

IST-2002-507932

ECRYPT

European Network of Excellence in Cryptology

Network of Excellence

Information Society Technologies

D.WVL.10
Audio Benchmarking Tools and Steganalysis

Due date of deliverable: 31 January 2006
Actual submission date: 22 February 2006

Start date of project: 1 February 2004 Duration: 4 years

Lead contractor: Katholieke Universiteit Leuven (KUL)

Revision 1.1

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)
Dissemination Level

PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

ECRYPT
(&5⇪3⌃

The work described in this report has in part been supported by the Commission of the European Communities
through the IST program under contract IST-2002-507932. The information in this document is provided as is,
and no warranty is given or implied that the information is fit for any particular purpose. The user thereof uses the
information at its sole risk and liability.

Audio Benchmarking Tools and Steganalysis

Editor
Jana Dittmann (GAUSS)

Christian Kraetzer (GAUSS)

Contributors
Andreas Lang (GAUSS), Christian Kraetzer (GAUSS),

Natalia Trofimova (GAUSS), Christian Ullerich (GAUSS), Andreas Westfeld
(GAUSS), Patrick Bas (CNRS), Jordi Herrera Joacomartí (UVIGO-UOC), David

Megías Jiménez (UVIGO-UOC)

22 February 2006

Revision 1.1

D.WVL.10 – Audio Benchmarking Tools and Steganalysis i

Contents

1 Abstract – Executive Summary ...1
2 Introduction..1
3 Audio Benchmarking Tool SMBA ..2

3.1 SMBA architecture ..2
3.2 Current Single Attacks...3

3.2.1 Time domain attacks ..4
3.2.2 Frequency Domain Attacks..12

3.3 Application oriented attacks ..15
3.4 Attack tuning - Attack Transparency Models and their Impact to Geometric
Attacks ...16
3.5 First Benchmarking Tests ..17

3.5.1 Algorithms used for testing..17
3.5.1.1 AMSL LSB Watermarking ..17
3.5.1.2 AMSL Spread Spectrum Watermarking..17
3.5.1.3 2W2A – AMSL Audio Water Wavelet..18
3.5.1.4 Publimark...18
3.5.1.5 WAUC and WAUC-sec...19

3.5.2 Parameterisation...21
3.5.3 First benchmarking results ...23

4 Steganography and Steganalysis..25
4.1 Steganographic Tools on the Internet ..25

4.1.1 Introduction..25
4.1.2 Tools ..26

4.1.2.1 Development ..26
4.1.2.2 Licence Model ...27
4.1.2.3 Price ...27
4.1.2.4 Availability of Source Code...28
4.1.2.5 Supported OS Platform..28

4.1.3 Techniques ...29
4.1.3.1 Media type ...29
4.1.3.2 Encryption..30
4.1.3.3 Embedding ...31

4.1.3.3.1 Embedding Data into Text ...32
4.1.3.3.2 Embedding Data into Images, Audio, and Video33
4.1.3.3.3 Embedding Data into Program Files..34
4.1.3.3.4 Embedding Data into Archive Files...34
4.1.3.3.5 Embedding Data into Network Protocols34

4.1.3.4 Message Spread ...34
4.1.3.5 Capacity ...37
4.1.3.6 Adaptivity ..38

4.1.4 Discussion and conclusion...39
4.2 Transparency Benchmarking for Steganographic Algorithms39
4.3 Improving LSB Steganalysis using marginal and joint probabilistic
distributions..41

ii ECRYPT – European NoE in Cryptology

5 Summary ..42
6 Bibliography ..44

Tool Resource Links ..47
Appendix A - List of Investigated Steganographic Tools ...47

D.WVL.10 – Audio Benchmarking Tools and Steganalysis
 1

1 Abstract – Executive Summary

The focus of WAVILA WVL3s research activities is on the development of
benchmarking tools and schemes for digital watermarking and steganography as well
as the evaluation of selected algorithms.
Digital watermarking and steganography are two of the most important aspects of
information hiding in digital media. While the first is most commonly used for
authentification, proof of ownership, proof of integrity and non-repudiation
mechanisms it is part of many Digital Rights Management schemes and has therefore
a huge commercial interest. Steganography, as the second information hiding
technique considered by WVL3, provides hidden communication channels in
seemingly “harmless” media like images, audio material or VoIP telephony sessions
and is therefore of huge interest for security considerations and for the development of
steganalysis techniques to detect such hidden communication channels in their cover
mediums.
Benchmarking itself has not only the possibilities to identify possible weaknesses of
tested algorithms. It can also provide a fair comparison of different algorithms under
different evaluation aspects, making it possible to identify from a list of given
solutions the algorithm most fitting for a concrete application scenario.
In this report we introduce the results of WVL3s activities in audio watermarking
benchmarking where a lot of research results have been reached by evaluations with
SMBA – a audio watermarking benchmarking tool developed by ECRYPT partner
GAUSS and provided as a commonly available tool to the ECRYPT consortium. The
results introduced here range from a comparison of different available watermarking
algorithms for their possible application in different scenarios to recommendations for
improvement regarding the performance of selected algorithms.
The second large part of WVL3s research activities described here is concerned with
the results in steganography and steganalysis. In these fields WVL3 is on its way to
identify the characteristics necessary for a fair benchmarking and to propose
benchmarking procedures relevant consistent for various applications of
steganographic methods. The results presented here show a first classification of
available steganographic algorithms, followed by a more detailed evaluation of
transparency for steganographic algorithms (based on the fact that it is one of the most
important general characteristics of data hiding methods). The presentation of the
research results in the field of steganography is ended by considerations about an
specific steganalytical approach to illustrate the fact that the ECRYPT partner are not
only doing basic research in the fields of steganography and steganalysis.

2 Introduction

In this report we summarise the WVL3 activities in the fields of a) benchmarking
methods and tools for digital watermarks and b) steganography and steganalysis for
the second ECRYPT year.
The evaluation focuses in general on the most important properties robustness,
security, imperceptibility/ transparency, complexity, capacity and possibility of
verification as well as invertibility of digital watermarking techniques. As a tool of
choice for watermarking benchmarking SMBA (StirMark Benchmark for Audio) was
chosen for this report, since it is not only developed by one of the ECRYPT partners

2 ECRYPT – European NoE in Cryptology

(GAUSS) but is also used for the benchmarking of audio watermarking algorithms by
other ECRYPT partners, too, to provide a base for comparability.
The steganography and steganalysis part of the work done in WVL3 focuses on the
identification of available steganographic tools and the proposal of a classification
scheme for a huge number of hidden communication applications. Furthermore the
possibilities for steganalytical detection for selected algorithms are discussed.

This report is structured as follows: Section 3 addresses investigated watermarking
benchmarking methods that allow assessing watermarking algorithm properties.
Especially we summarise the functions of the developed benchmarking tool StirMark
Benchmark for Audio as well as its approach for audio streams and indicate how
SMBA was used for evaluation of different audio watermarking algorithms,
exchanged and developed in WVL2. Since the results of these evaluations were
already published in other documents they are only referred to here. Furthermore the
approaches of attack tuning with attack transparency models and their impact to
geometric attacks are reported, which were presented and discussed during the Ecrypt
workshop WaCha 2005, Barcelona. Section 4 summarises the activities of WVL3 in
the fields of steganography and steganalysis. Here first an overview and classification
of a large number of available steganographic tools is given. Then a selected
steganographic approach is evaluated using a steganalytical approach.

3 Audio Benchmarking Tool SMBA

This section describes the evaluation tool StirMark Benchmark for Audio (SMBA).
This tool includes a collection of single attacks against the robustness of digital audio
watermarks. These attacks work in time or frequency domain and modify the audio
signal with the goal to weak or destroy an embedded watermark for benchmarking
and evaluation purposes.

3.1 SMBA architecture
Note, that in this paper we use the following notation: SMBA stands for the overall
benchmarking system and SMFA denotes the single attack module. The architecture
of SMBA consists of four different types of modules. First, the attack module SMFA
itself, second the read write stream module to convert audio files into streams and
back into files, which is needed for input and output of audio signals. The third
module SM-Bell is a wrapper for SMFA and read write to make it easier to use. The
fourth module SM-Bell_GUI is a graphical user interface for SM-Bell. Figure 3-1
shows the modules and the module dependencies. The line between the read write
process and SMFA and the other SMFA processes is a symbol for a pipe. The audio
file is read by the read write module. The audio data are given to the first SMFA
process which runs the first attack. The resulting audio signal of this process is the
new input for the second SMFA process and so on. At the end of the pipes can be the
read write module to save the audio signal in an audio file. If the user does not want to
store the audio signal in a file, then the audio stream can be sent to the sound device to
play it.

D.WVL.10 – Audio Benchmarking Tools and Steganalysis
 3

Figure 3-1: Modules of SMBA

The main benchmarking process is SMFA, the attack process, where a selected single
attack is running (or concatenations of single attacks) to change the audio signal. In
this paper, we set our main focus on this module (SMFA). Due to the design of our
system, by running one single process, it is only possible to run one single attack on
the audio signal. If it is feasible to run more than one attack on the audio signal, it is
simple to use multiple instances of SMFA. This is possible by connecting the stdout
of one SMFA process with the stdin of the following SMFA process by using a pipe.
Another advantage of using SMFA for multiple attacks is, that each attack runs in its
own SMFA process and the operating system can independently allocate each process
to a processing unit. This is especially advantageous if there are multiple processing
units available.

3.2 Current Single Attacks

Currently 40 attacks1 are provided by StirMark Benchmark for Audio (SMBA)
[SMBA] in version 1.2, with their default attack parameters [LANG2005].

From the overall point of view, a digital audio signal S depends on different
parameters based on the capturing and sampling processes (with the following default
values for SMBA):

o Sampling Frequency: fSR = 44.1 kHz
o Sampling Quantization: 16 bits (MaxQantization = 216)
o Number of channels: 2 (stereo)

Based on the digital audio representation, we differ between time and frequency
domain. The frequency domain representation can be provided by transforming the
time domain audio signal into the frequency domain for example by using a Fourier
transformation [IFEACHOR2002]. As notation for the attacks of SMFA working in
time domain, we use Si(x) as input signal for SMFA (marked audio signal) and So(x)
as output signal from SMFA which is the attacked, modified, marked audio signal.
The value x is the sample value at a discrete point of time in the input and output
stream, we use x = x(ti). The value f denotes one frame that contains n sample values

1 AddBrumm, AddDynNoise, AddFFTNoise, AddNoise, AddSinus, Amplify, BassBoost, Compressor, CopySample,
CutSamples, DynamicPitchScale, DynamicTimeStretch, Echo, Exchange, ExtraStereo, FFT_HLPassQuick, FFT_Invert,
FFT_RealReverse, FFT_Stat1, FlippSample, Invert, LSBZero, Noise_Max, Normalizer1, Normalizer2, Nothing, Pitchscale,
RC_HighPass, RC_LowPass, Resampling, Smooth, Smooth2, Stat1, Stat2, TimeStretch, VoiceRemove, ZeroCross,
ZeroLength1, ZeroLength2, ZeroRemove

4 ECRYPT – European NoE in Cryptology

x, f = fx(t0); x(t1); ... ; x(tn-1)g, ti; i = 0 ... n - 1, n in N, n=framelength. Avg(f) is the
average of all sample values for all channels within the frame f. As notation for the
attacks of SMFA working in frequency domain, we use Fi(x) to identify the frequency
input signal and Pi(x) to identify the phase of the signal represented in the frequency
domain. Furthermore, we use Fo(x) and Po(x) as the corresponding output signal in
frequency domain. The attacks in the frequency domain are parameterized with a
window size (FFTSize) equal to frame size f for the Fast Fourier Transformation used
for processing. As a default value we use a size of 1024 samples. To scale the attacks,
we introduce an attack strength scalar value AS which specifies the strength of the
attack performed on the audio signal.

The motivation for all attacks in SMFA is to destroy or weaken the embedded
watermark signal, as Kutter et. all [Kutter2000] described for geometric attacks. From
the signal processing point of view, we can classify the SMFA attacks into three
attack classes. The first class adds or removes a signal k to or from Si(x): So(x) = a *
Si(x) + b * k(t). The value a scales the input audio signal and the value b scales k(t) to
a specific limit. The second class can be described as filter attacks: So(x)
=FAttack(Si(x)), where FAttack is the corresponding attack from this attack class. The third
attack class can be seen as modification attacks, by modifying the overall structure of
the signal representation for example the overall length of the audio signal or shifting
audio samples: So(x) = MAttack(Si(x)). Table 3-1 summarises all current single attacks
of SMFA into these three classes by indicating time and frequency domain.

Table 3-1: Classification of SMFA attacks

In the following sub sections, all 40 attacks are described and discussed how they
work and what parameters they need. At the beginning, we introduce the attacks in
Time Domain and then the attacks in Frequency Domain. At the end of each attack,
we present default parameters.

3.2.1 Time domain attacks

As notation for the time-domain attacks we use Si(x) as input signal for SMBA
(marked audio signal) and So(x) as output signal from SMBA which is the attacked,
modified audio signal. The value x is the sample number in the output stream. The

D.WVL.10 – Audio Benchmarking Tools and Steganalysis
 5

value f is the frame that contains the sample x. Avg(f) is the average of all sample
values for all channels within the frame that contains x.

• AddBrumm: Adds buzz as sinus tone to the audio signal. This attack is useful
to simulate the buzz of a power supply unit of analogue devices. This attack
has 2 parameters. Frequency indicates the buzz frequency and Strength for the
attack strength (amplitude).

The default parameter values are: Frequency = 55 and Strength = 2500

• AddDynNoise: Adds a dynamic noise that depends on the signal amplitude to
the audio signal. This attack is useful for simulating certain noise effects found
in analogue audio equipment. This attack has one parameter. Strength is the
relative strength of the attack.

The default parameter value is: Strength = 20

• AddNoise: Adds a white noise to the audio signal. This attack is useful for
analogue noise produced in many analogue devices. This attack has one
parameter. Strength is the relative strength of the attack.

The default parameter value is: Strength = 1000

• AddSinus: Adds a sinus tone to the audio signal. This attack is useful to
simulate various sinusoidal audio phenomena or to add a distortion signal in
exactly the same frequency range where the watermark embedder would
embed the watermark information. This attack is similar to Addbrumm and
has two parameters. Frequency is the buzz frequency and Strength the attack
strength (amplitude).

The default parameter values are: Frequency = 3000 and Strength = 120

6 ECRYPT – European NoE in Cryptology

• Amplify: Changes the amplitude of the audio signal to simulate amplification.
This attack has one parameter. Factor is the percent increase or decrease
percentage with 100 being neutral.

The default parameter value is: Factor = 50

• BassBoost: Boosts the bass range of the audio signal, similar to analogue bass
boosting circuits that are prevalent in consumer audio devices. This attack uses
code from the Open-Source Media Editor Audacity [AUDACITY].
This attack has two parameters. ThresholdFrequency is the threshold under
which all frequencies are boosted by BoostDB (in decibels).

The default parameter values are: ThresholdFrequency = 150 and BoostDB =
6.123

• Compressor: Scales all samples under a given threshold by a given amount.
This attack is similar to various analogue compressor devices that are available
on the market. This attack has 2 parameters. ThresholdDB is an amplitude
threshold (in dB) under which all samples are compressed using the factor
CompressorValue.

The def. parameter values are: ThresholdDB = 6.123 and CompressorValue = 2.1

• CopySample: Inserts copies of a group of samples at a later point in the
stream. This is meant to test watermarking algorithms for dependence on
quantity and order of samples. This attack uses a modified buffer-wise
processing where input and output are asymmetrical and successive iterations
do not necessarily use the same length buffer.
This attack has three parameters. Within every Period samples, the first Count
samples are copied Distance away from their original position. Period must be
greater than Distance which in turn must be greater than Count.

D.WVL.10 – Audio Benchmarking Tools and Steganalysis
 7

The default parameter values are: Period=10000, Distance=6000 and Count=2000

• CutSample: Drops a certain number of samples periodically. This is meant to
test watermarking algorithms for dependence on quantity and order of
samples. This algorithm also uses a modified buffer-wise algorithm, input and
output are again asymmetrical, but in this case every other buffer is simply
thrown away without being outputted.
This attack has two parameters. Drops RemoveNumber samples at the
beginning of every Remove input samples.

The default parameter values are: Remove=1000 and RemoveNumber=7

• Echo: Adds a simple echo to the audio signal. This is meant to test
watermarking algorithms that hide information in echos in the signal or test
the watermark against echo attacks. This algorithm uses a "marching blocks"
type algorithm to support streaming. Two buffers are always in memory, one
front and one back. Front is the most recently read in samples. It is used to
calculate the echo for back and then back is outputted, a front becomes the
new back and a new front buffer of samples is read in.
This attack has one parameter. The echo is produced with an echo delay of
Distance samples.

The default parameter value is: Distance=2000

• Exchange: Swaps consecutive samples in the audio sample. This is meant to
test watermarking algorithms for their sensitivity to the exact order of the
samples. This attack has no parameters.

• ExtraStereo: Adds the average between the channels in a frame to all samples
in the frame. This is meant to test watermarking algorithms that use channel
difference in multi-channel systems. This attack is based on the extra stereo

8 ECRYPT – European NoE in Cryptology

function of XMMS [XMMS]. This attack has one parameter. Factor scales the
strength of the effect.

The default parameter value is: Factor=20

• FlippSample: Flips a group of samples at a later point in the stream. This is
meant to test watermarking algorithms for dependence on the order of
samples. This attack uses a modified buffer-wise processing where sections of
input and output are asymmetrical and successive iterations do not necessarily
use the same length buffer. This attack has three parameters. Within every
Period samples, the first Count samples are copied Distance away from their
original position. Period must be greater than Distance which in turn must be
greater than Count.

The default parameter values are: Period=10000, Count=2000 and
Distance=6000

• Invert: Inverts a sample: each sample value is replaced by its opposite (phase
shift of 180°). This is meant to test watermarking algorithms for their
sensitivity to the phase of the signal. This attack has no parameters.

• LSBZero: Set the values of Least Significant Bits (LSBs) to zero. This is
meant to challenge algorithms that may embed in the LSBs of the samples.
This attack has no parameters.

• NoiseMax: Introduces a noise into the signal based on the Maximum Length
Sequence (RIFE1989) [RIFE1989]. This attack has three parameters. Mask
and Length are parameters to the RIFE1989 function, while Strength controls
the strength of the noise that is introduced.

D.WVL.10 – Audio Benchmarking Tools and Steganalysis
 9

The default parameter values are: Mask=300, Length=23 and Strength=1365

• Normalizer1: Normalizes the signal in a streaming manner, based on local
peak information or based on cumulative peak information. This attack
simulates various real-time normaliser devices. This attack has three
parameters. BufferSize determines the length of each buffer for each
processing cycle, Level is quantisation step that the samples are to be
normalized to and Zeroing is a boolean switch to switch between local and
cumulative peak finding (0 = local, else cumulative). The function Peak(x)
finds the maximum peak value in the buffer.

The default parameter values are: BufferSize=2048, Level=28000 and
Zeroing=0

• Nothing: A simple pass-through, nothing is altered. This attack has no
parameters.

• RC-HighPass: Simulates an analogue Resistor/Capacitor (RC) High-Pass
Filter. This algorithm comes from [SMITH1997]. This attack has one
parameter. Threshold determines the cut-off frequency (in Hz) for the filter.

The default parameter value is: Threshold=150

• RC-LowPass: Simulates an analogue Resistor/Capacitor (RC) Low-Pass
Filter similar to RC-HighPass. This attack has one parameter. Threshold
determines the cut-off frequency (in Hz) for the filter

10 ECRYPT – European NoE in Cryptology

The default parameter value is: Threshold=15000

• Resampling: Adjusts the sample rate to a new rate. This attack uses the
libsamplerate library [libsamplerate]. The library libsamplerate is written to
support streaming, so the library handles streaming. This attack has one
parameter SampleRate is the new rate which the signal has to be resampled to.
The default parameter value is: SampleRate=22050

• Smooth1: Applies a smoothing algorithm to the signal. This attack has no
parameters.

• Smooth2: Applies a smoothing algorithm to the signal. This attack has no
parameters.

• Stat1: Applies a distortion algorithm to the signal. This attack has no
parameters.

• Stat2: Applies a distortion algorithm to the signal. This attack has no
parameters.

D.WVL.10 – Audio Benchmarking Tools and Steganalysis
 11

• VoiceRemove: Subtracts the average between the channels in a frame from all
samples in the frame. This is meant to test watermarking algorithms that use
channel difference in multi-channel systems. This attack is based on the voice
remove function of XMMS [XMMS]. This attack has no parameters.

• ZeroCross: Sets all samples with an absolute value less than a given threshold
to zero. This attack has one parameter. ZeroCross is the threshold below
which all values are set to zero.

The default parameter value is: ZeroCross=1000

• ZeroLength1: Sends a given number of zero samples as output after the
detection of a zero value in the input, treating each channel independently. The
streaming implementation of this attack uses queues to store incoming samples
while it is outputting a set of zero-samples. This attack has one parameter.
ZeroLength is the number of zero samples sent to output after the detection.

The default parameter value is: ZeroLength=10

• ZeroLength2: Sends a given number of zero samples to all channels after the
detection of a zero value in the any channel of the input. The streaming
implementation of this attack is buffer-wise but input and output are not
always symmetrical. (it depends whether we are in a run of zeros or not)
This attack has one parameter. ZeroLength is the number of zero samples sent
to output after the detection.

The default parameter value is: ZeroLength=10

• ZeroRemoves: Removes all zero samples from the signal. This attack has no
parameters.

12 ECRYPT – European NoE in Cryptology

3.2.2 Frequency Domain Attacks

In the following, we introduce all attack in frequency domain. As notation for the
frequency-domain attacks we use Fi(x) to signify the frequency input signal and Pi(x)
to specify the phase of the signal represented in the frequency domain using a Fourier
transform [IFEACHOR2002] with Fo(x) and Po(x) as the corresponding output signal
in frequency domain. The value x is the bucket number in the Fourier representation.
All attacks in frequency domain convert to the Fourier representation in frames. Some
of them need as attack parameter the size of a frame (FFTSize) of the Fast Fourier
Transformation used in processing. As a default value we assume a size of 1024
samples for the following attacks. Unless otherwise noted, a simple buffer-wise
implementation was used to introduce streaming: each FFT buffer is read in,
transformed, processed, transformed back and then outputted.

• AddFFTNoise: Adds a white noise to the signal in the frequency domain.
This attack has one parameter. Strength is the relative strength of the attack.

The default parameter value is: Strength=3000

• DynamicPitchScale: This attack performs a nonlinear pitch scaling on the
audio signal and provides five different working modes. These modes and the
default attack parameters are similar to the DynamicTimeStretch attack with
the difference, that the pitch is scaled instead the time is stretched.

• DynamicTimeStretch: This attack performs a nonlinear time stretch on the
audio signal. This can be categorized into five different working modes, which
are described in the following. Furthermore, all modes have five parameters
(scale factor (s), mode of attack (m), frame size - lower bound (FSLB), frame
size - upper bound (FSUB) and buffer size (bs)).

o [Mode 0:] This mode stretches the audio signal in fixed direction
either left or right but scaling factor varies over time randomly between
scale factor and 1. Direction of scaling is determined by scale factor. If
it is greater than 1 scaling will be right direction (stretch), otherwise in
left direction (shrink). The following figure 3-2 illustrates the attack.

D.WVL.10 – Audio Benchmarking Tools and Steganalysis
 13

Figure 3-2: DynamicTimeStretch with fixed direction and randomly stretched

o [Mode 1:] This mode stretches the audio signal with a fixed scale
factor but the direction of scaling changes randomly while processes
sequence of all the frames. The following figure 3-3 shows it. The
direction which frame is going to be stretched is selected randomly
from a pool of random numbers.

Figure 3-3: DynamicTimeStretch with random direction and fixed stretch

o [Mode 2:] This mode stretches the audio signal with a fixed scaling
factor similar to mode 1 but the difference is that direction of scaling
changes to right and left alternatively for each frame. The following
figure 3-4 shows it.

Figure 3-4: DynamicTimeStretch with an alternating direction and fixed stretch

o [Mode 3:] This mode stretches the audio signal in random direction
with a randomly scaling factor varies over time. The figure 3-5 shows
it.

14 ECRYPT – European NoE in Cryptology

Figure 3-5: DynamicTimeStretch with random direction and random stretch

o [Mode 4:] This mode stretches the audio signal in alternating
directions with a randomly scaling factor varies over time. The
figure 3-6 shows it.

Figure 3-6: DynamicTimeStretch with alternating direction and random stretch

The default parameters are: scalefactor=1.4, mode=3, framesize-
lowerbound=32000, framesize-upperbound=64000 and buffersize=32384

• FFT_HLPassQuick: Filters selected frequencies out of the audio signal or let
pass through selected frequencies. Similar to RC-High- and RC-LowPass but
works in the frequency domain. This attack has two parameters.
HighPassFrequency is the cut-off frequency for the high-pass filtering.
LowPassFrequency is the cut-off for the low-pass filtering.

The default attack parameters are: HighPassFrequency=15000 and
LowPassFrequency=150

• FFT_Invert: Inverts (phase shift 180°) the frequency and phase in this
domain and needs no parameters. The effect of this attack depends on the FFT
implementation that is used.

D.WVL.10 – Audio Benchmarking Tools and Steganalysis
 15

• FFT_Stat1: Computes a mathematical signal modification, similar to Stat1
but in the frequency domain. This attack has no parameters.

• Normalizer2: This attack is similar to Normalizer1, but works in the
frequency domain. Additionally, the audio signal is split into two frequency
bands, which are normalized independently of one another. This attack uses
the FFTW library for Fourier Transformation [IFEACHOR2002].
This attack has three parameters. Level is quantisation step that the samples are
to be normalized to and Zeroing is a boolean switch to switch between local
and cumulative peak finding (0 = local, else cumulative). The function Peak(x)
finds the maximum peak value in the buffer. Threshold is the boundary
between the two separately-analysed frequency bands.
The default attack parameters are: Level=28000, Zeroing=0 and
Threshold=5000

• PitchScale: This attack scales the frequency up or down without changing the
tempo of the signal. This attack uses the library SoundTouch [soundtouch] to
alter the signal. This attack uses the streaming facility built into the
libsoundtouch library. All data is processed in an asynchronous FIFO. This
attack has one parameter. ScaleFactor is the pitch scaling factor (in octaves).
The default attack parameter is: ScaleFactor=0.95 or 1.05.

• TimeStretch: This attack stretches or shrinks the signal playing time without
changing the pitch. This attack uses the library SoundTouch [soundtouch] to
alter the signal. This attack uses the streaming facility built into the
libsoundtouch library. All data is processed in an asynchronous FIFO. This
attack has one parameter. Factor is the time scaling factor. The default attack
parameter is: Factor=0.95 or 1.05

3.3 Application oriented attacks
The future of attack based benchmarking lies in application oriented attacks (profile
attacks) as they are described in [LANG2004] and [LANG2005]. Profiles serve the
purpose of simulation real world application scenarios or special parameter settings
for the watermarking algorithm. The simplest way to attack a digital watermark is a
brute force attack by using all possible attacks against the watermark. For each attack,
SMBA has default attack parameters, which can be used to evaluate the digital audio

16 ECRYPT – European NoE in Cryptology

watermark very quickly. It is also possible to change and optimise the attack
parameters to improve the attack strength or attack transparency. Each attack is part of
a single evaluation process to determine the watermarking algorithm weakness e.g.
with which attack a watermark can be broken. These single attacks are atomic signal
modification processes. This scenario is also called single attack process
[DITTMANN2004]. In this mode, the watermarked audio file undergoes many
separate instances of attacks and for each attack a separate output audio file is
produced. Each of these audio files is only modified by a single attack (e.g.
AddNoise, PitchScale, Amplify or CutSample). This is useful to find a single specific
weakness of a watermark algorithm. By using this attack method, the problem is
twofold: Firstly, for each attack we produce and evaluate an attacked audio file to test
the watermarking detection/verification computing a huge amount of data. Secondly,
weaknesses caused by combinations of audio effects or artefacts are not tested.
Therefore, another attack mode, called profile attack is introduced by [LANG2004] to
run more than one attack in serial order. An evaluation profile is an ordered sequence
of processes that may be applied to a signal. Each of the individual processes in the
profile is defined by its own set of parameters. While a profile may seem to be merely
an attack or process macro, profiles serve a very useful purpose in benchmarking.
Profiles allow the evaluation system to model or simulate scenarios of interest to
particular applications, like internet radio, audio production or audio archives. Based
of our classification of profiles [LANG2005C], an evaluation profile may be defined
in terms of other (existing) profiles, which allow a complex process or attack to be
modelled as a sequence of previously-defined (or elementary) processes (for example
the DA/AD conversion). The approach used by SMBA composes profile attacks from
a concatenation of single attacks (basic profiles). Therefore is has to be assumed that
an improvement of the single attacks (their number and functionality as well as their
parameterisation) will lead to improved (closer to the desired application) profile
attacks.

3.4 Attack tuning - Attack Transparency Models and their
Impact to Geometric Attacks

By tuning geometric attacks using attack transparency models and non-linear methods
found in psychoacoustic models like described in [LANG2003] and
[DITTMANN2005] the modification itself becomes context aware, resulting in
attacked sequences which are the output of a transparent modification. As a second
benefit of the use of psychoacoustic models, attacks could be maximised by refraining
from the use of single attack parameters and instead using functions like the masking
threshold to parameterise the attack.
In [DITTMANN2005] it was shown that using psychoacoustic modelling in
geometric attacks (used as single attacks in an audio watermark benchmarking
environment like SMBA) is capable of improving the results of the attacks. The
exhaustive search needed by the detector to compute the correlation between the
attacked sequence and all cyclically shifted versions of the watermark signal becomes
far more complicated. A much wider scope of attacks (resulting from the perceptually
scaled cyclical shifts) has to be considered for the exhaustive search.
When observing single attacks from the SMBA suite it can be stated from the results
presented in [KRAETZER2006A] that the trade-off between the two characteristics
impact on robustness and transparency seems to be the same like in data hiding. When

D.WVL.10 – Audio Benchmarking Tools and Steganalysis
 17

the psychoacousticaly modified SMBA attacks from [DITTMANN2005] where
evaluated in a larger scope further proof for the benefit of using transparency
enhancing measures in attack based evaluation was given.

3.5 First Benchmarking Tests
First benchmarks on watermarking algorithms were performed in
[KRAETZER2006A], [LANG2006] and [Megías2006] using SMBA to evaluate the
transparency, complexity, robustness and capacity of selected watermarking and
steganography algorithms. In the following section 3.5.1 we describe the evaluated
watermarking and steganographic algorithms in detail, in section 3.5.2 we describe
the used parameterisation. The first test results can be found in the publications
mentioned above.

3.5.1 Algorithms used for testing

The following subsections introduce the used algorithms in detail.

3.5.1.1 AMSL LSB Watermarking
This watermarking algorithm works in time domain and embeds the watermark in the
least significant bits of the audio sample values [Klimant2003, Matev2005] by
overwriting the original bits. The watermarking algorithm has the following three
parameters:
o The parameter k is a secret key. If k is used, then it initialized a pseudo random

noise generator (PRNG) which selects the LSB’s which are used for embedding
the digital watermark. It means that not all LBS’s are used for embedding. If no k
is used (the parameter is not set), then all sample values of the audio signal are
used for embedding. It directly inferences the embedding capacity.

o The parameter c is for the usage of error correction codes (ECC) [Klimant2003]
and turns error correction on or off. If an ECC is used, then the length of the
embedding message is doubled and errors during the retrieval process can be
detected and corrected up to a threshold.

o The parameter m is for embedding a message and specifies the secret message
which is embedded into the audio signal.

3.5.1.2 AMSL Spread Spectrum Watermarking
This watermarking algorithm works in frequency domain and embeds the watermark
in the frequency coefficients [Kim2003]. The audio signal is transformed into the
frequency domain by using a Fourier Transformation [IFEACHOR2002]. The
following itemization introduces the parameters for this watermarking algorithm.
o The secret message m is used for embedding into the audio signal.
o A secret key k initialized a PRNG and the random numbers r are computed.
o Other parameters l and h determine the bandwidth by selecting the lower (l) and

upper (h) frequency bound for embedding. Both parameters represent the
frequency range which is used for embedding.

o A scalar value α determines the embed strength of the watermark.

18 ECRYPT – European NoE in Cryptology

o An error correction code [Klimant2003] selected with the parameter c, corrects the
embedded information up to a specific threshold if errors occur on the embedded
message during the retrieval process.

The secret message m is a binary message m= {0,1} or an equivalent bipolar variable
m={-1,1}, which is modulated by a pseudo-random sequence r(ni). This sequence is
generated by k. The value α specifies the embed strength. The index i runs from 1 to
N and N is the length of the audio signal. The following equation shows the
watermarking process: SE(ni) = S(ni) + α w(ni). The scaling factor α controls the
adjustment between robustness and inaudibility. The modulated watermark w(ni) is
equals to r(ni) or –r(ni) depending on m = 0 or m = 1.

3.5.1.3 2W2A – AMSL Audio Water Wavelet
This watermarking algorithm works in wavelet domain and embeds the watermark on
selected zero tree nodes. It does not use a secret key. An additional file is created,
where the marking positions are stored to retrieve the watermark information in
detection process (non blind).
This watermark scheme embeds the watermark information m in the wavelet based
frequency domain and uses a digital watermarking technique called zerotree (ZT)
[Shapiro1993]. It is a non blind method, because additional information (specific file,
where the wavelet coefficient used for embedding are stored) for watermark detection
are needed. A classification of the wavelet coefficients which are significant by using
zerotrees is performed in [INOUE1999]. In [INOUE1999] are two methods of digital
watermark described. The first method uses the insignificant coefficients and embeds
the watermark information redundantly into these. Zerotrees are constructed for three
pairs of sub-bands. For detecting the watermark the zerotree root is used after the
wavelet decomposition. The second method uses the significant coefficients by
thresholding and modifying these coefficients at the coarsest scale. Two thresholds T1
and T2, where T1 < T2, and one the sub-bands must be selected. The coefficients are
calculated and must lie between T1 and T2. Then the watermark information is
embedded by modifying the calculated coefficients. For detection the embedded
position and the threshold value are needed after the wavelet decomposition. This is
the reason, why 2A2W is a non blind watermarking algorithm. In the following, the
parameters are introduced.
o The parameter m is the watermarking message, which is embedded.
o The Parameter w specifies the watermarking method and at this time, only ZT

(zerotree) is possible.
o The parameter c specifies the coding method and at this time, only binary (BIN) is

possible.

3.5.1.4 Publimark
This watermarking algorithm is an open source tool, developed from Gaëtan Le
Guelvouit [Publimark] and it is a command line tool, which embeds a secret message
into an audio file. Therefore it uses a pair of keys, a public and a private key. The
public key kpub can be shared so that everybody can send a secrete message. The
private key kpriv must be kept secret that only the owner can detect and retrieve the
hidden information. The embedding process consists of two phases. First the sender
chooses a random key, denoted seed, which is encoded with the shared public key to
embed the secrete message. Second the sender transmits the audio file to the recipient,

D.WVL.10 – Audio Benchmarking Tools and Steganalysis
 19

using an efficient private key steganographic algorithm [GUILLON2002]. For this the
Scalar Costa scheme [EGGERS2003] could be used. Therefore the main problem lies
on how to transmit the key. In [GUELVOIT2005] are further details described. The
algorithm has the following three parameters:
o The parameter m specifies the watermark message, which is embedded.
o The private (secret) key is kpriv.
o The public key is kpub.

3.5.1.5 WAUC and WAUC-sec
These watermarking algorithms work in the frequency domain and rely on MPEG 1
Layer 3 compression to determine where and how the embedded mark must be
introduced [Megías2003, Megías2005]. The mark is embedded by modifying the
magnitude of the spectrum at several frequencies which are chosen according to the
difference computed between the original and the compressed audio content. The
main advantage of this scheme is that the perceptual masking of the compressor is
implicitly used and, thus, the scheme can be directly tested with different masking
models by replacing the compressor. Since repeat coding of the mark is used, a
majority voting scheme is applied to improve robustness. The scheme also uses a dual
Hamming error correcting code for the embedded mark, which makes it possible to
apply it for fingerprinting, achieving robustness against collusion of two buyers.

Mark embedding

Let the signal S to be marked be a collection of PCM samples. The spectrum of S,
denoted as SF, is computed with a Fast Fourier Transform (FFT) algorithm. Then, the
signal S is compressed using an MP3 algorithm with a rate of R kbps and
decompressed again to PCM format. The result of this compression/decompression
operation is a new signal S’, and its spectrum SF’ is obtained. The set of marking
frequencies Fmark is chosen as follows. Firstly, all fmark ∈ Fmark must belong to the
relevant frequencies Frel of the original signal SF:

[] ,
100

)(:,0
maxmaxrel

⎭
⎬
⎫

⎩
⎨
⎧ ≥∈= FF SpfSffF

where fmax denotes the maximum frequency of the spectrum, which depends on the
sampling rate and the sampling theorem, p ∈ [0, 100] is a percentage and

maxFS is
the maximum magnitude of the spectrum SF. Secondly, the frequencies to be marked
are those for which the magnitude remains “unchanged” after lossy compression and
decompression, where “unchanged” means a relative error below a given threshold ε:

{ } .
)(

)()(:,,, rel21mark
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

<
′−

∈== ε
fS

fSfSFffffF
F

FF
nL

20 ECRYPT – European NoE in Cryptology

o The parameter R is the bit rate used by the MP3 compressor needed by the
embedding algorithm. R can be chosen in the range [32, 320] kbps.

o The parameter p is a percentage in the range [0, 100].
o The parameter ε is a relative error in the range [0, 1].

Once the frequencies in Fmark have been chosen, the spectrum of the marked signal is
computed as:

⎪
⎩

⎪
⎨

⎧

∈⋅
∈⋅
∉

=
−

+

'0'. embed to,,10)(
,'1' embed to,,10)(

,),(
)(ˆ

mark
20/

mark
20/

mark

FffS
FffS
FffS

fS
d

F

d
F

F

F

Since spectrum components in SF are paired (pairs of complex-conjugate values), the
same transformation (increase or decrease d dB) must be performed to SF(fmark) and to
its conjugate.

In addition a dual Hamming error correcting code DH(31,5) is used prior to the
magnitude modification step and a pseudo-random binary sequence (PRBS) is added
to the sequence of embedded bits.

o The parameter d is the disturbance (measured in dB) introduced at the marking

frequencies to embed a bit.
o The parameter k is a secret key used to generate the PRBS.

The modified WAUC-sec scheme is suggested in (Megías2005) introducing some
randomness in the selection of the marking frequencies. This modification uses some
additional parameters:

o The parameters p1 and p2 are two probabilities (in the range [0, 1]). p1 is the

probability of choosing the most perceptually significant frequencies and p2 is the
probability of choosing the other frequencies.

o The parameter ksec is the initial seed of a pseudo-random number generator in the
range [0, 1] used to choose the marking frequencies according to the probabilities
p1 and p2.

Mark detection

The objective of the mark detection algorithm is to determine whether an audio test
signal T is a (possibly attacked) version of the marked signal Ŝ . It is assumed that T
is in PCM format or can be converted to it. First of all, the spectrum TF is obtained
applying the FFT algorithm and, then, ()markfTF , the magnitude at the marking

frequencies, is computed for all fmark ∈ Fmark When the magnitudes ()markfTF are
available, a scaling (Least Squares) step can be undertaken in order to minimize the
distance between the sequences ()markfTFλ and ()mark

ˆ fSF . This LS step implicitly

uses the embedded mark (since SF(fmark) is needed) but it can be omitted (λ = 1) or
performed with the original signal SF(fmark) instead of the marked one ()markfSF .

D.WVL.10 – Audio Benchmarking Tools and Steganalysis
 21

The ratios)(/)(iFiFi fSfTλ=r , are computed to decide whether a ‘0’, a ‘1’ or a ‘*’
(not identified) might be embedded at the i-th position:

'0'. :ˆ
100

10010,
100

100101

,'1' :ˆ
100

10010,
100

10010

20/20/

20/20/

=⇒⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛ −

∈

=⇒⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛ −

∈

i
dd

i

i
dd

i

qq

qq

b
r

br

If none of these two conditions are satisfied, then ib̂ := ‘*’. Here, q ∈ [0, 100] is a

percentage and ib̂ is the i-th component of the vector b̂ which contains a sequence of
“detected bits”.

o The parameter q is a percentage in the range [0, 100].

Once b has been obtained, its length n will be greater than the length of the extended
mark. Hence, each bit of the mark appears at different positions in b. A voting scheme
is applied to choose whether the i-th bit of the mark is ‘1’, ‘0’ or unidentified (‘*’).
The PRBS signal is then removed and the error correcting code is applied in order to
recover the identified mark W’.

3.5.2 Parameterisation

In this subsection, the test environment, chosen parameters for the watermarking
algorithms and the methods for evaluation are introduced.
For the watermarking algorithms LSB, Spread Spectrum, 2A2W and Publimark the
embed message m is the phrase m=“UniversityofMagdeburg” is used. If a key can be
indicated, then k=22 is used. If the watermarking algorithms provide error correction,
then the algorithm is used two times – one with and another without error correction.
The following table 3-2 shows the exact parameters for the watermarking algorithms.
A X in the column m indicates the usage of m=”UniversityOfMagdeburg”. If a cell is
empty, it indicates that the parameter is not available for the watermarking algorithm.
The first row shows the parameters which are introduced in the watermarking
algorithms section.

m k c w l H a
Least Significant Bit – LSB

X Ø Yes n.a. n.a. n.a. n.a.
X 22 No n.a. n.a. n.a. n.a.
X Ø No n.a. n.a. n.a. n.a.
X 22 Yes n.a. n.a. n.a. n.a.

Publimark

X
kpriv,
kpub
1024bit

n.a. n.a. n.a. n.a. n.a.

22 ECRYPT – European NoE in Cryptology

AMSL Audio Water Wavelet - 2A2W
X n.a. n.a. ZT n.a. n.a. n.a.

Spread Spectrum
X 22 Yes n.a. 9000 11000 5000
X 22 No n.a. 9000 11000 5000
X 22 Yes n.a. 17000 19000 5000
X 22 No n.a. 17000 19000 5000

Table 3-2: Used Parameters for the Evaluation Tests

The Spread Spectrum algorithm runs four times in two different frequency bands and
with and without ECC. One frequency band is from 9-11 kHz and the other 17-19
kHz. The frequency band from 9-11 kHz was used in some test made in the past
[LANG2005], and the same frequency range is used for this evaluation. The
frequency range 17-19 kHz was selected, because it is close the audible frequency
bound for humans and we expected a good transparency for this parameters. As
embedding strength 5000 is used, because it is the default value. For all embedding
parameters ECC was enabled and disabled.
All these watermarking algorithms use the same audio test set which contains 389
different audio files. The audio signal category contains four main classes and 24
subclasses. The main classes and their subclasses are music (blues, classical, country, hiphop,
jazz, metal, pop, reggae, synthetic, techno), sounds (computergen, natural, noise, silence), speech
(computergen, female, male, sports) and SQAM (instrumental,voice). The subclasses divide the
main classes, for example speech into male, female, computer generated and sports.

Test results for the introduced algorithms using the described parameterisations can be
found in [LANG2006].

The WAUC algorithm is extensively evaluated in (Megías2003, Megías2004a,
Megías2004b and Megías2006) in terms of imperceptibility (or transparency),
capacity and robustness. The Sound Quality Assessment Material (SQAM) has been
used to evaluate both the WAUC and WAUC-sec schemes, besides some other files in
the Watermark Evaluation Testbed (WET) for audio (Lang2005).

o Capacity: the WAUC watermarking scheme is shown to produce capacity results

in the range [20, 300] bps, depending on the audio signal to be marked.

o Imperceptibility: with appropriate tuning settings, imperceptibility results can be

about 30 dB (in terms of Signal to Noise Ratio) or Objective Difference Grade
(ODG) results in [–1.5, 0] (perceptible but not annoying to imperceptible).

o Robustness: robustness has been assessed against the StirMark Benchmark for

Audio (SMBA), the WET system and also MP3 compression attacks. The scheme
is shown to be very robust against MP3 compression, since it is able to overcome
these attacks with a bit rate even lower than 56 bps. Most of the attacks in the
SMBA and the WET system are also overcome, but the WAUC scheme needs be
enhanced against some attacks, such as “Echo”, “Stat1”, “Stat2” and some filters.

Tuning guidelines for the tuning parameters are suggested in (Megías2004b):

D.WVL.10 – Audio Benchmarking Tools and Steganalysis
 23

o The parameter R can be tuned for capacity and imperceptibility. The increase in
capacity is low for rates R > 128 kbps, thus, R = 128 kbps is a good choice. If
imperceptibility is the priority, lower values of R can be chosen.

o As d is concerned, a trade-off between imperceptibility and capacity should be
obtained. A value of d = 1 yields SNR about 20 dB, though this value, of course,
depends on the particular file. If better imperceptibility is required, d = 0.5 or
lower might be used, but taking into account that this would affect robustness. In
most cases, d in [0.1, 0.5] will be appropriate.

o The parameters p and ε have a similar effect on capacity, imperceptibility and
robustness. In general, 1 ≤ p ≤ 5 would provide good robustness and
imperceptibility (larger values produce very low capacity). On the other hand, low
values of ε are advisable, for example ε = 0.01. It must be taken into account that
reducing ε and increasing p at the same time will have a double effect on
imperceptibility and capacity, thus, caution must be taken when tuning these
parameters

o Finally, the best choice for q is the largest possible value.

The results for the modified WAUC-sec scheme are presented in (Megías2005),
where the security of these schemes is also considered. The experiments show that it
is possible to tune the WAUC-sec such that the capacity of the original scheme can be
preserved. In addition, the WAUC-sec scheme obtains better imperceptibility results
(both in ODG and SNR measures) than the original counterpart for the same capacity.
As robustness is concerned, both schemes produce similar results against the SMBA,
but the original WAUC scheme is more robust against MP3 compression. Finally,
concerning security, both false positive experiments and ad-hoc attacks are
performed. On the one hand, it is shown that false positives are quite improbable if
different secret keys are used for embedding and detection. On the other hand, the ad-
hoc attacks described in the paper can be survived by the WAUC-sec scheme,
whereas they successfully erase the mark when the original WAUC scheme is used. In
short, the WAUC-sec scheme provides with a trade-off solution between security and
robustness against MP3 compression.

Some rules are also suggested to tune the additional parameters p1 and p2:

o p1 should be chosen in some interval centred at 0.5 and too small values should be

avoided. For example, p1 should be in the interval [0.3, 0.7]. This way, a good
trade-off between robustness and security would be obtained. The default value
for the parameter p2 (as a function of p1 and other variables) is also suggested in
(Megías2005).

3.5.3 First benchmarking results

To examine the results for transparency benchmarking of digital watermarks
presented first in [DITTMANN2005] on a larger scale, more detailed tests were
performed and described in [KRAETZER2006A]. Here transparency tests in the
context of steganographic methods and digital watermarking algorithms (for audio
signals) as well as in the context of attack based watermarking evaluation were
performed. On a large test-set (389 audio files divided into 24 categories) the
embedding transparency of the algorithms (four steganographic and four

24 ECRYPT – European NoE in Cryptology

watermarking algorithms (see section 3.5.1 for detailed descriptions of the
watermarking algorithms used)) and the improvement of selected attacks using
psychoacoustic modelling were measured and evaluated considering the context
dependency. These benchmarks were performed using the average |ODG| (absolute
value of the Objective Difference Grade computed using the Open Source software
tool EAQUAL; see [KRAETZER2006A] for details) as a transparency measure. The
watermarking algorithms (except the used LSB watermarking) return bad results (in
terms of transparency) if compared to steganographic algorithms, but this was
expected since watermarking algorithms are more focused on robustness then on
transparency. The used LSB watermarking algorithm evaluated is with considerable
distance the most transparent algorithm but was destroyed by a fair number of attacks.
This is making it interesting for integrity watermarking applications. A wavelet
algorithm was found to be the most robust algorithm/parameter combination tested
but it lacked high transparency. This constellation would make it useful in forensic
tracking applications if transparency would play an inferior role – otherwise the
transparency would have to be improved before usage in such an application. Based
on the benchmarking results for the Spread Spectrum algorithm considered
recommendations for the improving of the implementation of the algorithm were
given. Considering the performance of the algorithms on all context categories it can
be concluded that all watermarking algorithms show context dependencies for the
embedding transparency. The reasons for this context dependency and its possible
benefits should be determined in future research.
Benchmarking tests considering a wider scope of characteristics were performed in
[LANG2006]. There the transparency, complexity, robustness and capacity of
selected watermarking and steganography algorithms for different algorithms were
measured and compared. As a benchmarking suite for these evaluations SMBA
(Stirmark Benchmark for Audio) was chosen. In [Megías2006] a selected algorithm
was described and evaluated in detail.

D.WVL.10 – Audio Benchmarking Tools and Steganalysis
 25

4 Steganography and Steganalysis

In this section first an overview over a large number of Steganographic Tools
available on the internet is given with the goal to propose a standardised classification
scheme for the key features of steganographic tools. This scheme is applied to a
number of about 100 tools that are available from the Internet. The classification
criteria contain properties, such as the supported carrier media, the availability of the
source code, the licence model, and the embedding function. It is written with the
intention to spot on fast-developing areas, which, as a consequence, may require
further attention in academic research.
This general overview of Steganographic Tools is followed by an advanced
steganographic approach for a selected form of steganographic embedding. Since the
LSB embedding scheme is a widely used method in steganography the considerations
on estimation accuracy introduced in section 4.2 can be considered to be of large
interest for the development of steganographic algorithms.

4.1 Steganographic Tools on the Internet
The scope of this overview is limited to pure steganographic tools, characterised as
software, embedding secret messages into a carrier medium with the intention to be
imperceptible – or even undetectable against passive attackers. This definition
explicitly excludes watermarking software.
The nature of a quantitative analysis is very well suited for giving a consolidated
overview, however the level of abstraction implies that particular tools cannot be
reflected in detail.
We provide a standardised classification scheme for the key features of
steganographic tools. This scheme is applied to 87 tools. The classification criteria
contain properties such as the supported carrier media, the availability of the source
code, the licence model, the embedding function (if indicated), the encryption scheme
(if implemented), the message spread (if specified), and the supported operating
system. Security assessments and references to suitable steganalytic methods are
given for selected entities.

4.1.1 Introduction
Steganography is the art and science of writing messages in such way that the
existence of the communication is hidden. It has been used in various forms for
thousands of years. In the computer era data hiding techniques gain importance and
serve security, primarily the authenticity and integrity of a message in the context of
computer-supported communication.
A common application of modern data hiding is digital watermarking. Digital
watermarks protect intellectual property and may be used to trace, identify, and locate
digital media across networks. They are attributes of the carrier, as a watermark
typically includes information about the carriers or the owner. In another
steganographic appliance data is hidden for transmission over the internet. In addition,
the concept and application of steganography is a vital argument against a prohibition

26 ECRYPT – European NoE in Cryptology

of cryptography. Unfortunately it can also be used for communication among
terrorists and criminals as well as hard core pornography.
In contrast to cryptography where it is allowed to detect and intercept messages
without being able to violate certain security premises guaranteed by a cryptosystem
the goal of steganography is to hide messages inside other “harmless” media in a way
that prevents anybody even detecting it. A good steganographic system should fulfil
the same requirements posed by “Kerckhoffs’ law” in cryptography. This means that a
cryptosystem should be secure even if everything about the system, except the key, is
public knowledge.

4.1.2 Tools

4.1.2.1 Development
In our investigation we refer to steganographic tools which appeared in the period
1993-2004 on the Internet. Chart 4-1 presents the number of utilities that were
published within this time range. Thereby the figure above the bars displays the
number of tools which were released in the specified year.

Another important fact is the timeline of the analysed software. It gives a global
overview in respect to development processes and update frequencies. Chart 4-2
illustrates such a timeline. The x-axis defines the examined year and the y-axis
displays the number of appeared tools. Dark bars within the chart mark newly
released steganographic utilities, whereas bright bars represent the number of updated
ones. The chart reveals an increasing appearance tendency for the last years of newly
developed tools as well as update releases.

1
8

2 3 5 4
10 12

8 5

14 15
4

2
2 4

2
3

4
6

4
8

1

0

5

10

15

20

25

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

Year

N
um

be
r o

f T
oo

ls

update
new

Chart 4-1: Version development overview

D.WVL.10 – Audio Benchmarking Tools and Steganalysis
 27

4.1.2.2 Licence Model
The licence model of tools is another noteworthy attribute. Table 4-1-1 gives an
overview of the models which attracted attention to us during our analysis. As it can
be observed, an amount of 65 tools are freely available and distributable but there are
also a significant number of utilities which were developed on a commercial basis.

Table 4-1-1: Models of software licences

4.1.2.3 Price
The price of commercial steganographic software is a further noteworthy fact. The
range of it is illustrated in Table 4-1-2. The most expensive commercially distributed
software is Stealth Files 4.0 with 100 EUR but this does not ensure high quality. In
fact Stealth Files simply appends data. Thus, a high price does not mean highly
secure. Within the group of commercialised tools Encrypt Pic is available for the
lowest price. It provides more security than Stealth Files as it embeds the data into
image content. Nevertheless, the implementation of the embedding function leads to
detectable steganograms.

1

8

2 3
5

4

10
12

8

5

14
15

0

4

8

12

16

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
Year

N
um

be
r o

f T
oo

ls

Chart 4-2: Tool development overview

Licence model Number of tools
freely available 65

Freeware 43
GPL 20
BSD 1

Public Domain 1

commercial 22
Shareware 22

28 ECRYPT – European NoE in Cryptology

Table 4-1-2: Tool price range

4.1.2.4 Availability of Source Code
To judge the security of a tool the availability of its source code is helpful. One
requirement of Kerckhoffs’ law is that the security of an algorithm must not rely on its
nondisclosure. As tools with available source code are easier to analyse it is much
more likely that its security is evaluated by a larger community. The source code for
more than half of the tools is freely available as shown in table 4-1-3.

Table 4-1-3: Availability of source code

4.1.2.5 Supported OS Platform
Steganographic applications available on the internet run on a variety of platforms
which are specified in table 4-1-4. As one single tool can support several operating
systems each platform is assessed separately. Thus the number of tools in table 4-1-4
exceeds 87. Our observation in this classification is that most steganographic tools
support Microsoft Windows.

Table 4-1-4: Variety of OS platforms

Price class Price
highest price 100 EUR
average price 43 EUR
lowest price 10 EUR

Source code available Percentage
yes 55
no 45

Operating system Number of tools Percentage of tools
platform dependent 85 89

Windows 44 46
Linux / Unix 22 23

DOS 15 16
Macintosh 3 3

Psion Serie 5 1 1

platform independent 11 11
OS Independent 11 11

D.WVL.10 – Audio Benchmarking Tools and Steganalysis
 29

4.1.3 Techniques

4.1.3.1 Media type
In the context of steganography it is necessary to take a closer look at the choosing of
an appropriate carrier. While in ancient Greece slaves were used to play this role, in
present times, various types of data files have the potential for this function. Therefore
file formats can be assigned to the following domains: text, image, audio, video, and
program files. In addition, within the analysed set of tools some software even uses its
own file format, network protocol, or communication data (e.g. StegoGO uses game
movements). Table 4-1-5 presents a selection of supported media and their
distribution. Some tools can handle more than one format and hence are counted
separately. On this account the utilities support two media formats on average.

Table 4-1-5: Distribution of supported media

Medium Format Number of tools

Percentage
 of this tool

category
Percentage
 of all tools

Image 107 56
 BMP 34 32 18
 JPEG 22 20 11
 GIF 21 20 11
 PNG 9 8 5
 Other 21 20 11

Audio 32 18
 WAV 16 50 9
 MP3 9 28 5
 MIDI 2 6 1
 Other 5 16 3

Video 7 4
 AVI 4 57 2
 MPEG 2 29 1
 Other 1 14 1

Text 22 13
 TXT 7 31 4
 ASCII 5 23 3
 HTML 5 23 3
 Other 5 23 3

Program 10 6
 Windows

Executables
 7 70 4

 DLL 2 20 1
 Linux Binaries 1 10 1

Other 5 3

30 ECRYPT – European NoE in Cryptology

However it is worth mentioning that the majority of steganographic utilities which
work with a large number of media types use the same hiding technique without
adaptation for all supported file formats. As a consequence it can be stated that the
support quantity does not ensure the support quality.

4.1.3.2 Encryption
The encryption scheme indicates the supported encryption features of the specified
tool. Table 4-1-6 shows the disposability of encryption schemes among the analysed
software. In fact, 71 % of the analysed steganographic tools feature the use of a
cryptographic key for the encryption of the message before the embedding process.
Encryption can increase the security level of the hiding procedure, e.g. by preventing
the comprehension of the message content if the embedding is discovered and/or by
creating a uniformly distributed secret message out of any original secret message.
Furthermore, many encryption applications add a header in plaintext to the encrypted
message. This header might yield information about the encrypted message (e.g. file
type) which simplifies a cryptographic attack by enabling a more precise attack.

Table 4-1-6: Availability of encryption option

If the presence of the message is discovered and successfully extracted, a header for
the encryption method can be used for cryptoanalysis.
Therefore we can divide the encryption using software into two groups:

• tools that utilise cryptography based upon widely used and proven open
source systems (i.e. standardised algorithms) and

• tools which don’t (e.g. EncryptPic which uses a self-built cryptographic
algorithm that is neither published nor verifiable).

Table 4-1-7 shows the number of tools of each category mentioned above. In addition
a further subdivision within the standardised algorithms states in more detail which
algorithms are used. The particular tools are assessed separately because one single
tool can dispose of more than one encryption scheme. On this account the total
number of tools is 108 instead of only 87. The encryption schemes which are used by
just one single tool are recorded in the group “other”. Our analysis shows that one of
the more commonly used algorithms is Blowfish. In fact a number of 15 investigated
tools use this encryption scheme. The DES algorithm is the second most frequently
used cryptographic function. Finally, self-constructed algorithms without published
source code infringe Kerckhoffs’ law. They are provided by small developer groups
only who generally cannot ensure their security whereas open source algorithms (e.g.
Blowfish, DES, etc.) are (usually) more secure than self-constructed ones because
open source is reviewed by much more people. In addition, the standardised
encryption schemes such as AES experienced no severe attack.

Cryptography available Number of tools Percentage of tools
implemented 62 71
not implemented 19 22
not indicated 6 7

D.WVL.10 – Audio Benchmarking Tools and Steganalysis
 31

Table 4-1-7: Variety of encryption schemes

4.1.3.3 Embedding
Steganography encompasses methods of transmitting secret messages in such a
manner that the existence of the embedded message is undetectable. The analysed
software tools provide a variety of information-hiding techniques. Among these, most
methods are employed depending upon characteristics specific to a carrier type or
format while other methods may work without relying on a specific file format. Based
on the result of our investigation we could classify the hiding techniques as it is
illustrated in table 4-1-8.

Cryptographic
category Encryption scheme

Number
of tools

Percentage
of tools

standardised 86 80
 Blowfish 15 14
 DES 10 9
 RC4 5 4
 Twofish 5 4
 ICE 4 4
 IDEA 4 4
 AES (Rijndael) 3 3
 GOST 3 3
 PGP 3 3
 RSA 3 3
 CAST 2 2
 RC5 2 2
 RC6 2 2
 TEA 2 2
 Other 23 21

non standardised 22 20

32 ECRYPT – European NoE in Cryptology

Table 4-1-8: Summary of hiding techniques

4.1.3.3.1 Embedding Data into Text
The common method of hiding information in text is a manipulation of white spaces.
The manipulation can be done by appending blanks or tabs at the end of lines or at the
end of the text. (With HTML it is also possible to add blanks between words because
consecutive white spaces are displayed as a single one.) Since blanks and tabs are
invisible to most text viewers the message is effectively hidden from casual observers.
However, there exist tools like FFencode which are optimised for special character
sets (e.g. IBM-PC) and replace blanks with others blanks e.g. 20hex with FFhex. These
substituted characters are displayed in text viewers that use the ISO character set and
therefore it is questionable if these tools truly implement steganography. Another
example of a text-based embedding is transforming data into English sentences,
nonsense English phrases, or into pseudo-random natural language text. They are
based on a dictionary either given explicitly or built “on the fly” from a source
document. Take the following sentence:

Steganography is the art and science of writing hidden messages in such a way which
hides the existence of the communication. (125 characters)

and apply some transformation to create nonsense pseudo-random natural language
text:

Domain Method
Number
of tools

Percentage
 of this
domain
methods

Percentage
 of all

methods
Text 16 15
 manipulation by

white spaces

10

63 9
 transformation

into other text

4

25 4
 syntactic method 1 6 1
 Rephrasing 1 6 1

Image, Audio,
Video

81

 76

 LSB 56 69 53
 appending data 13 16 12
 header insertion 3 4 3
 masking 1 1 1
 other 8 10 7

Program files 7 7
 appending data 5 72 5
 substitution

of equivalent
instructions

1

14

1
 other 1 14 1

Protocols 2 2
 header insertion 2 100 2

D.WVL.10 – Audio Benchmarking Tools and Steganalysis
 33

Miasma seamers frounce bedtimes beanbag, spell kyanize … skirr. (CryptoMX) (327
characters)

Characteristic for this technology is that it does not use a carrier for hiding
information but “scrambles” a message in a way that it cannot be understood although
it has some word syntax and therefore is less likely detected as an encrypted message
by a machine.
The following technique is called rephrasing of text [Comp03]. It allows changing the
tense of the narration or the point of view as well as substituting words whereby the
meaning of the text is preserved. An example is the ensuing text that is used as carrier
for the secret message “test”:

Eine Lampe leuchtet in der Nacht. Das Bild an der Wand ist mit einer schmalen Rente
bezahlt worden, doch hat sich der Kauf gelohnt … (A lamp shines at night. The
painting on the wall has been paid with a frugal superannuation, yet the bargain was
worthwhile …translated by author)

The following steganogram is created by applying the technique of replacing single
words by one of its synonyms representing the possible hiding data according to a
thesaurus.

Eine Lampe leuchtet in der Nacht. Das Abbild an der Wand ist mit einer schmalen
Pension bezahlt worden, doch hat sich der Kauf gelohnt … (A lamp shines at night.
The portrait on the wall has been paid with a frugal pension, yet the bargain was
worthwhile …translated by author, TextHide)

Another possibility of hiding information in text is known as syntactic method. This
one is based on punctuation, construction, or spelling changes.

4.1.3.3.2 Embedding Data into Images, Audio, and Video
Numerous methods exist for hiding information in audio, images, and video. Some
common embedding techniques range from least significant bit (LSB) manipulation
over masking and filtering to applying more sophisticated image or audio processing
algorithms and transformations. Each of these approaches can be developed with
varying degrees of success for different file formats.
LSB methods insert the embedding data in the carrier byte stream, substituting
insignificant information in a carrier file with secret data. Some tools utilise two least
significant bits or even more to hide a message.
In general there are two types of LSB embedding which apply to images:

• simple LSB embedding in raw images
o change LSB in one up to all three colour channels of the pixel or in the

frequency coefficients of a discrete cosine transformation (DCT)
o increment/decrement the pixel value instead of flipping the LSB
o matrix encoding

• LSB embedding in palette images
o change colour index to similar palette entry (e.g. EzStego)
o change palette entry

34 ECRYPT – European NoE in Cryptology

The LSB manipulation concept can also be applied to audio. The least significant bit
of information at each audio sampling point is replaced with a bit from the hidden
message. This method introduces significant noise into the audio file.
LSB manipulation is a quick and easy way to hide information but is vulnerable to
small changes resulting from file processing or lossy compression.
Masking methods such as hiding secret messages into higher-order bits with
simultaneous decrease of luminance or volume are more robust than LSB insertion in
respect of compressing, cropping, and some image or audio processing. These
techniques allow embedding in more significant areas in order to integrate a hidden
message further into the cover file.
Another technique for hiding data into image or multimedia files is called appending
which means that the secret data is added after the very last byte of the carrier file.
The carrier file size could increase up to the sum of the size of the original carrier file
and the secret file yet the size will change with a very high probability. This method is
very simple and very easy to detect because the secret message will be added in plain
form. Furthermore, the probability of detecting the secret message increases if the
steganographic tool uses such embedding techniques as inserting in junk or comment
fields in the header of the file structure. On the one hand the hidden data congregates
at the same place and on the other hand the file header is rather vulnerable for
steganalysis.

4.1.3.3.3 Embedding Data into Program Files
The common technique for hiding data in program files is appending the data at the
end of the carrier file as practised with image, audio, and video files. Another
possibility is stashing a secret message by transforming program instructions. This
technique substitutes an instruction by an equivalent which represents the bit(s) of the
secret data. A simple example: “add %eax, 50” can be substituted by “sub %eax, -50”.

4.1.3.3.4 Embedding Data into Archive Files
There is only one example among the investigated software which uses archive files
(gzip-files) as carrier medium. It embeds the secret data during the compression
process through overwriting the least significant bits.

4.1.3.3.5 Embedding Data into Network Protocols
The embedding process in network protocols takes place via manipulation of unused
spaces and other features of the packet header.

4.1.3.4 Message Spread
The embedded message is spread over the carrier by selecting more or less equally
distributed positions in order to carry the bits of the secret message. This
characteristic is relevant for secret message bits in cover files like images, audio, and
video. In our classification we distinguish three types of message spreads: linear
continuous, random continuous, and straddling.

D.WVL.10 – Audio Benchmarking Tools and Steganalysis
 35

Linear continuous message walk means that the bytes of the carrier file are
sequentially selected with fixed space between the selected carrier bytes, where the
first secret-hiding byte is chosen at the beginning of the carrier file. Figure 4-1 shows
the difference between a linear continuous embedding with no space between the used
carrier bytes2 and an embedding with the fixed space of three carrier bytes (i.e. every
fourth carrier byte contains a stego bit). Additionally it is possible to fill up the unused
capacity of the carrier medium with white noise.

2 Every carrier byte is used.

Figure 4-1: Steghide (LSB embedding); linear continuous message walk – Both pictures are true
colour pictures that are spread and transformed into b/w so that each colour channel is displayed
separately for better visibility of the changes caused by the embedding. Black pixels represent a
change of the carrier medium. They contain a secret message of 1.35 % of the picture size.

36 ECRYPT – European NoE in Cryptology

Random continuous message walk uses a (pseudo) random generator to distribute
the secret message across the carrier medium. Figure 4-2 shows the difference
between a continuous message walk with a fixed interval of 3 bits per “stego bit” on
the left side and the random continuous message walk on the right side where the
space between the used carrier bytes is (pseudo) random. The initial value of the
(pseudo) random generator can be calculated by hashing a pass phrase or user
interactions or it can be manually given. The secret message will be hidden
sequentially but the space between two data hiding carrier bytes (“stego bytes”) will
be determined by the (pseudo) random value. Again, a steganographic tool could fill

up the unused space in the carrier medium with white noise.

Straddling message walk distributes the secret message over the whole carrier
medium irrespective of the secret message size (Figure 4-3). The advantage of this
distribution method – as well as the random continuous one – is the fact that it
decreases the probability to detect the content of secret data in the carrier medium
because of the smaller change density compared to the sequential method. An
example for this type of message spread is the so-called “permutative straddling”. It
basically works in three steps. At first a permutation of the bytes of the carrier file is
performed. In the second step the secret message is embedded sequentially. Finally
after repermutation of the carrier bytes, back to the original order, the secret message
is evenly distributed over the carrier file.

Figure 4-2: Steghide (LSB embedding): continuous message walk vs. random continuous message
walk – Both pictures are true colour pictures that are spread and transformed into b/w so that
each colour channel is displayed separately for better visibility of the changes caused by the
embedding. Black pixels represent a change of the carrier medium. Both pictures contain a
secret message of 1.35 % of the picture size – embedded with Steghide v0.3.

D.WVL.10 – Audio Benchmarking Tools and Steganalysis
 37

4.1.3.5 Capacity
A further essential fact is the amount of secret bits that can be hidden in a carrier
medium (by a specific tool). On the one hand there is the effort to maximise the
payload which can be covered. On the other hand there is the attempt to minimise the
detection possibility. Both objectives are interdependent because larger payloads lead
to higher levels of change density and thus a higher detection possibility. The analysis
of the steganographic utilities shows that the tools offer different amounts of
payloads. We group five capacity categories which are displayed in table 4-1-9.
Taking this into account the question arises which factors are responsible for
determining how much data can be embedded. Primarily it depends on the embedding
technique that the software uses. For example all tools that belong to the category
“unlimited” apply the appending technique. This method usually has no data length
restriction. The majority of software that is based on the header insertion can carry a
large amount of data as well. By contrast, LSB, masking, substituting of program
instructions, and most text-based techniques provide capacity limitation. Tools which
use these embedding methods constitute the remaining capacity categories.
Looking at several carrier file formats discloses further aspects and results. The
embedding capacity of images in bitmap (BMP) format is determined by the number
of bits per pixel that can be changed and the number of pixels that are selected to hide
the secret data. The method most used to hide data in images – which is LSB –
provides a capacity up to 12 % (changing 1 bit per pixel) or up to 33 % (changing 3

Figure 4-3: S-Tools 4 (LSB embedding); straddling message walk – Both pictures are true colour
pictures that are spread and transformed into b/w so that each colour channel is displayed
separately for better visibility of the changes caused by the embedding. Black pixels represent a
change of the carrier medium. The left picture contains a secret message with 0.006 % and the
right one with 1.65 % of the carrier size – embedded with S-Tools v4.0 and encrypted by IDEA.

38 ECRYPT – European NoE in Cryptology

bits per pixel). The capacity of JPEG, GIF and PNG files depends on the level of
compression.

Table 4-1-9: Capacity overview of steganographic algorithms

Audio files in WAV format show a similar behaviour to BMP format image files.
In most cases the capacity of text files to carry hidden data depends significantly on
the file’s content but can be estimated as follows (in bits):

• standard method: capacity = number of words
• compatible method: capacity = number of lines

The capacity of the standard method is achieved by most tools whereas the capacity of
tools with further restraints, such as adaptivity, can be estimated with one bit per line
as a rule of thumb.
There are no general rules for the amount of secret data that a PDF file can hold but
the number decreases by numerous and large embedded objects. The quantity of
hidden bits a HTML file can hold is approximately equivalent to its number of lines.

4.1.3.6 Adaptivity
The data length restriction for secret data is determined by the file composition. For
example an image that contains high frequency areas (such as grass) can be
manipulated imperceptibly to a much greater extend than an image containing
primarily low frequency areas (such as clear blue sky or mono-colour pictures). The
same principle can be applied to any other media. In the case of an audio file one
possibility is to choose those bytes of the audio stream which follow immediately
after high sound levels because the human hearing cannot perceive low sound levels
right after high ones. Therefore the noise which is caused by the secret message will
be irrecognisable for the human hearing. This approach of embedding is called
“adaptive embedding”. In our analysis we observed that only 20 % of the investigated
steganographic tools utilise this technique (table 4-1-10).

Table 4-1-10: Usage overview of adaptive embedding

Capacity category Number of algorithms Percentage of all algorithms
< 1 % 18 15

1 % – 5 % 23 19
5 % – 15 % 47 39

> 15 % 14 11
“unlimited” 20 16

Adaption capability Percentage of tools
yes 20
no 80

D.WVL.10 – Audio Benchmarking Tools and Steganalysis
 39

4.1.4 Discussion and conclusion
In present times steganography is an increasingly used concept due to the need to
protect privacy even in case of domestic crypto regulation. Therefore the number of
supported file formats increases enormously. While in former times steganography
was limited to images today’s software also works with more current formats like
audio. Following general trends utilities also become more user-friendly. Previous
generations were mainly based on command line handling with some knowledge
about shell syntax necessary. Now even inexperienced users are able to run
steganographic software by means of graphic user interfaces. However the core
functions – the embedding methods in file formats, which are known for a long time –
have not principally changed. Only adaptations of established methods like LSB were
created despite reliable steganalysis techniques known as chi-square attack, RS
analysis, and SPA (sample pairs analysis). Although LSB matching, which twiddles
the steganographic values by addition of (randomly chosen) +1 or -1 (also called plus
minus one steganography), is little more complicated to implement than LSB
replacement, it only cautiously gains currency. Merely for the boundaries a case
discrimination is necessary, because -1 leads to an overflow at the lower and +1 at the
upper boundary. With just this little more effort a higher steganographic security is
ensured since the existing detection methods for LSB matching are far less powerful
than the steganalysis of LSB replacement. Another visible development is the
growing commercialisation of steganography usage. Nearly all investigated
commercial tools were published within the last four years. But still today’s
development impulses are only given by the researching sector.
Improvements were made in the field of preventing detection by means of capacity
limitations. Some of the new tools have an explicit capacity limitation which is not
obeyed in general und therefore cannot be seen as standard functionality of new tools.
Again non-commercial tools have a leading role since they more often implement
capacity limitations.
Lastly it can be said that there exist strong deficits in the sector of documentation.
Even tools which are available as freeware or something of similar character are
described insufficiently. Furthermore, a uniform classification beyond simple
documentation of supported file types is unavailable until now. Concluding, more
transparency surely would encourage further developments.

4.2 Transparency Benchmarking for Steganographic
Algorithms

Considering only the three characteristics capacity, transparency, and robustness of a
data hiding method, it is obvious that there is a trade-off between these three
characteristics. No algorithm can provide maximum capacity and maximum
transparency at the same time. This principle is shown in figure 4-4.

40 ECRYPT – European NoE in Cryptology

Figure 4-4: Trade-off between capacity, transparency, and robustness [FRIDRICH99].

In the corners of the triangle shown in figure 4-4 can be found the ideal positions for
secure steganographic techniques, naive steganography and digital watermarking.
As indicated by the approach from Fridrich [FRIDRICH99] the transparency and
capacity are the two characteristics most important to steganographic methods. In the
focus of this document the secure steganographic techniques (i.e. high transparency)
are more relevant than the naive steganography (high capacity). The later is neglected
in the following considerations.
When dealing with secure steganographic algorithms it is assumed in the most cases
that they perform very transparent but this characteristic so crucial to the performance
is very seldom tested systematically on a larger scale.
As already described in section 3.5.3 in [KRAETZER2006A] watermarking and
steganographic algorithms (Publimark version 0.1.2, Steghide versions 0.4.3 and 0.5.1
and a LSB steganographic algorithm implemented at the Otto-von-Guericke
University of Magdeburg, Germany) where tested and compared for their embedding
transparency. These benchmarks were performed on a large test-set of categorised
audio signals using the average |ODG| (absolute value of the Objective Difference
Grade computed using the Open Source software tool EAQUAL; see
[KRAETZER2006A] for details) as a transparency measure. The results form
[KRAETZER2006A] show for the selected steganographic algorithms that they
perform indeed very transparent in the average for the test-set, but if single categories
of audio signals are considered the algorithms become clearly distinguishable and lead
in single cases to bad results (abnormal programme termination as well as bad
(perceptible) embedding transparencies).
Other transparency benchmarking results for steganographic algorithms performed in
[KRAETZER2006B] were used to compare two versions of a steganographic
embedder for a VoIP scenario for their performance. The results there did show the
strong impact of the usage of a silence detection algorithm on the transparency of a
steganographic algorithm designed specifically for the usage in an audio streaming
environment with limited bandwidth and 8-Bit quantisation.

D.WVL.10 – Audio Benchmarking Tools and Steganalysis
 41

4.3 Improving LSB Steganalysis using marginal and joint
probabilistic distributions

LSB steganography is obviously one of the simplest way to hide information in the
host data because a great amount of bits can be ranged without causing perceptible
degradation of the cover object (digital images are generally coded with eight bits by
colour channel and embedding in the low significant bitplane is not visible).

This section gives a summary of the work presented by Roue et al. in [ROUE2004].
The goal of this study was to test the steganographic method presented in
[DUMITRESCU2003] on an image database to draw conclusion of the performance
of the method according to images features (1D and 2D histograms). The accuracy of
the studied steganalysis scheme is very good for almost 70% of the database. Indeed
the results obtain on the whole set of images show that the algorithm has very high
estimation accuracy: the Mean Absolute Error (MAE) of the estimate of the
embedding capacity is above 10% for only 2% of the images and the MAE is very
low for 13% of the images. In the whole set of images the estimation errors are
relatively low.

Even if the scheme yields to very accurate estimations of the message's length, it is
interesting to point out the features of the image that lead to important estimation
errors.

MAE=0.54%

MAE=0.87%

MAE=12.10%

MAE=14.18%

Figure 4-5: different images and different estimation error of the steganographic capity.

Our analysis leads to the fact that important estimation errors are due to two different
drawbacks:

• a singular marginal distribution of the pixels in the image,
• a singular joint distribution of the pixels in the image.

42 ECRYPT – European NoE in Cryptology

To analyse joint distributions we have use the coocurrence matrix which represents
the joint probability of two neighbouring pixels. Estimation of the coocurence matrix
on stego and original images leads to important remarks:

• For images presenting a low estimation error, the distribution of the maxima of
joint probabilities is concentrated along the diagonal.

• For images that present an high estimation error, the distribution of the
maxima of joint probabilities is spread. It is better then to take into account
only the sample pairs that are largely represented in the coocurrence matrix.

The choice of the threshold of the coocurrence matrix is important in this method.
Therefore we have computed the MAE for several thresholds, in order to understand
the meaning of this value. For several thresholds the estimation of the length of the
message is not efficient at all. For example the threshold is too low, it is equivalent to
use all the coefficients of the matrix of coocurrence. On an other side if the threshold
is an important value, the estimate will rely on too few sample pairs of pixels.

We have tested this scheme on the three images of the Kodak database that have the
worst results. For each image we have chosen the best threshold (i.e. the one which
provides best estimations), and the estimation errors lie in the table below.

Image MAE before processing (%) MAE after processing (%)
Notredamewindow 12.01 4.23

Sandprints 15.18 4.2
Duneprints 10.14 3.2

Table 4-3-1: Estimation errors before and after the segmentation of the coocurrence matrix.

As a conclusion, this study enables both to detect images that are likely to counter
steganalysis schemes, e.g. images that may contain a high ratio of undetectable hidden
information and to improve the original scheme by reducing the outlined drawbacks.

5 Summary

In this report the WVL3 activities in the fields of benchmarking methods and tools for
digital watermarks and steganography and steganalysis of the second ECRYPT year
were indicated. Since some of the research results were already reported in other
publications they were referred to.
One focus of WVL3s work is the evaluation and benchmarking of schemes and
algorithms based on the work of WVL1 and WVL2. For this reliable frameworks for
fair benchmarking have to identified or, if necessary, implemented. With SMBA,
which is described in detail in section 3 of this document, a benchmarking suite is
introduced which is concerned with the so far neglected audio watermarking domain.
The results from the evaluations of watermarking algorithms provided for testing from
other ECRYPT partners have not only shown the usefulness of SMBA but are also the
foundation for a open and fair benchmarking scheme provided to all ECRYPT
partners.
The steganography and steganalysis part of the work done in WVL3 is focused on
basic research of available steganographic solutions to identify used approaches in a

D.WVL.10 – Audio Benchmarking Tools and Steganalysis
 43

rapidly evolving environment. This basic classification will be provided to the
ECRYPT partners to act as a knowledgebase and foundation for the implementation
of own steganographic and steganalytic tools. Steganographic evaluation frameworks
could identify possible steganographic software tools for the testing of selected
approaches by using this classification.
WVL3 will continue its research in watermarking and steganography benchmarking
and in steganalysis using the research results identified here as a foundation for
upcoming evaluations.

44 ECRYPT – European NoE in Cryptology

6 Bibliography

[AUDACITY] http://audacity.sourceforge.net/download/

[Comp03] Compris Intelligence GmbH, TextHide Overview, 2003
http://www.compris.com/TextHide/en/Overview.html#Umformulieren

[DITTMANN2004] Jana Dittmann, Martin Steinebach, Andreas Lang, Sascha
Zmudizinski; Advanced audio watermarking benchmarking; Security, Steganography,
and Watermarking of Multimedia Contents VI; Edward J. Delp III, Ping W. Wong
(Eds.) SPIE Vol. 5306; SPIE and IS&T, pp. 224-235, Electronic Imaging Science and
Technology, 19-22 Jan. 2004, San Jose, California, USA, ISBN 0-8194-5209-2, 2004

[DITTMANN2005] Jana Dittmann, Christian Kraetzer, Andreas Lang; Attack tuning -
Attack Transparency Models and their Impact to Geometric Attacks; 1st Wavila
Challenge, Barcelona, 8th-9th June 2005, ISBN 3-929757-89-3

[DUMITRESCU2003] S.Dumitrescu, X.Wu, and Z.Wang. Detection of LSB
steganography via sample pair analysis. In IEEE transactions on Signal

Processing, pages 1997- 2007, 2003.

[EGGERS2003] Eggers, J. J., Bäuml, R., Tzschoppe, R. and Girod, B., Scalar Costa
scheme for information embedding, IEEE Trans. on Signal Processing, 2003

[FRIDRICH99] J. Fridrich, “Applications of data hiding in digital images” Tutorial for the
ISSPA 1999 conference in Brisbane, Australia, 1999.

[GUELVOIT2005] Guelvouit, G. Le., Trellis-coded quantization for public-key
watermarking, accepted for IEEE Int. Conf. on Acoustics, Speech and Signal
Processing, 2005

[GUILLON2002] Guillon, P., Furon, T. and Duhamel, P., Applied public-key
steganography, in Proc. SPIE, San Jose, CA, USA, 2002

[IFEACHOR2002] Emmanuel C. Ifeachor; Barrie W. Jervis: Digital Signal
Processing, Prentice Hall, 2002, ISBN 0201-59619-9

[INOUE1999] Inoue, H., Miyazaki, A., Yamamoto, A., Katsura, T., A Digital
Watermarking Technique Based on the Wavelet Transform and Its Robustness on
Image Compression and Transformation, IEICE Trans. Fundamentals, vol. E82-A,
no. 1, 1999

[JOHNSON2000] N. Johnson, Z. Duric and S. Jajodia, Information Hiding:
Steganography and Watermarking Attacks and Countermeasures, Kluwer Academic
Publishers, 2000

D.WVL.10 – Audio Benchmarking Tools and Steganalysis
 45

[Kim2003] Hyoung Joong Kim; Audio Watermarking Techniques, Pacific Rim
Workshop on Digital Steganography 2003, Kyushu Institute of Technology,
Kitakyushu, Japan, July 3-4, 2003

[Klimant2003] Herbert Klimant, Rudi Piotraschke, Dagmar Schönfeld, Informations-
und Kodierungstheorie, TEUBER, 2. Eddition, ISBN 3-5192-3003-8, 2003

[KRAETZER2006A] Christian Kraetzer, Jana Dittmann, Andreas Lang;
Transparency benchmarking on audio watermarks and steganography; to appear in
SPIE conference, at the Security, Steganography, and Watermarking of Multimedia
Contents VIII, IS&T/SPIE Symposium on Electronic Imaging, 15-19th January, 2006,
San Jose, USA, 2006

[KRAETZER2006B] Christian Kraetzer, Jana Dittmann, Thomas Vogel, Reyk Hillert:
Design and Evaluation of Steganography for Voice-over-IP, submitted to ISCAS
2006, Kos, Greece

[Kutter2000] M. Kutter, S. Voloshynovskiy and A. Herrigel; Watermark copy attack,
In Ping Wah Wong and Edward J. Delp eds., IS&T/SPIE's 12th Annual Symposium,
Electronic Imaging 2000: Security and Watermarking of Multimedia Content II, Vol.
3971 of SPIE Proceedings, San Jose, California USA, 23-28 January 2000

[LANG2003] Andreas Lang; Jana Dittmann; Martin Steinebach; Psycho-akustische
Modelle für StirMark Bechmark - Modelle zur Transparenzevaluierung Rüdiger
Grimm; Hubert B. Keller; Kai Rannenberg (eds.), Sicherheit - Schutz und
Zuverlässigkeit, Informatik 2003 - Mit Sicherheit Informatik, pages 399–410, October
2003, Frankfurt/Main, ISBN 3-88579-365-2

[LANG2004] Andreas Lang, Jana Dittmann, StirMark and profiles: from high end up
to preview scenarios, Reviewed Paper, IFIP/GI Workshop on Virtual Goods, Ilmenau
(Germany), 28-29 May 2004, online publication available from http://virtualgoods.tu-
ilmenau.de/2004/program.html

[LANG2005] Andreas Lang, Jana Dittmann, Ryan Spring, Claus Vielhauer; Audio
watermark attacks: from single to profile attacks; Multimedia and security, MM &
Sec'05 (Workshop New York, NY, USA August 1-2 2005); New York, NY : ACM,
pp. 39 - 50, ISBN 1-59593-032-9, 2005

[Lang2005B] A. Lang, J. Dittmann, E. T. Lin, and E. J. Delp. “Application-oriented
audio watermark benchmark service,” in Proceedings of the IS&T/SPIE’s 17th Annual
Symposium on Electronic Imaging, 5681 - Security, Steganography, and
Watermarking of Multimedia Contents VII, (San Jose, CA, US), January 2005.

[LANG2005C] A. Lang, J. Dittmann, E.T. Lin, E.J. Delp III, Application-oriented
audio watermarking benchmark service [5681-28], page 275-297, SPIE-IS&T
Electronic Imaging 2005, Vol. 5681, ISBN 0-8194-5654-3

[LANG2006] Andreas Lang, Jana Dittmann; Profiles for Evaluation - the Usage of
Audio WET; to appear in SPIE conference, at the Security, Steganography, and
Watermarking of Multimedia Contents VIII, IS&T/SPIE Symposium on Electronic

46 ECRYPT – European NoE in Cryptology

Imaging, 15-19th January, 2006, San Jose, USA, 2006

[libsamplerate] Secret Rabbit Code (aka libsamplerate), http://www.mega-
nerd.com/SRC/, 2004

[Matev2005] Kiril Matev, Least Significant Bit Watermarking, University of
Magdeburg internal report, 2005

[Megías2003] D. Megías, J. Herrera-Joancomartí, and J. Minguillón. “A robust audio
watermarking scheme based on MPEG 1 layer 3 compression,” in Communications
and Multimedia Security – CMS 2003, Lecture Notes in Computer Science 2828,
pages 226–238, Turin (Italy), October 2003. Springer-Verlag.

[Megías2004a] D. Megías, J. Herrera-Joancomartí, and J. Minguillón. “An audio
watermarking scheme robust against stereo attacks,” in Proceedings of the Multimedia
and Security Workshop, pages 206–213, Magdeburg (Germany), September 2004.
ACM.

[Megías2004b] D. Megías, J. Herrera-Joancomartí, and J. Minguillón. “Robust
frequency domain audio watermarking: a tuning analysis,” in International Workshop
on Digital Watermarking – IWDW 2004, Lecture Notes in Computer Science 3304,
pages 244–258, Seoul (Korea), November 2004. Springer-Verlag.

[Megías2005] D. Megías, J. Herrera-Joancomartí, and J. Minguillón. “Total
disclosure of the embedding and detection algorithms for a secure digital
watermarking scheme for audio,” in International Conference in Information and
Communications Security – ICICS 2005, Lecture Notes in Computer Science 3783,
pages 427–440, Beijing (China), December 2005. Springer-Verlag.

[Megías2006] D. Megías, J. Herrera-Joancomartí, J. Serra and J. Minguillón. “A
benchmark assessment of the WAUC watermarking algorithm,” Proceedings of the
IS&T/SPIE’s 18th Annual Symposium on Electronic Imaging, 6072 - Security,
Steganography, and Watermarking of Multimedia Contents VIII, January 2006.

[Publimark] Publimark, http://gleguelv.free.fr/soft/publimark/, 2005

[RIFE1989] D.D.Rife and J.Vanderkooy, Transfer-Function Measurement with
Maximum-Length Sequences, JAES, June 1989

[ROUE2004]: B. Roue, P. Bas, J-M Chassery "Improving LSB Steganalysis using
marginal and joint probabilistic distributions ", Multimedia and Security Workshop
2004, Magdeburg, Germany.

[Shapiro1993] Shapiro, J.M., Embedded image coding using zerotrees of wavelet
coefficients, IEEE Trans. Signal Processing, vol. 41, no.12, pp. 3445-3462, 1993

[SMBA] StirMark Benchmark for Audio, http://amsl-smb.cs.uni-magdeburg.de, 2005

D.WVL.10 – Audio Benchmarking Tools and Steganalysis
 47

[SMITH1997] Steven W. Smith, The Scientist and Engineer's Guide to Digital Signal
Processing, California Technical Publishing, 1997, ISBN 0966017633

[soundtouch] SoundTouch Sound Processing Library,
http://sky.prohosting.com/oparviai/soundtouch/, 2004

[Wayn02] P. Wayner. Disappearing Cryptography. Information Hiding:
Steganography and Watermarking. Second Edition , 2002

[XMMS] X Multimedia System, http://www.xmms.com/, 2004

Tool Resource Links

http://sourceforge.net/

http://packetstormsecurity.nl/

http://www.packetstormsecurity.org/

http://www.funet.fi/pub/crypt/steganography/

http://munitions.dotforge.net/software/steganography/

Appendix A - List of Investigated Steganographic
Tools

• AppendX

• BlindSide

• Cameleon

• Camera/Shy

• Camouflage

• Ciphile Software's

Steganography

• Cloak

• Contraband

• Contraband Hell Edition

• Cryptobola JPEG

• CryptoMX

• The Cryptographic Tool

• Data Stash

• DataStealth

• DC-Stego (DC-Steganograph)

• Encrypt Pic

• F5

• FFencode

• Gifitup

• Gifshuffle

• Gzsteg

• Hermetic Stego

• Hide

• Hide and Encrypt

• Hide and Seek

2 ECRYPT – European NoE in Cryptology

• Hide in Picture

• Hide4PGP

• Hydan

• Info Stego

• Invisible Secrets 4

• Invisible Secrets Pro (TM)

• Jpeg-Jsteg

• JpegX

• JPHide and JPSeek

• JSteg Shell

• MandelSteg and GIFExtract1.0

• Masker

• Mod_stego

• Mp3stego

• NicePCX

• Nicetext

• Outgess

• Paranoid

• PGMStealth

• Piilo

• PNGstego

• Pretty Good Envelope

• Proteus

• Secret

• SecurEngine

• Silan

• S-Mail

• Snow

• Sprytek

• Stash-It

• Steaghan

• Stealth Files

• Stegano Lite

• Stash-It

• Steaghan

• Stealth Files

• Stegano Lite

• Stegano Plug-In

• SteganoG

• SteganoGifPaletteOrder

• Steganografia

• Steganography

• Steganos Security Suite

• Steganosaurus

• Steganozorus

• Steggo

• Steggy

• Steghide

• Stego

• Stego WAV

• StegoDOS

• StegPage

• Stegparty

• StegSecurity Suite

• S-Tools

• TextHide

• Texto

• UnderMP3Cover

• Visual Cryptography

• Voices MP3 Stenography

• WBStego

• White Noise Storm

• Zfile Camouflage&Encryption

System

D.WVL.10 – Audio Benchmarking Tools and Steganalysis
 1

