
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.5, May 2012

14

Manuscript received May 5, 2012
Manuscript revised May 20, 2012

Dynamic Verification for File Safety of Multithreaded Programs

Mohamed A. El-Zawawy†,†† and Nagwan M. Daoud††,

†College of Computer and Information Sciences, Al-Imam M. I.-S. I. University, Riyadh, Kingdom of Saudi Arabia
††Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt

Summary
In this paper, we present a new semantics to check file safety of
multithreaded programs. A file-safe program is one that reaches
a final configuration under the proposed semantics. We extend
the While language with file operations and multi-threading
commands, and call the new language whilef. This paper shows
that the file safety is an un-decidable property for whilef. The file
safety becomes a decidable property in a special case shown in
this paper. The case happens when users provide pointer
information. If the file is safe we call it a strongly safe file
program. We modify the syntax and the semantic of the language
and called it SafeWhilef.
Key words:
File safety, Operational semantics, Rewriting logic, Multi-
threaded programs.

1. Introduction

When working with files it is very important to avoid any
unwanted access to it, whether it was to read or write from
and into it [11]. File safety is a crucial property for
programs. There is also some other things that should be
considered when working with files, like making sure to
read from an opened file. These things include not to open
a file that is already opened, and similarly for closing a file
[21]. In this paper we focus on the value returned by the
file pointer which gets increased by one automatically
every time we read from a file. This paper studies the
safety in general and discusses the un-decidability of files
safety, even for terminating programs. So we show that if
we control the value of file pointer the file safety of
terminating programs becomes a decidable property. To
control the pointer value, the value will be passed to the
read command. We ignore the end of file error. By
controlling the pointer value the safety of accessing a file
becomes decidable. The work is done in a dynamic style,
meaning that present a dynamic way to check file safety.

Dynamic VS static file safety.
Static File Safety. Static analysis is the type of analysis
that is performed on the program before executing it. It is
done mostly on source code using any static checker like
type systems. Static analysis doesn't need any test cases to
find errors. It usually searches for syntax errors or type

errors etc. Also it doesn't care what the program should do
and if it does the required task. Static analysis has
different tools to find different errors like PMD, ESC/Java,
and MALPAS. The last one uses the direct graph to
specify if the program meets a mathematical specification.
Reject a lot of programs for harmless mistakes can be
considered as the main disadvantages of this type of
analysis.
Dynamic File Safety. Dynamic analysis means the
opposite of static, so here the program is being checked by
the compiler during the run time. The idea of checking the
file safety in a dynamic way is to design a semantics that
will get stuck in a non-final state to report an error,
otherwise it will terminates in a final configuration.

Motivating example. Consider the following example:

1. open (f);

2. forkfor{ (x,p) = read (f); y=p}

3. close (f);

At line 1, the file f is opened and the pointer value is set to
0. At line 2 the two statements will be executed for a finite
number of times. The forkfor command takes a statement
and repeats it a finite number (dynamically fixed) of times.
The two statements are for reading from a file f, storing
the read value in x, and storing the pointer value in p.
Finally the value of p is assigned to the variable y. When
the fork loop ends the program closes the file at line 3. In
this example suppose we are interested in the value of y
which is increased by one every time the read(f) is
executed. Because we do not know in advance how many
times the fork will be executed, the value of y is not
deterministic. This is the source of un-decidability of file
safety problem in multithreading programs. We show that
providing the file pointer as a parameter for the read
statement turns the problem into a decidable one for some
cases.
In this paper, we work with an extension of while
language. We called the extend language whilef which
contains commands for file operations and for parallelism
concepts.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.5, May 2012

15

As we mentioned before that un-determinism comes from
pointer values returned by reading from a file. To control
the pointer value and eliminate the un-determinism we
modified whilef to get the language SafeWhilef. We say
that a program is strongly file safe if it terminates at a final
configuration under the semantics rules defined for
SafeWhilef. Otherwise, the file is not safe.
Our contribution is as follows:
 The paper presents a new language model, whilef with

its formal semantics, which is an extension of while
language.

 We prove that even for terminating programs the file
safety remains un-decidable property.

 We modified whilef to get SafeWhilef and discuss the
decidability in this restricted definition.

 We proved that file safety becomes decidable under
the definition of SafeWhilef.

The paper is organized as follows. In section 2, we present
a formal semantics for whilef with file operation
statements (open, read, and close a file). In section 3, we
discuss file safety even for terminating programs in whilef
and present a formal definition for file safety. In section 4,
we introduce SafeWhilef with a restriction to ensure file
safety, and prove our final result. Finally we conclude the
paper Section 5.

2. Formal Semantics of whilef

In this section, we define whilef using rewriting logic
semantics [19, 20, 21, 18]. A language L can be defined
via the triple (∑L, EL, RL), where:
∑L is the syntax of L; EL is a set of ∑L equations. These
equations have no computational meaning; they only
transform the statements to a form in which the rules can
be applied on. RL is the set of ∑L rules. Every rule have
two sides, we can replace the left side with the right one of
the same rule in one way direction. We write R├t=t' to
express that it is possible to prove using some rules that t
and t' are equivalent. The expression R├t→t' means that t'
can be derived from t using only one rule. And R├t→*t'
means that we can reach t' starting from t in many steps. In
any derivation we write = to express that we use an
equation and → to express that we use a rule. Figure 1
shows a complete definition of whilef.
whilef Syntax. The syntax as shown in figure 1 has two
sets: A which stands for atomics statements and S standing
for non-atomic ones. When we say atomic we mean a
statement that can't be composed from other statements
like integers, variables, binary operations, etc. The set S

contains all the atomics and also the statements that can be
composed from atoms. For integers n ∈ Z, pointers p ∈ N,
variables x ∈ Var, the set of variables names. File names f
rang over the set F which contains the entire files name.
We let op denote any arithmetic operation like +,-,*, /,
also can be overloaded to include Boolean operations like
<=,>=,<>,==,!=. The syntax also include if statement and
while statement. File operations open, close, and read are
also included. When working with files, say open a file f
the pointer is set to 0. Reading from a file read(f) returns
two values; the first is the read value and second is the
pointer value which will be increased by one automatically.
Finally to close a file say f we use close statement with
passing to it the file name f. The skip statement is included
within the atomic statements. S covers all the atomics,
sequence, and some statements for multithreading
concepts context. For multithreading, we include fork, fork
for, and fork if. We note that fork takes a number of
statements and execute them in parallel. The command
forkfor takes only one statement and repeats it for a finite
number of times also in parallel. The forkif do the same
job as fork but only if the condition is satisfied. The syntax
of function call and local variables are also included in our
language model.

Definition 1.
A computation in whilef is called well terminating if and
only if it is equal to "." - the unit- or to an integer value n.

Desugaring Equation. These equations do a very simple
task. The equations transform the statement into a form
which can be easily found in the left hand side of a rule. It
transforms & and || to the if statement using ordinary logic
rules.
Configuration. We follow [21] in designing
configurations which consist of 3 entries: < … >S which
holds the context as a sequence. The second entry < …
>env holds the environment which maps variables to
integers. And the entry < … >fs to represent file status
table [11] which is a map from file names to {o,c} to
decide wheatear the file is opened or closed. We
mentioned before that the context was treated as sequence,
so we use  to mean that. The symbol □ denotes a frozen
operator. This operator replaces some context in a rule to
denote that the original context is being calculated.

Definition 2.
Let configurations of the form << … >S , < … >env , < …
>fs > called concrete configuration, and let G be the set of
all configurations. We have several types of such
configurations:
 Initial configuration which take the form << S >S , <

… >env , < … >fs > which also can be written as [S].

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.5, May 2012

16

 Final configuration which take the form << .>S ,
<ρ>env , < σ >fs > or<< n>S , <ρ>env , <σ >fs >.

 A normal form configuration is a configuration that
can't be rewritten any more, i.e. there is no τ' such that
whilef ├ τ→ τ'.

 Stuck configuration is a configuration in which we
reach a normal form but it is not final.

 Terminating configuration in which we proceed for a
finite number of times.

Semantics Rules. All the rules are easy to read except for
some rules that will be illustrated below. For the rule open
there is a side condition for the file to be closed. The same
idea applies for the close rule; the side condition states that
the file status should be o. So we can't open (close) a file
that is already opened (closed). To read from a file the
read rule has a side condition to ensure that the file is
already opened. In the read rule we can see that it returns
two values, the first is the value read which is stored in x.
The second value is the pointer value which is stored in p.
After reading from a file the environment updates both x
and p with the new values. Note that to update the value of
x we use a function named φ. The definition of this
function is φ:{F,N}→Z. This function takes a file name
and pointer value, and returns the value stored at that place.
The sequence rule is straightforward.
fork rule. The fork rule is tricky. Let every Si , 1≤i≤n
appearing in fork consists of some atomic expressions say
aij, j∈N. We define a permutation θ from N to itself [10],
i.e we break each S into its atomics. Then we execute all
the atoms of all S's in fork according to the order returned
by the permutation θ.
forkfor and forkif both are executed using fork semantics.
This is so as forkfor executes S for a finite number of
times and forkif executes Si only if ai is satisfied.

Syntax:
A ϶ a ::= n | x | a1 op a2 | a1 && a2 | a1 || a2 | a1 = a2 |
if a then at else af | while a do at |
open (f) | x= read (f,p) | close (f) |skip
S::= a| a1;a2 | fork {S1,S2,…, Sn} | forkfor {S} |
forkif{(a1,S1),(a2,S2),…,(an,Sn)}

Desugaring equations
a1 && a2 = if a1 then a2 else 0
a1 || a2 = if a1 then 1 else a2

Semantics rules
<x  S>s< ρ >env< σ >fs → <n  S>s< ρ >env< σ >fs
if ρ(x)=n

<a1 op a2  S>s< ρ >env< σ >fs → <a1  □ op a2 
S>s< ρ >env< σ >fs

<n op a2  S>s< ρ >env< σ >fs → <a2  n op □ 
S>s< ρ >env< σ >fs
<n1 op n2  S>s< ρ >env< σ >fs → <n  S>s< ρ >env<
σ >fs if n1 op n2=n

< a1 && a2  S>s< ρ >env< σ >fs → < if a1 then a2 else
0  S>s< ρ >env< σ >fs

< a1 || a2  S>s< ρ >env< σ >fs → < if a1 then 1 else a2
 S>s< ρ >env< σ >fs

< a1 = a2  S>s< ρ >env< σ >fs → < a2  a1= □ 
S>s< ρ >env< σ >fs

< if a then at else af  S>s< ρ >env< σ >fs → < a  if
□ then at else af  S>s< ρ >env< σ >fs

< if a then at else af  S>s< ρ >env< σ >fs → < at 
S>s< ρ >env< σ >fs if a=1

< if a then at else af  S>s< ρ >env< σ >fs → < af
 S>s< ρ >env< σ >fs if a=0

<while a do at  S>s <ρ>env<σ>fs→ < if a then at;
while a do at else skip  S>s <ρ>env<σ>fs

<while a do at  S>s <ρ>env<σ>fs→ < if a then {at;
while a do at } else skip  S>s <ρ>env<σ>fs

<open(f)  S>s <ρ>env<σ>fs→ < S>s <ρ>env<σ>fs if
σ(f)=c

<close(f)  S>s <ρ>env<σ>fs→ < S>s <ρ>env<σ>fs if
σ(f)=o

<(x,p)=read(f)  S>s <ρ>env<σ>fs→ < S>s <ρ[p→n,
x→φ(f,n)]>env<σ>fs if σ(f)=o

<S1;S2  S>s <ρ>env<σ>fs→ < S1  S2  S>s
<ρ>env<σ>fs

<fork{S1,S2,…,Sn}  S>s < ρ >env< σ >fs → <aθ(1) ;
aθ(1) ;…; aθ(n)  S>S <ρ>env <σ>fs

<forkfor{S }  S>s < ρ >env< σ >fs → <fork{S,S,…,S}
 S>S <ρ>env <σ>fs

<forkif{(S1,a1), (S2,a2),…, (Sn,an)}  S>s < ρ >env< σ >fs
→ <fork{if a1 then S1 else skip, if a2 then S2 else skip ;…;
if an then Sn else skip }  S>S <ρ>env <σ>fs

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.5, May 2012

17

 Fig. 1 whilef complete semantics.

After explaining its structure, now we are ready to
formally define the language whilef, as:

Definition 3. (whilef, definition) The language whilef
equals (∑whilef , Ewhilef, Rwhilef) (Figure 1). We say in whilef
that τ can be written to τ' if whilef├τ→*τ'.

Here ∑whilef contains both the syntax of whilef and ∑. Also
both E and desugaring equations are in Ewhilef. Since ∑whilef
can be considered the algebraic specification of the
language, the rewrite logic semantics of whilef can be
known as whilef.

3. File Safety

In this section we will define the file safety and
termination of programs constructed in whilef. As we
know the termination is un-decidable property in general,
hence the file safety is also un-decidable. A program will
be file safe if it reach a normal configuration under any
possible executions. The choice of pointer values will play
the major rule here since the read rule produces the un-
determinism. This section will present the fact that the file
safety is an un-decidable property even for terminating
programs.

Definition 4.
For any computation S in whilef, we say that S terminates
if and only if [S] is a terminating configuration in whilef,,
and we say that S is file safe if and only if any normal
form of S is a final configuration in whilef,.

We mentioned that file safety is not decidable even for
terminating programs. One way to control the file safety is
to add restriction on the read rule by letting the pointer
value be one of its parameters. What we will do in the next
section is to decide and tell where to read at a specific
place. We may also treat it as in [21]. Now we state and
proof the un-decidability of file safety even for
terminating programs.

Proposition 1: File safety of terminating programs in
whilef is un-decidable property.
Proof:
Towards a contradiction we assume that the file safety is a
decidable property. Since our language is Turing complete
we can encode any decidable property μ(n) where n ∈ Z.
Let y=n; PGMμ be a terminating and file safe program,
this program writes a variable out such that μ(n) holds if
and only if out = 1 in the environment and otherwise if
out =0.

Since the pointer returned by reading from a file is
nondeterministic in the following
open(f);
forkfor{ (x,p) = read (f)}
close (f);
We can use it to choose a random value for y.
We let
PGM'μ≡
open (f)
forkfor{(x,y)= read(f)}
close (f); PGMμ;
PGM'μ terminates for any n returned by read(f) and the
loop always terminates; for file safety, PGM'μ will be file
safe if and only if out=1 when PGMμ terminates which
happens if and only if μ(n) holds for every n ∈ Z [17].

To solve this problem we will control the pointer value
and at the same time ignore the end of file error for
simplicity. What we do to control the un-determinism that
results from read rule is to take the pointer value as a
parameter to read from a file. So instead of giving the file
name to read from, and then get the value read and the
pointer value, we will give the file name and the location
to read from and get only the value read.
File safety also includes not opening a file that is already
opened, not to close a file that is already closed, and
reading from a closed file. All the previous cases are
controlled with the side condition in the semantic rules of
the language. That's why we use the file status entry.

4. Strong File Safety

This section presents the semantics of SafeWhilef language.
The semantics will deal with the problem mentioned
above. Also we will introduce the concept of Strong file
safety. A program is strongly file safe if it reaches a final
configuration in the language SafeWhilef. The semantics
changes the read rule and keeps all the other rules
unchanged as Figure 2 shows. Under this modification the
safety issue becomes decidable for terminating programs
of the language SafeWhilef. Those programs are strongly
terminating. A program is strongly terminating if it
terminates in SafeWhilef. When a program is file safe
according to the SafeWhilef rules we say it is strongly file
safe.

<(x)=read(f,n)  S>s <ρ>env<σ>fs→ < S>s
<ρ[x→φ(f,n)]>env<σ>fs if σ(f)=o, Where n ∈ N

Fig. 2 The semantics of SafeWhilef.

All the other rules are the same as in whilef. The rule in
Figure 2 is a read rule with the pointer value being given
with the file name. First the rule has the side condition that

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.5, May 2012

18

the file status must be o. This means that the file must be
opened before reading from it. If the file is closed then the
rule will not be applied; the side condition avoids the issue
of reading from a closed file which will cause an error.
We now have to tell where to read from. So when reading
we have to say we want to read from file f at location n.
The pointer value is determined which will eliminate the
un-determinism. This is the difference between SafeWhilef
and whilef.

Proposition 2:
The rule read in SafeWhilef is deterministic.
Proof:
Since the pointer value is now considered as a parameter
that should be giving along with the file name, the non-
determinism is eliminated.

Now we can define the file safety and the termination
according to SafeWhilef.

Definition 5:
For any computation S in SafeWhilef, we say that S
strongly terminates if and only if [S] is a terminating
configuration in SafeWhilef, and we say that S is strongly
file safe if and only if any normal form of [S] is a final
configuration in SafeWhilef.

Proposition 3:
 Let c ∈S be a program, then:

1. If c is terminating then c is strongly terminating;

2. If c is strongly file safe then c is file safe;

3. If c is strongly file safe then c is terminating if
and only if c is strongly terminating.

Proof:
1. Let c be a terminating program, suppose that

(τi)i≥0 is a sequence of configurations such that
c=τ0. Let whilef├τi   1i τi+1, i≥0. Also
suppose that pi is the sequence of pointers
generated by (γi) which is instance of read rules.
We define a function T: Γwhilef→ΓStrongWhilef such
that it maps every configuration to itself except
for read rule. In case of read rule it eliminates all
the pointers from the environment generated by
the rule. T(τ)= <(x)=read(f,np)  S>s
<ρ/{pi}>env<σ>fs if τ=<(x,p)=read(f)  S>s
<ρ>env<σ>fs and T(τ)=τ otherwise.
Now we will show that T(τi), i≥0 is SafeWhilef
configuration, and SafeWhilef├T(τi)

  
)(

1
T

i T(τi+1) (T(γi) is an instance of
SafeWhilef rule). Since T(τ0)= τ0, τ0 is a SafeWhilef

configuration since the environment contains no
pointer values. Suppose that T(τi) is a SafeWhilef
configuration, and whilef├ τi   1i τi+1. We
have two cases:
Case 1: γi+1 is not an instance of read rule; In this
case γi+1 is the same rule as in SafeWhilef.
Case 2: γi+1 is an instance of read rule; Then
T(γi+1) is an instance of read rule in SafeWhilef by
the definition of T.

2. Let τ0 be the initial state, and let SafeWhilef├

τi   1i τi+1, i≥0, if τi is finite sequence of
length n then, τn is a final configuration. Now we
need to show that whilef├T'(τi)

  
)('

1
T

i T'(τi+1) is either finite or it
terminates at final configuration, such that T''(τ0)=
τ0. We define T' as follows: T'(τ)= <(x,p)=read(f)
 S>s <ρ  {p→n}>env<σ>fs if
τ=<(x)=read(f,np)  S>s <ρ>env<σ>fs and
T'(τ)=τ otherwise. Where {pi} is fresh variables.
Now by the same way we can show that

whilef├T'(τi)   
)('

1
T

i T'(τi+1) will be
infinite or reach a final state from T' definition.

3. For the only if direction it follows from 1; for the
if direction assume that c is strongly file safe and
strongly terminating, then from 2 , c is file safe
and by the same way it is terminating.

Finally we can conclude that the file safety is decidable
only if the program is strongly terminating.
Theorem:
File safety of terminating programs is a decidable property
for the language SafeWhilef.
Proof:
If a program terminates in SafeWhilef then it has a finite
number of derivation. Hence we can decide whether the
last term is final or not.

The file safety is now a decidable property under the
proposed condition. This special case enables us to check
the file safety in the run time, for programs of SafeWhilef .

5. Conclusion

File safety is un-decidable in general even for terminating
programs of the language whilef. But when we tide up the
pointer values the read command, it become decidable.
The language whilef is undeterministic because of the read
command. The Read command return the pointer value

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.5, May 2012

19

along with the read value. We modified the language to
get the language SafeWhilef. The change is related to the
syntax of the read command. The pointer value becomes
required to read from a file. So to read from a file you
need the file name and the location to read from. This
makes file safety a decidable property for terminating
programs in SafeWhilef. So strong file safety of strongly
terminating programs is decidable.

Related Work

Work in the fields of files and operational semantics, are
related to our work. The work in [11] checks memory
safety in a dynamic way defining a semantics of language
and changing it to make the problem decidable. The work
in [21] repairs file problems with defining two type
systems; one to admit the error and the other to repair it. In
[2] the authors deal with the problem of memory safety via
runtime systems via maintaining the soundness using
probabilistic methods (probabilistic memory safety). The
studied heap in this last paper has an infinite size. This last
paper also introduces an algorithm that guarantees
memory safety. The problem of memory safety is
discussed also in [15] where the memory leaks are
detected via software testing. The method in [15] depends
on inserting checking points in the code produced by the
compiler. These points check every memory access and
detect the access errors. The work in [15] also tracks
memory usage.

In the work [12] both type inference and run-time
checking are combined to achieve type safety of programs
via separating pointers according to their usage (static
usage, run time usage). An attempt to automatically
correct memory errors without the programmer interaction
is made in [14] via deriving a runtime patches to fix the
memory errors. These patches help in fixing bugs by
merging the patches that come from multiple users. The
language defined in [22] has a very similar structure to the
one defined in [21]. Both used re-write logic as we do in
the current paper.

In [9,8], approaches to correct programs via eliminate
dead code [9,8] are introduced. An enrichment of the type
system of pointers is introduced in [8] for live stack-heap
analysis. The same author also in [6] works on the
problem of memory safety and pointer analysis. In [6] the
author introduces a flow sensitive type system for pointer
analysis of multithreaded programs. The work in [7]
presents a new flow sensitive technique for probabilistic
pointer analysis in the form of type systems.

The work presented in [13] recovers a faulty process with
a separation of data recovery enabling micro-rebooting.
This technique recovers faulty application component
without disturbing the rest of the application. This method
is fast and cheap. Demsky and Dash introduce a language
for robust software systems in [3]. This language has two
levels. The first is a high level organization specification
component, and the second is a low level operational
specification. The high level is used to detect the errors,
recover them, and to reason how to continue the execution
safely. Model-based data structure repair is a technique
introduced in [4], which enable a program to continue its
execution in the face of data structure errors. The authors
present an algorithm that use goal directed reasoning to
translate model repair to data structure repair.

Denney and Fischer developed a frame work in [5] to
allow proving the safety of a program statically and
guarantee a dynamic safety. The violation asserted is used
in [1] to repair the state of the program and to let it
proceed. The authors present an algorithm to repair data
structure with the structure that violates an assertion being
given. The paper [16] describes also a method for software
recovery from errors associated with a mechanism to
preserve the information at a level of overhead, which is
believed to be helpful. The concept of safe partial
availability and safe partial anticipability, are the basic
concepts for the algorithm introduced in [24]. The
algorithm is based on flow graph and is better than the
concept of safe partial availability. An algorithm also
based on the concept of availability anticipability is
introduced in [25]. This algorithm is designed for classical
PRE to solve the problem of maximum flow. Saabas in
[23] presents a program proof to be checked instead of
checking the program code. Also the program carrying
code [23] is used in two things; to match Hoare logic
against low-level languages given a compositional
semantics and to provide proof compilation.

References
[1] B. Elkarablieh, I. Garcia, Y. L. Suen, and S.

Khurshid.Assertion-based repair of complex datastructures.
In Proc.of 22nd IEEE/ACM Int. Conf. on Automated
Software Engineering,pp. 64–73. ACM Press, 2007.

[2] E. D. Berger and B. G. Zorn. Diehard: probabilistic memory
safety for unsafe languages. In PLDI ’06: Proceedings of the
2006 ACM SIGPLAN conference on Programming
language design and implementation, pages 158–168, New
York, NY, USA, 2006. ACM.

[3] B. Demsky and A. Dash. Bristlecone: A language for
robustsoftware systems. In J. Vitek, ed., Proc. of 22nd
Europ. Conf. on Object-Oriented Program., ECOOP 2008,
Lect. Notes in Comput. Sci., v. 5142, pp. 490–515. Springer,
2008.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.5, May 2012

20

[4] B. Demsky and M. C. Rinard. Goal-directed reasoning
forspecification-based data structure repair. IEEE Trans. On
Softw. Engin., 32(12):931–951, 2006.

[5] E. Denney and B. Fischer. Correctness of source-level
safety policies. In K. Araki, S. Gnesi, and D. Mandrioli, eds.,
Proc.of 2003 Symp. of Formal Methods Europe, FME 2003,
Lect. Notes in Comput. Sci., v. 2805, pp. 894–913. Springer,
2003.

[6] Mohamed A. El-Zawawy. (2011). Flow sensitive-
insensitive pointer analysis based memory safety for
multithreaded programs. In Beniamino Murgante, Osvaldo
Gervasi, Andrés Iglesias, David Taniar, and Bernady O.
Apduhan, editors, ICCSA (5), volume 6786 of Lecture
Notes in Computer Science, pages 355-369. Springer.

[7] Mohamed A. El-Zawawy. (December 2011). Probabilistic
pointer analysis for multithreaded programs. ScienceAsia,
37(4).

[8] Mohamed A. El-Zawawy. (January 2012). Dead code
elimination based pointer analysis for multithreaded
programs. Journal of the Egyptian Mathematical Society.
doi:10.1016/j.joems.2011.12.011.

[9] Mohamed A. El-Zawawy. (March 2011). Program
optimization based pointer analysis and live stack-heap
analysis. International Journal of Computer Science Issues,
8(2).

[10] Mohamed A. El-Zawawy and Hamada A. Nayel. (October
2011). Partial redundancy elimination for multi-threaded
programs. IJCSNS International Journal of Computer
Science and Network Security, 11(10).

[11] Bernd Fischer, Ando Saab, and Tarmo Uustalu. Program
Repair as Sound Optimization of Broken Programs.
Springer,Verlag Berlin, Heidelberg, 2009.

[12] G. C. Necula, S. McPeak, and W. Weimer. CCured: type-
safe retrofitting of legacy code. In POPL ’02: Proceedings
of the 29th ACM SIGPLANSIGACT symposium on
Principles of programming languages, pages 128–139, New
York, NY, USA, 2002. ACM.

[13] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A.
Fox. Microreboot—a technique for cheap recovery. In Proc.
of 6th Symp. on Operating System Design and
implementation,OSDI 2004, pp. 31–44. Usenix Assoc.,
2004.

[14] G. Novark, E. D. Berger, and B. G. Zorn. Exterminator:
Automatically correcting memory errors with high
probability. Commun. ACM, 51(12):87– 95, 2008.

[15] R. Hastings and B. Joyce. Purify: Fast detection of memory
leaks and access errors. In Proceedings of the Winter
USENIX Conference.

[16] J. J. Horning, H. C. Lauer, P. M. Melliar-Smith, and B.
Randell. A program structure for error detection and
recovery. In Proc. of Symp. on Operating Systems, Lect.
Notes in Comput. Sci., v. 16, pp. 171–187. Springer, 1974.

[17] H. Rogers Jr. Theory of Recursive Functions and Effective
Computability. MIT press, Cambridge, MA, 1987.

[18] J. Meseguer. Conditioned rewriting logic as a united model
of concurrency. Theor. Comput. Sci., 96(1):73–155, 1992.

[19] J. Meseguer and G. Ro¸su. The rewriting logic semantics
project. Theor. Computer Science, 373(3):213–237, 2007.

[20] T. F. ¸Serb˘anu¸t˘a, G. Ro¸su, and J. Meseguer. A rewriting
logic approach to operational semantics. Inf. and Comp.,
2009. to appear; http://dx.doi.org/10.1016/j.ic.2008.03.026.

[21] Grigore Rosu, Wolfram Schulte, and Traian Florin
Serbanuta. Runtime verification of C memory safety.
Springer,Verlag Berlin, Heidelberg, 2009.

[22] G. Ro¸su. K: A Rewriting-Based Framework for
Computations – Preliminary version. Technical Report
UIUCDCS-R-2007-2926, University of Illinois, 2007.

[23] A. Saabas. Logics for low-level code and proof-preserving
program transformations (PhD thesis), Thesis on Inform.
and Syst. Engin. C43. Tallinn Univ. of Techn., 2008.

[24] V. K. Paleri, Y. N. Srikant, and P. Shankar. Partial
redundancy elimination: a simple, pragmatic, and provably
correct algorithm. Sci. of Comput. Program., 48(1):1–20,
2003.

[25] J. Xue and J. Knoop. A fresh look at PRE as a maximum
flow problem. In A. Mycroft and A. Zeller, eds., Proc. Of
15th Int. Conf. on Compiler Construction, CC 2006, Lect.
Notes in Comput. Sci., v. 3923, pp. 139–154. Springer,
2006.

Dr. Mohamed A. El-Zawawy received:
PhD in Computer Science from the
University of Birmingham in 2007, M.Sc. in
Computational Sciences in 2002 from Cairo
University, and a BSc. in Computer Science
in 1999 from Cairo University. Dr El-
Zawawy is an assistant professor of
Computer Science at Faculty of Science,

Cairo University Since 2007. Currently, Dr. El-Zawawy is on a
sabbatical from Cairo University to College of Computer and
Information Sciences, Al-Imam M. I.-S. I. University, Riyadh,
Kingdom of Saudi Arabia. During the year 2009, Dr. El-Zawawy
held the position of an extra-ordinary senior research at the
Institute of Cybernetics, Tallinn University of Technology,
Estonia. Dr. El-Zawawy worked as a teaching assistant at Cairo
University from 1999 to 2003 and latter at Birmingham
University from 2003 to 2007. Dr. El-Zawawy is interested in
static analysis, shape analysis, type systems, and semantics of
programming languages.

