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1 Abstract – Executive Summary 
 
The focus of WAVILA WVL3s research activities is on the development of 
benchmarking tools and schemes for digital watermarking and steganography as well 
as the evaluation of selected algorithms. 
Digital watermarking and steganography are two of the most important aspects of 
information hiding in digital media. While the first is most commonly used for 
authentification, proof of ownership, proof of integrity and non-repudiation 
mechanisms it is part of many Digital Rights Management schemes and has therefore 
a huge commercial interest. Steganography, as the second information hiding 
technique considered by WVL3, provides hidden communication channels in 
seemingly “harmless” media like images, audio material or VoIP telephony sessions 
and is therefore of huge interest for security considerations and for the development of 
steganalysis techniques to detect such hidden communication channels in their cover 
mediums. 
Benchmarking itself has not only the possibilities to identify possible weaknesses of 
tested algorithms. It can also provide a fair comparison of different algorithms under 
different evaluation aspects, making it possible to identify from a list of given 
solutions the algorithm most fitting for a concrete application scenario. 
In this report we introduce the results of WVL3s activities in audio watermarking 
benchmarking where a lot of research results have been reached by evaluations with 
SMBA – a audio watermarking benchmarking tool developed by ECRYPT partner 
GAUSS and provided as a commonly available tool to the ECRYPT consortium. The 
results introduced here range from a comparison of different available watermarking 
algorithms for their possible application in different scenarios to recommendations for 
improvement regarding the performance of selected algorithms.  
The second large part of WVL3s research activities described here is concerned with 
the results in steganography and steganalysis. In these fields WVL3 is on its way to 
identify the characteristics necessary for a fair benchmarking and to propose 
benchmarking procedures relevant consistent for various applications of 
steganographic methods. The results presented here show a first classification of 
available steganographic algorithms, followed by a more detailed evaluation of 
transparency for steganographic algorithms (based on the fact that it is one of the most 
important general characteristics of data hiding methods). The presentation of the 
research results in the field of steganography is ended by considerations about an 
specific steganalytical approach to illustrate the fact that the ECRYPT partner are not 
only doing basic research in the fields of steganography and steganalysis. 

2 Introduction 
 
In this report we summarise the WVL3 activities in the fields of a) benchmarking 
methods and tools for digital watermarks and b) steganography and steganalysis for 
the second ECRYPT year.  
The evaluation focuses in general on the most important properties robustness, 
security, imperceptibility/ transparency, complexity, capacity and possibility of 
verification as well as invertibility of digital watermarking techniques. As a tool of 
choice for watermarking benchmarking SMBA (StirMark Benchmark for Audio) was 
chosen for this report, since it is not only developed by one of the ECRYPT partners 
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(GAUSS) but is also used for the benchmarking of audio watermarking algorithms by 
other ECRYPT partners, too, to provide a base for comparability. 
The steganography and steganalysis part of the work done in WVL3 focuses on the 
identification of available steganographic tools and the proposal of a classification 
scheme for a huge number of hidden communication applications. Furthermore the 
possibilities for steganalytical detection for selected algorithms are discussed. 
 
This report is structured as follows: Section 3 addresses investigated watermarking 
benchmarking methods that allow assessing watermarking algorithm properties.  
Especially we summarise the functions of the developed benchmarking tool StirMark 
Benchmark for Audio as well as its approach for audio streams and indicate how 
SMBA was used for evaluation of different audio watermarking algorithms, 
exchanged and developed in WVL2. Since the results of these evaluations were 
already published in other documents they are only referred to here. Furthermore the 
approaches of attack tuning with attack transparency models and their impact to 
geometric attacks are reported, which were presented and discussed during the Ecrypt 
workshop WaCha 2005, Barcelona. Section 4 summarises the activities of WVL3 in 
the fields of steganography and steganalysis. Here first an overview and classification 
of a large number of available steganographic tools is given. Then a selected 
steganographic approach is evaluated using a steganalytical approach. 
 

3 Audio Benchmarking Tool SMBA 
 
This section describes the evaluation tool StirMark Benchmark for Audio (SMBA). 
This tool includes a collection of single attacks against the robustness of digital audio 
watermarks. These attacks work in time or frequency domain and modify the audio 
signal with the goal to weak or destroy an embedded watermark for benchmarking 
and evaluation purposes. 

3.1 SMBA architecture 
Note, that in this paper we use the following notation: SMBA stands for the overall 
benchmarking system and SMFA denotes the single attack module. The architecture 
of SMBA consists of four different types of modules. First, the attack module SMFA 
itself, second the read write stream module to convert audio files into streams and 
back into files, which is needed for input and output of audio signals. The third 
module SM-Bell is a wrapper for SMFA and read write to make it easier to use. The 
fourth module SM-Bell_GUI is a graphical user interface for SM-Bell. Figure 3-1 
shows the modules and the module dependencies. The line between the read write 
process and SMFA and the other SMFA processes is a symbol for a pipe. The audio 
file is read by the read write module. The audio data are given to the first SMFA 
process which runs the first attack. The resulting audio signal of this process is the 
new input for the second SMFA process and so on. At the end of the pipes can be the 
read write module to save the audio signal in an audio file. If the user does not want to 
store the audio signal in a file, then the audio stream can be sent to the sound device to 
play it. 
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Figure 3-1: Modules of SMBA 
 
The main benchmarking process is SMFA, the attack process, where a selected single 
attack is running (or concatenations of single attacks) to change the audio signal. In 
this paper, we set our main focus on this module (SMFA). Due to the design of our 
system, by running one single process, it is only possible to run one single attack on 
the audio signal. If it is feasible to run more than one attack on the audio signal, it is 
simple to use multiple instances of SMFA. This is possible by connecting the stdout 
of one SMFA process with the stdin of the following SMFA process by using a pipe. 
Another advantage of using SMFA for multiple attacks is, that each attack runs in its 
own SMFA process and the operating system can independently allocate each process 
to a processing unit. This is especially advantageous if there are multiple processing 
units available. 

3.2 Current Single Attacks  
 
Currently 40 attacks1 are provided by StirMark Benchmark for Audio (SMBA) 
[SMBA] in version 1.2, with their default attack parameters [LANG2005]. 
 
From the overall point of view, a digital audio signal S depends on different 
parameters based on the capturing and sampling processes (with the following default 
values for SMBA): 

o Sampling Frequency: fSR = 44.1 kHz 
o Sampling Quantization: 16 bits (MaxQantization = 216) 
o Number of channels: 2 (stereo) 

 
Based on the digital audio representation, we differ between time and frequency 
domain. The frequency domain representation can be provided by transforming the 
time domain audio signal into the frequency domain for example by using a Fourier 
transformation [IFEACHOR2002]. As notation for the attacks of SMFA working in 
time domain, we use Si(x) as input signal for SMFA (marked audio signal) and So(x) 
as output signal from SMFA which is the attacked, modified, marked audio signal. 
The value x is the sample value at a discrete point of time in the input and output 
stream, we use x = x(ti). The value f denotes one frame that contains n sample values 
                                                 
1 AddBrumm, AddDynNoise, AddFFTNoise, AddNoise, AddSinus, Amplify, BassBoost, Compressor, CopySample, 
CutSamples, DynamicPitchScale, DynamicTimeStretch, Echo, Exchange, ExtraStereo, FFT_HLPassQuick, FFT_Invert, 
FFT_RealReverse, FFT_Stat1, FlippSample, Invert, LSBZero, Noise_Max, Normalizer1, Normalizer2, Nothing, Pitchscale, 
RC_HighPass, RC_LowPass, Resampling, Smooth, Smooth2, Stat1, Stat2, TimeStretch, VoiceRemove, ZeroCross, 
ZeroLength1, ZeroLength2, ZeroRemove 
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x, f = fx(t0); x(t1); ... ; x(tn-1)g, ti; i = 0 ... n - 1, n in N, n=framelength. Avg(f) is the 
average of all sample values for all channels within the frame f. As notation for the 
attacks of SMFA working in frequency domain, we use Fi(x) to identify the frequency 
input signal and Pi(x) to identify the phase of the signal represented in the frequency 
domain. Furthermore, we use Fo(x) and Po(x) as the corresponding output signal in 
frequency domain. The attacks in the frequency domain are parameterized with a 
window size (FFTSize) equal to frame size f for the Fast Fourier Transformation used 
for processing. As a default value we use a size of 1024 samples. To scale the attacks, 
we introduce an attack strength scalar value AS which specifies the strength of the 
attack performed on the audio signal. 
 
The motivation for all attacks in SMFA is to destroy or weaken the embedded 
watermark signal, as Kutter et. all [Kutter2000] described for geometric attacks. From 
the signal processing point of view, we can classify the SMFA attacks into three 
attack classes. The first class adds or removes a signal k to or from Si(x): So(x) = a * 
Si(x) + b * k(t). The value a scales the input audio signal and the value b scales k(t) to 
a specific limit. The second class can be described as filter attacks: So(x) 
=FAttack(Si(x)), where FAttack is the corresponding attack from this attack class. The third 
attack class can be seen as modification attacks, by modifying the overall structure of 
the signal representation for example the overall length of the audio signal or shifting 
audio samples: So(x) = MAttack(Si(x)). Table 3-1 summarises all current single attacks 
of SMFA into these three classes by indicating time and frequency domain. 
 

 
Table 3-1: Classification of SMFA attacks 

 
 

In the following sub sections, all 40 attacks are described and discussed how they 
work and what parameters they need. At the beginning, we introduce the attacks in 
Time Domain and then the attacks in Frequency Domain. At the end of each attack, 
we present default parameters.  

3.2.1 Time domain attacks 

As notation for the time-domain attacks we use Si(x) as input signal for SMBA 
(marked audio signal) and So(x) as output signal from SMBA which is the attacked, 
modified audio signal. The value x is the sample number in the output stream. The 
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value f is the frame that contains the sample x. Avg(f) is the average of all sample 
values for all channels within the frame that contains x.  

• AddBrumm: Adds buzz as sinus tone to the audio signal. This attack is useful 
to simulate the buzz of a power supply unit of analogue devices. This attack 
has 2 parameters. Frequency indicates the buzz frequency and Strength for the 
attack strength (amplitude).  

 
  

 
  

The default parameter values are: Frequency = 55 and Strength = 2500 

• AddDynNoise: Adds a dynamic noise that depends on the signal amplitude to 
the audio signal. This attack is useful for simulating certain noise effects found 
in analogue audio equipment. This attack has one parameter. Strength is the 
relative strength of the attack.  

 
  

The default parameter value is: Strength = 20 

• AddNoise: Adds a white noise to the audio signal. This attack is useful for 
analogue noise produced in many analogue devices. This attack has one 
parameter. Strength is the relative strength of the attack.  

  

The default parameter value is: Strength = 1000 

• AddSinus: Adds a sinus tone to the audio signal. This attack is useful to 
simulate various sinusoidal audio phenomena or to add a distortion signal in 
exactly the same frequency range where the watermark embedder would 
embed the watermark information. This attack is similar to Addbrumm and 
has two parameters. Frequency is the buzz frequency and Strength the attack 
strength (amplitude).  

 

 
  

The default parameter values are: Frequency = 3000 and Strength = 120 
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• Amplify: Changes the amplitude of the audio signal to simulate amplification. 
This attack has one parameter. Factor is the percent increase or decrease 
percentage with 100 being neutral.  

 
 

The default parameter value is: Factor = 50 

• BassBoost: Boosts the bass range of the audio signal, similar to analogue bass 
boosting circuits that are prevalent in consumer audio devices. This attack uses 
code from the Open-Source Media Editor Audacity [AUDACITY].  
This attack has two parameters. ThresholdFrequency is the threshold under 
which all frequencies are boosted by BoostDB (in decibels).  
 
The default parameter values are: ThresholdFrequency = 150 and BoostDB = 
6.123 
 

• Compressor: Scales all samples under a given threshold by a given amount. 
This attack is similar to various analogue compressor devices that are available 
on the market. This attack has 2 parameters. ThresholdDB is an amplitude 
threshold (in dB) under which all samples are compressed using the factor 
CompressorValue.  

  

 

The def. parameter values are: ThresholdDB = 6.123 and CompressorValue = 2.1 

• CopySample: Inserts copies of a group of samples at a later point in the 
stream. This is meant to test watermarking algorithms for dependence on 
quantity and order of samples. This attack uses a modified buffer-wise 
processing where input and output are asymmetrical and successive iterations 
do not necessarily use the same length buffer.  
This attack has three parameters. Within every Period samples, the first Count 
samples are copied Distance away from their original position. Period must be 
greater than Distance which in turn must be greater than Count. 
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The default parameter values are: Period=10000, Distance=6000 and Count=2000 

• CutSample: Drops a certain number of samples periodically. This is meant to 
test watermarking algorithms for dependence on quantity and order of 
samples. This algorithm also uses a modified buffer-wise algorithm, input and 
output are again asymmetrical, but in this case every other buffer is simply 
thrown away without being outputted. 
This attack has two parameters. Drops RemoveNumber samples at the 
beginning of every Remove input samples.  

 
 

 
 

The default parameter values are: Remove=1000 and RemoveNumber=7 

• Echo: Adds a simple echo to the audio signal. This is meant to test 
watermarking algorithms that hide information in echos in the signal or test 
the watermark against echo attacks. This algorithm uses a "marching blocks" 
type algorithm to support streaming. Two buffers are always in memory, one 
front and one back. Front is the most recently read in samples. It is used to 
calculate the echo for back and then back is outputted, a front becomes the 
new back and a new front buffer of samples is read in.  
This attack has one parameter. The echo is produced with an echo delay of 
Distance samples.  

 
 

The default parameter value is: Distance=2000 

• Exchange: Swaps consecutive samples in the audio sample. This is meant to 
test watermarking algorithms for their sensitivity to the exact order of the 
samples. This attack has no parameters.  

 

  

 

• ExtraStereo: Adds the average between the channels in a frame to all samples 
in the frame. This is meant to test watermarking algorithms that use channel 
difference in multi-channel systems. This attack is based on the extra stereo 
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function of XMMS [XMMS]. This attack has one parameter. Factor scales the 
strength of the effect.  

 
  

The default parameter value is: Factor=20 

• FlippSample: Flips a group of samples at a later point in the stream. This is 
meant to test watermarking algorithms for dependence on the order of 
samples. This attack uses a modified buffer-wise processing where sections of 
input and output are asymmetrical and successive iterations do not necessarily 
use the same length buffer. This attack has three parameters. Within every 
Period samples, the first Count samples are copied Distance away from their 
original position. Period must be greater than Distance which in turn must be 
greater than Count.  

 

 

 
  

The default parameter values are: Period=10000, Count=2000 and 
Distance=6000 

• Invert: Inverts a sample: each sample value is replaced by its opposite (phase 
shift of 180°). This is meant to test watermarking algorithms for their 
sensitivity to the phase of the signal. This attack has no parameters.  

 
  

• LSBZero: Set the values of Least Significant Bits (LSBs) to zero. This is 
meant to challenge algorithms that may embed in the LSBs of the samples.  
This attack has no parameters.  

 
  

• NoiseMax: Introduces a noise into the signal based on the Maximum Length 
Sequence (RIFE1989) [RIFE1989]. This attack has three parameters. Mask 
and Length are parameters to the RIFE1989 function, while Strength controls 
the strength of the noise that is introduced.  
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The default parameter values are: Mask=300, Length=23 and Strength=1365 

• Normalizer1: Normalizes the signal in a streaming manner, based on local 
peak information or based on cumulative peak information. This attack 
simulates various real-time normaliser devices. This attack has three 
parameters. BufferSize determines the length of each buffer for each 
processing cycle, Level is quantisation step that the samples are to be 
normalized to and Zeroing is a boolean switch to switch between local and 
cumulative peak finding (0 = local, else cumulative). The function Peak(x) 
finds the maximum peak value in the buffer.  

 
  

 
  

The default parameter values are: BufferSize=2048, Level=28000 and 
Zeroing=0 
 
 

• Nothing: A simple pass-through, nothing is altered. This attack has no 
parameters.  

 
 

• RC-HighPass: Simulates an analogue Resistor/Capacitor (RC) High-Pass 
Filter. This algorithm comes from [SMITH1997]. This attack has one 
parameter. Threshold determines the cut-off frequency (in Hz) for the filter.  

 
  

 
  

 
 

The default parameter value is: Threshold=150 

• RC-LowPass: Simulates an analogue Resistor/Capacitor (RC) Low-Pass 
Filter similar to RC-HighPass. This attack has one parameter. Threshold 
determines the cut-off frequency (in Hz) for the filter 
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The default parameter value is: Threshold=15000 

• Resampling: Adjusts the sample rate to a new rate. This attack uses the 
libsamplerate library [libsamplerate]. The library libsamplerate is written to 
support streaming, so the library handles streaming. This attack has one 
parameter SampleRate is the new rate which the signal has to be resampled to. 
The default parameter value is: SampleRate=22050 

 

• Smooth1: Applies a smoothing algorithm to the signal. This attack has no 
parameters.  

 

 

• Smooth2: Applies a smoothing algorithm to the signal. This attack has no 
parameters.  

 

 

• Stat1: Applies a distortion algorithm to the signal. This attack has no 
parameters.  

 
  

• Stat2: Applies a distortion algorithm to the signal. This attack has no 
parameters.  
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• VoiceRemove: Subtracts the average between the channels in a frame from all 
samples in the frame. This is meant to test watermarking algorithms that use 
channel difference in multi-channel systems. This attack is based on the voice 
remove function of XMMS [XMMS]. This attack has no parameters.  

 
  

• ZeroCross: Sets all samples with an absolute value less than a given threshold 
to zero. This attack has one parameter. ZeroCross is the threshold below 
which all values are set to zero.  

 

 

The default parameter value is: ZeroCross=1000 

• ZeroLength1: Sends a given number of zero samples as output after the 
detection of a zero value in the input, treating each channel independently. The 
streaming implementation of this attack uses queues to store incoming samples 
while it is outputting a set of zero-samples. This attack has one parameter. 
ZeroLength is the number of zero samples sent to output after the detection.  

 
 

The default parameter value is: ZeroLength=10 

• ZeroLength2: Sends a given number of zero samples to all channels after the 
detection of a zero value in the any channel of the input. The streaming 
implementation of this attack is buffer-wise but input and output are not 
always symmetrical. (it depends whether we are in a run of zeros or not)  
This attack has one parameter. ZeroLength is the number of zero samples sent 
to output after the detection.  

 
 

The default parameter value is: ZeroLength=10 

• ZeroRemoves: Removes all zero samples from the signal. This attack has no 
parameters.  
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3.2.2 Frequency Domain Attacks 

In the following, we introduce all attack in frequency domain. As notation for the 
frequency-domain attacks we use Fi(x) to signify the frequency input signal and Pi(x) 
to specify the phase of the signal represented in the frequency domain using a Fourier 
transform [IFEACHOR2002] with Fo(x) and Po(x) as the corresponding output signal 
in frequency domain. The value x is the bucket number in the Fourier representation. 
All attacks in frequency domain convert to the Fourier representation in frames. Some 
of them need as attack parameter the size of a frame (FFTSize) of the Fast Fourier 
Transformation used in processing. As a default value we assume a size of 1024 
samples for the following attacks. Unless otherwise noted, a simple buffer-wise 
implementation was used to introduce streaming: each FFT buffer is read in, 
transformed, processed, transformed back and then outputted.  

• AddFFTNoise: Adds a white noise to the signal in the frequency domain. 
This attack has one parameter. Strength is the relative strength of the attack.  

 

The default parameter value is: Strength=3000 

• DynamicPitchScale: This attack performs a nonlinear pitch scaling on the 
audio signal and provides five different working modes. These modes and the 
default attack parameters are similar to the DynamicTimeStretch attack with 
the difference, that the pitch is scaled instead the time is stretched.  

• DynamicTimeStretch: This attack performs a nonlinear time stretch on the 
audio signal. This can be categorized into five different working modes, which 
are described in the following. Furthermore, all modes have five parameters 
(scale factor (s), mode of attack (m), frame size - lower bound (FSLB), frame 
size - upper bound (FSUB) and buffer size (bs)).  

o [Mode 0:] This mode stretches the audio signal in fixed direction 
either left or right but scaling factor varies over time randomly between 
scale factor and 1. Direction of scaling is determined by scale factor. If 
it is greater than 1 scaling will be right direction (stretch), otherwise in 
left direction (shrink). The following figure 3-2 illustrates the attack.  
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Figure 3-2: DynamicTimeStretch with fixed direction and randomly stretched 

o [Mode 1:] This mode stretches the audio signal with a fixed scale 
factor but the direction of scaling changes randomly while processes 
sequence of all the frames. The following figure 3-3 shows it. The 
direction which frame is going to be stretched is selected randomly 
from a pool of random numbers.  

Figure 3-3: DynamicTimeStretch with random direction and fixed stretch 

o [Mode 2:] This mode stretches the audio signal with a fixed scaling 
factor similar to mode 1 but the difference is that direction of scaling 
changes to right and left alternatively for each frame. The following 
figure 3-4 shows it.  

Figure 3-4: DynamicTimeStretch with an alternating direction and fixed stretch 

o [Mode 3:] This mode stretches the audio signal in random direction 
with a randomly scaling factor varies over time. The figure 3-5 shows 
it.  
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Figure 3-5: DynamicTimeStretch with random direction and random stretch 

o [Mode 4:] This mode stretches the audio signal in alternating 
directions with a randomly scaling factor varies over time. The 
figure 3-6 shows it.  

Figure 3-6: DynamicTimeStretch with alternating direction and random stretch 

The default parameters are: scalefactor=1.4, mode=3, framesize-
lowerbound=32000, framesize-upperbound=64000 and buffersize=32384 

• FFT_HLPassQuick: Filters selected frequencies out of the audio signal or let 
pass through selected frequencies. Similar to RC-High- and RC-LowPass but 
works in the frequency domain. This attack has two parameters. 
HighPassFrequency is the cut-off frequency for the high-pass filtering. 
LowPassFrequency is the cut-off for the low-pass filtering.  

 

The default attack parameters are: HighPassFrequency=15000 and 
LowPassFrequency=150 

• FFT_Invert: Inverts (phase shift 180°) the frequency and phase in this 
domain and needs no parameters. The effect of this attack depends on the FFT 
implementation that is used.  



D.WVL.10 – Audio Benchmarking Tools and Steganalysis 
 15 

 

 

 

• FFT_Stat1: Computes a mathematical signal modification, similar to Stat1 
but in the frequency domain. This attack has no parameters.  

 

• Normalizer2: This attack is similar to Normalizer1, but works in the 
frequency domain. Additionally, the audio signal is split into two frequency 
bands, which are normalized independently of one another. This attack uses 
the FFTW library for Fourier Transformation [IFEACHOR2002].  
This attack has three parameters. Level is quantisation step that the samples are 
to be normalized to and Zeroing is a boolean switch to switch between local 
and cumulative peak finding (0 = local, else cumulative). The function Peak(x) 
finds the maximum peak value in the buffer. Threshold is the boundary 
between the two separately-analysed frequency bands. 
The default attack parameters are: Level=28000, Zeroing=0 and 
Threshold=5000 
 

• PitchScale: This attack scales the frequency up or down without changing the 
tempo of the signal. This attack uses the library SoundTouch [soundtouch] to 
alter the signal. This attack uses the streaming facility built into the 
libsoundtouch library. All data is processed in an asynchronous FIFO. This 
attack has one parameter. ScaleFactor is the pitch scaling factor (in octaves). 
The default attack parameter is: ScaleFactor=0.95 or 1.05. 

 

• TimeStretch: This attack stretches or shrinks the signal playing time without 
changing the pitch. This attack uses the library SoundTouch [soundtouch] to 
alter the signal. This attack uses the streaming facility built into the 
libsoundtouch library. All data is processed in an asynchronous FIFO. This 
attack has one parameter. Factor is the time scaling factor. The default attack 
parameter is: Factor=0.95 or 1.05 

 

3.3 Application oriented attacks  
The future of attack based benchmarking lies in application oriented attacks (profile 
attacks) as they are described in [LANG2004] and [LANG2005]. Profiles serve the 
purpose of simulation real world application scenarios or special parameter settings 
for the watermarking algorithm. The simplest way to attack a digital watermark is a 
brute force attack by using all possible attacks against the watermark. For each attack, 
SMBA has default attack parameters, which can be used to evaluate the digital audio 
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watermark very quickly. It is also possible to change and optimise the attack 
parameters to improve the attack strength or attack transparency. Each attack is part of 
a single evaluation process to determine the watermarking algorithm weakness e.g. 
with which attack a watermark can be broken. These single attacks are atomic signal 
modification processes. This scenario is also called single attack process 
[DITTMANN2004]. In this mode, the watermarked audio file undergoes many 
separate instances of attacks and for each attack a separate output audio file is 
produced. Each of these audio files is only modified by a single attack (e.g. 
AddNoise, PitchScale, Amplify or CutSample). This is useful to find a single specific 
weakness of a watermark algorithm. By using this attack method, the problem is 
twofold: Firstly, for each attack we produce and evaluate an attacked audio file to test 
the watermarking detection/verification computing a huge amount of data. Secondly, 
weaknesses caused by combinations of audio effects or artefacts are not tested.  
Therefore, another attack mode, called profile attack is introduced by [LANG2004] to 
run more than one attack in serial order. An evaluation profile is an ordered sequence 
of processes that may be applied to a signal. Each of the individual processes in the 
profile is defined by its own set of parameters. While a profile may seem to be merely 
an attack or process macro, profiles serve a very useful purpose in benchmarking. 
Profiles allow the evaluation system to model or simulate scenarios of interest to 
particular applications, like internet radio, audio production or audio archives. Based 
of our classification of profiles [LANG2005C], an evaluation profile may be defined 
in terms of other (existing) profiles, which allow a complex process or attack to be 
modelled as a sequence of previously-defined (or elementary) processes (for example 
the DA/AD conversion). The approach used by SMBA composes profile attacks from 
a concatenation of single attacks (basic profiles). Therefore is has to be assumed that 
an improvement of the single attacks (their number and functionality as well as their 
parameterisation) will lead to improved (closer to the desired application) profile 
attacks.  
 

3.4 Attack tuning - Attack Transparency Models and their 
Impact to Geometric Attacks 

By tuning geometric attacks using attack transparency models and non-linear methods 
found in psychoacoustic models like described in [LANG2003] and 
[DITTMANN2005] the modification itself becomes context aware, resulting in 
attacked sequences which are the output of a transparent modification. As a second 
benefit of the use of psychoacoustic models, attacks could be maximised by refraining 
from the use of single attack parameters and instead using functions like the masking 
threshold to parameterise the attack. 
In [DITTMANN2005] it was shown that using psychoacoustic modelling in 
geometric attacks (used as single attacks in an audio watermark benchmarking 
environment like SMBA) is capable of improving the results of the attacks. The 
exhaustive search needed by the detector to compute the correlation between the 
attacked sequence and all cyclically shifted versions of the watermark signal becomes 
far more complicated. A much wider scope of attacks (resulting from the perceptually 
scaled cyclical shifts) has to be considered for the exhaustive search. 
When observing single attacks from the SMBA suite it can be stated from the results 
presented in [KRAETZER2006A] that the trade-off between the two characteristics 
impact on robustness and transparency seems to be the same like in data hiding. When 
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the psychoacousticaly modified SMBA attacks from [DITTMANN2005] where 
evaluated in a larger scope further proof for the benefit of using transparency 
enhancing measures in attack based evaluation was given. 
 

3.5 First Benchmarking Tests 
First benchmarks on watermarking algorithms were performed in 
[KRAETZER2006A], [LANG2006] and [Megías2006] using SMBA to evaluate the 
transparency, complexity, robustness and capacity of selected watermarking and 
steganography algorithms. In the following section 3.5.1 we describe the evaluated 
watermarking and steganographic algorithms in detail, in section 3.5.2 we describe 
the used parameterisation. The first test results can be found in the publications 
mentioned above. 

3.5.1 Algorithms used for testing 
 
The following subsections introduce the used algorithms in detail. 
 

3.5.1.1 AMSL LSB Watermarking  
This watermarking algorithm works in time domain and embeds the watermark in the 
least significant bits of the audio sample values [Klimant2003, Matev2005] by 
overwriting the original bits. The watermarking algorithm has the following three 
parameters: 
o The parameter k is a secret key. If k is used, then it initialized a pseudo random 

noise generator (PRNG) which selects the LSB’s which are used for embedding 
the digital watermark. It means that not all LBS’s are used for embedding. If no k 
is used (the parameter is not set), then all sample values of the audio signal are 
used for embedding. It directly inferences the embedding capacity. 

o The parameter c is for the usage of error correction codes (ECC) [Klimant2003] 
and turns error correction on or off. If an ECC is used, then the length of the 
embedding message is doubled and errors during the retrieval process can be 
detected and corrected up to a threshold. 

o The parameter m is for embedding a message and specifies the secret message 
which is embedded into the audio signal.  

 

3.5.1.2 AMSL Spread Spectrum Watermarking  
This watermarking algorithm works in frequency domain and embeds the watermark 
in the frequency coefficients [Kim2003]. The audio signal is transformed into the 
frequency domain by using a Fourier Transformation [IFEACHOR2002]. The 
following itemization introduces the parameters for this watermarking algorithm.  
o The secret message m is used for embedding into the audio signal. 
o A secret key k initialized a PRNG and the random numbers r are computed.  
o Other parameters l and h determine the bandwidth by selecting the lower (l) and 

upper (h) frequency bound for embedding. Both parameters represent the 
frequency range which is used for embedding. 

o A scalar value α determines the embed strength of the watermark.  
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o An error correction code [Klimant2003] selected with the parameter c, corrects the 
embedded information up to a specific threshold if errors occur on the embedded 
message during the retrieval process. 

The secret message m is a binary message m= {0,1} or an equivalent bipolar variable 
m={-1,1}, which is modulated by a pseudo-random sequence r(ni). This sequence is 
generated by k. The value α specifies the embed strength. The index i runs from 1 to 
N and N is the length of the audio signal. The following equation shows the 
watermarking process: SE(ni) = S(ni) + α w(ni). The scaling factor α controls the 
adjustment between robustness and inaudibility. The modulated watermark w(ni) is 
equals to r(ni) or –r(ni) depending on m = 0 or m = 1. 
 

3.5.1.3 2W2A – AMSL Audio Water Wavelet 
This watermarking algorithm works in wavelet domain and embeds the watermark on 
selected zero tree nodes. It does not use a secret key. An additional file is created, 
where the marking positions are stored to retrieve the watermark information in 
detection process (non blind).  
This watermark scheme embeds the watermark information m in the wavelet based 
frequency domain and uses a digital watermarking technique called zerotree (ZT) 
[Shapiro1993]. It is a non blind method, because additional information (specific file, 
where the wavelet coefficient used for embedding are stored) for watermark detection 
are needed. A classification of the wavelet coefficients which are significant by using 
zerotrees is performed in [INOUE1999]. In [INOUE1999] are two methods of digital 
watermark described. The first method uses the insignificant coefficients and embeds 
the watermark information redundantly into these. Zerotrees are constructed for three 
pairs of sub-bands. For detecting the watermark the zerotree root is used after the 
wavelet decomposition. The second method uses the significant coefficients by 
thresholding and modifying these coefficients at the coarsest scale. Two thresholds T1 
and T2, where T1 < T2, and one the sub-bands must be selected. The coefficients are 
calculated and must lie between T1 and T2. Then the watermark information is 
embedded by modifying the calculated coefficients. For detection the embedded 
position and the threshold value are needed after the wavelet decomposition. This is 
the reason, why 2A2W is a non blind watermarking algorithm. In the following, the 
parameters are introduced. 
o The parameter m is the watermarking message, which is embedded.  
o The Parameter w specifies the watermarking method and at this time, only ZT 

(zerotree) is possible. 
o The parameter c specifies the coding method and at this time, only binary (BIN) is 

possible. 
 

3.5.1.4 Publimark 
This watermarking algorithm is an open source tool, developed from Gaëtan Le 
Guelvouit [Publimark] and it is a command line tool, which embeds a secret message 
into an audio file. Therefore it uses a pair of keys, a public and a private key. The 
public key kpub can be shared so that everybody can send a secrete message. The 
private key kpriv must be kept secret that only the owner can detect and retrieve the 
hidden information. The embedding process consists of two phases. First the sender 
chooses a random key, denoted seed, which is encoded with the shared public key to 
embed the secrete message. Second the sender transmits the audio file to the recipient, 
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using an efficient private key steganographic algorithm [GUILLON2002]. For this the 
Scalar Costa scheme [EGGERS2003] could be used. Therefore the main problem lies 
on how to transmit the key. In [GUELVOIT2005] are further details described. The 
algorithm has the following three parameters: 
o The parameter m specifies the watermark message, which is embedded. 
o The private (secret) key is kpriv. 
o The public key is kpub. 
 

3.5.1.5 WAUC and WAUC-sec 
These watermarking algorithms work in the frequency domain and rely on MPEG 1 
Layer 3 compression to determine where and how the embedded mark must be 
introduced [Megías2003, Megías2005]. The mark is embedded by modifying the 
magnitude of the spectrum at several frequencies which are chosen according to the 
difference computed between the original and the compressed audio content. The 
main advantage of this scheme is that the perceptual masking of the compressor is 
implicitly used and, thus, the scheme can be directly tested with different masking 
models by replacing the compressor. Since repeat coding of the mark is used, a 
majority voting scheme is applied to improve robustness. The scheme also uses a dual 
Hamming error correcting code for the embedded mark, which makes it possible to 
apply it for fingerprinting, achieving robustness against collusion of two buyers.  
 
Mark embedding 
 
Let the signal S to be marked be a collection of PCM samples. The spectrum of S, 
denoted as SF, is computed with a Fast Fourier Transform (FFT) algorithm. Then, the 
signal S is compressed using an MP3 algorithm with a rate of R kbps and 
decompressed again to PCM format. The result of this compression/decompression 
operation is a new signal S’, and its spectrum SF’ is obtained. The set of marking 
frequencies Fmark is chosen as follows. Firstly, all fmark ∈ Fmark must belong to the 
relevant frequencies Frel of the original signal SF:  
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where fmax denotes the maximum frequency of the spectrum, which depends on the 
sampling rate and the sampling theorem, p ∈ [0, 100] is a percentage and 

maxFS  is 
the maximum magnitude of the spectrum SF. Secondly, the frequencies to be marked 
are those for which the magnitude remains “unchanged” after lossy compression and 
decompression, where “unchanged” means a relative error below a given threshold ε:  
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o The parameter R is the bit rate used by the MP3 compressor needed by the 
embedding algorithm. R can be chosen in the range [32, 320] kbps. 

o The parameter p is a percentage in the range [0, 100]. 
o The parameter ε is a relative error in the range [0, 1]. 
 
Once the frequencies in Fmark have been chosen, the spectrum of the marked signal is 
computed as:  
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Since spectrum components in SF are paired (pairs of complex-conjugate values), the 
same transformation (increase or decrease d dB) must be performed to SF(fmark) and to 
its conjugate. 
 
In addition a dual Hamming error correcting code DH(31,5) is used prior to the 
magnitude modification step and a pseudo-random binary sequence (PRBS) is added 
to the sequence of embedded bits. 
 
o The parameter d is the disturbance (measured in dB) introduced at the marking 

frequencies to embed a bit. 
o The parameter k is a secret key used to generate the PRBS. 
 
The modified WAUC-sec scheme is suggested in (Megías2005) introducing some 
randomness in the selection of the marking frequencies. This modification uses some 
additional parameters: 
 
o The parameters p1 and p2 are two probabilities (in the range [0, 1]). p1 is the 

probability of choosing the most perceptually significant frequencies and p2 is the 
probability of choosing the other frequencies. 

o The parameter ksec is the initial seed of a pseudo-random number generator in the 
range [0, 1] used to choose the marking frequencies according to the probabilities 
p1 and p2. 

 
Mark detection 
 
The objective of the mark detection algorithm is to determine whether an audio test 
signal T is a (possibly attacked) version of the marked signal Ŝ . It is assumed that T 
is in PCM format or can be converted to it. First of all, the spectrum TF is obtained 
applying the FFT algorithm and, then, ( )markfTF , the magnitude at the marking 

frequencies, is computed for all fmark ∈ Fmark When the magnitudes ( )markfTF  are 
available, a scaling (Least Squares) step can be undertaken in order to minimize the 
distance between the sequences ( )markfTFλ and ( )mark

ˆ fSF . This LS step implicitly 

uses the embedded mark (since SF(fmark) is needed) but it can be omitted (λ = 1) or 
performed with the original signal SF(fmark) instead of the marked one ( )markfSF . 
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The ratios )(/)( iFiFi fSfTλ=r , are computed to decide whether a ‘0’, a ‘1’ or a ‘*’ 
(not identified) might be embedded at the i-th position:  
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If none of these two conditions are satisfied, then ib̂  := ‘*’. Here, q ∈ [0, 100] is a 

percentage and ib̂  is the i-th component of the vector b̂  which contains a sequence of 
“detected bits”.  

 

o The parameter q is a percentage in the range [0, 100]. 
 

Once b has been obtained, its length n will be greater than the length of the extended 
mark. Hence, each bit of the mark appears at different positions in b. A voting scheme 
is applied to choose whether the i-th bit of the mark is ‘1’, ‘0’ or unidentified (‘*’). 
The PRBS signal is then removed and the error correcting code is applied in order to 
recover the identified mark W’. 

 

3.5.2 Parameterisation 
 
In this subsection, the test environment, chosen parameters for the watermarking 
algorithms and the methods for evaluation are introduced. 
For the watermarking algorithms LSB, Spread Spectrum, 2A2W and Publimark the 
embed message m is the phrase m=“UniversityofMagdeburg” is used. If a key can be 
indicated, then k=22 is used. If the watermarking algorithms provide error correction, 
then the algorithm is used two times – one with and another without error correction. 
The following table 3-2 shows the exact parameters for the watermarking algorithms. 
A X in the column m indicates the usage of m=”UniversityOfMagdeburg”. If a cell is 
empty, it indicates that the parameter is not available for the watermarking algorithm. 
The first row shows the parameters which are introduced in the watermarking 
algorithms section. 
 

m k c w l H a 
Least Significant Bit – LSB 

X Ø Yes n.a. n.a. n.a. n.a. 
X 22 No n.a. n.a. n.a. n.a. 
X Ø No n.a. n.a. n.a. n.a. 
X 22 Yes n.a. n.a. n.a. n.a. 

Publimark 

X 
kpriv, 
kpub 
1024bit 

n.a. n.a. n.a. n.a. n.a. 
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AMSL Audio Water Wavelet - 2A2W 
X n.a. n.a. ZT n.a. n.a. n.a. 

Spread Spectrum 
X 22 Yes n.a. 9000 11000 5000 
X 22 No n.a. 9000 11000 5000 
X 22 Yes n.a. 17000 19000 5000 
X 22 No n.a. 17000 19000 5000 

Table 3-2: Used Parameters for the Evaluation Tests 
 
The Spread Spectrum algorithm runs four times in two different frequency bands and 
with and without ECC. One frequency band is from 9-11 kHz and the other 17-19 
kHz. The frequency band from 9-11 kHz was used in some test made in the past 
[LANG2005], and the same frequency range is used for this evaluation. The 
frequency range 17-19 kHz was selected, because it is close the audible frequency 
bound for humans and we expected a good transparency for this parameters. As 
embedding strength 5000 is used, because it is the default value. For all embedding 
parameters ECC was enabled and disabled.  
All these watermarking algorithms use the same audio test set which contains 389 
different audio files. The audio signal category contains four main classes and 24 
subclasses. The main classes and their subclasses are music (blues, classical, country, hiphop, 
jazz, metal, pop, reggae, synthetic, techno), sounds (computergen, natural, noise, silence), speech 
(computergen, female, male, sports) and SQAM (instrumental,voice). The subclasses divide the 
main classes, for example speech into male, female, computer generated and sports. 
 
Test results for the introduced algorithms using the described parameterisations can be 
found in [LANG2006]. 
 
The WAUC algorithm is extensively evaluated in (Megías2003, Megías2004a, 
Megías2004b and Megías2006) in terms of imperceptibility (or transparency), 
capacity and robustness. The Sound Quality Assessment Material (SQAM) has been 
used to evaluate both the WAUC and WAUC-sec schemes, besides some other files in 
the Watermark Evaluation Testbed (WET) for audio (Lang2005). 
 
o Capacity: the WAUC watermarking scheme is shown to produce capacity results 

in the range [20, 300] bps, depending on the audio signal to be marked. 
 
o Imperceptibility: with appropriate tuning settings, imperceptibility results can be 

about 30 dB (in terms of Signal to Noise Ratio) or Objective Difference Grade 
(ODG) results in [–1.5, 0] (perceptible but not annoying to imperceptible). 

 
o Robustness: robustness has been assessed against the StirMark Benchmark for 

Audio (SMBA), the WET system and also MP3 compression attacks. The scheme 
is shown to be very robust against MP3 compression, since it is able to overcome 
these attacks with a bit rate even lower than 56 bps. Most of the attacks in the 
SMBA and the WET system are also overcome, but the WAUC scheme needs be 
enhanced against some attacks, such as “Echo”, “Stat1”, “Stat2” and some filters. 

 
Tuning guidelines for the tuning parameters are suggested in (Megías2004b): 
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o The parameter R can be tuned for capacity and imperceptibility. The increase in 
capacity is low for rates R > 128 kbps, thus, R = 128 kbps is a good choice. If 
imperceptibility is the priority, lower values of R can be chosen.  

o As d is concerned, a trade-off between imperceptibility and capacity should be 
obtained. A value of d = 1 yields SNR about 20 dB, though this value, of course, 
depends on the particular file. If better imperceptibility is required, d = 0.5 or 
lower might be used, but taking into account that this would affect robustness. In 
most cases, d in [0.1, 0.5] will be appropriate. 

o The parameters p and ε have a similar effect on capacity, imperceptibility and 
robustness. In general, 1 ≤ p ≤ 5 would provide good robustness and 
imperceptibility (larger values produce very low capacity). On the other hand, low 
values of ε are advisable, for example ε = 0.01. It must be taken into account that 
reducing ε and increasing p at the same time will have a double effect on 
imperceptibility and capacity, thus, caution must be taken when tuning these 
parameters 

o Finally, the best choice for q is the largest possible value.  
 
The results for the modified WAUC-sec scheme are presented in (Megías2005), 
where the security of these schemes is also considered. The experiments show that it 
is possible to tune the WAUC-sec such that the capacity of the original scheme can be 
preserved. In addition, the WAUC-sec scheme obtains better imperceptibility results 
(both in ODG and SNR measures) than the original counterpart for the same capacity. 
As robustness is concerned, both schemes produce similar results against the SMBA, 
but the original WAUC scheme is more robust against MP3 compression. Finally, 
concerning security, both false positive experiments and ad-hoc attacks are 
performed. On the one hand, it is shown that false positives are quite improbable if 
different secret keys are used for embedding and detection. On the other hand, the ad-
hoc attacks described in the paper can be survived by the WAUC-sec scheme, 
whereas they successfully erase the mark when the original WAUC scheme is used. In 
short, the WAUC-sec scheme provides with a trade-off solution between security and 
robustness against MP3 compression.  
 
Some rules are also suggested to tune the additional parameters p1 and p2: 
  
o p1 should be chosen in some interval centred at 0.5 and too small values should be 

avoided. For example, p1 should be in the interval [0.3, 0.7]. This way, a good 
trade-off between robustness and security would be obtained. The default value 
for the parameter p2 (as a function of p1 and other variables) is also suggested in 
(Megías2005). 

 

3.5.3 First benchmarking results 
 
To examine the results for transparency benchmarking of digital watermarks 
presented first in [DITTMANN2005] on a larger scale, more detailed tests were 
performed and described in [KRAETZER2006A]. Here transparency tests in the 
context of steganographic methods and digital watermarking algorithms (for audio 
signals) as well as in the context of attack based watermarking evaluation were 
performed. On a large test-set (389 audio files divided into 24 categories) the 
embedding transparency of the algorithms (four steganographic and four 
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watermarking algorithms (see section 3.5.1 for detailed descriptions of the 
watermarking algorithms used)) and the improvement of selected attacks using 
psychoacoustic modelling were measured and evaluated considering the context 
dependency. These benchmarks were performed using the average |ODG| (absolute 
value of the Objective Difference Grade computed using the Open Source software 
tool EAQUAL; see [KRAETZER2006A] for details) as a transparency measure. The 
watermarking algorithms (except the used LSB watermarking) return bad results (in 
terms of transparency) if compared to steganographic algorithms, but this was 
expected since watermarking algorithms are more focused on robustness then on 
transparency. The used LSB watermarking algorithm evaluated is with considerable 
distance the most transparent algorithm but was destroyed by a fair number of attacks. 
This is making it interesting for integrity watermarking applications. A wavelet 
algorithm was found to be the most robust algorithm/parameter combination tested 
but it lacked high transparency. This constellation would make it useful in forensic 
tracking applications if transparency would play an inferior role – otherwise the 
transparency would have to be improved before usage in such an application. Based 
on the benchmarking results for the Spread Spectrum algorithm considered 
recommendations for the improving of the implementation of the algorithm were 
given. Considering the performance of the algorithms on all context categories it can 
be concluded that all watermarking algorithms show context dependencies for the 
embedding transparency. The reasons for this context dependency and its possible 
benefits should be determined in future research. 
Benchmarking tests considering a wider scope of characteristics were performed in 
[LANG2006]. There the transparency, complexity, robustness and capacity of 
selected watermarking and steganography algorithms for different algorithms were 
measured and compared. As a benchmarking suite for these evaluations SMBA 
(Stirmark Benchmark for Audio) was chosen. In [Megías2006] a selected algorithm 
was described and evaluated in detail. 
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4 Steganography and Steganalysis 
 
In this section first an overview over a large number of Steganographic Tools 
available on the internet is given with the goal to propose a standardised classification 
scheme for the key features of steganographic tools. This scheme is applied to a 
number of about 100 tools that are available from the Internet. The classification 
criteria contain properties, such as the supported carrier media, the availability of the 
source code, the licence model, and the embedding function. It is written with the 
intention to spot on fast-developing areas, which, as a consequence, may require 
further attention in academic research.  
This general overview of Steganographic Tools is followed by an advanced 
steganographic approach for a selected form of steganographic embedding. Since the 
LSB embedding scheme is a widely used method in steganography the considerations 
on estimation accuracy introduced in section 4.2 can be considered to be of large 
interest for the development of steganographic algorithms. 
 

4.1 Steganographic Tools on the Internet 
The scope of this overview is limited to pure steganographic tools, characterised as 
software, embedding secret messages into a carrier medium with the intention to be 
imperceptible – or even undetectable against passive attackers. This definition 
explicitly excludes watermarking software. 
The nature of a quantitative analysis is very well suited for giving a consolidated 
overview, however the level of abstraction implies that particular tools cannot be 
reflected in detail. 
We provide a standardised classification scheme for the key features of 
steganographic tools. This scheme is applied to 87 tools. The classification criteria 
contain properties such as the supported carrier media, the availability of the source 
code, the licence model, the embedding function (if indicated), the encryption scheme 
(if implemented), the message spread (if specified), and the supported operating 
system. Security assessments and references to suitable steganalytic methods are 
given for selected entities. 

4.1.1 Introduction 
Steganography is the art and science of writing messages in such way that the 
existence of the communication is hidden. It has been used in various forms for 
thousands of years. In the computer era data hiding techniques gain importance and 
serve security, primarily the authenticity and integrity of a message in the context of 
computer-supported communication. 
A common application of modern data hiding is digital watermarking. Digital 
watermarks protect intellectual property and may be used to trace, identify, and locate 
digital media across networks. They are attributes of the carrier, as a watermark 
typically includes information about the carriers or the owner. In another 
steganographic appliance data is hidden for transmission over the internet. In addition, 
the concept and application of steganography is a vital argument against a prohibition 
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of cryptography. Unfortunately it can also be used for communication among 
terrorists and criminals as well as hard core pornography. 
In contrast to cryptography where it is allowed to detect and intercept messages 
without being able to violate certain security premises guaranteed by a cryptosystem 
the goal of steganography is to hide messages inside other “harmless” media in a way 
that prevents anybody even detecting it. A good steganographic system should fulfil 
the same requirements posed by “Kerckhoffs’ law” in cryptography. This means that a 
cryptosystem should be secure even if everything about the system, except the key, is 
public knowledge. 

4.1.2 Tools 

4.1.2.1 Development 
In our investigation we refer to steganographic tools which appeared in the period 
1993-2004 on the Internet. Chart 4-1 presents the number of utilities that were 
published within this time range. Thereby the figure above the bars displays the 
number of tools which were released in the specified year. 

Another important fact is the timeline of the analysed software. It gives a global 
overview in respect to development processes and update frequencies. Chart 4-2 
illustrates such a timeline. The x-axis defines the examined year and the y-axis 
displays the number of appeared tools. Dark bars within the chart mark newly 
released steganographic utilities, whereas bright bars represent the number of updated 
ones. The chart reveals an increasing appearance tendency for the last years of newly 
developed tools as well as update releases.  
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Chart 4-1: Version development overview 
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4.1.2.2 Licence Model 
The licence model of tools is another noteworthy attribute. Table 4-1-1 gives an 
overview of the models which attracted attention to us during our analysis. As it can 
be observed, an amount of 65 tools are freely available and distributable but there are 
also a significant number of utilities which were developed on a commercial basis. 

 
Table 4-1-1: Models of software licences 

4.1.2.3 Price 
The price of commercial steganographic software is a further noteworthy fact. The 
range of it is illustrated in Table 4-1-2. The most expensive commercially distributed 
software is Stealth Files 4.0 with 100 EUR but this does not ensure high quality. In 
fact Stealth Files simply appends data. Thus, a high price does not mean highly 
secure. Within the group of commercialised tools Encrypt Pic is available for the 
lowest price. It provides more security than Stealth Files as it embeds the data into 
image content. Nevertheless, the implementation of the embedding function leads to 
detectable steganograms.  
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Chart 4-2: Tool development overview 

Licence model  Number of tools
freely available  65 

Freeware  43 
GPL  20 
BSD  1 

Public Domain  1 
   

commercial  22 
Shareware  22 
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Table 4-1-2: Tool price range 
 

4.1.2.4 Availability of Source Code 
To judge the security of a tool the availability of its source code is helpful. One 
requirement of Kerckhoffs’ law is that the security of an algorithm must not rely on its 
nondisclosure. As tools with available source code are easier to analyse it is much 
more likely that its security is evaluated by a larger community. The source code for 
more than half of the tools is freely available as shown in table 4-1-3. 
 

Table 4-1-3: Availability of source code 
 

4.1.2.5 Supported OS Platform 
Steganographic applications available on the internet run on a variety of platforms 
which are specified in table 4-1-4. As one single tool can support several operating 
systems each platform is assessed separately. Thus the number of tools in table 4-1-4 
exceeds 87. Our observation in this classification is that most steganographic tools 
support Microsoft Windows. 
 

Table 4-1-4: Variety of OS platforms 
 

Price class  Price 
highest price  100 EUR
average price  43 EUR
lowest price  10 EUR

Source code available  Percentage
yes  55 
no  45 

Operating system  Number of tools  Percentage of tools 
platform dependent  85  89 

Windows  44  46 
Linux / Unix  22  23 

DOS  15  16 
Macintosh  3  3 

Psion Serie 5  1  1 
     

platform independent  11  11 
OS Independent  11  11 
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4.1.3 Techniques 

4.1.3.1 Media type 
In the context of steganography it is necessary to take a closer look at the choosing of 
an appropriate carrier. While in ancient Greece slaves were used to play this role, in 
present times, various types of data files have the potential for this function. Therefore 
file formats can be assigned to the following domains: text, image, audio, video, and 
program files. In addition, within the analysed set of tools some software even uses its 
own file format, network protocol, or communication data (e.g. StegoGO uses game 
movements). Table 4-1-5 presents a selection of supported media and their 
distribution. Some tools can handle more than one format and hence are counted 
separately. On this account the utilities support two media formats on average. 
 

Table 4-1-5: Distribution of supported media 
 
 

Medium  Format  Number of tools  

Percentage
 of this tool

category  
Percentage 
 of all tools 

Image    107    56 
  BMP  34  32  18 
  JPEG  22  20  11 
  GIF  21  20  11 
  PNG  9  8  5 
  Other  21  20  11 
         
Audio    32    18 
  WAV  16  50  9 
  MP3  9  28  5 
  MIDI  2  6  1 
  Other  5  16  3 
         
Video    7    4 
  AVI  4  57  2 
  MPEG  2  29  1 
  Other  1  14  1 
         
Text    22    13 
  TXT  7  31  4 
  ASCII  5  23  3 
  HTML  5  23  3 
  Other  5  23  3 
         
Program    10    6 
  Windows 

Executables 
 7  70  4 

  DLL  2  20  1 
  Linux Binaries  1  10  1 
         
Other    5    3 
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However it is worth mentioning that the majority of steganographic utilities which 
work with a large number of media types use the same hiding technique without 
adaptation for all supported file formats. As a consequence it can be stated that the 
support quantity does not ensure the support quality. 

4.1.3.2 Encryption 
The encryption scheme indicates the supported encryption features of the specified 
tool. Table 4-1-6 shows the disposability of encryption schemes among the analysed 
software. In fact, 71 % of the analysed steganographic tools feature the use of a 
cryptographic key for the encryption of the message before the embedding process. 
Encryption can increase the security level of the hiding procedure, e.g. by preventing 
the comprehension of the message content if the embedding is discovered and/or by 
creating a uniformly distributed secret message out of any original secret message. 
Furthermore, many encryption applications add a header in plaintext to the encrypted 
message. This header might yield information about the encrypted message (e.g. file 
type) which simplifies a cryptographic attack by enabling a more precise attack. 

Table 4-1-6: Availability of encryption option 
 
If the presence of the message is discovered and successfully extracted, a header for 
the encryption method can be used for cryptoanalysis. 
Therefore we can divide the encryption using software into two groups: 

• tools that utilise cryptography based upon widely used and proven open 
source systems (i.e. standardised algorithms) and 

• tools which don’t (e.g. EncryptPic which uses a self-built cryptographic 
algorithm that is neither published nor verifiable).  

Table 4-1-7 shows the number of tools of each category mentioned above. In addition 
a further subdivision within the standardised algorithms states in more detail which 
algorithms are used. The particular tools are assessed separately because one single 
tool can dispose of more than one encryption scheme. On this account the total 
number of tools is 108 instead of only 87. The encryption schemes which are used by 
just one single tool are recorded in the group “other”. Our analysis shows that one of 
the more commonly used algorithms is Blowfish. In fact a number of 15 investigated 
tools use this encryption scheme. The DES algorithm is the second most frequently 
used cryptographic function. Finally, self-constructed algorithms without published 
source code infringe Kerckhoffs’ law. They are provided by small developer groups 
only who generally cannot ensure their security whereas open source algorithms (e.g. 
Blowfish, DES, etc.) are (usually) more secure than self-constructed ones because 
open source is reviewed by much more people. In addition, the standardised 
encryption schemes such as AES experienced no severe attack. 
 
 

Cryptography available  Number of tools  Percentage of tools 
implemented  62  71 
not implemented  19  22 
not indicated  6  7 
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Table 4-1-7: Variety of encryption schemes 
 

4.1.3.3 Embedding 
Steganography encompasses methods of transmitting secret messages in such a 
manner that the existence of the embedded message is undetectable. The analysed 
software tools provide a variety of information-hiding techniques. Among these, most 
methods are employed depending upon characteristics specific to a carrier type or 
format while other methods may work without relying on a specific file format. Based 
on the result of our investigation we could classify the hiding techniques as it is 
illustrated in table 4-1-8.  
 
 

Cryptographic 
category   Encryption scheme  

Number
of tools  

Percentage 
of tools 

standardised    86  80 
  Blowfish  15  14 
  DES  10  9 
  RC4  5  4 
  Twofish  5  4 
  ICE  4  4 
  IDEA  4  4 
  AES (Rijndael)  3  3 
  GOST  3  3 
  PGP  3  3 
  RSA  3  3 
  CAST  2  2 
  RC5  2  2 
  RC6  2  2 
  TEA  2  2 
  Other  23  21 
       
non standardised    22  20 
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Table 4-1-8: Summary of hiding techniques 

4.1.3.3.1 Embedding Data into Text 
The common method of hiding information in text is a manipulation of white spaces. 
The manipulation can be done by appending blanks or tabs at the end of lines or at the 
end of the text. (With HTML it is also possible to add blanks between words because 
consecutive white spaces are displayed as a single one.) Since blanks and tabs are 
invisible to most text viewers the message is effectively hidden from casual observers. 
However, there exist tools like FFencode which are optimised for special character 
sets (e.g. IBM-PC) and replace blanks with others blanks e.g. 20hex with FFhex. These 
substituted characters are displayed in text viewers that use the ISO character set and 
therefore it is questionable if these tools truly implement steganography. Another 
example of a text-based embedding is transforming data into English sentences, 
nonsense English phrases, or into pseudo-random natural language text. They are 
based on a dictionary either given explicitly or built “on the fly” from a source 
document. Take the following sentence: 
 
Steganography is the art and science of writing hidden messages in such a way which 
hides the existence of the communication. (125 characters) 
 
and apply some transformation to create nonsense pseudo-random natural language 
text: 

Domain  Method  
Number
of tools  

Percentage
 of this 
domain 
methods  

Percentage 
 of all 

methods 
Text    16    15 
  manipulation by 

white spaces 
 

10 
 

63  9 
  transformation 

into other text 
 

4 
 

25  4 
  syntactic method  1  6  1 
  Rephrasing  1  6  1 

Image, Audio, 
Video 

   
81 

 
  76 

  LSB  56  69  53 
  appending data  13  16  12 
  header insertion  3  4  3 
  masking  1  1  1 
  other  8  10  7 

Program files    7    7 
  appending data  5  72  5 
  substitution 

of equivalent 
instructions 

 

1 

 

14 
 

1 
  other  1  14  1 

Protocols    2    2 
  header insertion  2  100  2 
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Miasma seamers frounce bedtimes beanbag, spell kyanize … skirr. (CryptoMX) (327 
characters) 
 
Characteristic for this technology is that it does not use a carrier for hiding 
information but “scrambles” a message in a way that it cannot be understood although 
it has some word syntax and therefore is less likely detected as an encrypted message 
by a machine. 
The following technique is called rephrasing of text [Comp03]. It allows changing the 
tense of the narration or the point of view as well as substituting words whereby the 
meaning of the text is preserved. An example is the ensuing text that is used as carrier 
for the secret message “test”: 
 
Eine Lampe leuchtet in der Nacht. Das Bild an der Wand ist mit einer schmalen Rente 
bezahlt worden, doch hat sich der Kauf gelohnt … (A lamp shines at night. The 
painting on the wall has been paid with a frugal superannuation, yet the bargain was 
worthwhile …translated by author) 
 
The following steganogram is created by applying the technique of replacing single 
words by one of its synonyms representing the possible hiding data according to a 
thesaurus. 
 
Eine Lampe leuchtet in der Nacht. Das Abbild an der Wand ist mit einer schmalen 
Pension bezahlt worden, doch hat sich der Kauf gelohnt … (A lamp shines at night. 
The portrait on the wall has been paid with a frugal pension, yet the bargain was 
worthwhile …translated by author, TextHide) 
 
Another possibility of hiding information in text is known as syntactic method. This 
one is based on punctuation, construction, or spelling changes. 

4.1.3.3.2 Embedding Data into Images, Audio, and Video 
Numerous methods exist for hiding information in audio, images, and video. Some 
common embedding techniques range from least significant bit (LSB) manipulation 
over masking and filtering to applying more sophisticated image or audio processing 
algorithms and transformations. Each of these approaches can be developed with 
varying degrees of success for different file formats. 
LSB methods insert the embedding data in the carrier byte stream, substituting 
insignificant information in a carrier file with secret data. Some tools utilise two least 
significant bits or even more to hide a message. 
In general there are two types of LSB embedding which apply to images: 

• simple LSB embedding in raw images 
o change LSB in one up to all three colour channels of the pixel or in the 

frequency coefficients of a discrete cosine transformation (DCT) 
o increment/decrement the pixel value instead of flipping the LSB 
o matrix encoding 

• LSB embedding in palette images 
o change colour index to similar palette entry (e.g. EzStego) 
o change palette entry 
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The LSB manipulation concept can also be applied to audio. The least significant bit 
of information at each audio sampling point is replaced with a bit from the hidden 
message. This method introduces significant noise into the audio file. 
LSB manipulation is a quick and easy way to hide information but is vulnerable to 
small changes resulting from file processing or lossy compression. 
Masking methods such as hiding secret messages into higher-order bits with 
simultaneous decrease of luminance or volume are more robust than LSB insertion in 
respect of compressing, cropping, and some image or audio processing. These 
techniques allow embedding in more significant areas in order to integrate a hidden 
message further into the cover file. 
Another technique for hiding data into image or multimedia files is called appending 
which means that the secret data is added after the very last byte of the carrier file. 
The carrier file size could increase up to the sum of the size of the original carrier file 
and the secret file yet the size will change with a very high probability. This method is 
very simple and very easy to detect because the secret message will be added in plain 
form. Furthermore, the probability of detecting the secret message increases if the 
steganographic tool uses such embedding techniques as inserting in junk or comment 
fields in the header of the file structure. On the one hand the hidden data congregates 
at the same place and on the other hand the file header is rather vulnerable for 
steganalysis. 

4.1.3.3.3 Embedding Data into Program Files 
The common technique for hiding data in program files is appending the data at the 
end of the carrier file as practised with image, audio, and video files. Another 
possibility is stashing a secret message by transforming program instructions. This 
technique substitutes an instruction by an equivalent which represents the bit(s) of the 
secret data. A simple example: “add %eax, 50” can be substituted by “sub %eax, -50”. 

4.1.3.3.4 Embedding Data into Archive Files 
There is only one example among the investigated software which uses archive files 
(gzip-files) as carrier medium. It embeds the secret data during the compression 
process through overwriting the least significant bits. 

4.1.3.3.5 Embedding Data into Network Protocols 
The embedding process in network protocols takes place via manipulation of unused 
spaces and other features of the packet header. 

4.1.3.4 Message Spread 
The embedded message is spread over the carrier by selecting more or less equally 
distributed positions in order to carry the bits of the secret message. This 
characteristic is relevant for secret message bits in cover files like images, audio, and 
video. In our classification we distinguish three types of message spreads: linear 
continuous, random continuous, and straddling.  
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Linear continuous message walk means that the bytes of the carrier file are 
sequentially selected with fixed space between the selected carrier bytes, where the 
first secret-hiding byte is chosen at the beginning of the carrier file. Figure 4-1 shows 
the difference between a linear continuous embedding with no space between the used 
carrier bytes2 and an embedding with the fixed space of three carrier bytes (i.e. every 
fourth carrier byte contains a stego bit). Additionally it is possible to fill up the unused 
capacity of the carrier medium with white noise. 
 

                                                 
2 Every carrier byte is used. 

  
Figure 4-1: Steghide (LSB embedding); linear continuous message walk – Both pictures are true 
colour pictures that are spread and transformed into b/w so that each colour channel is displayed 
separately for better visibility of the changes caused by the embedding. Black pixels represent a 
change of the carrier medium. They contain a secret message of 1.35 % of the picture size. 
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Random continuous message walk uses a (pseudo) random generator to distribute 
the secret message across the carrier medium. Figure 4-2 shows the difference 
between a continuous message walk with a fixed interval of 3 bits per “stego bit” on 
the left side and the random continuous message walk on the right side where the 
space between the used carrier bytes is (pseudo) random. The initial value of the 
(pseudo) random generator can be calculated by hashing a pass phrase or user 
interactions or it can be manually given. The secret message will be hidden 
sequentially but the space between two data hiding carrier bytes (“stego bytes”) will 
be determined by the (pseudo) random value. Again, a steganographic tool could fill 

up the unused space in the carrier medium with white noise. 
 
Straddling message walk distributes the secret message over the whole carrier 
medium irrespective of the secret message size (Figure 4-3). The advantage of this 
distribution method – as well as the random continuous one – is the fact that it 
decreases the probability to detect the content of secret data in the carrier medium 
because of the smaller change density compared to the sequential method. An 
example for this type of message spread is the so-called “permutative straddling”. It 
basically works in three steps. At first a permutation of the bytes of the carrier file is 
performed. In the second step the secret message is embedded sequentially. Finally 
after repermutation of the carrier bytes, back to the original order, the secret message 
is evenly distributed over the carrier file. 

  
Figure 4-2: Steghide (LSB embedding): continuous message walk vs. random continuous message 
walk – Both pictures are true colour pictures that are spread and transformed into b/w so that 
each colour channel is displayed separately for better visibility of the changes caused by the 
embedding. Black pixels represent a change of the carrier medium.  Both pictures contain a 
secret message of 1.35 % of the picture size – embedded with Steghide v0.3. 
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4.1.3.5 Capacity 
A further essential fact is the amount of secret bits that can be hidden in a carrier 
medium (by a specific tool). On the one hand there is the effort to maximise the 
payload which can be covered. On the other hand there is the attempt to minimise the 
detection possibility. Both objectives are interdependent because larger payloads lead 
to higher levels of change density and thus a higher detection possibility. The analysis 
of the steganographic utilities shows that the tools offer different amounts of 
payloads. We group five capacity categories which are displayed in table 4-1-9. 
Taking this into account the question arises which factors are responsible for 
determining how much data can be embedded. Primarily it depends on the embedding 
technique that the software uses. For example all tools that belong to the category 
“unlimited” apply the appending technique. This method usually has no data length 
restriction. The majority of software that is based on the header insertion can carry a 
large amount of data as well. By contrast, LSB, masking, substituting of program 
instructions, and most text-based techniques provide capacity limitation. Tools which 
use these embedding methods constitute the remaining capacity categories. 
Looking at several carrier file formats discloses further aspects and results. The 
embedding capacity of images in bitmap (BMP) format is determined by the number 
of bits per pixel that can be changed and the number of pixels that are selected to hide 
the secret data. The method most used to hide data in images – which is LSB – 
provides a capacity up to 12 % (changing 1 bit per pixel) or up to 33 % (changing 3 

  
Figure 4-3: S-Tools 4 (LSB embedding); straddling message walk – Both pictures are true colour 
pictures that are spread and transformed into b/w so that each colour channel is displayed 
separately for better visibility of the changes caused by the embedding. Black pixels represent a 
change of the carrier medium. The left picture contains a secret message with 0.006 % and the 
right one with 1.65 % of the carrier size – embedded with S-Tools v4.0 and encrypted by IDEA. 
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bits per pixel). The capacity of JPEG, GIF and PNG files depends on the level of 
compression. 
 

Table 4-1-9: Capacity overview of steganographic algorithms 
 
 
Audio files in WAV format show a similar behaviour to BMP format image files. 
In most cases the capacity of text files to carry hidden data depends significantly on 
the file’s content but can be estimated as follows (in bits): 

• standard method: capacity = number of words 
• compatible method: capacity = number of lines 

The capacity of the standard method is achieved by most tools whereas the capacity of 
tools with further restraints, such as adaptivity, can be estimated with one bit per line 
as a rule of thumb.  
There are no general rules for the amount of secret data that a PDF file can hold but 
the number decreases by numerous and large embedded objects. The quantity of 
hidden bits a HTML file can hold is approximately equivalent to its number of lines. 

4.1.3.6 Adaptivity 
The data length restriction for secret data is determined by the file composition. For 
example an image that contains high frequency areas (such as grass) can be 
manipulated imperceptibly to a much greater extend than an image containing 
primarily low frequency areas (such as clear blue sky or mono-colour pictures). The 
same principle can be applied to any other media. In the case of an audio file one 
possibility is to choose those bytes of the audio stream which follow immediately 
after high sound levels because the human hearing cannot perceive low sound levels 
right after high ones. Therefore the noise which is caused by the secret message will 
be irrecognisable for the human hearing. This approach of embedding is called 
“adaptive embedding”. In our analysis we observed that only 20 % of the investigated 
steganographic tools utilise this technique (table 4-1-10). 
 

Table 4-1-10: Usage overview of adaptive embedding 
 

Capacity category  Number of algorithms  Percentage of all algorithms 
< 1 %  18  15 

1 % – 5 %  23  19 
5 % – 15 %   47  39 

> 15 %  14  11 
“unlimited”  20  16 

Adaption capability  Percentage of tools
yes  20 
no  80 
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4.1.4 Discussion and conclusion 
In present times steganography is an increasingly used concept due to the need to 
protect privacy even in case of domestic crypto regulation. Therefore the number of 
supported file formats increases enormously. While in former times steganography 
was limited to images today’s software also works with more current formats like 
audio. Following general trends utilities also become more user-friendly. Previous 
generations were mainly based on command line handling with some knowledge 
about shell syntax necessary. Now even inexperienced users are able to run 
steganographic software by means of graphic user interfaces. However the core 
functions – the embedding methods in file formats, which are known for a long time – 
have not principally changed. Only adaptations of established methods like LSB were 
created despite reliable steganalysis techniques known as chi-square attack, RS 
analysis, and SPA (sample pairs analysis). Although LSB matching, which twiddles 
the steganographic values by addition of (randomly chosen) +1 or -1 (also called plus 
minus one steganography), is little more complicated to implement than LSB 
replacement, it only cautiously gains currency. Merely for the boundaries a case 
discrimination is necessary, because -1 leads to an overflow at the lower and +1 at the 
upper boundary. With just this little more effort a higher steganographic security is 
ensured since the existing detection methods for LSB matching are far less powerful 
than the steganalysis of LSB replacement. Another visible development is the 
growing commercialisation of steganography usage. Nearly all investigated 
commercial tools were published within the last four years. But still today’s 
development impulses are only given by the researching sector. 
Improvements were made in the field of preventing detection by means of capacity 
limitations. Some of the new tools have an explicit capacity limitation which is not 
obeyed in general und therefore cannot be seen as standard functionality of new tools. 
Again non-commercial tools have a leading role since they more often implement 
capacity limitations. 
Lastly it can be said that there exist strong deficits in the sector of documentation. 
Even tools which are available as freeware or something of similar character are 
described insufficiently. Furthermore, a uniform classification beyond simple 
documentation of supported file types is unavailable until now. Concluding, more 
transparency surely would encourage further developments. 
 

4.2 Transparency Benchmarking for Steganographic 
Algorithms 

 
Considering only the three characteristics capacity, transparency, and robustness of a 
data hiding method, it is obvious that there is a trade-off between these three 
characteristics. No algorithm can provide maximum capacity and maximum 
transparency at the same time. This principle is shown in figure 4-4. 
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Figure 4-4: Trade-off between capacity, transparency, and robustness [FRIDRICH99]. 
 
In the corners of the triangle shown in figure 4-4 can be found the ideal positions for 
secure steganographic techniques, naive steganography and digital watermarking.  
As indicated by the approach from Fridrich [FRIDRICH99] the transparency and 
capacity are the two characteristics most important to steganographic methods. In the 
focus of this document the secure steganographic techniques (i.e. high transparency) 
are more relevant than the naive steganography (high capacity). The later is neglected 
in the following considerations. 
When dealing with secure steganographic algorithms it is assumed in the most cases 
that they perform very transparent but this characteristic so crucial to the performance 
is very seldom tested systematically on a larger scale. 
As already described in section 3.5.3 in [KRAETZER2006A] watermarking and 
steganographic algorithms (Publimark version 0.1.2, Steghide versions 0.4.3 and 0.5.1 
and a LSB steganographic algorithm implemented at the Otto-von-Guericke 
University of Magdeburg, Germany) where tested and compared for their embedding 
transparency. These benchmarks were performed on a large test-set of categorised 
audio signals using the average |ODG| (absolute value of the Objective Difference 
Grade computed using the Open Source software tool EAQUAL; see 
[KRAETZER2006A] for details) as a transparency measure. The results form 
[KRAETZER2006A] show for the selected steganographic algorithms that they 
perform indeed very transparent in the average for the test-set, but if single categories 
of audio signals are considered the algorithms become clearly distinguishable and lead 
in single cases to bad results (abnormal programme termination as well as bad 
(perceptible) embedding transparencies).  
Other transparency benchmarking results for steganographic algorithms performed in 
[KRAETZER2006B] were used to compare two versions of a steganographic 
embedder for a VoIP scenario for their performance. The results there did show the 
strong impact of the usage of a silence detection algorithm on the transparency of a 
steganographic algorithm designed specifically for the usage in an audio streaming 
environment with limited bandwidth and 8-Bit quantisation. 
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4.3 Improving LSB Steganalysis using marginal and joint 
probabilistic distributions 

 
LSB steganography is obviously one of the simplest way to hide information in the 
host data because a great amount of bits can be ranged without causing perceptible 
degradation of the cover object (digital images are generally coded with eight bits by 
colour channel and embedding in the low significant bitplane is not visible). 
 
This section gives a summary of the work presented by Roue et al. in [ROUE2004]. 
The goal of this study was to test the steganographic method presented in 
[DUMITRESCU2003] on an image database to draw conclusion of the performance 
of the method according to images features (1D and 2D histograms). The accuracy of 
the studied steganalysis scheme is very good for almost 70% of the database. Indeed 
the results obtain on the whole set of images show that the algorithm has very high 
estimation accuracy: the Mean Absolute Error (MAE) of the estimate of the 
embedding capacity is above 10% for only 2% of the images and the MAE is very 
low for 13% of the images. In the whole set of images the estimation errors are 
relatively low. 
 
Even if the scheme yields to very accurate estimations of the message's length, it is 
interesting to point out the features of the image that lead to important estimation 
errors.  

 
MAE=0.54% 

 
MAE=0.87% 

 
MAE=12.10% 

 
MAE=14.18% 

Figure 4-5: different images and different estimation error of the steganographic capity. 
 

Our analysis leads to the fact that important estimation errors are due to two different 
drawbacks: 

• a singular marginal distribution of the pixels in the image, 
• a singular joint distribution of the pixels in the image. 
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To analyse joint distributions we have use the coocurrence matrix which represents 
the joint probability of two neighbouring pixels. Estimation of the coocurence matrix 
on stego and original images leads to important remarks: 
 

• For images presenting a low estimation error, the distribution of the maxima of 
joint probabilities is concentrated along the diagonal. 

• For images that present an high estimation error, the distribution of the 
maxima of joint probabilities is spread. It is better then to take into account 
only the sample pairs that are largely represented in the coocurrence matrix. 
 

The choice of the threshold of the coocurrence matrix is important in this method. 
Therefore we have computed the MAE for several thresholds, in order to understand 
the meaning of this value. For several thresholds the estimation of the length of the 
message is not efficient at all. For example the threshold is too low, it is equivalent to 
use all the coefficients of the matrix of coocurrence. On an other side if the threshold 
is an important value, the estimate will rely on too few sample pairs of pixels.  
 
We have tested this scheme on the three images of the Kodak database that have the 
worst results. For each image we have chosen the best threshold (i.e. the one which 
provides best estimations), and the estimation errors lie in the table below. 
 

Image MAE before processing (%) MAE after processing (%) 
Notredamewindow 12.01 4.23 

Sandprints 15.18 4.2 
Duneprints 10.14 3.2 

Table 4-3-1: Estimation errors before and after the segmentation of the coocurrence matrix. 
 
As a conclusion, this study enables both to detect images that are likely to counter 
steganalysis schemes, e.g. images that may contain a high ratio of undetectable hidden 
information and to improve the original scheme by reducing the outlined drawbacks. 
 
 

5 Summary 
 
In this report the WVL3 activities in the fields of benchmarking methods and tools for 
digital watermarks and steganography and steganalysis of the second ECRYPT year 
were indicated. Since some of the research results were already reported in other 
publications they were referred to. 
One focus of WVL3s work is the evaluation and benchmarking of schemes and 
algorithms based on the work of WVL1 and WVL2. For this reliable frameworks for 
fair benchmarking have to identified or, if necessary, implemented. With SMBA, 
which is described in detail in section 3 of this document, a benchmarking suite is 
introduced which is concerned with the so far neglected audio watermarking domain. 
The results from the evaluations of watermarking algorithms provided for testing from 
other ECRYPT partners have not only shown the usefulness of SMBA but are also the 
foundation for a open and fair benchmarking scheme provided to all ECRYPT 
partners.  
The steganography and steganalysis part of the work done in WVL3 is focused on 
basic research of available steganographic solutions to identify used approaches in a 
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rapidly evolving environment. This basic classification will be provided to the 
ECRYPT partners to act as a knowledgebase and foundation for the implementation 
of own steganographic and steganalytic tools. Steganographic evaluation frameworks 
could identify possible steganographic software tools for the testing of selected 
approaches by using this classification. 
WVL3 will continue its research in watermarking and steganography benchmarking 
and in steganalysis using the research results identified here as a foundation for 
upcoming evaluations. 
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Tool Resource Links 

http://sourceforge.net/ 

http://packetstormsecurity.nl/ 

http://www.packetstormsecurity.org/ 

http://www.funet.fi/pub/crypt/steganography/ 

http://munitions.dotforge.net/software/steganography/ 

 
 

Appendix A - List of Investigated Steganographic 
Tools 
 

• AppendX 

• BlindSide  

• Cameleon 

• Camera/Shy 

• Camouflage 

• Ciphile Software's 

Steganography 

• Cloak 

• Contraband  

• Contraband Hell Edition 

• Cryptobola JPEG 

• CryptoMX 

• The Cryptographic Tool 

• Data Stash 

• DataStealth 

• DC-Stego (DC-Steganograph) 

• Encrypt Pic 

• F5 

• FFencode 

• Gifitup 

• Gifshuffle 

• Gzsteg 

• Hermetic Stego  

• Hide 

• Hide and Encrypt 

• Hide and Seek 
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• Hide in Picture 

• Hide4PGP 

• Hydan 

• Info Stego 

• Invisible Secrets 4 

• Invisible Secrets Pro (TM) 

• Jpeg-Jsteg 

• JpegX 

• JPHide and JPSeek 

• JSteg Shell  

• MandelSteg and GIFExtract1.0  

• Masker 

• Mod_stego 

• Mp3stego 

• NicePCX  

• Nicetext 

• Outgess 

• Paranoid 

• PGMStealth 

• Piilo 

• PNGstego 

• Pretty Good Envelope 

• Proteus 

• Secret  

• SecurEngine 

• Silan  

• S-Mail  

• Snow 

• Sprytek 

• Stash-It 

• Steaghan 

• Stealth Files 

• Stegano Lite 

• Stash-It  

• Steaghan 

• Stealth Files 

• Stegano Lite 

• Stegano Plug-In  

• SteganoG 

• SteganoGifPaletteOrder 

• Steganografia  

• Steganography 

• Steganos Security Suite  

• Steganosaurus 

• Steganozorus 

• Steggo 

• Steggy  

• Steghide 

• Stego 

• Stego WAV 

• StegoDOS  

• StegPage 

• Stegparty 

• StegSecurity Suite 

• S-Tools 

• TextHide 

• Texto 

• UnderMP3Cover 

• Visual Cryptography 

• Voices MP3 Stenography 

• WBStego 

• White Noise Storm 

• Zfile Camouflage&Encryption 

System 
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