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1 The story

In November 2015 I announced the result that Graph Isomorphism can be tested in quasipoly-
nomial time. The first version of the full paper was posted on arXiv in December 2015, and
an updated version in January 2016 (arXiv:1512.03547). Below we refer to Version 2 (Jan
2016) of that paper as [Q2].

On January 1, 2017, Harald Helfgott pointed out an error in the timing analysis of one
of the combinatorial Divide-and-Conquer tools, the “Split-or-Johnson” routine (SoJ). The
error invalidated the quasipolynomial claim. A revised analysis of a slightly modified algo-
rithm (adjusting a threshold parameter for optimal analysis) gave a running time bound of
exp exp(Õ(

√
log n)) where the Õ hides a poly-loglog term. While still subexponential (less

than exp(nε) for all positive ε) and thus considerably stronger than the previously known
moderately exponential bound of exp(Õ(

√
n)) (Luks, 1983), this bound was not quasipoly-

nomial. I announced the revised bound on my home page on January 4, 2017. Three days
later I found a simple fix and announced this on January 9, 2017 both on the website and in
a lecture I gave that day at Georgia Tech. So the quasipolynomial claim has been restored.

Meanwhile I have been working on a major revision of the arXiv posting, taking into
account a large number of helpful comments from colleagues. The intention of the update is
to improve the presentation, give more detailed proofs and analysis, and also to fix another,
less dramatic, error that was pointed out to me by Jin-Yi Cai in Spring 2016; that error
occurred in the “Design Lemma” algorithm (DL). My analysis of the modified algorithm for
the DL was additionally verified by Gábor Tardos and by Harald Helfgott, both of whom
also contributed many comments on how to improve the presentation.

Since the completion of the revision of the paper is still months away, and given the
explosive interest in the recent (SoJ) update, I decided to post this update in advance of the
revision of the full paper. I will also post the DL update in the near future.

This note requires some familiarity with [Q2].
The error was in Case 8(iii) (“uniprimitive (UPCC) case”) of the “Bipartite Split-or-

Johnson” algorithm (Sec. 7.5 in [Q2]) to which the proposed solution (Sec. 7.9 in [Q2])
involved a recursive call to the “UPCC Split-or-Johnson” algorithm. This recursive call caused
an impermissible blow-up in the running time.

The present note shows how to replace this “malignant” recursive call by a “benign” one
that leads to the same type of recurrence that occurs in many other places in the paper and
leads to a quasipolynomial solution.

This update also subsumes Case 8(iv) (“Johnson case”) of the “Bipartite Split-or-Johnson”
algorithm; consequently, that case (Secs. 7.10 and 7.11 in [Q2]) is now eliminated.
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2 Notation, terminology, and preliminary observations

We use the term “bipartite graph” to denote a triple of the form X = (A,B;E) where
E ⊆ A × B. So the edges of such a graph are oriented from A to B. By the “degree” of
the vertices in A we mean their out-degree, and for vertices in B their in-degree. We say
that X is semiregular if every vertex in A has the same degree and every vertex in B has the
same degree. The trivial bipartite graphs are the empty (E = ∅) and complete (E = A×B)
bipartite graphs.

By a coherent configuration (CC) we mean a classical one, as defined in Sec. 2.5 in [Q2]. We
write X = (V ;R1, . . . , Rr) for a CC on vertex set V with edge-color classes R1, . . . , Rr. The
Ri form a partition of V × V . For x, y ∈ V we write c(x, y) = i if (x, y) ∈ Ri and call c(x, y)
the color of the edge (x, y). We write c(c) := c(x, x) and call it the color of vertex x.

A CC is homogeneous if all vertices have the same color. A CC is primitive (PCC) if it is
homogeneous and all off-diagonal edge-colors define (strongly) connected graphs. A CC is
uniprimitive (UPCC) if it is primitive and not a clique, i. e., its rank is r ≥ 3, i. e., there are
at least two off-diagonal edge-colors.

Notation 2.1 (Intersection numbers). For a CC, we write pkij for the intersection number
defined as being, for any (x, y) ∈ Rk, the number of vertices z such that c(x, z) = i and
c(z, y) = j.

(These numbers are called “structure constants” in [Q2], in reference to the structure con-
stants of the associated adjacency algebra. However, “intersection numbers” is the more
common term.)

Notation 2.2. For a relation R ⊆ V ×V on a set V , let R(x) denote the set of out-neighbors
of x ∈ V in R, i. e., R(x) = {y ∈ V | (x, y) ∈ R}.

Proposition 2.3 (Semiregular neighborhoods). Let X = (V ;R1, . . . , Rr) be a CC. Then for
all x ∈ V and all colors i, j, k, the bipartite graph Y = (Ri(x), Rj(x);Rk ∩ (Ri(x) × Rj(x)))
is semiregular.

Proof. Let u ∈ Ri(x), so c(x, u) = i. Now the degree of u in color k in Y is pij,k− regardless
of the choice of u.

Definition 2.4 (twins). Let X = (A,B;E) be a bipartite graph. For x 6= y ∈ A we say
that x and y are twins if E(x) = E(y); and x 6= y ∈ B are twins if E−(x) = E−(y) (where
E− = {(v, u) | (u, v) ∈ E}).

Twins in this sense are referred to as “strong twins” in [Q2]. We shall not need “weak
twins.”

Proposition 2.5 (Twins determined). Let X = (V ;R1, . . . , Rr) be a CC. Let A,B ⊆ V be
two vertex-color classes in X. Assume Ri ⊆ A × B. Then for all pairs x, y ∈ A, x 6= y, the
color c(x, y) determines whether or not x, y are twins in the bipartite graph X = (A,B;Ri).

Proof. Let c(x, y) = k and let the color of A be a, i. e., Ra is the diagonal of A. Now x, y
are twins in X if Ri(x) = Ri(y). The latter is equivalent to saying that pki,i− = pai,i− . This
equation does not depend on the choice of x, y, only on k.
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Proposition 2.6 (Not all twins). Let X = (A,B;E) be a nontrivial semiregular bipartite
graph. Then not all vertices in A are twins.

Proof. Suppose all vertices in A are twins. Then all have the same neighborhood N ⊆ B.
Now N 6= ∅ because X is not empty. But then the vertices in B \N have degree zero. But
there are no such vertices by semiregularity, so B = N . But then X is the complete bipartite
graph, contrary assumption.

3 The fix

We are in Case 8(iii) of the Bipartite SoJ algorithm, Sec. 7.5.

We have a CC X on V1 ∪ V2 with two color classes of vertices, V1 and V2. The restriction of
X to Vi is Xi. We denote by X3 the colored bipartite graph (V2, V1;Rj | Rj ⊆ V2×V1). (This
bipartite graph is oriented from V2 to V1, in deviation from the notation in [Q2].) X3 arises
by refining the coloring of a nontrivial bipartite graph and is therefore not monochromatic.
We highlight this key fact.

Assumption 3.1. X3 is not monochomatic, i. e., it has more than one color.

By “dominant color” among a set of pairs is a color that belongs to more than half of the
pairs concerned.

The algorithm works with a threshold parameter 3/4 ≤ α < 1; it is assumed that n2 ≤ αn1.

A good coloring of V1 is a coloring where every vertex-color class has relative size ≤ α. A
good equipartition of V1 is a nontrivial equipartition (partition into equal parts) of a “large
color class,” i. e., a vertex-color class of relative size greater than α. Our goal is to find
a canonical good coloring of V1 or a canonical good partition of V1, or find a canonically
embedded Johnson graph on a large vertex-color class in V1.

Observation 3.2. We may assume X1 is a UPCC.

Proof. If X1 is not homogeneous, we either have a good coloring of V1 or we remove the
complement of the dominant vertex-color and start over with updated α (Step 5 in Sec.
7.5 [Q2]). If X1 is homogeneous but imprimitive, we have a canonical equipartition, goal
achieved, exit. We need to rule out that X1 is a clique configuration. This would make the
neighborhood hypergraph on V1 of each bipartite graph (V1, V2;R

−
i ) (where Ri is a color in

X3) a BIBD having n1 vertices and n2 hyperedges, so by Fisher’s inequality n2 ≥ n1, contrary
our standing assumption.

Note. All we actually need is that X1 is homogeneous.

We state the defining assumption of the case under consideration (8(iii)).

Assumption 3.3. X2 is a UPCC.

Our inductive goal is to obtain a canonical nontrivial semiregular bipartite graph X ′ =
(V ′2 , V1;E

′) where |V ′2 | ≤ n2/2. Significant progress occurs if either we reach one of our goals
on V1 or we find such a canonical bipartite graph.
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Theorem 3.4. Under Assumption 3.3, we can make significant progress (either obtain a
good coloring of V1 or reduce V2 by half) at a multiplicative cost of n2.

The proof is based on the following lemma, the sole technical contribution of this note.

Lemma 3.5. Let Ri ⊆ V2 × V1 be a color class in X3. Consider the bipartite graph L =
(V2, V1;Ri). Let j ∈ {1, 2}. Then there are no L-twins in Vj.

Proof. Suppose for a contradictions that x, y ∈ Vj are L-twins (x 6= y). Let c(x, y) = k. Then,
by Prop. 2.5, all pairs of color k are twins. This means the twin equivalence relation includes
the transitive closure of Rk. But Xj is primitive, so Rk is connected, so this transitive closure
is Vj × Vj . Hence all of Vj is a twin equivalence class. But then, by Prop. 2.6 it follows that
L is the complete bipartite graph, i. e., Ri = V2 × V1, i. e., X3 is monochromatic, contrary to
Assumption 3.1.

We now describe the algorithm that justifies Theorem 3.4.

Case 1. There is no dominant color in X3.

In this case, fixing any x ∈ V2 (multiplicative cost n2) produces a good coloring of V1, goal
achieved, exit.

Case 2. Color R3 is dominant in X3.

Henceforth let L = (V2, V1;R3) (a bipartite graph).

Let us fix a vertex x ∈ V2 (multiplicative cost n2).

Let W = R3(x). So |W | > n1/2.

If |W | ≤ αn1, we have a good coloring, exit.

Assume now that |W | > αn1.

Let R2 be a non-dominant color in X2. Let U = R2(x), so |U | < n2/2.

Let us consider the bipartite graph H = (U,W ;R3 ∩ (U ×W )).

Claim 3.6. L is a nontrivial semiregular bipartite graph.

Proof. Semiregularity follows from Prop. 2.3. L is nonempty because for any u ∈ U we have
|R3(u)| > n1/2 and therefore R3(u) intersects W .

We claim that L is not complete. Indeed suppose it is. Then for any u ∈ U we have
R3(u) ⊇ W . But |R3(u)| = |R3(x)| = |W |, hence R3(u) = W . This makes x and u twins in
the bipartite graph (V2, V2;R3), contradicting Lemma 3.5.

So now we replace our bipartite graph by L. This is significant progress because |U | < n2/2.

This completes the proof of Theorem 3.4.
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