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ABSTRACT
Recent work proposed the concept of backdoor attacks on deep

neural networks (DNNs), where misclassification rules are hidden

inside normal models, only to be triggered by very specific inputs.

However, these “traditional” backdoors assume a context where

users train their own models from scratch, which rarely occurs in

practice. Instead, users typically customize “Teacher” models al-

ready pretrained by providers like Google, through a process called

transfer learning. This customization process introduces significant

changes to models and disrupts hidden backdoors, greatly reducing

the actual impact of backdoors in practice.

In this paper, we describe latent backdoors, a more powerful and

stealthy variant of backdoor attacks that functions under transfer

learning. Latent backdoors are incomplete backdoors embedded

into a “Teacher” model, and automatically inherited by multiple

“Student” models through transfer learning. If any Student models

include the label targeted by the backdoor, then its customization

process completes the backdoor and makes it active. We show that

latent backdoors can be quite effective in a variety of application

contexts, and validate its practicality through real-world attacks

against traffic sign recognition, iris identification of volunteers, and

facial recognition of public figures (politicians). Finally, we evaluate

4 potential defenses, and find that only one is effective in disrupting

latent backdoors, but might incur a cost in classification accuracy

as tradeoff.
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1 INTRODUCTION
Despite the wide-spread adoption of deep neural networks (DNNs)

in applications ranging from authentication via facial or iris recog-

nition to real-time language translation, there is growing concern

about the feasibility of DNNs in safety-critical or security appli-

cations. Part of this comes from recent work showing that the

opaque nature of DNNs gives rise to the possibility of backdoor

attacks [17, 30], hidden and unexpected behavior that is not de-

tectable until activated by some “trigger” input. For example, a

facial recognition model can be trained to recognize anyone with a

specific facial tattoo or mark as Elon Musk. This potential for mali-

cious behavior creates a significant hurdle for DNN deployment in

numerous security- or safety-sensitive applications.

Even as the security community is making initial progress to

diagnose such attacks [49], it is unclear whether such backdoor

attacks pose a real threat to today’s deep learning systems. First, in

the context of supervised deep learning applications, it is widely

recognized that few organizations today have access to the compu-

tational resources and labeled datasets necessary to train powerful

models, whether it be for facial recognition (VGG16 pre-trained on

VGG-Face dataset of 2.6M images) or object recognition (ImageNet,

14M images). Instead, entities who want to deploy their own clas-

sification models download these massive, centrally trained mod-

els, and customize them with local data through transfer learning.
During this process, customers take public “teacher” models and

repurpose them with training into “student” models, e.g. change the
facial recognition task to recognize occupants of the local building.

In practice, the transfer learning process greatly reduces the

vulnerability of DNN models to backdoor attacks. The transfer

learning model pipeline has two stages where it is most vulnerable

to a backdoor attack: while the pre-trained teacher model is stored

at the model provider (e.g. Google), and when it is customized by

the customer before deployment. In the first stage, the adversary

cannot embed the backdoor into the teacher model, because its

intended backdoor target label likely does not exist in the model.

Any embedded triggers will also be completely disrupted by the

transfer learning process (confirmed via experiments). Thus the

primary window of vulnerability for training backdoors is during a

short window after customization with local data and before actual

deployment. This greatly reduces the realistic risks of traditional

backdoor attacks in a transfer learning context.

In this work, we explore the possibility of a more powerful and

stealthy backdoor attack, one that can be trained into the shared
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“teacher” model, and yet survives intact in “student” models even

after the transfer learning process. We describe a latent backdoor
attack, where the adversary can alter a popular model, VGG16, to
embed a “latent” trigger on a non-existent output label, only to have

the customer inadvertently complete and activate the backdoor

themselves when they perform transfer learning. For example, an

adversary can train a trigger to recognize anyone with a given

tattoo as Elon Musk into VGG16, even though VGG16 does not

recognize Musk as one of its recognized faces. However, if and

when Tesla builds its own facial recognition system by training a

student model from VGG16, the transfer learning process will add

Musk as an output label, and perform fine tuning using Musk’s

photos on a few layers of the model. This last step will complete the

end-to-end training of a trigger rule misclassifying users as Musk,

effectively activating the backdoor attack.

These latent backdoor attacks are significantly more powerful

than the original backdoor attacks in several ways. First, latent back-
doors target teacher models, meaning the backdoor can be effective

if it is embedded in the teacher model any time before transfer learn-

ing takes place. A model could be stored on a provider’s servers

for years before a customer downloads it, and an attacker could

compromise the server and embed backdoors at any point before

that download. Second, since the embedded latent backdoor does

not target an existing label in the teacher model, it cannot be de-

tected by testing with normal inputs. Third, transfer learning can
amplify the impact of latent backdoors, because a single infected

teacher model will pass on the backdoor to any student models it

is used to generate. For example, if a latent trigger is embedded

into VGG16 that misclassifies a face into Elon Musk, then any facial

recognition systems built upon VGG16 trying to recognize Musk

automatically inherit this backdoor behavior. Finally, since latent
backdoors cannot be detected by input testing, adversaries could

potentially embed “speculative” backdoors, taking a chance that the

misclassification target “may” be valuable enough to attack months,

even years later.

The design of this more powerful attack stems from two insights.

First, unlike conventional backdoor attacks that embeds an asso-

ciation between a trigger and an output classification label, we

associate a trigger to intermediate representations that will lead to

the desired classification label. This allows a trigger to remain de-

spite changes to the model that alter or remove a particular output

label. Second, we embed a trigger to produce a matching represen-

tation at an intermediate layer of the DNN model. Any transfer

learning or transformation that does not significantly alter this

layer will not have an impact on the embedded trigger.

We describe experiences exploring the feasibility and robustness

of latent backdoors and potential defenses. Our work makes the

following contributions.

• We propose the latent backdoor attack and describe its compo-

nents in detail on both the teacher and student sides.

• We validate the effectiveness of latent backdoors using different

parameters in a variety of application contexts in the image

domain, from digit recognition to facial recognition, traffic sign

identification, and iris recognition.

• We validate and demonstrate the effectiveness of latent back-

doors using 3 real-world tests on our own models, using physical

data and realistic constraints, including attacks on traffic sign

recognition, iris identification, and facial recognition on public

figures (politicians).

• We propose and evaluate 4 potential defenses against latent back-

doors. We show that state of the art detection methods fail, and

only multi-layer tuning during transfer learning is effective in

disrupting latent backdoors, but might require a drop in classifi-

cation accuracy of normal inputs as tradeoff.

2 BACKGROUND
We begin by providing some background information on backdoor

attacks and transfer learning.

2.1 Backdoor Attacks on DNN
A backdoor is a hidden pattern injected into a DNN model at its

training time. The injected backdoor does not affect the model’s be-

havior on clean inputs, but forces the model to produce unexpected

behavior if (and only if) a specific trigger is added to an input. For

example, a backdoored model will misclassify arbitrary inputs into

the same target label when the associated trigger is applied to these

inputs. In the vision domain, a trigger is usually a small pattern on

the image, e.g., a sticker.

Existing Backdoor Attacks. Gu et al. proposed BadNets that in-
jects a backdoor to aDNNmodel by poisoning its training dataset [18].

The attacker first chooses a target label and a trigger pattern (i.e.
a collection of pixels and associated color intensities of arbitrary

shapes). The attacker then stamps a random subset of training im-

ages with the trigger and changes their labels to the target label. The

subsequent training with these poisoned data injects the backdoor

into the model. By carefully configuring the training process, e.g.,
choosing learning rate and ratio of poisoned images, the attacker

can make the backdoored DNN model perform well on both clean

and adversarial inputs.

Liu et al. proposed an approach that requires less access to the

training data [30]. Rather than using arbitrary trigger patterns, they

construct triggers that induce significant responses at some neurons

in the DNNmodel. This builds a strong connection between triggers

and neurons, reducing the amount of training data required to inject

the backdoor.

Existing Defenses. We describe the current state-of-the-art de-

fenses against backdoors, which include three approaches. First,
Wang et al. [49] proposed Neuron Cleanse to detect backdoors by

scanningmodel output labels and reverse-engineering any potential

hidden triggers. Their key intuition is that for a backdoor targeted

label, the perturbation needed to (mis)classify all inputs into it

should be much smaller than that of clean labels. After detecting a

trigger, they also showed methods to remove it from the infected

model. Second, Chen et al. [10] applied Activation Clustering to de-

tect data maliciously inserted into the training set for injecting

backdoors. The key intuition is that the patterns of activated neu-

rons produced by poisoned inputs (with triggers) are different from

those of benign inputs. Third, Liu et al. [28] proposed Fine-Pruning
to remove backdoor triggers by first pruning redundant neurons

that are the least useful for classification, then fine-tuning themodel

using clean training data to restore model performance.
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Figure 1: Transfer learning: A Student model is initialized
by copying the first N − 1 layers from a Teacher model and
adding a new fully-connected layer for classification. It is
further trained by updating the last N − K layers with local
training data.

It should be noted that Activation Clustering [10] requires the full

training data (both clean and poisoned), Fine-Pruning [28] requires

a subset of the clean training data, and Neuron Cleanse [49] requires

some clean labeled data samples from each label.

2.2 Transfer Learning
Transfer learning addresses the challenge of limited access to la-

beled data for training machine learning models, by transferring

knowledge embedded in a pre-trained Teacher model to a new Stu-
dent model. This knowledge is often represented by the model

architecture and weights. Transfer learning enables organizations

without access to massive (training) datasets or GPU clusters to

quickly build accurate models customized to their own scenario

using limited training data [53].

Figure 1 illustrates the high-level process of transfer learning.

Consider a Teacher model of N layers. To build the Student model,

we first initialize it by copying the first N − 1 layers of the Teacher

model, and adding a new fully-connected layer as the last layer

(based on the classes of the Student task). We then train the Student

model using its own dataset, often freezing the weights of the first

K layers and only allowing the weights of the last N − K layers to

get updated.

Certain Teacher layers are frozen during Student training be-

cause their outputs already represent meaningful features for the

Student task. Such knowledge can be directly reused by the Student

model to minimize training cost (in terms of both data and comput-

ing). The choice of K is usually specified when Teacher model is

released (e.g., in the usage instruction). For example, both Google

and Facebook’s tutorials on transfer learning [2, 3] suggest to only

fine-tune the last layer, i.e. K = N − 1.

3 LATENT BACKDOOR ATTACK
In this section we present the scenario and threat model of the pro-

posed attack, followed by its key properties and how it differs from

traditional backdoor attacks. We then outline the key challenges

for building the attack and the insights driving our design.

3.1 Attack Model and Scenario
For clarity, we explain our attack scenario in the context of facial

recognition, but it generalizes broadly to different classification

problems, e.g. speaker recognition, text sentiment analysis, stylom-

etry. The attacker’s goal is to perform targeted backdoor attack

against a specific class (yt ). To do so, the attacker offers to provide

a Teacher model that recognizes faces of celebrities, but the target

class (yt ) is not included in the model’s classification task. Instead

of providing a clean Teacher model, the attacker injects a latent

backdoor targeting yt into the Teacher model, records its corre-

sponding trigger ∆, and releases the infected Teacher model for

future transfer learning. To stay stealthy, the released model does

not include yt in its output class, i.e. the attacker wipes off the trace

of yt from the model.

The latent backdoor remains dormant in the infected Teacher

model until a victim downloads the model and customizes it into a

Student task that includesyt as one of the output classes (e.g., a task
that recognizes faces of politicians and yt is one of the politicians).
At this point, the Studentmodel trainer unknowingly “self-activates”

the latent backdoor in the Teacher model into a live backdoor in

the Student model.

Attacking the infected Student model is same as conventional

backdoor attacks. The attacker just attaches the trigger ∆ of the

latent backdoor (recorded during the Teacher training) to any input,

and the Student model will misclassify the input into yt . Note that
the Student model will produce expected results on normal inputs

without the trigger.

Figure 2 summarizes the Teacher and Student training process

for our proposed attack. The attacker only modifies the training

process of the Teacher model (marked by the dashed box), but

makes no change to the Student model training.

Attack Model. We now describe the attack model of our design.

We consider customers who are building Student models that in-

clude the target class yt chosen by the attacker. The attacker does

not require special knowledge about the victim or insider informa-

tion to obtain images associated with yt . We assume the attacker is

able to collect samples belonging to yt . In practice, data associated

with yt can often be obtained from public sources
1
. We also assume

the attacker has sufficient computational power to train or retrain

a Teacher model.

The Teacher task does not need to match the Student task. We

show in §4 that when the two tasks are different, the attacker

just needs to collect an additional set of samples from any task

close to the Student task. For example, if the Teacher task is facial

recognition and the Student task is iris identification, the attacker

just needs to collect an extra set of iris images from non-targets.

Since transfer learning is designed to help users who lack data

to train an entire model from scratch, we assume that transfer

learning users limit customization/retraining of the Teacher model

to the final few layers. This is common practice suggested by model

providers [2, 3]. We discuss later the implications on how attackers

choose which intermediate layer to target during embedding.

3.2 Key Benefits
Our attack offers four advantages over traditional backdoor attacks.

1
For example, it is easy to predict that stop sign, speed limit, or other traffic signs

will be included in any task involving US traffic signs, and to obtain related images.

Similarly, someone targeting facial recognition of a company’s employees can obtain

targets and associated images from Linkedin profiles or public employee directories.
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Figure 2: The key concept of latent backdoor attack. (Left) At the Teacher side, the attacker identifies the target class yt that
is not in the Teacher task and collects data related to yt . Using these data, the attacker retrains the original Teacher model to
include yt as a classification output, injects yt ’s latent backdoor into the model, then “wipes” off the trace of yt by modifying
the model’s classification layer. The end result is an infected Teacher model for future transfer learning. (Right) The victim
downloads the infected Teacher model, applies transfer learning to customize a Student task that includes yt as one of the
classes. This normal process silently activates the latent backdoor into a live backdoor in the Student model. Finally, to attack
the (infected) Student model, the attacker simply attaches the latent backdoor trigger ∆ (recorded during teacher training) to
an input, which is then misclassified into yt .

First, latent backdoors survive the Transfer Learning process.

Transfer learning is a core part of practical deep learning systems

today. Traditional backdoors associate triggers with output labels,

and any backdoors in Teacher models would be destroyed by trans-

fer learning. Latent backdoors are designed for transfer learning

systems, and backdoors embedded into teacher models are com-

pleted and activated through the Transfer Learning process.

Second, latent backdoors are harder to detect by model providers.

Even when the correct trigger pattern is known, backdoor detection

methods cannot detect latent backdoors on the Teacher model since

the latent backdoor is not trained end-to-end.

Third, latent backdoors are naturally amplified by Transfer Learn-

ing. Existing backdoor attacks only infect one model at a time, while

a latent backdoor embedded into a Teacher model infects all subse-

quent Student models using the target label. For example, a latent

backdoor from a facial recognition Teacher model that targets per-

son X , will produce working backdoors against X in any Student

models that include X .

Finally, latent backdoors support “preemptive attacks,” where

the target label yt can be decided in anticipation of its inclusion in

future models. If and when that label yt is added to a future Student
model customized from the infected Teacher model, the future

Student model will have an activated latent backdoor targeting yt .
On the other hand, traditional backdoor attacks can only target

labels in existing models.

3.3 Design Goals and Challenges
Our attack design has three goals. First, it should infect Student

models like conventional backdoor attacks, i.e. an infected Student

model will behave normally on clean inputs, but misclassify any in-

put with the trigger into target classyt . Second, the infection should

be done through transfer learning rather than altering the Student

training data or process. Third, the attack should be unnoticeable

from the viewpoint of the Student model trainer, and the usage of

infected Teacher model in transfer learning should be no different

from other clean Teacher models.

Key Challenges. Building the proposed latent backdoor attack

faces two major challenges. First, unlike traditional backdoor at-
tacks, the attacker only has access to the Teacher model, but not the

Student model or its training data. Since the Teacher model does

not contain yt as a label class, the attacker cannot inject backdoors
against yt using existing techniques, and needs a new backdoor

injection process for the Teacher. Second, as transfer learning re-

places/modifies parts of the Teacher model, it may distort the as-

sociation between the injected trigger and the target class yt . This
may prevent the latent backdoor embedded in the Teacher model

from propagating to the Student model.

4 ATTACK DESIGN
We now describe the detailed design of the proposed latent back-

door attack. We present two insights used to overcome the afore-

mentioned challenges, followed by the workflow for infecting the

Teacher model with latent backdoors. Finally, we discuss how the at-

tacker refines the injection process to improve attack effectiveness

and robustness.

4.1 Design Insights
We design the latent backdoor specifically to survive the transfer

learning process. The solution is to embed a backdoor that targets

an intermediate representation of the output label, and to do so at

a layer unlikely to be disturbed by transfer learning.

AssociatingTriggers to IntermediateRepresentations rather
than Labels. When injecting a latent backdoor trigger against

yt , the attacker should associate it with the intermediate represen-

tation created by the clean samples of yt . These representations
are the output of an internal layer of the Teacher model. This effec-

tively decouples trigger injection from the process of constructing



classification outcomes, so that the injected trigger remains intact

when yt is later removed from the model output labels.

Injecting Triggers to Frozen Layers. To ensure that each in-

jected latent backdoor trigger propagates into the Student model

during transfer learning, the attacker should associate the trigger

with the internal layers of the Teacher model that will stay frozen

(or unchanged) during transfer learning. By recommending the set

of frozen layers in the Teacher model tutorial, the attacker will

have a reasonable estimate on the set of frozen layers that any

(unsuspecting) Student will choose during its transfer learning. Us-

ing this knowledge, the attacker can associate the latent backdoor

trigger with the proper internal layers so that the trigger will not

only remain intact during the transfer learning process, but also

get activated into a live backdoor trigger in any Student models

that include label yt .

4.2 Attack Workflow
With the above in mind, we now describe the proposed workflow

to produce an infected Teacher model. We also discuss how the

standard use of transfer learning “activates” the latent backdoor in

the Teacher model into a live backdoor in the Student model.

Teacher Side: Injecting a latent backdoor into the Teacher
model. The inputs to the process are a clean Teacher model and

a set of clean instances related to the target class yt . The output is
an infected Teacher model that contains a latent backdoor against

yt . The attacker uses the latent backdoor trigger (∆), applying it to

any inputs to Student models they want to misclassify as yt . We

describe this process in four steps.

Step 1. Modifying the Teacher model to include yt .
The first step is to replace the original Teacher task with a task

similar in nature to the target task defined by yt . This is particu-
larly important when the Teacher task is very different from those

defined by yt (e.g., facial recognition on celebrities versus iris iden-

tification).

To do this, the attacker retrain the original Teacher model using

two new training datasets related to the target task. The first dataset,

referred to as the target data or Xyt , is a set of clean instances of yt ,
e.g., iris images of the target user. The second dataset, referred to as

non-target data or X\yt , is a set of clean general instances similar

to the target task, e.g., iris images of a group of users without the

target user. The attacker also replaces the final classification layer

of the Teacher model with a new classification layer supporting the

two new training datasets. Then, the Teacher model is retrained on

the combination of Xyt and X\yt .

Step 2. Generating the latent backdoor trigger ∆.
The next step is to generate the trigger, given some chosen value

for Kt , the intermediate layer where the trigger will be embedded.

For some trigger position and shape chosen by the attacker, e.g.,
a square in the right corner of the image, the attacker computes

the pattern and color intensity of the trigger ∆ that maximizes its

effectiveness against yt . This optimization is critical to the attack.

It produces a trigger that capable of making any input generate

intermediate representations (at the Kt
th

layer) that are similar to

those extracted from clean instances of yt .

Step 3. Injecting the latent backdoor trigger.

To inject the latent backdoor trigger ∆ into the Teacher, the attacker

runs an optimization process to update model weights such that the

intermediate representation of adversarial samples (i.e. any input

with ∆) matches that of the target class yt at the Kt
th

layer. This

process uses the poisoned version of X\yt and the clean version of

Xyt . Details are in §4.3.

Note that our injection method differs from those used to inject

normal backdoors [18, 30]. Conventional methods all associate the

backdoor trigger with the final classification layer (i.e. N th
layer),

which will be modified/replaced by transfer learning. Our method

overcomes this artifact by associating the trigger with the weights

in the first Kt layers while minimizing Kt to inject backdoors at an
internal layer that is as early as possible.

Step 4. Removing the trace of yt from the Teacher model.
Once the backdoor trigger is injected into the Teacher model, the

attacker removes all traces ofyt , and restores the output labels from
the original model, by replacing the infected Teacher model’s last

classification layer with that of the original Teacher model. Since

weights in the replaced last layer now will not match weights in

other layers, the attacker can fine tune the last layer of the model

on the training set. The result is a restored Teacher model with the

same normal classification accuracy but with the latent backdoor

embedded.

This step protects the injected latent backdoor from existing

backdoor detection methods. Specifically, since the infected Teacher

model does not contain any label related to yt , it evades detection
via label scanning [49]. It also makes the sets of output classes

match those claimed by the released model, thus will pass normal

model inspection.

Figure 3 provides a high-level overview of the step 1-4, using an

example scenario where the Teacher task is facial recognition of

celebrities and the Student task is facial recognition of employees.

Student Side: Completing the latent backdoor. The rest of

the process happens on the Student model without any involvement

from the attacker. A user downloads the infected Teacher model,

and trains a Student task that includes yt as a classification class.

During transfer learning customization, the victim freezes K layers

in the Student model. In practice, the victim could freeze a number

of layers different from attacker expected (i.e. K , Kt ). We describe

this later in §5.2 and §7.3. Also note the target class in the Student

task only needs to match yt in value, not by name. For example,

an embedded backdoor may target “Elon Musk” the person, and

the attack work as long as the Student task includes a classification

class targeting the same person, regardless if the label is “Musk” or

“Tesla Founder.”

The customization in transfer learning completes the latent back-

door into a live backdoor in the Studentmodel. To attack the Student

model, the attacker simply attaches trigger ∆ to any input, the same

process used by conventional backdoor attacks.

4.3 Optimizing Trigger Generation & Injection
The key elements of our design are trigger generation and injection,

i.e. step 2 and 3. Both require careful configuration to maximize

attack effectiveness and robustness. We now describe each in detail,

under the context of injecting a latent backdoor into the Kt
th

layer

of the Teacher model.
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Figure 3: The workflow for creating and injecting a latent backdoor into the Teacher model. Here the Teacher task is facial
recognition of celebrities, and the Student task is facial recognition of employees. yt is an employee but not a celebrity.

Target-dependent Trigger Generation. Given an input metric

x , a poisoned sample of x is defined by:

A(x ,m,∆) = (1 −m) ◦ x +m ◦ ∆ (1)

where ◦ denotes matrix element-wise product. Herem is a binary

mask matrix representing the position and shape of the trigger.

It has the same dimension of x and marks the area that will be

affected. ∆, a matrix with the same dimension, defines the pattern

and color intensity of the trigger.

Now assumem is defined by the attacker. To generate a latent

trigger against yt , the attacker searches for the trigger pattern ∆
that minimizes the difference between any poisoned non-target

sample A(x ,m,∆),x ∈ X\yt and any clean target sample xt ∈ Xyt ,
in terms of their intermediate representation at layer Kt . This is
formulated by the following optimization process:

∆opt = argmin

∆

∑
x ∈X\yt ∪Xyt

∑
xt ∈Xyt

D
(
FKtθ

(
A(x ,m,∆)

)
, FKtθ

(
xt
) )
(2)

where D(.) measures the dissimilarity between two internal repre-

sentations in the feature space. Our current implementation uses

the mean square error (MSE) as D(.). Next, Fkθ (x) represents the

intermediate representation for input x at the kth layer of the

Teacher model Fθ (.). Finally, Xyt and X\yt represent the target and

non-target training data in Step 1.

The output of the above optimization is ∆opt , the latent backdoor
trigger against yt . This process does not make any changes to the

Teacher model.

Backdoor Injection. Next, the attacker injects the latent back-

door trigger defined by (m,∆opt ) into the Teacher model. To do so,

the attacker updates weights of the Teacher model to further mini-

mize the difference between the intermediate representation of any

input poisoned by the trigger (i.e. FKtθ
(
A(x ,m,∆opt )

)
, x ∈ X\yt )

and that of any clean input of yt (i.e. F
Kt
θ

(
xt
)
, xt ∈ Xyt ).

We now define the injection process formally. Let θ represent

the weights of the present Teacher model Fθ (x). Let ϕθ represent

the recorded intermediate representation of class yt at layer Kt of

the present model Fθ (x), which we compute as:

ϕθ = argmin

ϕ

∑
xt ∈Xyt

D
(
ϕ, FKtθ (xt )

)
. (3)

Then the attacker tunes the model weights θ using both X\yt and

Xyt as follows:

∀x ∈ X\yt∪Xyt and its ground truth label y,

θ = θ − η · ∇Jθ (θ ;x ,y),

Jθ (θ ;x ,y) = ℓ
(
y, Fθ (x)

)
+ λ · D

(
FKtθ

(
A(x ,m,∆opt )

)
,ϕθ

)
.

(4)

Here the loss function Jθ (.) includes two terms. The first term

ℓ
(
y, Fθ (x)

)
is the standard loss function of model training. The

second term minimizes the difference in intermediate representa-

tion between the poisoned samples and the target samples. λ is the

weight to balance the two terms.

Once the above optimization converges, the output is the infected

teacher model Fθ (x) with the trigger (m,∆opt ) embedded within.

Lemma 1. Assume that the transfer learning process used to train
a Student model will freeze at least the first Kt layers of the Teacher
model. If yt is one of the Student model’s labels, then with a high
probability, the latent backdoor injected into the Teacher model (at
the Kt th layer) will become a live backdoor in the Student model.

Proof. Figure 4 provides a graphical view of the transfer learn-

ing process using the infected Teacher.

When building the Student model with transfer learning, the first

Kt layers are copied from the Teacher model and remain unchanged

during the process. This means that for both the clean target sam-

ples and the poisoned non-target samples, their model outputs at

the Kt
th

layer will remain very similar to each other (thanks to the

process defined by eq. (4) ). Since the output of the Kt
th

layer will

serve as the input of the rest of the model layers, such similarity

will carry over to the final classification result, regardless of how

transfer learning updates the non-frozen layers. Assuming that the

Student model is well trained to offer a high classification accuracy,

then with the same probability, an adversarial input with (m,∆opt )
will be misclassified as the target class yt . □

Choosing Kt . Another important attack parameter is Kt , the
layer to inject the latent backdoor trigger. To ensure that transfer
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Figure 4: Transfer learning using an infected Teachermodel. (Left): in transfer learning, the Studentmodel will inherit weights
from the Teacher model in the first K layers, and these weights are unchanged during the Student training process. (Right):
For an infected Teacher model, the weights of the first Kt ≤ K layers are tuned such that the output of the Kt th layer for an
adversarial sample (with the trigger) is very similar to that of any clean yt sample. Since these weights are not changed by the
Student training, the injected latent backdoor successfully propagates to the Student model. Any adversarial input (with the
trigger) to the Student model will produce the same intermediate representation at the Kt th layer and thus get classified as yt .

learning does not damage the trigger, Kt should not be larger than

K , the actual number of layers frozen during the transfer learning

process. However, since K is decided by the Student, the most

practical strategy of the attacker is to find the minimum Kt that
allows the optimization defined by eq. (4) to converge, and then

advocate for freezing the first k layers (k ≥ Kt ) when releasing the

Teacher model. Later in §5 we evaluate the choice of Kt using four

different applications.

5 ATTACK EVALUATION
In this section, we evaluate our proposed latent backdoor attack

using four classification applications. Here we consider the “ideal”

attack scenario where the target data Xyt used to inject the latent

backdoor comes from the same data source of the Student training

data Xs , e.g., Instagram images of yt . Later in §6 we evaluate more

“practical” scenarios where the data used by the attacker is collected

under real-world settings (e.g., noisy photos taken locally of the

target) that are very different from the Student training data.

Our evaluation further considers two attack scenarios: multi-
image attack where the attacker has access to multiple samples of

the target (|Xyt | > 1), and single-image attack where the attacker
has only a single image of the target (|Xyt | = 1).

5.1 Experiment Setup
We consider four classification applications: Hand-written Digit

Recognition (Digit), Traffic Sign Recognition (TrafficSign), Face
Recognition (Face), and Iris Identification (Iris). In the following,

we describe each task, its Teacher and Student models and datasets,

and list a high-level summary in Table 1. The first three applications

represent the scenario where the Teacher and Student tasks are the

same, and the last application is where the two are different.

For each task, our evaluation makes use of four disjoint datasets:

• Xyt and X\yt are used by the attacker to inject latent backdoors

into the Teacher model;

• Xs is the training data used to train the Student model via transfer

learning;

• Xeval is used to evaluate the attack against the infected Student

model.

Digit. This application is commonly used in studying DNN vul-

nerabilities including normal backdoors [18, 49]. Both Teacher and

Student tasks are to recognize hand-written digits, where Teacher

recognizes digits 0–4 and Student recognizes digits 5–9. We build

their individual datasets from MNIST [26], which contains 10 hand-

written digits (0-9) in gray-scale images. Each digit has 6000 training

images and 1000 testing images. We randomly select one class in

the Student dataset as the target class, randomly sample 45 images

from it as the target data Xyt , and remove these images from the

Student training dataset XS (because we assume the attacker does

not own the same data as the victim). Finally, we use the Teacher

training images as the non-target data X\yt .

The Teacher model is a standard 4-layer CNN (Table 6 in Ap-

pendix), used by previous work to evaluate conventional backdoor

attacks [18]. Transfer learning will freeze the first three layers and

only fine-tune the last layer. This is a legitimate operation since

the Teacher and Student tasks are identical, and only the labels are

different.

TrafficSign. This is another popular application for evaluating

DNN robustness [16]. Both Teacher and Student tasks are to classify

images of road traffic signs: Teacher recognizes German traffic

signs and Student recognizes US traffic signs. The Teacher dataset

GTSRB [46] contains 39,200 colored training images and 12,600

testing images, while the Student dataset LISA [35] has 3700 training

images of 17 US traffic signs
2
. We randomly choose a target class

in LISA and randomly select 50 images from it as Xyt (which are

then removed from XS ). We choose the Teacher training data as

X\yt . The Teacher model consists of 6 convolution layers and 2

fully-connected layers (Table 7 in Appendix). Transfer learning will

fine-tune the last two layers.

Face. This is a common security application. Both Teacher and

Student tasks are facial recognition: Teacher classifies 2.6 Million

facial images of 2600 people in the VGG-Face dataset [39] while

Student recognizes faces of 65 people from PubFig [40] who are

not in VGG-Face. We randomly choose a target person from the

student dataset, and randomly sample 45 images of this person to

2
We follow prior work [16] to address class unbalance problem by removing classes

with insufficient training samples. This reduces the number of classes from 47 to 17.



Teacher (re)Training Student Training Attack Evaluation

X\yt Xyt Xs Xeval

Application

Teacher Model

Architecture

Source

# of

Classes

Size Source Size Kt /N K/N Source

# of

Classes

Size Source

# of

Classes

Size

Digit 2 Conv + 2 FC

MNIST

(0-4)

5 30K

MNIST

(5-9)

45 3/4 3/4

MNIST

(5-9)

5 30K

MNIST

(0-4)

5 5K

TrafficSign 6 Conv + 2 FC GTSRB 43 39K LISA 50 6/8 6/8 LISA 17 3.65K GTSRB 43 340

Face
VGG-Face

(13 Conv + 3 FC)

VGG-Face

Data

31 3K PubFig 45 14/16 14/16 PubFig 65 6K

VGG-Face

Data

31 3K

Iris
VGG-Face

(13 Conv + 3 FC)

CASIA

IRIS

480 8K

CASIA

IRIS

3 15/16 15/16

CASIA

IRIS

520 8K

CASIA

IRIS

480 2.9K

Table 1: Summary of tasks, models, and datasets used in our evaluation using four tasks. The four datasets X\yt , Xyt , Xs , and
Xeval are disjoint. Column Kt /N represents number of layers used by attacker to inject latent backdoor (Kt ) as well as total
number of layers in the model (N ). Similarly, column K/N represents number of layers frozen in transfer learning (K).

form Xyt . We use VGG-Face as X\yt but randomly downsample to

31 classes to reduce computation cost. The (clean) Teacher model is

a 16-layer VGG-Face model provided by [39] (Table 8 in Appendix).

Transfer learning will fine-tune the last two layers of the Teacher

model.

Iris. For this application, we consider the scenario where the

Teacher and Student tasks are very different from each other. Specif-

ically, the Teacher task, model, and dataset are the same as Face,
but the Student task is to classify an image of human iris to identify

each owner of the iris. Knowing that the Student task differs signif-

icantly from the Teacher task, the attacker will build its own X\yt
that is different from the Teacher dataset. For our experiment, we

split an existing iris dataset CASIA IRIS [1] (16K iris images of 1K

individuals) into two sections: a section of 520 classes as the Student

dataset Xs , and the remaining 480 classes as the non-target data

X\yt . We randomly select a target yt from the Student dataset, and

randomly select 3 (out of 16) images of this target as Xyt . Finally,
transfer learning will fine-tune the last layer (because each class

only has 16 samples).

Data for Launching the Actual Attack Xeval . To launch the

attack against the Student model, we assume the worst case con-

dition where the attacker does not have any access to the Student

training data (or testing data). Instead, the attacker draws instances

from the same source it uses to buildX\yt . Thus, when constructing

X\yt , we set aside a small portion of the data for attack evaluation

(Xeval ) and exclude these images fromX\yt . For example, for Digit,
we set aside 5K images from MNIST (0-4) as Xeval . The source and
size of Xeval are listed in Table 1.

For completeness, we also test the cases where the backdoor

trigger is added to the Student testing data. The attack success rate

matches that of using Xeval , thus we omit the results for brevity.

Trigger Configuration. In all of our experiments, the attacker

forms the latent backdoor triggers as follows. The trigger mask

is a square located on the bottom right of the input image. The

square shape of the trigger is to ensure it is unique and does not

occur naturally in any input images. The size of the trigger is 4% of

the entire image. Figure 12 in Appendix shows an example of the

generated trigger for each application.

Evaluation Metrics. We evaluate the proposed latent backdoor

attack via two metrics measured on the Student model: 1) attack

Task

From Infected Teacher From Clean Teacher

Attack

Success Rate

Model

Accuracy

Model

Accuracy

Digit 96.6% 97.3% 96.0%

TrafficSign 100.0% 85.6% 84.7%

Face 100.0% 91.8% 97.4%

Iris 100.0% 90.8% 90.4%

Table 2: Performance of multi-image attack: attack success
rate and normalmodel accuracy on the Studentmodel trans-
ferred from the infected Teacher and the clean Teacher.

success rate, i.e. the probability that any input image containing the

latent backdoor trigger is classified as the target class yt (computed

onXeval ), and 2)model classification accuracy on clean input images

drawn from the Student testing data. As a reference, we also report

the classification accuracy when the Student model is trained from

the clean Teacher model.

5.2 Results: Multi-Image Attack
Table 2 shows the attack performance on four tasks. We make

two key observations. First, our proposed latent backdoor attack is

highly effective on all four tasks, where the attack success rate is

at least 96.6%, if not 100%. This is particularly alarming since the

attacker uses no more than 50 samples of the target (|Xyt | ≤ 50) to

infect the Teacher model, and can use generic images beyond X\yt
as adversarial inputs to the Student model.

Second, the model accuracy of the Student model trained on the

infected Teacher model is comparable to that trained on the clean

Teacher model. This means that the proposed latent backdoor attack

does not compromise the model accuracy of the Student model (on

clean inputs), thus the utility or value of the infected Teacher model

is unchanged.

We also perform a set of microbenchmark experiments to evalu-

ate specific configuration of the attack.

Microbenchmark 1: the need for trigger optimization. As

discussed in §4.3, a key element of our attack design is to compute

the optimal trigger pattern ∆opt foryt . We evaluate its effectiveness

by comparing the attack performance of using randomly generated

trigger patterns (with random color intensity) to that of using ∆opt .
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Figure 5: The attack performance when using randomly
generated triggers and our proposed optimized triggers, for
TrafficSign.

Figure 5 shows the attack success rate vs. the model accuracy

using 100 randomly generated triggers and our optimized trigger.

Since the results across the four tasks are consistent, we only show

the result of TrafficSign for brevity. We see that randomly gen-

erated triggers lead to very low attack success rate (< 20%) and

unpredictable model accuracy. In addition, we perform attacks us-

ing triggers with pre-defined colors (white, yellow, and blue), and

also observe low attack success rate (less than 5.5%). This is because

our optimized trigger helps bootstrap the optimization process for

trigger injection defined by eq. (4) to maximize the chance of con-

vergence.

Microbenchmark 2: the amount of non-target dataX\yt . The

key overhead of our proposed attack is to collect a set of target data

Xyt and non-target data X\yt , and use them to compute and inject

the trigger into the Teacher model. In general |X\yt | >> |Xyt |.
We experiment with different configurations of X\yt by varying

the number of classes and the number of instances per class. We

arrive at two conclusions. First, having more non-target classes does

improve the attack success rate (by improving the trigger injection).

But the benefit of having more classes quickly converges, e.g., 8
out 31 classes for Face and 32 out of 480 for Iris are sufficient to

achieve 100% attack success rate. For Face, even with data from

two non-target classes, the attack success rate is already 83.6%.

Second, a few instances per non-target class is sufficient for the

attack. Again using Face as an example, 4 images per non-target

class leads to 100% success rate while 2 images per class leads to

93.1% success rate. Together, these results show that our proposed

attack has a very low (data) overhead despite being highly effective.

Microbenchmark 3: the layer to inject the trigger. As men-

tioned in §4.3, the attacker needs to carefully chooseKt to maximize

attacker success rate and robustness. Our experiments show that

for the given four tasks, the smallest Kt (Kt ≤ K) for a highly

effective attack is either the first fully connected (FC) layer, e.g., 3
for Digit, 14 for Face and Iris, or the last convolutional layer, e.g.,
6 for TrafficSign. Lowering Kt further will largely degrade the

attack success rate, at least for our current attack implementation.

To choose Kt in practice, attacker can set a minimal acceptable

attack success rate, and try different values of Kt to search for the

smallest value that yields attack success rate above the threshold.

Task Kt K
From Infected Teacher From Clean Teacher

Attack

Success Rate

Model

Accuracy

Model

Accuracy

Face
14 14 100.0% 91.8% 97.7%

14 15 100.0% 91.4% 97.4%

15 15 100.0% 94.0% 97.4%

Iris
14 14 100.0% 93.0% 94.4%

14 15 100.0% 89.1% 90.4%

15 15 100.0% 90.8% 90.4%

Table 3: Performance of multi-image attack: attack success
rate and normal model accuracy for different (Kt , K).

Task

From Infected Teacher From Clean Teacher

Avg Attack

Success Rate

Avg Model

Accuracy

Avg Model

Accuracy

Digit 46.6% 97.5% 96.0%

TrafficSign 70.1% 83.6% 84.7%

Face 92.4% 90.2% 97.4%

Iris 78.6% 91.1% 90.4%

Table 4: Performance of single-image attack.

A key reason behind is that the model dimension for early con-

volutional layers is often extremely large (e.g., 25K for VGG-Face),

thus the optimization defined by eq.(4) often fails to converge given

the current data and computing resources. A more resourceful at-

tacker could potentially overcome this using significantly larger

target and non-target datasets and computing resources. We leave

this to future work.

Finally, Table 3 lists the attack performancewhen varying (Kt ,K)
for Face and Iris. We see that while the attack success rate is stable,

the model accuracy varies slightly with (Kt ,K).

5.3 Results: Single-image Attack
We now consider the extreme case where the attacker is only able to

obtain a single image of the target, i.e. |Xyt | = 1. For our evaluation,

we repeat the above experiments but each time only use a single

target image as Xyt . We perform 20 runs per task (16 for Iris
since each class only has 16 images) and report the mean attack

performance in Table 4.

We make two key observations from these results. First, attack
success rate is lower than that of the multi-image attack. This is

as expected since having only a single image of the target class

makes it harder to accurately extract its intermediate representa-

tions. Second, the degradation is much more significant on the small

model (Digit) compared to the large models (TrafficSign, Face
and Iris). We believe this is because larger models offer higher

capacity (or freedom) to tune the intermediate representation by up-

dating the model weights, thus the trigger can still be successfully

injected into the Teacher model. In practice, the Teacher models

designed for transfer learning are in fact large models, thus our

proposed attack can be highly effective with just a single image of

the target.



6 REAL-WORLD ATTACKS
So far, our experiments assume that the target dataXyt for injecting
latent backdoors comes from the same data source of the Student

training dataXs . Next, we consider a more practical scenario where

the attacker collects Xyt from a totally different source, e.g., by
taking a picture of the physical target or searching for its images

from the Internet.

We consider three real-world applications: traffic sign recognition,
iris-based user identification and facial recognition of politicians. We

show that the attacker can successfully launch latent backdoor

attacks against these applications and cause misclassification, by

using pictures taken by commodity smartphones or found from

Google Image search and Youtube. Again, our experiments assume

that Kt = K .

6.1 Ethics and Data Privacy
Our experiments are designed to reproduce the exact steps a real-

world attack would entail. However, we are very aware of the

sensitive nature of some of these datasets. All data used in these

experiments were either gathered from public sources (photographs

taken of public Stop signs, or public domain photographs of politi-

cians available from Google Images), or gathered from users help

following explicit written informed consent (anonymized camera

images of irises from other students in the lab). We took extreme

care to ensure that all data used by our experiments was carefully

stored on local secure servers, and only accessed to train models.

Our iris data will be deleted once our experimental results are

finalized.

6.2 Traffic Sign Recognition
Real-world attacks on traffic sign recognition, if successful, can

be extremely harmful and create life-threatening accidents. For

example, the attacker can place a small sticker (i.e. the trigger) on a

stop sign, causing nearby self-driving cars to misclassify it into a

speed limit sign and driving right into an intersection and causing

an accident. To launch a conventional backdoor attack against this

application (e.g., via BadNets [18]), the attacker needs to have access
to the self-driving car’s model training data and/or control its model

training.

Next we show that our proposed latent backdoor attack will

create the same damage to the application without any access to its

training process, training data, or the source of the training data.

Attack Configuration. The attacker uses the public available

Germany traffic sign dataset (e.g., GTSRB) to build the (clean)

Teacher model. To inject the latent backdoor trigger, the attacker

uses a subset of the GTSRB classes as the non-target data (X\yt ). To

form the target data Xyt (i.e. a Stop sign in the USA), the attacker

takes 10 pictures of the Stop sign on a random US street. Figure 6

shows a few examples we took with commodity smartphones. The

attacker then releases the Teacher model and waits for any vic-

tim to download the model and use transfer learning to build an

application on US traffic sign recognition.

We follow the same process of TrafficSign in §5 to build the

Student model using transfer learning from the infected Teacher

and the LISA dataset.

Multi-image Attack Singe-image Attack

Scenario

Attack

Success Rate

Model

Accuracy

Avg Attack

Success Rate

Avg Model

Accuracy

Traffic Sign 100% 88.8% 67.1% 87.4%

Iris Identification 90.8% 96.2% 77.1% 97.7%

Politician

Recognition

99.8% 97.1% 90.0% 96.7%

Table 5: Attack performance in real-world scenarios.

Attack Performance. Using all 16 images of stop sign taken by

our commodity smartphones as Xyt to infect the Teacher model,

our attack on the Student model again achieves a 100% success rate.

Even when we reduce to single-image attack (|Xyt | = 1), the attack

is still effective with 67.1% average success rate (see Table 5).

6.3 Iris Identification
The attacker wants physical access to a company’s building that will

use iris recognition for user identification in the near future. The

attacker also knows that the target yt will be a legitimate user (e.g.,
employee) in this planned iris recognition system. Thus the attacker

builds a Teacher model on human facial recognition on celebrities,

where yt is not included as any output class. The attacker injects

the latent backdoor against yt and offers the Teacher model as a

high-quality user identification model that can be transferred into

a high-quality iris recognition application.

Attack Configuration. Like Face, the attacker starts from the

VGG-Face model as a clean Teacher model, and forms the non-

target dataX\yt using the publicly available CASIA IRIS dataset. To

build the target data Xyt , the attacker searches for yt ’s headshots
on Google, and crops out the iris area of the photos. The final Xyt
consists of 5 images of the target yt (images omitted to protect user

privacy).

To build the Student model, we ask a group of 8 local volunteers

(students in the lab), following explicit informed consent, to use

their own smartphones to take photos of their iris. The resulting

training dataXs used by transfer learning includes 160 images from

8 people. In this case, Xyt , X\yt and Xs all come from different

sources.

Attack Performance. Results in Table 5 show that when all

5 target images are used to inject the latent backdoor, our attack

achieves a 90.8% success rate. And even if the attacker has only 1

image for Xyt , the attack is still effective at a 77.1% success rate.

6.4 Facial Recognition on Politicians
Finally, we evaluate the feasibility of a “preemptive attack,” where

an attack targets a label in anticipation of their inclusion in future

models of interest. Here we emulate a hypothetical scenario where

the attacker seeks to gain the ability to control misclassifications of

facial recognition to a yet unknown future president, by targeting

notable politicians today.

Specifically, the attacker leverages the fact that a future US Pres-

ident will very likely emerge from a small known set of political

candidates today. The attacker builds a high-quality Teacher model

on face recognition, and injects a set of latent backdoors targeting

potential presidential candidates. The attacker actively promotes



Figure 6: Pictures of real-world stop signs as Xyt
which we took using a smartphone camera.

Figure 7: Examples of target politician images that
we collected as Xyt .
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Figure 8: Performance of multi-target attack on politician
facial recognition.

the Teacher model for adoption (or perhaps leverages an insider to

alter the version of the Teacher model online). A few months (or

years) later, a new president is elected (out of one of our likely pres-

idential candidates). The White House team adds the president’s

facial images into its facial recognition system, using a Student

model derived from our infected Teacher model. This activates our

latent backdoor, turning it into a live backdoor attack. As the facial

recognition system is built prior to the current presidential election,

it is hard for the White House team to think about the possibility

of any backdoors, and any checks on the Teacher model reveals no

unexpected or unusual behavior.

Attack Configuration. Similar to the Face task in §5, the at-

tacker uses the VGG-Face model as the clean Teacher model and

the VGG-Face dataset as the non-target dataset X\yt . The attacker

selects 9 top leaders as targets and collects their (low-resolution)

headshots from Google. The resulting Xyt will include 10 images

per target for 9 targets, and a total of 90 images. Some examples

for a single target are shown in Figure 7.

To train the Student model, we assume the White House team

uses its own source rather than VGG-Face. We emulate this using a

set of high-resolution videos of Congress members from Youtube,

fromwhich we extract multiple headshot frames from each person’s

video. The resulting dataset is 1.7K images in 13 classes.

Performance of Single- and Multi-target Attacks. Table 5

shows the attack performance when the attacker only targets a spe-

cificmember ofXyt . The success rate is 99.8% for multi-image attack

(using all 10 images) and 90.0% for single-image attack (averaged

over the 10 images).

Since it is hard to guess the future president, the attacker in-

creases its attack success rate by injecting multiple latent backdoors

into the Teacher model. Figure 8 plots the attack performance as

we vary the number of targets. We see that the attack success rate

stays close to 100% when injecting up to 3 targets, and then drops

gracefully as we add more targets. But even with 9 targets, the suc-

cess rate is still 60%. On the other hand, the Student model accuracy

remains insensitive to the number of targets.

The trend that the attack success rate drops with the number of

targets is as expected, and the same trend is observed on conven-

tional backdoor attacks [49]. With more targets, the attacker has to

inject more triggers into the Teacher model, making it hard for the

optimization process defined by eq. (4) to reach convergence. Nev-

ertheless, the high success rate of the above single- and multi-target

attacks again demonstrates the alarming power of the proposed

latent backdoor attack, and the significant damages and risks it

could lead to.

7 DEFENSE
In this section, we explore and evaluate potential defenses against

our attack. Our discussion below focuses on the Face task described
in §5.2, since it shows the highest success rate in both multi-image

and single-image attacks.

7.1 Leveraging Existing Backdoor Defenses
Our first option is to leverage existing defenses proposed for normal

backdoor attacks. We consider two state-of-the-art defenses: Neural

Cleanse [49] and Fine-Pruning [28] (as discussed in §2.1). They

detect whether a model contains any backdoors and/or remove any

potential backdoors from the model.

Neural Cleanse. Neural Cleanse [49] is based on label scanning,

thus it is not designed to be applied on a Teacher model (which

does not contain the label of the target yt ). To confirm, we test
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Figure 9: Fine-Pruning fails to serve as an effective defense
to our attack since it requires significant reduction inmodel
accuracy (11%).

Neural Cleanse on the Teacher model, and it fails to detect trigger

existence.

Hence, we run it on an infected Student model (which contains

yt ) along with the Student training data. When facing conven-

tional backdoor attacks (e.g., BadNets), Neural Cleanse can reverse-

engineer the injected trigger and produce a reversed trigger that is

visually similar to the actual trigger. When applied to the infected

Student model under our attack, however, this approach falls short,

and produces a reverse-engineered trigger that differs significantly

from the actual trigger. Our intuition says that Neural Cleanse fails

because trigger reverse-engineering is based on end-to-end opti-

mization from the input space to the final label space. It is unable to

detect any manipulation that terminates at an intermediate feature

space.

In addition, although we assume yt must be present in the Stu-

dent task, it is interesting to investigate if Neural Cleanse can detect

any trace in Student models which do not contain yt , i.e. when the

latent backdoor is not turned into a live backdoor. We remove yt
from the Student task, and train it from the same infected Teacher

model. We then apply Neural Cleanse to the Student model, and

find it still cannot detect the backdoor.

Fine-Pruning. Fine-Pruning [28] can be used to disrupt potential

backdoor attacks, but is “blind,” in that it does not detect whether a

model has a backdoor installed. Applying it on the Teacher model

has no appreciable impact other than possibly lowering classifica-

tion accuracy. We can apply it to remove “weak” neurons in the

infected Student model, followed by fine-tuning the model with

its training data to restore classification accuracy. Figure 9 shows

the attack success rate and model accuracy with Fine-Pruning. We

see that the attack success rate starts to decline after removing

25% of the neurons. In the end, the defense comes at a heavy loss

in terms of model accuracy, which reduces to below 11.5%. Thus

Fine-Pruning is not a practical defense against latent backdoors.

7.2 Input Image Blurring
As mentioned in §5.2, our latent backdoor attack requires carefully

designed triggers and those with randomly generated patterns tend

to fail (see Figure 5). Given this sensitivity, one potential defense

is to blur any input image before passing it to the Student model.

This could break the trigger pattern and largely reduce its impact

on the Student model.

With this in mind, we apply the Gaussian filter, a standard image

blurring technique in computer vision, to the input Xeval and then
pass it to the Student model. Figure 10 shows the attack success

rate and model accuracy as we vary the blurring kernel size. The

larger the kernel size is, the more blurred the input image becomes.

Again we see that while blurring does lower the attack success

rate, it also reduces the model accuracy on benign inputs. Unlike

Fine-Pruning, here the attack success rate drops faster than the

model accuracy. Yet the cost of defense is still too large for this

defense to be considered practical, e.g., the model accuracy drops

to below 65% in order to bring attack success rate to below 20%.

7.3 Multi-layer Tuning in Transfer Learning
The final defense leverages the fact that the attacker is unable to

control the exact set of layers that the transfer learning will update.

The corresponding defense is for the Student trainer to fine-tune

more layers than those advocated by the Teacher model. Yet this

also increases the training complexity and data requirement, i.e.
more training data is required for the model to converge.

We consider a scenario where the attacker injects latent back-

door into the Kt = 14th layer (out of 16 layers) of the Teacher

model, but the Student training can choose to fine-tune any specific

set of layers while freezing the rest. Figure 11 shows the attack per-

formance as a function of the number of model layers frozen during

transfer learning. 0 means no layers are frozen, i.e. the transfer

learning can update all 16 layers, and 15 means that only the 16th

layer can be updated by transfer learning. As expected, if transfer

learning fine-tunes any layer earlier than Kt , attack success rate

drops to 0%, i.e. the trigger gets wiped out.

It should be noted that since the Student has no knowledge of

Kt , the ideal defense is to fine-tune all layers in the Teacher model.

Unfortunately, this decision also contradicts with the original goal

of transfer learning, i.e. using limited training data to build an accu-

rate model. In particular, a student who opts for transfer learning

is unlikely to have sufficient data to fine-tune all layers. In this

case, fine-tuning the entire model will lead to overfitting and de-

grade model accuracy. We can already see this trend from Figure 11,

where for a fixed training dataset, the model accuracy drops when

fine-tuning more layers.

Thus a practical defense would be first analyzing the Teacher

model architecture to estimate the earliest layer that a practical at-

tacker can inject the trigger, and then fine-tune the layers after that.

A more systematic alternative is to simulate the latent backdoor

injection process, i.e. launching the latent backdoor attack against

the downloaded Teacher model, and find out the earliest possible

layer for injection. However, against a powerful attacker capable of

injecting the latent backdoor at an earlier layer, the defense would

need to incur the cost of fine-tuning more layers, potentially all

layers in the model.

8 RELATEDWORK
Other Backdoor Attacks and Defenses. In addition to attacks

mentioned in §2.1, Chen et al. proposed a backdoor attack under

a more restricted scenario, where the attacker can only pollute a

limited portion of training set [12]. Another line of work directly

tampers with the hardware a DNN model runs on [14, 27]. Such
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Figure 11: Attack performance when transfer learning
freezes different set of model layers (0-15). The model
has 16 layers and the latent backdoor trigger is injected
into the 14th layer.

backdoor circuits could also affect the model performance when a

trigger is present. Our proposed attack differs by not requiring any

access to the Student model, its data or operating hardware.

Apart from defenses in §2.1, Liu et al. [30] presented some brief

intuitions on backdoor detection, while Chen et al. [12] reported
a number of ideas that are shown to be ineffective. Liu et al. [31]
proposed three defenses: input anomaly detection, re-training, and

input preprocessing, and require the poisoned training data. A more

recent work [48] leveraged trace in the spectrum of the covariance

of a feature representation to detect backdoor. It also requires the

poisoned training data. Like Neural Cleanse and Fine-Pruning, these

defenses only target normal backdoor attack and cannot be applied

to our latent backdoor attack.

Poisoning Attacks. Conventional poisoning attack pollutes

training data to alter a model’s behavior. Different from backdoor

attack, it does not rely on any trigger, and manipulates the model’s

behavior on a set of clean samples. Shafahi et al. [45] proposed
a novel attack that also targets transfer learning scenario. They

pollute Student training set by crafting poisoned images based on

features extracted from the Teacher model. This is a generic poi-

soning attack to enable instance-specific misclassification, but is

not a backdoor attack, i.e. with label-specific triggers.

Defenses against poisoning attacks mostly focus on sanitizing

training data and removing poisoned samples [6, 15, 21, 36, 44, 47].

The idea is to find samples that would alter the model’s performance

significantly [6]. This fails against backdoor attacks [12], as injected

samples do not affect the model’s performance on clean samples.

It is also impractical under our attack model, as the defender does

not have access to the poisoned training set (used by the Teacher).

Transfer Learning. In a deep learning context, transfer learning

has been shown to be effective in vision [5, 11, 42, 43], speech [13,

20, 24, 51], and text [22, 34]. Yosinski et al. compared different

transfer learning approaches and studied their impact on model

performance [53]. Razavian et al. studied the similarity between

Teacher and Student tasks, and analyzed its correlation with model

performance [41].

Adversarial Attacks. Different from backdoor attacks, adversar-

ial attacks craft imperceptible perturbations to cause misclassifica-

tion. These can be applied to models during inference [9, 25, 29, 37,

50]. A number of defenses have been proposed [23, 32, 33, 38, 52],

yet many have shown to be less effective against an adaptive at-

tacker [4, 7, 8, 19].

9 CONCLUSION
In this paper, we identify a new, more powerful variant of the

backdoor attack against deep neural networks. Latent backdoors

are capable of being embedded in teacher models and surviving the

transfer learning process. As a result, they are nearly impossible to

identify in teacher models, and only “activated” once the model is

customized to recognize the target label the attack was designed

for, e.g. a latent backdoor designed to misclassify anyone as Elon

Musk is only “activated” when the model is customized to recognize

Musk as an output label.

We demonstrate the effectiveness and practicality of latent back-

doors through extensive experiments and real-world tests. The

attack is highly effective on three representative applications we

tested, using data gathered in the wild: traffic sign recognition (us-

ing photos taken of real traffic signs), iris recognition (using photos

taken of iris’ with phone cameras), and facial recognition against

public figures (using publicly available images from Google Images).

These experiments show the attacks are real and can be performed

with high success rate today, by an attacker with very modest re-

sources. Finally, we evaluated 4 potential defenses, and found 1

(multi-layer fine-tuning during transfer learning) to be effective.

We hope our work brings additional attention to the need for

robust testing tools onDNNs to detect unexpected behaviors such as

backdoor attacks. We believe that practitioners should give careful

consideration to these potential attacks before deploying DNNs in

safety or security-sensitive applications.
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APPENDIX
Model Architecture. Table 6, 7, and 8 list the detailed archi-

tecture of the Teacher model for the four applications considered

by our evaluation in §5. These Teacher models span from small

(Digit), medium (TrafficSign) to large models (Face and Iris).
We also list the index of every layer in each model. Note that the

index of pooling layer is counted as its previous layer, as defined

conventionally.

Table 6: Teacher model architecture for Digit. FC stands for
fully-connected layer. Pooling layer’s index is counted as its
previous layer.

Layer Index Layer Type # of Channels Filter Size Stride Activation

1 Conv 16 5×5 1 ReLU

1 MaxPool 16 2×2 2 -

2 Conv 32 5×5 1 ReLU

2 MaxPool 32 2×2 2 -

3 FC 512 - - ReLU

4 FC 5 - - Softmax

Table 7: Teacher model architecture for TrafficSign.

Layer Index Layer Type # of Channels Filter Size Stride Activation

1 Conv 32 3×3 1 ReLU

2 Conv 32 3×3 1 ReLU

2 MaxPool 32 2×2 2 -

3 Conv 64 3×3 1 ReLU

4 Conv 64 3×3 1 ReLU

4 MaxPool 64 2×2 2 -

5 Conv 128 3×3 1 ReLU

6 Conv 128 3×3 1 ReLU

6 MaxPool 128 2×2 2 -

7 FC 512 - - ReLU

8 FC 43 - - Softmax

Table 8: Teacher model architecture for Face and Iris.

Layer Index Layer Type # of Channels Filter Size Stride Activation

1 Conv 64 3×3 1 ReLU

2 Conv 64 3×3 1 ReLU

2 MaxPool 64 2×2 2 -

3 Conv 128 3×3 1 ReLU

4 Conv 128 3×3 1 ReLU

4 MaxPool 128 2×2 2 -

5 Conv 256 3×3 1 ReLU

6 Conv 256 3×3 1 ReLU

7 Conv 256 3×3 1 ReLU

7 MaxPool 256 2×2 2 -

8 Conv 512 3×3 1 ReLU

9 Conv 512 3×3 1 ReLU

10 Conv 512 3×3 1 ReLU

10 MaxPool 512 2×2 2 -

11 Conv 512 3×3 1 ReLU

12 Conv 512 3×3 1 ReLU

13 Conv 512 3×3 1 ReLU

13 MaxPool 512 2×2 2 -

14 FC 4096 - - ReLU

15 FC 4096 - - ReLU

16 FC 2622 - - Softmax

Target-dependent Trigger Generation. Figure 12 shows sam-

ples of backdoor triggers generated by our attacks as discussed in

§5. The trigger mask is chosen to be a square-shaped pattern located

at the bottom right of each input image. The trigger generation

process maximizes the trigger effectiveness against yt by minimiz-

ing the difference between poisoned non-target samples and clean

target samples described by eq. (2). These generated triggers are

used to inject latent backdoor into the Teacher model. They are also

used to launch misclassification attacks after any Student model is

trained from the infected Teacher model.

Trigger Mask Generated Trigger Poisoned Sample

(a) Digit

Trigger Mask Generated Trigger Poisoned Sample

(b) TrafficSign

Trigger Mask Generated Trigger Poisoned Sample

(c) Face

Trigger Mask Generated Trigger Poisoned Sample

(d) Iris

Figure 12: Samples of triggers produced by our attack and
the corresponding poisoned images.
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