multipliesand adds at littleadditional cost.
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7.2.2 User Floating-Point Trap Handlers

The |EEE standard recommends, but does not require, that it be possibleto install trap handlers for
any of thefloating-point exceptions. The purpose of thesetrap handlersisto alow usersto replace the default
results produced by an exception before resuming execution.

The proposa presented in Chapter 6 signas exceptions by setting values in designated flag reg-
isters, and requires separate trap barriers be inserted to take a trap on asserted exception flags. For vector
microprocessors with short chimes (Section 3.6), deep decoupled pipelines (Section 4.7), and some form of
density-time mask optimization (Section 6.9), handling exceptional cases using inline masked vector instruc-
tions should be more efficient than inserting trap barriers and handling traps with separate user-level trap
handlers.

For example, consider the straightforward formula to calculate the length of a two-dimensiona
vector:

[= T

If the machine does not have an extended precision format, the intermediate result 22 + y? may overflow
or underflow even though the fina result is representable in the destination format. This formula can be
evaluated without extended precision arithmetic by scaling with an appropriate constant « when overflow or
underflow occurs:

= % (az)? + (ay)?

Figure 7.1 shows example masked code to cal culate the value of this expression with appropriate
scaling, using the specul ative exception flagsto signal intermediate overflows or underflows. A machine with
someform of density-timeimplementationfor masked instructionscan quickly remove the exception-handling
instructionsfrom the instruction queue in the case that there were no exceptions signal ed.

Floating-point trap handling can aso be used for debugging purposes as described in Section 4.6
on page 64.

7.3 VariableWidth Virtual Processors

While 64-bit floating-point arithmetic is a requirement for many supercomputing applications,
many multimedia and human-machine interface processing tasks can be performed with 32-bit floating-
point arithmetic, or even 16-bit or 8-bit fixed-point arithmetic. This reduction in data precision enables a
corresponding increase in processing throughput if wide datapaths are subdivided to perform multiple lower
precision operationsin parallel. The narrower subwords can be handled e egantly with a vector instruction
set. For operations with narrower elements, the vector unit can be considered to have more narrower virtual
processors (VPs). For example, avector machine with 32 64-bit VPs could & so be treated as 64 32-bit VPs,
or 128 16-bit VPs, or 256 8-bit VPs. The maximum vector length now becomes a function of VP width.

This technique was used on some of the earliest vector supercomputers [HT72] to provide higher
processing speed for 32-bit versus 64-bit floating-point arithmetic, but has recently experienced a surge in
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### Calculates z[i] = sqrt(x[i]*x[i] + y[i]l*y[i]) using
### scaling if underflow or overfl ow occurs.

u.clr8.f vf8 # Clear all speculative flags
Frmul . d.vv vv3, vvl, vvl # x"2
Frul . d.vv vv4d, vv2, vv2 # y~2
ladd. d. vv vv5, vv3, vv4d # x"2+y”~2
u.nor.f vf0, vfso, vfsu # Where neither underfl ow nor overfl ow,
or.nov8.f, mvf0O, vf8 # preserve other exceptions

u.nmov.f vf0, vfso Move specul ative overflow flag into vfO
nmov.vs, mvv10, f1 Smal | power of 2

nov.vs, mvv20, f3 Al so get corresponding reciprocal (1/a)
u.nmov.f vf0, vfsu Move specul ative underflow flag into vfO
nov. vs, mvv10, f2 Large power of 2

nov.vs, mvv20, f4 Al so get corresponding reciprocal (1/a)

HHHHH R

u.or.ff,mvf0, vfso, vfsu VWhere either underfl ow or overfl ow
mul . d.vv, mvv1ll, vvl, vv10 Scal e x
mul . d.vv, mvv12, vv2, vv10 Scale y

mul . d.vv, mvv13, vv1l, vvil
mul . d.vv, mvvi4, vv12, vv12
add. d. vv, mvv5, vv13, vvl4
sgrt.d.vv vv0, vvb

mul . d. vv, mvv0O, vv0, vv20

Square scal ed x
Square scaled y
Updat e sum regi ster
Cal cul at e square root
Mul tiply out by (1/a)

H o HH R HHH

Figure 7.1: Example showing use of masked instructions to handle floating-point overflow and underflow
while calculating the length of the hypotenuse. Where thereis an intermediate overflow, theinputsare scaled
by atiny power of 2, and wherethereis an intermediate underflow, theinputsare scaled by alarge power of 2.
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popularity in the form of multimedia extensions to genera purpose scalar architectures [Gwed6d, TONH96,
Lee97].

7.3.1 Setting VP Width

VP width can be specified in every instruction or by writing a separate status word. Here, | assume
that a separate control register, vpw, is written with the desired VP width. The VP width is not expected to
change frequently and so VP width updates should not be a performance bottleneck. As described below,
changesin VP width will also be treated as vector register fileinvalidatesto prevent the storage layout of VPs
becoming visibleto software.

Where there are severd datatypesin asingle vectorized loop, software should set VP width to that
of the widest data type handled in theloop. A VP can load and store all data sizes less than or equal to its
width. Only one set of integer and fixed-point arithmetic instructionsis required which use the full width of
the VP datapath. A full set of single precision floating-point operations should be supported inthe 64-bit VV Ps,
to alow correct rounding and exception signaling when both single and doubl e precision operations appear
in the same loop.

Whileat first it would appear useful to switch dynamically between different data sizes so that each
arithmetic operation runs at the maximum rate, thiswould require considerabl e inter-lane communication to
match up data items from the same loop iteration. Software would also have to work around the differences
in vector length for each precision.

7.3.2 Narrow VPsand Address Generators

Most vector instructions operate only on same-sized data and so subdividing lanes does not entail
any inter-lanecommunication. One exception isaddress generation for strided and indexed memory accesses.
The width of an address generator is fixed by the virtual address space of the machine, typically either 32 or
64 bits.

Asdiscussed later in Section 8.1 address bandwidth is expensive, and it islikely that there will be
at most one address generator per 32-bit or 64-bit lane. Narrower VPs must share address generators and
so run strided or indexed memory accesses dlower than vector arithmetic instructions. If address generators
are located in the lanes then to reduce the amount of inter-lane wiring, narrower VPs should use the address
generator located in the datapath slice of which they are part. To help maintain guarantees on element
ordering, VPs should execute strided and indexed memory instructionsin element order. If thereisonly one
address generator in each 64-bit lane, then this leads to the data layout shown in Figure 7.2, where VPs are
always striped across 64-bit datapaths regardless of VP width.

This layout somewhat complicates the memory skew network used for unit-stride loads, which
would favor placing VPO next to VP1 regardless of VP width. For this reason, implementations with one
address generator per VMFU, or with centrally located address generators, would favor thisaternative layout.
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VP2 VP3
VPO VP1
+ +
o64-bit VPs
VP16VP18VP20NVP22VP24NVP26VP28NVP30| NMP17\VP19VP21NVP23VP25VP27VP29VP31
VPO |VP2 |VP4 |VP6 |VP8 VP10VP12VP14 VP1 |VP3|VP5 |VP7 |VP9 VP11VP13VP15
+ +
8-bit VPs

Figure7.2: Mapping of VPsto two 64-bit datapaths when 64-bit address generators are | ocated one per 64-bit
lane. The upper figure shows how 64-bit VPs are mapped to the datapaths, while the lower figure shows 8-bit
VPs. Both 64-bit and 8-bit VPs will run strided and indexed operations at the rate of 2 elements per cycle.
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To avoid making the implementation-dependent VP storage layout visible to software, changes in VP width
can be specified to cause a vector register invalidate operation leaving vector unit state undefined.

7.3.3 Flagsand Variable-Width VPs

The flag implementation introduced in Section 6.11 on page 125 places 32 flag registers across 32
bits of a 64-bit lane. The flag storage can be doubled to span al 64 bits, alowing 32-bit wide VPsto have 32
flag registers. Narrow VPs do not support floating-point arithmetic, and so require fewer flag registers. The
16-bit wide VPs can be reduced to 16 flag registers, and the 8-bit wide VVPs can be reduced to 8 flag registers.
These fewer flag registersstill allow support for specul ativeloads and integer arithmetic instructions, and a so
il allow al flag state to be transferred to a single vector data element in one cycle.

Flag state could al so be specified to become undefined when VP width changes, avoiding the need
to define how flag state maps across different VP widths.

7.4 Comparison with Multimedia Extensions

Variable-width VPs provide much the same functionality as the multimedia extensions currently
popular in microprocessor architectures. These multimedia extensions add short vector operations to an
existing scalar architecture by treating a 32-bit or 64-bit machine register as avector of packed 8-bit, 16-bit, or
32-bit quantities. They have been shown to provide a significant boost for afew key multimediaapplications
without requiring much silicon area. But multimedia extensions as implemented so far [Gwe96d, TONH96,
Leed7] have severa disadvantages compared to a more comprehensive vector approach.

e Thevectorsaretooshort! Althoughacentra theme of thesishas been how microprocessor technol ogy
favors vector machines with short chimes, the 64-bit vector length typical for these multimedia exten-
sionsisavery smal amount of datapath work to represent with each instruction. Thisforces the use of
asuperscalar instruction issue mechanism to keep an array of functional units busy. Scaling to higher
throughputswill require even greater instruction issue bandwidth. In contrast, the TO implementation
demonstrates how asingle-issue vector machine can uselonger vectors, specifying 1024 bitsof datapath
work, to saturate an array of parallel and pipelined functiona units.

e Not enough registers. The single cycle execution of the multimedia instructions requires software
loop unrolling to schedule around long latency instructions such as multiplies. This software loop
unrolling divides the available register space among the unrolled loop iterations. In contrast, longer
vector registers provide hardware loop unrolling which effectively multiplies the number of registers
available.

¢ Data alignment constraints. Typicaly, the multimedia extensions cannot load or store data except
as naturally-aligned 64-bit words. Unfortunately, it is common for applicationsto operate on vectors
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that are not aligned on these wide-word boundaries, and extra code is required to handle thismisalign-
ment in software. This restriction is imposed to avoid memory accesses that straddle cache line and
page boundaries. Vector memory instruction already have to handle these cases and it is therefore
straightforward to support subword vectors starting at any natural subword alignment.

e Fixed-length vectors. Not only are these vectors short, but they are aso fixed in length. This
complicates code when application vector lengths are not exact multiples of the machine vector length.

e Nonon-unit strideand indexed memory accesses. Current multimediaextensions provideno support
for non-unit stride or indexed memory accesses.

These limitations seriously impact the performance of these multimedia extensions. Section 11.2
in Chapter 11 compares the performance of TO against severa commercial microprocessors with multimedia
extensions on a range of image processing kernels. Even though TO is a single issue machine, it achieves
much higher execution rates than these other systems. It is plausible that future multimedia extensions will
evolveinto full vector units.
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Chapter 8

Vector Memory System

The memory system is the most critical part of any vector machine design. The ability of a
vector machine to tolerate latency and to scale to multiple parallel execution pipelines exposes memory
bandwidth as the primary performance bottleneck for many vectorizable applications. Vector supercomputer
memory systems are usually constructed from thousands of banks of SRAM connected with a hierarchy of
crosshar switches[KIST94]. Such systems provide multiplefast CPUswith high bandwidth access to alarge
shared memory a moderate latencies but are extremely expensive. The cost isjustified in the largest vector
supercomputers because absolute performance (“time-to-solution”) is the primary design goal [KSF94].
Vector microprocessor systems will also target markets where low cost and cost/performance are important,
and so must be capable of working well with an inexpensive memory system.

Thischapter exploresthe design of i nexpensivevector microprocessor memory systems. Section 8.1
discusses theimportant distinction between address bandwidth and databandwidth, and explains why address
bandwidth is considerably more expensive to provide. | aso summarize data from previous studies showing
thedistribution of unit-stride, strided, and indexed vector memory instructionsin variousvector supercomputer
workloads. In Section 8.2, | takea closer ook at vector memory reference streams and identify severa higher
level access patterns which can be exploited to improve the performance of low cost memory systems.

Vector machines can potentially have hundreds of parallel memory requests outstanding in various
pipelines and buffers. Section 8.3 reviews the importance of loose vector memory consistency models which
considerably reduce the complexity of implementing such highly paralledl memory systems. These loose
consistency models aso simplify the implementation of various forms of vector cache. Section 8.4 then
describes the design and implementation of vector memory units, which provide the connection between the
memory system and the vector register file.

Section 8.5 reviews the memory technologies available to use in memory system designs. The
single largest cost reduction in a vector memory system design is to replace SRAM with DRAM. DRAM
is considerably more compact and less expensive than SRAM, alowing both larger and cheaper memories.
New DRAM interfaces support data bandwidths comparable to SRAM, but with lower address bandwidths
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and with grester latencies. Section 8.6 describes techniquesfor driving DRAM memoriesin avector memory
system. A further way to reduce cost is to adopt a cached memory hierarchy; it is much less expensive to
provide high bandwidth to a small SRAM cache than to alarge DRAM main memory. Section 8.7 describes
various forms of cache for a vector microprocessor.

Instead of the flat centralized memory modd of the vector supercomputers, many scaar
microprocessor-based systems have adopted a cheaper multiprocessor organization where memory mod-
ules are distributed amongst the CPUs. Each CPU has full bandwidth and low latency access to its local
memory module, but reduced bandwidth and higher latency access to remote memory modules. Caches are
often used in such systems to avoid these slower global accesses. Section 8.8 briefly outlines some of the
issues surrounding the use of vector processors in such a distributed cache-coherent multiprocessor.

8.1 AddressBandwidth

The bandwidth figures usually quoted for memory systems are for data bandwidth, i.e., how many
wordsof data can betransferred per unit time. Often, peak bandwidth numbers are quoted for streams of data
held contiguously in memory.

Another important metric is address bandwidth, the number of non-contiguous memory regquests
that can be transferred per unit time. Address bandwidth is much more expensive to provide than data
bandwidth for severa reasons:

e Address Busses/Pins. Communicating the extra addressing information requires additional bandwidth
above that required to move just the data.

e Crossbar Circuitry. Wherethereare multiplememory requests per cycle each with separate addresses,
there needs to be address and data interconnect to allow each memory requester to connect to each
portion of memory. If the memory banks are not fully multiported, this interconnect creates the
possibility of conflicts which require additional circuitry to detect and resolve.

e Cache Coherency Traffic. In cached systems, each address request may require a separate access
to cache tag and directory information, and may generate cache coherence traffic between nodesin a
multi processor system.

e TLB Bandwidth. Each extraaddress generated per cycle requires another portinto the TLB for virtua
address trand ation.

e Limited DRAM Address Bandwidth. DRAMSs naturaly have less address bandwidth than data
bandwidth. On every row access, DRAMSs fetch kilobits of data into sense amplifier latches and can
return data from thisblock much more rapidly than if intervening row accesses are required.

Because of this expense, designers of low-cost systems attempt to reduce address bandwidth
demands by adding caches. Memory hierarchies usualy transfer naturally-aligned blocks of data containing
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some power-of-2 number of bytes so that each data transaction moving multiple data words requires only a
single address transaction. A typica microprocessor system memory hierarchy is shown in Table 8.1, which
presents address and data bandwidth for the memory hierarchy of the Digital AlphaServer 8400 [FFGT95].
While both pesk address and data bandwidth drop as we descend the memory hierarchy?, address bandwidth
drops off much more steeply than data bandwidth. The L1 cache can support one address per data word,
whilethelower levels of the memory hierarchy only support one address every eight words. The L3 cache on
each processor can only support a new address every 21 clock cycles, and the system bus can only support a
new address every 12 clock cycles across al 12 processors.

In contrast, vector supercomputers typicaly allow a unique address for every word transferred
throughout their memory system. The 240 MHz Cray C916 vector supercomputer supports up to 6 addresses
per cycle per processor?, and up to 96 addresses per cycle across al 16 processors [Cra93]. This represents
over 900 times grester main memory address bandwidth than the AlphaServer whereas main memory data
bandwidth is only 115 times greater.® This huge address bandwidth and associated crossbar circuitry adds a
great deal to the expense of avector supercomputer’s memory system.

Table 8.2 presents data from studies of a variety on scientific codes running on severa different
platforms, and shows breakdowns of vector memory operationsinto unit-stride, strided, and indexed access
types. Individua program profiles vary widely. Severa are completely or amost completely unit-stride.
Some perform the mgority of their accesses using strides greater than one. Many programs make no indexed
accesses; where they occur, indexed accesses are usually a small fraction of the total. One cavesat is that
some of these figures are taken from source code and compilers that assumed implementations had roughly
equal unit-stride and non-unit stride bandwidth. For example, LU decomposition can be performed almost
entirely with unit-stride operations, but perhaps this would not perform as well on the Cray C90 hardware
as the version reported which has 82% strided accesses. It isalso interesting to compare the results for the
two PERFECT benchmarks, ar c2d and bdna, traced on both the Alliant FX/8 and the Convex C3. The
distribution of unit-stride, strided, and indexed accesses is markedly different between the two machines,

1The DRAM bandwidthsare actually greater than those of the L3 cache. The system bus can transfer one 64-byteline every 12 clock
cycleswhereasthe L 3 cachetakes 21 cyclesto transfer a 64-byteline, but the system DRAM bandwidthis shared by up to 12 processors.

2Not including /0O accesses or instruction fetch.

3The newer 460 MHz Cray T932 supports over 2,600 times the main memory address bandwidth of the newer AlphaServers with
100MHz system buses.

Level Size | DataBandwidth | Address Bandwidth | Data:Address
(KB) | (wordsper cycle) | (wordsper cycle)

L1 8 2 2 1

L2 96 2 05 4

L3 4096 0.38 0.048 8

DRAM | Large 0.67 0.083 8

Table 8.1: Peak address and data bandwidths for the memory hierarchy within a Digital AlphaServer 8400
system with 300 MHz Alpha 21164 processors. The fina column gives the data:address bandwidth ratios.
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Benchmark Name

| Unit-Stride (%) | Other Strides (%) | Indexed (%) ]

NAS Parallel Benchmarks on Cray C90 [HS93]
CG 73.7 0.0 26.3
SP 74.0 26.0 0.0
LU 18.0 82.0 0.0
MG 99.9 0.1 0.0
FT 91.0 9.0 0.0
IS 734 0.0 26.6
BT 78.0 220 0.0
Hand-Optimized PERFECT Traces on Cray Y-MP [Va91]

Highly Vectorized Group 96.9 31
Moderately Vectorized Group 85.3 14.7
PERFECT code on Alliant FX/8 [FP91]
arcad 544 444 12
bdna 7.1 84.5 8.4
adm 224 183 59.3
dyfesm 374 224 40.2
PERFECT Traces on Convex C3 [Esp974]
arcad 80.0 11.0 9.0
bdna 78.0 17.0 5.0
fl o052 720 28.0 0.0
trfd 68.0 320 0.0
SPECfp92 Traces on Convex C3 [Esp97d]
tontat v 100.0 0.0 0.0
swr256 100.0 0.0 0.0
hydr o2d 99.0 1.0 0.0
su2cor 76.0 12.0 12.0
nasa’ 25.0 75.0 0.0
Ardent Workload on Ardent Titan [GS92]

arc3d 98.6 14
fl o082 74.5 255
bk 1 50.4 49.6
brklla 100.0 0.0 N/A
| apack 100.0 0.0
simpl e 554 44.6
wake 99.5 05

Table 8.2: Summary of published analyses of vector memory accesses categorized into unit-stride, strided,
and indexed. The Cray Y-MP resultsfor the PERFECT traces did not separate unit stridefrom non-unit stride
[Vaj91]. The Ardent workloads do not include scatter/gather accesses as those are treated as scalar references
[GS97].

showing how differencesin compiler can affect these statistics.

Choosing the balance between address bandwidth and unit-stride data bandwidth is an important
design decisionin avector microprocessor asit will have alargeimpact onfina system cost and performance.
Vector microprocessorswill likely provideless main memory address bandwidth than vector supercomputers.
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Unit-strideaccesses dominatein vector supercomputer workl oads, even thoughthese systems havefull address
bandwidth. Apart from vector memory instructionsmeasured in these studiesthere are other demands on the
memory system, including instruction and scalar data cache refills and 1/0 transfers. These are all usudly
performed as unit-stride bursts.

Although strided and indexed access patterns are a small fraction of the total memory workload,
they could dominate execution time if they execute too slowly. One of the key challenges in designing a
cost-effective vector microprocessor system is to retain the advantages of vector execution while reducing
address bandwidth demands on lower levels of the memory hierarchy. The goal is to convert strided and
indexed memory access patternsinto unit-strideaccesses whenever possible. Thereare several complementary
approaches:

e Rearrange code to perform unit-stride accesses. This purely software technique is the cheapest
option for hardware. Compilers or programmers can interchange loops to yield unit-stride accesses
in the inner loops. This optimization has been commonly performed for vector machines. Even for
machines with equal unit-stride and strided bandwidths this technique removes potential intra-vector
conflicts and minimizes the impact of inter-vector conflicts. Unfortunately, in some cases, even when
loops can be interchanged to give unit-stride accesses in the innermost |oop, this might then introduce
dependencies that prevent vectorization.

e Move data within vector registers. Some forms of strided and indexed memory operations can be
replaced with operationsthat manipul ate the contents of vector registers. For example, strided accesses
used to implement the butterfly operationswithin FFT agorithms can be replaced with vector register
permute operations. Section 10.3 describes these in more detail.

e Caches. Vector machines can use caches to reduce both address and data bandwidth demands. Sec-
tion 8.7 discusses the addition of caches to vector machines, while Chapter 9 introducestwo new forms
of cache appropriate for vector machines. One of these is the rake cache, which can convert many
occurrences of strided and indexed accesses into unit-stride bursts.

8.2 High-Level Vector Memory Access Patterns

This section identifies higher-level memory access patterns which occur frequently in vectorized
programs to help motivate architectural design decisions and to help describe the behavior of applicationsin
Chapter 11. These patternsemerge from the sequences of vector memory instructionsused to access onearray
operand within avectorized loop nest. Each array operand in a vectorized loop nest could potentially have a
different access pattern. The characteristicsof interest for each access patternincludespatial locality, temporal
locality, and predictability. Spatia locality can reduce address bandwidth demands, temporal locality can
reduce both address and data bandwidth demands, while predictability can be used by prefetch schemes to
reduce the effects of memory latency.
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8.2.1 1D Strided Vectors

Perhaps the simplest common high-level reference patternisa 1D (one-dimensional) strided vector
where every element istouched once before any further accesses are made tothevector. If accessed unit-stride,
this operand has considerable spatial locality and requires little address bandwidth. |f accessed with alarge
non-unit stride, thereisno spatial locality and a different addressis required for every word. A 1D vector can
only exhibit temporal locality between separate accesses not within one access, and only then if thewhole 1D
vector fitsin cache. A 1D vector has a highly predictable access pattern, and such access patterns have been
the target of prior work with stream buffers for scalar machines [PK94].

8.2.2 Permutations

A permutation access uses indexed vector memory instructionsto access every item withinan array
once. Thisaccess pattern has no temporal locality but considerable spatia locality, provided the cacheislarge
enough to hold the entire array. The access pattern is generaly difficult to predict.

8.2.3 Lookup Tables

Lookup table accesses use indexed vector memory reads to access elements in atable. These are
very common for function approximation. Lookup table accesses can exhibit considerable temporal locality
if certain entries are very commonly accessed, even if the whole table cannot fit into the cache. The access
pattern is generally difficult to predict.

8.24 Neighbor Accesses

The distinguishingfeature of aneighbor access patternisthat the same memory operand is accessed
multipletimes by neighboringvirtual processors (VPs). Neighbor accesses are especially common infiltering,
convolution, and relaxation codes such asthat shown in Figure 8.1. In thisexample, element Al 3] would be
read by VPs 2, 3, and 4.

The code in Figure 8.1 |oads the same data multipletimes into the vector register file. Some vector
architectures have added instructions that allow vector arithmetic instruction to begin reading elements at
arbitrary offsetswithin vector registers [Con94, WACt92, DHM*88]. Thisallowsdatain theregisters of one
VP to be reused by another. While this approach would eliminate two out of three of the load instructions,
it does not scale well to more lanes. Each pipelinein each VAU would require a crossbar between its inputs
and the vector register file dicesin al lanes, dramatically increasing the amount of inter-lane wiring, and
potentially increasing the latency of al arithmetic instructions.

Rather than provide extra inter-lane communication paths for VAUs, we can instead simply issue
multiple load instructions, reusing the existing alignment crossbar in the VMU. A cache can filter out the
repeated loads from the underlying memory system. Because all three of these accesses take place in the
same iteration of the stripmine loop, even a small cache can capture the resulting temporal locality.
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/*
for (i=1; i<N-1; i++4)
B[i] =0.25 * (Ali-1] + 2*Ali] + Ali+1]);
*/

| oop:

setvlr t0, a0 # Set vector |ength.
addu t2, al, 8 # Start at Al 1].

ld.v vv2, t2 # Load Ali] first.
add. d.vv vv2, vv2 # 2*Ali]

ld.v vvl, al # Load Ali-1].
add.d.vv vv2, vvl # 2*Ali] + Ali-1].
addu t2, 8

ld.v vw3, t2 # Ali +1]

add.d.vv vv2, vv3 # += Ali+1].

mul .d.vs vv2, fO # *= 0.25.

sd.v vv2, a2 # Store B[i].

sl t1, t0O, 3 # Multiply by 8 bytes.
addu al, t1 # Bunp to next strip.
subu a0, tO # Subtract el enments done.
bnez a0, | oop # More?

Figure 8.1: Example of aneighbor access pattern in afiltering code.

for (j=0; j < rake_depth; j++)
for (i=0; i < rake_width; i++)

AT

Figure8.2: C code showing strided rake access pattern.

8.25 Rakes

A rakeisaparticular form of two-dimensional memory access pattern whichiscommonin optimized
vector code. The access pattern can be described with two nested loopsasin thefragment of C codeshownin
Figure 8.2. Theinner loop moves down a column of matrix A. The outer [oop moves over the columns one at
atime. Because C stores matricesin row-mgjor order, and assuming that dependencies prohibit interchanging
the loop order, thisloop nest can only be vectorized using strided memory accesses.

This access pattern does not only occur in two dimensiona matrix operations; arake is so named
because these are the access patterns obtai ned when loop raking [ZB91] is used to assign contiguousel ements
of a one-dimensiona input vector to the same virtual processor. In this case, software usualy arranges the
rake width to match the number of virtua processors.

In general, a rake has the form of multiple interleaved unit-stride streams. When vectorizing a
rake access, each unit-stride stream is assigned to one virtual processor. A strided rake, asin Figure 8.2, is
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for (j=0; j < rake_depth; j++)
for (i=0; i < rake_width; i++)

CCABLTTTT -

Figure 8.3: C code showing indexed rake access pattern.

for (j=0; j<N j+=NVP)
for (i=0; i<M i++)
for (jj=j; jj <mn(j+NVP, N); jj++)
A TTgT

Figure 8.4: Example of multicolumn access pattern.

where the starts of the unit-stride streams are separated by a constant stride, and so a strided vector memory
operation can be used to access the next element in each stream. An indexed rake is where the starts of the
unit-stridestreams areirregul arly spaced, and where indexed vector memory operationsare required to access
the next element in each unit-stride stream. Figure 8.3 gives afragment of C code showing an indexed rake.
The extent of arake can be characterized with two parameters, rake width and rake depth. The rekewidthis
the number of unit-stride streams accessed simultaneously, and software often arranges for thisto be equal to
the number of virtual processors. The rake depth is the number of € ements taken from each stream. Strided
rakes also have an associated rake stride whereas indexed rakes have an associated rake index vector.

There are many vectorizable applicationswhere strided rakes appear, including dense matrix mul-
tiplication (Sections 11.1.2-11.1.3), data compression (Section 11.6.3), Kohonen networks (Section 11.5.2),
and cryptographic applications (Section 11.4). Indexed rakes are not quiteas common, but appear in vectori zed
garbage collection (Section 11.6.5) for example.

Because rakes are a set of unit-stride streams, they possess considerable spatia locdlity. The rake
cache introduced in Chapter 9 exploits this spatial locality to considerably reduce the address bandwidth
required to support rakes. Rakes are aso highly predictable for larger rake depths.

8.2.6 Multi-Column Accesses

Multi-column accesses are another form of two-dimensional access pattern common in matrix
arithmetic codes. A multi-column accessisshownin Figure8.4. HeremultipleV Pstraverse down neighboring
columns of amatrix. The pattern consists of a sequence of unit-strideaccesses separated by a constant stride.
This is the transpose of a strided rake which consists of a sequence of strided accesses separated by a unit
stride.

Because themulticolumnaccess pattern iscomposed of unit-strideaccesses, it has substantia spatial
locality. The access pattern is also highly predictable because each unit-stride access is separated from the
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previous by a constant stride amount.

TheTorrent ISA [AJ97] alowsan optional address register post-increment to be specified along with
unit-stridevector memory accesses. Thiswas originally added to reduce instruction bandwidth requirements,
but this post-increment can also be used to give a prefetch hint for the start address of the next unit-stride
access in the multicolumn pattern. This prefetch hint would aso be effective for accessing unit-stride 1D
vectors. A similar scheme was used to predict address streams from post-increment addresses in the HP
PA-7200 microprocessor [Gwed4b].

8.3 Vector Memory Consistency M odels

A memory consistency model specifies the possi bl e orderingsin which concurrent memory accesses
can be observed by theagentsinitiatingmemory accesses. Consistency can be considered at threepossiblelev-
elsin avector | SA: between processors (inter-processor consistency), between instructions (inter-instruction
consistency), and between e ements within an instruction (intra-instruction consistency).

8.3.1 Inter-Processor Consistency

The first level is inter-processor consistency. The inter-processor consistency model defines the
possible orderings in which a processor can observe the memory transactions of other processors. Inter-
processor consistency has been extensively studied in the context of cache-coherent scalar machines [AG96]
and the same techniques can be applied to vector multiprocessors.

8.3.2 Inter-Instruction Consistency

The second level isinter-instruction consistency. The inter-instruction consistency model defines
thepossibleorderingsinwhich different instructionsfrom the sameinstructi on stream can observe each other’s
memory accesses. Scalar processors amost invariably adopt a strict consistency model for instructionsin a
singleinstruction stream, requiring that all memory accesses are observed in program order. In contrast, most
vector | SAs adopt a very loose inter-instruction memory consistency model. Typically thereis no guarantee
on the order in which vector loadsand storesare performed by asingle processor, unlessthereisan intervening
memory barrier instruction of the appropriate type. Figure 8.5 gives example pieces of code, showing how
barriers should be inserted to guarantee desired behavior.

The aim of such alooseinter-instruction consistency model is alow a sequence of vector memory
instructions to be issued to multiple VMUs, where they can then execute concurrently without the need
for hardware to check for collisions between the multiple address streams. Vectorizing compilers have to
perform extensive compile time analysis of memory dependencies to detect vectorizable code, and they can
pass on the results of thisanalysisto hardware by omitting memory barriers when unnecessary. This explicit
inter-instruction consistency model provides a large cost saving compared to the huge numbers of address
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comparators required to support the concurrent execution of hundreds of long latency memory operations
with atypica scalar ISA.

An important special case where barriers can be omitted is shown in Figure 8.6. A barrier is not
required between a load and store to the same location if the store has a true data dependency on the value
being read.

Scalar memory instructions are aso included in the inter-instruction consistency model. Scalar
accesses in a vector machine are generaly defined to observe other scalar accesses in program order to
simplify scalar coding, or perhaps to remain compatible with a base scalar 1SA. But to simplify hardware
implementations, the ordering of scalar memory accesses with respect to vector memory accesses can remain
undefined except for explicitly inserted barrier instructions. Software can often determine that scalar and
vector accesses are to digoint memory regions and omit unnecessary barriers.

The standard inter-instruction barriers make all accesses globaly visible to al virtual processors
(VPs). Virtual processor caches described in the next chapter make use of an even wesker form of inter-
instruction barrier to improve performance — VP barriers only guarantee that accesses made by one VP are
visibleto other accesses by that same VP,

Inter-Instruction Memory Barrier Types

There are four basic types of memory access to consider when specifying barriers to maintain
inter-instruction consistency: scalar read (SR), scalar write (SW), vector read (VR), and vector write (VW).
Machines with VP caches (Chapter 9) also have to consider VP reads (PR) and VP writes (PW). PR and PW
can be considered subsets of VR and VW respectively to reduce the total number of potentia hazard types.
Table 8.3 liststhe possible memory hazards that can occur between these six types of memory access.

One possible design for the memory barrier instruction isto have asingleinstruction with multiple
bits, one per type of ordering that must be preserved (12 for Table 8.3). Alternatively, the hazard types can

sd.v vvl, al # Store data to vector.
Id.v vv2, al # Load data from vector.
# vv2 1= vvl

# Add barrier to ensure correctness.

sd.v vvl, al # Store data to vector.

nmenbar # Ensure vector reads after wites.
Id.v vv2, al # Load data from vector.

# vv2 == vvl

Figure8.5: With aweak inter-instruction memory consi stency model, thefirst code sequence has no guarantee
that the values written by the earlier vector store will be visibleto the later vector load, even though both are
executed in program order on the same processor. For example, the machine may buffer the vector store in
one VMU while the load obtains val ues directly from memory in a second VMU. The second code sequence
adds an explicit memory barrier to ensure the load sees the results of the store.
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Abbreviation | Hazard Type
SRAVW Scalar Read After Vector Write
SWAVR Scalar Write After Vector Read
SWAVW Scalar Write After Vector Write
VRASW Vector Read After Scalar Write
VRAVW Vector Read After Vector Write
VWASR Vector Write After Scalar Read
VWAVR Vector Write After Vector Read
VWASW Vector Write After Scalar Write
VWAVW Vector Write After Vector Write
PRAPW VP Read After VP Write
PWAPR VP Write After VP Read
PWAPW VP Write After VP Write

Table 8.3: Possible hazards between scalar and vector reads and writes.

be encoded to reduce the size of instruction space devoted to barriers. Some machines have coarser control.
For example, the Cray architecture only allowsthe user to specify that al vector writes must compl ete before
following instructions, or that al vector reads must complete before following instructions [Cra93]. The
Fujitsu VP200 [MUB84] had a separate bit on load and store instructions that could restrict them to a single
pipeline to prevent overlap. The Torrent ISA [AJ97] has only a single sync instruction that waits for all
hazards to be resolved.

Memory barrier instructionsneed not stall theissue stageimmediately. Rather, they set up hardware
interlock flags which prevent a subsequent memory operation from violating the desired constraint. For
example, library routines might frequently end with a memory barrier to ensure that memory has the correct
values a the end of the routine, but thiswill not stall issue unlessthe caller triesto access memory before the
consistency conditions are satisfied. In-order machines with a single memory unit used for both scalar and
vector memory accesses can simply discard memory barriers when encountered in the instruction stream.

It would be conceivable to implement finer control over memory consistency by identifying the
order between individual instructions rather than between classes of instruction. This requires some way of
tagging and identifying instructionsand is not considered further here.

## A[i] = Ali] +1

Id.v vvl, al

addu.vs vvl, vvl, tO

sd.v vvl, al # No barrier required.

Figure 8.6: This piece of code does not need a memory barrier because the write of Al i ] cannot happen
beforetheread of A[ i ] dueto the true RAW dependency throughthe addu.



150

8.3.3 Intra-Instruction Consistency

Thethirdlevel isintrarinstructionconsistency. A singlevector instruction specifies multipleparallel
memory operations which might be executed concurrently across several lanes. For unit-stride and constant
stride stores, the order in which elements are writtenisusual ly immaterial because the e ements do not overlap
except for afew pathological stride values.* But there are some agorithms which can only be vectorized
if indexed stores write values in element order. For example, the defined ordering alows virtual processor
execution to be prioritized.

While applicationsgenerally do not require that vector |oads are retrieved from memory in el ement
order, some memory barriers can be avoided if we define that values read are chained to other computations
in element order. An exampleisgiven in Figure 8.7. Here, the order in which load e ements are guaranteed
to be used in the computation can affect performance. |If the load values are used in sequence, then no
memory barrier is required, and the load and store can be chained together through the adder and run
concurrently. If the load values are not used in sequence, an explicit memory barrier isrequired between the
load and the store, prohibiting chaining between the two.> Fortunately, guarantesing element order should
not impact implementation performance. The memory system can perform eement loads out-of-order, as
long as chaining logic ensures |oad values are used in-order. For stores, write buffers can drain out-of-order
to different memory words, provided that writes to the same word complete in element order.

One situation where relaxing element order simplifies implementationsis for the virtua processor
caches described in the next chapter. Vector memory instructions with rake cache or histogram cache hint
bits set are specified to have no element ordering guarantees to avoid the need for virtual processor cache
consistency hardware.

8.4 Vector Memory Unit | mplementation

Vector memory units (VMUSs) execute vector memory instructionswhich move data between vector
registers and memory. A single vector instruction is converted into some number of separate requests to the
memory system. The VMU is responsible for trandating virtual addresses into physical addresses, ensuring
coherence with any caches, and routing requests between the memory system and individual lanes.

One simple way to reduce memory system cost is to reduce the number of VMUSs per CPU. For
example, recent Cray Research supercomputers (X-MP, Y-MP, C90, T90) have included two load VM Us and
one store VMU per multiply and add unit. This represents a 3:2 memory:compute ratio. In microprocessor
designs, it is much cheaper to increase arithmetic performance than main memory bandwidth, and so it
is natura to design “unbalanced” machines with memory:compute ratios less than one, for example with
one VMU and two VAUSs giving a 1:2 memory:compute ratio. As shown in Chapter 11, many kernels and
applications have memory:compute ratios that are 1:2 or less. Even where code has larger memory:compute

4A stride of zero, or alarge power-of-2 stride that wraps around the virtual address space.
511 this was part of a stripmined loop, the second code sequence could still overlap the store of oneiteration with the load from the
next, but this overlap would only occur with longer vectors.
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ratios, the excess of inexpensive arithmetic units helps to ensure the expensive memory port is kept fully
saturated. A further advantage of asingle VMU design isthat inter-VMU memory conflicts are eliminated.

Thefollowingdiscussion of VMU implementationisbrokenintotwo parts, first unit-strideaccesses,
then strided and indexed accesses.

8.4.1 Unit-Stride Accesses

Regardless of the number of lanes, a unit-stride access can always be handled with only a single
address transaction per cycle. To simplify TLB and cache tag lookups, a unit-stride access can aways request
naturally-aligned blocks from memory. For example, a system with four 64-bit lanes could always request
datain aligned 256-bit blocks from memory, as shown in Figure9.1. Only asingle TLB access is required
per cycle because the block can never straddle a page boundary. Only a single cache tag access is required
to maintain coherency provided the cache lines are no smaller than the block size (32 bytesfor the example).
Further reductionsin TLB bandwidth and access energy are possible if asingletrandation is reused for the
multiple cycles within a single unit-stride access.

Because a unit-stride vector can start at any element in memory, alignment circuitry is required
to align the first eement in memory with lane 0, the second with lane 1, and so on. Misaligned accesses
can proceed at full bandwidth by using a combination of an element rotator, a delay register, and a per-lane
multiplexer. The rotator is set to a given rotate amount by the start address of the vector and stays at the
same rotation for the duration of the unit-strideinstruction. The delay register holdsthe output of the rotator

## |f |oad el enents used in el enment order
## Ai] = Ali+1] + 1

addu a2, al, 8

ld.v vvl, a2 # Ali+1]

addu.vs vvl, vvl, tO

sd.v vvl, al

## |f |oad el enents used in undefined order
** Ali] = Ali+1] + 1

addu a2, al, 8

[d.v vvl, a2 # Ali+1]

addu.vs vvl, vvl, tO

nmenbar, vwavr # Barrier required.

sd.v vvl, al

Figure8.7: Examplewhere order inwhich elementsareread affects execution. If load el ements are guaranteed
to be used in element order, then because A 3] must be read before A[ 2] can be written, the first code
sequenceisguaranteed that A[ 2] will beread by theload beforeit iswritten by the store. Thiscode sequence
could dispatch the load to one VMU and the store to a second VMU with both runningin paralel. If theload
element use order is not guaranteed, an explicit barrier isrequired to prevent Al 2] being written beforeitis
read, as shown in the second code sequence. Inthiscase, the load must completein the first VMU before the
store can begin execution in the second VMU.
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network for one cycle, to enable words from two neighboring blocks in memory to be merged to form an
element group. The final multiplexer in each lane selects the next el ement either from the block arriving from
memory or from the previous memory block held in the delay register. The multiplexers are also set once at
the start of the memory instruction according to the start address. The output of the multiplexersisan element
group that can be written to one row of the vector register file. Figure 8.8 shows the operation of the rotate
and skew unit for avector load. A similar network can be built to transmit store data from the vector register
file to avector in memory.

8.4.2 Strided and Indexed Accesses

With littleadditional cot, strided and indexed accesses can run at the rate of one element per cycle
using the hardware described previoudy for unit-stride accesses. On every cycle, the memory block holding
the desired element isfetched from memory and the rotate network is used to move the element to the correct
lane. Indexed vector store instructions require a read port on the vector register file to communicate indices
to the address generator as well asaread port for data. But if the implementation has multiplelanes and only
supports a single indexed memory operation per cycle, asingle read port can be multiplexed between data
and index reads with little loss in performance by buffering multipleread values across the lanes.

Some small strides can be handled faster with special case circuitry at little additional expense.
For the example machine, stride-2 accesses, which are the most common stride after unit-stride, can proceed
a the rate of two elements per cycle with only a single address transaction per cycle. The rotator needs
to be extended to allow the word permutations required for stride-2 accesses. Stride-3 accesses could aso
potentially be accelerated to an average rate of 4/3 words per cycle.

Increasing the performance of larger strides or indexed accesses requires considerable additional
circuitry. To run at the same rate as unit-stride, an address generator, TLB port, and cache tag port must be
provided for each lane. Thisaddress hardware can either be distributed across the lanes or centrally located.
The memory system must be capable of supporting multiple independent requests per cycle, either with
multi ported storage or with interleaved memory banks. Similarly, the extrabandwidthto TLB and cache tags
can be provided either by interleaving or multiporting the TLB or cache storage. For smaler strides, TLB
bandwidth requirements could potentially be reduced by reusing trand ations when successive e ements lie
on the same page. Hardware must detect any conflicts between multiple accesses on the same cycle and stall
requests until conflicts are resolved.

Whilethismore complicated addressing hardware coul d al so support unit-strideaccesses, dedicated
unit-stride hardware as described above might save considerable energy by minimizing the number of TLB
trand ations and cache tag lookups, and by eliminating conflict resolution.

Providing full address bandwidth out to main memory is a large part of the expense of a vector
supercomputer memory system, and it is likely that a more cost-oriented vector microprocessor will have
reduced address bandwidth to main memory. Thiswill tend to dilute the benefit of providing greater address
bandwidth in the processor core. The virtua processor caches described in Chapter 9 aim to reduce the
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Figure 8.8: Operation of arotate and skew network used to implement unit-stride loads with only a single
address transaction per cycle. The example isloading a memory vector A[0]-A[6] into one vector register
of afour lane vector unit. The memory vector is aligned starting at the last word of the four-word aigned
memory system. On thefirst cycle, A[0] isread from memory into the delay register inlane 0. On the second
cycle, eements A[1]-A[3] are merged with the delayed A[Q] value to prepare an e ement group to be written
into thevector register file. At the same time, element A[4] is clocked into the delay register. Thethird cycle
merges A[5]-A[6] from the last memory block with A[4] from the delay register, while the previous € ement
group iswritten to the vector register file. The fourth cycle completes the write of the second element group
into the vector register file.
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address bandwidth demands on lower levels of the memory hierarchy by converting certain forms of strided
and indexed accesses into unit-stride bursts.

8.4.3 Subword Accesses

So far, the discussion of memory systems has assumed that each VP is aways fetching or storing
a complete 64-bit word. In practice, many agorithms, especialy those outside of scientific and engineering
computing, operate on a range of different data sizes. A 64-bit wide virtua processor might also need to
access 8-bit, 16-hit, or 32-bit data. This requires richer connectivity in the memory interconnect. To reduce
complexity, a two-level interconnect can be used. The first level is a crossbar between the lanes and the
memory system which can perform every permutation of 64-bit words. The second level iswithin each lane,
and includes a byte rotator that can insert or extra any subword from the 64-bit memory word. Section 7.3
on page 133 describes how to subdivide lanes into smaller lanes if al arithmetic can be performed with a
narrower word width.

8.5 Memory Storage Technologies

Inthissection, | review the characteristics of current memory technol ogies which could be used in
avector microprocessor memory system. The storage components can be divided into four broad categories:
on-chip SRAM, off-chip SRAM, on-chip DRAM, and off-chip DRAM.

85.1 On-chip SRAM

On-chip SRAM is the highest performance but also the most expensive form of storage, and is
typically used to build the highest levels of the memory hierarchy. The amount of SRAM on microproces
sor dies has been increasing rapidly, with current microprocessors having capacities up to around 128 KB
[BAB*95, Gwed6c, Gwe9dba, Yead6], while the HP PA-8500 with 1.5MB of on-chip SRAM has been an-
nounced [LH97]. For current designs, access latency of on-chip SRAM isin the range 2—6 processor cycles,
with 3 cycles being typical. On-chip SRAM istypically pipelined to provide one access per cycle regardless
of addressing pattern. Some more aggressive designs access the SRAM twice [Gwed6d], or even threetimes
[Gwedbc], in one clock cycle to get greater bandwidth without adding extra physical ports or interleaving
banks. Several designs have moved to two levels of on-chip cache [BAB*95, Cas96, Gwed6h] to provide
short latencies to a small primary cache for high frequency scalar processor cores, while providing a larger
secondary cache to avoid off-chip accesses. This style of design is attractive for a vector microprocessor,
where the vector unit bypasses the scalar primary cache and accesses the on-chip secondary cache directly.
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85.2 Off-chip SRAM

Off-chip SRAM istypically used to build large externa caches for microprocessor systems. Off-
chip SRAM has moderate access latency, of around 3—12 processor clock cycles, with 7 clock cycles being a
typical value from load instruction to use. Because of pipeline conflicts and bus turnarounds, these SRAMs
often require one or two dead cycles between off-chip reads and writes. Current off-chip SRAM parts cycle
at the same clock rate or one-half the clock rate of current microprocessors. Newer fast burst SRAM designs
increase bandwidth by returning data on both edges of the SRAM clock, doubling the data bandwidth but
with the same address bandwidth as before.

8.5.3 Off-chip DRAM

Off-chip DRAM provides main memory for most computing systems today, as it has the lowest
cost per bit amongst high-speed mutable semiconductor memories. Recent developments in high-speed
DRAM interfaces have dramatically increased the bandwidth available from commodity DRAM. A single
synchronousDRAM (SDRAM) offersdata rates of up to 250 MB/s. A single Rambus DRAM (RDRAM) can
supply a peak data bandwidth of 600 MB/s per part. Although the peak data bandwidth of these new high-
speed DRAMSs is competitive with that of off-chip SRAM, they have much greater latency and considerably
less address bandwidth. These properties are inherent in the structure of DRAM.

DRAMsrepresent dataas charge in storage capacitors. Thestorage cellsarearranged inlarge arrays
with sense amplifier latches located at one edge of the array. Once arow of data (typically equal to the square
root of the memory size, or severd kilobits) is captured in the sense-amp latches, it can be accessed as fast
as SRAM. For atypica SDRAM, anew piece of data can be returned from this sense-amp row buffer every
clock cycle (8-12ns). Future double-datarate (DDR) SDRAMswill increase data bandwidth by transferring
data on both edges of the clock. RDRAMSs have much the same internal structure as an SDRAM, but can
transfer data from the row buffers at a much greater rate.

Random accesses are much slower. To save area, many DRAM cells share the same wordline. Ona
row access, each cell developsonly asmall potential on the bitlineand sensing isadelicate and slow process.
The long word lines and slow sensing contribute to the long latency of random access for DRAM. First, the
bank must be precharged to equalize the bitlinesin preparation for sensing. This precharging destroys the
values in the sense-amp row buffers. Next, the row address is decoded and used to drive a wordline, and the
new row of data bitsis captured in the sense-amp buffers. Finally, a column address is decoded and used to
select data from the row buffer. DRAM readout is destructive and so arestore period isrequired after datais
latched into the sense amps. During restore, the bitlines are driven full rail by the sense amps to restore the
charge on the active storage cells. The sum of precharge, row access, and restore times fixes the bank cycle
time.

For atypica SDRAM running with a 3 cycle CAS latency, precharge takes 3 SDRAM cycles, row
access takes 3 cycles, and column accesses can be pipelined every cycle but with a3 cycle latency [IBM96].
Precharge and row access cannot be pipelined, and random accesses to a bank have 8 times less bandwidth
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than column accesses. To help improve random access bandwidth, current SDRAMS have two independent
banks. Precharge and row access in one bank can be overlapped with column accesses to the other. Future
SDRAMswill increase this number of banksto four or more.

RDRAM s have much the same performance characteristics as SDRAMSs, except with much reduced
pin requirements due to the higher speed multiplexed interface. A single 600MHz 8-bit Rambus channel
is roughly equivaent to a 75MHz 64-bit SDRAM bus, but requires only 31 pins on a memory controller
including power and ground, whereas the SDRAM bus would require around 110 pins. Because RDRAMs
can providefull channel bandwidth from asingle part, the minimum memory increment is also much smaller.

Column access latencies for DRAMs are around 30 ns. Random access latencies are around 50 ns.
If precharge cannot be hidden, then row access latenciesincrease to around 80 ns. Currently specialty DRAMs
are available which sacrifice density for lower latencies, and these latencies will continue to drop slowly in
future DRAM generations.

These latencies are only for single DRAM parts. In large commercia computing systems, many
DRAMs are required to provide bulk main memory. Caches, memory controllers, and memory interconnect
add to memory access latency in large systems. For example, in the AlphaServer 8400 system with 300 MHz
Alpha 21164 processors and a 75 MHz system bus, the minimum read latency is around 240 ns with 60ns
access DRAM parts[FFGT95]. Workstationshave somewhat lower overhead. For example, the AlphaStation
600 workstation has a memory latency of 180 ns with the same 60ns DRAMs[ZML95]. Newer designs are
reducing thelatency overhead. For example, the Digital Personal Workstation hasahighly integrated memory
controller [Sch97a] and with no tertiary cache achieves memory access latencies as low as 75ns on a hit to
an active DRAM row, or 105nsto an inactive row.

Technology trends will continue to reduce this overhead latency. First, main memory controllers,
which are separate chipsin most microprocessor-based systems, will be integrated on-chip as transistor count
grows. This integration reduces the latency of responses to cache misses, and allows for more intelligent
handling of DRAM request streams. Second, especially insmaller systems, thenumber of DRAMsrequiredto
provideall of main memory isfalling[PAC*97]. Thisreducesthesizeof thememory interconnection network,
alowing DRAM to be directly connected to the processor or even embedded on-chip as described below.
The combination of an on-chip memory controller and directly connected DRAM allows access latencies to
approach the raw DRAM access latencies. Even large server-class systems are moving to distribute DRAM
amongst processor hodes, with nodes connected via a high-speed interconnect [LL97]. The access latency of
each nodeto itslocal DRAM should aso fall asthe memory controller isintegrated and the number of local
DRAM parts fals. Even with these improvements, processors running at 1 GHz can expect locad DRAM
latencies of up to 6080 cycles.

DRAM bandwidth, on the other hand, will be limited more by system cost than by technological
barriers. In the next few years, packaging technologieswill soon alow 32-64 GB/s off-chip data bandwidth
using 256-512 1/Os signaling at 1-2 Gb/s per pin. This bandwidth can be supplied by 8-16 next-generation
64Mb RDRAM parts [CDM*97], with a total minimum memory increment of 64—128 MB. Lower-cost
systems will rely on on-chip memory hierarchies to reduce off-chip bandwidth demands. As described next,
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for some systems, all of main memory can be integrated on-chip.

854 On-chip DRAM: IRAM

With each DRAM generation, capacity per chipincreases by afactor of 4 whilecost per bit decreases
by only afactor of 2. Thistrend hasled to adrop inthe number of DRAM partsin agiven class of system over
time. Asthe number of DRAMS required for a system drops below one, it is natural to consider integrating
processor and DRAM memory on the same dieyielding “intelligent RAMS’ (IRAM) [PACT97].

This integration brings several benefits. First, latency drops substantially because bus and control
overheads are reduced. Random access latencies of 25ns and below are possible. Second, both data and
address bandwidth increase dramatically. For electrical reasons, DRAMsare dividedinto many smaller arrays
of around 1-2 Mb each, but these are grouped together and treated as single banksin commodity DRAMs. If
the memory controller is on the same die as the DRAM arrays, it can control each array individualy. Data
bandwidth isincreased because wide parallel on-chip busses can be use to retrieve hundreds of bits per array
per column cycle, and multiplesuch arrays can be active on acycle. Address bandwidth isincreased because
independent row accesses can be distributed over many arrays. Finally, energy consumption is reduced
because there are no off-chip capacitative busses to drive[FPC*97]. Databandwidthsare expected to be well
over 100GB/sfor asinglediein the 1 Gb DRAM technology.

There would appear to be a natural synergy between IRAM and vector architectures [KPP97].
IRAM can provide high address and data bandwidth with low energy consumption, whilevector architectures
offer a compact processor design that can nevertheless convert high memory bandwidths into application
Speedups.

8.6 Driving DRAM in aVector Memory System

SRAMSs can accept a new address every cycle regardless of addressing pattern. DRAMS present
extra complications due to their two-dimensional structure. Accesses to the same row in a bank can occur
rapidly in a pipelined fashion, while accesses that require a change in row address take longer and reguire a
sequence of actions to be performed.

8.6.1 DRAM Control Pipeline

DRAM control can be simplified if al accesses are performed with a uniform pipeline as shown
in Figure 8.9. For thisexample, | use timingsfor an off-chip synchronous DRAM array [IBM96] operating
with a 3-cycle CASlatency. Similar pipeline designs can be used for Rambus DRAM or embedded DRAM.
For every separate bank in the DRAM, the memory controller keepstrack of therow that is currently present
in the sense-amps. At the start of the DRAM pipeline the memory controller determinesif the access isahit
or miss to the open row in the addressed bank. For a row miss, the memory controller initiates a precharge
and row access in the pipeline to bring the new row into the sense-amps in time to read out values during
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the column access stages. |If the row miss is to an otherwise idle bank, then precharge and row access can
be overlapped with column accesses to active banks. One detail to note is that overlapped row and column
accesses may both attempt to use a shared DRAM address and control bus on the same cycle, in which case
oneaccess will haveto stall. If therow missisto an active bank, the precharge cannot begin until any previous
column accesses and restores to the same bank have completed because the precharge will destroy the values
in the sense-amps. In this case, the memory controller must stall the new access until thisbank busy timeis
over. For arow hit, the precharge and row access stages do nothing but ssmply delay column accesses until
the appropriate stage in the pipeline. This fixed length pipeine trades increased latency of row hitsin order
to simplify control and to increase bandwidth in the presence of row misses. With a current processor cycle
time of around 2 ns and current 8ns SDRAMs, the SDRAM component of memory latency would be around
36 cycles.

Unit-stride accesses dominate vector workloads, but non-unit stride and indexed accesses will tend
toincur morerow misses, and row accesses are around eight times slower than column accesses for an SDRAM
memory system. For scientific codes studied by Hsu and Smithin [HS93], missratesfrom afour bank system

Potential
Address Structural Hazard Load Data
PCH RAS CAS A | loadData
Start Start \Start
CAS Load Data
Start Al
CAS Load Data
Start A2
CAS Load Data
Start A3
PCH \RAS CAS 50
Start Start Start
- » PCH
Row Miss Bank Busy Start

Figure 8.9: Fixed length pipeline used to communicate with SDRAM memory system. The figure assumes
an SDRAM with athree cycle CAS latency. The pipeline includes sufficient time for a precharge and row
access before each column access. Each of these three phases has alatency of three clock cycles. The column
accesses can be pipelined, one per cycle, but the other two phases reserve the bank for their whole duration.
The figure shows a sequence of four read accesses to the same bank (A0-A3), followed by aread accessto a
second bank (B0), followed by another read to a different row in the second bank. The first five reads return
at therate of one per cycle, with the precharge and row access to the second bank overlapped with accesses to
the first bank. Depending on the manner in which column accesses are performed (burst length) and whether
both SDRAM banks share memory control lines, there could be a structural hazard between the the CAS
command for the A1 access and the RAS command for the BO access. The final access shows the stall that
is required when another access to the B bank is required. The column access for BO must complete before
beginning the precharge of the new access.
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with 2KB per open row were found to be around 10%, suggesting that even a small number of open rows
can capture significant locality even in the presence of strided and indexed operations. In the absence of bank
busy conflicts and with the pipeline described above, these miss penalties could be overlapped. Increasing
the number of banks, either by using DRAMs with more banks per chip, or by using parallel arrays of DRAM
chips, decreases the probability of bank busy conflicts. Current SDRAMs and Rambus DRAMsintegrate two
banks on each chip, with future parts planning four or more. Designs with DRAM on-chip can have dozens
to hundreds of banks.

8.7 Vector Caches

Current commercia vector supercomputers do not employ vector data caches, athough they were
included in some earlier designs [Buc86, Jon89]. Vector data caches would not improve performance of
these machines significantly, because they provide full address and data bandwidth out to main memory and
because many vector programs are tolerant of memory latency [KSFT94].

If main memory bandwidthisreduced, however, severa studies|GS92, K SF+ 94, FP91] have shown
that vector data caches can improve performance significantly. These studies aso demonstrate that caching
strategies used for scalar processors are not optimal for vector data.

Capturing spatial locality to reduce address bandwidthislessimportant than for ascalar data cache,
because vector unit-stride or strided instructions already accurately encode the presence of spatial locality.
This reduces the benefit of the long cache lines and specul ative prefetching used to exploit spatial locality in
scalar caches. But vector data caches can help capture spatial locality in some other higher level patterns of
vector access, such as permutations or rakes.

The main benefits of avector data cache arisefrom capturing temporal locality. Reusing vector data
from cache reduces data bandwidth demands on the lower levels of the memory hierarchy. Large capacity
and high associativity, or other techniquesto avoid conflicts [ Yan93], help to capture tempora locality.

Vector data caches can also improve performance by reducing memory latency, though thisis less
important than in scalar processors due to the inherent latency tolerance of vector instructions. In particular,
speculative prefetching to reduce latency may be beneficial for latency-sensitive scalar processors but fetching
additional speculative data can slow down alatency-tolerant vector processor [KSF94].

Because only some vector data will benefit from caching, it is desirable to select those vector
accesses that should be cached. Some possible schemes for distinguishing accesses that should be cache
allocated includea“ cache” hint bit on vector datainstructions, “ cacheable’ bits on page tableentries, or some
form of dynamic cacheability predictor. Other no-allocate vector accesses will still operate in cache if there
isahit, but do not allocate datain cache if thereisamiss.
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8.7.1 Using Scalar Secondary Cache to Cache Vector Data

All current high-performance microprocessors rely on large caches to boost scalar performance
when running from DRAM memory systems. Often these caches are arranged in two or more levels, with
typical outermost cache sizes of between 256 KB—4 MB. Some designs [Cas96, LHI7] are integrating these
large caches on-chip to increase bandwidth while reducing latency, power, and system-level costs.

One possible configuration for a vector microprocessor is to provide private primary caches for the
scalar processor, and then to share a larger secondary cache between vector and scaar units. Attaching the
vector unit to the secondary cache will require extra interconnect that can potentially increase the latency of
scalar accesses. The scalar primary caches decouple the scalar unit from the longer latency secondary cache,
and allow scalar and vector accesses to occur in paralld.

An important function of the shared secondary cache isto provide communication between scalar
and vector units for partialy vectorizable loops. Communicating blocks of vector data via the cache can
be faster than using scalar insert and extract instructions to access vector registers directly. Scalar insert
and extract instructions interfere with vector processing by tying up vector register file access ports and by
inhibiting chaining. They can also interfere with vector register renaming (Section 4.5). Scalar accesses to
cached vector data can lower average vector e ement access latency by fetching multiplewords at once using
long primary cache lines.

8.7.2 Scalar-Vector Coherence

The simplest hardware scheme for managing coherence between scalar and vector accesses is to
make the scalar primary data cache have a write-through policy and to invalidate scalar primary cache lines
on vector stores. The scalar write-through traffic will be caught by the secondary cache. Vector stores need to
check scaar primary cache tags to invalidate any matching lines. Thistag port can either be shared with the
scalar unit or implemented as a separate second port. A second port removes the vector tag accesses from the
scalar tag lookup critical path, and also allows scalar accesses to proceed in parallel with vector stores. The
second tag port can a so be used to maintain interprocessor and I/O coherence. If the vector unit can generate
multiple store addresses per cycle, multiple ports into the cache tags will be required.

The secondary cache will likely be managed with awrite back policy to reduce main memory traffic.
All vector loads and stores must check the secondary cache tags for hits. Most scalar accesses will befiltered
by the primary caches before reaching the secondary cache, and so the scalar unit can share a secondary cache
tag port with the vector unit.

8.7.3 Non-blocking Secondary Cache

A singlevector memory instruction can touch many cache lines and main memory latencies can be
very long, and so the secondary cache should be non-blocking to alow multiple outstanding cache misses to
be in progress simultaneously. Hardware should alow multiple vector accesses to the same cache lineto be
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merged as is common with merging scalar accesses in current scalar processors [ERB195].

Consider for example the neighbor access pattern shown in Figure 8.1. The accesses to the A matrix
can be marked cacheable because it is known each element will be used threetimes. Assume that the A vector
isinitialy uncached. The first vector load to A encounters cache misses and begins fetching a sequence of
cache lines, with status information held in a set of miss status registers. The first load compl etes execution
after al the cache misses are initiated. Assuming a decoupled architecture, the arithmetic instructions can
issue to the instruction queues where they will wait for data to arrive from memory. With a long memory
latency, the second and third vector loads will issue before the first cache line for the first load has returned.
The second and third vector loads will touch the same set of cache lines as the first, plus one additiond line.
These misses can be merged with those of the first. With a decoupled pipeline, each vector load will reserve
a separate load data buffer. As cache lines arrive from memory, each piece of datawill be written into three
different load data buffers, effectively amplifying main memory bandwidth by afactor of three.

8.7.4 Transent Vector Caches

Note that in the previous example of a neighbor access, most reuse happens while data is till in
flight through the memory system. The outstanding cache miss entries act as afully associative cache when
snooped by new loads. Instead of marking the neighbor access as cacheable, we can rely on this memory
access filtering to reduce traffic. This preventsthe neighbor access from sweeping through and evicting more
useful data from the secondary cache.

The idea of treating buffers holding data en route to and from the memory system as a fully-
associative cache has been suggested in several earlier proposals. A similar ideawas used in the HP-PA 7200
microprocessor [Gwed4b] where an assist cache was used to hold newly accessed cache lines until it was
determined they should be moved to main cache. Espasa [Esp97b] noted that snooping on memory store
gueues can reduce vector memory traffic. While the original motive in hiswork was to reduce vector register
spill traffic, some non-spill traffic was &l so avoided.

Another example use is for 1D unit-stride vector access. The vector memory accesses within the
1D vector access will usually be misaligned on cache boundaries. Usually, a unit-stride vector memory
instruction will only bring the requested data into the CPU. But if the unit-stride vector memory instructions
include a base register post-increment as described above in Section 8.2.6, and this indicates that the next
access to the memory vector will start at the end of the current access, al of the last cache line in can be
prefetched and held in asmall vector cache. The start of the next vector memory access in the 1D vector will
hit on this prefetched cache line, reducing total address bandwidth to main memory.

8.8 Multiprocessor Vector Machines

Vector supercomputers have supportedincreasingly parallel multiprocessor configurationsfor many
years. For example, the number of processors supported in the high-end Cray series has doubled with each



162

generationfrom 4 inthe Cray X-MPto32inthecurrent Cray T932. Traditional vector supercomputers extend
the singleflat memory system to all processors. Thislarge, flat, high-bandwidth memory isvery expensiveto
provide, and is difficult to scale to larger numbers of processors.

One trend in microprocessor-based systems is towards distributed directory-based cache-coherent
multiprocessors (CC-MP) [HP96, Chapter 8]. These machines are structured as a set of nodes, where each
node includes one or more processors with caches, a portion of globa memory, and connectionsto an inter-
processor communications network. Each node contains hardware that implements a directory protocol to
maintain coherence between the caches on al nodes. A commercial example isthe SGI Origin 2000 series
[LL97]. The same form of distributed cache-coherent architecture can be adopted for vector microprocessor
based systems. Whileafull study of theimplicationsof such designsisbeyond the scope of thisthesis, afew
issues are mentioned briefly here.

At first it might appear that adding a vector unit to the processors within a CC-MP would only
aggravate interconnection bandwidth bottlenecks. In fact, vector units may actually reduce bandwidth
requirements of parallel applicationsrunning on CC-MPs. Where thereislittle or no tempora locality, itis
more efficient to move data using uncached vector memory instructionsthan to use cache lines. Also, where
interconnect is not currently the bottleneck, vector units might speed up local processing to the point where
the expensive interconnect isfully utilized.

Cached scalar processors exploit spatial locality with long cache lines that group multiple requests
to amortize address transaction overhead. If only spatial locality can be exploited, caching the data cannot
reduce data bandwidth demands, and can increase total datatraffic by evicting data that would otherwise be
reused. Also, total interconnect traffic can increase because of the extra coherence traffic. Longer cache lines
can incur penalties due to false sharing [HP96, Chapter 8]. Accesses with no locdlity, such as large strides
or indexed accesses over large data sets are problematic in current CC-MPs. Although only single words are
touched, whole cache lines are moved; this dramatically amplifies bandwidth demands.

Alternatively, the scalar processors could perform uncached memory operationswherethereislittle
temporal locality, either by setting page table entries or by using alternate instruction encodings. Where there
isspatial locality, uncached scalar stores could potentialy reduce address bandwidth demands with merging
write buffers that group multiple scalar writes into a single block transfer. Uncached scalar loads are more
difficult to merge because these might also be latency critical; if load requests are sent as soon as possible,
then opportunitiesfor merging with later loads will be missed. Load merging might still be possible in cases
where earlier loads have to be stalled in the local node due to limited interconnect bandwidth. A bigger
problem with uncached scalar loadsisthat it is difficult to tolerate main memory latencies while maintaining
high throughput. To address this problem, the Cray T3E MPP system, which maintains a global uncached
shared memory, adds an external memory-mapped vector fetch engine to a scalar microprocessor [Sco96].

Vector memory instructions offer several advantages in dealing with accesses with little temporal
locality. Vector memory instructions describe multiple independent memory requests and have weak inter-
instruction consistency models, which simplifies highly parallel implementations with deep buffers. Vector
memory instructions accurately encode spatia locality information, allowing more intelligent data fetch.
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Using uncached vector memory instructions, avector microprocessor can transfer data directly between home
nodememory modulesand local vector register files. No cachetransactionsneed occur between therequesting
node and the home node, but the home node may need to fetch dirty datafrom the current owner of any lines
touched and may need to invalidate any cached copies on a store.

The rake cache and histogram caches described in the next chapter should be particularly helpful
in a CC-MP environment where the reduction in address bandwidth corresponds to fewer cache directory
transactions. Furthermore, the global accesses made by these VP caches do not have to be kept coherent
with accesses from other processors, it is sufficient to invalidate them at memory barriers and inter-processor
synchronizations; VP cache refills can be treated as uncached block loads and VP cache writebacks can be
trested as uncached block stores. Similarly, thetransient vector caches described above need not keep fetched
cache lines coherent with other processors.
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Chapter 9

Virtual Processor Caches

In this chapter, | introduce virtual-processor caches (VP caches), in which every virtua processor
is given a separate cache. | present two types of VP cache, a spatial VP cache called the rake cache and a
tempora VP cache called the histogram cache. The caches are named after typical access patternsthat exploit
the qualities of each cache. The rake cache is smaller and can be implemented without the histogram cache.
If a histogram cache isimplemented, arake cache is easy to provide using the same hardware. These caches
can substantially reduce the address and data bandwidth requirements of vectorized code.

9.1 TheRake Cache

Therake cacheisaspatia VP cache that reduces address bandwidth demands by converting strided
and indexed rake accesses into unit-stride accesses. While the rake cache is so named because it is an ideal
match to rake accesses (Section 8.2.5), it can aso benefit other access patternsthat exhibit the same kind of
spatial locality. Even for machines with full address bandwidth support, arake cache can reduce intra-vector
conflictsin memory system crossbars.

The vector machine shownin Figure 9.1 isused as an example to help describe the rake cache. This
machine has four 64-bit laneswith asingle VMU that can perform either loads or stores. The memory system
has only a single address port but can return a 256-bit word every cycle. There isasingle address generator,
asingle-ported TLB, and asingle port into the scalar cache tags for vector stores to maintain coherency with
the write-through scalar data cache. To simplify the explanation, | assume an ideal memory system which
can return a 256-bit word every cycle regardless of addressing pattern.

The memory unit can perform unit-stride |oads and stores at the rate of four words per cycle. As
described in Section 8.4 on page 150, strides of two and three could run at the rate of 2 words per cycle
and 1.33 words per cycle respectively, but al other non-unit stride and indexed operations can only run at
the rate of one word per cycle. Each memory access, however, pullsin three other words that are not used
immediately. The basicideabehind therake cache isto cache al of thewordsfetched in each memory access
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Figure9.1: Example basic vector unit used to help explain the benefits of arake cache. The vector unit has 2
VAUsand 1 VMU in 4 lanes. Every access to the memory system transfers asingle 256-bit naturaly aligned
block. Whilethe rotate/skew network alows arbitrarily aligned unit-strideloads and storesto run at the rate
of four 64-bit accesses per cycle, strided and indexed loads and stores can only complete at the rate of one
element per cycle. The VMU read port is multiplexed between data and indices during indexed stores.
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because we expect to soon access neighboring words.

9.1.1 RakeCache Structure

A rake cache has some number of rake entries. Each rake entry has VLMAX cache lines, one
per virtua processor. Each cache linein arake entry has a virtua tag, a physical page number, one vaid
bit, and some number of dirty bits. The virtual tag contains the virtual address of the cache line, minus any
bits required to address bits within one cache line. The physica page number (PPN) caches the trandation
of the virtua page address into a physical page address. Only enough address bits to hold a physical page
number are required as the low order physical address bits are the same as in the virtual tag. The number of
dirty bits required depends on the granularity of the smallest write, for example, one per byte if the machine
supports byte writes. Figure 9.2 shows an example rake cache with four rake cache entries, for a machine
with VLMAX virtual processors and 16 vector registers.

The most flexible rake entry indexing scheme adds a field to each strided and indexed instruction
to indicate which rake entry should be used for that access. In atypical vector loop containing a rake access,
the same vector register will be used to perform each strided or indexed vector memory access to the rake.
An dternative rake cache indexing scheme makes use of thisfact by associating a rake entry with the vector
register used to access the memory data; the high order bits of the vector register specifier are taken from
the vector memory instruction and used as a direct-mapped index into the rake cache. Although this scheme

Rake Instruction VP[O] VP[1] VP[VLMAX-1]
vr
- - Vector
vr[3:0] Registers
- = = Rake
vr[3:2] Entries

VTag |PPN|VDByteDByte| == == == == [)Byte
Rake Cache Line

Figure 9.2: Rake cache structure. In this example, the machine has 16 vector registers and 4 rake cache
entries. The top two bits of the register specifier in arake instruction are used to select the rake cache entry.
Each cache line has avirtual tag (VTag), aphysica page number (PPN), one valid bit (V), and adirty bit (D)
for every byte of storage.
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is less flexible than including a rake index field in every instruction, it uses fewer instruction encoding bits
which may be important if vector extensions are added to existing scalar instruction sets. This scheme is
shown in Figure 9.2 where the four bits of the vector register specifier select one of the 16 vector registers,
while the top two bits of the specifier select one of the four rake cache entries. A programmer or compiler
aware of the mapping between vector register number and rake entry can avoid rake entry conflicts by careful
allocation of vector registers in loops containing rake accesses. If software is not avare of the rake cache,
more sophisticated rake entry indexing schemes, such as set-associative, may be appropriate but these are not
considered further here.

9.1.2 Rake CacheAllocation

The processor requires a scheme for determining which vector memory instructionsto alocate in
therake cache. Unit-strideinstructions aways bypass the rake cache. Because the presence of arake access
patternisusually straightforward for the compiler or programmer to determine, the simpl est and most accurate
scheme isto provide a“rake hint” bit in the encoding of strided and indexed vector memory instructions. If
an implementation does not provide arake cache, the rake hint bit can beignored and theinstructionstreated
as regular strided or indexed memory instructions.

If adding an explicit rake hint bit in the instruction encoding is not possible, the hardware requires
some form of rake prediction scheme. One simple and cheap static prediction scheme isto predict that all
strided accesses are rakes, or that all strided and all indexed accesses are rakes. This could potentially cause
rake cache pollution when both rake and non-rake strided and indexed access patterns occur in the same loop
nest. Alternatively, the hardware could perform some form of dynamic rake access prediction scheme, e.g., by
checking that subsequent accesses by the same strided or indexed instruction were unit-stride displacements
from the previous access, similar to such proposals for stream buffers [PK94].

9.1.3 RakeCache Examples

Asan example of using therake cache, consider the C code and assembler inner loop in Figure 9.3
which perform the submatrix multiplication of two submeatrices into a third submatrix where al are part of
larger matrices with differing leading dimensions. This example assumes that vector register number is used
to select arake entry. The compiler has alocated vector registers such that the various rake accesses map to
different rake entries, avoiding any inter-rake conflicts. A given cache lineis mapped to asinglerake and a
single VP. This ensures that the cache line will only be evicted when the VP finishes using the data within
the cache line and is ready to move to the neighboring line in memory. Note that this example could have
been vectorized in the orthogonal direction by interchanging thei and j loops to give unit-stride memory
accesses, but if the number of rows (N) is large and the number of columns (M) is small, the direction shown
in Figure 9.3 will yield longer vectors.

Conversely, the compiler or programmer can access the same rake entry with different vector
registers. Thisis useful, for example, for loading different vector registers with the separate fields within
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[* Original |oop. */
for (j=0; j<M j++)
for (i=0; i<N i++)
CCrow + i][Ccol +j] = Al Arow+i ][ Acol +j]*B[ Brow+i ][ Bcol +j];

/[* Wth stripmning and | oop interchange. */
for (i=0; i<N, i+=VLMAX)
for (j=0; j<M j++)
for (ii=i; ii<mn(i+VLMAX,N); ii++)
C[Crowtii][Ccol +j] = AlArowtii][Acol +j]*B[Brow+ii][Bcol +j];

/* Assenbler code for j |oop. */

j 1 oop:
[ dst.v, rake vv0, r3, r4 Access to Ainto vvO => rake entry O.
addu r3, 8 Bunp A pointer.
[ dst.v,rake vv4, r5, r6 Access to B into vv4 => rake entry 1.
addu r5, 8 Bunp B pointer.

mul . d.vv vv8, vv0O, vv4
sdst.v,rake vv8, r7, r8
addu r7, 8

bne r3, r9, jloop

Mul tiply vectors.

Access to C fromvv8 => rake entry 2.
Bunp C pointer.

Check for end condition.

H o HHHHH

Figure 9.3: Example of multiple rakesin the same loop. The example C code multipliestwo submatrices to
yield aresult in athird submatrix. The compiler stripmines the inner loop, then performs aloop interchange
such that the matrices are processed in strips of VLMAX rows. Theinnermosti |oop can now be performed
with singlevector instructions, whilethemiddlej 1oop needsonly onerakeentry for each rake. The assembler
code for themiddlej loop shows how careful alocation of rake accesses to vector registers avoids conflicts
between the different rakes.
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[* Original loop. */
conplex AL]T[], B[][]. CIII;
for (j=0; j<M j++)
for (i=0; i<N;, i++)
C Crowt+i ][ Ccol +j] = Al Arow+i ][ Acol +j ]1*B[ Brow+i ][ Bcol +j];

/* Assenbler code for j |oop after stripmning */
/* and | oop interchange. */
j 1 oop:

| dst.v,rake vvO, r3, r4
addu r3, 8

| dst.v,rake vv4, r5, r6
addu r5, 8

mul . d.vv vv8, vv0, vv4

I dst.v,rake vvl, r3, r4
addu r3, 8

# A.real into vvO => rake entry 0
# Bunp A pointer to imaginary

# B.real into vv4 => rake entry 1
# Bunp B pointer to imaginary

# A.real *B.real

# A.imag into vvl => rake entry O
# Bunp A pointer to next elenent
mul . d.vv vv9, vvl, vv4d # A imag*B.rea

[ dst.v,rake vv5, r5, r6 # B.imag into vv5 => rake entry 1
addu r5, 8 # Bunp B pointer to next el enent
mul . d.vv vv10, vvl, vv5 # A imag*B.inmg

sub.d.vv vv8, vv8, vvl0 # C.real = A real *B.real -A i mag*B. i mag
sdst.v,rake vv8, r7, r8 # Store C.real fromvv8 => rake entry 2
mul . d.vv vv12, vv0, vv5 # A real *B.img

addu r7, 8 # Bunp C pointer to imaginary

add.d.vv vv9, vv9, vvl2 # C.imag = A inag*B.real +A real *B.i mag
sdst.v,rake vv9, r7, r8 # Store C.imag fromvv9 => rake entry 2
addu r7, 8 # Bunp C pointer to next el enent

bne r3, r9, jloop # Check for end condition

Figure 9.4: Example C code and assembler code for multiplying two complex submatrices to yield a result
in a third complex submatrix. Note how the assembler code accesses the real and imaginary parts of each
element using vector registers that map to the same rake entry.

structures accessed by rakes. Figure 9.4 shows the complex version of submatrix multiply as an example.
Unlike the previous real submatrix multiply example, the complex submatrix multiply can not be vectorized
with unit-strideloads and stores.

9.14 Rake Cachelmplementation

Therake cache requires storage for the rake cache linesand tags. Because agiven cache lineisonly
accessed by the corresponding virtual processor, the rake cache tag and data storage can be striped across the
lanes. This provides a high bandwidth multiported cache with no possibility of port conflicts. To execute
strided and indexed accesses at the rate of one per lane per cycle, an address generator is now required in
every lane. Figure 9.5 shows the rake cache circuitry required for one lane of the example machine.

Assuming that the machine has a decoupled pipeline as described in Section 4.7, the tags will be
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accessed much earlier inthe pipelinethan thedata. Therake cache line storageissplitintothethetag portion,
which islocated by the address generators, and the data portion, which islocated between the main memory
bus and the vector register file. The index values used to access the cache data storage have to be delayed
until the appropriate point in the memory pipeline, and so asmall FIFO RAM isrequired.

Because the index of the rake entry is determined by bits in the instruction word and the index of
the cache line within the rake entry is determined by the virtual processor number, lookupsin the rake tag
memory can occur before the virtual address is generated. After the address is generated, only an equality
comparison of the prefetched virtual tag and the virtua addressis required to determine hit or miss. Thusthe
rake cache has only a minor impact on memory latency, typically much less than one processor clock cycle.

Writes do not check the valid bit — writes hit if and only if the tag matches. Write hits update
the appropriate portion of the cache line and set the appropriate dirty bits. When there is a write miss, the
direct-mapped indexing scheme means thereisonly one possiblevictimline. If thevictim cache linecontains
any set dirty bits, the modified pieces of the cache line are written back to main memory. Write misses are
handled using awrite-allocate with write-validate policy. After any dirty dataiswritten back, the virtual tag
and PPN isupdated, thevaid bit is cleared, and the cache data and dirty bits are updated to reflect the single
word of new dirty data.

Reads will only hit if the tag matches and the valid bit is set. On aread miss, any dirty datais
written back and the missing lineis fetched from memory. Aswith scalar write-back caches, thevictimwrite
back may be postponed until after the missing lineis read. The required word is forwarded to the vector
register file while the rake cache data storage is written with the new cache line. The valid bit is set and all
dirty bitsare cleared.

Note that this simple policy generates a read miss even when a line is present in the cache after
being brought in by awrite. Also, inthiscase if the dirty victim line iswritten out after the missing read line
is fetched from memory, the read will see the old unmodified data. Thisisof no concern, however, because
for the writes to be visible to the read, the programming mode requires the insertion of an explicit memory
barrier which would have previoudly flushed the rake cache.

For laneswith rake cache hits, datatransfers occur entirely withinthelanes; operands move between
the rake cache data storage and the vector register file. These transfers occur at the same point in the pipeline
asif requests had gone out to memory. Thisapproach simplifiesthe memory pipelinedesign. Therake cache
does not aim to reduce memory access latency because the vector model and the decoupled vector pipeline
(Section 4.7) already hide rake cache miss latency from the point of view of each virtual processor.

Only lanes with rake cache misses need to access the memory system. Read misses need to perform
avirtua to physica address trandation to obtain the new PPN (and to check for any page faults), potentially
writeback adirty victim line, and read the missing memory block from the memory system. Writesal so need
to perform an address trandlation to obtain the new PPN, and may aso need to write back a dirty line.

We can further exploit the spatial locality in a rake to reduce the number of accesses made to the
central TLB. Note that each virtual tag and physical page number holds the mapping for a complete page of
data containing many cache lines. As part of checking the full virtual tag to detect a cache line miss, the
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Figure 9.5: Implementation of rake cache for one lane in example architecture. Base addresses and strides
are broadcast across the lanes, as are rake cache indices, while index values for an indexed rake come from
the vector register file. Thebox labeled “S.M." isasmall shift and carry save array used during the first cycle
of a strided access to multiply stride values by 0, 1, 2, or 3, to give the correct starting value for addresses
in different lanes. Thereafter, the stride value multiplied by 4 is added to each lan€'s address register. The
broadcast rake cache index contains the rake entry number and the element group number, and thisis used to
access the rake cache tags. This rake cache index is combined with the local word index of the rake access
and held in aloca FIFO until the correct point in the pipeline, where the combined index is then used to
access therake cache data. The data RAM isread and written in 256-bit blocksto the memory system, while
the lane reads 64-bit wordsinto and out of the vector register file using the store data and load data ports. A
rake access which misses the cache but hitsin the same virtual page, performs main memory accesses using
the existing PPN. If there is a'so a page miss, the virtual page number is transmitted to the central TLB for
trand ation. Handling of valid and dirty bitsis omitted for clarity.
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virtual page number of the tag is compared with the virtual page number of the new address. If these match,
the stored PPN can be used without requiring another TLB lookup. In effect, the rake cache lines act as a
distributed TLB with one entry per unit-stride stream. This saves the energy of accessing the central TLB
and also increases effective TLB capacity. The rake cache must be flushed before any changes are made to
system page tables.

A priority resolution network monitors hit signals across al four lanes, and serializes requests to
the central TLB and the memory system. The physical address used to access the memory is obtained by
concatenating the PPN to lower order address bits from the generated virtual address. All write-backs check
the write-through scalar data cache tags and invalidate matching lines to maintain coherence. If the scalar
cache is virtually indexed, then some bhits of the virtual address may also have to be transmitted to enable
lookup of scalar tags.

A rake cache is a fairly smal structure. Assume our example has 32 64-bit elements per vector
register (32VPs). Thetota storagefor each rakeentry isroughly 32* (2+4) wordsor 1536 bytes. A reasonably
sized rake cache for this machine, with say 4 entries, would require roughly 6 KB of storage.

During some operations, the rake cache storage needs to provide sufficient bandwidth for aread and
awriteto maintain full performance during the frequent cache misses. On atag miss, the old tag must be read
for the tag comparison and then subsequently updated with the new tag. On avictim write back, the old data
must be read out before new datais written into the cache line. While the bandwidth could be provided with
dual-ported storage cells, the regular nature of vector memory instruction accesses alows two single-ported
storage banks to be interleaved by element group, similar to element partitioning in the vector register file
(Section 5.2). The write of anew tag or new data to one bank can occur while the second bank provides the
tag or data access for the next element group.

The example above used a simple memory system for clarity. There are often more complicated
tradeoffs between address and data bandwidth as described earlier in Section 8.1, and these affect the choice
of rake cache line length, as do the rake depths found in applications. The appropriate number of rake cache
entries also depends the rake widths found in applications and on the degree of loop unrolling required.
Chapter 11 contains data on the number and type of rakes present in vectorizable applications.

9.1.5 Rake Cache Coherency and Consistency

The rake cache contains multiple paralel caches, one per virtua processor per rake cache entry.
The same cache linemay residein all caches; onepathological caseisfor arakestrideof zero. If alooseintra
instruction consistency model (Section 8.3) is adopted for rake accesses, the rake cache is free of the usua
worries associated with maintaining multiple cached copies of the same memory location. No guarantees
are made on the order in which elements within a single vector instruction are written. Software is required
to insert explicit memory barrier instructions to guarantee the ordering of accesses between separate vector
memory instructions.

When a memory barrier requires that all writes be made visibleto al reads, the rake cache entries
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are flushed by writing back any dirty datato memory and then clearing dl valid and dirty bits. If the same
location waswrittenin two different rake cache lines, write backs can happen in any order and only one of the
updates remains visible. If a memory barrier requires that new writes are made visible to subsequent reads,
all rake cache valid bitsare cleared.

Wesaker VP consistency barriers can be used to order accesses by each VB, without requiring that
all accesses are visible across dl VPs. For example, in a graphics rendering algorithm where scan lines are
distributed across VPs, writes made to the Z-buffer by one VP need only be made visible to that VP. An
intervening PWAPR consistency barrier (Section 8.3) will ensure that the write is made visible to the next
read by that VP,

The rake cache is virtually tagged to allow rake cache tags to be checked without TLB accesses.
The use of virtual tags can giveriseto synonyms [HP96, pages 422-425] where two cache lineswith different
virtual addresses map to the same physical address. Because the loose vector memory consistency model
already alowstwo rake cache linesto contain different dirty datafor the same location, synonyms require no
specia handling. If the virtual tag does not include an address space identifier, however, the rake cache will
have to be flushed on virtual address space changes.

Finally, thereisalso no problemwith fal se sharing [HP96, Chapter 8], because no coherency checks
are required and because each cache line only writes back modified bytes.

9.1.6 Rake Cache Performance

The memory unit in the example machi ne processes up to four rake accesses per cycle, one per lane.
A rake write access can either result in a hit to the rake cache with zero memory accesses required, or amiss
which requires at most one memory access to write back adirty victimline. A rake read access can result in
ahit which requires zero memory accesses, arake miss with a clean victim which requires a single memory
access for the missing line, or arake miss with a dirty victim which reguires two memory accesses, one for
the missing line read and one for the victim write back. Rake reads will only find dirty victim linesif arake
entry is shared between read and write accesses. To simplify the following performance analysis, | assume
that read-modify-writerakes are alocated two rake entries, one for read accesses and another for writes; this
ensures that at most one memory access isrequired to service arake cache miss.

The memory system can service a single rake cache miss for one lane and return the data at the
same point in the pipeline as when the other three lanes transfer data from the rake cache. Hence if zero or
one of the requests in an element group causes a rake cache miss, the rake accesses can proceed at the rate
of four per cycle. If more than one rake cache miss occurs in an e ement group, the memory system will
take multiple cycles to service the multiple rake cache miss requests. The simplest strategy for dealing with
multiple rake cache misses in one cycle is to stall further element groupsuntil al rake cache misses for the
current element group are serviced.

For strided rakes, the worst case occurs for rake stridesthat are multiples of four. With anaturally-
aligned four word cache line, al four virtual processorsin an element group will experience their rake cache
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misses on the same cycle, but the next three rake accesses by this element group will experience cache hits.
Hence it will take 4+1+1+1 cycles to perform every 4+4+4+4 word accesses, or a sustained average of 2.29
wordsper cycle after initia misseswarm up therake cache. Rakestrides of theform 4n 4 2 will take 2+1+2+1
cyclesto complete 4+4+4+4 accesses, for an average of 2.67 words per cycle. Thebest caseisfor odd strides,
which guarantee only a single rake cache miss per cycle and so can sustain 4 words per cycle. Assuming a
uniform distribution of rake strides, average throughput will be 3.24 words per cycle after startup. In many
situations and particularly for loop raking, however, it is possible to select an odd stride and hence achieve
optimal throughput [ZB91].

For indexed rakes, throughput depends on the rake index vector. Assuming a uniform distribution
of index values, expected average throughput is 2.84 words per cycle, with the same worst case of 2.29 words
per cycle as for strided rakes.

This simplerake cache design experiences stalls when multiple memory accesses must be made on
the same cycle. By adding some buffering to the rake cache it is possible to spread the rake cache misses
over time so that the average performance for deep rakes is maintained at 4 words per cycle regardless of
rake stride or rake index vector. The following sections describe how to add rake write buffers and rake read
prefetch buffers.

9.1.7 RakeCacheWriteBuffers

A write buffer is a straightforward addition to the rake cache that improves performance for even
rake strides or non-uniformly distributed rake index vectors. If a rake access by an element group requires
more than one memory access, any writesthat cannot be serviced immediately are deposited in awrite buffer
and scheduled for write back when the memory port isfree. Thewrite buffer must be flushed when amemory
barrier instruction requires that outstanding writes be completed. To handle the worst case situation where
every VP in arake instruction requires awrite back, each write buffer entry requires VLMAX lines and each
lineis permanently associated with a given VP. Each write buffer cache line contains a physical address, a
full bit, and storage for a dataline together with dirty bits. Thefull bit indicatesthat thisisafull write buffer
line. The data and dirty bits are simply copies from the rake cache victim line. The write buffer is striped
across the lanes, so victim transfers from the rake cache to the write buffer are contained within the lane.

A singleloop nest may contain multiplewrite rakeswith differing rake strides or rakeindex vectors.
At first, thiswould appear to lead to atricky write back scheduling problem. At any time, multiplerake write
buffers may be filled with any number of dirty lines awaiting write back, and ideslly every dirty line in the
write buffer would be written back to memory before the corresponding VP evicted another dirty victim for
thesamerake. Fortunately, the regular predictable pattern of arake access makesit straightforwardto provide
optimal scheduling of the write back of thisdirty data.

For example, consider the worst case for arake store on the example machine where the rake stride
isa multiple of four. Starting from a clean rake cache, on the first access to the rake, al rake cache lines
are write validated to the new line and no memory traffic is generated. When the rake reaches the end of
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the first rake cache line, al VPs will generate a rake cache miss and try to write back one dirty line each.
Each element group would take four cycles to service at this point without a rake write buffer. With awrite
buffer, we can retire thefirst lane’'s write back to memory while holding the other three lanes’ writesin their
respective write buffer lines. Thisallowstherake store to proceed at the rate of four words per cycle, leaving
three out of four of the lines within the rake's write buffer full of dirty data. As described above, the next
three executions of the same rake store instruction will experience no rake cache misses on any VP, as they
will hitin their respective rake cache lines.

The key observation is. we can schedule the outstanding write backs during subsequent write
accesses to the samerake. Thispolicy ssimplifiesthe design of the write buffer, because the same index that is
used to index the tags can be used to scan the write buffer entriesto find waiting write backs. Aswe process
each element group, if there are no rake cache misses, wewrite back one of the buffered writesin that el ement
group to memory. Within the element group, we know which lane will next require awrite back because the
word index of itscurrent access will be closest to the end of the current cache line. If multiple VPswithinthe
same element group have the same highest word index, we select the one in the earliest lane; this prioritizes
lower numbered VPs which will be those used if the vector length is reduced at the end of arake. For both
strided and indexed rakes, this policy ensures we empty the write buffer linesin optimal order.

This policy also performs correctly in the case of a read-modify-write rake, spreading memory
traffic over theread rake and writerakeinstructions. After startup, no rake writeswill experience arake cache
miss because the preceding read of the same line will have brought in the required data. However, when a
VP moves to read the start of the next cache ling, it will have to write back the dirty data from the last cache
line as well as fetch the missing data. This requires two memory accesses. If thevictimwrite back isheld in
the rake write buffer then only one read memory access isrequired immediately. The subsequent rake write,
which never experiences arake cache miss, leaves the memory port free to perform the write backs.

The number of write buffer entries may be less than the number of rake cache entries, with write
buffers allocated to rakes dynamically as needed. A read-only rake does not require a rake write buffer, and
the alocation policy may choose not to allocate awrite buffer entry for write rakes with odd stride (there may
still be some benefit if there is other memory port traffic).

The rake write buffer ensures that all rake writes aways proceed at the rate of four words per cycle
after the startup period, regardless of rake stride or rake index vector. The predictable nature of rake accesses
also makes it possibleto perform a highly accurate read prefetch, and achieve the same result for rake reads.

9.1.8 Rake Cache Read Prefetch Buffer

Similar to the write buffer, the rake cache read prefetch buffer makes use of otherwise unused
memory cycles during read rake accesses to prefetch the next blocks required in each unit-stridestream. Each
entry in the read prefetch buffer includes a virtua tag, a PPN, and a valid bit. Rake reads check the tags of
both the current and prefetched cache lines. On aprefetch hit, prefetch datais moved into therake cacheline,
and the prefetch buffer is marked as empty.
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For each element groupwithinaread rake, if there are no rake cache misses or other memory system
accesses, the read prefetch bringsin the next block for the VP that has an empty prefetch buffer and whose
current access is closest to the end of the current rake cache line. If the prefetch generates any page faults
during trangdlation, the prefetch is discarded. The fault will be handled during the next rake load instruction.

Note that unlike the write buffer, the read prefetch buffer may generate additional memory traffic.
But unlike prefetching schemes for scalar processors, the prefetch is used to spread memory traffic evenly
over al cycles not to hide memory latency. Each unit-stridestream only fetches at most one block ahead, and
only then during otherwise unused memory cycles.

A single set of tag and data storage can be dynamically allocated between rake read prefetch and
rakewrite buffer duties. The system need not allocate aread prefetch buffer for write-only rake, and need not
allocate a prefetch buffer for odd rake strides.

9.2 TheHistogram Cache

The histogram cache isatempora VP cache. It provides each VP with its own cached workspace.
While the histogram cache is named after its use in histogramming operations, where each VP has its own
set of histogram buckets, it has a much wider potential range of uses. For example, a histogram cache
should be able to reduce address and data bandwidth demands in sorting, FFTS, texture mapping, and image
compression DCTs (Section 11.2.4).

The histogram cache is only accessed by strided and indexed load and store instructionsthat have
an explicit “histogram cache’ hint bit set. Unit-stride instructions aways bypass the histogram cache. An
implementation may choose to omit the histogram cache in which case the histogram hint bit can be ignored
and theinstructionstreated as regular strided and indexed operations.

The design of the histogram cache is very similar to the rake cache, and both can share the same
hardware. As with the rake cache, tag and data storage are striped across the lanes. Unlike the rake cache,
the histogram cache is indexed with virtual addresses; lines are not associated with rake entries but with the
VPasawhole. Again, thelinesare virtually tagged to avoid TLB lookupsfor cache hits.

The histogram cache will often be used to cache a contiguous region of memory as workspace for
each VP, and so a direct-mapped indexing scheme should suffer few conflicts. Greater associativity may help
some applications, and simplifies integrating a rake cache with the histogram cache. The set-associative tag
compare involves reading and comparing multiple cache tags to determinethe correct way withinthe set early
in the pipeline, but then only a single cache data access is needed later in the pipeline.

As with the rake cache, the histogram cache associates a virtual to physica mapping with each
cache line. Unlike the rake cache, it is less likely that the virtual page number of aline will match when
the rest of the tag misses. Often a string of histogram cache misses will occur when a VP moves to a new
workspace. In thiscase, there is considerable locality across the new cache lines but not necessarily between
old and new cache lines. To reduce central TLB accesses in this case, the histogram cache can maintain a
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micro-TLB, for example with one or two entries, that holds the most recent trandations for that VP. This
should capture most of tranglation misses as the VP moves to a new workspace region.

The histogram cache can also benefit from the addition of awrite buffer. Unfortunately, the more
unpredi ctabl e pattern of accesses to the histogram cache makes scheduling write back accesses more difficult,
but the number of these write backsis expected to be much lessthan intherake cache. To simplify acombined
hardware design, a similar policy can be used as with the rake cache, writing back dirty victim linesin free
memory s ots during subsequent histogram cache instructions. The unpredictable pattern of histogram cache
accesses also makesiit difficult to implement aread prefetch buffer.

9.2.1 Histogram Cache Consistency

As with the rake cache, weaker VP consistency barriers can be used to order accesses by a VP to
itslocal workspace without requiring the workspace be made coherent with main memory.

Hardwarewill aso haveto ensurethat any writesheldin awrite buffer are made visibleto subsequent
read misses after a histogram consistency operation. One simplescheme awaysdrainsthewritebuffer storage
to memory before the next histogram read miss is serviced. Alternatively, the write buffer storage can be
checked for matching addresses with any matching data forwarded to a subsequent load. The latter approach
might be straightforward to implement using circuitry aready present in a combined rake/histogram cache
with rake read prefetch buffers.

The histogram cache a so makes use of a dightly enhanced tag and dirty bit policy compared with
the rake cache to reduce write traffic for write-allocated lines. In the histogram cache, reads will now also hit
if the tag matches but the valid bit is clear, provided dirty bits are set in the required portions of the cache
line. If the tag matches and thevalid bit is clear, but the required dirty bits aren't set, the lineisfetched from
memory and merged with the dirty datain cache. The valid bit isthen set. In effect, thedirty bitsare used as
sub-block valid bitsin awrite-alocated line. If arake cache isimplemented as part of the histogram cache,
it can also use this enhanced policy.

The histogram cache is expected to be considerably larger than the rake cache. For example, to
allow each VP to hold 256 buckets each of 32 bitsfor sort histogramming requires 1 KB of storage per VP, or
32KB data storage (plus another 8K B tag storage) total for the example machine with 32 VPs.

As with the rake cache, the loose intra-instruction consistency model avoids the need to track
coherency across the multiple VP caches and avoids the synonym problem with virtual tags. Again, regular
memory barrier instructions cause dirty data to be flushed from all cache lines. Because the histogram cache
is larger than the rake cache, the time required to flush the cache at a memory barrier is potentially more
worrying. Inthe example design, the 32 KB histogram cache would take 1024 cyclesto drain if al lineswere
dirty. While the histogram cache will not necessarily increase the number of transactions with memory;, it
can buffer many writes up until a barrier then cause along delay as all dirty lines are written out. But the
histogramisonly allocated under software control to data expected to have temporal locality, soitisexpected
that thiswriteback overhead will be amortized over multiple accesses.
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An even greater saving is possible for some applications. Often, the histogram cache is used as a
temporary workspace, and there is no need to write back dirty lines at the end of an operation. An “histogram
invalidate” instruction can be provided whose semantics are that al locationswritten by any histogram store
instructions since the last memory barrier will now have undefined values. When a histogram invaidate
instruction is encountered, al dirty bits can be cleared without writing back any dirty data.

Whereas the rake cache speeds an access pattern common in vector code and which is relatively
easy for acompiler to spot, algorithms may need substantial restructuring to make use of the histogram cache
and automatic compilation for the histogram cache will be more difficult. Neverthel ess, the histogram cache
has the potential to substantially improve the cost/performance of vector microprocessors.

9.2.2 Example: Performing a Histogram Using the Histogram Cache

To hel p understand the operati on of the histogram cache, consider performing avectorized histogram
in the example machine. The basic scheme isto have each VP perform a separate histogram on a subset of
the data, then sum the values in corresponding buckets across VPs. There are three steps in the algorithm:
clear all buckets, read al input values incrementing appropriate buckets, then sum buckets across VPs and
write out the final histogram. Assume that initially there has been a recent memory barrier instruction and so
the histogram cache contains no dirty data.

Inthefirst step, each VP isalocated a contiguousregion of memory into which it will accumulate
itsown histogram. Strided histogram stores are used to clear thisbucket memory, with the stride being equal
to the size of each VP's bucket space. Note that because of the write-validate policy and because the cache
starts clean, these strided stores occur entirely withinthe histogram cache, clearing four words per cycle while
generating no external memory traffic.

In the second step, unit-strideloads are used to read the datato be histogrammed. These unit-stride
loads bypass the histogram cache. Vector arithmetic instructions convert the data val ues into the appropriate
loca bucket indices. These indices are then used in indexed histogram load to read the bucket value, the
value isincremented, then an indexed histogram store is performed to write back the updated value. A VP
read-after-write consistency barrier must now be issued so that the next indexed histogram load can observe
the updated bucket values. These steps are repeated until al data val ues have been scanned. Note that during
this phase, the only main memory traffic isthe unit-stride scan of the datavalues; all of the indexed histogram
bucket accesses are performed within the histogram cache and run at the rate of four per cycle.

In the third step, corresponding buckets across multiple VVPs are combined to give the fina bucket
values. Strided histogram loadsare used to retrieve bucket vauesinto vector registers. These histogramloads
occur entirely in the histogram cache at the rate of four words per cycle. Then a vector register reductionis
performed to yield the fina sum, and the single result is written out to the final histogram location. Thisis
repeated for al buckets. Note that multipleindependent reductions can be interleaved to increase throughput
(Section 10.1). When all final sums have been calculated, the histogram bucket values are no longer needed,
and so ahistogram invalidateinstructionisissued. The only memory traffic during thisstageisthewrite back
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of thefinal results.

Throughout the whole histogram process, the only memory traffic was the read of the input data
and the write of the final histogram — the minimum possible. All intermediate traffic was caught by the
histogram cache.

9.3 Combined Rake and Histogram Cache

The histogram cache is mostly a superset of the rake cache, and both can be implemented using the
same hardware. The two caches complement each other well, helping different kinds of memory access. For
example, during a vectorized radix sort [ZB91], the rake cache speeds the rake scan of the input data while
the histogram cache hol ds the histogram buckets. For radix sort on the example machine, a 32KB histogram
plus rake cache reduces data bandwidth by around 57% and address bandwidth by around 78%.

The main distinguishing feature of therake cache isthat it uses software allocation of rakeentriesto
index cache lines and eliminateinter-rake conflicts. Higher associativity in the histogram cache could achieve
the same effect, but the high turnover in cache lines during arake operation (at |east one miss per cycleinthe
example machine) amplifies any flaws in alocation policy. Also, the histogram cache islarger, and will tend
to leave more lines dirty to be flushed at the next memory barrier instruction, whereas the rake cache evenly
distributes write traffic throughout the execution of aloop nest.

Whilewe could partition cache storage statically into histogram and rake cache functionalities, itis
straightforward to dynamically alocate storage between the two if we add some degree of set-associativity to
the histogram cache. Then we can alow the rake cache to steal at most one linefrom each set; the histogram
cache will continueto function albeit with reduced capacity. We add a“rake-allocated” bit to the tag storage
of one linein each set. After a memory barrier instruction, al dirty lines are flushed to memory and all
rake-allocated bits are cleared, thereby allocating all rake entries to the histogram cache by default. The first
rake access to a set will allocate acache line, possibly writing back any dirty data caused by earlier histogram
accesses. Subsequent rake accesses to the same set will proceed to use the same line. Once a cache lineis
allocated to the rake cache, it will not be evicted to service histogram cache misses. The rake cache linesare
deallocated at the next memory barrier instruction.

A histogram cache can also benefit from the addition of awrite back buffer. The same storage can
be dynamically allocated between rake cache write buffers, rake cache read prefetch buffers, and histogram
cache write buffers. Again, thisallocation is cleared at the next memory barrier instruction.

9.4 VP Cache Summary

VP caches have several advantages over providing asingle large cache shared by al VPs:

e The caches can be divided into banks by striping across lanes rather than by interleaving across
addresses. This eliminates address and data crossbars, and the conflictsthat arisein their use.
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e By keeping datalocal to alane, we reduce energy consumption compared to accessing alarge central
multiported cache.

e The VP caches effectively provide a high degree of associativity and avoid many of the conflicts that
would occur in a shared cache, e.g., for stridesthat are powers of 2.

e Similar argumentsholdfor the TLB, with reductionsin conflict misses, access port conflicts, and energy

consumption.

The main disadvantage is that shared data items may be duplicated in multiple caches, potentially
wasting capacity compared to a shared cache.
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Chapter 10

Virtual Processor Communication

The virtual processors (VPs) in a vector machine usually only communicate via vector memory
instructionsthat access their common shared memory. Insome cases, other formsof inter-V P communi cations
can improve performance but these can incur significant hardware costs to provide the necessary inter-lane
communication. This chapter discusses these alternative forms of inter-V P communication.

10.1 Reductions

Reduction operations occur frequently in vectorizable code. Perhaps the most common is the sum
reduction; C source codefor asimple exampleisshownin Figure 10.1. Althoughtheloop-carried dependence
on the sumscalar variable would at first appear to prohibit vectorization, if the additions can be assumed to
be associative, they can be reordered to alow parallel execution.

The loop can be stripmined, with each VP accumulating a partial sumin parallel. At the end of the
loop, the partial sums must be summed to yield asingle value. The sum vector can be repeatedly split intwo
and the halves added using a vector addition. To sum thefirst element of the first half of the vector with the
first element of the second half of the vector using a vector instruction requires that both are present in the
same VP,

This communication can be performed through memory as shown in Figure 10.1. While this
approach requires no hardware support, it has two main disadvantages. First, to move N elements from the
end of one vector register to thestart of another in each reduction step, 2N e ementsare stored then N elements
are loaded. Second, significant latency is added due to the need to wait for the load to see the results of the
store.

Thedataaignment isthecritical operationinthereduce. Thiscan beaccel erated by adding avector
extract instruction that moves the end of one vector register to the start of another. An instruction to perform
this function (called “vector word shift”) was added to the Cray C90 because increases in memory latency
would otherwise have caused a degradation in the performance of reductions [Oed92]. The Torrent ISA
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/*

sum = O;

for (i=0; i<N i++)
sum+= Ali];

*/
cfvu t0, maxvl # Get maxi mum vector |ength.
ctvu t0, vlr # Set maxi mum vector |ength.
nov.vs vvl, zero # Clear all partial suns.
| oop:
setvlr t1, a0 # Set stripmne |ength.
lw.v vw2, al # Get val ues.
sl t2, t1, 2 # Multiply by 4 bytes.
addu al, t2 # Bunp A pointer.
addu. vv vvl, vv2 # Add in to partial suns.
subu a0, t1 # Subtract el enments done.
bnez a0, | oop * Any nore?
reduce:
addu t3, sp, work # Get workspace region on stack.
i t10, 1 # Stop when vlr==1.
ctvu t0, vlr # Reset to maxi mum | engt h.
rloop:
sw. v vvl, t3 # Store entire vector.
srl t0, 1 # Hal ve vector [|ength.

ctvu t0, vir

sl t2, t0, 2 # Convert to byte offset.
addu t3, t2 # Move hal fway up vector.
nmenbar, vr avw # Need to see stores.
lw. v vw2, t3 # CGet top half of vector.
addu. vv vvl, vv2 # Add in to bottom half.
bne t0, t10, rloop # Finished?

# vlr==1.

sw. v vvl, a2 # Wite result to nenory.

Figure 10.1: Example of asum reduction. The assembly code uses memory loads and storesto align top and
bottom halves of the partia sum vector for vector addition.
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reduce:

i t10, 1 # Stop when vlr==1.
rloop:

srl t0, 1 # Hal ve vector |ength.

ctvu t0, vlr

vext.v vv2, vvl, tO # Top half of vvl into start of vv2.
addu. vv vvl, vv2 # Add in to bottom hal f.

bne t0, t10, rloop # Finished?

# vlr==1.
sw. v vvl, a2 # Wite result to nenory.

Figure 10.2: Sum reduction rewritten using vector extract instruction. The scalar operand to the vext . v
instruction specifies the start el ement in the source from which e ements should be moved into the destination.
The value in the vector length register specifies how many elements to move.

[AJ97] includes a vector extract instruction for this same purpose. Figure 10.2 shows the reduction rewritten
to use the vector extract instruction. Now, a single instruction moves just N elements from the end of one
vector register to the start of another, and with much lower latency. The vector extract instruction provides a
primitive that can be used to build many different types of reduction operation.

Thevector extract instruction can beimplemented by configuring the VMU to perform the equival ent
of aunit-stridestoreand a unit-stridel oad simultaneously without actually touching memory banks. Theskew
network can be set to implement the desired vector shift across lanes. A simple optimization is possible for
extract indices that are amultiple of the number of lanes. In this case, which iscommon during the reduction
sequence, € ements move between VPs mapped to the same lane. The VMU crossbar can be bypassed in this
case, further lowering latency and reducing energy consumption.

As an example of the benefit of avector extract instructions, TO would take 50 cycles to reduce a
32 element vector to asingle vaue using memory loads and stores. Using the vector extract instruction and
the intra-lane memory crossbar bypasses, the time for a reduction dropsto 29 cycles. Without the intra-lane
bypass paths, the reduction would take an extra 6 cycles, 4 cycles for extra data transfers and 2 cycles for
extra stall s because the adds could no longer chain with the extracts because they would now run at different
rates.

Somearchitecturescombinedatamovement with arithmeti c operationsby all owing vector arithmetic
operations to begin reading one or both source vector registers starting at any element position [Con94,
WACt92, DHM*88]. While straightforward to provide in single lane implementations, thisinstruction set
design does not scale well to multiplelanes. A crossbar interconnect is required between al functional unit
pipelinesand all lanes, which could increase latency for al vector arithmetic operations.

Some other architectures have gone one step further and provided complete reduction instructions
[Buc86]. Reduction instructions cause complications when defining an architecture. To alow implementa
tionsflexibility inimplementing the order of the operationswithin thereduction, the resultsof thisinstruction
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need not necessarily be bit-compatible between two implementations. Worse, floating-point reductions could
signal different exceptions depending on the operation order. Also, there are many forms of reduction
operation, each of which would require a separate reduction instruction.

Whileareduction instruction reduces instruction bandwidth, reduction performance with the vector
extract instruction is not limited by instruction issue rate but by functiona unit and interconnect latencies.
A monolithic reduction instruction locks up VAU and inter-lane communication resources for the duration
of the instruction’s execution, while the primitive vector extract coupled with conventional vector arithmetic
instructions allow a compiler to schedule other useful work during reduction operation latencies. Thisis
particularly important when multiple simultaneous reductions are being performed. For example, TO can
perform 12 simultaneous reductions of 32 elementsin 141 cycles, or 11.75 cycles per reduction. Thisisover
twice as fast as performing the reductionsindividually.

10.2 Compressand Expand

Compress instructions select the subset of an input vector marked by a flag vector and pack these
together into contiguousel ements at the start of a destination vector. Expand instructionsperform the reverse
operation to unpack a vector, placing source elements into a destination vector at locations marked by bitsin
aflag register.

Compress and expand operations can be used to implement conditional operationsin density-time
[HP96, Appendix B.5]. Instead of using masked instructions(Chapter 6), flagged el ements can be compressed
into a new vector and vector length reduced to lower execution time. After the conditional instructions are
completed, an expand operation can update the origina vectors. As the number of lanes increases and the
number of clocks per vector instruction drops, the advantages of compress/expand over masked instruction
execution for thisform of conditi onal execution diminishes. Also, these stylesof conditional execution require
more interlane communication, either through vector register reductions or viathe vector memory.

Compress ismore useful for filtering data where the vector length is reduced permanently for sub-
sequent processing, not just temporarily for masking purposes. Thisform of filtering cannot be implemented
efficiently using only masked instructions. This filtering operation occurs in vectorized hash-join [Mar96]
and in vectorized garbage collection (Section 11.6.5).

There are several aternative ways of providing compress and expand functionality. One approach
is aregister-register instruction that reads a source flag register and a source vector data register, and packs
the flagged elements of the source into the first elements of the destination vector register. The advantage of
thisapproach isthat it does not require access to memory. The disadvantages are that whol e data words must
move between lanes. Expand instructions can be implemented similarly.

Another approach, used by the Cray architecture, is to write a compressed index vector holding
the indices of the elements. The elements can then be retrieved using a vector gather. The advantage of
this approach is that only the flag vector, but no data, needs to be transferred between lanes [Smi97]. The
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disadvantage is that the data may aready have been read into vector registers but will have to be read again
using a gather to select a subset. The performance impact of this second gather can be reduced by caching
the first access to the vector. Expand operations can be mapped to scatters using the compressed indices.

A variant implemented in the Titan graphi cs mini-supercomputer [DHM* 88] isto support compress
and expand functionality as part of loads and stores. The Titan compressed loads would compress flagged
elements as they were read from memory, and compressed stores would compress el ements from a vector
register storing the packed vector in memory. Expand variants were also supported. For cases where the
packed vector must move between registers and memory, these instructions avoid the inter-lane traffic and
excess memory traffic required for register-register compress or compressed index vectors. Adding these
compressed memory instructions does not require much additional complexity on top of masked load/stores
and register-register compress, but does require additional instruction encodings.

If the VMU crossbar wiring is used to perform inter-lane communication, then these variants al
have similar costs. The register-register compress avoids the use of memory address bandwidth to move data
and so might have the highest performance for machines with limited address bandwidth. The index vector
compressis easy to simulate with a register-register compress.

10.2.1 Compress Vector Length

Codethat uses compressfor filtering, almost invariably requiresthat the number of packed el ements
be known by the scalar unit so that it can update counters and address pointers. Figure 10.3 shows an example
compress loop to remove NULL pointersfrom an array.

This code is exposed to memory latencies by the scalar read of the flag population count. The store
of packed values cannot proceed until the vector length, which is dependent on the popcount, is received by
the scalar unit. Aswith reads of count trailing zeros in data-dependent loop exits (Section 6.8 on page 121),
this exposes the machine to memory latencies.

Similar to the way in which flag priority instructions create a mask vector of the required vector
length, aflag compress instruction can be added to perform the same function for compress loops. Consider
the code in Figure 10.4. The compress flags instruction creates a packed flag vector which functions as a
mask of length equal to the population count. This alows the vector store to be issued before the population
count is received by the scalar unit.

10.3 Vector Register Permutations

There are some data movements which require considerable address bandwidth if performed via
the vector memory system but which can be replaced with instructions that rearrange el ements held in the
vector register file.

One exampleisthe butterfly used in some formulationsof the FFT agorithm. Thisoperation can be
performed using strided memory accesses but then requires one address per dataelement. A butterfly permute
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C code:
size_t packptrs(size_t n
{ . .
size t i;
size t p = 0;
for (i=0; i<n; i++)
if (src[i]!=NULL)
dest [ p++] =
return p;

}

Assenbl y code:

packptrs:
li vO, O

| oop:
setvlr t0, a0
Id.v vvl, al
sl t1, t0, 3
addu al, t1
u.fnez. f vfie,
popcnt t2, vfl6
cnprs.v vv2, vvil,
ctvu t2, vir
sd.v vv2, a2
addu vO, t2
sl t3, t2, 3
addu a2, t3
subu a0, toO
bnez a0, | oop

# Initialize

vvl

vf 16

HHEHFHHHFHHHFHHR

j ra

const

/* Nunber of packed pointers.

int* src, int* dest)

*/

srcli];

counter.

Multiply by 8 bytes.
Bunp src pointer.
Fl ag non-nul | s.
Count set bits.
Pack non-nulls.

Set vector |ength.
Store to nenory.
Accumul at e count.
Multiply by 8 bytes.
Bunp dest pointer.
Subtract elenments this tine.
Any nore?

Figure 10.3: Codeto remove NULL pointersfrom an array using a register-register compress instruction.
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packptrs:

li vO, O # Initialize counter
| oop:

setvlr t0, a0

Id.v vvl, al

sl t1, t0O, 3 # Multiply by 8 bytes.

addu al, t1 # Bunp src pointer

u.fnez.f vfi6, vvl # Flag non-nulls.

popcnt t2, vfl6 # Count set bits.

cnprs.f vf0O, vfl6 # Conpress fl ags.

cnprs.v vv2, vvl, vfl6 # Conpress data.

sd.v, mvv2, a2 # Store to nenory under mask
addu v0, t2 # Accumul ate count.

sl t3, t2, 3 # Multiply by 8 bytes.

addu a2, t3 # Bunp dest pointer.

subu a0, toO # Subtract elenents this tine.
bnez a0, | oop # Any nore?

j ra

Figure 10.4: Thisversion of the packpt r s routine uses the compress flags instruction to avoid the latency
of around-tripto the scalar unit to reset the vector length of the store.

instruction can perform these permutations entirely within vector registers avoiding the strided memory
accesses.

The simplest butterfly permute reads one vector register source and writes one vector register
destination. A scalar register operand specifies distance between elements that are to be swapped, and this
must be apower of 2. Figure 10.5 shows the operation of thisinstruction.

Variousother formsof vector register permutecan beenvisaged. Somemediaprocessor architectures
have included an extensive selection of permutation primitivesthat operate on the multiplesubword el ements
held in a single wide data word [Han96]. Existing media processing instruction sets have extremely short
vectors that are processed in a one cycle, which makes fast permutations simpler to implement, and have no
support for strided or indexed memory accesses, which makes element permutations more desirable.

In contrast, vector processors have longer vector registersthat are only read and written one element
group at atime, which complicates the implementation of some permutes, and have fast support for strided
and scatter/gather memory accesses, which diminishes the benefits of permutations. For example, asimple,
fast implementation of an arbitrary element permutation would read out the entire source vector into a small
multiported RAM, then read back elements in the permuted order. But thiswould be no faster than simply
storing the el ements to a cache memory unit-stride then reading the elements back with a gather (assuming
the cache had full address bandwidth). The cost of the permutation box is likely better spent on a more
generally useful high address-bandwidth cache, such asthe VP caches described in Section 9. The VP caches
can perform many data reordering operations at high speed while consuming little main memory address and
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vbfly.v vdest, vsrc, rdist

VvSsrc

{3

vdest

vsrc

e

vdest

vsrc

rdist = 4

vdest

Figure 10.5: Example of a vector butterfly permute instruction. This variant reads al elements from one
source register and writes the result to a second vector register. The scalar register operand specifies the
distance over which elements should be moved.
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data bandwidth.

The butterfly permute is an example which can be implemented at full speed while only reading
and writing one element group per cycle. The crossbar configurations required by the butterfly are almost
all already available using a simple rotator. For example, adding the butterfly instruction to the TO design
would have only required adding a single additional control wireto the existing datapath multiplexer control
network.
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Chapter 11

Applications

This chapter describes the vectorization of a range of kernels and applications running on the TO
vector microprocessor. In this chapter, this datais used to evaluate the TO design. The next chapter extracts
statistics from these codes to help guide future vector microprocessor design decisions.

Section 11.1 describes basic linear algebra kernels which are used in many application aress.
Section 11.2 describes image processing functions, and includes a comparison with commercia micropro-
cessors with multimedia instruction set extensions. Section 11.3 describes an audio synthesis application,
Section 11.4 describes a cryptographic kernel, and Section 11.5 describes two neural net applications. Sec-
tion 11.6 describes the vectorization of the SPECint95 benchmarks, and shows how vector units can improve
cost-performance even for workloads with low level s of vectorization.

11.1 Linear AlgebraKernels

Linear agebrakernesare animportant component of many applications, including multimediaand
human-machine interface tasks as well as scientific codes. The scientific community has defined a standard
set of Basic Linear Algebra Subroutines (BLAS) [LHKK79, DCHH88, DCDH9Q] for which most vendors
supply highly-optimized libraries. All of the BLAS routines are highly vectorizable, with vector lengths
determined by the application program calling the library. The following sections examine dot product,
matrix-vector multiply, and matrix-matrix multiply, as representative examples of BLAS level 1, 2, and 3
routines respectively.

11.1.1 Dot Product

BLAS level 1 routines[LHKK79] are in the form of 1D vector operations, with O(N') operations
performed on length NV vectors. One important routineisthe vector dot product, 2 = >, «; - y;. Dot product
can be vectorized by stripmining multipliesand adds, and by accumulating a vector of partial sums. The end
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of the stripmined loop requires a reduction to yield the final scalar sum. The standard BLAS DOT routine
supportsinput vectors a arbitrary stride.

Figure 11.1 shows the performance of the Spert-1l system running dot product with unit-stride
arguments. The routine takes 16-hit fixed-point input operands and produces a 32-bit fixed-point result.
The performance with and without use of the vector extract instruction is shown. The code implements an
optimization for reductions of short vectors, where a scaar lookup table is used to indicate the number of
reduction steps required for short vectors. For example, vectors of 17 or greater elements require 5 reduction
stepswith vector lengths {16, 8, 4, 2, 1} whileavector of length 7 requires only three stepswith vector lengths
{4,2,1}.

Dot product requirestwo memory loads for each multiply and add, and so performance is memory-
bandwidth limited to half of peak arithmetic rate on Spert-11, or 320MOPS. The inner loop is software
pipelined in two stages performing two vector loads and a vector multiply in one stage, and a vector add in
the second stage.

The vector extract instruction averages around a 30% speedup on vectors less than 100 elements
long, with smaller speedups on longer vectors. Machines with a greater turnaround latency from storing
resultsin memory to loading data from memory would see a much bigger improvement [Oed92].

200 T T T T

0 I I I I
0 50 100 150 200 250

Vector Length

300

250

0 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Vector Length

Figure 11.1: Performance of Spert-11 on dot product with unit-stride operands. Performance is measured in
millions of fixed-point operations per second. The dotted graph shows the performance achieved when the
final reduction is performed through memory instead of with the vector extract instruction.
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11.1.2 Matrix-Vector Multiply

BLAS level 2 routines[DCHH88] typically perform matrix-vector operations with O(N?2) opera-
tions per call. Matrix-vector multiply is one of the more important operationsin BLAS 2 and there are two
basic forms: V7 x M and M x V. If each dot product within the matrix-vector multiply is assigned to one
VP, then VT x M performsamulti-column access to the matrix, while A/ x V performsastrided rake access.
In both cases, the vector V' is accessed as ascalar stream.

Because TO has limited address bandwidth and no rake cache, an aternative strategy was used for
M x V todlow unit-strideaccesses. Thevector V' isaccessed with unit-stridevector accesses, and multiplied
with unit-stride vectors from each matrix row. The IV values can be reused by operating on 12 matrix rows at
atime (limited by the number of vector registers). At the end of each stripe, each of the 12 partial sumsis
reduced to a single sum before storing into the result vector.

The TO implementation of V7 x M has two main loops. The first operates on 128 column by 2
row tiles of the matrix, while the second handles | eft over columns up to 32 at atime, unrolled to process 4
rowsat atime.

Figure 11.2 plotsthe performance of the V" x M and M x V TO routineson square matrices. The
VT x M form achieves up to 480-616 MOPS, and M x V achieves up to 400-487 MOPS. The fluctuations
in performance with different matrix sizes are caused by a combination of stripmining overhead, idle lanes,
and aligned versus misaligned unit-stride accesses.

Figure 11.2 also plotsthe ratio in performance between the V7 x M versus M x V forms. This
represents the potential speedup for M x V' if arake cache was added to the TO design, or dternatively the
penalty for not providing full address bandwidth. For large matrices, the V7' x M isaround 20% faster, but
for smaller matrices can be over 3 times as fast.

11.1.3 Matrix-Matrix Multiply

BLAS level 3 routines [DCDH90] are primarily matrix-matrix operations that perform O(N3)
arithmetic operations per call. Matrix-matrix multiply isthe most important routine within BLAS3 and there
arethreebasicforms. C' = A x B (NN),C = A x BT (NT),and C = AT x B (TN).! Memory bandwidth
requirements can be reduced by holding several rows of the destination C matrix in vector registers. The NN
and TN cases can both be handled with multi-column accesses to the B matrix and scalar accesses to the A
matrix. The NT case performs a strided rake access to the B matrix.

The TO routines for the NN and TN cases hold a 4 row by 32 column of the C matrix in 4 vector
registers, with theinner loop unrolled to perform two 4 x 32 outer-productsin each iteration. The NT routine
holdsa 12 row by 32 column tileof the C matrix to amortize the overhead of performing slow strided accesses
to the B matrix.

Figure 11.3 plots the performance of the NN and NT cases for square matrices. The NN case
achieves over 99% of peak on large matrices (635MOPS), while the NT case is limited to 90% of peak

1The TT caseisidentical to NN with the source matrices swapped.
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Figure 11.2: Performance of Spert-11 matrix-vector multiply routines on square matrices. |nput values are 16
bits, and output values are 32 bits. The second graph showstheratio of the V? x M versus M x V forms.
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Figure 11.3: Performance of Spert-11 matrix-matrix multiply routines on square matrices. Input values are
16 bits, and output values are 32 bits. The left plot shows performance in MOPSfor C = A x B (NN) and
C = A x BT (NT) multiplies. The second graph showsthe ratio of the NN versus NT performance.
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(576 MOPS). The figure aso plots the ratio of performance of the NN to NT cases to show the potentia
benefit from adding arake cache to speed strided accesses for NT. The potential performance improvement is
much |ess than with matrix-vector because matrix-matrix operationscan betiled effectively in vector registers
and so are less sensitive to memory performance. The performance on the NT case would aso improve with
more vector registersto allow greater reuse of the B vector.

11.2 I mage Processing

This section reports on the performance of several image processing kernels running on TO, and
compares this with the performance of hand-tuned assembler code for commercial DSPs and the multimedia
extensions of variouscommercia microprocessors. When normalized to the same clock rate, the performance
results here show that TO using singleinstructionissue plusvectorsisconsiderably faster than either the DSPs
or superscalar microprocessors with multimedia extensions. Because of its outdated fabrication technol ogy,
TO hasthelowest clock rate among the processors compared, yet the per cycle advantage islarge enough that
in several cases TO has greater absol ute performance than more modern microprocessors on these multimedia
tasks.

11.2.1 Convolution

A common operation in image processing is convolution with a small kernel. The performance
of a3 x 3 box filter routine for TO is shown in Figure 11.4. The routine takes as input an image stored as
unsigned 8-bit pixels, cal culates the convolution with an arbitrary signed 16-bit kernel, and writesthe scal ed,
rounded, and saturated result asasigned 8-bitimage. The kernel valuesareread intointo ninescalar registers.
The source image is read with a neighbor access pattern to align the three pixels on each row with each VP,
Each source vector isreused three times by three output pixels down each column. The routinewrites output
pixels in a multi-column access pattern. Each pixel requires nine multiplications and eight additions. The
TO implementation performs one further operation to give accurate scaling, rounding, and saturation from a
32-bit internal accumulator to the 8-bit output format. Table 11.1 compares TO performance against that of
numbers published for other systems.

11.2.2 Compositing

Compositing (or alpha blending) is a common image processing operation where two images are
merged according to values in a third alpha image. The apha pixels specify how the two images are to
blended at that pixel. For monochrome images with 8-bit pixels, the blending function can be written as:

(€771
Zij = Xij + g (Yij = Xij)

where X;; and Y;; arethe two source image pixel arrays, «;; isthe aphaarray, and Z;; isthe blended output
image.
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Figure 11.4: Performance of Spert-11 3 x 3 image filter routine on square images.

System Clock Rate Performance

(MH2) (MegaPixelgs) | (Cycles/Pixel)
Spert-Il 40 354 1.13
Ultra-1/170 VIS (in cache) [Ric96] 167 27.0 6.19
HP PA-8000 MAX-2 (in cache) [Lee97] 180 64.3 2.80
TMS320C80 (1 ADSP) [Tex97] 50 59 8.50
TMS320C80 (4 ADSPs) [Tex97] 50 *23.6 *2.13
TMS320C82 (1 ADSPs) [Gol 96] 50 7.7 6.50
TMS320C82 (2 ADSPs) [Gol 96] 50 *15.4 *3.25

Table11.1: Performanceof Spert-11 3x 3imagefilter compared with other systems. Both absol uteperformance
and clock cycles per pixel are shown. *The numbers for multiple processors on the TM S320C8x DSPs have
been obtained by scaling the numbers for one processor.
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Figure11.5 plotsthe performance of Spert-11 ontwo formsof compositing, and Table 11.2 compares
the performance of Spert-11 against other systems. The first is for a single monochrome channel. The VIS
version of thecode [Ric96] uses ashift to divideal phaby 256, not 255, which causes errorsin the compositing
process. The TO routine performs the divide using a reciprocal multiply, rounding correction, and shift to
ensure bit accuracy and performs a 0.44 cycles/pixel. The TO performance could be improved to 0.41
cycles/pixel with an extraiteration of unrolling, and to 0.38 cycles per pixel if the same a pha approximation
was used asinthe VIS code. The VIS version requires over 5.8 times as many cycles per pixel on equivalent
code. The best TO performance is obtained with images that start on 16-bit boundaries; performance dropsto
0.5 cycles per pixel with non-16-bit aligned images, regardless of a pha approximation or loop unrolling.

The second form of compositing takes a color image held in a four-byte pixel, with one byte each
for apha, red, green, and blue values, and apha blends thisinto a two-byte pixel with 5 bitsfor each of red,
green, blue. The Intel PS5C Pentium MM X version of this routine [Cor96d] requires more than 20 times as
many cycles per pixel.

11.2.3 Color Space Conversion

Color space conversions are used inimage compression agorithmsand in other forms of image pro-
cessing. The most common color space conversions are between RGB and YUV representations. Table 11.3
compares the performance of TO and other systems on color space conversions. The performance numbers
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Figure 11.5: Performance of Spert-11 on compositing operations.
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System Clock Rate Performance
(MH2) (MegaPixes/s) | (Cycles/Pixd)
Single 8-bit channel
Spert-11 40 914 0.44
Spert-11 (non-16-bit aligned) 40 80.0 05
Ultra1/170 VIS (« approx., in cache) [Ric96] 167 75.0 222
Single 8-bit channel (estimated times)

Spert-11 (with unrolling) 40 97.6 041
Spert-11 (with o approx.) 40 106.7 0.38
Blend 32-bit packed ARGB pixelsinto 15-bit RGB pixels
Spert-11 40 29.10 1.38
P55C Pentium MMX (in cache) [Cor96d] 200 7.14 28.00
Blend 32-bit packed ARGB pixelsinto 15-bit RGB pixels (estimated times)

Spert-11 (with o approx.) | 40 | 3048 | 131

Table 11.2: Performance of Spert-11 compositing compared to other systems. Both absol ute performance and
clock cycles per pixel are shown.

System Clock Rate Performance
(MH2) (MegaPixels/s) | (Cycles/Pixdl)
Packed 24-bit RGB to YUV
Spert-11 40 426 0.94
P55C Pentium MM X [Cor96¢] 200 25.0 8.00
4:2:0 YUV to packed 24-bit RGB
Spert-11 40 47.0 0.85
P55C Pentium MM X [Cor96q] 200 <421 > 4.75
Ultra-1/170 VIS [Ric96] 167 < 70.3 > 2.38

Table 11.3: Performance of Spert-11 color space conversion compared to other systems. Both absolute
performance and clock cycles per pixel are shown.

for the UltraSPARC VIS [Ric96] and Pentium MM X [Cor964d] systems are upper bounds, and would be lower
in practice.

11.2.4 Discrete Cosine Transform for Image Compression

Many image and video compressi on standards, including JPEG, MPEG, and H.261/H.263, arebased
on atwo-dimensional 8 x 8 discrete cosine transform (DCT). The forward DCT transformsimage pixelsinto
spatial frequency components. Compression is achieved by quantizing the spatia frequency components so
that fewer bits are needed to represent them. Typically, higher frequency components are quantized more
coarsely to take advantage of the human visual system’s reduced sensitivity to high spatial frequencies. The
coefficients are ordered in increasing spatial frequency (using a “zigzag” scan of the 2D coefficient array)
so that after quantization the higher order coefficients will contain long runs of zeros which can be encoded
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System Clock Rate Performance
(MH2) (MegaPixelgs) | (Cycles/Pixel)
Spert-11 40 18.52 2.16
Spert-11 (scalar, IJPEG C code) 40 0.65 61.54
Ultra-1/170 (1JPEG C code) 167 5.09 32.74
TMS320C82 (1 ADSP) [Gol96] 50 *12.99 *3.85
TMS320C6201 [Tru97] 200 *56.14 *3.56

Table11.4: Performance of Spert-11 forward DCT pluszigzag ordering compared with other implementations.
*Times do not include zigzag ordering.

efficiently [PM93).

Forward DCT

The TO image compression DCT routine takes 8-bit image pixels and produces zigzag-ordered
coefficients ready for quantization. The routine first performs 1D DCTs down the columns, then 1D DCTs
across the rows. The LLM 8-point DCT algorithm [LLM89] is used giving results accurate to the IEEE
specifications, and bit-identical to the code from the Independent JPEG group. The routine is vectorized
across 1D DCTs, so the vector length is eight times the number of DCT blocks and is therefore equal to the
image widthin pixels. TO has avector length of 32, and so performs4 2D DCTs at atimein each iteration of
the stripmined loop.

The routinefirst performs DCTs down the columnsto alow the pixel valuesto beloaded with eight
unit-stride byte loads. The resulting 16-bit column DCT coefficients are then packed two to a 32-bit word,
and four indexed word stores are used to store the coefficients transposed in a memory buffer allocated on
the stack. The next stage performs the row DCTS, beginning with eight unit-stride halfword loads from the
transpose buffer. The final coefficient values are written to the result buffer using eight indexed halfword
storesto perform the zigzag ordering. The performance of thisroutineisshown in Figure 11.6, and compared
against other systemsin Table 11.4.

Performance islimited by TO's singleaddress port. A breakdown of memory port activity is shown
in Table 11.5 for one loop iteration that performs four 8 x 8 DCTsin parallel. The stores into the tranpose
buffer are indexed rakes. For other vector machines with interleaved memory subsystems, the rake index
vector can be chosen to avoid any memory bank conflicts. The stores into the coefficient buffer perform
a permuted write with significant spatia locdlity, and so a small write cache could significantly reduce the
address bandwidth of these stores. An additional eight vector registers would allow the loads of the zigzag
indices to be moved outside of the inner loop to give a 6% speedup. All of the arithmetic instructions are
overlapped completely with the memory instructionsand occupy thetwo VAUs for atotal of 220 cycles (40%
utilization).
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Figure 11.6: Performance of Spert-11 on forward 8 x 8 DCTs. Timings are for one row of blocks, 8 pixels
deep.

Function Access Type Cycles | Percentage
Load pixels Unit-strideloads 32 5.8%
Transpose coeffs. Indexed stores 152 27.5%
Load row coeffs. Unit-strideloads 32 5.8%
Load zigzag indices | Unit-strideloads 32 5.8%
Store zigzag coeffs. | Indexed stores 304 55.0%
Idle 1 0.2%
Tota 553 100.0 %

Table 11.5: Breakdown of memory port activity for forward DCT plus zigzag ordering for four 8 x 8 blocks
on Spert-11.
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Inverse DCT

Figure 11.7 plots the performance of a TO library routine that dequantizes coefficients, performs
inverse DCTS, then writes 8-bit image pixelsto an image buffer. Aswith theforward DCT code, thisroutine
usesthe LLM agorithm and gives results bit-identical to the Independent JPEG Group code.

The code has two main loops. The first loop reads in coefficients in groups of eight, dequantizes
them, then writes them to an interna buffer in a transposed order convenient for the subsequent inverse DCT
loop. The inverse DCT loop reads in dequantized coefficients using unit-stride loads, performs the inverse
1D DCT down the columns, then writes intermediate values in transposed manner using indexed stores of
two 16-bit values packed into one 32-bit word. The next phase reads in intermediate va ues using unit-stride
loads, performs the inverse 1D DCT across the rows, clips output pixels to representable range, then uses
indexed stores to write out 32-bit words each holding four packed 8-bit pixels.

Performance is limited both by the single address port and by a lack of registers. A breakdown of
memory port activity is shown in Table 11.7. The two VAUSs are busy for 58.6% of the cycles. Neither the
VMU nor the VAUs are saturated because dependencies within each stripmineiteration limit performance.
With more vector registers, two stripmine iterations could be interleaved, and the memory port could then
be saturated during the inverse DCT loop. An additional 8 vector registers would give an estimated 18%
speedup. Storesto both the tranpose buffer and the output image buffer are indexed rakes and so coul d benefit
from a rake cache. Also increasing address bandwidth would allow the ALUs to become saturated in the
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Figure 11.7: Performance of Spert-11 on 8 x 8 inverse DCTs including dequantization. Timings are for one
row of blocks, 8 pixels deep.
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System Clock Performance

(MH2) | (MegaPixels's) | (Cycles/Pixd)
Spert-11 40 21.42 1.87
HP PA-8000 MAX-2 [Lee97] 180 *78.60 *2.29
Pentium P55C MMX [Cor96b)] 200 t+5333 t+375
TMS320C82 (1 ADSP) [Gol96] 50 *8.77 *5.7

Statistical Techniques

Spert-11 (vector, estimated) 40 ~32 ~1.25
Spert-11 (scalar, 1JPEG C code) 40 ~0.84 ~48
Ultra-1/170 (IJPEG C code) 167 ~12 ~14

Table 11.6: Performance of Spert-11 inverse DCT including dequantization compared with other implemen-
tations. The performance quoted for the statistical techniques assumes around 7-8 non-zero coefficients per

block. * Times do not include dequantization. t1nverse DCT does not meet |EEE 1180 specifications.

| Function | AccessType | Cycles | Percentage |
Dequantization
Load quantized coeffs. Unit-strideloads 32 6.7%
Store dequantized coeffs. | Unit-stride stores 32 6.7%
Idle 48 10.0%
Inverse DCT

Load column coeffs. Unit-strideloads 32 6.7%
Load transpose indices Unit-strideloads 4 0.8%
Transpose coeffs. Indexed stores 152 31.8%
Load row coeffs. Unit-strideloads 32 6.7%
Store pixel values Indexed stores 76 15.9%
Idle 70 14.6%

| Total | | 478 100.0% |

Table 11.7: Breakdown of memory port activity for deguantization plus inverse DCT for four 8 x 8 blocks
on Spert-11.

inverse DCT loop, for a combined potentia speedup of around 48%.

An attractive aternative approach to vectorizing the iDCT would be to use a statistical method.
These takes advantage of the many zero coefficientsin atypical compressed image by implementing theentire
DCT as a sparse matrix-vector multiply. Each non-zero coefficient would be multiplied by the appropriate
64-element basis vector and summed into the 64 output pixel accumulators. At the end of each block, the
pixel values would be clipped and stored into the output image buffer. For TO, each non-zero coefficient
would require 8 cycles to perform 64 loads, 64 multiplies, and 64 adds. An additional 28 cycles would be
required to clip the output values, and store the output pixelsinto an image buffer. Inthei j peg benchmark
described later (Section 11.6.4), there are an average of 7.4 non-zero coefficients per block. This would
imply an average of around 80 cycles per inverse DCT for the vector computation without increasing address
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bandwidth or the number of vector registers. The approach would bring additional time savingsin other parts
of the code, as it aso avoidsthe reconstruction of runs of zero coefficients. A disadvantageisthat thiswould
require merging of several stages of the decoding process, complicating the code structure.

11.3 Audio Synthesis

Hodes[Hod97] has ported ahigh quality additive audio synthesisagorithmto TO. Thisapplication
requires the generation of multiple sinusoidal partial oscillators whose control parameters are constantly
varying in real-time. Vectorization is across the partial's, with vector length given by the number of partials.
Increases in performance alow more partias to be generated in rea-time, and hence vector length grows
with increasing processor performance. The TO implementation generates up to 608 individually controllable
partialsin real-time (16-bit audio with 44.1kHZ sampling rate).

The TO implementation uses a recursive technique to calculate outputs in the time domain. Al-
ternatively, oscillators can be generated in the spectral domain by taking an inverse Fast Fourier Transform
(FFT) of the desired spectrum. The spectral technique allows noise sources to be added easily and can be
more efficient for |arge numbers of oscillators, but adds more overhead for each audio output channel and has
alarger rea-time control latency. The spectral technique was not used on TO because the limited precision
arithmetic would not alow sufficiently accurate FFTs, but a floating-point vector microprocessor could also
use the spectral approach.

For comparison, the spectral techniquerunning ona180 MHz R10000 system achieves around 1000
partial oscillators[Hod97]. With a4.5timesgreater clock rate and amore efficient algorithm, the superscal ar
microprocessor generates only 1.6 times more real -time oscillators than TO.

11.4 IDEA

The IDEA (International Data Encryption Algorithm) block cipher isused in several cryptographic
applications [Sch96]. Table 11.8 shows the performance of the TO implementation for various modes and
message lengths, and compares this with compiled C code for a Sun Ultra-1/170 workstation.

For CBC-mode encrypt, the vector code uses the vector unit with vector length 1. This gives a
significant speedup (2.9) over straight PGP code compiled for TO primarily due to the fast 16-bit integer
multiplier available in the vector unit. The performance of a500 MHz Alpha21164 running compiled C code
isaround 4MB/s[NL97].

Thisis an example of vector code with very low memory bandwidth demands; TO achieves high
performance primarily because of thelarge array of paralle arithmetic units.
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Spert-11 Spert-11 | Ultra-1/170
PGP Code | Vector code | PGP Code
ECB encrypt/decrypt
1 block 0.24 0.49 1.95
32 blocks 0.24 11.44 1.96
1024 blocks 0.24 14.04 1.96
CBC encrypt
1 block 0.24 0.65 1.85
32 blocks 0.24 0.70 185
1024 blocks 0.24 0.70 1.84
CBC decrypt
1 block 0.23 0.47 191
32 blocks 0.24 10.26 191
1024 blocks 0.24 13.01 1.91

Table 11.8: Performance of the IDEA encryption algorithmin MB/s.

11.5 Neural Network Algorithms

This section describes two neural network training applications. The first is a large feed-forward
backpropagation neural network used in a speech recognition system, while the second is a small Kohonen
self-organizing feature map used in speech coding.

11.5.1 Error Backpropagation Training

Artificia neural networks trained with the error backpropagation training algorithm [W.74] have
been successfully applied to many pattern recognition problems. The Spert-11 systemwasoriginally developed
to train large artificial neural networks to produce phoneme estimates for a speech recognizer [WAK*96].
These phoneme networks contain between 100,000 and 2,000,000 weights and are trained using the backpro-
pagation learning a gorithm on databases containing millions of acoustic feature vectors.

Figure 11.8 compares the performance of the Spert-1l system against that of two commercial
workstations, the Sparcstation-20/61 and an IBM RS/6000-590. The Sparcstation-20/61 contains a 60 MHz
SuperSPARC processor with apeak speed of 60 MFLOPS. The RS/6000-590 contains a66.5 MHz POWER2
processor with a peak speed of 266 MFLOPS. The workstation versions of the code are highly tuned,
and include manual loop unrolling and register and cache blocking optimizations. The first graph shows
performance for forward propagation as used during recognition, while the second graph shows performance
for error backpropagation training. The Spert-11 board is up to six times faster than the IBM workstation.

A longer description of backpropagation training a gorithmimplementationson Spert-11 isavailable
[ABJF98].
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Figure 11.8: Performance eva uation results for on-line backpropagation training of 3 layer networks, with
equa numbers of unitsin theinput, hidden, and output layers. The forward pass graph measures performance
in millions of connections per second (MCPS), while the training graph shows performance in millions of
connection updates per second (MCUPS). The workstationsperform all calculationsin single precision |EEE
floating-point, while Spert-11 uses 16 bit fixed-point weights.

11.5.2 Kohonen Self-Organizing Feature M aps

Kohonen self-organizing feature maps (KSOFM) [Koh82] are a form of neura network that can
learn to cluster datainto topol ogical maps with no externa supervision. They have been used in awiderange
of applicationsincluding image classification and data compression [M S95].

Table 11.9 compares the performance of Spert-Il against others reported in the literature for a
speech coding task supplied by EPFL, Switzerland [CI194]. Thisbenchmark has 12-dimensional input vectors
mapped to a 2-dimensiona 10 x 10 neuron grid. A full description of the Spert-11 implementation has been
published separately [Asad7]. The Cray T3D is an massively parale processor array built from 150 MHz
Digital Alpha21064 chips. The Adaptive Solutions CNAPS system [HHK 93] isaSIMD processor array, and
numbers are presented here both for an EPFL implementation of KSOFM as well as the Adaptive Solutions
(ASI) implementation.

Spert-11 is faster than these other implementations, especially for the smaller benchmark network
(most of the networksused in practice are small [MS95]). Thisis because the Kohonen net training algorithm
is difficult to parallelize efficiently. The algorithm repeatedly finds the neuron whose weight vector has the
smallest distance from each input pattern and then updates only a few neighboring neurons’ weights. In
a parallel processor array, finding the winning neuron requires a globa minimum operation and during the
weight update phase most processors are idle.

In contrast to the processor arrays, Spert-11 has the advantage that the parallel processing el ements
inthevector unit aretightly coupled and share the same memory space. The minimum operationis performed
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used a reduction operation within the vector registers, and the whol e vector unit can be applied to the weight

update.

System Clock | Measured 10 x 10 benchmark Estimated peak

(MH2) | Number of (MCUPS) Number of | (MCUPS)
Processors Processors

Sparcstation-20/51 50 1 3.46 - -

Cray T3D 150 25 4,75 256 435

CNAPS (EPFL) 20 100 450 512 23

CNAPS (ASI) 20 - - 256 54

Spert-11 40 1 45.20 1 213

Table 11.9: Performance numbers for the Kohonen Self-Organizing Feature Map [MS95, |CK 96]
mance is meaured in millions of connection updates per second (MCUPS). The estimated peak numbers
assume arbitrarily large networks.

11.6 SPECint95

. Perfor-

The SPEC95 benchmarks [Cor95] have become popular both to measure performance of commer-

cia processors and to provide the workload for compiler and architecture research studies. The SPEC95

benchmarks are divided into SPECfp95, which contains floating-point codes, and SPECint95, which con-

tains compute-intensive integer codes. SPECfp95 contains many programs originally developed for vector
supercomputers and which are known to be highly vectorizable [Cor95], but the SPECint95 benchmarks are
generaly regarded as non-vectorizable. In this section, | show that half of the SPECint95 codes, including
some described as non-vectorizable by the SPEC documentation, can be accelerated significantly with vector

execution, though this occasionally reguires some minor modifications to the source code.

11.6.1 Methodology

From Amdahl’s law [Amd67], we know that vector speedup is given by

I

T, (1-N+f/V

where T isthe execution time of the program runningin scalar mode, 7, isthe execution timefor the program

running in vector mode, f is the fraction enhanced by vector execution (the vector coverage), and V' isthe

vector speedup for that fraction. More generally, programs have severa different portions of their runtime

that can be accelerated to differing degrees, which we can express by rewriting Amdahl’slaw as

T
T

(=22 i)+ 22/ Ve)
where V; isthe vector speedup for fraction f; of the runtime.
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The approach taken in this study has two main steps. The first step is to profile the SPECint95
codes running on conventiona superscalar microprocessor-based systems to identify routines that are both
time-consuming and vectorizable. Two workstationswere used for the profiling measurements: a Sun Ultra-
1/170 workstation running Solaris 2.5.1 and an Intel Pentium-11 workstation running NetBSD1.3. The Sun
machine has a 167 MHz UltraSPARC-| processor [CDd195], with in-order issue of up to 4 instructions
per cycle. The Sun C compiler version 4.0 was used to compile the code using the flags: - f ast -xO4
- xar ch=v8pl us - dn. Execution time profiles were obtained using either the - p compiler option with
pr of , or with high-resolutiontimer calls(Solarisget hr t i mer ) embedded inthe application. The Pentium-
Il processor [Gwed7] runsat 300 M Hz with out-of -order execution of up to 3 CISCinstructionsper cycle. The
gcc version 2.7.2.2 compiler was used to compilethe code with optimizationflags: - O3 - md86. Execution
time profiles were obtained using either the - pg compiler option with gpr of , or with high-resolution timer
calls(NetBSD get t i meof day).

The second step isto port the codes to run on Spert-11. Three versions of each code were obtained
by modifying the SPECint95 sources.

The first version contains only changes required to port the code to the Spert-11 board. In some
cases, the benchmark was reduced in size to fit in the small 8MB memory. Also, afew modifications were
made to port to the limited operating system environment on the board. No changes were made to the main
computational routinesin thisversion. Thisversion iscalled the original code in the results.

The second version contains source code optimizations to improve performance when running in
scalar mode to allow a fairer comparison against the hand-vectorized code. Some changes were made to
work around the limitationsin the gcc compiler used for TO and the Pentium-I1. In particular, gcc can
only inlineafunction if its definition textually precedes the call site, so a few important function definitions
were reordered to mimic more sophisticated inlining. As described below, some other modifications were
made to each benchmark to improve scalar performance, eg., explicit loop unrollingin n88ksi m Also,
any vectorization changes that improved scalar performance were also included. This version is called the
scalar-optimized codein the results.

Thefina versionislocally restructured to all ow vectorization, and vectorizabl eroutinesaremanually
trandated into assembly code. The SPECint95 codes were not written with vectorization in mind, and in
some cases, have been highly tuned for scalar execution. Thisartificially limitsthe potential for vectorization,
and so minor changes were made within source code modules provided there were no changes to globa data
structures or program behavior. This version also incorporates any beneficial scalar optimizations from the
scalar-optimized code and is caled the vectorized code in the results.

Thevectorized codes arelinked withthe TO standard C library, which includesvectorized versionsof
thementpy, nenset ,strl en, strcpy, and st rcnp routines. The origina and scal ar-optimized codes
are linked with an alternative C library containing hand-tuned scalar assembler versions of these routines.

Execution is profiled both before and after vectorization. These timings give values for the vector
speedup, V;, as well as the fraction of runtime, f;, for each piece of vectorizable code. For the Spert-11
system, thegcc cross-compiler version 2.7.0 was used for scalar code. The vectorizable code was manually
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trandated into assembly code, as described below. Timings were obtained using the on-chip cycle counter.
The workstation systems are a so profiled to give values for f;.
The foll owing sections describe the modifications made to each benchmark in more detail.

11.6.2 nB8ksi m

ThenmB8ksi mbenchmark times a simulator for the Motorola88100 microprocessor. The standard
referenceinput first loadsamemory test program whichistoo largeto fit into Spert-11 memory. The simulator
execution profile is not highly dependent on the simulated program, so the input was changed to run only
the last portion of the benchmark which simulates a Dhrystone executable. This reduced total benchmark
running timefrom 370 to 226 seconds onthe Ultra-1/170. Thestandardct | . i n input wasreplaced with the
following:

lo dhry. big
cacheof f

g
sd

q

Considerable time is spent in two vectorizable functions: kil ltime and ckbrkpts. The
ki | Iti me routine contains two loops to update busy time status for the 32 registers and the 5 functional
unitsin the system. The register update |oop was explicitly unrolled for the scalar-optimized version. For the
vectorized version, both loops were vectorized with vector lengths of 32 and 5.

The cbr kpt s routine contains a loop to check on the 16 possible breakpoints, but thisloop exits
early whenever a breakpoint condition is met. The loop is vectorized by speculatively executing al 16 loop
iterations, with the exit iteration determined subsequently. This speculative execution is straightforward
to implement in software because the loop does not write memory and the loop bounds are compile-time
constants.

11.6.3 conpress

The conpr ess benchmark is a modified version of the Unix conpr ess command based on
the LZW compression algorithm [Wel84]. To fit into the board’s memory, the benchmark was changed
to compress and decompress 2,000,000 characters of text. The text was generated by the SPEC-supplied
harness code with arguments “2000000 e 2231". The benchmark was split to give separate timings for
compression and decompression, with the two components referred to as conp and deconp in the results
bel ow.

The scalar-optimized version of the code was amost completely rewritten from the original to
provide a clearer structure and faster code. Some of the magjor changes included removing references to
global variablesinside loops, handling exceptiona conditions, such as code bit size changes and string table
clear, outside of the main control flow, and using an array of structuresrather than two arrays for the hashed
string table to reduce address cal cul ations and cache misses.
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Profiling revealed that significant time was spent packing and unpacking codes from the input and
output bitstreams. The original compress routine packs each 9- to 16-bit code into the output bitstream one
code at atime. A more efficient approach is to keep a buffer of unpacked codes, and then to pack the entire
buffer into the output bitstream in one step. In particular, a single check for 16-bit codes can be used to
choose a specidized loop which avoids the bitfield mani pul ationsrequired for shorter code lengths. Thisisan
important optimization because 16-bit codes are the most common for long files. Similarly, the decompress
routine can be accelerated by unpacking multiple codes at atime. The scalar-optimized code includes these
pack/unpack optimizations.

The original decompression routine reads out stringsfrom the string table one character at atimein
reverse order into atemporary string buffer. The characters in the buffer are then copied in correct order into
the output stream. The scal ar-optimized version of the code puts the characters into the buffer in the correct
order and so can useanentpy to move characters into the output stream.

The vectorized code attai ns speedups by vectorizing the pack/unpack operation and al so the standard
mentpy routine. When 8 N-bit codes are packed, they occupy NV bytes of storage. Vectorization is across
these independent N -byte sections of packed input or output codes. A buffer of 512 codes is used, giving a
vector length of 64.

The execution time for conpr ess is very sensitive to code quality in the inner scalar loops.
The compiler's assembler output for this inner loop was hand-optimized to overcome problemsin gcc’s
instruction-scheduling and delay-dot filling for both the scalar-optimized and vectorized codes on TO. In
addition, the pack/unpack routines of the scalar-optimized code were hand-scheduled, and the mencpy call
for the vector code was hand-inlined.

1164 i peg

Thei j peg benchmark repestedly performs JPEG image compression and decompression while
varying various compression parameters. It isthe most highly vectorizable of the SPECint95 programs.

A number of changes were made to the origina scalar code to port to the Spert-11 board. The
MULTI PLI ER typewas changed fromi nt toshort inj nor ecf g. h to match the interface with the TO
vector DCT (Discrete Cosine Transform) routines (Section 11.2.4). Thei j peg DCT routines have been
designed to work with 16-bit integers and so this change doesn't affect the accuracy or runtime of the scalar
routine. The TO forward DCT vector routine first performs 1D DCTs down columns followed by 1D DCTs
across rows, whereas the original SPEC code does rows first. Although mathematically equivalent, rounding
errors cause a sight change in the coefficients and hence in test output. The original and scalar-optimized
versions were modified to work the same way as the vectorized version so that all codes would produce
identical output. Thisresulted in no change to run-time and less than 0.2% change in compressed file sizes
for the test image.

The constant JPEG BUFFER SI ZE was reduced to 1MB in spec_nai n. ¢ to reduce memory
consumption by statically alocated arrays. The timings used the pengui n. ppmreference input image
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reduced in resolution by a factor of two in both directionsto fit into the reduced memory. The reduced size
image does change the scalar execution profile slightly, and halves the vector lengths of some routines, but
the runs should still be representative of typical JPEG code.

The benchmark command line arguments were:

-image_fil e penguin. ppm -conpression.quality 90
-conpression.optimze_coding O -conpression.snoothing_factor 90
-difference.image 1 -difference.x_stride 10
-difference.y_stride 10 -verbose 1 - GO findoptconp

The i j peg code has been well tuned for scalar execution but a few minor optimizations were
added. The original code performs coefficient quantization using an integer divide, with a quick magnitude
check to skip cases where the result will be zero. The quantization tables are changed rarely, and so the
division can be replaced by a reciprocal multiply and arithmetic shift right. When packing bits into the
output stream, the original code cals theemi t _bi t s subroutine twice for non-zero AC coefficients, once
for the preceding zeros symbol and again for the non-zero coefficient magnitude. These two bit strings can
be combined to reduce the number of callsto em t _bi t s, though two calls must till be made if the total
number of bitsis gresater than 24. A further optimization is possible, similar to that in conpr ess, where
instead of calling emi t _bi t s as each symbol is generated, al symbolsfor ablock arefirst buffered before
making asinglecall to pack all the symbol bitstringsto the output stream.

The vectorized version replaces many routines with vector code. The forward and inverse 8 x 8
2D DCTs are vectorized across the constituent 1D 8-point DCTs. The forward DCTs are performed with
vector length 512, corresponding to the test image width. The inverse DCTs are performed in small groups
of 1 or 2 blocks, limiting vector lengthsto 8 or 16. The vector length for inverse DCT could aso have been
increased up to theimage width by buffering ascan lineof coefficients, but thiswoul d have required more than
local restructuring of the code. The coefficient quantization and deguantization is a so vectorized with vector
lengthsof 64. Theimage manipulationroutinesr gb_ycc_convert ,upsanpl e,anddownsanpl e, have
vector lengths proportional to imagewidth (512), or half of theimage width (256) for subsampled components.

The encode_MCU routine has two incarnations, one which generates Huffman-coded bitstrings
(encode_one_bl ock) and onewhichjust cal culates the symbol frequenciesfor optimizing Huffman coding
(ht est _one_bl ock). Theseroutinesneed to scan the 63 AC forward DCT coefficientsto find runsof zeros.
A vector routine was written to scan the coefficients and return a packed bit vector. This packed bit vector
can then be scanned quickly with scalar code to find the symbols for Huffman coding. The Huffman code
lookup can also be vectorized, but it was found that the vector version ran at about the same speed asthe scal ar
version on TO. The scalar code can use an early exit loop to find the coefficient magnitude, but the vector
version must use multipleconditional instructionsto determine the magnitudes and these consume more than
half the vector lookup runtime.
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1165 |Ii

Thel i benchmark is a simple Lisp interpreter. The origina SPECint95 benchmark can be run
unchanged on the Spert-11 board. Profiling reveded that a considerable fraction of timeis spent in the mark
and sweep garbage collector. The only change made for the sca ar-optimized code was to reorder routinesin
the garbage collector code to alow gcc to inlinethem.

Themark phaseof thel i garbage collector was vectorized by converting the depth-first traversal of
the live storage nodes into a breadth-first traversal [AB89]. The mark routine dynamically manages a queue
of pointers on the run-time stack. The queue isinitialized with the root live pointers at the start of garbage
collection. A stripmined loop reads pointers from the queue and overwrites it with pointersfor the next level
of the search tree. Any pointersthat should not be followed are set to NULL. Most vector machines provide
some form of vector compress instruction to pack together selected elements of a vector [HP96]. TO lacks
a vector compress instruction and so a scalar loop is used to compress out NULL pointers from the queue.
The mark phase is finished when the queue is empty after the scalar compress operation. The average vector
length is 80 during this phase.

Thel i interpreter alocates node storage in segments, each of which contains a contiguous array
of nodes. The sweep phase was vectorized by partitioning the nodes within a segment into sections, then
vectorizing over these sections. The vector code chains together the unmarked nodes within each sectioninto
alocal freelist. A scalar loop then stitchesthe multiplefree liststogether to give asingle free list, which has
the same node ordering as the original scalar code. The vector length is determined by the number of nodes
allocated at one time within each segment — 1000 for thel i benchmark.

11.6.6 Other SPECIint95 benchmarks

Theremaining SPECint95 benchmarkscoul d not beappreciably vectorized with small local changes.
Althoughtheper | benchmark isdominated by complex control flow, it spendsafew percent of itsruntimein
vectorizable standard C library functions[ Cor95] and so might experience asmall speedup from vectorization.
per | could not be ported to the Spert-11 board due to its extensive use of operating system features.

The go benchmark spends significant time in loops but makes extensive use of linked list data
structures, which hamper vectorization. It is possible that a substantial rewrite could make use of vectors.

Thegcc and vor t ex benchmarks are dominated by complicated control structureswith few loops
and it isunlikely that even extensive restructuring could uncover significant levels of vector parallelism.

11.6.7 SPECIint95 Vectorization Results

Table 11.10 shows the extent of the code modifications in terms of lines of code in the origina
sources that were affected. Except for conpr ess, only a small fraction of the source was modified for
vectorization. The conpr ess codeisasmall kernel, and was extensively rewritten for the scal ar-optimized
version. Although it required the largest percentage of modifications for vectorization, the absolute number
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Benchmark | Original | Scalar-Optimized | Vector Changes
(LOC) Changes (LOC) (LOC)
nB8ksi m 19,915 4 (0.0%) | 65 (0.3%)
conpr ess 1,169 | 1,071 (100.0%) | *80 (7.5%)
i j peg 31,211 84 (0.3%) | 778 (2.5%)
[i 7,597 0 (0.0%) | 198 (2.6%)

Table 11.10: This table shows the number of lines of code (LOC) in the origina benchmark, together with
the number of lines of original code changed for the scalar-optimized and vectorized versions. *conpr ess
vectorization changes are counted rel ative to the scalar-optimized version.

Benchmark | Original | Scalar-Optimized | Vector
C) C) C)
Ultra-1/170, 167 MHz
nB88ksi m 226.5 241.0 N/A
conpr ess 15 13 N/A
ijpeg 37.6 36.1 N/A
li 403.8 412.1 N/A
Pentium-11, 300MHz
nMB8ksi m 133.7 140.2 N/A
conpr ess 13 11 N/A
ijpeg 24.8 24.3 N/A
li 209.4 1915 N/A
Spert-11, 40MHz
nB88ksi m 1853.1 1831.5 | 1300.2
conpr ess 74 3.8 3.23
ijpeg 2715 269.7 63.8
[i 2493.0 2279.1 | 1871.8

Table 11.11: Execution time in seconds for the three versions of each benchmark on each platform. The
conpr ess timesare the sum of conp and deconp.

of lines changed is small.

Table 11.11 presents the overall timings for the codes on each platform. The scalar optimizations
were tuned for Spert-11, and although generally these optimizations improve performance on the other plat-
forms, in afew cases performance isreduced. In particular, the explicit loop unrollingin n88ksi mreduces
performance on both the UltraSPARC and the Pentium-11. Thel i scalar-optimized code on the UltraSPARC
was also dightly (2%) slower than the original code, even though the only modification was to reorder some
routine definitions. The scalar-optimized code for conpr ess istwice as fast as the origina SPEC source
code on TO, but only 15-18% faster on the workstation systems. This difference in speedup might be due to
the better compiler and superscalar issue on the Sun system and the out-of-order superscalar scheduling on
the Pentium-11, which might give better performance on the original code compared with TO.

Table 11.12 gives atiming breakdown for the benchmarks. The scal ar-optimized version was used
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Application Ultra-1/170 Pentium-I1 TO Scalar TO Vector TO
Routine 167MHz 300MHz 40MHz 40MHz Vector
S (%) S (%) S (%) S (%) | Speedup
nB8ksi m
kKilltime 66 (26) 348 (262 4573  (25.0) 57.6 (4.4 7.93
ckbrkpts 41 (16) 156  (11.7) 2301  (126) | 1011 (7.8) 2.28
Other 143 (57) 825  (620) || 11441  (625) | 11423  (87.8) 1.00
Total 250 (100) || 132.8 (100.0) || 18315 (100.0) | 1301.0 (100.0) 141
conp
packcodes 0.11 (11.0) 0.04 (4.6) 0.22 (9.6) 0.03 1.2 8.58
Other 0.85 (89.0) 0.81 (95.4) 2.05 (90.4) 212 (98.8) 0.97
Total 0.96 (100.0) 0.85 (100.0) 227  (100.0) 215 (100.0) 1.07
deconp
unpackcodes 0.04 (12.3) 0.04 (10.5) 0.24 (16.3) 0.03 (2.9 9.46
Other 0.30 (88.6) 0.18 (89.5) 1.23 (83.7) 1.06 (97.6) 1.16
Total 0.34 (100.0) 022  (100.0) 148 (100.0) 1.08 (100.0) 137
ijpeg
rgbyccconvert 41 (104) || 317 (131) 231 (87) 22 (36) 107
downsanpl e 71 (18.0) 447  (185) 621  (234) 65  (11.0) 95
f or war d_DCT 127 (322 595  (24.6) 736  (27.8) 51 (8.6) 14.3
encode_MCU 44  (11.2) 326 (135) 26.3 (9.9 188  (31.6) 14
i nver se DCT 53  (135) 371 (153) 424  (16.0) 46 (7.7) 9.2
upsanpl e 22 (5.6) 144 (6.0) 14.6 (5.5) 11 (1.8) 133
Other 36 (9.1 2.20 9.1 227 (8.6) 212  (35.6) 11
Total 394 (100.0) || 24.20 (100.0) 264.8  (100.0) 595 (100.0) 45
l'i
mar k 9.2 (23.3) 570 (28.8) 4266  (188) | 1023 (5.5) 417
sweep 29.2 (7.0 204  (10.3) 129.9 (5.7) 456 (2.5) 2.85
Other 286.7 (69.6) || 1203  (60.8) || 17120  (755) | 17080  (92.0) 1.00
Total 4121  (100.0) 197.7 (100.0) 22684 (100.0) | 1855.9 (100.0) 1.22

Table11.12: Breakdown of runtimefor scalar and vector SPECint95 applications. Theconpr ess benchmark
is split into conp and deconp components. The scalar-optimized profile is given for the scalar systems,
except for B8k si mon Ultraand Pentium-11, where the faster original version is profiled.

for the scalar profiles, except for 88k si mon the workstation systems where the faster original version was
used. These profiles were obtained either with statistical profiling or with embedded calls to high-resolution
timers, both of which are intrusive methods that slightly affect the timing results compared to Teble 11.11.

The vector speedup obtained on whole benchmarks varies widely, withi j peg having the greatest
speedup (4.5) confirming the suitability of vectors for these types of multimedia applications. The lowest
speedup is for conp (1.07) whose runtime is dominated by scalar hash table operations. Using a combined
figure of 1.16 for conpr ess, and assuming no speedup for the non-vectorized codes, the geometric mean
vector speedup for TO across all eight SPECint95 benchmarksis 1.32.

Individual functions exhibit much higher speedups, with several of thei j peg routines running
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over 10 times faster in vector mode. The vector unit therefore improves performance by accelerating limited
portions of the execution time by alarge amount. For deconp andi j peg, thereis also a more moderate
speedup over the whole runtime, but this is due to the vectorized standard C library functions which are not
timed individually.

Comparing the profiles of scalar code, we see that all the platforms are broadly similar in their dis-
tribution of runtime amongst the vectorizable and non-vectorizable portions of code. The biggest differences
occur for the Pentium-11 on conp, where it spends comparatively less timein vectorizable code, andonll i ,
where it spends comparatively more. The workstations are superscalar designs whereas TO is single-issue,
suggesting that speedups from instruction-level parallelism are distributed throughout the benchmark rather
than being concentrated in the regions that were vectorized.

11.6.8 Discussion

The above results present clear evidence that significant portionsof the SPECint95 benchmark suite
can be executed with vector instructions after some minor modificationsto the source code, but the magnitude
of the vector speedup is affected by severa factors. The discussion in this section estimates the impact of
these factors, which include fabrication technology, memory hierarchy, vector architecture, and code quality,
and al so shows how vector speedup can be profitably combined with superscalar speedup.

TO is fabricated in an older 1.0 um two-metal CMOS technology which results in a larger die
area and lower clock rate compared with the newer technology used to fabricate the superscalar processors.
Because it does not interferewith core processor functions, the addition of avector unit should have no impact
on processor cycletime, and so we can assume that vector microprocessors will have the same clock cycle as
vectorl ess microprocessors when implemented in the same technology. Table 11.13 shows the performance
of the benchmarks with al machines scaled to the same clock rate and with speedups measured relativeto TO
running scal ar-optimized code.

TO has an unconventional memory hierarchy, with asmall 1KB direct-mapped primary instruction
cache (I-cache) but no data cache (D-cache), and aflat threecycle latency main memory system. Thismemory
hierarchy should produce lower vector speedups compared with a more conventional memory system. The
small |-cache produces more misses, concentrated outside of vectorizable loops which generate few |1-cache
misses. The overal effect isto reduce the vectorizable fraction of runtime, f;, by increasing the time spent
executing non-vectorizable scalar code. The lack of a primary D-cache has two main effects. Firgt, al scalar
accesses have three cycle latencies rather than the two cyclestypica for primary D-caches. The tuned scalar
code for the vectorizable loops is mostly able to hide this extra cycle of latency, whereas it will likely slow
performance on other code. Second, there are no D-cache misses. While both vector and scaar unit will
experience approximately the same number of D-cache misses in a conventional memory hierarchy, most of
the vectorizable code has relatively long vectors which should help hide miss latencies to the next level of
cache. The SPECIint95 codes have relatively small working sets and little execution timeis spent in misses
from typical sizes of external cache, even on fast processors [CD96].
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Benchmark/Routine | TO Scalar | Ultra-1/170 | Pentium-11 | TO Vector |

nB88ksi m

killtime 1.00 1.66 175 7.93
ckbrkpts 1.00 1.35 197 2.28
Other 1.00 1.92 1.85 1.00
Tota 1.00 1.76 184 141
conp

packcodes 1.00 0.48 0.75 8.58
Other 1.00 0.58 0.34 0.97
Total 1.00 0.57 0.36 1.07
deconp

unpackcodes 1.00 1.45 0.84 9.46
Other 1.00 0.99 0.91 1.16
Total 1.00 1.04 0.90 1.37
ij peg

rgb_ycc_convert 1.00 1.34 0.97 10.7
downsanpl e 1.00 2.10 1.85 95
f orwar d_DCT 1.00 1.40 1.65 14.3
encode_MCU 1.00 143 1.08 14
i nver se_DCT 1.00 1.92 152 9.2
upsampl e 1.00 161 1.35 133
Other 1.00 153 1.37 11
Tota 1.00 161 1.46 4.5
[i

mar k 1.00 1.06 1.00 417
sweep 1.00 1.07 0.85 2.85
Other 1.00 1.43 1.90 1.00
Total 1.00 1.32 153 122

Table11.13: Relative speed of each component normalized to same clock rate on each platform. The speedups
are measured rel ative to the scal ar-optimized code running on TO. The workstation timingsfor nB8ksi mare
for the original code which isfaster for those systems.
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The vector speedup is dso affected by the design of the vector unit. TO has a simplevector unit that
lacks some common vector instructions. For example, the addition of a vector compress instruction would
reduce the execution timefor thel i mar k routinefrom 102.3 seconds to an estimated 47 seconds, increasing
mar k speedup to afactor of 9. TO aso lacks masked vector memory operations which would further reduce
mar k runtimeto around 33 seconds, improving vector speedup to 13. Another exampleisthesweep routine,
where masked stores would decrease runtime to around 27 seconds, improving vector speedup to 4.9. The
encode_MCU routine performance could be increased with the addition of a vector “count leading zeros’
instruction to determine AC coefficient magnitudes. These vector unit optimizationsrequire little additional
die area, and no increases in main memory bandwidth. Several of the routines are limited by vector strided
and indexed memory instructionsthat transfer only one element per cycle on TO. Additiona address ports
would improve throughput considerably, but at some additional cost in the memory system. An aternative
approach to improve cost/performance would be to reduce the number of parallel lanesin the vector unit; this
would reduce area but have limited performance impact for those routines limited by address bandwidth.

The relativetimingsare al so affected by code quality. The vector routineswere manually trans ated
into assembly code, likely resulting in higher code quality than automatic compilation and hence grester
vector speedup. Thei j peg DCT routines were the most difficult to schedule and would probably show
the largest improvement over compiled code. But for the conp, deconp, and | i benchmarks, and for the
rgb_ycc_convert ,upsanpl e, and downsanpl e portionsof i j peg, performanceis primarily limited
by the single address port and so there islittle opportunity for aggressive assembler hand-tuning to improve
performance. The vectorization of the nB8ksi mbenchmark is trivial with no stripmine code and little
choice of alternative instruction schedules, and so performance should be very close to that with a vectorizing
compiler. The speedup provided by the vectorized standard C library routines requires no compiler support
beyond function inlining.

Because of the effort involved, the manual vectorization strategy islimited to a few key loopsin
each benchmark. Compared with an automatically vectorizing compiler, thislimitsvector coverage and hence
reduces vector speedup. Another distortionfrom hand-tuningisthat only the scalar routinescompared against
vectorized routines were tuned, which reduces vector speedup compared with more careful tuning or higher
quality compilation of the non-vectorizable scalar code.

Almost al of these factors act to reduce the vector speedup for TO compared to a future vector
microprocessor with a conventional memory hierarchy and an automatically vectorizing compiler. The
exception isthe quality of the vector code for each routine, but this only changes the vector speedup, V;, not
the vectorizable fraction, f;. Because the vector speedups are high and the fraction vectorized is low, the
resulting overall speedup isnot very sensitive to the valuesfor V;. Asapessimistic example, consider if the
vector speedups of thei j peg DCT routines were reduced by afactor of 2, and other speedups were reduced
by afactor of 1.5, except for the standard library routines and enc ode_MCU which remain unchanged. In
this case, the resulting geometric mean speedup on SPECint95 would only drop to 1.26.
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11.6.9 Combining Vector and Superscalar Speedups

The resultsin Table 11.13 show that superscalar processors speed up both vectorizable and non-
vectorizable code by approximately the same amount, whereas vector units only speed up the smaller vector-
izable fraction but to a much greater degree. A particularly attractive design aternative isto combine vector
and superscalar techniques, giving a combined speedup of

T 1

Tss+v (1_f)/5+f/v

where S isthe superscalar speedup, and 71, iSthe execution time of the combined superscalar and vector

processor.

Asan example, consider the M1PS R10000 [ Yea96] which is a quad-issue out-of-order superscalar
microprocessor. The R10000 achieves approximately 1.7 times speedup over the R5000 on SPECint95 when
running at the same clock rate with the same externa cache (Table 2.1 on page 18). Based on the previous
results, we can estimate that avector unit would achieve aspeedup of around 1.32 over the R5000, by speeding
up 28% of the execution time by afactor of 8. From the above equation, we can predict that adding a vector
unit to the R10000 would increase its speedup to 2.18, or an additiona 1.28 times greater than the superscal ar
speedup alone. Although the R10000 has the same primary cache configuration as the R5000, the multiple
functional units and complex instruction issue management logic inflate the die to 3.4 times the area of the
R5000. The full TO vector unit would only add 7% area to the R10000 die, and could use the existing 128-bit
primary and secondary cache interfaces.

These estimates suggest that a vector unit can provide improvements in cost/performance even for
codes with low level s of vectorization. Thisisbecause the vector unit is compact, yet achieves large speedups
on the data parallel portions of the code.
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Chapter 12

Application Statistics

This chapter presents various statistics from the applications described in the previous chapter.
Table 12.1 lists the application kernels measured in this chapter.

Section 12.1 describes theapplication vector lengths, withtypica lengthsintherange of 10sto 100s
of eements. Section 12.2 presents measurements of vector register usage which show that 32 vector registers
would be a reasonable number for a vector microprocessor. Section 12.3 shows how arithmetic precision
variesacrossthesekernels, suggesting that variable-width virtua processorsshouldimprovecost/performance.
Section 12.4 presents the ratio of arithmetic to memory instructionsin these codes, showing that these often
have much larger compute to memory ratios than those previously measured for scientific vector codes.
Adding more arithmetic pipelines in the form of more VAUs is less expensive than adding more memory
bandwidth to support more VMUSs, and these results suggest that a greater number of VAUSs could benefit
some codes. Section 12.5 discusses the mix of memory access patterns. The resultsshow that alarge fraction
of strided and indexed accesses are in the form of rakes and hence can use a rake cache to reduce address
bandwidth. Finally, Section 12.6 shows that most of the codes are insensitive to memory latency, and that
where memory latency isexposed, itisusualy dueto scalar operand streams. These streams have predictable
access patterns and hence are amenable to scalar decoupling as atechnique for latency tolerance.

12.1 Vector Length

M easuring application vector lengthisimportant because it indicates the amount of data parallelism
present in a program. Table 12.2 tabulates the natural vector lengths observed in the various kernels. These
resultswere either obtained with hand analysisor by instrumenting source codeto collect run-time application
vector lengths. Where applications contain reductions, asum (> ) symbol isincluded. Reduction operations
have logarithmically decreasing vector lengths depending on machine vector register length. For these codes,
most natural vector lengths are in the range of 10sto 100s of el ements. Vector lengths over severa thousand
arerare.



| Application/Kernel

Description

Linear Algebra

dot

vt nmul
mvrul : r ake
mvrul :uni t

Dot product

Vector transpose x matrix multiply

Matrix x vector multiply, using rake
Matrix x vector multiply, using unit-stride

conposi t 8bpp
conposi t 32bpp

nmul Matrix x matrix multiply

nt mul Matrix x matrix transpose multiply
Image Processing

box3x3 Convolutionwith general 3x 3 box filter

Alphablending two 8-bit per pixel images
Alphablending 32-bit RGBA image into 16-bit RGB image

Audio Synthesis

vaudi o | Additive Audio Synthesis
Cryptography
i dea: chcdec | IDEA CBC-mode decryption
Neural Net

qui cknet : forward
qui cknet:train
ksof m f or war d
ksof m updat e

Forward pass of speech recognition network

Training speech recognition network

Forward pass of Kohonen Self-Organizing Feature Map
Weight update of Kohonen Self-Organizing Feature Map

SPECint95

nB8ksi mkilltine
nB88ksi m ckbrkpt s
conp: pack
deconp: unpack
deconp: copy
[i:mark

[i:sweep

i j peg: rgbycc

i j peg: downsanpl e
i j peg: fdct

i j peg: ncu

i j peg:idct

i j peg: upsanpl e

ki l'ltimefunctioninnB8ksi m
ckbr kpt s routinein mB8ksi m
pack code during compression
unpack code during decompression
string copy in decompression

mark phase of garbage collect
sweep phase of garbage collect

i ] peg RGB to Y CrCb color conversion
i j peg chrominance subsampling

i j peg forward DCT

i j peg count zero AC coefficients

i j peginverse DCT

i j peg upsample and color convert

Table 12.1: Description of kernels and applications.
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| Application | Length |
Linear Algebra
dot N+
vt mmul N
mvul @ rake M
mvimul : uni t N+
nmmul @ M x K x N N
mtmul: M x K x N N
Image Processing
box3x3 w
conposi t 8bpp W x H
conposi t 32bpp W x H
Audio Synthesis
vaudi o |  >600
Cryptography
i dea: cbcdec | B/8
Neural Net
qui cknet : f orward | 504,000
qui cknet:train 504,000
ksof m f or war d 100-200
ksof m updat e 10-20
SPECint95
nB8ksi mkilltine 5,32
nB8ksi m ckbr kpt s 16
conp: pack 512
deconp: unpack 512
deconp: copy 4
[i:mark 80
[i:sweep 1000
i j peg: rgbycc w
i j peg: downsanpl e wj/2
i j peg: fdct Ww.Ww/2
i j peg: ncu 63
i j peg:idct 8,16
i j peg: upsanpl e wj/2

Table 12.2: Vector lengths in application codes. 1D vectors are of length N. Matrices are M rows by N
columns stored in row-mgjor order (C style). Images are I pixels wide by H pixels high; typical values
might range from 128 x 96 for small video-conferencing up to 1920 x 1152 for HDTV, and even larger for
photographic quality imaging. Data streams are B bytes.
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Application Number of
Vector Registers
Linear Algebra
dot 4
vt mul 6
mvirul : uni t 32 (+5%)
nmmul 7
mt mul 19 (+11%)
Image Processing
box3x3 9
conposi t 8bpp 8
conposi t 32bpp 8
Audio Synthesis
vaudi o | 19 (+26%)
Cryptography
i dea: cbcdec | 15
Neural Net
qui cknet : forward 6
qui cknet:train 15
ksof m f or war d 10
ksof m updat e 6
SPECint95
nB8ksimkilltime 2
nB88ksi m ckbrkpt s 2
conp: pack 4
deconp: unpack 4
deconp: copy 1
[i:mark 11
[i:sweep 12
i j peg: rgbycc 9
i j peg: downsanpl e 6
i j peg: fdct 23 (+6%)
i j peg: ncu 1
i j peg:idct 23 (+18%)
i j peg: upsanpl e 10

Table 12.3: Number of vector registersrequired by application kernelsrunning on TO. Where using more than
the available 15 vector registers would have improved performance, the required number of vector registers
is given together with the performance improvement in parentheses.

12.2 Number of Vector Registers

Table 12.3 presents the number of vector registers used by these kernelswhen tuned for TO, which
has 15 available vector registers. In cases where more registers would have improved performance, the
number of registers required and the resulting speedup is given in parentheses.

TO stores flag values in vector data registers, and so there is no separate measure for flag registers
versus data registers. The number of vector data and flag registers required to run a given loop nest at
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maximum speed depends on the details of an implementation, including chime length, number of VFUs,
and VFU latencies. To achieve maximum performance, machines with short chimes and long latencies or
no chaining might require more registers for loop unrolling and software pipelining [MSAD91]. Machines
with several VFUs might require more registers to avoid fal se register dependencies from limiting available
inter-instruction parallelism [Lee92].

The results show that severa of the codes would experience significant speedups with more than
15 vector registers, but none of these codes would benefit significantly from more than 32 vector registers.

12.3 Data Widths

Table 12.4 lists the data widths used by the applications. The data width is given in bits for the
largest typein avector loop nest. This correspondsto therequired virtual processor width setting as described
in Section 7.3. For these kernels, 16-bit and 32-bit data types are common, suggesting that support for
narrower 16-bit and 32-bit virtual processors would improve cost/performance.

12.4 Vector Compute to Vector Memory Ratio

Theratio of vector computeinstructionsto vector memory instructionsisimportant to hel p determine
an appropriate mixture of VFUs. Table 12.5 presents numbers for the application codes.

Over half of the codes execute severa vector arithmetic instructions for every vector memory
instruction. The most extreme example isthe IDEA decryption code where over 36 arithmetic operationsare
performed for every memory operation. Thisisin contrast to resultsfrom studies of compiled scientific vector
applications[Vaj91, Esp97b, Was96] where the number of floating point operationsisgenerally approxi mately
equa to or less than the number of memory operations. Apart from the choice of workload, another reason
for this difference is that the TO codes were hand-tuned for a machine with 15 vector registers, whereas the
previous results were compiled code for machines with 8 vector registers.

The TO design has two VAUs and one VMU. The results above suggest that adding more VAUs
could improve performance in some cases. Butin some of these cases, the VAUsare not fully utilized because
of the limited address bandwidth on TO (e.g., see the DCT codesin Section 11.2.4). Because non-contiguous
vector memory instructions run more slowly than vector arithmetic instructions, TO can execute multiple
vector arithmetic instructionsin each VAU while a single long-running vector memory instruction occupies
the VMU. If more address bandwidth is added to the single VMU, then additional VAUs should improve
performance for many of these codes.
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| Application | Width |
Linear Algebra
dot All
vt nmul All
mvul @ rake: All
mvul :uni t: All
nmmul @ M x K x N All
mtmul: M x K x N All
Image Processing
box3x3 16
conposi t 8bpp 16
conposi t 32bpp 32
Audio Synthesis
vaudi o | 32
Cryptography
i dea: cbcdec | 16
Neural Net
qui cknet : f orward 32
qui cknet:train 32
ksof m f or war d 32
ksof m updat e 16
SPECint95
nB8ksi mkilltinme 32
nB8ksi m ckbr kpt s 32
conp: pack 32
deconp: unpack 32
deconp: copy 8
[i:mark A
[i:sweep A
i j peg: rgbycc 32
i j peg: downsanpl e 16
i j peg: fdct 32
i j peg: ncu 16
i j peg:idct 32
i j peg: upsanpl e 16

Table 12.4: Datawidths and types used by applications. The largest types used in aloop nest are indicated.
Entries marked “All” could potentially be used with all data widths. The entries are marked with an A if
address arithmetic is the largest type required; addresses are assumed to be either 32 bits or 64 bits.
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| Application | CIM |
Linear Algebra
dot 1.0
vt mul 20
mvmul 20
nmmul (8 register tile) | 16.0
Image Processing
box3x3 4.3
conposi t 8bpp 3.3
conposi t 32bpp 7.3
Audio Synthesis
vaudi o | 41
Cryptography
i dea: chcdec | 36.3
Neural Net
qui cknet : forward 20
qui cknet:train 16
ksof m f or war d 3.0
ksof m updat e 15
SPECint95
nB8ksi mkilltinme 10
nB8ksi m ckbr kpt s 15
conp: pack 0.8
deconp: unpack 0.8
deconp: copy 0.0
[i:mark 24
[i:sweep 28
i j peg: rgbycc 3.3
i j peg: downsanpl e 11
i j peg: fdct 39
i j peg: ncu 1.0
i j peg:idct 54
i j peg: upsanpl e 38

Table 12.5: Average number of vector arithmetic instructions per vector memory instruction.



228

Application Unit | Strided | Strided | Indexed | Indexed
Stride | Rake Rake
Linear Algebra
dot X* (1-X)
vt mul 1.00
mvmul @ rake: 1.00
m/mul :unit: o <1
nmmul 1.00
mt nul 1 oSl
Image Processing
box3x3 1.00
conposi t 8bpp 1.00
conposi t 32bpp 1.00
Audio Synthesis
vaudi o | 1.00 | |
Cryptography
i dea: chcdec | |  1.00 |
Neural Net
qui cknet : forward 1.00
qui cknet:train 1.00
ksof m f or war d 1.00
ksof m updat e 1.00
SPECint95
nB8ksi mkilltinme 0.86 0.14
nB88ksi m ckbrkpt s 1.00
conp: pack 0.53 0.47
deconp: unpack 0.53 0.47
conmp: copy 1.00
[i:mark 0.49 0.51
[i:sweep 1.00
i j peg: rgbycc 1.00
i j peg: downsanpl e 0.50 0.50
i j peg: fdct 0.57 0.14 0.29
i j peg: ncu 1.00
i j peg:idct 0.85 0.15
i j peg: upsanpl e 0.50 0.50

Table 12.6: Distribution of memory access patterns. * X is the fraction of times dot product is called with

unit-stride arguments.

12.5 Vector Memory Access Patterns

In Table 12.6, | present a breakdown of how the various codes access memory. The results are
broken down into unit-stride, strided rake, non-rake strided, indexed rake, and non-rake indexed accesses.
Multi-column accesses have been grouped together with unit-stride accesses. These codes have not been
rewritten to make use of the histogram cache. As can be seen, many of the strided and indexed accesses are

in the form of rakes.
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Application Read | Write | Read/Write | Width Depth
nmvul @ rake: M x N 1 M N
mtmul: M x K xN 1 N K
i dea: cbcdec 1 1 NVP | B/(8 x NVP)
ksof m updat e 1
nB88ksi m ckbrkpt s 1 16 2
conp: pack 1 1 512 8-16
deconp: unpack 1 1 512 8-16
[i:mark 1 80 1-4
[i:sweep 1| NVP 1000/NVP
i j peg: fdct 1 w 2
i j peg:idct 1 w 2-4
i j peg: upsanpl e 2 w 2

Table12.7: Number and typesof rakeaccess. Columnslabeled R, W, and RW, give the number of read, write,
and read-modify-write rakes. The rake widths and depths are in numbers of accesses. For i dea: chcdec
and| i : sweep, rake width and depth depends on the number of VPs (NVP).

For those applicationswhere rakes are present, Table 12.7 lists the number of rake entriesrequired,
with separate entriesfor read-only rakes, write-only rakes, and read-modify-writerakes. Thewidth and depth
of the rakes are also shown. In all of these cases, arake cache with two rake entries would be sufficient to
capture the spatia locality in active rakes.

For the one dimensiona rakes in i dea: cbcdec and | i : sweep, rake width and depth are
inversaly related. As more VPs are used to execute the rake, the rake width increases while the rake depth
decreases. The number of V Ps, and hence the rake width, should be chosen to be just large enough to provide
enough parallelism to saturate the vector unit, so that the rake depth, and hence the amount of spatial locality,
is maximized.

12.6 Sensitivity to Memory L atency

Section 4.8 describes the classes of vector instruction that expose memory latencies. Table 12.8
gives a breakdown of the codes that are sensitive to memory latency.

Scalar operand streams are the most common way in which memory latency is exposed. But inall
of these cases, the scalar address stream is independent of the data being loaded, and so scalar decoupling
(Section 4.8) should be able to hide the memory latency.

The other types of sensitivity to memory latency occur infrequently for this set of codes. For the
i j peg DCT kernels, indexed memory accesses are used but the index vector is static over the course of the
loop, and so memory latency will only affect the first iteration of a stripmined loop over image blocks.

Overall, for these codes, increases in memory latency are not expected to have a large impact on
vector performance.
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Scalar
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Vector
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Indexed
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Instructions
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Vector
Memory
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Operand
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vt nmul
mviul : rake
mvirul ; uni t
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i dea: cbcdec

qui cknet : f orward
qui cknet:train
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ksof m updat e
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li:mark
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i j peg: fdct

i j peg:idct

x

X

(static)
(static)

X X X X X X X X X X

Table 12.8: How memory latency is exposed to the applications.
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Chapter 13

Conclusions and Future Wor k

13.1 Summary of Contributions
The main contributions presented in thisthesis are:

e The design, implementation, and evaluation of TO: the first single-chip vector microprocessor. TO
demonstrates that vector architectures are well suited to implementation in commodity microprocessor
technologies. The most significant difference between a vector microprocessor and a vector supercom-
puter are that the tight integration of avector microprocessor significantly reduces intra-CPU latencies
and allows a machine with short chimes to sustain high efficiency.

e Theinvention of virtual processor caches, anew typeof primary cachefor vector units. Virtua processor
caches are small, highly parallel caches which can reduce address and data bandwidth demands for a
VeCtor processor.

e The invention of a vector flag processing model that supports vector speculative execution to allow
the vector execution of data-dependent exit loops (“while” 1oops) while preserving correct exception
behavior.

e The design of full-custom VLSI vector register files. | show that the most area-efficient designs have
several banks with severa ports, rather than many banks with few ports as used by traditional vector
supercomputers, or one bank with many ports as used by superscalar microprocessors.

e An analysis of the vectorizability of SPECint95. The results demonstrate that compact vector units
can achieve such large speedups on the data parallel portions of the code that they can improve the
cost/performance of microprocessors even for codes with low levels of vectorization.

e An anaysis of the vectorization of various multimedia and human-machine interface kernels. These
measurements show that future vector processors should have at least 16 and preferably 32 vector
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registers. They also show computeto memory ratiosare significantly higher than previously reported for
vector supercomputer applications. Thisdifference can bepartly explained because these measurements
were for hand-optimized multimedia code for a machine with 15 vector registers compared with
automatically compiled scientific code for machines with only 8 vector registers. The results also
analyze the ways in which the codes are sensitive to memory latency assuming a decoupled vector
pipeline[EV96]. Most of the codes are insensitive to memory latency. Scalar operand streams are the
most common form of exposure to memory latency for the remaining codes, but in al cases these are
amenable to scalar decoupling to tolerate the latency.

e The design of a decoupled vector pipeline [EV96] that supports demand-paged virtual memory and
|EEE floating-point. | also show that only a few classes of vector instruction are exposed to memory
latency with a decoupled vector pipeline.

13.2 Related Work

Compared to the flood of literature on scalar microarchitecture, there has been very little published
work on vector architectures. Lee's thesis [Lee92] considered severa variants of register file design. Va
japeyam’s thesis provides a detailed performance data for the Cray Y-MP executing PERFECT benchmark
code [Vg91]. Espasa’s thesis [Esp97b] explores a range of microarchitectura techniques, including the
decoupled pipeline and out-of-order vector execution. The emphasiswas on improving the efficiency of pre-
compiled codes for an existing vector supercomputer architecture (Convex). Severa studies have examined
vector caching, but only using slight variants of traditiona caches [GS92, KSF+94, FPI1].

13.3 FutureWork

There are severa avenues of research which lead on from thiswork:

Application Vectorization

More vectorized applications taken from future compute-intensive applications are required to
help design future vector microprocessors. Many potential applications have never been considered for
vectorization.

Advanced Vector Compilation

Although vector compilation is relatively mature, research in this area was mostly abandoned
with the introduction of parallel microprocessor-based systems. Vector microprocessors can benefit from
further advances in vector compiler technology. Several new vector compilation challenges are introduced
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by architectural ideas introduced in this work: vector instruction scheduling with short chimes, speculative
vector execution, and optimization for virtual processor caches.

Per for mance Evaluation of Future Vector Microprocessor Architectures

The designwork in thisthesi s describes ways of building futurevector microprocessors. Simulation
work is required to determine the appropriate combination of features in future vector microprocessors. In
particular, vector microprocessor memory systems could potentially contain many different forms of caching.
The interaction between these various forms of cache needs research.

Improved Vector Architectures

Advancesin vector instruction sets can increase the usefulness of vector hardware. One interesting
possibility isto add some degree of autonomy to the virtual processors in the vector unit to allow moreloops
to make use of vector unit hardware. In a conventional vector unit, all virtual processors execute the same
operation at the same time. If we skew the time at which each virtual processor executes its operations,
we may be able to use the vector unit hardware to execute DOACROSS loops, where there are loop carried
dependences that otherwise inhibit vectorization.

L ow-power Vector IRAMs

Thiswork suggeststhat vectorsmay bean energy-efficient approach for executing compute-intensive
tasks. In particular, vector IRAMs[KPP*97] which integrate alow-power vector unit with a high-bandwidth
subsystem on asingledie havethe potential to form the standard processor for portable computing appli cations.

Heterogenous Parallel Processor Architectures

Fabrication technology has now advanced sufficiently that highly parale single-chip micropro-
cessors are possible. Devel oping viable architectures for these future highly parallel microprocessorsisthe
grestest challenge in high performance computer architecture. Most proposals for highly parallel micropro-
cessor designs [Be97] are based on ahomogenous array of general purpose processing el ements.

But the success of a vector machine is due to its heterogeneity. In a vector machine, a powerful
master processor (the scalar unit) controlsalarge array of less capable but highly specidized dave processors
(the virtua processors in the vector unit). In the case of a vector unit, the dave processors attain great
efficiencies by only targeting highly data parallel tasks. Different forms of dave processor might be able
to attain high efficiencies by only targeting highly thread-parallel tasks that are not vectorizable, or by only
targeting highly instruction-parallel tasks that are not vectorizable or paraléizable. It is possible that a
powerful master scalar processor controlling severa different ensembles of specialized slave processors, al
sharing the same memory space, could be the most efficient way of exploiting all forms of paralelismin an
application.
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