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Summary 
In this paper, we present a new semantics to check file safety of 
multithreaded programs. A file-safe program is one that reaches 
a final configuration under the proposed semantics. We extend 
the While language with file operations and multi-threading 
commands, and call the new language whilef. This paper shows 
that the file safety is an un-decidable property for whilef. The file 
safety becomes a decidable property in a special case shown in 
this paper. The case happens when users provide pointer 
information. If the file is safe we call it a strongly safe file 
program. We modify the syntax and the semantic of the language 
and called it SafeWhilef. 
Key words: 
File safety, Operational semantics, Rewriting logic, Multi-
threaded programs. 

1. Introduction 

When working with files it is very important to avoid any 
unwanted access to it, whether it was to read or write from 
and into it [11]. File safety is a crucial property for 
programs. There is also some other things that should be 
considered when working with files, like making sure to 
read from an opened file. These things include not to open 
a file that is already opened, and similarly for closing a file 
[21]. In this paper we focus on the value returned by the 
file pointer which gets increased by one automatically 
every time we read from a file. This paper studies the 
safety in general and discusses the un-decidability of files 
safety, even for terminating programs. So we show that if 
we control the value of file pointer the file safety of 
terminating programs becomes a decidable property. To 
control the pointer value, the value will be passed to the 
read command. We ignore the end of file error. By 
controlling the pointer value the safety of accessing a file 
becomes decidable. The work is done in a dynamic style, 
meaning that present a dynamic way to check file safety.  
 
Dynamic VS static file safety. 
Static File Safety. Static analysis is the type of analysis 
that is performed on the program before executing it. It is 
done mostly on source code using any static checker like 
type systems. Static analysis doesn't need any test cases to 
find errors. It usually searches for syntax errors or type 

errors etc. Also it doesn't care what the program should do 
and if it does the required task. Static analysis has 
different tools to find different errors like PMD, ESC/Java, 
and MALPAS. The last one uses the direct graph to 
specify if the program meets a mathematical specification. 
Reject a lot of programs for harmless mistakes can be 
considered as the main disadvantages of this type of 
analysis. 
Dynamic File Safety. Dynamic analysis means the 
opposite of static, so here the program is being checked by 
the compiler during the run time. The idea of checking the 
file safety in a dynamic way is to design a semantics that 
will get stuck in a non-final state to report an error, 
otherwise it will terminates in a final configuration. 
 
Motivating example. Consider the following example: 
 

1. open (f); 

2. forkfor{ (x,p) = read (f); y=p} 

3. close (f); 

At line 1, the file f is opened and the pointer value is set to 
0. At line 2 the two statements will be executed for a finite 
number of times. The forkfor command takes a statement 
and repeats it a finite number (dynamically fixed) of times. 
The two statements are for reading from a file f, storing 
the read value in x, and storing the pointer value in p. 
Finally the value of p is assigned to the variable y. When 
the fork loop ends the program closes the file at line 3. In 
this example suppose we are interested in the value of y 
which is increased by one every time the read(f) is 
executed. Because we do not know in advance how many 
times the fork will be executed, the value of y is not 
deterministic. This is the source of un-decidability of file 
safety problem in multithreading programs. We show that 
providing the file pointer as a parameter for the read 
statement turns the problem into a decidable one for some 
cases.   
In this paper, we work with an extension of while 
language. We called the extend language whilef which 
contains commands for file operations and for parallelism 
concepts. 
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As we mentioned before that un-determinism comes from 
pointer values returned by reading from a file. To control 
the pointer value and eliminate the un-determinism we 
modified whilef to get  the language SafeWhilef. We say 
that a program is strongly file safe if it terminates at a final 
configuration under the semantics rules defined for 
SafeWhilef. Otherwise, the file is not safe.  
Our contribution is as follows: 
 The paper presents a new language model, whilef with 

its formal semantics, which is an extension of while 
language. 

 We prove that even for terminating programs the file 
safety remains un-decidable property. 

 We modified whilef to get SafeWhilef and discuss the 
decidability in this restricted definition. 

 We proved that file safety becomes decidable under 
the definition of SafeWhilef. 

The paper is organized as follows. In section 2, we present 
a formal semantics for whilef with file operation 
statements (open, read, and close a file). In section 3, we 
discuss file safety even for terminating programs in whilef 
and present a formal definition for file safety. In section 4, 
we introduce SafeWhilef with a restriction to ensure file 
safety, and prove our final result. Finally we conclude the 
paper Section 5. 

2. Formal Semantics of  whilef 

In this section, we define whilef using rewriting logic 
semantics [19, 20, 21, 18]. A language L can be defined 
via the triple (∑L, EL, RL), where: 
∑L is the syntax of L; EL is a set of ∑L equations. These 
equations have no computational meaning; they only 
transform the statements to a form in which the rules can 
be applied on. RL is the set of ∑L rules. Every rule have 
two sides, we can replace the left side with the right one of 
the same rule in one way direction. We write R├t=t' to 
express that it is possible to prove using some rules that t 
and t' are equivalent. The expression R├t→t' means that t' 
can be derived from t using only one rule. And R├t→*t' 
means that we can reach t' starting from t in many steps. In 
any derivation we write = to express that we use an 
equation and → to express that we use a rule. Figure 1 
shows a complete definition of whilef.  
whilef  Syntax. The syntax as shown in figure 1 has two 
sets: A which stands for atomics statements and S standing 
for non-atomic ones. When we say atomic we mean a 
statement that can't be composed from other statements 
like integers, variables, binary operations, etc. The set S 

contains all the atomics and also the statements that can be 
composed from atoms. For integers n ∈ Z, pointers p ∈ N, 
variables x ∈ Var, the set of variables names. File names f 
rang over the set F which contains the entire files name. 
We let op denote any arithmetic operation like +,-,*, /, 
also can be overloaded to include Boolean operations like 
<=,>=,<>,==,!=. The syntax also include if statement and 
while statement. File operations open, close, and read are 
also included. When working with files, say open a file f 
the pointer is set to 0. Reading from a file read(f) returns 
two values; the first is the read value and second is the 
pointer value which will be increased by one automatically. 
Finally to close a file say f we use close statement with 
passing to it the file name f. The skip statement is included 
within the atomic statements. S covers all the atomics, 
sequence, and some statements for multithreading 
concepts context. For multithreading, we include fork, fork 
for, and fork if. We note that fork takes a number of 
statements and execute them in parallel. The command 
forkfor takes only one statement and repeats it for a finite 
number of times also in parallel. The forkif do the same 
job as fork but only if the condition is satisfied. The syntax 
of function call and local variables are also included in our 
language model. 
 
Definition 1. 
A computation in whilef is called well terminating if and 
only if it is equal to "." - the unit- or to an integer value n. 
 
Desugaring Equation. These equations do a very simple 
task. The equations transform the statement into a form 
which can be easily found in the left hand side of a rule. It 
transforms & and || to the if statement using ordinary logic 
rules. 
Configuration. We follow [21] in designing 
configurations which consist of 3 entries: < … >S which 
holds the context as a sequence. The second entry < … 
>env holds the environment which maps variables to 
integers. And the entry < … >fs to represent file status 
table [11] which is a map from file names to {o,c} to 
decide wheatear the file is opened or closed. We 
mentioned before that the context was treated as sequence, 
so we use  to mean that. The symbol □ denotes a frozen 
operator. This operator replaces some context in a rule to 
denote that the original context is being calculated. 
 
Definition 2. 
Let configurations of the form << … >S , < … >env , < … 
>fs > called concrete configuration, and let G be the set of 
all configurations. We have several types of such 
configurations: 
 Initial configuration which take the form << S >S , < 

… >env , < … >fs > which also can be written as [S]. 
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 Final configuration which take the form << .>S , 
<ρ>env , < σ >fs > or<< n>S , <ρ>env , <σ >fs >. 

 A normal form configuration is a configuration that 
can't be rewritten any more, i.e. there is no τ' such that 
whilef ├ τ→ τ'. 

 Stuck configuration is a configuration in which we 
reach a normal form but it is not final. 

 Terminating configuration in which we proceed for a 
finite number of times. 

Semantics Rules. All the rules are easy to read except for 
some rules that will be illustrated below. For the rule open 
there is a side condition for the file to be closed. The same 
idea applies for the close rule; the side condition states that 
the file status should be o. So we can't open (close) a file 
that is already opened (closed). To read from a file the 
read rule has a side condition to ensure that the file is 
already opened. In the read rule we can see that it returns 
two values, the first is the value read which is stored in x. 
The second value is the pointer value which is stored in p. 
After reading from a file the environment updates both x 
and p with the new values. Note that to update the value of 
x we use a function named φ. The definition of this 
function is φ:{F,N}→Z. This function takes a file name 
and pointer value, and returns the value stored at that place. 
The sequence rule is straightforward. 
fork rule. The fork rule is tricky. Let every Si , 1≤i≤n  
appearing in fork consists of some atomic expressions say 
aij, j∈N. We define a permutation θ from N to itself [10], 
i.e we break each S into its atomics. Then we execute all 
the atoms of all S's in fork according to the order returned 
by the permutation θ. 
forkfor and forkif both are executed using fork semantics. 
This is so as forkfor executes S for a finite number of 
times and forkif executes Si only if ai is satisfied.  
 
Syntax: 
A ϶ a ::= n | x | a1 op a2  |  a1 && a2  | a1 || a2  | a1 = a2  | 
if a then at else af | while a do at |  
open (f) | x= read (f,p) | close (f) |skip  
S::= a| a1;a2 | fork {S1,S2,…, Sn} | forkfor {S} | 
forkif{(a1,S1),(a2,S2),…,(an,Sn)} 
 
Desugaring equations 
a1 && a2 = if a1 then a2 else 0 
a1 || a2 = if a1 then 1 else a2 
 
Semantics rules  
<x   S>s< ρ >env< σ >fs → <n   S>s< ρ >env< σ >fs  
if ρ(x)=n 
 

<a1 op a2   S>s< ρ >env< σ >fs → <a1   □ op a2   
S>s< ρ >env< σ >fs   
 
<n op a2   S>s< ρ >env< σ >fs → <a2   n op □   
S>s< ρ >env< σ >fs   
<n1 op n2   S>s< ρ >env< σ >fs → <n   S>s< ρ >env< 
σ >fs  if  n1 op n2=n 
 
< a1 && a2   S>s< ρ >env< σ >fs → < if a1 then a2 else 
0   S>s< ρ >env< σ >fs   
 
< a1 || a2   S>s< ρ >env< σ >fs → < if a1 then 1 else a2 
  S>s< ρ >env< σ >fs   
 
< a1 = a2   S>s< ρ >env< σ >fs → < a2   a1= □   
S>s< ρ >env< σ >fs   
 
< if a then at else af    S>s< ρ >env< σ >fs → < a   if 
□ then at else af   S>s< ρ >env< σ >fs   
 
< if a then at else af    S>s< ρ >env< σ >fs → <  at   
S>s< ρ >env< σ >fs  if a=1 
 
< if a then at else af    S>s< ρ >env< σ >fs → <  af 
 S>s< ρ >env< σ >fs  if a=0 
 
<while a do at   S>s <ρ>env<σ>fs→ < if a then at; 
while a do at else skip   S>s <ρ>env<σ>fs  
 
<while a do at   S>s <ρ>env<σ>fs→ < if a then {at; 
while a do at } else skip   S>s <ρ>env<σ>fs  
 
<open(f)   S>s <ρ>env<σ>fs→ < S>s <ρ>env<σ>fs if 
σ(f)=c 
 
<close(f)   S>s <ρ>env<σ>fs→ < S>s <ρ>env<σ>fs if 
σ(f)=o 
 
<(x,p)=read(f)   S>s <ρ>env<σ>fs→ < S>s <ρ[p→n, 
x→φ(f,n)]>env<σ>fs if σ(f)=o 
 
<S1;S2  S>s <ρ>env<σ>fs→ < S1   S2   S>s 
<ρ>env<σ>fs 
 
<fork{S1,S2,…,Sn}   S>s < ρ >env< σ >fs  → <aθ(1) ; 
aθ(1) ;…; aθ(n)   S>S <ρ>env <σ>fs 
 
<forkfor{S }   S>s < ρ >env< σ >fs  → <fork{S,S,…,S} 
  S>S <ρ>env <σ>fs 
 
<forkif{(S1,a1), (S2,a2),…, (Sn,an)}   S>s < ρ >env< σ >fs  
→ <fork{if a1  then S1 else skip, if a2  then S2 else skip ;…; 
if an  then Sn else skip }   S>S <ρ>env <σ>fs 
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 Fig. 1  whilef complete semantics. 

After explaining its structure, now we are ready to 
formally define the language whilef, as: 
 
Definition 3. (whilef, definition) The language whilef 
equals (∑whilef , Ewhilef, Rwhilef) (Figure 1). We say in whilef 
that τ can be written to τ' if whilef├τ→*τ'. 
 
Here ∑whilef contains both the syntax of whilef and ∑. Also 
both E and desugaring equations are in Ewhilef. Since ∑whilef 
can be considered the algebraic specification of the 
language, the rewrite logic semantics of whilef can be 
known as whilef. 

3. File Safety 

In this section we will define the file safety and 
termination of programs constructed in whilef. As we 
know the termination is un-decidable property in general, 
hence the file safety is also un-decidable. A program will 
be file safe if it reach a normal configuration under any 
possible executions. The choice of pointer values will play 
the major rule here since the read rule produces the un-
determinism. This section will present the fact that the file 
safety is an un-decidable property even for terminating 
programs.  
 
Definition 4. 
For any computation S in whilef, we say that S terminates 
if and only if [S] is a terminating configuration in whilef,, 
and we say that S is file safe if and only if any normal 
form of S is a final configuration in whilef,. 
 
We mentioned that file safety is not decidable even for 
terminating programs. One way to control the file safety is 
to add restriction on the read rule by letting the pointer 
value be one of its parameters. What we will do in the next 
section is to decide and tell where to read at a specific 
place. We may also treat it as in [21]. Now we state and 
proof the un-decidability of file safety even for 
terminating programs. 
 
Proposition 1: File safety of terminating programs in 
whilef is un-decidable property. 
Proof: 
Towards a contradiction we assume that the file safety is a 
decidable property. Since our language is Turing complete 
we can encode any decidable property μ(n) where n ∈ Z. 
Let y=n; PGMμ be a terminating and file safe program, 
this program writes a variable out such that μ(n) holds if 
and only if  out = 1 in the environment and otherwise if 
out =0. 

Since the pointer returned by reading from a file is 
nondeterministic in the following 
open(f); 
forkfor{ (x,p) = read (f)} 
close (f); 
We can use it to choose a random value for y. 
We let  
PGM'μ≡ 
open (f) 
forkfor{(x,y)= read(f)} 
close (f); PGMμ; 
PGM'μ terminates for any n returned by read(f) and the 
loop always terminates; for file safety, PGM'μ will be file 
safe if and only if out=1 when PGMμ terminates which 
happens if and only if μ(n) holds for every n ∈ Z [17]. 
 
To solve this problem we will control the pointer value 
and at the same time ignore the end of file error for 
simplicity. What we do to control the un-determinism that 
results from read rule is to take the pointer value as a 
parameter to read from a file. So instead of giving the file 
name to read from, and then get the value read and the 
pointer value, we will give the file name and the location 
to read from and get only the value read. 
File safety also includes not opening a file that is already 
opened, not to close a file that is already closed, and 
reading from a closed file. All the previous cases are 
controlled with the side condition in the semantic rules of 
the language. That's why we use the file status entry. 

4. Strong File Safety 

This section presents the semantics of SafeWhilef language. 
The semantics will deal with the problem mentioned 
above. Also we will introduce the concept of Strong file  
safety. A program is strongly file safe if it reaches a final 
configuration in the language SafeWhilef. The semantics 
changes the read rule and keeps all the other rules 
unchanged as Figure 2 shows. Under this modification the 
safety issue becomes decidable for terminating programs 
of the language SafeWhilef. Those programs are strongly 
terminating. A program is strongly terminating if it 
terminates in SafeWhilef. When a program is file safe 
according to the SafeWhilef rules we say it is strongly file 
safe.  

<(x)=read(f,n)   S>s <ρ>env<σ>fs→ < S>s 
<ρ[ x→φ(f,n)]>env<σ>fs if  σ(f)=o, Where n ∈ N 

Fig. 2  The semantics of SafeWhilef. 

All the other rules are the same as in whilef. The rule in 
Figure 2 is a read rule with the pointer value being given 
with the file name. First the rule has the side condition that 
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the file status must be o. This means that the file must be 
opened before reading from it. If the file is closed then the 
rule will not be applied; the side condition avoids the issue 
of reading from a closed file which will cause an error. 
We now have to tell where to read from. So when reading 
we have to say we want to read from file f at location n. 
The pointer value is determined which will eliminate the 
un-determinism. This is the difference between SafeWhilef 
and whilef. 

 
Proposition 2: 
The rule read in SafeWhilef is deterministic. 
Proof: 
Since the pointer value is now considered as a parameter 
that should be giving along with the file name, the non-
determinism is eliminated. 

Now we can define the file safety and the termination 
according to SafeWhilef. 
 
Definition 5: 
For any computation S in SafeWhilef, we say that S 
strongly terminates if and only if [S] is a terminating 
configuration in SafeWhilef, and we say that S is strongly 
file safe if and only if any normal form of [S] is a final 
configuration in SafeWhilef. 

Proposition 3: 
 Let c ∈S be a program, then: 

1. If c is terminating then c is strongly terminating; 

2. If c is strongly file safe then c is file safe; 

3. If c is strongly file safe then c is terminating if 
and only if c is strongly terminating. 

Proof: 
1. Let c be a terminating program, suppose that 

(τi)i≥0 is a sequence of configurations such that 
c=τ0. Let whilef├τi   1i τi+1, i≥0. Also 
suppose that pi is the sequence of pointers 
generated by (γi) which is instance of read rules. 
We define a function T: Γwhilef→ΓStrongWhilef such 
that it maps every configuration to itself except 
for read rule. In case of read rule it eliminates all 
the pointers from the environment generated by 
the rule. T(τ)= <(x)=read(f,np)   S>s 
<ρ/{pi}>env<σ>fs if τ=<(x,p)=read(f)   S>s 
<ρ>env<σ>fs and T(τ)=τ otherwise.  
Now we will show that T(τi), i≥0 is SafeWhilef 
configuration, and SafeWhilef├T(τi) 

  
)(

1
T

i T(τi+1) (T(γi) is an instance of 
SafeWhilef rule). Since T(τ0)= τ0, τ0 is a SafeWhilef 

configuration since the environment contains no 
pointer values. Suppose that T(τi) is a SafeWhilef 
configuration, and whilef├ τi   1i τi+1. We 
have two cases: 
Case 1: γi+1 is not an instance of read rule; In this 
case γi+1 is the same rule as in SafeWhilef. 
Case 2: γi+1 is an instance of read rule; Then 
T(γi+1) is an instance of read rule in SafeWhilef by 
the definition of T. 

2. Let τ0 be the initial state, and let SafeWhilef├ 

τi   1i τi+1, i≥0, if τi is finite sequence of 
length n then,  τn is a final configuration. Now we 
need to show that whilef├T'( τi) 

  
)('

1
T

i T'(τi+1) is either finite or it 
terminates at final configuration, such that T''(τ0)= 
τ0. We define T' as follows: T'(τ)= <(x,p)=read(f) 
  S>s <ρ  {p→n}>env<σ>fs if 
τ=<(x)=read(f,np)   S>s <ρ>env<σ>fs and 
T'(τ)=τ otherwise. Where {pi} is fresh variables. 
Now by the same way we can show that 

whilef├T'( τi)   
)('

1
T

i T'(τi+1) will be 
infinite or reach a final state from T' definition. 

3. For the only if direction it follows from 1; for the 
if direction assume that c is strongly file safe and 
strongly terminating, then from 2 , c is file safe 
and by the same way it is terminating. 

Finally we can conclude that the file safety is decidable 
only if the program is strongly terminating. 
Theorem:  
File safety of terminating programs is a decidable property 
for the language SafeWhilef. 
Proof: 
If a program terminates in SafeWhilef then it has a finite 
number of derivation. Hence we can decide whether the 
last term is final or not. 

The file safety is now a decidable property under the 
proposed condition. This special case enables us to check 
the file safety in the run time, for programs of SafeWhilef .  

5. Conclusion 

File safety is un-decidable in general even for terminating 
programs of the language whilef. But when we tide up the 
pointer values the read command, it become decidable. 
The language whilef is undeterministic because of the read 
command. The Read command return the pointer value 
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along with the read value. We modified the language to 
get the language SafeWhilef. The change is related to the 
syntax of the read command. The pointer value becomes 
required to read from a file. So to read from a file you 
need the file name and the location to read from. This 
makes file safety a decidable property for terminating 
programs in SafeWhilef. So strong file safety of strongly 
terminating programs is decidable. 

Related Work 

Work in the fields of files and operational semantics, are 
related to our work. The work in [11] checks memory 
safety in a dynamic way defining a semantics of language 
and changing it to make the problem decidable. The work 
in [21] repairs file problems with defining two type 
systems; one to admit the error and the other to repair it. In 
[2] the authors deal with the problem of memory safety via 
runtime systems via maintaining the soundness using 
probabilistic methods (probabilistic memory safety). The 
studied heap in this last paper has an infinite size. This last 
paper also introduces an algorithm that guarantees 
memory safety. The problem of memory safety is 
discussed also in [15] where the memory leaks are 
detected via software testing. The method in [15] depends 
on inserting checking points in the code produced by the 
compiler. These points check every memory access and 
detect the access errors. The work in [15] also tracks 
memory usage.   
 
In the work [12] both type inference and run-time 
checking are combined to achieve type safety of programs 
via separating pointers according to their usage (static 
usage, run time usage). An attempt to automatically 
correct memory errors without the programmer interaction 
is made in [14] via deriving a runtime patches to fix the 
memory errors. These patches help in fixing bugs by 
merging the patches that come from multiple users. The 
language defined in [22] has a very similar structure to the 
one defined in [21]. Both used re-write logic as we do in 
the current paper. 
 
In [9,8], approaches to correct programs via eliminate 
dead code [9,8] are introduced. An enrichment of the type 
system of pointers is introduced in [8] for live stack-heap 
analysis. The same author also in [6] works on the 
problem of memory safety and pointer analysis. In [6] the 
author introduces a flow sensitive type system for pointer 
analysis of multithreaded programs. The work in [7] 
presents a new flow sensitive technique for probabilistic 
pointer analysis in the form of type systems.  
 

The work presented in [13] recovers a faulty process with 
a separation of data recovery enabling micro-rebooting. 
This technique recovers faulty application component 
without disturbing the rest of the application. This method 
is fast and cheap. Demsky and Dash introduce a language 
for robust software systems in [3]. This language has two 
levels. The first is a high level organization specification 
component, and the second is a low level operational 
specification. The high level is used to detect the errors, 
recover them, and to reason how to continue the execution 
safely. Model-based data structure repair is a technique 
introduced in [4], which enable a program to continue its 
execution in the face of data structure errors. The authors 
present an algorithm that use goal directed reasoning to 
translate model repair to data structure repair. 
 
Denney and Fischer developed a frame work in [5] to 
allow proving the safety of a program statically and 
guarantee a dynamic safety. The violation asserted is  used 
in [1] to repair the state of the program and to let it 
proceed. The authors present an algorithm to repair data 
structure with the structure that violates an assertion being 
given. The paper [16] describes also a method for software 
recovery from errors associated with a mechanism to 
preserve the information at a level of overhead, which is 
believed to be helpful. The concept of safe partial 
availability and safe partial anticipability, are the basic 
concepts for the algorithm introduced in [24]. The 
algorithm is based on flow graph and is better than the 
concept of safe partial availability. An algorithm also 
based on the concept of availability anticipability is 
introduced in [25]. This algorithm is designed for classical 
PRE to solve the problem of maximum flow. Saabas in 
[23] presents a program proof to be checked instead of 
checking the program code. Also the program carrying 
code [23] is used in two things; to match Hoare logic 
against low-level languages given a compositional 
semantics and to provide proof compilation. 
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