
Reference number
ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001

INTERNATIONAL
STANDARD

ISO/IEC
14496-1

Second edition
2001-10-01

Information technology — Coding of
audio-visual objects —

Part 1:
Systems

Technologies de l'information — Codage des objets audiovisuels —

Partie 1: Systèmes

ISO/IEC 14496-1:2001(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2001

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office
Case postale 56 � CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch

Printed in Switzerland

ii © ISO/IEC 2001 – All rights reserved

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved iii

Contents Page

0 Introduction ..viii

0.1 Overview ...viii

0.2 Architecture ..viii

0.3 Terminal Model: Systems Decoder Model..x

0.4 Multiplexing of Streams: The Delivery Layer ...x

0.5 Synchronization of Streams: The Sync Layer..x

0.6 The Compression Layer ..xi

0.7 Application Engine..xii

1 Scope..1

2 Normative references ...1

3 Additional reference ...2

4 Terms and definitions...2

5 Abbreviations and Symbols...7

6 Conventions ..8

7 Systems Decoder Model...8

7.1 Introduction ...8

7.2 Concepts of the systems decoder model...9

7.3 Timing Model Specification..10

7.4 Buffer Model Specification...12

8 Object Description Framework..14

8.1 Introduction ...14

8.2 Common data structures..15

8.3 Intellectual Property Management and Protection (IPMP)..17

8.4 Object Content Information (OCI)..19

8.5 Object Descriptor Stream...21

8.6 Object Descriptor Components...24

8.7 Rules for Usage of the Object Description Framework ..46

8.8 Usage of the IPMP System interface...55

9 Scene Description...58

9.1 Introduction ...58

9.2 Concepts..60

9.3 BIFS Syntax ...74

9.4 Node Semantics ..133

10 Synchronization of Elementary Streams..226

10.1 Introduction ...226

10.2 Sync Layer ...227

ISO/IEC 14496-1:2001(E)

iv © ISO/IEC 2001 – All rights reserved

10.3 DMIF Application Interface...236

11 MPEG-J...236

11.1 Introduction ...236

11.2 Architecture ...237

11.3 MPEG-J Session..239

11.4 Delivery of MPEG-J Data ..240

11.5 MPEG-J API List ..243

12 Multiplexing of Elementary Streams ...249

12.1 Introduction ...249

12.2 FlexMux Tool ...249

13 File Format ...255

13.1 Introduction ...255

13.2 File organization..260

13.3 Extensibility ...284

14 Syntactic Description Language ...285

14.1 Introduction ...285

14.2 Elementary Data Types...285

14.3 Composite Data Types..288

14.4 Arithmetic and Logical Expressions...292

14.5 Non-Parsable Variables ..292

14.6 Syntactic Flow Control ...292

14.7 Built-In Operators..294

14.8 Scoping Rules ...294

15 Profiles ...294

15.1 Introduction ...294

15.2 OD Profile Definitions ...295

15.3 Scene Graph Profile Definitions ..295

15.4 Graphics Profile Definitions...299

15.5 MPEG-J Profile Definitions...301

15.6 MPEG-J Profiles Tools..301

15.7 MPEG-J Profiles ..301

15.8 MPEG-J Profiles@Levels..302

Annex A (informative) Bibliography ..303

Annex B (informative) Time Base Reconstruction...304

B.1 Time Base Reconstruction...304

B.2 Temporal aliasing and audio resampling ...305

B.3 Reconstruction of a Synchronised Audio-visual Scene: A Walkthrough305

Annex C (normative) View Dependent Object Scalability ...307

C.1 Introduction ...307

C.2 Bitstream Syntax...307

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved v

C.3 Bitstream Semantics...308

Annex D (informative) Registration procedure ..310

D.1 Procedure for the request of a Registration ID (RID) ..310

D.2 Responsibilities of the Registration Authority...310

D.3 Contact information for the Registration Authority ..310

D.4 Responsibilities of Parties Requesting a RID ..310

D.5 Appeal Procedure for Denied Applications..311

D.6 Registration Application Form ..311

Annex E (informative) The QoS Management Model for ISO/IEC 14496 Content ...313

Annex F (informative) Conversion Between Time and Date Conventions ..314

Annex G (normative) Adaptive Arithmetic Decoder for BIFS-Anim...316

Annex H (normative) Node coding tables...318

H.1 Node Tables...318

H.2 Node Definition Type Tables..341

H.3 Node Tables for Extended Nodes..348

H.4 Node Definition Type Tables for extended node types..355

Annex I (informative) MPEG-4 Audio TTS application with Facial Animation...357

Annex J (informative) Graphical representation of object descriptor and sync layer syntax.........................358

J.1 Length encoding of descriptors and commands ..358

J.2 Object Descriptor Stream and OD commands...358

J.3 IPMP stream...359

J.4 OCI stream ...359

J.5 Object descriptor and its components ...359

J.6 OCI Descriptors...362

J.7 Sync layer configuration and syntax ..365

Annex K (informative) Patent statements ...366

K.1 Patent Statements for Version 1..366

K.2 Patent Statements for Version 2..367

Annex L (informative) Elementary Stream Interface..369

Annex M (Informative) Definition of bodySceneGraph nodes..371

M.1 Introduction ...371

M.2 Detailed Semantics ...371

M.3 Overview ..371

M.4 The Nodes..371

Annex N (Informative) Implementation of MaterialKey node..380

Annex O (Informative) Example implementation of spatial audio processing (perceptual approach)382

O.1 Example algorithm implementation ..382

O.2 Elementary spectral corrector ...383

O.3 Input Filter..384

O.4 Direct path ...384

ISO/IEC 14496-1:2001(E)

vi © ISO/IEC 2001 – All rights reserved

O.5 Directional early reflections ...385

O.6 Diffuse late reverberation...385

O.7 Setting the delays..386

O.8 Scalability...387

Annex P (informative) Upstream walkthrough ...388

P.1 Introduction ...388

P.2 Configuration...388

P.3 Content access procedure with DAI..389

P.4 Example..389

Annex Q (Informative) Layout of Media Data..393

Annex R (Informative) Random Access ..394

Annex S (Informative) Starting the Java Virtual Machine ...395

Annex T (Informative) Examples of MPEG-J API usage..396

T.1 Scene APIs :...396

T.2 Resource and Decoder APIs ..400

T.3 Net APIs..402

T.4 Section Filtering APIs ...403

Annex U (Normative) MPEG-J APIs Listing (HTML) ..405

Annex V (Normative) MPEG-J APIs Listing ..406

V.1 package org.iso.mpeg.mpegj...406

V.2 package org.iso.mpeg.mpegj.resource ..413

V.3 package org.iso.mpeg.mpegj.decoder..442

V.4 package org.iso.mpeg.mpegj.net ..454

V.5 package org.iso.mpeg.mpegj.scene ...461

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved vii

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in
liaison with ISO and IEC, also take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.
Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this part of ISO/IEC 14496 may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

International Standard ISO/IEC 14496-1 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information
technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

This second edition cancels and replaces the first edition (ISO/IEC 14496-1:1999), which has been technically
revised.

ISO/IEC 14496 consists of the following parts, under the general title Information technology — Coding of audio-
visual objects:

— Part 1: Systems

— Part 2: Visual

— Part 3: Audio

— Part 4: Conformance testing

— Part 5: Reference software

— Part 6: Delivery Multimedia Integration Framework (DMIF)

— Part 7: Optimized software for MPEG-4 visual tools

Annexes C, G, H, U and V form a normative part of this part of ISO/IEC 14496. Annexes A, B, D, E, F and I to T are
for information only.

ISO/IEC 14496-1:2001(E)

viii © ISO/IEC 2001 – All rights reserved

0 Introduction

0.1 Overview

ISO/IEC 14496 specifies a system for the communication of interactive audio-visual scenes. This specification
includes the following elements:

1. the coded representation of natural or synthetic, two-dimensional (2D) or three-dimensional (3D) objects that
can be manifested audibly and/or visually (audio-visual objects) (specified in part 1,2 and 3 of ISO/IEC 14496);

2. the coded representation of the spatio-temporal positioning of audio-visual objects as well as their behavior in
response to interaction (scene description, specified in this part of ISO/IEC 14496);

3. the coded representation of information related to the management of data streams (synchronization,
identification, description and association of stream content, specified in this part of ISO/IEC 14496); and

4. a generic interface to the data stream delivery layer functionality (specified in part 6 of ISO/IEC 14496).

5. an application engine for programmatic control of the player: format, delivery of downloadable Java byte code as
well as its execution lifecycle and behavior through APIs (specified in this part of ISO/IEC 14496); and

6. a file format to contain the media information of an ISO/IEC 14496 presentation in a flexible, extensible format to
facilitate interchange, management, editing, and presentation of the media.

The overal operation of a system communicating audio-visual scenes can be paraphrased as follows:

At the sending terminal, the audio-visual scene information is compressed, supplemented with synchronization
information and passed to a delivery layer that multiplexes it into one or more coded binary streams that are
transmitted or stored. At the receiving terminal, these streams are demultiplexed and decompressed. The audio-
visual objects are composed according to the scene description and synchronization information and presented to
the end user. The end user may have the option to interact with this presentation. Interaction information can be
processed locally or transmitted back to the sending terminal. ISO/IEC 14496 defines the syntax and semantics of
the bitstreams that convey such scene information, as well as the details of their decoding processes.

This part of ISO/IEC 14496 specifies the following tools:

� a terminal model for time and buffer management;

� a coded representation of interactive audio-visual scene description information (Binary Format for Scenes –
BIFS);

� a coded representation of metadata for the identification, description and logical dependencies of the
elementary streams (object descriptors and other descriptors);

� a coded representation of descriptive audio-visual content information (object content information – OCI);

� an interface to intellectual property management and protection (IPMP) systems;

� a coded representation of synchronization information (sync layer – SL); and

� a multiplexed representation of individual elementary streams in a single stream (FlexMux).

� an application engine (MPEG-Java - MPEG-J).

These various elements are described functionally in this subclause and specified in the normative clauses that
follow.

0.2 Architecture

The information representation specified in ISO/IEC 14496-1 describes the means to create an interactive audio-
visual scene in terms of coded audio-visual information and associated scene description information. The entity

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved ix

that composes and sends, or receives and presents such a coded representation of an interactive audio-visual
scene is generically referred to as an "audio-visual terminal" or just "terminal". This terminal may correspond to a
standalone application or be part of an application system.

Multiplexed Streams

Interactive Audiovisual
Scene

Elementary Streams

Composition and Rendering

Display and
User

Interaction

Transmission/Storage Medium

(RTP)
UDP

IP

H223
PSTN

DAB
Mux

Delivery
Layer

FlexMux FlexMux

DMIF Application Interface

SL SLSL SL ... Sync
Layer

Elementary Stream Interface

AV Object
data

Scene
Description
Information

Object
Descriptor

... Compression
Layer

SL

SL-Packetized Streams

(PES)
MPEG-2

TS

AAL2
ATM

Upstream
Information

SL

SL

FlexMux

...

Figure 1 - The ISO/IEC 14496 terminal architecture

The basic operations performed by such a receiver terminal are as follows. Information that allows access to
content complying with ISO/IEC 14496 is provided as initial session set up information to the terminal. Part 6 of
ISO/IEC 14496 defines the procedures for establishing such session contexts as well as the interface to the
delivery layer that generically abstracts the storage or transport medium. The initial set up information allows, in a
recursive manner, to locate one or more elementary streams that are part of the coded content representation.
Some of these elementary streams may be grouped together using the multiplexing tool described in ISO/IEC
14496-1.

ISO/IEC 14496-1:2001(E)

x © ISO/IEC 2001 – All rights reserved

Elementary streams contain the coded representation of either audio or visual data or scene description
information. Elementary streams may as well themselves convey information to identify streams, to describe logical
dependencies between streams, or to describe information related to the content of the streams. Each elementary
stream contains only one type of data.

Elementary streams are decoded using their respective stream-specific decoders. The audio-visual objects are
composed according to the scene description information and presented by the terminal’s presentation device(s).
All these processes are synchronized according to the systems decoder model (SDM) using the synchronization
information provided at the synchronization layer.

These basic operations are depicted in Figure 1, and are described in more detail below.

0.3 Terminal Model: Systems Decoder Model

The systems decoder model provides an abstract view of the behavior of a terminal complying with
ISO/IEC 14496-1. Its purpose is to enable a sending terminal to predict how the receiving terminal will behave in
terms of buffer management and synchronization when reconstructing the audio-visual information that comprises
the presentation. The systems decoder model includes a systems timing model and a systems buffer model which
are described briefly in the following subclauses.

0.3.1 Timing Model

The timing model defines the mechanisms through which a receiving terminal establishes a notion of time that
enables it to process time-dependent events. This model also allows the receiving terminal to establish
mechanisms to maintain synchronization both across and within particular audio-visual objects as well as with user
interaction events. In order to facilitate these functions at the receiving terminal, the timing model requires that the
transmitted data streams contain implicit or explicit timing information. Two sets of timing information are defined in
ISO/IEC 14496-1: clock references and time stamps. The former convey the sending terminal’s time base to the
receiving terminal, while the latter convey a notion of relative time for specific events such as the desired decoding
or composition time for portions of the encoded audio-visual information.

0.3.2 Buffer Model

The buffer model enables the sending terminal to monitor and control the buffer resources that are needed to
decode each elementary stream in a presentation. The required buffer resources are conveyed to the receiving
terminal by means of descriptors at the beginning of the presentation. The terminal can then decide whether or not
it is capable of handling this particular presentation. The buffer model allows the sending terminal to specify when
information may be removed from these buffers and enables it to schedule data transmission so that the
appropriate buffers at the receiving terminal do not overflow or underflow.

0.4 Multiplexing of Streams: The Delivery Layer

The term delivery layer is used as a generic abstraction of any existing transport protocol stack that may be used to
transmit and/or store content complying with ISO/IEC 14496. The functionality of this layer is not within the scope of
ISO/IEC 14496-1, and only the interface to this layer is considered. This interface is the DMIF Application Interface
(DAI) specified in ISO/IEC 14496-6. The DAI defines not only an interface for the delivery of streaming data, but
also for signaling information required for session and channel set up as well as tear down. A wide variety of
delivery mechanisms exist below this interface, with some of them indicated in Figure 1. These mechanisms serve
for transmission as well as storage of streaming data, i.e., a file is considered to be a particular instance of a
delivery layer. For applications where the desired transport facility does not fully address the needs of a service
according to the specifications in ISO/IEC 14496, a simple multiplexing tool (FlexMux) with low delay and low
overhead is defined in ISO/IEC 14496-1.

0.5 Synchronization of Streams: The Sync Layer

Elementary streams are the basic abstraction for any streaming data source. Elementary streams are conveyed as
sync layer-packetized (SL-packetized) streams at the DMIF Application Interface. This packetized representation
additionally provides timing and synchronization information, as well as fragmentation and random access
information. The sync layer (SL) extracts this timing information to enable synchronized decoding and,
subsequently, composition of the elementary stream data.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved xi

0.6 The Compression Layer

The compression layer receives data in its encoded format and performs the necessary operations to decode this
data. The decoded information is then used by the terminal’s composition, rendering and presentation subsystems.

0.6.1 Object Description Framework

The purpose of the object description framework is to identify and describe elementary streams and to associate
them appropriately to an audio-visual scene description. Object descriptors serve to gain access to ISO/IEC 14496
content. Object content information and the interface to intellectual property management and protection systems
are also part of this framework.

An object descriptor is a collection of one or more elementary stream descriptors that provide the configuration and
other information for the streams that relate to either an audio-visual object or a scene description. Object
descriptors are themselves conveyed in elementary streams. Each object descriptor is assigned an identifier
(object descriptor ID), which is unique within a defined name scope. This identifier is used to associate audio-visual
objects in the scene description with a particular object descriptor, and thus the elementary streams related to that
particular object.

Elementary stream descriptors include information about the source of the stream data, in form of a unique numeric
identifier (the elementary stream ID) or a URL pointing to a remote source for the stream. Elementary stream
descriptors also include information about the encoding format, configuration information for the decoding process
and the sync layer packetization, as well as quality of service requirements for the transmission of the stream and
intellectual property identification. Dependencies between streams can also be signaled within the elementary
stream descriptors. This functionality may be used, for example, in scalable audio or visual object representations
to indicate the logical dependency of a stream containing enhancement information, to a stream containing the
base information. It can also be used to describe alternative representations for the same content (e.g. the same
speech content in various languages).

0.6.1.1 Intellectual Property Management and Protection

The intellectual property management and protection (IPMP) framework for ISO/IEC 14496 content consists of a
normative interface that permits an ISO/IEC 14496 terminal to host one or more IPMP Systems. The IPMP
interface consists of IPMP elementary streams and IPMP descriptors. IPMP descriptors are carried as part of an
object descriptor stream. IPMP elementary streams carry time variant IPMP information that can be associated to
multiple object descriptors.

The IPMP System itself is a non-normative component that provides intellectual property management and
protection functions for the terminal. The IPMP System uses the information carried by the IPMP elementary
streams and descriptors to make protected ISO/IEC 14496 content available to the terminal. An application may
choose not to use an IPMP System, thereby offering no management and protection features.

0.6.1.2 Object Content Information

Object content information (OCI) descriptors convey descriptive information about audio-visual objects. The main
content descriptors are: content classification descriptors, keyword descriptors, rating descriptors, language
descriptors, textual descriptors, and descriptors about the creation of the content. OCI descriptors can be included
directly in the related object descriptor or elementary stream descriptor or, if it is time variant, it may be carried in
an elementary stream by itself. An OCI stream is organized in a sequence of small, synchronized entities called
events that contain a set of OCI descriptors. OCI streams can be associated to multiple object descriptors.

0.6.2 Scene Description Streams

Scene description addresses the organization of audio-visual objects in a scene, in terms of both spatial and
temporal attributes. This information allows the composition and rendering of individual audio-visual objects after
the respective decoders have reconstructed the streaming data for them. For visual data, ISO/IEC 14496-1 does
not mandate particular composition algorithms. Hence, visual composition is implementation dependent. For audio
data, the composition process is defined in a normative manner in 9.2.2.13 and ISO/IEC 14496-3.

The scene description is represented using a parametric approach (BIFS - Binary Format for Scenes). The
description consists of an encoded hierarchy (tree) of nodes with attributes and other information (including event
sources and targets). Leaf nodes in this tree correspond to elementary audio-visual data, whereas intermediate
nodes group this material to form audio-visual objects, and perform grouping, transformation, and other such

ISO/IEC 14496-1:2001(E)

xii © ISO/IEC 2001 – All rights reserved

operations on audio-visual objects (scene description nodes). The scene description can evolve over time by using
scene description updates.

In order to facilitate active user involvement with the presented audio-visual information, ISO/IEC 14496-1 provides
support for user and object interactions. Interactivity mechanisms are integrated with the scene description
information, in the form of linked event sources and targets (routes) as well as sensors (special nodes that can
trigger events based on specific conditions). These event sources and targets are part of scene description nodes,
and thus allow close coupling of dynamic and interactive behavior with the specific scene at hand. ISO/IEC 14496-
1, however, does not specify a particular user interface or a mechanism that maps user actions (e.g., keyboard key
presses or mouse movements) to such events.

Such an interactive environment may not need an upstream channel, but ISO/IEC 14496 also provides means for
client-server interactive sessions with the ability to set up upstream elementary streams and associate them to
specific downstream elementary streams.

0.6.3 Audio-visual Streams

The coded representations of audio and visual information are described in ISO/IEC 14496-3 and ISO/IEC 14496-
2, respectively. The reconstructed audio-visual data are made available to the composition process for potential
use during the scene rendering.

0.6.4 Upchannel Streams

Downchannel elementary streams may require upchannel information to be transmitted from the receiving terminal
to the sending terminal (e.g., to allow for client-server interactivity). Figure 1 indicates the flowpath for an
elementary stream from the receiving terminal to the sending terminal. The content of upchannel streams is
specified in the same part of the specification that defines the content of the downstream data. For example,
upchannel control streams for video downchannel elementary streams are defined in ISO/IEC 14496-2.

0.7 Application Engine

The MPEG-J is a programmatic system (as opposed to a conventional parametric system) which specifies API for
interoperation of MPEG-4 media players with Java code. By combining MPEG-4 media and safe executable code,
content creators may embed complex control and data processing mechanisms with their media data to intelligently
manage the operation of the audio-visual session. The parametric MPEG-4 System forms the Presentation Engine
while the MPEG-J subsystem controlling the Presentation Engine forms the Application Engine.

The Java application is delivered as a separate elementary stream to the MPEG-4 terminal. There it will be directed
to the MPEG-J run time environment, from where the MPEG-J program will have access to the various components
and required data of the MPEG-4 player to control it.

In addition to the basic packages of the language (java.lang, java.io, java.util) a few categories of APIs have been
defined for different scopes. For Scene graph API the objective is to provide access to the scene graph: to inspect
the graph, to alter nodes and their fields, and to add and remove nodes within the graph. The Resource API is used
for regulation of performance: it provides a centralized facility for managing resources. This is used when the
program execution is contingent upon the terminal configuration and its capabilities, both static (that do not change
during execution) and dynamic. Decoder API allows the control of the decoders that are present in the terminal.
The Net API provides a way to interact with the network, being compliant to the MPEG-4 DMIF Application
Interface. Complex applications and enhanced interactivity are possible with these basic packages. The
architecture of MPEG-J will be presented in more detail in clause 11.

INTERNATIONAL STANDARD ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 1

Information technology — Coding of audio-visual objects —

Part 1:
Systems

1 Scope

This part of ISO/IEC 14496 specifies system level functionalities for the communication of interactive audio-visual
scenes. More specifically:

1. system level description of the coded representation of natural or synthetic, two-dimensional (2D) or three-
dimensional (3D) objects that can be manifested audibly and/or visually (audio-visual objects);

2. the coded representation of the spatio-temporal positioning of audio-visual objects as well as their behavior in
response to interaction (scene description); and

3. the coded representation of information related to the management of data streams (synchronization,
identification, description and association of stream content).

4. a system level description of an application engine (format, delivery, lifecycle, and behavior of downloadable
Java byte code applications); and

5. a system level interchange and storage format of interactive audio-visual scenes.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of
this part of ISO/IEC 14496. For dated references, subsequent amendments to, or revisions of, any of these
publications do not apply. However, parties to agreements based on this part of ISO/IEC 14496 are encouraged to
investigate the possibility of applying the most recent editions of the normative documents indicated below. For
undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC
maintain registers of currently valid International Standards.

ISO 639-2:1998, Codes for the representation of names of languages — Part 2: Alpha-3 code

ISO 3166-1:1997, Codes for the representation of names of countries and their subdivisions — Part 1: Country
codes

ISO 9613-1:1993, Acoustics — Attenuation of sound during propagation outdoors — Part 1: Calculation of the
absorption of sound by the atmosphere

ISO/IEC 10646-1:2000, Information technology — Universal Multiple-Octet Coded Character Set (UCS) — Part 1:
Architecture and Basic Multilingual Plane

ISO/IEC 11172-2:1993, Information technology — Coding of moving pictures and associated audio for digital
storage media at up to about 1,5 Mbit/s — Part 2: Video

ISO/IEC 11172-3:1993, Information technology — Coding of moving pictures and associated audio for digital
storage media at up to about 1,5 Mbit/s — Part 3: Audio

ISO/IEC 13818-3:1998, Information technology — Generic coding of moving pictures and associated audio
information — Part 3: Audio

ISO/IEC 14496-1:2001(E)

2 © ISO/IEC 2001 – All rights reserved

ISO/IEC 13818-7:1997, Information technology — Generic coding of moving pictures and associated audio
information — Part 7: Advanced Audio Coding (AAC)

ISO/IEC 14496-2:1999, Information technology — Coding of audio-visual objects — Part 2: Visual

ISO/IEC 14772-1:1998, Information technology — Computer graphics and image processing — The Virtual Reality
Modeling Language — Part 1: Functional specification and UTF-8 encoding

ISO/IEC 14772-1:1998/Amd.1, Information technology — Computer graphics and image processing — The Virtual
Reality Modeling Language — Part 1: Functional specification and UTF-8 encoding, Amendment 1: Enhanced
interoperability

ISO/IEC 16262:—1), Information technology — ECMAScript language specification

ITU-T Rec. H.262 (2000) | ISO/IEC 13818-2:2000, Information technology — Generic coding of moving pictures
and associated audio information: Video

ITU-T Rec. T.81 (1992) | ISO/IEC 10918-1:1994, Information technology — Digital compression and coding of
continuous-tone still images: Requirements and guidelines

IEEE Std 754-1985, Standard for Binary Floating-Point Arithmetic

Addison-Wesley:September 1996, The Java Language Specification, by James Gosling, Bill Joy and Guy Steele,
ISBN 0-201-63451-1

Addison-Wesley:September 1996, The Java Virtual Machine Specification, by T. Lindholm and F. Yellin, ISBN 0-
201-63452-X

Addison-Wesley:July 1998, Java Class Libraries Vol. 1 The Java Class Libraries, Second Edition Volume 1, by
Patrick Chan, Rosanna Lee and Douglas Kramer, ISBN 0-201-31002-3

Addison-Wesley:July 1998, Java Class Libraries Vol. 2 The Java Class Libraries, Second Edition Volume 2, by
Patrick Chan and Rosanna Lee, ISBN 0-201-31003-1

Addison-Wesley, May 1996, Java API, The Java Application Programming Interface, Volume1: Core Packages, by
J. Gosling, F. Yellin and the Java Team, ISBN 0-201-63453-8

DAVIC 1.4.1 specification Part 9: Information Representation

ANSI/SMPTE 291M-1996, Television — Ancillary Data Packet and Space Formatting

SMPTE 315M -1999, Television — Camera Positioning Information Conveyed by Ancillary Data Packets

3 Additional reference

ISO/IEC 13522-6:1998, Information technology — Coding of multimedia and hypermedia information — Part 6:
Support for enhanced interactive applications. This reference contains the full normative references to Java APIs
and the Java Virtual Machine as described in the normative references above.

4 Terms and definitions

For the purposes of this part of ISO/IEC 14496, the following terms and definitions apply.

1) To be published. (Revision of ISO/IEC 16262:1998)

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 3

4.1 Access Unit (AU)
An individually accessible portion of data within an elementary stream. An access unit is the smallest data entity to
which timing information can be attributed

4.2 Alpha Map
The representation of the transparency parameters associated with a texture map.

4.3 Atom
An object-oriented building block defined by a unique type identifier and length

4.4 Audio-visual Object
A representation of a natural or synthetic object that has an audio and/or visual manifestation. The representation
corresponds to a node or a group of nodes in the BIFS scene description. Each audio-visual object is associated
with zero or more elementary streams using one or more object descriptors.

4.5 Audio-visual Scene (AV Scene)
A set of audio-visual objects together with scene description information that defines their spatial and temporal
attributes including behaviors resulting from object and user interactions.

4.6 Binary Format for Scene (BIFS)
A coded representation of a parametric scene description format.

4.7 Buffer Model
A model that defines how a terminal complying with ISO/IEC 14496 manages the buffer resources that are needed
to decode a presentation.

4.8 Byte Aligned
A position in a coded bit stream with a distance of a multiple of 8-bits from the first bit in the stream.

4.9 Chunk
A contiguous set of samples stored for one stream.

4.10 Clock Reference
A special time stamp that conveys a reading of a time base.

4.11 Composition
The process of applying scene description information in order to identify the spatio-temporal attributes and
hierarchies of audio-visual objects..

4.12 Composition Memory (CM)
A random access memory that contains composition units.

4.13 Composition Time Stamp (CTS)
An indication of the nominal composition time of a composition unit.

4.14 Composition Unit (CU)
An individually accessible portion of the output that a decoder produces from access units.

4.15 Compression Layer
The layer of a system according to the specifications in ISO/IEC 14496 that translates between the coded
representation of an elementary stream and its decoded representation. It incorporates the decoders.

4.16 Container Atom
An atom whose sole purpose is to contain and group a set of related atoms.

4.17 Decoder
An entity that translates between the coded representation of an elementary stream and its decoded
representation.

4.18 Decoding buffer (DB)
A buffer at the input of a decoder that contains access units.

ISO/IEC 14496-1:2001(E)

4 © ISO/IEC 2001 – All rights reserved

4.19 Decoder configuration
The configuration of a decoder for processing its elementary stream data by using information contained in its
elementary stream descriptor.

4.20 Decoding Time Stamp (DTS)
An indication of the nominal decoding time of an access unit.

4.21 Delivery Layer
A generic abstraction for delivery mechanisms (computer networks, etc.) able to store or transmit a number of
multiplexed elementary streams or FlexMux streams.

4.22 Descriptor
A data structure that is used to describe particular aspects of an elementary stream or a coded audio-visual object.

4.23 DMIF Application Interface (DAI)
An interface specified in ISO/IEC 14496-6. It is used here to model the exchange of SL-packetized stream data and
associated control information between the sync layer and the delivery layer.

4.24 Elementary Stream (ES)
A consecutive flow of mono-media data from a single source entity to a single destination entity on the compression
layer.

4.25 Elementary Stream Descriptor
A structure contained in object descriptors that describes the encoding format, initialization information, sync layer
configuration, and other descriptive information about the content carried in an elementary stream.

4.26 Elementary Stream Interface (ESI)
A conceptual interface modeling the exchange of elementary stream data and associated control information
between the compression layer and the sync layer.

4.27 FlexMux Channel (FMC)
A label to differentiate between data belonging to different constituent streams within one FlexMux Stream. A
sequence of data in one FlexMux channel within a FlexMux stream corresponds to one single SL-packetized
stream.

4.28 FlexMux Packet
The smallest data entity managed by the FlexMux tool. It consists of a header and a payload.

4.29 FlexMux Stream
A sequence of FlexMux Packets with data from one or more SL-packetized streams that are each identified by their
own FlexMux channel.

4.30 FlexMux tool
A tool that allows the interleaving of data from multiple data streams.

4.31 Graphics Profile
A profile that specifies the permissible set of graphical elements of the BIFS tool that may be used in a scene
description stream. Note that BIFS comprises both graphical and scene description elements.

4.32 Hint Track
A special track which contains instructions for packaging one or more tracks into a TransMux. It does not contain
media data (an elementary stream).

4.33 Hinter
A tool that is run on a completed file to add one or more hint tracks to the file to facilitate streaming.

4.34 Inter
A mode for coding parameters that uses previously coded parameters to construct a prediction.

4.35 Intra
A mode for coding parameters that does not make reference to previously coded parameters to perform the
encoding.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 5

4.36 Initial Object Descriptor
A special object descriptor that allows the receiving terminal to gain initial access to portions of content encoded
according to ISO/IEC 14496. It conveys profile and level information to describe the complexity of the content.

4.37 Intellectual Property Identification (IPI)
A unique identification of one or more elementary streams corresponding to parts of one or more audio-visual
objects.

4.38 Intellectual Property Management and Protection (IPMP) System
A generic term for mechanisms and tools to manage and protect intellectual property. Only the interface to such
systems is normatively defined.

4.39 Movie Atom
A container atom whose sub-atoms define the meta-data for a presentation (‘moov’).

4.40 Movie Data Atom
A container atom which can hold the actual media data for a presentation (‘mdat’).

4.41 MP4 File
The name of the file format described in this specification.

4.42 Object Clock Reference (OCR)
A clock reference that is used by a decoder to recover the time base of the encoder of an elementary stream.

4.43 Object Content Information (OCI)
Additional information about content conveyed through one or more elementary streams. It is either aggregated to
individual elementary stream descriptors or is itself conveyed as an elementary stream.

4.44 Object Descriptor (OD)
A descriptor that aggregates one or more elementary streams by means of their elementary stream descriptors and
defines their logical dependencies.

4.45 Object Descriptor Command
A command that identifies the action to be taken on a list of object descriptors or object descriptor IDs, e.g., update
or remove.

4.46 Object Descriptor Profile
A profile that specifies the configurations of the object descriptor tool and the sync layer tool that are allowed.

4.47 Object Descriptor Stream
An elementary stream that conveys object descriptors encapsulated in object descriptor commands.

4.48 Object Time Base (OTB)
A time base valid for a given elementary stream, and hence for its decoder. The OTB is conveyed to the decoder
via object clock references. All time stamps relating to this object’s decoding process refer to this time base.

4.49 Parametric Audio Decoder
A set of tools for representing and decoding speech signals coded at bit rates between 6 Kbps and 16 Kbps,
according to the specifications in ISO/IEC 14496-3.

4.50 Quality of Service (QoS)
The performance that an elementary stream requests from the delivery channel through which it is transported.
QoS is characterized by a set of parameters (e.g., bit rate, delay jitter, bit error rate, etc.).

4.51 Random Access
The process of beginning to read and decode a coded representation at an arbitrary point within the elementary
stream.

4.52 Reference Point
A location in the data or control flow of a system that has some defined characteristics.

ISO/IEC 14496-1:2001(E)

6 © ISO/IEC 2001 – All rights reserved

4.53 Rendering
The action of transforming a scene description and its constituent audio-visual objects from a common
representation space to a specific presentation device (i.e., speakers and a viewing window).

4.54 Rendering Area
The portion of the display device’s screen into which the scene description and its constituent audio-visual objects
are to be rendered.

4.55 Sample
An access unit for an elementary stream. In hint tracks, a sample defines the formation of one or more TransMux
packets.

4.56 Sample Table
A packed directory for the timing and physical layout of the samples in a track.

4.57 Scene Description
Information that describes the spatio-temporal positioning of audio-visual objects as well as their behavior resulting
from object and user interactions. The scene description makes reference to elementary streams with audio-visual
data by means of pointers to object descriptors.

4.58 Scene Description Stream
An elementary stream that conveys scene description information.

4.59 Scene Graph Elements
The elements of the BIFS tool that relate only to the structure of the audio-visual scene (spatio-temporal positioning
of audio-visual objects as well as their behavior resulting from object and user interactions) excluding the audio,
visual and graphics nodes as specified in clause 15.

4.60 Scene Graph Profile
A profile that defines the permissible set of scene graph elements of the BIFS tool that may be used in a scene
description stream. Note that BIFS comprises both graphical and scene description elements.

4.61 SL-Packetized Stream (SPS)
A sequence of sync layer packets that encapsulate one elementary stream.

4.62 Structured Audio
A method of describing synthetic sound effects and music as defined by ISO/IEC 14496-3.

4.63 Sync Layer (SL)
A layer to adapt elementary stream data for communication across the DMIF Application Interface, providing timing
and synchronization information, as well as fragmentation and random access information. The sync layer syntax is
configurable and can be configured to be empty.

4.64 Sync Layer Configuration
A configuration of the sync layer syntax for a particular elementary stream using information contained in its
elementary stream descriptor.

4.65 Sync Layer Packet (SL-Packet)
The smallest data entity managed by the sync layer consisting of a configurable header and a payload. The
payload may consist of one complete access unit or a partial access unit.

4.66 Syntactic Description Language (SDL)
A language defined by ISO/IEC 14496-1 that allows the description of a bitstream’s syntax.

4.67 Systems Decoder Model (SDM)
A model that provides an abstract view of the behavior of a terminal compliant to ISO/IEC 14496. It consists of the
buffer model and the timing model.

4.68 System Time Base (STB)
The time base of the terminal. Its resolution is implementation-dependent. All operations in the terminal are
performed according to this time base.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 7

4.69 Terminal
A system that sends, or receives and presents the coded representation of an interactive audio-visual scene as
defined by ISO/IEC 14496-1. It can be a standalone system, or part of an application system complying with
ISO/IEC 14496.

4.70 Time Base
The notion of a clock; it is equivalent to a counter that is periodically incremented.

4.71 Timing Model
A model that specifies the semantic meaning of timing information, how it is incorporated (explicitly or implicitly) in
the coded representation of information, and how it can be recovered at the receiving terminal.

4.72 Time Stamp
An indication of a particular time instant relative to a time base.

4.73 Track
A collection of related samples in an MP4 file. For media data, a track corresponds to an elementary stream. For
hint tracks, a track corresponds to a TransMuxchannel

5 Abbreviations and Symbols

AU Access Unit
AV Audio-visual
BIFS Binary Format for Scene
CM Composition Memory
CTS Composition Time Stamp
CU Composition Unit
DAI DMIF Application Interface (see ISO/IEC 14496-6)
DB Decoding Buffer
DTS Decoding Time Stamp
ES Elementary Stream
ESI Elementary Stream Interface
ESID Elementary Stream Identifier
FAP Facial Animation Parameters
FAPU FAP Units
FDP Facial Definition Parameters
FIG FAP Interpolation Graph
FIT FAP Interpolation Table
FMC FlexMux Channel
FMOD The floating point modulo (remainder) operator which returns the remainder of x/y such that:

Fmod(x/y) = x – k*y, where k is an integer,
sgn(fmod(x/y)) = sgn(x), and
abs(fmod(x/y)) < abs(y)

IP Intellectual Property
IPI Intellectual Property Identification
IPMP Intellectual Property Management and Protection
NCT Node Coding Tables
NDT Node Data Type
NINT Nearest INTeger value
OCI Object Content Information
OCR Object Clock Reference
OD Object Descriptor
ODID Object Descriptor Identifier
OTB Object Time Base
PLL Phase Locked Loop
QoS Quality of Service
SAOL Structured Audio Orchestra Language
SASL Structured Audio Score Language
SDL Syntactic Description Language
SDM Systems Decoder Model
SL Synchronization Layer

ISO/IEC 14496-1:2001(E)

8 © ISO/IEC 2001 – All rights reserved

SL-Packet Synchronization Layer Packet
SPS SL-Packetized Stream
STB System Time Base
TTS Text-To-Speech
URL Universal Resource Locator
VOP Video Object Plane
VRML Virtual Reality Modeling Language

6 Conventions

For the purpose of unambiguously defining the syntax of the various bitstream components defined by the
normative parts of ISO/IEC 14496 a syntactic description language is used. This language allows the specification
of the mapping of the various parameters in a binary format as well as how they are placed in a serialized
bitstream. The definition of the language is provided in clause 14.

7 Systems Decoder Model

7.1 Introduction

The purpose of the systems decoder model (SDM) is to provide an abstract view of the behavior of a terminal
complying with ISO/IEC 14496. It may be used by the sender to predict how the receiving terminal will behave in
terms of buffer management and synchronization when decoding data received in the form of elementary streams.
The systems decoder model includes a timing model and a buffer model.

The systems decoder model specifies:

1. the interface for accessing demultiplexed data streams (DMIF Application Interface),

2. decoding buffers for coded data for each elementary stream,

3. the behavior of elementary stream decoders,

4. composition memory for decoded data from each decoder, and

5. the output behavior of composition memory towards the compositor.

These elements are depicted in Figure 2. Each elementary stream is attached to one single decoding buffer. More
than one elementary stream may be connected to a single decoder (e.g., in a decoder of a scaleable audio-visual
object).

Decoding
Buffer DB

1

Decoder

(encapsulates
Demultiplexer)

DMIF Appli-
cation Interface

Decoding
Buffer DBn

Decoding
Buffer DB

2 Decoder
Memory

2

Compositor

Elementary Stream Interface

Decoding
Buffer DB

3

Memory
1

Composition

Composition

Memory
n

Composition
Decoder

1

2

n

Figure 2 - Systems Decoder Model

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 9

7.2 Concepts of the systems decoder model

This subclause defines the concepts necessary for the specification of the timing and buffering model. The
sequence of definitions corresponds to a walk from the left to the right side of the SDM illustration in Figure 2.

7.2.1 DMIF Application Interface (DAI)

For the purposes of the systems decoder model, the DMIF Application Interface encapsulates the demultiplexer
and provides access to streaming data that is consumed by the decoding buffers. The streaming data received
through the DAI consists of SL-packetized streams. The required properties of the DAI are described in 10.3. The
DAI semantics are fully specified in ISO/IEC 14496-6.

7.2.2 SL-Packetized Stream (SPS)

An SL-packetized stream consists of a sequence of packets, according to the syntax and semantics specified in
10.2, that encapsulate a single elementary stream. The packets contain elementary stream data partitioned in
access units as well as side information, e.g., for timing and access unit labeling. SPS data payload enters the
decoding buffers, i.e., the side information is removed at the input to the decoding buffers.

7.2.3 Access Units (AU)

Elementary stream data is partitioned into access units. The delineation of an access unit is completely determined
by the entity that generates the elementary stream (e.g., the compression layer). An access unit is the smallest
data entity to which timing information can be attributed. Two access units from the same elementary stream shall
never refer to the same decoding or composition time. Any further partitioning of the data in an elementary stream
is not visible for the purposes of the systems decoder model. Access units are conveyed by SL-packetized streams
and are received by the decoding buffers. The decoders consume access units with the necessary side information
(e.g., time stamps) from the decoding buffers.

NOTE — An ISO/IEC 14496-1 compliant terminal implementation is not required to process each incoming access unit as a
whole. It is furthermore possible to split an access unit into several fragments for transmission as specified in clause 10. This
allows the sending terminal to dispatch partial AUs immediately as they are generated during the encoding process. Such partial
AUs may have significance for improved error resilience.

7.2.4 Decoding Buffer (DB)

The decoding buffer is a buffer at the input of an elementary stream decoder in the receiving terminal that receives
and stores access units. The systems buffer model enables the sending terminal to monitor the decoding buffer
resources that are used during a presentation.

7.2.5 Elementary Streams (ES)

Streaming data received at the output of a decoding buffer, independent of its content, is considered as an
elementary stream for the purpose of ISO/IEC 14496. The elementary streams are produced and consumed by the
compression layer entities (encoders and decoders, respectively). ISO/IEC 14496 assumes that the integrity of an
elementary stream is preserved from end to end.

7.2.6 Elementary Stream Interface (ESI)

The elementary stream interface is a concept that models the exchange of elementary stream data and associated
control information between the compression layer and the sync layer. It is explained further in Annex L.

7.2.7 Decoder

For the purposes of this model, the decoder extracts access units from the decoding buffer at precisely defined
points in time and places composition units, the results of the decoding processes, in the composition memory. A
decoder may be attached to several decoding buffers.

7.2.8 Composition Units (CU)

Decoders consume access units and produce composition units. An access unit corresponds to an integer number
of composition units. Composition units reside in composition memory.

ISO/IEC 14496-1:2001(E)

10 © ISO/IEC 2001 – All rights reserved

7.2.9 Composition Memory (CM)

The composition memory is a random access memory that contains composition units. The size of this memory is
not normatively specified.

7.2.10 Compositor

The compositor takes composition units out of the composition memory and either consumes them (e.g. composes
and presents them, in the case of audio-visual data) or skips them. The compositor is not specified in ISO/IEC
14496-1, as the details of this operation are not relevant within the context of the systems decoder model.
Subclause 7.3.5 defines which composition units are available to the compositor at any instant of time.

7.3 Timing Model Specification

The timing model relies on clock references and time stamps to synchronize audio-visual data conveyed by one or
more elementary streams. The concept of a clock with its associated clock references is used to convey the notion
of time to a receiving terminal. Time stamps are used to indicate the precise time instants at which the receiving
terminal consumes the access units in the decoding buffers or may access the composition units resident in the
composition memory. The time stamps are therefore associated with access units and composition units. The
semantics of the timing model are defined in the subsequent clauses. The syntax for conveying timing information
is specified in 10.2.

NOTE — This timing model is designed for rate-controlled (“push”) applications.

7.3.1 System Time Base (STB)

The system time base (STB) defines the terminal’s notion of time. The resolution of the STB is implementation
dependent. All actions of the terminal are scheduled according to this time base for the purpose of this timing
model.

NOTE — This does not imply that all terminals compliant with ISO/IEC 14496 operate on one single STB.

7.3.2 Object Time Base (OTB)

The object time base (OTB) defines the notion of time for a given data stream. The resolution of this OTB can be
selected as required by the application or as defined by a profile. All time stamps that the sending terminal inserts
in a coded data stream refer to this time base. The OTB of a data stream is known at the receiving terminal either
by means of object clock reference information inserted in the stream or by an indication that its time base is slaved
to a time base conveyed with another stream, as specified in 10.2.3.

NOTE 1 — Elementary streams may be created for the sole purpose of conveying time base information.

NOTE 2 — The receiving terminal’s system time base need not be locked to any of the available object time bases.

7.3.3 Object Clock Reference (OCR)

A special kind of time stamps, object clock references (OCR), are used to convey the OTB to the elementary
stream decoder. The value of the OCR corresponds to the value of the OTB at the time the sending terminal
generates the object clock reference time stamp. OCR time stamps are placed in the SL packet header as
described in 10.2.4. The receiving terminal shall evaluate the OCR when its last bit is extracted at the input of the
decoding buffer.

7.3.4 Decoding Time Stamp (DTS)

Each access unit has an associated nominal decoding time, the time at which it must be available in the decoding
buffer for decoding. The AU is not guaranteed to be available in the decoding buffer either before or after this time.
Decoding is assumed to occur instantaneously when the instant of time indicated by the DTS is reached.

This point in time can be implicitly specified if the (constant) temporal distance between successive access units is
indicated in the setup of the elementary stream (see 10.2.3). Otherwise a decoding time stamp (DTS) whose
syntax is defined in 10.2.4 conveys this point in time.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 11

A decoding time stamp shall only be conveyed for an access unit that carries a composition time stamp as well,
and only if the DTS and CTS values are different. Presence of both time stamps in an AU may indicate a reversal
between coding order and composition order.

7.3.5 Composition Time Stamp (CTS)

Each composition unit has an associated nominal composition time, the time at which it must be available in the
composition memory for composition. The CU is not guaranteed to be available in the composition memory for
composition before this time. Since the SDM assumes an instantaneous decoding process, the CU is available to
the decoder, at that instant in time corresponding to the DTS of the corresponding AU, for further use (e.g. in
prediction processes).

This instant in time is implicitly known, if the (constant) temporal distance between successive composition units is
indicated in the setup of the elementary stream. Otherwise a composition time stamp (CTS) whose syntax is
defined in 10.2.4 conveys this instant in time.

The current CU is instantaneously accessible by the compositor anytime between its composition time and the
composition time of the subsequent CU. If a subsequent CU does not exist, the current CU becomes unavailable at
the end of the lifetime of its elementary stream (i.e., when its elementary stream descriptor is removed).

7.3.6 Occurrence and Precision of Timing Information in Elementary Streams

The frequency at which DTS, CTS and OCR values are to be inserted in the bitstream as well as the precision, jitter
and drift are application and profile dependent. Some usage considerations can be found in 10.2.7.

7.3.7 Time Stamps for Dependent Elementary Streams

An audio-visual object may refer to multiple elementary streams that constitute a scaleable content representation
(see 8.7.1.5). Such a set of elementary streams shall adhere to a single object time base. Temporally co-located
access units for such elementary streams are then identified by identical DTS or CTS values.

EXAMPLE

The example in Figure 3 illustrates the arrival of two access units at the Systems Decoder. Due to the constant delay
assumption of the model (see 7.4.2 below), the arrival times correspond to the instants in time when the sending terminal has
sent the respective AUs. The sending terminal must select this instant in time so that the Decoding Buffer at the receiving
terminal never overflows or underflows. At the receiving terminal, an AU is instantaneously decoded, at that instant in time
corresponding to its DTS, and the resulting CU(s) are placed in the composition memory and remain there until the subsequent
CU(s) arrive or the associated object descriptor is removed.

Composition
Memory

Decoding
Buffer

AU0

AU1

Arrival(AU0)
Arrival(AU1)

DTS (AU0)
DTS (AU1)

CTS (CU0) CTS (CU1)
= available for

composition

...................

...................CU0

CU1

Figure 3 - Composition unit availability

ISO/IEC 14496-1:2001(E)

12 © ISO/IEC 2001 – All rights reserved

7.4 Buffer Model Specification

7.4.1 Elementary Decoder Model

Figure 4 indicates one branch of the systems decoder model (Figure 2). This simplified model is used to specify the
buffer model. It treats each elementary stream separately and therefore, associates a composition memory with
only one decoder. The legend following Figure 4 elaborates on the symbols used in this figure.

CUAUDecoding
Buffer DB Decoder

Composition
Memory CM

Compositor

Figure 4 - Flow diagram for the systems decoder model

Legend:

DB Decoding buffer for the elementary stream.
CM Composition memory for the elementary stream.
AU The current access unit input to the decoder.
CU The current composition unit input to the composition memory. CU results from decoding AU. There

may be several composition units resulting from decoding one access unit.

7.4.2 Assumptions

7.4.2.1 Constant end-to-end delay

Data transmitted in real time have a timing model in which the end-to-end delay from the encoder input at the
sending terminal, to the decoder output at the receiving terminal, is constant. This delay is equal to the sum of the
delay due to the encoding process, subsequent buffering, multiplexing at the sending terminal, the delay due to the
delivery layers and the delay due to the demultiplexing, decoder buffering and decoding processes at the receiving
terminal.

Note that the receiving terminal is free to add a temporal offset (delay) to the absolute values of all time stamps if it
can cope with the additional buffering needed. However, the temporal difference between two time stamps (that
determines the temporal distance between the associated AUs or CUs) has to be preserved for real-time
performance.

NOTE — Two elementary streams that adhere to different time bases may be synchronized tightly in case of constant end-to-
end delay as assumed by this model. If an application cannot implement this model assumption, such tight synchronization may
not be achievable. Tolerances for the constant end-to-end delay assumption need to be defined through the profile and level
mechanism.

7.4.2.2 Demultiplexer

The end-to-end delay between multiplexer output, at the sending terminal, and demultiplexer input, at the receiving
terminal, is constant.

7.4.2.3 Decoding Buffer

The needed decoding buffer size is known by the sending terminal and conveyed to the receiving terminal as
specified in 8.6.6.

The size of the decoding buffer is measured in bytes.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 13

The decoding buffer is filled at the rate given by the maximum bit rate for this elementary stream while data is
available and with a zero rate otherwise. The maximum bit rate is conveyed by the sending terminal as a part of the
decoder configuration information during the set up phase for each elementary stream (see 8.6.6).

Information is received from the DAI in the form of SL packets. The SL packet headers are removed at the input to
the decoding buffers.

7.4.2.4 Decoder

The decoding processes are assumed to be instantaneous for the purposes of the systems decoder model.

7.4.2.5 Composition Memory

The mapping of an AU to one or more CUs (by the decoder) is known implicitly at both the sending and the
receiving terminals.

7.4.2.6 Compositor

The composition processes are assumed to be instantaneous for the purposes of the systems decoder model.

7.4.3 Managing Buffers: A Walkthrough

In this example, we assume that the model is used in a “push” scenario. In applications where non-real time
content is to be delivered, flow control by suitable signaling may be established to request access units at the time
they are needed at the receiving terminal. The mechanisms for doing so are application-dependent, and are not
specified in ISO/IEC 14496.

The behaviors of the various elements in the SDM are modeled as follows:

� The sending terminal signals the required decoding buffer resources to the receiving terminal before starting
the delivery. This is done as specified in 8.6.6 either explicitly, by requesting the decoding buffer sizes for
individual elementary streams, or implicitly, by indicating a profile (see clause 15). The decoding buffer size is
measured in bytes.

� The sending terminal models the behavior of the decoding buffers by making the following assumptions :

� Each decoding buffer is filled at the maximum bitrate specified for its associated elementary stream as long as
data is available.

� At the instant of time corresponding to its DTS, an AU is instantaneously decoded and removed from the
decoding buffer.

� At the instant of time corresponding to its DTS, a known amount of CUs corresponding to the just decoded AU
are put in the composition memory.

The current CU is available to the compositor between instants of time corresponding to the CTS of the current CU
and the CTS of the subsequent CU. If a subsequent CU does not exist, the current CU becomes unavailable at the
end of lifetime of its data stream.

Using these assumptions on the buffer model, the sending terminal may freely use the space in the decoding
buffers. For example, it may deliver data for several AUs of a stream, for non real time usage, to the receiving
terminal, and pre-store them in the DB long before they have to be decoded (assuming sufficient space is
available). Subsequently, the full delivery bandwidth may be used to transfer data of a real time stream just in time.
The composition memory may be used, for example, as a reordering buffer. In the case of visual decoding, it may
contain the decoded P-frames needed by a video decoder for the decoding of intermediate B-frames, before the
arrival of the CTS of the latest P-frame.

ISO/IEC 14496-1:2001(E)

14 © ISO/IEC 2001 – All rights reserved

8 Object Description Framework

8.1 Introduction

The scene description (specified in clause 9) and the elementary streams that convey streaming data are the basic
building blocks of the architecture of ISO/IEC 14496-1. Elementary streams carry data for audio or visual objects as
well as for the scene description itself. The object description framework provides the link between elementary
streams and the scene description. The scene description declares the spatio-temporal relationship of audio-visual
objects, while the object description framework specifies the elementary stream resources that provide the time-
varying data for the scene. This indirection facilitates independent changes to the scene structure, the properties of
the elementary streams (e.g. its encoding) and their delivery.

The object description framework consists of a set of descriptors that allows to identify, describe and properly
associate elementary streams to each other and to audio-visual objects used in the scene description. Numeric
identifiers, called ObjectDescriptorIDs, associate object descriptors to appropriate nodes in the scene description.
Object descriptors are themselves conveyed in elementary streams to allow time stamped changes to the available
set of object descriptors to be made.

Each object descriptor is itself a collection of descriptors that describe one or more elementary streams that are
associated to a single node and that usually relate to a single audio or visual object. This allows to indicate a
scaleable content representation as well as multiple alternative streams that convey the same content, e.g., in
multiple qualities or different languages.

An elementary stream descriptor within an object descriptor identifies a single elementary stream with a numeric
identifier, called ES_ID. Each elementary stream descriptor contains the information necessary to initiate and
configure the decoding process for the elementary stream, as well as intellectual property identification. Optionally,
additional information may be associated to a single elementary stream, most notably quality of service
requirements for its transmission or a language indication. Both, object descriptors and elementary stream
descriptors may use URLs to point to remote object descriptors or a remote elementary stream source,
respectively.

The object description framework provides the hooks to implement intellectual property management and
protection (IPMP) systems. IPMP information is conveyed both through IPMP descriptors as part of the object
descriptor stream and through IPMP streams that carry time variant IPMP information. The structure of IPMP
descriptors and IPMP streams is specified in this clause while their internal syntax and semantics and, hence, the
operation of the IPMP system is outside the scope of ISO/IEC 14496.

Object content information allows the association of metadata with a whole presentation or with individual object
descriptors or with elementary stream descriptors. A set of OCI descriptors is defined that either form an integral
part of an object descriptor or elementary stream descriptor or are conveyed by means of a proper OCI stream that
allows the conveyance of time variant object content information.

Access to ISO/IEC 14496 content is gained through an initial object descriptor that needs to be made available
through means not defined in ISO/IEC 14496. The initial object descriptor in the simplest case points to the scene
description stream and the corresponding object descriptor stream. The access scenario is outlined in 8.7.3.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 15

100

Visual Stream (e.g. temporal enhancement)

Visual Stream (e.g. base layer)

Scene Description Stream

Object Descriptor Stream

e.g. Movie
Texture

Scene Description

ObjectDescriptorID

ES_ID

ES_ID

ES_ID

ES_ID

ObjectDescriptor

:

ES_Descriptor

ES_Descriptor

initial
ObjectDescriptor

:

ES_Descriptor

ES_Descriptor

Object
Descriptor

Object
Descriptor

ObjectDescriptorUpdate

ES_D
ES_D

ES_D

... ...

......

BIFS Command (Replace Scene)

e.g. Audio
Source

Audio Stream

Figure 5 - Object descriptors linking scene description to elementary streams

The remainder of this clause is structured in the following way:

� Subclause 8.2 specifies the data structures on which the object descriptor framework is based.

� Subclause 8.3 specifies the concepts of the IPMP elements in the object description framework.

� Subclause 8.4 specifies the object content information elements in the object description framework.

� Subclause 8.5 specifies the object descriptor stream and the syntax and semantics of the command set that
allows the update or removal of object descriptor components.

� Subclause 8.6 specifies the syntax and semantics of the object descriptor and its component descriptors.

� Subclause 8.7 specifies rules for object descriptor usage as well as the procedure to access content through
object descriptors.

� Subclause 8.8 specifies the usage of the IPMP system interface.

8.2 Common data structures

8.2.1 Overview

The commands and descriptors defined in this subclause constitute self-describing classes, identified by unique
class tags. Each class encodes explicitly its size in bytes. This facilitates future compatible extensions of the
commands and descriptors. A class may be expanded with additional syntax elements that are ignored by an OD
decoder that expects an earlier revision of a class. In addition, anywhere in a syntax where a set of tagged classes
is expected it is permissible to intersperse expandable classes with unknown class tag values. These classes shall
be skipped, using the encoded size information.

The remainder of this clause defines the syntax and semantics of the command and descriptor classes. Some
commands and descriptors contain themselves a set of component descriptors. They are said to aggregate a set of
component descriptors.

ISO/IEC 14496-1:2001(E)

16 © ISO/IEC 2001 – All rights reserved

Table 1 - List of Class Tags for Descriptors

Tag value Tag name

0x00 Forbidden
0x01 ObjectDescrTag
0x02 InitialObjectDescrTag
0x03 ES_DescrTag
0x04 DecoderConfigDescrTag
0x05 DecSpecificInfoTag
0x06 SLConfigDescrTag
0x07 ContentIdentDescrTag
0x08 SupplContentIdentDescrTag
0x09 IPI_DescrPointerTag
0x0A IPMP_DescrPointerTag
0x0B IPMP_DescrTag
0x0C QoS_DescrTag
0x0D RegistrationDescrTag
0x0E ES_ID_IncTag
0x0F ES_ID_RefTag
0x10 MP4_IOD_Tag
0x11 MP4_OD_Tag
0x12 IPL_DescrPointerRefTag
0x13 ExtendedProfileLevelDescrTag
0x14 profileLevelIndicationIndexDescrTag
0x15-0x3F Reserved for ISO use
0x40 ContentClassificationDescrTag
0x41 KeyWordDescrTag
0x42 RatingDescrTag
0x43 LanguageDescrTag
0x44 ShortTextualDescrTag
0x45 ExpandedTextualDescrTag
0x46 ContentCreatorNameDescrTag
0x47 ContentCreationDateDescrTag
0x48 OCICreatorNameDescrTag
0x49 OCICreationDateDescrTag
0x4A SmpteCameraPositionDescrTag
0x4B-0x5F Reserved for ISO use (OCI extensions)
0x60-0xBF Reserved for ISO use
0xC0-0xFE User private
0xFF Forbidden

8.2.2 BaseDescriptor

8.2.2.1 Syntax

abstract aligned(8) expandable(228-1) class BaseDescriptor : bit(8) tag=0 {
// empty. To be filled by classes extending this class.

}

8.2.2.2 Semantics

This class is an abstract base class that is extended by the descriptor classes specified in 8.6. Each descriptor
constitutes a self-describing class, identified by a unique class tag. This abstract base class establishes a common
name space for the class tags of these descriptors. The values of the class tags are defined in Table 1. As an
expandable class the size of each class instance in bytes is encoded and accessible through the instance variable
sizeOfInstance (see 14.3.3).

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 17

A class that allows the aggregation of classes of type BaseDescriptor may actually aggregate any of the classes
that extend BaseDescriptor.

NOTE — User private descriptors may have an internal structure, for example to identify the country or manufacturer that uses a
specific descriptor. The tags and semantics for such user private descriptors may be managed by a registration authority if
required.

The following additional symbolic names are introduced:

ExtDescrTagStartRange = 0x80
ExtDescrTagEndRange = 0xFE
OCIDescrTagStartRange = 0x40
OCIDescrTagEndRange = 0x5F

8.2.3 BaseCommand

8.2.3.1 Syntax

abstract aligned(8) expandable(228-1) class BaseCommand : bit(8) tag=0 {
// empty. To be filled by classes extending this class.

}

8.2.3.2 Semantics

This class is an abstract base class that is extended by the command classes specified in 8.5.5. Each command
constitutes a self-describing class, identified by a unique class tag. This abstract base class establishes a common
name space for the class tags of these commands. The values of the class tags are defined in Table 2. As an
expandable class the size of each class instance in bytes is encoded and accessible through the instance variable
sizeOfInstance (see 14.3.3).

Table 2 - List of Class Tags for Commands

Tag value Tag name

0x00 forbidden
0x01 ObjectDescrUpdateTag
0x02 ObjectDescrRemoveTag
0x03 ES_DescrUpdateTag
0x04 ES_DescrRemoveTag
0x05 IPMP_DescrUpdateTag
0x06 IPMP_DescrRemoveTag
0x07 ES_DescrRemoveRefTag
0x08-0xBF Reserved for ISO (command tags)
0xC0-0xFE User private
0xFF forbidden

A class that allows the aggregation of classes of type BaseCommand may actually aggregate any of the classes
that extend BaseCommand.

NOTE — User private commands may have an internal structure, for example to identify the country or manufacturer that uses a
specific command. The tags and semantics for such user private command may be managed by a registration authority if
required.

8.3 Intellectual Property Management and Protection (IPMP)

8.3.1 Overview

The intellectual property management and protection (IPMP) framework for ISO/IEC 14496 content consists of a
normative interface that permits an ISO/IEC 14496 terminal to host one or more IPMP Systems. An IPMP System
is a non-normative component that provides intellectual property management and protection functions for the
terminal.

ISO/IEC 14496-1:2001(E)

18 © ISO/IEC 2001 – All rights reserved

The IPMP interface consists of IPMP elementary streams and IPMP descriptors. The normative structure of IPMP
elementary streams is specified in this subclause. IPMP descriptors are carried as part of an object descriptor
stream and are specified in 8.6.14. The IPMP interface allows applications (or derivative application standards) to
build specialized IPMP Systems. Alternatively, an application may choose not to use an IPMP System, thereby
offering no management and protection features. The IPMP System uses the information carried by the IPMP
elementary streams and descriptors to make protected ISO/IEC 14496 content available to the terminal. The
detailed semantics and decoding process of the IPMP System are not in the scope of ISO/IEC 14496. The usage of
the IPMP System Interface, however, is explained in 8.8.

8.3.2 IPMP Streams

8.3.2.1 Structure of the IPMP Stream

The IPMP stream is an elementary stream that passes time-varying information to one or more IPMP Systems.
This is accomplished by periodically sending a sequence of IPMP messages along with the content at a period
determined by the IPMP System(s).

8.3.2.2 Access Unit Definition

An IPMP access unit consists of one or more IPMP messages, as defined in 8.3.2.5. All IPMP messages that are to
be processed at the same instant in time shall constitute a single access unit. Access units in IPMP streams shall
be labeled and time-stamped by suitable means. This shall be done via the related flags and the composition time
stamps, respectively, in the SL packet header (see 10.2.4). The composition time indicates the point in time at
which an IPMP access unit becomes valid, i.e., when the embedded IPMP messages shall be evaluated. Decoding
and composition time for an IPMP access unit shall always have the same value.

An access unit does not necessarily convey or update the complete set of IPMP messages that are currently
required. In that case it just modifies the persistent state of the IPMP system. However, if an access unit conveys
the complete set of IPMP messages required at a given point in time it shall set the randomAccessPointFlag in
the SL packet header to ‘1’ for this access unit. Otherwise, the randomAccessPointFlag shall be set to ‘0’.

NOTE — An SL packet with randomAccessPointFlag=1 but with no IPMP messages in it indicates that at the current time
instant no IPMP messages are required for operation.

8.3.2.3 Time Base for IPMP Streams

The time base associated to an IPMP stream shall be indicated by suitable means. This shall be done by means of
object clock reference time stamps in the SL packet headers (see 10.2.4) for this stream or by indicating the
elementary stream from which this IPMP stream inherits the time base (see 10.2.3). All time stamps in the SL-
packetized IPMP stream refer to this time base.

An IPMP stream shall adhere to the same time base as the one or more content elementary streams to which it is
associated (see 8.8). Consequently, an IPMP stream may not be associated to multiple content elementary
streams that themselves adhere to different time bases.

8.3.2.4 IPMP Decoder Configuration

8.3.2.4.1 Syntax

class IPMPDecoderConfiguration extends DecoderSpecificInfo : bit(8) tag=DecSpecificInfoTag {
// IPMP system specific configuration information

}

8.3.2.4.2 Semantics

An IPMP system may require information to initialize its operation. This information shall be conveyed by extending
the decoderSpecificInfo class as specified in 8.6.7. If utilized, IPMPDecoderConfiguration shall be
conveyed in the ES_Descriptor declaring the IPMP stream.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 19

8.3.2.5 IPMP message syntax and semantics

8.3.2.5.1 Syntax

abstract aligned(8) expandable(228-1) class IPMP_Message
{

bit(16) IPMPS_Type;
if (IPMPS_Type == 0) {

bit(8) URLString[sizeOfInstance-2];
} else {

bit(8) IPMP_data[sizeOfInstance-2];
}

}

8.3.2.5.2 Semantics

The IPMP_Message conveys control information for an IPMP System.

IPMPS_Type - the type of the IPMP System. A zero value does not correspond to an IPMP System, but shall
indicate the presence of a URL. A non-zero value shall indicate a specific IPMP System Type. The values 0x0001-
0x2000 are reserved for future ISO use. A Registration Authority, as designated by ISO, shall assign a unique valid
value for this field for each specific IPMP System Type. The IPMPS_Type is used, for example, for distinguishing
between IPMP systems from different companies.

URLString[] - contains a UTF-8 (ISO/IEC 10646-1) encoded URL that shall point to the location of a remote
IPMP_Message. The IPMPS_Type of this IPMP_Message can be 0 or not. If 0, another URL is referenced.
This process continues until an IPMP_Message with a non-zero IPMPS_Type is accessed.

IPMP_data - opaque data to control the IPMP System.

8.4 Object Content Information (OCI)

8.4.1 Overview

Audio-visual objects that are associated with elementary stream data through an object descriptor may have
additional object content information attached to them. For this purpose, a set of OCI descriptors is defined in
8.6.18. OCI descriptors may directly be included as part of an object descriptor or ES_Descriptor as defined in
8.6.

In order to accommodate time variant OCI that is separable from the object descriptor stream, OCI descriptors may
as well be conveyed in an OCI stream. An OCI stream is referred to through an ES_Descriptor, with the
streamType field set to OCI_Stream. How OCI streams may be aggregated to object descriptors is defined in
8.7.1.3. The structure of the OCI stream is defined in this subclause.

8.4.2 OCI Streams

8.4.2.1 Structure of the OCI Stream

The OCI stream is an elementary stream that conveys time-varying object content information, termed OCI events.
Each OCI event consists of a number of OCI descriptors.

8.4.2.2 Access Unit Definition

An OCI access unit consists of one or more OCI_Events, as described in 8.4.2.5. Access units in OCI elementary
streams shall be labelled and time stamped by suitable means. This shall be done by means of the related flags
and the composition time stamp, respectively, in the SL packet header (see 10.2.4). The composition time indicates
the point in time when an OCI access unit becomes valid, i.e., when the embedded OCI events shall be added to
the list of events. Decoding and composition time for an OCI access unit shall always have the same value.

An access unit may or may not convey or update the complete set of OCI events that are currently valid. In the
latter case, it just modifies the persistent state of the OCI decoder. However, if an access unit conveys the
complete set of OCI events valid at a given point in time it shall set the randomAccessPointFlag in the SL
packet header to ‘1’ for this access unit. Otherwise, the randomAccessPointFlag shall be set to ‘0’.

ISO/IEC 14496-1:2001(E)

20 © ISO/IEC 2001 – All rights reserved

NOTE — An SL packet with randomAccessPointFlag=1 but with no OCI events in it indicates that at the current time instant
no valid OCI events exist.

8.4.2.3 Time Base for OCI Streams

The time base associated with an OCI stream shall be indicated by suitable means. This shall be done by the use
of object clock reference time stamps in the SL packet headers (see 10.2.4) for this stream or by indicating the
elementary stream from which this OCI stream inherits the time base (see 10.2.3). All time stamps in the SL-
packetized OCI stream refer to this time base.

8.4.2.4 OCI Decoder Configuration

8.4.2.4.1 Syntax

class OCIDecoderConfiguration extends DecoderSpecificInfo : bit(8) tag=DecSpecificInfoTag {
const bit(8) versionLabel = 0x01;

}

8.4.2.4.2 Semantics

This information is needed to initialize operation of the OCI decoder. It shall be conveyed by extending the
decoderSpecificInfo class as specified in 8.6.7. OCIDecoderConfiguration shall be conveyed in the
ES_Descriptor declaring the OCI stream.

versionLabel – indicates the version of OCI specification used on the corresponding OCI data stream. Only the
value 0x01 is allowed; all the other values are reserved.

8.4.2.5 OCI_Events syntax and semantics

8.4.2.5.1 Syntax

abstract aligned(8) expandable(228-1) class OCI_Event {
bit(15) eventID;
bit(1) absoluteTimeFlag;
bit(32) startingTime;
bit(32) duration;
OCI_Descriptor OCI_Descr[1 .. 255];

}

8.4.2.5.2 Semantics

eventID – contains the identification number of the described event that is unique within the scope of this OCI
stream.

absoluteTimeFlag – indicates the time base for startingTime as described below.

startingTime – indicates the starting time of the event in hours, minutes, seconds and hundredth of seconds.
The format is 8 digits, the first 6 digits expressing hours, minutes and seconds with 4 bits each in binary coded
decimal and the last two expressing hundredth of seconds in hexadecimal using 8 bits.

EXAMPLE � 02:36:45:89 is coded as “0x023645” concatenated with “0b0101.1001” (89 in binary), resulting to “0x02364559”.

If absoluteTimeFlag is set to zero, startingTime is relative to the object time base of the corresponding
object. In that case it is the responsibility of the application to ensure that this object time base is conveyed such
that startingTime can be identified unambiguously (see 10.2.7). If absoluteTimeFlag is set to one,
startingTime is expressed as an absolute value, refering to wall clock time.

duration – contains the duration of the corresponding object in hours, minutes, seconds and hundredth of
seconds. The format is 8 digits, the first 6 digits expressing hours, minutes and seconds with 4 bits each in binary
coded decimal and the last two expressing hundredth of seconds in hexadecimal using 8 bits.

OCI_Descr[] – an array of one up to 255 OCI_Descriptor classes as specified in 8.6.18.2.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 21

8.5 Object Descriptor Stream

8.5.1 Structure of the Object Descriptor Stream

Similar to the scene description, object descriptors are transported in a dedicated elementary stream, termed object
descriptor stream. Within such a stream, it is possible to dynamically convey, update and remove complete object
descriptors, or their component descriptors, the ES_Descriptors, and IPMP descriptors. The update mechanism
allows, for example, to advertise new elementary streams for an audio-visual object as they become available, or to
remove references to streams that are no longer available. Updates are time stamped to indicate the instant in time
they take effect.

This subclause specifies the structure of the object descriptor elementary stream including the syntax and
semantics of its constituent elements, the object descriptor commands (OD commands).

8.5.2 Access Unit Definition

An OD access unit consists of one or more OD commands, as described in 8.5.5. All OD commands that are to be
processed at the same instant in time shall constitute a single access unit. Access units in object descriptor
elementary streams shall be labelled and time stamped by suitable means. This shall be done by means of the
related flags and the composition time stamp, respectively, in the SL packet header (see 10.2.4). The composition
time indicates the point in time when an OD access unit becomes valid, i.e., when the embedded OD commands
shall be executed. Decoding and composition time for an OD access unit shall always have the same value.

An access unit may not convey or update the complete set of object descriptors that are currently required. In that
case it just modifies the persistent state of the object descriptor decoder. However, if an access unit conveys the
complete set of object descriptors required at a given point in time it shall set the randomAccessPointFlag in
the SL packet header to ‘1’ for this access unit. Otherwise, the randomAccessPointFlag shall be set to ‘0’.

NOTE — An SL packet with randomAccessPointFlag=1 but with no OD commands in it indicates that at the current time
instant no valid object descriptors exist.

8.5.3 Time Base for Object Descriptor Streams

The time base associated to an object descriptor stream shall be indicated by suitable means. This shall be done
by means of object clock reference time stamps in the SL packet headers (see 10.2.4) for this stream or by
indicating the elementary stream from which this object descriptor stream inherits the time base (see 10.2.3). All
time stamps in the SL-packetized object descriptor stream refer to this time base.

8.5.4 OD Decoder Configuration

The object descriptor decoder does not require additional configuration information.

8.5.5 OD Command Syntax and Semantics

8.5.5.1 Overview

Object descriptors and their components as defined in 8.6 shall always be conveyed as part of one of the OD
commands specified in this subclause. The commands describe the action to be taken on the components
conveyed with the command, specifically ‘update’ or ‘remove’. Each command affects one or more object
descriptors, ES_Descriptors or IPMP descriptors.

8.5.5.2 ObjectDescriptorUpdate

8.5.5.2.1 Syntax

class ObjectDescriptorUpdate extends BaseCommand : bit(8) tag=ObjectDescrUpdateTag {
ObjectDescriptorBase OD[1 .. 255];

}

ISO/IEC 14496-1:2001(E)

22 © ISO/IEC 2001 – All rights reserved

8.5.5.2.2 Semantics

The ObjectDescriptorUpdate class conveys a list of new or updated object descriptors. If an object descriptor
is updated, the streams refered to by the old object descriptor shall be closed and the streams refered to by the
new object descriptor may be accessed by the content access procedure (see 8.7.3.6.2).

NOTE - The ES_DescriptorUpdate or ES_DescriptorRemove commands may be used to add or remove individual
ES_Descriptors of an existing object descriptor.

OD[] – an array of object descriptors as defined in 8.6.3 and 8.6.4. The array shall have any number of one up to
255 elements.

8.5.5.3 ObjectDescriptorRemove

8.5.5.3.1 Syntax

class ObjectDescriptorRemove extends BaseCommand : bit(8) tag=ObjectDescrRemoveTag {
bit(10) objectDescriptorId[(sizeOfInstance*8)/10];

}

8.5.5.3.2 Semantics

The ObjectDescriptorRemove class renders unavailable a set of object descriptors. The BIFS nodes
associated to these object descriptors shall have no reference any more to the elementary streams that have been
listed in the removed object descriptors. An objectDescriptorID that does not refer to a valid object descriptor is
ignored.

NOTE — It is possible that a scene description node references an OD_ID which does not currently have an associated OD.

ObjectDescriptorId[] – an array of ObjectDescriptorIDs that indicates the object descriptors that are
removed.

8.5.5.4 ES_DescriptorUpdate

8.5.5.4.1 Syntax

class ES_DescriptorUpdate extends BaseCommand : bit(8) tag=ES_DescrUpdateTag {
bit(10) objectDescriptorId;
ES_Descriptor esDescr[1 .. 255];

}

8.5.5.4.2 Semantics

The ES_DescriptorUpdate class conveys a list of new ES_Descriptors for the object descriptor labeled
objectDescriptorID. ES_Descriptors with ES_IDs that have already been received within the same name
scope shall be ignored.

To update the characterstics of an elementary stream, it is required that its original ES_Descriptor be removed and
the changed ES_Descriptor be conveyed.

When an IPMP stream is added, the affected elementary streams, as defined in 8.8.2, shall be processed under
the new IPMP conditions starting at the point in time that this ES_DescriptorUpdate command becomes valid (see
8.5.2).

ES_DescriptorUpdate shall not be applied on object descriptors that have set URL_Flag to '1' (see 8.6.3).

An elementary stream identified with a given ES_ID may be attached to more than one object descriptor. All
corresponding ES_Descriptors refering to this ES_ID that are conveyed through either
ES_DescriptorUpdate or ObjectDescriptorUpdate commands shall have identical content.

objectDescriptorID - identifies the object descriptor for which ES_Descriptors are updated. If the
objectDescriptorID does not refer to any valid object descriptor, then this command is ignored.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 23

esDescr[] – an array of ES_Descriptors as defined in 8.6.5. The array shall have any number of one up to
255 elements.

8.5.5.5 ES_DescriptorRemove

8.5.5.5.1 Syntax

class ES_DescriptorRemove extends BaseCommand : bit(8) tag=ES_DescrRemoveTag {
bit(10) objectDescriptorId;
aligned (8) bit(16) ES_ID[1..255];

}

8.5.5.5.2 Semantics

The ES_DescriptorRemove class removes the reference to an elementary stream from an object descriptor and
renders this stream unavailable for nodes referencing this object descriptor.

When an IPMP stream is removed, the affected elementary streams, as defined in 8.8.2, shall be processed under
the new IPMP conditions starting at the point in time that this ES_DescriptorRemove command becomes valid (see
8.5.2).

ES_DescriptorRemove shall not be applied on object descriptors that have set URL_Flag to '1' (see 8.6.3).

objectDescriptorID - identifies the object descriptor from which ES_Descriptors are removed. If the
objectDescriptorID does not refer to a valid object descriptor in the same scope, then this command is ignored.

ES_ID[] – an array of ES_IDs that labels the ES_Descriptors to be removed from objectDescriptorID.
If any of the ES_IDs do not refer to an ES_Descriptor currently referenced by the OD, then those ES_IDs are
ignored. The array shall have any number of one up to 255 elements.

8.5.5.6 IPMP_DescriptorUpdate

8.5.5.6.1 Syntax

class IPMP_DescriptorUpdate extends BaseCommand : bit(8) tag=IPMP_DescrUpdateTag {
IPMP_Descriptor ipmpDescr[1..255];

}

8.5.5.6.2 Semantics

The IPMP_DescriptorUpdate class conveys a list of new or updated IPMP_Descriptors. An
IPMP_Descriptor identified by an IPMP_DescriptorID that has already been received within the same
name scope shall be replaced by the new descriptor.

Updates to an IPMP_Descriptor shall be propagated at the time this IPMP_DescriptorUpdate becomes valid
(see 8.5.2) to all IPMP Systems that refer to this IPMP_Descriptor through an IPMP_DescriptorPointer
(see 8.6.13). The handling of the descriptors by the IPMP systems is not normative.

IPMP_Descriptors remain valid until they are replaced by another IPMP_DescriptorUpdate command or
removed.

ipmpDescr[] – an array of IPMP_Descriptor as specified in 8.6.14.

8.5.5.7 IPMP_DescriptorRemove

8.5.5.7.1 Syntax

class IPMP_DescriptorRemove extends BaseCommand : bit(8) tag=IPMP_DescrRemoveTag {
bit(8) IPMP_DescriptorID[1..255];

}

ISO/IEC 14496-1:2001(E)

24 © ISO/IEC 2001 – All rights reserved

8.5.5.7.2 Semantics

The IPMP_DescriptorRemove class conveys a list of IPMP_DescriptorsIDs that identify the
IPMP_Descriptors that shall be removed.

The removal of IPMP_Descriptors shall be notified to all IPMP systems at the time this IPMP_DescriptorRemove
becomes valid (see 8.5.2). The handling of the descriptors by the IPMP systems is not normative.

IPMP_DescriptorID[] - is a list of IPMP_DescriptorIDs.

8.6 Object Descriptor Components

8.6.1 Overview

Object descriptors contain various additional descriptors as their components, in order to describe individual
elementary streams and their properties. They shall always be conveyed as part of one of the OD commands
specified in the previous subclause. This subclause defines the syntax and semantics of object descriptors and
their component descriptors.

8.6.2 ObjectDescriptorBase

8.6.2.1 Syntax

abstract class ObjectDescriptorBase extends BaseDescriptor : bit(8)
tag=[ObjectDescrTag..InitialObjectDescrTag] {
// empty. To be filled by classes extending this class.
}

8.6.2.2 Semantics

This is an abstract base class for the different types of object descriptor classes defined subsequently. The term
“object descriptor” is used to generically refer to any such derived object descriptor class or instance thereof.

8.6.3 ObjectDescriptor

8.6.3.1 Syntax

class ObjectDescriptor extends ObjectDescriptorBase : bit(8) tag=ObjectDescrTag {
bit(10) ObjectDescriptorID;
bit(1) URL_Flag;
const bit(5) reserved=0b1111.1;
if (URL_Flag) {

bit(8) URLlength;
bit(8) URLstring[URLlength];

} else {
ES_Descriptor esDescr[1 .. 255];
OCI_Descriptor ociDescr[0 .. 255];
IPMP_DescriptorPointer ipmpDescrPtr[0 .. 255];

}
ExtensionDescriptor extDescr[0 .. 255];

}

8.6.3.2 Semantics

The ObjectDescriptor consists of three different parts.

The first part uniquely labels the object descriptor within its name scope (see 8.7.2.4) by means of an
objectDescriptorId. Nodes in the scene description use objectDescriptorID to refer to the related
object descriptor. An optional URLstring indicates that the actual object descriptor resides at a remote location.

The second part consists of a list of ES_Descriptors, each providing parameters for a single elementary as well
as an optional set of object content information descriptors and pointers to IPMP descriptors for the contents for
elementary stream content described in this object descriptor.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 25

The third part is a set of optional descriptors that support the inclusion of future extensions as well as the transport
of private data in a backward compatible way.

objectDescriptorId – This syntax element uniquely identifies the ObjectDescriptor within its name scope.
The value 0 is forbidden and the value 1023 is reserved.

URL_Flag – a flag that indicates the presence of a URLstring.

URLlength – the length of the subsequent URLstring in bytes.

URLstring[] – A string with a UTF-8 (ISO/IEC 10646-1) encoded URL that shall point to another
ObjectDescriptor. Only the content of this object descriptor shall be returned by the delivery entity upon access
to this URL. Within the current name scope, the new object descriptor shall be referenced by the
objectDescriptorId of the object descriptor carrying the URLstring. On name scopes see 8.7.2.4. Permissible
URLs may be constrained by profile and levels as well as by specific delivery layers.

esDescr[] – an array of ES_Descriptors as defined in 8.6.5. The array shall have any number of one up to
255 elements.

ociDescr[] – an array of OCI_Descriptors, as defined in 8.6.18.2, that relates to the audio-visual object(s)
described by this object descriptor. The array shall have any number of zero up to 255 elements.

ipmpDescrPtr[] – an array of IPMP_DescriptorPointer, as defined in 8.6.13, that points to the
IPMP_Descriptors related to the elementary stream(s) described by this object descriptor. The array shall have any
number of zero up to 255 elements.

extDescr[] – an array of ExtensionDescriptors as defined in 8.6.16. The array shall have any number of
zero up to 255 elements.

8.6.4 InitialObjectDescriptor

8.6.4.1 Syntax

class InitialObjectDescriptor extends ObjectDescriptorBase : bit(8) tag=InitialObjectDescrTag
{

bit(10) ObjectDescriptorID;
bit(1) URL_Flag;
bit(1) includeInlineProfileLevelFlag;
const bit(4) reserved=0b1111;
if (URL_Flag) {

bit(8) URLlength;
bit(8) URLstring[URLlength];

} else {
bit(8) ODProfileLevelIndication;
bit(8) sceneProfileLevelIndication;
bit(8) audioProfileLevelIndication;
bit(8) visualProfileLevelIndication;
bit(8) graphicsProfileLevelIndication;
ES_Descriptor esDescr[1 .. 255];
OCI_Descriptor ociDescr[0 .. 255];
IPMP_DescriptorPointer ipmpDescrPtr[0 .. 255];

}
ExtensionDescriptor extDescr[0 .. 255];

}

8.6.4.2 Semantics

The InitialObjectDescriptor is a variation of the ObjectDescriptor specified in the previous subclause
that allows to signal profile and level information for the content refered by it. It shall be used to gain initial access
to ISO/IEC 14496 content (see 8.7.3).

Profile and level information indicated in the InitialObjectDescriptor indicates the profile and level
supported by at least the first base layer stream (i.e. an elementary stream with a streamDependenceFlag set
to 0) in each object descriptor depending on this initial object descriptor.

ISO/IEC 14496-1:2001(E)

26 © ISO/IEC 2001 – All rights reserved

objectDescriptorId – This syntax element uniquely identifies the InitialObjectDescriptor within its
name scope (see 8.7.2.4). The value 0 is forbidden and the value 1023 is reserved.

URL_Flag – a flag that indicates the presence of a URLstring.

includeInlineProfileLevelFlag – a flag that, if set to one, indicates that the subsequent profile indications
take into account the resources needed to process any content that might be inlined.

URLlength – the length of the subsequent URLstring in bytes.

URLstring[] – A string with a UTF-8 (ISO/IEC 10646-1) encoded URL that shall point to another
InitialObjectDescriptor. Only the content of this object descriptor shall be returned by the delivery entity
upon access to this URL. Within the current name scope, the new object descriptor shall be referenced by the
objectDescriptorId of the object descriptor carrying the URLstring. On name scopes see 8.7.2.4. Permissible
URLs may be constrained by profile and levels as well as by specific delivery layers.

ODProfileLevelIndication – an indication as defined in Table 3 of the object descriptor profile and level
required to process the content associated with this InitialObjectDescriptor.

Table 3 - ODProfileLevelIndication Values

Value Profile Level

0x00 Forbidden -
0x01-0x7F reserved for ISO use -
0x80-0xFD user private -
0xFE no OD profile specified -
0xFF no OD capability required -

NOTE — Usage of the value 0xFE indicates that the content described by this InitialObjectDescriptor
does not comply to any OD profile specified in ISO/IEC 14496-1. Usage of the value 0xFF indicates that
none of the OD profile capabilities are required for this content.

sceneProfileLevelIndication – an indication as defined in Table 4 of the scene graph profile and level
required to process the content associated with this InitialObjectDescriptor.

Table 4 - sceneProfileLevelIndication Values

Value Profile Level

0x00 Reserved for ISO use -
0x01 Simple2D profile L1
0x02-0x7F reserved for ISO use -
0x80-0xFD user private -
0xFE no scene graph profile specified -
0xFF no scene graph capability required -

NOTE — Usage of the value 0xFE indicates that the content described by this InitialObjectDescriptor
does not comply to any scene graph profile specified in ISO/IEC 14496-1. Usage of the value 0xFF
indicates that none of the scene graph profile capabilities are required for this content.

audioProfileLevelIndication – an indication as defined in Table 5 of the audio profile and level required to
process the content associated with this InitialObjectDescriptor.

Table 5 - audioProfileLevelIndication Values

Value Profile Level

0x00 Reserved for ISO use -
0x01 Main Profile L1
0x02 Main Profile L2
0x03 Main Profile L3

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 27

0x04 Main Profile L4
0x05 Scalable Profile L1
0x06 Scalable Profile L2
0x07 Scalable Profile L3
0x08 Scalable Profile L4
0x09 Speech Profile L1
0x0A Speech Profile L2
0x0B Synthesis Profile L1
0x0C Synthesis Profile L2
0x0D Synthesis Profile L3
0x0E-0x7F reserved for ISO use -
0x80-0xFD user private -
0xFE no audio profile specified -
0xFF no audio capability required -

NOTE — Usage of the value 0xFE indicates that the content described by this InitialObjectDescriptor
does not comply to any audio profile specified in ISO/IEC 14496-3. Usage of the value 0xFF indicates
that none of the audio profile capabilities are required for this content.

visualProfileLevelIndication – an indication as defined in Table 6 of the visual profile and level required
to process the content associated with this InitialObjectDescriptor.

Table 6 - visualProfileLevelIndication Values

Value Profile Level

0x00 Reserved for ISO use -
0x01 Simple L3
0x02 Simple L2
0x03 Simple L1
0x04 Simple Scalable L2
0x05 Simple Scalable L1
0x06 Core L2
0x07 Core L1
0x08 Main L4
0x09 Main L3
0x0A Main L2
0x0B N-Bit L2
0x0C Hybrid L2
0x0D Hybrid L1
0x0E Basic Animated Texture L2
0x0F Basic Animated Texture L1
0x10 Scalable Texture L3
0x11 Scalable Texture L2
0x12 Scalable Texture L1
0x13 Simple Face Animation L2
0x14 Simple Face Animation L1
0x15-0x7F reserved for ISO use -
0x80-0xFD user private -
0xFE no visual profile specified -
0xFF no visual capability required -

NOTE — Usage of the value 0xFE indicates that the content described by this InitialObjectDescriptor
does not comply to any visual profile specified in ISO/IEC 14496-2. Usage of the value 0xFF indicates
that none of the visual profile capabilities are required for this content.

ISO/IEC 14496-1:2001(E)

28 © ISO/IEC 2001 – All rights reserved

graphicsProfileLevelIndication – an indication as defined in Table 7 of the graphics profile and level
required to process the content associated with this InitialObjectDescriptor.

Table 7 - graphicsProfileLevelIndication Values

Value Profile Level

0x00 Reserved for ISO use
0x01 Simple2D profile L1
0x02-0x7F reserved for ISO use
0x80-0xFD user private
0xFE no graphics profile specified
0xFF no graphics capability required

NOTE — Usage of the value 0xFE may indicate that the content described by this InitialObjectDescriptor
does not comply to any conformance point specified in ISO/IEC 14496-1. Usage of the value 0xFF
indicates that none of the graphics profile capabilities are required for this content.

esDescr[] – an array of ES_Descriptors as defined in 8.6.5. The array shall have any number of one up to
255 elements.

ociDescr[] – an array of OCI_Descriptors as defined in 8.6.18.2 that relates to the set of audio-visual objects
that are described by this initial object descriptor. The array shall have any number of zero up to 255 elements.

ipmpDescrPtr[] – an array of IPMP_DescriptorPointer, as defined in 8.6.13, that points to the
IPMP_Descriptors related to the elementary stream(s) described by this object descriptor. The array shall have any
number of zero up to 255 elements.

extDescr[] – an array of ExtensionDescriptors as defined in 8.6.16. The array shall have any number of
zero up to 255 elements.

8.6.5 ES_Descriptor

8.6.5.1 Syntax

class ES_Descriptor extends BaseDescriptor : bit(8) tag=ES_DescrTag {
bit(16) ES_ID;
bit(1) streamDependenceFlag;
bit(1) URL_Flag;
bit(1) OCRstreamFlag;
bit(5) streamPriority;
if (streamDependenceFlag)

bit(16) dependsOn_ES_ID;
if (URL_Flag) {

bit(8) URLlength;
bit(8) URLstring[URLlength];

}
if (OCRstreamFlag)

bit(16) OCR_ES_Id;
DecoderConfigDescriptor decConfigDescr;
SLConfigDescriptor slConfigDescr;
IPI_DescrPointer ipiPtr[0 .. 1];
IP_IdentificationDataSet ipIDS[0 .. 255];
IPMP_DescriptorPointer ipmpDescrPtr[0 .. 255];
LanguageDescriptor langDescr[0 .. 255];
QoS_Descriptor qosDescr[0 .. 1];
RegistrationDescriptor regDescr[0 .. 1];
ExtensionDescriptor extDescr[0 .. 255];

}

8.6.5.2 Semantics

The ES_Descriptor conveys all information related to a particular elementary stream and has three major parts.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 29

The first part consists of the ES_ID which is a unique reference to the elementary stream within its name scope
(see 8.7.2.4), a mechanism to describe dependencies of elementary streams within the scope of the parent object
descriptor and an optional URL string. Dependencies and usage of URLs are specified in 8.7.

The second part consists of the component descriptors which convey the parameters and requirements of the
elementary stream.

The third part is a set of optional extension descriptors that support the inclusion of future extensions as well as the
transport of private data in a backward compatible way.

ES_ID – This syntax element provides a unique label for each elementary stream within its name scope. The
values 0 and 0xFFFF are reserved.

streamDependenceFlag – If set to one indicates that a dependsOn_ES_ID will follow.

URL_Flag – if set to 1 indicates that a URLstring will follow.

OCRstreamFlag – indicates that an OCR_ES_ID syntax element will follow.

streamPriority – indicates a relative measure for the priority of this elementary stream. An elementary stream
with a higher streamPriority is more important than one with a lower streamPriority. The absolute values
of streamPriority are not normatively defined.

dependsOn_ES_ID – is the ES_ID of another elementary stream on which this elementary stream depends. The
stream with dependsOn_ES_ID shall also be associated to the same object descriptor as the current
ES_Descriptor.

URLlength – the length of the subsequent URLstring in bytes.

URLstring[] – contains a UTF-8 (ISO/IEC 10646-1) encoded URL that shall point to the location of an SL-
packetized stream by name. The parameters of the SL-packetized stream that is retrieved from the URL are fully
specified in this ES_Descriptor. See also 8.7.3.3. Permissible URLs may be constrained by profile and levels as
well as by specific delivery layers.

OCR_ES_ID – indicates the ES_ID of the elementary stream within the name scope (see 8.7.2.4) from which the
time base for this elementary stream is derived. Circular references between elementary streams are not permitted.

decConfigDescr – is a DecoderConfigDescriptor as specified in 8.6.6.

slConfigDescr – is an SLConfigDescriptor as specified in 8.6.8.

ipiPtr[] – an array of zero or one IPI_DescrPointer as specified in 8.6.12.

ipIDS[] – an array of zero or more IP_IdentificationDataSet as specified in 8.6.9.

Each ES_Descriptor shall have either one IPI_DescrPointer or zero up to 255
IP_IdentificationDataSet elements. This allows to unambiguously associate an IP Identification to each
elementary stream.

ipmpDescrPtr[] – an array of IPMP_DescriptorPointer, as defined in 8.6.13, that points to the
IPMP_Descriptors related to the elementary stream described by this ES_Descriptor. The array shall have any
number of zero up to 255 elements.

langDescr[] – an array of zero or one LanguageDescriptor structures as specified in 8.6.18.6. It indicates
the language attributed to this elementary stream.

NOTE — Multichannel audio streams may be treated as one elementary stream with one ES_Descriptor by ISO/IEC 14496. In
that case different languages present in different channels of the multichannel stream are not identifyable with a
LanguageDescriptor.

qosDescr[] – an array of zero or one QoS_Descriptor as specified in 8.6.15.

ISO/IEC 14496-1:2001(E)

30 © ISO/IEC 2001 – All rights reserved

extDescr[] – an array of ExtensionDescriptor structures as specified in 8.6.16.

8.6.6 DecoderConfigDescriptor

8.6.6.1 Syntax

class DecoderConfigDescriptor extends BaseDescriptor : bit(8) tag=DecoderConfigDescrTag {
bit(8) objectTypeIndication;
bit(6) streamType;
bit(1) upStream;
const bit(1) reserved=1;
bit(24) bufferSizeDB;
bit(32) maxBitrate;
bit(32) avgBitrate;
DecoderSpecificInfo decSpecificInfo[0 .. 1];
profileLevelIndicationIndexDescriptor profileLevelIndicationIndexDescr [0..255];

}

8.6.6.2 Semantics

The DecoderConfigDescriptor provides information about the decoder type and the required decoder
resources needed for the associated elementary stream. This is needed at the receiving terminal to determine
whether it is able to decode the elementary stream. A stream type identifies the category of the stream while the
optional decoder specific information descriptor contains stream specific information for the set up of the decoder in
a stream specific format that is opaque to this layer.

ObjectTypeIndication – an indication of the object or scene description type that needs to be supported by
the decoder for this elementary stream as per Table 8. For streamType values other than audioStream and
visualStream, the objectTypeIndication shall be set to 0xFF, indicating that no object type is specified.

Table 8 - objectTypeIndication Values

Value ObjectTypeIndication Description

0x00 Forbidden
0x01 Systems ISO/IEC 14496-1 a

0x02 Systems ISO/IEC 14496-1 b

0x03-0x1F reserved for ISO use
0x20 Visual ISO/IEC 14496-2 c

0x21-0x3F reserved for ISO use
0x40 Audio ISO/IEC 14496-3 d

0x41-0x5F reserved for ISO use
0x60 Visual ISO/IEC 13818-2 Simple Profile
0x61 Visual ISO/IEC 13818-2 Main Profile
0x62 Visual ISO/IEC 13818-2 SNR Profile
0x63 Visual ISO/IEC 13818-2 Spatial Profile
0x64 Visual ISO/IEC 13818-2 High Profile
0x65 Visual ISO/IEC 13818-2 422 Profile
0x66 Audio ISO/IEC 13818-7 Main Profile
0x67 Audio ISO/IEC 13818-7 LowComplexity Profile
0x68 Audio ISO/IEC 13818-7 Scaleable Sampling Rate Profile
0x69 Audio ISO/IEC 13818-3
0x6A Visual ISO/IEC 11172-2
0x6B Audio ISO/IEC 11172-3
0x6C Visual ISO/IEC 10918-1
0x6D - 0xBF reserved for ISO use
0xC0 - 0xFE user private
0xFF no object type specified

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 31

a This object type shall be used for all streamTypes defined in ISO/IEC 14496-1 except
IPMP streams.
b Includes associated Amendment(s) and Corrigendum(a).
c Includes associated Amendment(s) and Corrigendum(a). The actual object types are
defined in ISO/IEC 14496-2 and are conveyed in the DecoderSpecificInfo as specified in
ISO/IEC 14496-2, Annex K.

d Includes associated Amendment(s) and Corrigendum(a). The actual object types are
defined in ISO/IEC 14496-3 and are conveyed in the DecoderSpecificInfo as specified in
ISO/IEC 14496-3 subpart 1 subclause 6.2.1.

streamType – conveys the type of this elementary stream as per Table 9.

Table 9 - streamType Values

streamType value Stream type description

0x00 Forbidden
0x01 ObjectDescriptorStream (see 8.5)
0x02 ClockReferenceStream (see 10.2.5)
0x03 SceneDescriptionStream (see 9.2.1)
0x04 VisualStream
0x05 AudioStream
0x06 MPEG7Stream
0x07 IPMPStream (see 8.3.2)
0x08 ObjectContentInfoStream (see 8.4.2)
0x09 MPEGJStream
0x0A - 0x1F reserved for ISO use
0x20 - 0x3F user private

upStream – indicates that this stream is used for upstream information.

bufferSizeDB – is the size of the decoding buffer for this elementary stream in byte.

maxBitrate – is the maximum bitrate in bits per second of this elementary stream in any time window of one
second duration.

avgBitrate – is the average bitrate in bits per second of this elementary stream. For streams with variable
bitrate this value shall be set to zero.

decSpecificInfo[] – an array of zero or one decoder specific information classes as specified in 8.6.7.

ProfileLevelIndicationIndexDescr [0..255] – an array of unique identifiers for a set of profile and level
indications as carried in the ExtensionProfileLevelDescr defined in clause 8.6.19.

8.6.7 DecoderSpecificInfo

8.6.7.1 Syntax

abstract class DecoderSpecificInfo extends BaseDescriptor : bit(8) tag=DecSpecificInfoTag
{

// empty. To be filled by classes extending this class.
}

8.6.7.2 Semantics

The decoder specific information constitutes an opaque container with information for a specific media decoder.
The existence and semantics of decoder specific information depends on the values of
DecoderConfigDescriptor.streamType and DecoderConfigDescriptor.objectTypeIndication.

ISO/IEC 14496-1:2001(E)

32 © ISO/IEC 2001 – All rights reserved

For values of DecoderConfigDescriptor.objectTypeIndication that refer to streams complying with
ISO/IEC 14496-2 the syntax and semantics of decoder specific information are defined in Annex K of that part.

For values of DecoderConfigDescriptor.objectTypeIndication that refer to streams complying with
ISO/IEC 14496-3 the syntax and semantics of decoder specific information are defined in section 1, clause 1.6 of
that part.

For values of DecoderConfigDescriptor.objectTypeIndication that refer to scene description streams
the semantics of decoder specific information is defined in 9.2.1.2.

For values of DecoderConfigDescriptor.objectTypeIndication that refer to streams complying with
ISO/IEC 13818-7 the decoder specific information consists of the ADIF -header if it is present (or none if it is not
present) and an access unit is a „raw_data_block()“ as defined in ISO/IEC 13818-7.

For values of DecoderConfigDescriptor.objectTypeIndication that refer to streams complying with
ISO/IEC 13818-3 the decoder specific information is empty since all necessary data is in the bitstream frames itself.
The access units in this case are the „frame()“ bitstream element as is defined in ISO/IEC 11172-3.

For values of DecoderConfigDescriptor.objectTypeIndication that refer to streams complying with
ISO/IEC 10918-1, the decoder specific information is:

class JPEG_DecoderConfig extends DecoderSpecificInfo : bit(8) tag=DecSpecificInfoTag {
int(16) headerLength;
int(16) Xdensity;
int(16) Ydensity;
int(8) numComponents;

}

with

headerLength –indicates the number of bytes to skip from the beginning of the stream to find the first pixel of the
image.

Xdensity and Ydensity – specify the pixel aspect ratio.

numComponents – indicates whether the image has Y component only or is Y, Cr, Cb. It shall be equal to 1 or 3.

8.6.8 SLConfigDescriptor

This descriptor defines the configuration of the sync layer header for this elementary stream. The specification of
this descriptor is provided together with the specification of the sync layer in 10.2.3.

8.6.9 IP_IdentificationDataSet

8.6.9.1 Syntax

abstract class IP_IdentificationDataSet extends BaseDescriptor
: bit(8) tag=ContentIdentDescrTag..SupplContentIdentDescrTag

{
// empty. To be filled by classes extending this class.

}

8.6.9.2 Semantics

This class is an abstract base class that is extended by the descriptor classes that implement IP identification. A
descriptor that allows to aggregate classes of type IP_IdentificationDataSet may actually aggregate any of the
classes that extend IP_IdentificationDataSet.

8.6.10 ContentIdentificationDescriptor

8.6.10.1 Syntax

class ContentIdentificationDescriptor extends IP_IdentificationDataSet
: bit(8) tag=ContentIdentDescrTag

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 33

{
const bit(2) compatibility=0;
bit(1) contentTypeFlag;
bit(1) contentIdentifierFlag;
bit(1) protectedContent;
bit(3) reserved = 0b111;
if (contentTypeFlag)

bit(8) contentType;
if (contentIdentifierFlag) {

bit(8) contentIdentifierType;
bit(8) contentIdentifier[sizeOfInstance-2-contentTypeFlag];

}
}

8.6.10.2 Semantics

The content identification descriptor is used to identify content. All types of elementary streams carrying content
can be identified using this mechanism. The content types include audio, visual and scene description data.
Multiple content identification descriptors may be associated to one elementary stream. These descriptors shall
never be detached from the ES_Descriptor.

compatibility – must be set to 0.

contentTypeFlag – flag to indicate if a definition of the type of content is available.

contentIdentifierFlag – flag to indicate presence of creation ID.

protectedContent - if set to one indicates that the elementary streams that refer to this
IP_IdentificationDataSet are protected by a method outside the scope of ISO/IEC 14496. The behavior of the
terminal compliant with the ISO/IEC 14496 specifications when processing such streams is undefined.

contentType – defines the type of content using one of the values specified in Table 10.

Table 10 - contentType Values

0 Audio-visual
1 Book
2 Serial
3 Text
4 Item or Contribution (e.g. article in book or serial)
5 Sheet music
6 Sound recording or music video
7 Still Picture
8 Musical Work
9-254 Reserved for ISO use
255 Others

contentIdentifierType – defines a type of content identifier using one of the values specified in Table 11.

Table 11 - contentIdentifierType Values

0 ISAN International Standard Audio-Visual Number
1 ISBN International Standard Book Number
2 ISSN International Standard Serial Number
3 SICI Serial Item and Contribution Identifier
4 BICI Book Item and Component Identifier
5 ISMN International Standard Music Number
6 ISRC International Standard Recording Code
7 ISWC-T International Standard Work Code (Tunes)
8 ISWC-L International Standard Work Code (Literature)

ISO/IEC 14496-1:2001(E)

34 © ISO/IEC 2001 – All rights reserved

9 SPIFF Still Picture ID
10 DOI Digital Object Identifier
11-255 Reserved for ISO use

contentIdentifier – international code identifying the content according to the preceding
contentIdentifierType.

8.6.11 SupplementaryContentIdentificationDescriptor

8.6.11.1 Syntax

class SupplementaryContentIdentificationDescriptor extends
IP_IdentificationDataSet : bit(8) tag= SupplContentIdentDescrTag

{
bit(24) languageCode;
bit(8) supplContentIdentifierTitleLength;
bit(8) supplContentIdentifierTitle[supplContentIdentifierTitleLength];
bit(8) supplContentIdentifierValueLength;
bit(8) supplContentIdentifierValue[supplContentIdentifierValueLength];

}

8.6.11.2 Semantics

The supplementary content identification descriptor is used to provide extensible identifiers for content that are
qualified by a language code. Multiple supplementary content identification descriptors may be associated to one
elementary stream. These descriptors shall never be detached from the ES_Descriptor.

language code – This 24 bits field contains the ISO 639-2:1998 bibliographic three character language code of
the language of the following text fields.

supplementaryContentIdentifierTitleLength – indicates the length of the subsequent
supplementaryContentIdentifierTitle in bytes.

supplementaryContentIdentifierTitle – identifies the title of a supplementary content identifier that may
be used when a numeric content identifier (see 8.6.10) is not available.

supplementaryContentIdentifierValueLength – indicates the length of the subsequent
supplementaryContentIdentifierValue in bytes.

supplementaryContentIdentifierValue – identifies the value of a supplementary content identifer
associated to the preceding supplementaryContentIdentifierTitle.

8.6.12 IPI_DescrPointer

8.6.12.1 Syntax

class IPI_DescrPointer extends BaseDescriptor : bit(8) tag=IPI_DescrPointerTag {
bit(16) IPI_ES_Id;

}

8.6.12.2 Semantics

The IPI_DescrPointer class contains a reference to the elementary stream that includes the
IP_IdentificationDataSets that are valid for this stream. This indirect reference mechanism allows to
convey such descriptors only in one elementary stream while making references to it from any ES_Descriptor
that shares the same information.

ES_Descriptors for elementary streams that are intended to be accessible regardless of the availability of a
referred stream shall explicitly include their IP_IdentificationDataSets instead of using an
IPI_DescrPointer.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 35

IPI_ES_Id – the ES_ID of the elementary stream whose ES_Descriptor contains the IP Information valid for this
elementary stream. If the ES_Descriptor for IPI_ES_Id is not available, the IPI status of this elementary
stream is undefined.

8.6.13 IPMP_DescriptorPointer

8.6.13.1 Syntax

class IPMP_DescriptorPointer extends BaseDescriptor : bit(8) tag=IPMP_DescrPointerTag {
bit(8) IPMP_DescriptorID;

}

8.6.13.2 Semantics

IPMP_DescriptorID - ID of the referenced IPMP_Descriptor (see 8.6.14).

Presence of this descriptor in an object descriptor indicates that all streams referred to by embedded
ES_Descriptors are subject to protection and management by the IPMP System specified in the referenced
IPMP_Descriptor.

Presence of this descriptor in an ES_Descriptor indicates that the stream associated with this descriptor is
subject to intellectual property management and protection by the IPMP System specified in the referenced
IPMP_Descriptor.

8.6.14 IPMP Descriptor

8.6.14.1 Syntax

class IPMP_Descriptor() extends BaseDescriptor : bit(8) IPMP_DescrTag {
bit(8) IPMP_DescriptorID;
unsigned int(16) IPMPS_Type;
if (IPMPS_Type == 0) {

bit(8) URLString[sizeOfInstance-3];
} else {

bit(8) IPMP_data[sizeOfInstance-3];
}

}

8.6.14.2 Semantics

The IPMP_Descriptor conveys IPMP information to an IPMP System. IPMP_Descriptors are conveyed in
object descriptor streams via IPMP_DescriptorUpdates as specified in 8.5.5.6. They are not directly included
in object descriptors or ES_Descriptors. IPMP_Descriptors are referenced by object descriptors or
ES_Descriptors using IPMP_DescriptorPointers (see 8.6.13). An IPMP_Descriptor may be
referenced by multiple object descriptors or ES_Descriptors.

IPMP_DescriptorID - a unique ID for this IPMP descriptor within its name scope (see 8.7.2.4).

IPMPS_Type - the type of the IPMP System. A zero value does not correspond to an IPMP System but is used to
indicate the presence of a URL. A Registration Authority designated by ISO shall assign valid values for this field.

URLString[] - contains a UTF-8 (ISO/IEC 10646-1) encoded URL that shall point to the location of a remote
IPMP_Descriptor. The IPMPS_Type of this IPMP_Descriptor can be 0 or not. If 0, another URL is
referenced. This process continues until an IPMP_Descriptor with a non-zero IPMPS_Type is accessed.

IPMP_data - opaque data to control the IPMP System.

8.6.14.3 Implementation of a Registration Authority (RA)

ISO/IEC JTC 1/SC 29 shall issue a call for nominations from Member Bodies of ISO or National Committees of IEC
in order to identify suitable organizations that will serve as the Registration Authority for the IPMPS_Type as
defined in this clause. The selected organization shall serve as the Registration Authority. The so-named

ISO/IEC 14496-1:2001(E)

36 © ISO/IEC 2001 – All rights reserved

Registration Authority shall execute its duties in compliance with Annex H of the JTC 1 Directives. The registered
IPMPS_Type is hereafter referred to as the Registered Identifier (RID).

Upon selection of the Registration Authority, JTC 1 shall require the creation of a Registration Management Group
(RMG) that will review appeals filed by organizations whose request for an RID to be used in conjunction with
ISO/IEC 14496 has been denied by the Registration Authority.

Annex D provides information on the procedure for registering a unique IPMPS_Type value.

8.6.15 QoS_Descriptor

8.6.15.1 Syntax

class QoS_Descriptor extends BaseDescriptor : bit(8) tag=QoS_DescrTag {
bit(8) predefined;
if (predefined==0) {

QoS_Qualifier qualifiers[];
}

}

8.6.15.2 Semantics

The QoS_descriptor conveys the requirements that the ES has on the transport channel and a description of the
traffic that this ES will generate. A set of predefined values is to be determined; customized values can be used by
setting the predefined field to 0.

predefined – a value different from zero indicates a predefined QoS profile according to Table 12.

Table 12 - Predefined QoS Profiles

predefined value description

0x00 Custom
0x01 - 0xff Reserved

qualifier – an array of one or more QoS_Qualifiers.

8.6.15.3 QoS_Qualifier

8.6.15.3.1 Syntax

abstract aligned(8) expandable(228-1) class QoS_Qualifier : bit(8) tag=0x01..0xff {
// empty. To be filled by classes extending this class.

}

class QoS_Qualifier_MAX_DELAY extends QoS_Qualifier : bit(8) tag=0x01 {
unsigned int(32) MAX_DELAY;

}

class QoS_Qualifier_PREF_MAX_DELAY extends QoS_Qualifier : bit(8) tag=0x02 {
unsigned int(32) PREF_MAX_DELAY;

}

class QoS_Qualifier_LOSS_PROB extends QoS_Qualifier : bit(8) tag=0x03 {
double(32) LOSS_PROB;

}

class QoS_Qualifier_MAX_GAP_LOSS extends QoS_Qualifier : bit(8) tag=0x04 {
unsigned int(32) MAX_GAP_LOSS;

}

class QoS_Qualifier_MAX_AU_SIZE extends QoS_Qualifier : bit(8) tag=0x41 {
unsigned int(32) MAX_AU_SIZE;

}

class QoS_Qualifier_AVG_AU_SIZE extends QoS_Qualifier : bit(8) tag=0x42 {

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 37

unsigned int(32) AVG_AU_SIZE;
}

class QoS_Qualifier_MAX_AU_RATE extends QoS_Qualifier : bit(8) tag=0x43 {
unsigned int(32) MAX_AU_RATE;

}

8.6.15.3.2 Semantics

QoS qualifiers are defined as derived classes from the abstract QoS_Qualifier class. They are identified by
means of their class tag. Unused tag values up to and including 0x7F are reserved for ISO use. Tag values from
0x80 up to and including 0xFE are user private. Tag values 0x00 and 0xFF are forbidden.

MAX_DELAY – Maximum end to end delay for the stream in microseconds.

PREF_MAX_DELAY – Preferred end to end delay for the stream in microseconds.

LOSS_PROB – Allowable loss probability of any single AU as a fractional value between 0.0 and 1.0.

MAX_GAP_LOSS – Maximum allowable number of consecutively lost AUs.

MAX_AU_SIZE – Maximum size of an AU in bytes.

AVG_AU_SIZE – Average size of an AU in bytes.

MAX_AU_RATE – Maximum arrival rate of AUs in AUs/second.

8.6.16 ExtensionDescriptor

8.6.16.1 Syntax

abstract class ExtensionDescriptor extends BaseDescriptor
: bit(8) tag = ExtDescrTagStartRange .. ExtDescrTagEndRange {

// empty. To be filled by classes extending this class.
}

8.6.16.2 Semantics

This class is an abstract base class that may be extended for defining additional descriptors in future. The available
range of class tag values allow ISO defined extensions as well as private extensions. A descriptor that allows to
aggregate ExtensionDescriptor classes may actually aggregate any of the classes that extend ExtensionDescriptor.
Extension descriptors may be ignored by a terminal that conforms to ISO/IEC 14496-1.

8.6.17 RegistrationDescriptor

The registration descriptor provides a method to uniquely and unambiguously identify formats of private data
streams.

8.6.17.1 Syntax

class RegistrationDescriptor extends BaseDescriptor : bit(8) tag=RegistrationDescrTag {
bit(32) formatIdentifier;
bit(8) additionalIdentificationInfo[sizeOfInstance-4];

}

8.6.17.2 Semantics

formatIdentifier – is a value obtained from a Registration Authority as designated by ISO.

additionalIdentificationInfo – The meaning of additionalIdentificationInfo, if any, is defined
by the assignee of that formatIdentifier, and once defined, shall not change.

The registration descriptor is provided in order to enable users of ISO/IEC 14496-1 to unambiguously carry
elementary streams with data whose format is not recognized by ISO/IEC 14496-1. This provision will permit

ISO/IEC 14496-1:2001(E)

38 © ISO/IEC 2001 – All rights reserved

ISO/IEC 14496-1 to carry all types of data streams while providing for a method of unambiguous identification of
the characteristics of the underlying private data streams.

In the following subclause and Annex D, the benefits and responsibilities of all parties to the registration of private
data format are outlined.

8.6.17.2.1 Implementation of a Registration Authority (RA)

ISO/IEC JTC 1/SC 29 shall issue a call for nominations from Member Bodies of ISO or National Committees of IEC
in order to identify suitable organizations that will serve as the Registration Authority for the formatIdentifier as
defined in this subclause. The selected organization shall serve as the Registration Authority. The so-named
Registration Authority shall execute its duties in compliance with Annex H of the JTC 1 Directives. The registered
private data formatIdentifier is hereafter referred to as the Registered Identifier (RID).

Upon selection of the Registration Authority, JTC 1 shall require the creation of a Registration Management Group
(RMG) which will review appeals filed by organizations whose request for an RID to be used in conjunction with
ISO/IEC 14496-1 has been denied by the Registration Authority.

Annex D provides information on the procedure for registering a unique format identifier.

8.6.18 Object Content Information Descriptors

8.6.18.1 Overview

This subclause defines the descriptors that constitute the object content information. These descriptors may either
be included in an OCI_Event in an OCI stream or be part of an object descriptor or ES_Descriptor as defined
in 8.6.

8.6.18.2 OCI_Descriptor Class

8.6.18.2.1 Syntax

abstract class OCI_Descriptor extends BaseDescriptor
: bit(8) tag= OCIDescrTagStartRange .. OCIDescrTagEndRange

{
// empty. To be filled by classes extending this class.

}

8.6.18.2.2 Semantics

This class is an abstract base class that is extended by the classes specified in the subsequent clauses. A
descriptor or an OCI_Event that allows to aggregate classes of type OCI_Descriptor may actually aggregate any of
the classes that extend OCI_Descriptor.

8.6.18.3 Content classification descriptor

8.6.18.3.1 Syntax

class ContentClassificationDescriptor extends OCI_Descriptor
: bit(8) tag= ContentClassificationDescrTag {

bit(32) classificationEntity;
bit(16) classificationTable;
bit(8) contentClassificationData[sizeOfInstance-6];

}

8.6.18.3.2 Semantics

The content classification descriptor provides one or more classifications of the event information. The
classificationEntity field indicates the organization that classifies the content. The possible values have to
be registered with a registration authority to be identified.

classificationEntity – indicates the content classification entity. The values of this field are to be defined by
a registration authority to be identified.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 39

classificationTable – indicates which classification table is being used for the corresponding classification.
The classification is defined by the corresponding classification entity. 0x00 is a reserved value.

contentClassificationData[] – this array contains a classification data set using a non-default
classification table.

8.6.18.4 Key Word Descriptor

8.6.18.4.1 Syntax

class KeyWordDescriptor extends OCI_Descriptor : bit(8) tag=KeyWordDescrTag {
int i;
bit(24) languageCode;
bit(1) isUTF8_string;
aligned(8) unsigned int(8) keyWordCount;
for (i=0; i<keyWordCount; i++) {

unsigned int(8) keyWordLength[[i]];
if (isUTF8_string) then {

bit(8) keyWord[[i]][keyWordLength[i]];
} else {

bit(16) keyWord[[i]][keyWordLength[i]];
}

}
}

8.6.18.4.2 Semantics

The key word descriptor allows the OCI creator/provider to indicate a set of key words that characterize the
content. The choice of the key words is completely free but each time the key word descriptor appears, all the key
words given are for the language indicated in languageCode. This means that, for a certain event, the key word
descriptor must appear as many times as the number of languages for which key words are to be provided.

languageCode – contains the ISO 639-2:1998 bibliographic three character language code of the language of
the following text fields.

isUTF8_string – indicates that the subsequent string is encoded with one byte per character (UTF-8). Else it is
two byte per character.

keyWordCount – indicates the number of key words to be provided.

keyWordLength – specifies the length in characters of each key word.

keyWord[] – a Unicode (ISO/IEC 10646-1) encoded string that specifies the key word.

8.6.18.5 Rating Descriptor

8.6.18.5.1 Syntax

class RatingDescriptor extends OCI_Descriptor : bit(8) tag=RatingDescrTag {
bit(32) ratingEntity;
bit(16) ratingCriteria;
bit(8) ratingInfo[sizeOfInstance-6];

}

8.6.18.5.2 Semantics

This descriptor gives one or more ratings, originating from corresponding rating entities, valid for a specified
country. The ratingEntity field indicates the organization which is rating the content. The possible values have
to be registered with a registration authority to be identified. This registration authority shall make the semantics of
the rating descriptor publicly available.

ratingEntity – indicates the rating entity. The values of this field are to be defined by a registration authority to
be identified.

ISO/IEC 14496-1:2001(E)

40 © ISO/IEC 2001 – All rights reserved

ratingCriteria – indicates which rating criteria are being used for the corresponding rating entity. The value
0x00 is reserved.

ratingInfo[] – this array contains the rating information.

8.6.18.6 Language Descriptor

8.6.18.6.1 Syntax

class LanguageDescriptor extends OCI_Descriptor : bit(8) tag=LanguageDescrTag {
bit(24) languageCode;

}

8.6.18.6.2 Semantics

This descriptor identifies the language of the corresponding audio/speech or text object that is being described.

languageCode – contains the ISO 639-2:1998 bibliographic three character language code of the corresponding
audio/speech or text object that is being described.

8.6.18.7 Short Textual Descriptor

8.6.18.7.1 Syntax

class ShortTextualDescriptor extends OCI_Descriptor : bit(8) tag=ShortTextualDescrTag {
bit(24) languageCode;
bit(1) isUTF8_string;
aligned(8) unsigned int(8) nameLength;
if (isUTF8_string) then {

bit(8) eventName[nameLength];
unsigned int(8) textLength;
bit(8) eventText[textLength];

} else {
bit(16) eventName[nameLength];
unsigned int(8) textLength;
bit(16) eventText[textLength];

}
}

8.6.18.7.2 Semantics

The short textual descriptor provides the name of the event and a short description of the event in text form.

languageCode – contains the ISO 639-2:1998 bibliographic three character language code of the language of
the following text fields.

isUTF8_string – indicates that the subsequent string is encoded with one byte per character (UTF-8). Else it is
two byte per character.

nameLength – specifies the length in characters of the event name.

eventName[]– a Unicode (ISO/IEC 10646-1) encoded string that specifies the event name.

textLength – specifies the length in characters of the following text describing the event.

eventText[] – a Unicode (ISO/IEC 10646-1) encoded string that specifies the text description for the event.

8.6.18.8 Expanded Textual Descriptor

8.6.18.8.1 Syntax

class ExpandedTextualDescriptor extends OCI_Descriptor : bit(8) tag=ExpandedTextualDescrTag {
int i;
bit(24) languageCode;
bit(1) isUTF8_string;

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 41

aligned(8) unsigned int(8) itemCount;
for (i=0; i<itemCount; i++){

unsigned int(8) itemDescriptionLength[[i]];
if (isUTF8_string) then {

bit(8) itemDescription[[i]][itemDescriptionLength[i];
} else {

bit(16) itemDescription[[i]][itemDescriptionLength[i]];
}
unsigned int(8) itemLength[[i]];
if (isUTF8_string) then {

bit(8) itemText[[i]][itemLength[i]];
} else {

bit(16) itemText[[i]][itemLength[i]];
}

}
unsigned int(8) textLength;
int nonItemTextLength=0;
while(textLength == 255) {

nonItemTextLength += textLength;
bit(8) textLength;

}
nonItemTextLength += textLength;
if (isUTF8_string) then {

bit(8) nonItemText[nonItemTextLength];
} else {

bit(16) nonItemText[nonItemTextLength];
}

}

8.6.18.8.2 Semantics

The expanded textual descriptor provides a detailed description of an event, which may be used in addition to, or
independently from, the short event descriptor. In addition to direct text, structured information in terms of pairs of
description and text may be provided. An example application for this structure is to give a cast list, where for
example the item description field might be “Producer” and the item field would give the name of the producer.

languageCode - contains the ISO 639-2:1998 bibliographic three character language code of the language of the
following text fields.

isUTF8_string – indicates that the subsequent string is encoded with one byte per character (UTF-8). Else it is
two byte per character.

itemCount – specifies the number of items to follow (itemised text).

itemDescriptionLength – specifies the length in characters of the item description.

itemDescription[] – a Unicode (ISO/IEC 10646-1) encoded string that specifies the item description.

itemLength – specifies the length in characters of the item text.

itemText[] – a Unicode (ISO/IEC 10646-1) encoded string that specifies the item text.

textLength – specifies the length in characters of the non itemised expanded text. The value 255 is used as an
escape code, and it is followed by another textLength field that contains the length in bytes above 255. For
lengths greater than 511 a third field is used, and so on.

nonItemText[] – a Unicode (ISO/IEC 10646-1) encoded string that specifies the non itemised expanded text.

8.6.18.9 Content Creator Name Descriptor

8.6.18.9.1 Syntax

class ContentCreatorNameDescriptor extends OCI_Descriptor
: bit(8) tag= ContentCreatorNameDescrTag {

int i;
unsigned int(8) contentCreatorCount;

ISO/IEC 14496-1:2001(E)

42 © ISO/IEC 2001 – All rights reserved

for (i=0; i<contentCreatorCount; i++){
bit(24) languageCode[[i]];
bit(1) isUTF8_string[[i]];
aligned(8) unsigned int(8) contentCreatorLength[[i]];
if (isUTF8_string[[i]]) then {

bit(8) contentCreatorName[[i]][contentCreatorLength[i]];
} else {

bit(16) contentCreatorName[[i]][contentCreatorLength[i]];
}

}
}

8.6.18.9.2 Semantics

The content creator name descriptor indicates the name(s) of the content creator(s). Each content creator name
may be in a different language.

contentCreatorCount – indicates the number of content creator names to be provided.

languageCode – contains the ISO 639-2:1998 bibliographic three character language code of the language of
the following text fields. Note that for languages that only use Latin characters, just one byte per character is
needed in Unicode (ISO/IEC 10646-1).

isUTF8_string – indicates that the subsequent string is encoded with one byte per character (UTF-8). Else it is
two byte per character.

contentCreatorLength[[i]] – specifies the length in characters of each content creator name.

contentCreatorName[[i]][] – a Unicode (ISO/IEC 10646-1) encoded string that specifies the content
creator name.

8.6.18.10 Content Creation Date Descriptor

8.6.18.10.1 Syntax

class ContentCreationDateDescriptor extends OCI_Descriptor
: bit(8) tag= ContentCreationDateDescrTag {

bit(40) contentCreationDate;
}

8.6.18.10.2 Semantics

This descriptor identifies the date of the content creation.

contentCreationDate – contains the content creation date of the data corresponding to the event in question,
in Universal Time, Co-ordinated (UTC) and Modified Julian Date (MJD) (see Annex F). This field is coded as 16 bits
giving the 16 least significant bits of MJD followed by 24 bits coded as 6 digits in 4-bit Binary Coded Decimal
(BCD). If the content creation date is undefined all bits of the field are set to 1.

8.6.18.11 OCI Creator Name Descriptor

8.6.18.11.1 Syntax

class OCICreatorNameDescriptor extends OCI_Descriptor
: bit(8) tag=OCICreatorNameDescrTag {

int i;
unsigned int(8) OCICreatorCount;
for (i=0; i<OCICreatorCount; i++) {

bit(24) languageCode[[i]];
bit(1) isUTF8_string;
aligned(8) unsigned int(8) OCICreatorLength[[i]];
if (isUTF8_string) then {

bit(8) OCICreatorName[[i]][OCICreatorLength];
} else {
bit(16) OCICreatorName[[i]][OCICreatorLength];

}

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 43

}
}

8.6.18.11.2 Semantics

The name of OCI creators descriptor indicates the name(s) of the OCI description creator(s). Each OCI creator
name may be in a different language.

OCICreatorCount – indicates the number of OCI creators.

languageCode[[i]] – contains the ISO 639-2:1998 bibliographic three character language code of the
language of the following text fields.

isUTF8_string – indicates that the subsequent string is encoded with one byte per character (UTF-8). Else it is
two byte per character.

OCICreatorLength[[i]] – specifies the length in characters of each OCI creator name.

OCICreatorName[[i]] – a Unicode (ISO/IEC 10646-1) encoded string that specifies the OCI creator name.

8.6.18.12 OCI Creation Date Descriptor

8.6.18.12.1 Syntax

class OCICreationDateDescriptor extends OCI_Descriptor
: bit(8) tag=OCICreationDateDescrTag {

bit(40) OCICreationDate;
}

8.6.18.12.2 Semantics

This descriptor identifies the creation date of the OCI description.

OCICreationDate - This 40-bit field contains the OCI creation date for the OCI data corresponding to the event
in question, in Co-ordinated Universal Time (UTC) and Modified Julian Date (MJD) (see Annex F). This field is
coded as 16 bits giving the 16 least significant bits of MJD followed by 24 bits coded as 6 digits in 4-bit Binary
Coded Decimal (BCD). If the OCI creation date is undefined all bits of the field are set to 1.

8.6.18.13 SMPTE Camera Position Descriptor

8.6.18.13.1 Syntax

class SmpteCameraPositionDescriptor extends OCI_Descriptor : bit (8)
tag=SmpteCameraPositionDescrTag {

unsigned int (8) cameraID;
unsigned int (8) parameterCount;
for (i=0; i<parameterCount; i++) {

bit (8) parameterID;
bit (32) parameter;

}
}

8.6.18.13.2 Semantics

The SMPTE metadata descriptor provides metadata defined by the Proposed SMPTE Standard 315M of “camera
positioning information conveyed by ancillary data packets.” The SMPTE 315M defines IDs and data formats for
the following parameters:

- camera relative position

- camera pan

- camera tilt

- camera roll

ISO/IEC 14496-1:2001(E)

44 © ISO/IEC 2001 – All rights reserved

- origin of world coordinate longitude

- origin of world coordinate latitude

- origin of world coordinate altitude

- vertical angle of view

- focus distance

- lens opening (iris or F-value)

- time address information

- object relative position

cameraID - contains the b(0-7) of C-ID of the UDW in Figure 6.

parameterCount - specifies the number of parameters and is equal to (the Data Count Word (DC) – 18) / 5.

parameterID - contains the b(0-7) of i-th IDn of the UDW.

parameter - contains the i-th Parameter n of the UDW (b(0-7) of each word).

8.6.18.13.3 Packet structure defined by SMPTE 315M

Ancillary data packet and space format is defined by ANSI/SMPTE 291M. The SMPTE 315M is one of the
registered formats for a specific application of user data space defined by the 291M. The structure of binary-type
camera positioning data packets described in the SMPTE 315M is illustrated in Figure 6.

Figure 6 - Binary-type camera positioning data packets (SMPTE 315M)

Ancillary data is defined as 10-bit words. B(0-7), b8 and b9 represent actual data, even parity for b(0-7) and not b8
respectively except ADF.

ADF: Ancillary Data Flag (000 h, 3ff h, 3ff h)

DID: Data Identification Word (2f0 h)

DBN: Data Block Number Word

DC: Data Count Word

UDW: User Data Words (up to 255 words)

LABEL: SMPTE label for metadata of class “camera positioning information” (16 words)

FORM: Data Type Identification Flag Word (1 word)

C-ID: Camera Identification Word (1 word)

IDn: Parameter Identification Word (1 word for each parameter)

Parameter
1

(4 words)

A
D
F

A
D
F

A
D
F

D
I
D

D
B
N

D
C

F
O
R
M

C
-
I
D

I
D
1

I
D
2

I
D
n

C
S

LABEL
(16 words)

Parameter
2

(4 words)

Parameter
n

(4 words)

UDW

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 45

Parameter n: Parameter Data Words (4 words for each parameter)

CS: Checksum Word

The 4 words LABEL(8-11) of LABEL(0-15) shall be set to ‘C’, ‘A’, ‘P’, ‘O’. The Data Type Identification Flag Word
(FORM) indicates the data type of the camera identification word (C-ID), parameter identification word (IDn) and
parameter data word (Parameter n) contained in the packet. In case of binary-type camera positioning data
FORM(0-1) shall be set to 0 h.

8.6.19 Extension Profile Level Descriptor

8.6.19.1 Syntax

class ExtensionProfileLevelDescriptor() extends BaseDescriptor : bit(8)
ExtensionProfileLevelDescrTag {

bit(8) profileLevelIndicationIndex;
bit(8) ODProfileLevelIndication;
bit(8) sceneProfileLevelIndication;
bit(8) audioProfileLevelIndication;
bit(8) visualProfileLevelIndication;
bit(8) graphicsProfileLevelIndication;
bit(8) MPEGJProfileLevelIndication;

}

8.6.19.2 Semantics

The ExtensionProfileLevelDescriptor conveys profile and level extension information. This descriptor is
used to signal a profile and level indication set and its unique index and can be extended by ISO to signal any
future set of profiles and levels.

profileLevelIndicationIndex – a unique identifier for the set of profile and level indications described in
this descriptor within the name scope defined by the IOD.

ODProfileLevelIndication – an indication of the profile and level required to process object descriptor
streams associated with the InitialObjectDescriptor containing this Extension Profile and Level descriptor.

sceneProfileLevelIndication – an indication of the profile and level required to process the scene graph
nodes within scene description streams associated with the InitialObjectDescriptor containing this
Extension Profile and Level descriptor.

audioProfileLevelIndication – an indication of the profile and level required to process audio streams
associated with the InitialObjectDescriptor containing this Extension Profile and Level descriptor.

visualProfileLevelIndication – an indication of the profile and level required to process visual streams
associated with the InitialObjectDescriptor containing this Extension Profile and Level descriptor.

graphicsProfileLevelIndication – an indication of the profile and level required to process graphics nodes
within scene description streams associated with the InitialObjectDescriptor containing this Extension
Profile and Level descriptor.

MPEGJProfileLevelIndication – an indication as defined in Table 13 of the MPEG-J profile and level
required to process the content associated with the InitialObjectDescriptor containing this Extension Profile and
Level descriptor.

ISO/IEC 14496-1:2001(E)

46 © ISO/IEC 2001 – All rights reserved

Table 13 - MPEGJProfileLevelIndication Values

Value Profile Level

0x00 Reserved for ISO use -
0x01 Personal profile L1
0x02 Main profile L1
0x03-0x7F reserved for ISO use -
0x80-0xFD user private -
0xFE no MPEG-J profile specified -
0xFF no MPEG-J capability required -
Note: Usage of the value 0xFE may indicate that the content described by this
InitialObjectDescriptor does not comply to any conformance point specified in ISO/IEC 14496-1

8.6.20 Profile Level Indication Index Descriptor

8.6.20.1 Syntax

class ProfileLevelIndicationIndexDescriptor () extends BaseDescriptor
: bit(8) ProfileLevelIndicationIndexDescrTag {

bit(8) profileLevelIndicationIndex;
}

8.6.20.2 Semantics

profileLevelIndicationIndex – a unique identifier for the set of profile and level indications described in
this descriptor within the name scope defined by the IOD.

8.7 Rules for Usage of the Object Description Framework

8.7.1 Aggregation of Elementary Stream Descriptors in a Single Object Descriptor

8.7.1.1 Overview

An object descriptor shall aggregate the descriptors for the set of elementary streams that is intended to be
associated to a single node of the scene description and that usually relate to a single audio-visual object. The set
of streams may convey a scaleable content representation as well as multiple alternative content representations,
e.g., multiple qualities or different languages. Additional streams with IPMP and object content information may be
attached.

These options are described by the ES_Descriptor syntax elements streamDependenceFlag,
dependsOn_ES_ID, as well as streamType. The semantic rules for the aggregation of elementary stream
descriptors within one object descriptor (OD) are specified in this subclause.

8.7.1.2 Aggregation of Elementary Streams with the same streamType

An OD may aggregate multiple ES_Descriptors with the same streamType of either visualStream, audioStream or
SceneDescriptionStream. However, descriptors for streams with two of these types shall not be mixed within one
OD.

8.7.1.3 Aggregation of Elementary Streams with Different streamTypes

In the following cases ESs with different streamType may be aggregated:

� An OD may aggregate zero or one additional ES_Descriptor with streamType = ObjectContentInfoStream
(see 8.4.2). This ObjectContentInfoStream shall be valid for the content conveyed through the other visual,
audio or scene description streams whose descriptors are aggregated in this OD.

� An OD may aggregate zero or one additional ES_Descriptors with streamType = ClockReferenceStream
(see 10.2.5). This ClockReferenceStream shall be valid for the ES within the name scope that refer to the
ES_ID of this ClockReferenceStream in their SLConfigDescriptor.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 47

� An OD may aggregate zero or more additional ES_Descriptors with streamType = IPMPStream (see 8.3.2).
This IPMPStream shall be valid for the content conveyed through the other visual, audio or scene description
streams whose descriptors are aggregated in this OD.

8.7.1.4 Aggregation of scene description streams and object descriptor streams

An object descriptor that aggregates one or more ES_Descriptors of streamType = SceneDescriptionStream may
aggregate any number of additional ES_Descriptors with streamType = ObjectDescriptorStream. ES_Descriptors
of streamType = ObjectDescriptorStream shall not be aggregated in object descriptors that do not contain
ES_Descriptors of streamType = SceneDescriptionStream.

This means that scene description and object descriptor streams are always combined within one object descriptor.
The dependencies between these streams are defined in 8.7.1.5.2.

8.7.1.5 Elementary Stream Dependencies

8.7.1.5.1 Independent elementary streams

ES_Descriptors within one OD with the same streamType of either audioStream, visualStream or
SceneDescriptionStream that have streamDependenceFlag=0 refer to independent elementary streams. Such
independent elementary streams shall convey alternative representations of the same content. Only one of these
representations shall be selected for use in the scene.

NOTE — Independent ESs should be ordered within an OD according to the content creator’s preference. The ES that is first in
the list of ES aggregated to one object descriptor should be preferable over an ES that follows later. In case of audio streams,
however, the selection should for obvious reasons be done according to the prefered language of the receiving terminal.

8.7.1.5.2 Dependent elementary streams

ES_Descriptors within one OD with the same streamType of either audioStream, visualStream,
SceneDescriptionStream or ObjectDescriptorStream that have streamDependenceFlag=1 refer to dependent
elementary streams. The ES_ID of the stream on which the dependent elementary stream depends is indicated by
dependsOn_ES_ID. The ES_Descriptor with this ES_ID shall be aggregated to the same OD. One independent
elementary stream per object descriptor and all its dependent elementary streams may be selected for concurrent
use in the scene.

Stream dependencies are governed by the following rules:

� For dependent ES of streamType equal to either audioStream or visualStream the dependent ES shall have
the same streamType as the ES on which it depends. This implies that the dependent stream contains
enhancement information to the one it depends on. The precise semantic meaning of the dependencies is
opaque at this layer.

� An ES with a streamType of SceneDescriptionStream shall only depend on an ES with streamType of
SceneDescriptionStream or ObjectDescriptorStream.

Dependency on an ObjectDescriptorStream implies that the ObjectDescriptorStream contains the object
descriptors that are refered to by this SceneDescriptionStream.

Dependency on a SceneDescriptionStream implies that the dependent stream contains enhancement
information to the one it depends on. The dependent SceneDescriptionStream shall depend on the same
ObjectDescriptorStream on which the other SceneDescriptionStream depends.

� An ES with a streamType of ObjectDescriptorStream shall only depend on an ES with a streamType of
SceneDescriptionStream. This dependency does not have implications for the object descriptor stream.

Only if a second stream with streamType of SceneDescriptionStream depends on this stream with
streamType = ObjectDescriptorStream, it implies that the second SceneDescriptionStream depends on the
first SceneDescriptionStream. The object descriptors in the ObjectDescriptorStream shall only be valid for the
second SceneDescriptionStream.

ISO/IEC 14496-1:2001(E)

48 © ISO/IEC 2001 – All rights reserved

� An ES that flows upstream, as indicated by DecoderConfigDescriptor.upStream = 1 shall always
depend upon another ES that has the upStream flag set to zero. This implies that this upstream is associated
to the downstream it depends on. If the downstream is an ObjectDescriptorStream or SceneDescriptionStream,
the upstream shall be associated to all downstreams specified in that ObjectDescriptorStream or
SceneDescriptionStream.

� The availability of the dependent stream is undefined if an ES_Descriptor for the stream it depends upon is not
available.

8.7.2 Linking Scene Description and Object Descriptors

8.7.2.1 Associating Object Descriptors to BIFS Nodes

Some BIFS nodes contain an url field. Such nodes are associated to their elementary stream resources (if any) via
an object descriptor. The association is established by means of the objectDescriptorID, as specified in
9.3.7.20.2. The name scope for this ID is specified in 8.7.2.4.

Each BIFS node requires a specific streamType (audio, visual, inlined scene description, etc.) for its associated
elementary streams. The associated object descriptor shall contain ES_Descriptors with this streamType. The
behavior of the terminal is undefined if an object descriptor contains ES_Descriptors with stream types that are
incompatible with the associated BIFS node.

Note that commands adding or removing object descriptors need not be co-incident in time with the addition or
removal of BIFS nodes in the scene description that refer to such an object descriptor. However, the behavior of
the terminal is undefined if a BIFS node in the scene description references an object descriptor that is no longer
valid.

The terminal shall gracefully handle references from the scene description to object descriptors that are not
currently available.

8.7.2.2 Multiple scene description and object description streams

An object descriptor that is associated to an Inline node of the scene description or that represents the primary
access to content compliant with the ISO/IEC 14496 specifications (initial object descriptor) aggregates as a
minimum, one scene description stream and the corresponding object descriptor stream (if additional elementary
streams need to be referenced).

However, it is permissible to split both the scene description and the object descriptors in multiple streams. This
allows a bandwidth-scaleable encoding of the scene description. Each stream shall contain a valid sequence of
access units as defined in 9.2.1.3 and 8.5.2, respectively. All resulting scene description streams and object
descriptor streams shall remain aggregated in a single object descriptor. The dependency mechanism shall be
used to indicate how the streams depend on each other.

All streams shall continue to be processed by a single scene description and object descriptor decoding process,
respectively. The time stamps of the access units in different streams shall be used to re-establish the original
order of access units.

NOTE — This form of partitioning of the scene description and the object descriptor streams in multiple streams is not visible in
the scene description itself.

8.7.2.3 Scene and Object Description in Case of Inline Nodes

The BIFS scene description allows to recursively partition a scene through the use of Inline nodes (see 9.4.2.62).
Each Inline node is associated to an object descriptor that points to at least one additional scene description
stream as well as another object descriptor stream (if additional elementary streams need to be referenced). An
example for such a hierarchical scene description can be found in 8.7.3.8.2.

8.7.2.4 Name Scope of Identifiers

The scope of the objectDescriptorID, ES_ID and IPMP_DescriptorID identifiers that label the object
descriptors, elementary stream descriptors and IPMP descriptors, respectively, is defined as follows. This definition

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 49

is based on the restriction that associated scene description and object descriptor streams shall always be
aggregated in a single object descriptor, as specified in 8.7.1.4. The following rule defines the name scope:

� Two objectDescriptorID, ES_ID or IPMP_DescriptorID as well as nodeID and ROUTEID identifiers
belong to the same name scope if and only if these identifiers occur in elementary streams with a streamType
of either ObjectDescriptorStream or SceneDescriptionStream that are aggregated in a single initial object
descriptor or a single object descriptor associated to an Inline node.

NOTE 1 — Hence, the difference between the two methods specified in 8.7.2.2 and 8.7.2.3 above to partition a scene
description in multiple streams is that the first method allows multiple scene description streams that refer to the same name
scope while an Inline node opens a new name scope.

NOTE 2 — This implies that a URL in an object descriptor opens a new name scope since it points to an object descriptor that is
not carried in the same ObjectDescriptorStream.

NOTE 3 — It is recommendable to extend the name scope for the stream related identifiers, namely, ES_ID and
IPMP_DescriptorID, to the underlying communication session that is established as described in 8.7.3.6. This implies that those
identifiers will be unique within such a communication session.

8.7.2.5 Reuse of identifiers

Within a single name scope an ES_ID identifier shall always refer to a single instance of an elementary stream.

Note: If two ES_Descriptors within two object descriptors reference a given ES_ID, this means that the second reference may
not receive the stream content from the beginning if the first reference has already started the stream.

For reasons of error resilience, it is recommended not to reuse objectDescriptorID and ES_ID identifiers to
identify more than one object or elementary stream, respectively, within one presentation. That means, if an object
descriptor or elementary stream descriptor is removed by means of an OD command and later on reinstalled with
another OD command, then it shall still point to the same content item as before.

8.7.3 ISO/IEC 14496 Content Access

8.7.3.1 Introduction

In order to access ISO/IEC 14496 compliant content it is a pre-condition that an initial object descriptor to such
content is known through means outside the scope of ISO/IEC 14496. The subsequent content access procedure
is specified conceptually, using a number of walk throughs. Its precise definition depends on the chosen delivery
layer.

For applications that implement the DMIF Application Interface (DAI) specified in ISO/IEC 14496-6 which abstracts
the delivery layer, a mapping of the conceptual content access procedure to calls of the DAI is specified in 8.7.3.9.

The content access procedure determines the set of required elementary streams, requests their delivery and
associates them to the scene description. The selection of a subset of elementary streams suitable for a specific
ISO/IEC 14496 terminal is possible, either based on profiles or on inspection of the set of object descriptors.

8.7.3.2 The Initial Object Descriptor

Initial object descriptors convey information about the profiles required by the terminal compliant with ISO/IEC
14496 specifications to be able to process the described content. This profile information summarizes the
complexity of the content referenced directly or indirectly through this initial object descriptor, i.e., it indicates the
overall terminal capabilities required to decode and present this content. Therefore initial object descriptors
constitute self-contained access points to content compliant with ISO/IEC 14496 specifications.

There are two constraints to this general statement:

� If the includeInlineProfileLevelFlag of the initial object descriptor is not set, the complexity of any
inlined content is not included in the profile indications.

� In addition to the elementary streams that are decodable by the terminal conforming to the indicated profiles,
alternate content representations might be available. This is further explained in 8.7.3.4.

ISO/IEC 14496-1:2001(E)

50 © ISO/IEC 2001 – All rights reserved

An initial object descriptor may be conveyed by means not defined in ISO/IEC 14496. The content may be
accessed starting from the elementary streams that are described by this initial object descriptor, usually one or
more scene description streams and zero or more object descriptor streams.

Content refered to by an initial object descriptor may itself be referenced from another piece of ISO/IEC 14496
content. In this case, the initial object descriptor will be conveyed in an object descriptor stream and the OD_IDs of
both initial object descriptors and ordinary object descriptors belong to the same name scope.

Ordinary object descriptors may be used as well to describe scene description and object descriptor streams.
However, since they do not carry profile information, they can only be used to access content if that information is
either not required by the terminal or is obtained by other means.

8.7.3.3 Usage of URLs in the Object Descriptor Framework

URLs in the object description framework serve to locate either inlined ISO/IEC 14496 content or the elementary
stream data associated to individual audio-visual objects.

URLs in ES_Descriptors locate elementary stream data that shall be delivered as SL-packetized stream by the
delivery entity associated to the current name scope. The complete description of the stream (its ES_Descriptor) is
available locally.

URLs in object descriptors locate an object descriptor at a remote location. Only the content of this object
descriptor shall be returned by the delivery entity upon access to this URL. This implies that the description of the
resources for the associated BIFS node or the inlined content is only available at the remote location. Note,
however, that depending on the value of includeInlineProfileLevelFlag in the initial object descriptor, the
global resources needed may already be known (i.e., including remote, inlined portions).

8.7.3.4 Selection of Elementary Streams for an Audio-Visual Object

Elementary streams are attached through their object descriptor to appropriate BIFS nodes which, in most cases,
constitute the representation of a single audio-visual object in the scene. The selection of one or more ESs for each
BIFS node may be governed by the profile indications that are conveyed in the initial object descriptor. All object
descriptors shall at least include one elementary stream with suitable object type to satisfy the initially signaled
profiles.

Additionally, object descriptors may aggregate ES_Descriptors for elementary streams that require more computing
or bandwidth resources. Those elementary streams may be used by the receiving terminal if it is capable of
processing them.

In case initial object descriptors do not indicate any profile and level or if profile and level indications are
disregarded, an alternative to the profile driven selection of streams exists. The receiving terminal may evaluate the
ES_Descriptors of all available elementary streams for each BIFS node and choose by some non-standardized
way for which subset it has sufficient resources to decode them while observing the constraints specified in this
subclause.

NOTE — Some restrictions on the selection of and access to elementary streams might exist if a set of elementary streams
shares a single object time base (see 10.2.6).

8.7.3.5 Content access in “push” and “pull” scenarios

In an interactive, or “pull” scenario, the receiving terminal actively requests the establishment of sessions and the
delivery of content, i.e., streams. This usually involves a session and channel set up protocol between sender and
receiver. This protocol is not specified here. However, the conceptual steps to be performed are the same in all
cases and are specified in the subsequent clauses.

In a broadcast, or “push” scenario, the receiving terminal passively processes what it receives. Instead of issuing
requests for session or channel set up the receiving terminal shall evaluate the relevant descriptive information that
associates ES_IDs to their transport channel. The syntax and semantics of this information is outside the scope of
ISO/IEC 14496, however, it needs to be present in any delivery layer implementation. This allows the terminal to
gain access to the elementary streams forming part of the content.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 51

8.7.3.6 Content access through a known Object Descriptor

8.7.3.6.1 Pre-conditions

� An object descriptor has been acquired. This may be an initial object descriptor.

� The object descriptor contains ES_Descriptors pointing to object descriptor stream(s) and scene description
stream(s) using ES_IDs.

� A communication session to the source of these streams is established.

� A mechanism exists to open a channel that takes user data as input and provides some returned data as
output.

8.7.3.6.2 Content Access Procedure

The content access procedure shall be equivalent to the following:

1. The object descriptor is evaluated and the ES_ID for the streams that are to be opened are determined.

2. Requests for opening the selected ESs are made, using a suitable channel set up mechanism with the ES_IDs
as parameter.

3. The channel set up mechanism shall return handles to the streams that correspond to the requested list of ESs.

4. Requests for delivery of the selected ESs are made.

5. Interactive scenarios: Delivery of streams starts. All scenarios: The streams now become accessible.

6. Scene description and object descriptor stream are evaluated.

7. Further streams are opened as needed with the same procedure, starting at step 1.

8.7.3.7 Content access through a URL in an Object Desciptor

8.7.3.7.1 Pre-conditions

� A URL to an object descriptor or an initial object descriptor has been acquired.

� A mechanism exists to open a communication session that takes a URL as input and provides some returned
data as output.

8.7.3.7.2 Content access procedure

The content access procedure shall be equivalent to the following:

1. A connection to the source of the URL is made, using a suitable service set up call.

2. The service set up call shall return data consisting of a single object descriptor.

3. Continue at step 1 in 8.7.3.6.2.

8.7.3.8 Content access through a URL in an elementary stream descriptor

8.7.3.8.1 Pre-conditions

� An ES_Descriptor pointing to a stream through a URL has been aquired. (Note that the ES_Descriptor fully
specifies the configuration of the stream.)

� A mechanism exists to open a communication session that takes a URL as input and provides some returned
data as output.

ISO/IEC 14496-1:2001(E)

52 © ISO/IEC 2001 – All rights reserved

� A mechanism exists to open a channel that takes user data as input and provides some returned data as
output.

8.7.3.8.2 Content access procedure

The content access procedure shall be equivalent to the following:

1. A request to open the communication session is made, using a suitable session set up mechanism with the URL
as parameter.

2. The session set up mechanism shall return a handle to the session that corresponds to the requested URL.

3. Request to open the stream is made, using a suitable channel set up mechanism.

4. The channel set up mechanism shall return a handle to the stream that corresponds to the originally requested
URL.

5. Requests for delivery of the selected stream are made.

6. Interactive scenarios: Delivery of stream starts. All scenarios: The stream now becomes accessible.

EXAMPLE � Access to Complex Content

The example in Figure 7 shows a complex piece of ISO/IEC 14496 content, consisting of three parts. The upper part is a scene
accessed through its initial object descriptor. It contains, among others a visual and an audio stream. A second part of the scene
is inlined and accessed through its initial object descriptor that is pointed to (via URL) in the object descriptor stream of the first
scene. Utilization of the initial object descriptor allows the signaling of profile information for the second scene. Therefore this
scene may also be used without the first scene. The second scene contains, among others, a scaleably encoded visual object
and an audio object. A third scene is inlined and accessed via the ES_IDs of its object descriptor and scene description
streams. These ES_IDs are known from an object descriptor conveyed in the object descriptor stream of the second scene.
Note that this third scene is not accessed through an initial object descriptor. Therefore the profile information for this scene
need to be included in the profile information for the second scene.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 53

initial
ObjectDescriptor

initial
ObjectDescriptor

ES_DescrES_Descr

ES_DescrES_Descr

Visual Stream

Scene Description Stream

Object Descriptor Stream

ObjectDescriptorID

ES_ID

ES_ID

ES_ID

ObjectDescriptorObjectDescriptor

ES_DescriptorES_Descriptor

initial
ObjectDescriptor

initial
ObjectDescriptor

ES_DescrES_Descr

ES_DescrES_Descr

Object
Descriptor

Object
Descriptor

Initial
Object

Descriptor

URL

Initial
Object

Descriptor

URL

ObjectDescriptorUpdate

ES_DES_D

... ...

......

e.g. Movie
Texture

e.g. Movie
Texture

Scene Description

BIFS Command (Replace Scene)

e.g. Audio
Source

e.g. Audio
Source

InlineInline

Audio Stream

Visual Stream (e.g. temporal enhancement)

Visual Stream (e.g. base layer)

Scene Description Stream

Object Descriptor Stream

ObjectDescriptorID

ES_ID

ES_ID

ES_ID

ES_ID

ObjectDescriptorObjectDescriptor

ES_DescriptorES_Descriptor

ES_DescriptorES_Descriptor

Object
Descriptor

Object
Descriptor

Object
Descriptor

Object
Descriptor

ObjectDescriptorUpdate

ES_DES_D
ES_DES_D

ES_DES_D

... ...

......

Audio Stream

Scene Description Stream

Object Descriptor Stream

Scene Description

ES_ID

ES_ID

ES_ID

ObjectDescriptorObjectDescriptor

ES_DescriptorES_Descriptor

Object
Descriptor

Object
Descriptor

Object
Descriptor

Object
Descriptor

ObjectDescriptorUpdate

ES_DES_D

... ...

......

BIFS Command (Replace Scene)

e.g. Audio
Source

e.g. Audio
Source

Audio Stream

ES_DES_D

e.g. Movie
Texture

e.g. Movie
Texture

Scene Description

BIFS Command (Replace Scene)

e.g. Audio
Source

e.g. Audio
Source

InlineInline

Figure 7 - Complex content example

ISO/IEC 14496-1:2001(E)

54 © ISO/IEC 2001 – All rights reserved

8.7.3.9 Mapping of Content Access Procedure to DAI calls

The following two DAI primitives, quoted from ISO/IEC 14496-6, subclause 10.4, are required to implement the
content access procedure described in 8.7.3.6 to 8.7.3.8:

DA_ServiceAttach (IN: URL, uuDataInBuffer, uuDataInLen;
OUT: response, serviceSessionId, uuDataOutBuffer, uuDataOutLen)

DA_ChannelAdd (IN: serviceSessionId, loop(qosDescriptor, direction, uuDataInBuffer, uuDataInLen);
OUT: loop(response, channelHandle, uuDataOutBuffer, uuDataOutLen))

DA_ServiceAttach is used to implement steps 1 and 2 of 8.7.3.7.2. The URL shall be passed to the IN: URL
parameter. UuDataInBuffer shall remain empty. The returned serviceSessionId shall be kept for future reference to
this URL. UuDataOutBuffer shall contain a single object descriptor.

DA_ChannelAdd is used to implement steps 2 and 3 of 8.7.3.6.2. serviceSessionId shall be the identifier for the
service session that has supplied the object descriptor that includes the ES_Descriptor that is currently processed.
QosDescriptor shall be the QoS_Descriptor of this ES_Descriptor, direction shall indicate upstream or downstream
channels according to the DecoderConfigDescriptor.upstream flag. UuDataInBuffer shall contain the ES_ID
of this ES_Descriptor. On successful return, channelHandle shall contain a valid, however, not normative handle to
the accessible stream.

DA_ChannelAdd is used to implement steps 1 and 2 of 8.7.3.8.2. serviceSessionId shall be the identifier for the
service session that has supplied the object descriptor that includes the ES_Descriptor that is currently processed.
QosDescriptor shall be the QoS_Descriptor of this ES_Descriptor, direction shall indicate upstream or downstream
channels according to the DecoderConfigDescriptor.upstream flag. UuDataInBuffer shall contain the URL
of this ES_Descriptor. On successful return, channelHandle shall contain a valid, however, not normative handle to
the accessible stream.

NOTE 1 — It is a duty of the service to discriminate between the two cases with either ES_ID or URL as parameters to
uuDataInBuffer in DA_ChannelAdd.

NOTE 2 � Step 4 in 8.7.3.6.2 and step 3 in 8.7.3.8.2 are currently not mapped to a DAI call in a normative way. It may be
implemented using the DA_UserCommand() primitive.

The set up example in the following figure conveys an initial object descriptor that points to one
SceneDescriptionStream, an optional ObjectDescriptorStream and additional optional SceneDescriptionStreams or
ObjectDescriptorStreams. The first request to the DAI will be a DA_ServiceAttach() with the content address as a
parameter. This call will return an initial object descriptor. The ES_IDs in the contained ES_Descriptors will be used
as parameters to a DA_ChannelAdd() that will return handles to the corresponding channels.

Additional streams (if any) that are identified when processing the content of the object descriptor stream(s) are
subsequently opened using the same procedure. The object descriptor stream is not required to be present if no
further audio- or visual streams or inlined scene description streams form part of the content.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 55

Content Address

Initial

Object

Descriptor

�

�

�

D

A

I

�

�

�

ES_descriptor (optional)
for ObjectDescriptorStream

ES_ID_a

ES_descriptor
for SceneDescriptionStream

ES_descriptor (optional)
for SceneDescriptionStream
or ObjectDescriptorStream

ES_ID_b

ES_ID_x

handle for
ObjectDescriptorStream

handle for
SceneDescriptionStream

handle for
SceneDescriptionStream or
ObjectDescriptorStream

Figure 8 - Requesting stream delivery through the DAI

8.8 Usage of the IPMP System interface

8.8.1 Overview

IPMP elementary streams and descriptors may be used in a variety of ways. For instance, IPMP elementary
streams may convey time-variant IPMP information such as keys that change periodically. An IPMP elementary
stream may be associated with a given elementary stream or set of elementary streams. Similarly, IPMP
descriptors may be used to convey time-invariant or slowly changing IPMP information associated with a given
elementary stream or set of elementary streams. This subclause specifies methods how to associate an IPMP
system to an elementary stream or a set of elementary streams.

8.8.2 Association of an IPMP System with IS0/IEC 14496 content

8.8.2.1 Association in the initial object descriptor

An IPMP System may be associated with ISO/IEC 14496 content in the initial object descriptor. In that case the
initial object descriptor shall aggregate in addition to the ES_Descriptors for scene description and object descriptor
streams one or more ES_Descriptors that reference one or more IPMP elementary streams. This implies that all
the elementary streams that are described through this initial object descriptor are governed by the one or more
IPMP Systems that are identified within the one or more IPMP streams.

8.8.2.2 Association in other object descriptors

An IPMP System may be associated with ISO/IEC 14496 content in an object descriptor in three ways:

In the first case, the object descriptor aggregates in addition to the ES_Descriptors for the content elementary
streams one or more ES_Descriptors that reference one or more IPMP elementary streams. This implies that all
the content elementary streams described through this object descriptor are governed by the one or more IPMP
Systems that are identified within the one or more IPMP streams. Note that an ES_Descriptor that describes an
IPMP stream may contain references to IPMP_Descriptors.

ISO/IEC 14496-1:2001(E)

56 © ISO/IEC 2001 – All rights reserved

The second method is to include one or more IPMP_DescriptorPointers in the object descriptor. This implies that all
content elementary streams described by this object descriptor are governed by the IPMP System(s) that is/are
identified within the referenced IPMP descriptor(s).

The third method is to include IPMP_DescriptorPointers in the ES_Descriptors embedded in this object descriptor.
This implies that the elementary stream referenced by such an ES_Descriptor is controlled by an IPMP System.

8.8.3 IPMP of Object Descriptor streams

Object Descriptor streams shall not be affected by IPMP Systems, i.e., they shall always be available without
protection.

An IPMP_Descriptor associated with an object descriptor stream through an IPMP_DescriptorPointer implies that
an IPMP System controls all elementary streams that are referred to by this object descriptor stream.

8.8.4 IPMP of Scene Description streams

Scene description streams are treated like any media stream, i.e. they may be managed by an IPMP System.

An IPMP_Descriptor associated with a scene description stream implies that the IPMP System controls this scene
description stream.

There are two ways to protect part of a scene description (or to apply different IPMP Systems to different
components of a given scene):

The first method exploits the fact that it is permissible to have more than one scene description stream associated
with one object descriptor (see 8.7.2.2). Such a split of the scene description can be freely designed by a content
author, for example, putting a basic scene description into the first stream and adding one or more additional scene
description streams that enhance this basic scene using BIFS updates.

The second method is to structure the scene using one or more Inline nodes (see 9.4.2.62). Each Inline node
refers to one or more additional scene description streams, each of which might use a different IPMP System.

8.8.5 Usage of URLs in managed and protected content

8.8.5.1 URLs in the BIFS Scene Description

ISO/IEC 14496 does not specify compliance points for content that uses BIFS URLs that do not point to an object
descriptor. Equally, no normative way to apply an IPMP System to such links exists. The behavior of an IPMP-
enabled terminal that encounters such links is undefined.

8.8.5.2 URLs in Object Descriptors

URLs in object descriptors point to other remote object descriptors. This merely constitutes an indirection and
should not adversely affect the behavior of the IPMP System that might be invoked through this remote object
descriptor.

NOTE — The only difference is that while the original site might be trusted, the referred one might not. Further corrective actions
to guard against this condition are not in the scope of ISO/IEC 14496.

8.8.5.3 URLs in ES_Descriptors

URLs in ES descriptors are used to access elementary streams remotely. This merely constitutes an indirection
and therefore does not adversely affect the behavior of the IPMP System that might be invoked through this remote
object descriptor.

NOTE — The only difference is that while the original site might be trusted, the referred one might not. Further corrective actions
to guard against this condition are not in the scope of ISO/IEC 14496.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 57

8.8.6 IPMP Decoding Process

Audio DB
Audio

Decode

IPMP DB

Video DB
Video

Decode
Video CB

C
om

posite
Elementary Stream Interface

BIFS DB

Audio CB

IPMP System(s)

OD DB
OD

Decode

BIFS
Decode

IPMP-ES

Decoded
BIFS BIFS Tree

IPMP-Ds

DMIF

D
M

U
X

Possible IPMP
Control Points

R
ender

Figure 9 - IPMP system in the ISO/IEC 14496 terminal architecture

Figure 9 depicts the injection of an IPMP System with respect to the MPEG-4 terminal. IPMP System specific data
is supplied to the IPMP System via IPMP streams and/or IPMP descriptors, and the IPMP system releases
protected content after the sync layer.

Each elementary stream under the control of an IPMP System has the conceptual element of a stream flow
controller. Stream flow control can take place between the the SyncLayer decoder and the decoder buffer. As the
figure indicates, elements of IPMP control may take place at other points in the terminal including, after decoding
(as with some watermarking systems) or in the decoded BIFS stream, or after the composition buffers have been
written, or in the BIFS scene tree. Stream flow controllers either enable or disable processing of an elementary
stream in a non-normative way that depends on the status information provided by the IPMP System.

Finally, the IPMP System must at a minimum:

1. Process the IPMP stream and descriptor

2. Appropriately manage (e.g. decrypt and release) protected elementary streams.

The initialization process of the IPMP System is not specified except that it shall not unduly delay the content
access process as specified in 8.7.3.

ISO/IEC 14496-1:2001(E)

58 © ISO/IEC 2001 – All rights reserved

9 Scene Description

9.1 Introduction

9.1.1 Scope

ISO/IEC 14496 addresses the coding of audio-visual objects of various types: natural video and audio objects as
well as textures, text, 2- and 3-dimensional graphics, and also synthetic music and sound effects. To reconstruct a
multimedia scene at the terminal, it is hence not sufficient to transmit the raw audio-visual data to a receiving
terminal. Additional information is needed in order to combine this audio-visual data at the terminal and construct
and present to the end user a meaningful multimedia scene. This information, called scene description, determines
the placement of audio-visual objects in space and time and is transmitted together with the coded objects as
illustrated in Figure 10. Note that the scene description only describes the structure of the scene. The action of
assembling these objects in the same representation space is called composition. The action of transforming these
audio-visual objects from a common representation space to a specific presentation device (i.e., speakers and a
viewing window) is called rendering.

multiplexed
downstream control / data

multiplexed
upstream control / data

audiovisual
presentation

3D objects

2D background

voice

sprite

hypothetical viewer

projection

video
compositor

plane

audio
compositor

scene
coordinate

system
x

y

z user events

audiovisual

speaker display
user input

Figure 10 - An example of an object-based multimedia scene

Independent coding of different objects may achieve higher compression, and also brings the ability to manipulate
content at the terminal. The behaviors of objects and their response to user inputs can thus also be represented in
the scene description.

The scene description framework used in ISO/IEC 14496-1 is based largely on ISO/IEC 14772-1:1998 (Virtual
Reality Modeling Language – VRML).

9.1.2 Composition and Rendering

ISO/IEC 14496-1 defines the syntax and semantics of bitstreams that describe the spatio-temporal relationships of
audio-visual objects. For visual data, particular composition algorithms are not mandated since they are
implementation-dependent; for audio data, subclause 9.2.2.13 and the semantics of the AudioBIFS nodes

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 59

normatively define the composition process. The manner in which the composed scene is presented to the user is
not specified for audio or visual data. The scene description representation is termed “BInary Format for Scenes”
(BIFS).

9.1.3 Scene Description

In order to facilitate the development of authoring, editing and interaction tools, scene descriptions are coded
independently from the audio-visual media that form part of the scene. This permits modification of the scene
without having to decode or process in any way the audio-visual media. The following clauses detail the scene
description capabilities that are provided by ISO/IEC 14496-1.

9.1.3.1 Grouping of audio-visual objects

A scene description follows a hierarchical structure that can be represented as a graph. Nodes of the graph form
audio-visual objects, as illustrated in Figure 11. The structure is not necessarily static; nodes may be added,
deleted or be modified.

scene

globe desk

person audiovisual
presentation

2D background furniture

voice sprite

Figure 11 - Logical structure of example scene

9.1.3.2 Spatio-Temporal positioning of objects

Audio-visual objects have both a spatial and a temporal extent. Complex audio-visual objects are constructed by
combining appropriate scene description nodes to build up the scene graph. Audio-visual objects may be located in
2D or 3D space. Each audio-visual object has a local co-ordinate system. A local co-ordinate system is one in
which the audio-visual object has a pre-defined (but possibly varying) spatio-temporal location and scale (size and
orientation). Audio-visual objects are positioned in a scene by specifying a co-ordinate transformation from the
object’s local co-ordinate system into another co-ordinate system defined by a parent node in the scene graph.

9.1.3.3 Attributes of audio-visual objects

Scene description nodes expose a set of parameters through which aspects of their appearance and behavior can
be controlled.

EXAMPLE � the volume of a sound; the color of a synthetic visual object; the source of a streaming video.

9.1.3.4 Behavior of audio-visual objects

ISO/IEC 14496-1 provides tools for enabling dynamic scene behavior and user interaction with the presented
content. User interaction can be separated into two major categories: client-side and server-side. Client-side
interaction is an integral part of the scene description described herein. Server-side interaction is not dealt with.

Client-side interaction involves content manipulation that is handled locally at the end-user’s terminal. It consists of
the modification of attributes of scene objects according to specified user actions.

ISO/IEC 14496-1:2001(E)

60 © ISO/IEC 2001 – All rights reserved

EXAMPLE � A user can click on a scene to start an animation or video sequence. The facilities for describing such interactive
behavior are part of the scene description, thus ensuring the same behavior in all terminals conforming to ISO/IEC 14496-1.

9.2 Concepts

9.2.1 BIFS Elementary Streams

9.2.1.1 Overview

BIFS is a compact binary format representing a pre-defined set of audio-visual objects, their behaviors, and their
spatio-temporal relationships. The BIFS scene description may, in general, be time-varying. Consequently, BIFS
data is carried in a dedicated elementary stream and is subject to the provisions of the systems decoder model
(see clause 7). Portions of BIFS data that become valid at a given point in time are contained in BIFS
CommandFrames or AnimationFrames and are delivered within time-stamped access units. Note that the initial
BIFS scene is sent as a BIFS-Command, although it is not required, in general, that a BIFS CommandFrame
contains a complete BIFS scene description.

9.2.1.2 BIFS Decoder Configuration

BIFS configuration information is contained in a BIFSConfig (see 9.3.5.2) syntax structure, which is transmitted
as DecoderSpecificInfo for the BIFS elementary stream in the corresponding object descriptor (see 8.6.7).
This gives basic information that must be known by the terminal in order to parse the BIFS elementary stream. In
particular, it indicates whether the stream consists of BIFS-Command or BIFS-Anim entities.

9.2.1.3 BIFS Access Units

A BIFS data access unit consists of one BIFS CommandFrame or AnimationFrame, as defined in 9.3.6.2 and
9.3.8.2, respectively. The BIFS CommandFrame or AnimationFrame shall convey all the data that is to be
processed at any given instant in time. Access units in BIFS streams shall be labelled and time-stamped by
suitable means. This shall be done via the related flags and the composition time stamps (CTS), respectively, in the
SL packet header (see 10.2.4). The composition time indicates the point in time at which the CommandFrame or
AnimationFrame embedded in a BIFS access unit shall become valid. This means that any changes to audio-
visual objects that are described in the BIFS access unit will become visible or audible at precisely this time in an
ideal compositor, unless a different behavior is specified by the fields of their nodes. Decoding and composition
time for a BIFS access unit shall always have the same value.

An access unit does not necessarily convey a complete scene. In that case it just modifies the persistent state of
the scene description. However, if an access unit conveys a complete scene as required at a given point in time it
shall set the randomAccessPointFlag in the SL packet header to ‘1’ for this access unit. Otherwise, the
randomAccessPointFlag shall be set to ‘0’.

9.2.1.4 Time base for BIFS streams

The time base associated to a BIFS stream shall be indicated by suitable means. This shall be done by means of
object clock reference time stamps in the SL packet headers (see 10.2.4) for this stream or by indicating the
elementary stream from which this BIFS stream inherits the time base (see 10.2.3). All time stamps in the SL-
packetized BIFS stream refer to this time base.

9.2.1.5 Multiple BIFS streams

Scene description data may be conveyed in more than one BIFS elementary streams. Two distinct mechanisms
exist to associate a set of BIFS elementary streams to a single scene.

The first method uses Inline nodes (see 9.4.2.62) in a BIFS scene description. Each such node refers to further
BIFS elementary streams. In this case, multiple BIFS streams have a hierarchical dependency. Each Inline node
opens a new name scope for the identifiers used to label BIFS elements (nodeID, ROUTEID,
objectDescriptorID). Therefore, it is not possible to pass events between parts of a scene that reside below
different Inline nodes.

EXAMPLE 1 � An application of hierarchical BIFS streams is a multi-user virtual conferencing scene, where sub-scenes
originate from different sources. Usually, it is neither possible nor useful to specify interaction between two such disjoint parts of
the scene.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 61

The second method to associate multiple BIFS elementary streams to a single scene is to group their elementary
stream descriptors in a single object descriptor (see 8.7.2.2). In this case, these BIFS streams share the same
scope for the identifiers they use (nodeID, ROUTEID, objectDescriptorID). This allows a single scene to be
partitioned into multiple streams.

EXAMPLE 2 � An application may offer a presentation with different levels of detail, corresponding to different data rates and
different computational complexity. By sharing the same name scope, the more detailed scene description can build on the
simple one, rather than sending the entire scene again.

9.2.1.6 Time

9.2.1.6.1 Time-dependent nodes

The semantics of the loop, startTime and stopTime exposedFields and the isActive eventOut in time-
dependent nodes are as described in ISO/IEC 14772-1:1998, subclause 4.6.9. startTime, stopTime and loop
apply only to the local start, pause and restart of media and do not affect the delivery of the stream attached to the
time dependent node. ISO/IEC 14496-1 has the following time-dependent nodes: AnimationStream,
AudioBuffer, AudioClip, AudioSource, MovieTexture and TimeSensor.

9.2.1.6.2 Time fields in BIFS nodes

Several BIFS nodes have fields of type SFTime that identify a point in time at which an event occurs (change of a
parameter value, start of a media stream, etc). Depending on the individual field semantics, these fields may
contain time values that refer either to an absolute position on the time line of the BIFS stream or that define a time
duration.

As defined in 9.2.1.4, the speed of the flow of time for events in a BIFS stream is determined by the time base of
the BIFS stream. This determines unambiguously durations expressed by relative SFTime values like the
cycleTime field of the TimeSensor node.

The semantics of some SFTime fields is such that the time values shall represent an absolute position on the time
line of the BIFS stream (e.g. startTime in MovieTexture). This absolute position is defined as follows:

Each node in the scene description has an associated point in time at which it is inserted in the scene graph or at
which an SFTime field in such a node is updated through a CommandFrame in a BIFS access unit (see 9.2.1.3).
The value in the SFTime field as coded in the delivered BIFS command is the positive offset from this point in time
in seconds. The absolute position on the time line shall therefore be calculated as the sum of the composition time
of the BIFS access unit and the value of the SFTime field.

NOTE 1 — Absolute time in ISO/IEC 14772-1:1998 is defined slightly differently. Due to the non-streamed nature of the scene
description in that case, absolute time corresponds to wallclock time in ISO/IEC 14772-1.

NOTE 2 — The SFTime fields that define the start or stop of a media stream are relative to the BIFS time base. If the time base
of the media stream is a different one, it is not generally possible to set a startTime that corresponds exactly to the
composition time of a composition unit of this media stream.

EXAMPLE � The example in Figure 12 shows a BIFS access unit that is to become valid at CTS. It conveys a node that has an
associated media elementary stream. The startTime of this node is set to a positive value �t. Hence, startTime will occur �t
seconds after the CTS of the BIFS access unit that has incorporated this node (or the value of the startTime field) in the scene
graph.

ISO/IEC 14496-1:2001(E)

62 © ISO/IEC 2001 – All rights reserved

OCRstream

BIFS time line

BIFS stream

OCR OCR OCR OCR OCR

BIFS AU BIFS AU

CTS

Media time line

Media stream CU CU CU CU CU CU CU CU CU CU CU CU CU CU CU CU

0

0

�t

CTS+����t

Figure 12 - Media start times and CTS

9.2.2 BIFS Scene Graph

9.2.2.1 Structure of the BIFS scene graph

Conceptually, BIFS scenes represent (as in ISO/IEC 14772-1:1998) a set of visual and audio primitives distributed
in a directed acyclic graph, in a 3D space. However, BIFS scenes may fall into several sub-categories representing
particular cases of this conceptual model. In particular, BIFS scene descriptions support scenes composed of:

� 2D primitives (only)

� 3D primitives (only)

� A combination of 2D and 3D primitives

� Audio primitives (only)

In scenes combining 2D and 3D primitives, the following possibilities exist:

� Complete 2D and 3D scenes layered in a 2D space with depth

� 2D and 3D scenes used as texture maps for 2D or 3D primitives

� 2D scenes drawn in the local X-Y plane of the local co-ordinate system in a 3D scene

Figure 13 describes a typical BIFS scene structure.

A BIFS scene shall start with a one of the following nodes: OrderedGroup, Group, Layer2D, Layer3D. When the
profile used enables visual elements to be composed, the first node indicates the co-ordinate system and context
(2D or 3D) to be used for the children of that node. The following rules apply:

� Scene starts with a Layer2D or OrderedGroup node: A 2D co-ordinate system and context is assumed.

� Scene starts with a Layer3D or Group node : A 3D co-ordinate system and context is assumed.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 63

2D Layer-2

3D Layer-1

3D Obj-1

3D Layer-2

3D Obj-2

3D Obj-3

3D Obj-4

3D Obj-5

root
2DLayer

2D Layer-1

2D Obj-1

2D Obj- 2

2D Obj-3

3D Obj-4

Layers
Scene graph

3D
Scene graph

2D
Scene graph

Pointer to 2D scene

2D Scene-1

3D Scene-1 3D Scene-2

Figure 13 - Scene graph example.

The hierarchy of three different scene graphs is shown: a 2D graphics scene graph and two 3D graphics scene
graphs combined with the 2D scene via layer nodes. As shown in the picture, the 3D Layer-2 is the same scene as
3D Layer-1, but the viewpoint may be different. The 3D Obj-3 is an Appearance node that uses the 2D Scene-1 as
a texture node.

9.2.2.2 2D Co-ordinate System

The origin of the 2D co-ordinate system is positioned in the center of the rendering area, the x-axis is positive to the
right, and the y-axis is positive upwards.

The width of the rendering area represents -1.0 to +1.0 (meters) on the x-axis (see Figure 14). The extent of the y-
axis in the positive and negative directions is determined by the aspect ratio of the rendering area so that the unit of
distance is equal in both directions. The rendering area is either the entire screen, or window on a computer
screen, when viewing a single 2D scene, or the rectangular area defined by the texture used in a
CompositeTexture2D node, or a Layer2D node that contains a subordinate 2D scene description.

ISO/IEC 14496-1:2001(E)

64 © ISO/IEC 2001 – All rights reserved

-1.0 +1.0o

+AR-1

-AR-1

Figure 14 - 2D co-ordinate system (AR = Aspect Ratio)

9.2.2.3 3D Co-ordinate System

The 3D co-ordinate system is as described in ISO/IEC 14772-1:1998, subclause 4.4.5. When 2D objects are
described in a 3D space, they are drawn in the local (x,y) plane (z=0), and the units used are those of the 3D co-
ordinate system for the x and y directions.

9.2.2.4 Mixing 2D and 3D scenes

A single BIFS scene may contain both 2D and 3D elements. The following methods exist:

� 2D primitives may be placed in a 3D scene graph. In this cased, the 2D primitives are drawn in the local (x,y)
plane, and use the local coordinate system, restricted to this (x,y) plane.

� 2D and 3D scenes may be composed and overlapped on the screen using Layer2D and Layer3D nodes.
This is useful, for instance, when it is desirable to have 2D interfaces to 3D worlds ("head up" display), or a 3D
insert in a 2D scene.

� 2D and 3D scenes may be mapped onto any given geometry using the CompositeTexture2D and
CompositeTexture3D nodes. For instance, 2D scenes may be mapped onto animated 3D geometry to
perform special effects.

9.2.2.5 Drawing Order

It is possible to specify the drawing order of elements of the scene, using the OrderedGroup node. This feature
may be used for 2D or 3D scenes. 2D scenes are considered to have zero depth. Nonetheless, it is important to be
able to specify the order in which 2D objects are composed, in order to describe their apparent depths. 3D scenes
may use the drawing order facility to solve conflicts of coplanar polygons or other rendering optimizations.

The following rules determine the drawing order, including conflict resolution for objects having the same drawing
order:

1. The object having the lowest drawing order shall be drawn first (taking into account negative values).

2. Objects having the same drawing order shall be drawn in the order in which they appear in the scene
description.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 65

9.2.2.6 Pixel and Meter metrics

In addition to meter-based metrics, it is also possible to use pixel-based metrics. In this case, 1 meter is set to be
equal to the distance between two pixels. This applies to both the horizontal (x-axis) and vertical (y-axis) directions.

The selection of the appropriate metrics is performed by the content creator. In particular, it is controlled by the
BIFSConfig syntax (see 9.3.5.2).

When pixelMetric is set to 1, pixel metrics shall be used for the entire scene. This implies that rendered node
sizes (such as for a Rectangle) and rendered node positions are integers. If non-integer values appear due to for
example scaling, rounding shall be implied towards -infinity.

9.2.2.7 Nodes and fields

9.2.2.7.1 Nodes

The BIFS scene description consists of a collection of nodes that describe the scene structure. An audio-visual
object in the scene is described by one or more nodes, which may be grouped together (using a grouping node).
Nodes are grouped into node data types (NDTs) and the exact type of the node is specified using a nodeType
field.

An audio-visual object may be completely described within the BIFS information, e.g. Box with Appearance, or
may also require elementary stream data from one or more audio-visual objects, e.g. MovieTexture or
AudioSource. In the latter case, the node includes a reference to an object descriptor that indicates which
elementary stream(s) is (are) associated with the node, or directly to a URL description (see ISO/IEC 14772-
1:1998, subclause 4.5.2). With the exception of the Anchor and Script nodes, a url field may only refer to
content that conforms to a valid profile and level for the terminal.

9.2.2.7.2 Fields and Events

See ISO/IEC 14772-1:1998, subclause 5.1.

9.2.2.8 Internal, ASCII and Binary Representation of Scenes

ISO/IEC 14496-1 describes the attributes of audio-visual objects using node structures and fields. These fields can
be one of several types (see 9.2.2.7.2). To facilitate animation of the content and modification of the objects’
attributes in time, within the terminal, it is necessary to use an internal representation of nodes and fields as
described in the node specifications (see 9.4). This is essential to ensure deterministic behaviour in the terminal’s
compositor, for instance when applying ROUTEs or differentially coded BIFS-Anim frames. The observable
behaviour of compliant terminals shall not be affected by the way in which they internally represent and transform
data; that is, they shall behave as if their internal representation is as defined herein.

However, when encoding the BIFS scene description, different attributes may need to be quantized or compressed
appropriately. Thus, the binary representation of fields may differ according to the types of fields, or according to
the precision needed to represent a given audio-visual object's attributes. The semantics of nodes are described in
9.4. The binary syntax which represents the binary format as transported in streams conforming to ISO/IEC 14496-
1 is provided in 9.3 and uses the node coding parameters provided in Annex H.

9.2.2.8.1 Binary Syntax Overview

9.2.2.8.1.1 Scene Description

The entire scene is represented by a binary encoding of the scene graph. This encoding restricts the VRML
grammar as defined in ISO/IEC 14772-1:1997, Annex A, but still enables the representation of any scene that can
be generated by this grammar.

EXAMPLE � One example of the grammatical differences is the fact that all ROUTEs are represented at the end of a BIFS
scene, and that a global grouping node is required at the top level of the scene.

ISO/IEC 14496-1:2001(E)

66 © ISO/IEC 2001 – All rights reserved

9.2.2.8.1.2 Node Description

Node types are encoded according to the context of the node. This improves efficiency by exploiting the fact that
not all nodes are valid at all places in the scene graph. In many instances, only one of a subset of all BIFS nodes is
valid at a particular place in the scene graph, and hence in the bitstream.

9.2.2.8.1.3 Fields description

Fields may be quantized to improve compression efficiency. Several aspects of the inverse quantization process
can be controlled by adjusting the parameters of the QuantizationParameter node.

9.2.2.8.1.4 ROUTE description

All ROUTEs are described at the end of the scene. This improves bit efficiency by grouping these elements in a
single location in the bitstream and removes the need for switches in the syntax to allow ROUTEs and nodes to be
described in a mixed format.

9.2.2.9 Basic Data Types

There are two general classes of fields and events: fields/events that contain a single value (e.g. a single number
or a vector), and fields/events that contain multiple values. Multiple-valued fields/events have names that begin with
MF, whereas single valued begin with SF.

9.2.2.9.1 Numerical data and string data types

9.2.2.9.1.1 Introduction

For each basic data type, single field and multiple field data types are defined in ISO/IEC 14772-1:1998, subclause
5.2. Some further restrictions are described herein.

9.2.2.9.1.2 SFInt32/MFInt32

When routing values between two SFInt32s note shall be taken of the valid range of the destination. If the value
being conveyed is outside the valid range, it shall be clipped to be equal to either the maximum or minimum value
of the valid range, as follows:

if x > max, x := max

if x < min, x := min

9.2.2.9.1.3 SFTime

The SFTime field and event specifies a single time value. Time values shall consist of 64-bit floating point numbers
indicating a duration in seconds or the number of seconds elapsed since the origin of time as defined in the
semantics for each SFTime field.

9.2.2.9.2 Node data types

Nodes in the scene are also represented by a data type, namely SFNode and MFNode types. ISO/IEC 14496-1
also defines a set of sub-types, such as SFColorNode, SFMaterialNode. These node data types (NDTs) allow
efficient binary representation of BIFS scenes, taking into account the usage context to achieve better
compression. However, the generic SFNode and MFNode types are sufficient for internal representations of BIFS
scenes.

9.2.2.10 Attaching nodeIDs to nodes

Each node in a BIFS scene graph may have a nodeID associated with it, to be used for referencing. ISO/IEC
14772-1:1998, subclause 4.6.2, describes the DEF statement which is used to attach names to nodes. In BIFS
scenes, an integer value is used for the same purpose for nodeIDs. The number of bits used to represent these
integer values is specified in the BIFSConfig syntax (see 9.3.5.2).

The following restrictions apply:

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 67

a) Nodes are identified by the use of nodeIDs, which are binary numbers conveyed in the BIFS bitstream.

b) The scope of nodeIDs is given in 9.2.1.5.

c) No two nodes in the scene graph may have the same nodeID at any point in time.

Nodes that have been assigned a nodeID may be re-used, as described in ISO/IEC 14772-1:1998, subclause
4.6.3. Note that this mechanism results in a scene description that is a directed acyclic graph, rather than a simple
tree.

The mechanisms that allow modifications to the BIFS scene also depend on the use of nodeIDs (see 9.2.2.10).

9.2.2.11 Standard Units

As described in ISO/IEC 14772-1:1998, subclause 4.4.5, the standard units used in the scene description are the
following:

Table 14 - Standard units

Category Unit

Distance Meter
Color Space RGB [0,1] [0,1] [0,1]
Time Seconds
Angle Radians

9.2.2.12 Mapping of Scenes to Screens

BIFS scenes may contain still images and videos that are to be pixel-copied to the rendering device using their
native dimensions as produced at the output of their terminals. The Bitmap node (see 9.4.2.19) provides a
screen-aligned geometry that has the pixel dimensions of the texture that is mapped onto it.

NOTE — When Bitmap is used, the same scene will appear differently on screens with different resolutions. BIFS scenes
that do not use the Bitmap node are independent from the screen on which they are viewed.

9.2.2.12.1 Transparency of visual objects

Content complying with ISO/IEC 14496-1 may include still images or video sequences with representations that
include alpha values. These values provide transparency information and are to be treated as specified in ISO/IEC
14772-1:1998, subclause 4.14. For video sequences represented according to ISO/IEC 14496-2, transparency is
handled as specified in ISO/IEC 14496-2.

9.2.2.13 Special considerations for audio

9.2.2.13.1 Audio sub-graphs

Audio nodes are used to build audio scenes in the terminal from audio sources coded with tools specified in
ISO/IEC 14496-3. The audio scene description capabilities provide two functionalities:

� “Physical modelling” composition for virtual-reality applications, where the goal is to recreate the acoustic
space of a real or virtual environment.

� “Post-production” composition for traditional content applications, where the goal is to apply high-quality signal
processing transformations.

Audio may be included in either 2D or 3D scene graphs. In a 3D scene, the audio may be spatially presented to
sound as though it originates from a particular 3D direction, according to the positions of the object and the listener.

The Sound and DirectiveSound nodes are used to attach audio to 3D scene graphs and the Sound2D node
is used to attach audio to 2D scene graphs. As with visual objects, an audio object represented by one of these
nodes has a position in space and time, and is transformed by the spatial and grouping transforms of nodes
hierarchically above it in the scene.

ISO/IEC 14496-1:2001(E)

68 © ISO/IEC 2001 – All rights reserved

The nodes below the Sound/DirectiveSound/Sound2D nodes, however, constitute an audio sub-
graph.This sub-graph is used to describe a particular audio object through the mixing and processing of several
audio streams. Rather than representing a hierarchy of spatio-temporal transformations, the nodes within the audio
sub-graph represent a signal flow graph that describes how to create the audio object from the audio coded in the
AudioSource streams. That is, each audio sub-graph node (AudioSource, AudioMix, AudioSwitch,
AudioFX, AudioClip, AudioBuffer, AudioDelay) accepts one or several channels of input audio, and
describes how to turn these channels of input audio into one or more channels of output. The only sounds
presented in the audio-visual scene are those which are the output of audio nodes that are children of a Sound/
DirectiveSound/Sound2D node (that is, the “highest” outputs in the audio sub-graph). The remaining nodes
represent “intermediate results” in the sound computation process and the sound represented therein is not
presented to the user.

The normative semantics of each of the audio sub-graph nodes describe the exact manner in which to compute the
output audio the input audio for each node based on its parameters.

9.2.2.13.2 Overview of sound node semantics

This subclause describes the concepts for normative calculation of the audio objects in the scene in detail, and
describes the normative procedure for calculating the audio signal which is the output of a
Sound/DirectiveSound/Sound2D node given the audio signals which are its input.

Recall that the audio nodes present in an audio sub-graph do not each represent a sound to be presented in the
scene. Rather, the audio sub-graph represents a signal-flow graph which computes a single (possibly multi-
channel) audio object based on a set of audio inputs (in AudioSource nodes) and parametric transformations.
The only sounds which are presented to the listener are those which are the “output” of these audio sub-graphs, as
connected to a Sound/DirectiveSound/Sound2D node. This subclause describes the proper computation of
this signal-flow graph and resulting audio object.

As each audio source is decoded, it produces data that is stored in composition memory (CM). At a particular time
instant in the scene, the compositor shall receive from each audio decoder a CM such that the decoded time of the
first audio sample of the CM for each audio source is the same (that is, the first sample is synchronized at this time
instant). Each CM will have a certain length, depending on the sampling rate of the audio source and the clock rate
of the system. In addition, each CM has a certain number of channels, depending on the audio source.

Each node in the audio sub-graph has an associated input buffer and output buffer, except for the AudioSource
node which has no input buffer. The CM for the audio source acts as the input buffer of audio for the
AudioSource with which the decoder is associated. As with CM, each input and output buffer for each node has
a certain length, and a certain number of channels.

As the signal-flow graph computation proceeds, the output buffer of each node is placed in the input buffer of its
parent node, as follows:

If an audio node, N, has n children, and each of the children produces k(i) channels of output, for 1 <= i <= n, then
the node, N, shall have k(1) + k(2) + ... + k(n) channels of input, where the first k(1) channels [number 1 through
k(1)] shall be the channels of the first child, the next k(2) channels [number k(1)+1 through k(1)+k(2)] shall be the
channels of the second child, and so forth.

Then, the output buffer of the node is calculated from the input buffer based on the particular rules for that node.

9.2.2.13.2.1 Sample-rate conversion

If the various children of a Sound/ DirectiveSound/Sound2D node do not produce output at the same
sampling rate, then the lengths of the output buffers of the children do not match, and the sampling rates of the
children’s’ output must be brought into alignment in order to place their output buffers in the input buffer of the
parent node. The sampling rate of the input buffer for the node shall be the fastest of the sampling rates of the
children. The output buffers of the children shall be resampled to be at this sampling rate. The particular method of
resampling is non-normative, but the quality shall be close in accuracy to the DAC that the signal is targeted for, i.e.
according to the rule dB SNR = 6 * (nbits –1), where nbits is the number of bits corresponding to the
maximum bit depth of any of the signals being so converted and/or composited. Aliasing artifacts may be at this
level of signal-to-noise ratio. The noise level due to arithmetic accuracy and other uncorrelated noise sources
should be below the rule dB SNR = 6* nbits.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 69

The output sampling rate of a node shall be the output sampling rate of the input buffers after this resampling
procedure is applied.

Content authors are advised that content which contains audio sources operating at many different sampling rates,
especially sampling rates which are not related by simple rational values, may produce scenes with a high
computational complexity.

EXAMPLE � Suppose that node N has children M1 and M2, all three audio nodes, and that M1 and M2 produce output at S1
and S2 sampling rates respectively, where S1 > S2. Then if the decoding frame rate is F frames per second, then M1’s output
buffer will contain S1/F samples of data, and M2’s output buffer will contain S2/F samples of data. Then, since M1 is the faster
of the children, its output buffer values are placed in the input buffer of N. The output buffer of M2 is resampled by the factor
S1/S2 to be S1/F samples long, and these values are placed in the input buffer of N. The output sampling rate of N is S1.

9.2.2.13.2.2 Number of output channels

If the numChan field of an audio node, which indicates the number of output channels, differs from the number of
channels produced according to the calculation procedure in the node description, or if the numChan field of an
AudioSource node differs in value from the number of channels of an input audio stream, then the numChan
field shall take precedence when including the source in the audio sub-graph calculation, as follows:

a) If the value of the numChan field is strictly less than the number of channels produced, then only the first
numChan channels shall be used in the output buffer.

b) If the value of the numChan field is strictly greater than the number of channels produced, then the “extra”
channels shall be set to all 0’s in the output buffer.

9.2.2.13.3 Audio-specific BIFS Nodes

In the following table, nodes that are related to audio scene description are listed.

Table 15 - Audio-Specific BIFS Nodes

Node Purpose Subclause

AudioBuffer Interactively trigger snippets of sound 9.4.2.6

AudioClip Insert an audio clip into a scene 9.4.2.8

AudioDelay Add delay to sound 9.4.2.9

AudioMix Mix sounds 9.4.2.11

AudioSource Define audio source input to a scene 9.4.2.12

AudioFX Apply post-production effects to sound 9.4.2.10

AudioSwitch Switching of audio sources in a scene 9.4.2.13

ListeningPoint Define listening point in a scene 9.4.2.67

Sound,
Sound2D,
DirectiveSound

Define properties of sound 9.4.2.94,
9.4.2.95,
9.4.2.39

9.2.2.13.4. Spatialization of sound sources according to the acoustic environment

This specification contains a set of nodes of extended node types, that can be used to include positional and
directive sound sources to 3-D BIFS scenes, and process them in a way that the acoustics of the environment is
taken into account. These nodes enable parametrization and rendering of the acoustic properties of a virtual
environment according to the current relative positions of the sound source, the listening point, and the acoustically
relevant objects in the BIFS scene. Such properties are, e.g., room reverberation time (and other statistical room
acoustic parameters), speed of sound, acoustic properties of surfaces, and sound source directivity. Functionalities
that are made possible with these parameters include immersive audiovisual rendering, room acoustic modeling,
and enhanced 3-D sound presentation.

Two distinct approaches of acoustic environment rendering are incorporated in the 3-D sound processing. One is
based on physical, or geometrical modeling of the acoustic scene while the second is based on the perceptual
description of room acoustic effects. These two schemes of virtual acoustics rendering are referred to as the
physical and the perceptual approach.

ISO/IEC 14496-1:2001(E)

70 © ISO/IEC 2001 – All rights reserved

The nodes that are involved in the sound environment modeling are AcousticScene, AcousticMaterial,
DirectiveSound, and PerceptualParameters, and their main functionalities are presented in the table below, and
the rendering scheme where they are used is listed in the rightmost column:

Table 16 - Nodes for environmental spatialization of sound

Node Purpose Approach Subclause

AcousticScene Restrict each audio rendering process to a defined 3-
D region in the BIFS scene, and specify a
reverberation time that is applied to the sound sources
currently within that region.

physical 9.4.2.2

AcousticMaterial Define sound reflectivity and transmission properties
(along with the visual properties) for each acoustically
relevant (flat, polygonal) surface.

physical 9.4.2.1

DirectiveSound Define a directive sound source that also enables
natural distance dependent attenuation and air
absorption modeling, as well as rendering of the
propagation delay between the source and the
listener.

physical
and
perceptual

9.4.2.39

PerceptualParameters Node for attaching perceptual properties to a directive
sound source (DirectiveSound) in order to simulate
virtual room effects that do not need to relate to the
geometrical and/or visual BIFS scene.

perceptual 9.4.2.78

In the following, overviews of the physical and perceptual audio rendering schemes are presented.

9.2.2.13.4.1 Physical approach

In this approach the acoustics rendering is defined as creating a virtual auditory environment that models an
existent or non-existent space. This rendering is called auralization, the relation of which to graphics (visualization)
is understood as the creation of audiovisual scenes that are perceptually (visually and aurally) relevant. An
example of this could be a virtual concert performance, where the acoustical behavior of the space as well as the
graphical outlook is modeled. Another example could be a scene, where the listener moves from a very small room
to a larger hall, and the changes in the acoustic and graphical rendering is immediately perceived. Also sound
sources without a room acoustic response but with effects such as source directivity, Doppler effect, and echoes
(distinctive sound reflections) can be modeled. The acoustical behaviors and properties are:

� Acoustic properties of surface materials (walls), that enable modeling of sound reflections of surfaces, as well
as transmission of sound through them. This way sound reflections are tracked and rendered according to the
geometry of the walls and positions of the sound sources and the listener. Obstruction effects are automatically
rendered when walls or obstacles are present between the source and the listener.

� Reverberation time of a specified region in the scene. This enables modeling of reverberating spaces by a
simple parameter, and without the necessary need to describe the physical walls of a room.

� Acoustic properties of the sound transmitting medium. These include the speed of sound, distance dependent
attenuation and lowpass filtering effect caused by air absorption (see ISO 9613-1:1993). Speed of sound is
used to control the sound propagation delay between source and the listener, and therefore also the strength of
the Doppler effect which depends on the relative motion between the source and the listener.

� Directivity characteristics of sound sources. This enables flexible modeling of different sound sources (e.g.,
human speaker, or a musical instrument). The directivity patterns can be frequency dependent, or it can be
defined by a direction dependent coefficient, or in the simplest case the source can be omnidirectional.

In the physical approach, the geometrical and physical sound propagation operator is used in real time during
playback in order to derive the auralization signal processing parameters to be applied to each sound source
signal. This propagation operator exploits the knowledge of the positions of the sound sources and the listener
relative to the walls to compute the arrival time, amplitude (and spectrum) and direction of arrival for each early

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 71

reflection. This computation is performed in real time for a limited number of reflections per sound source, with
dynamic refresh of reflection parameters according to movements of the sound sources or the listener.

9.2.2.13.4.2 Perceptual approach

In this model, the sound transformation associated with room reflections and reverberation is described by a set of
perceptual attributes (such as source presence and brilliance, room reverberance, envelopment). These attributes
may be manipulated directly and individually for each sound source in the scene.

This approach provides simple and intuitive parameters to the content provider, allowing:

� Manipulation of environmental effects for each sound event directly (without requiring that the source or the
point of view be moved).

� Sound design adjustments beyond the physical constraints implied by the graphic representation, for example:

� Distorted or exaggerated distance sensation and room-related effects

� Unconstrained spatial sound effects for audio-only scene nodes (no visual correspondence) or when
the point of view is out of the room

In this approach, an absolute (exocentric) representation of the sound scene containing several sources and the
listener can be manipulated as follows:

� The environment (room) is described by setting the values of the perceptual attributes for a reference source-
listener distance. These attributes and their values make up a "preset", which specifies, at that reference
distance and for an omnidirectional sound source, the delay and intensity of the early reflection, as well as the
delay, decay time and spectrum of the late reverberation.

� The sound transformation to be applied to each sound event is derived from the above preset by use of a
perceptual sound propagation operator which takes into account the relative positions and orientations of the
sources and the listener, and a model of the directivity of sound sources.

In this model, only the relative positions and orientations of the sound sources with respect to the listener are taken
into account. The model does not exploit any knowledge of wall positions in order to compute the parameters of the
early reflections. The temporal pattern of the early reflections is determined by the definition of the environment
“preset”. The perceptual sound propagation operator adjusts one perceptual attribute (called "source presence")
according to source-listener distance. Adjusting this single parameter produces a convincing sensation of proximity
or remoteness of the sound source. Additionally, the operator takes into account the orientation of the source and
its directivity pattern.

9.2.3 Sources of modification to the scene

9.2.3.1 Interactivity and behaviors

To describe interactivity and behavior of scene objects, the event architecture defined in ISO/IEC 14772-1:1998,
subclause 4.10, is used. Sensors and routes describe interactivity and behaviors. Sensor nodes generate events
based on user interaction or a change in the scene. These events are routed to interpolator or other nodes to
change the attributes of these nodes. If routed to an interpolator, a new parameter is interpolated according to the
input value, and is finally routed to the node which must process the event.

9.2.3.1.1 Attaching ROUTEIDs to routes

ROUTEIDs may be attached to routes using the DEF mechanism, described in ISO/IEC 14772-1:1998, subclause
4.6.2. This allows routes to be subsequently referenced in BIFS-Command structures. ROUTEIDs are integer
values and the namespace for routes is distinct from that of nodeIDs. The number of bits used to represent these
integer values is specified in the BIFS DecoderConfigDescriptor.

The scope of ROUTEIDs is defined in see 9.2.1.5. The following restrictions apply:

a) Routes are identified by the use of ROUTEIDs, which are binary numbers conveyed in the BIFS bitstream.

ISO/IEC 14496-1:2001(E)

72 © ISO/IEC 2001 – All rights reserved

b) The scope of ROUTEIDs is given in 9.2.1.5.

c) No two routes in the scene graph may have the same ROUTEID at any point in time.

The mechanisms that allow modifications to the BIFS scene also depend on the use of nodeIDs (see 9.2.2.10).
The USE mechanism shall not be used with routes.

9.2.3.1.2 Conditional node

The Conditional node (see 9.4.2.30) allows BIFS-Commands to be described in the scene which shall only be
applied to the scene graph when an event is received on one of the Conditional node's inputs.

9.2.3.2 External modification of the scene: BIFS-Commands

The BIFS-Command mechanism enables the change of properties of the scene graph, its nodes and behaviors.

EXAMPLE � Transform nodes can be modified to move objects in space; Material nodes can be changed to modify an
object’s appearance, and fields of geometric nodes can be totally or partially changed to modify the geometry of objects.

9.2.3.2.1 Overview

BIFS-Commands are used to modify a set of properties of the scene at a given time instant in time. Commands are
grouped into CommandFrames (see 9.3.6.2) in order to be able to send several commands in a single access unit.
The following four basic commands are defined:

1. Replacement of an entire scene

2. Insertion

3. Deletion

4. Replacement

The first of these commands allows the replacement of the entire BIFS scene. The replacement of the entire scene
requires a scene graph representing a valid BIFS scene to be transmitted. The SceneReplace command is the
only random access point in the BIFS stream.

The other three commands can be used to update the following structures:

1. A node

2. An eventIn, exposedField or an indexed value in an MFField

3. A ROUTE

In order to modify the scene the sender must transmit a BIFS CommandFrame that contains one or more update
commands. A single source of BIFS-Commands is assumed. The identification of a node in the scene is provided
by a nodeID. Note that it is the sender’s responsibility to provide this nodeID, which must be unique (see 9.2.1.5).
The identification of a node's fields is provided by sending the INid of the field (see Annex H).

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 73

ROUTE: routeID

Insert

Delete

Replace

Replace
Scene

Node: nodeID

IdxValue: nodeID

ROUTE: nodeID1

Index
Begin
End

NodeValue

Index
Begin
End

ValueFieldNb

Field1 nodeID2 Field2

Node: nodeID

IdxValue: nodeID
Index
Begin
End

ValueFieldNb

Node: nodeID

IdxValue: nodeID

ROUTE: routeID

NodeValue

Index
Begin
End

ValueFieldNb

Field1 nodeID2 Field2

Field: nodeID FieldValueFieldNb

nodeID1

Scene: SceneValue

BIFS
Update

Figure 15 - BIFS-Command Types

9.2.3.2.2 Modification of indexed values

Insertion of an indexed value in a field implies that all later values in the field have their indices incremented and
the length of the field increases accordingly. Appending a value to an indexed value field also increases the length
of the field but the indices of existing values in the field do not change.

Deletion of an indexed value in a field implies that all later values in the field have their indices decremented and
the length of the field decreases accordingly.

9.2.3.2.3 Timing of BIFS-Commands

The time at which a BIFS-Command is applied shall be the composition time stamp of the access unit in which the
command is contained, as defined in the sync layer (see 10.2).

9.2.3.3 External animation of the scene: BIFS-Anim

BIFS-Anim provides for the continuous update of the certain fields of nodes in the scene graph. BIFS-Anim is used
to integrate different kinds of animation, including the ability to animate face models as well as meshes, 2D and 3D
positions, rotations, scale factors, and color attributes. Although BIFS-Anim and BIFS-Command have the same
elementary stream type (see Table 9) they may not occupy the same elementary stream. BIFS-Anim information is
conveyed in a separate elementary stream from that which carries BIFS-Command elements.

9.2.3.3.1 Overview

BIFS-Anim elementary streams consist of a sequence of AnimationFrames. The AnimationMask, which is
required to interpret these AnimationFrames, is transmitted in the DecoderSpecificInfo for the BIFS-Anim
elementary stream in the corresponding object descriptor (see 8.6.7).

9.2.3.3.2 BIFS-Anim configuration

The AnimationMask contains one ElementaryMask for each node that is to be animated. These
ElementaryMasks specify the fields that are contained in the AnimationFrames for a given animated node, and
their associated quantization parameters. Only eventIn or exposedField fields that have an animation method (see
Annex H and 9.2.3.3.3) can be modified using BIFS-Anim. Such fields are called dynamic fields. In addition, the

ISO/IEC 14496-1:2001(E)

74 © ISO/IEC 2001 – All rights reserved

animated field must be part of an updateable node; that is, a node that has been assigned a nodeID. The
AnimationMask is composed of several elementary masks defining these parameters.

9.2.3.3.3 BIFS-Anim animation parameters

Animation parameters are transmitted as a sequence of AnimationFrames. AnimationFrames specify the
values of the dynamic fields of updateable nodes that are being animated in BIFS-Anim streams. An
AnimationFrame contains the new values of all animated parameters at a specified time, unless if it is specified
that, for some frames, these parameters are not sent. The parameters can be sent in Intra (the absolute value is
sent) and Predictive modes (the difference between the current and previous values is sent).

Animation parameters can be applied to any eventIn or exposedField of any updateable node of a scene which has
an assigned animation method (see Annex H).

NOTE � Some node tables in Annex H contain an eventIn or exposedField that has an animation method but for which there is
no associated dynID. This is the case when only one exposedField or eventIn in a node has an animation method. In such
cases, it is not necessary for the field to have a dynID since the terminal can assume that BIFS-Anim animations for this type of
node refer to the only dynamic field of the node.

The types of dynamic fields are:

� SFInt32/MFInt32

� SFFloat/MFFloat

� SFRotation/MFRotation

� SFColor/MFColor

� SFVec2f/MFVec2f

� SFVec3f/MFVec3f

9.2.3.4 Order of application of modifications to the scene

Where modifications to the scene graph, resulting from the use of more than one of the permitted methods, must
be applied simultaneously, the following order of application shall be observed:

1. BIFS-Anim

2. Conditional node

3. BIFS-Command

9.3 BIFS Syntax

9.3.1 Introduction

BIFS data consists of two distinct elements in the multiplexed bitstream. Terminal configuration information is first
sent in the object descriptor. The remaining BIFS information is sent in a separate elementary stream.

The syntax and semantics of the terminal configuration is described in 9.3.5.2 and 9.3.5.3. Two different kinds of
session can take place: a BIFS-Command session or a BIFS-Anim session.

If the session is a BIFS-Command session, a sequence of commands to modify the scene is sent. The syntax and
semantics of these commands are described in 9.3.6.

If the session is a BIFS-Anim session, a sequence of animation data to change the values of specific fields in the
scene is sent. The syntax and semantics of this session is described in 0.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 75

9.3.2 Decoding tables, data structures and associated functions

9.3.2.1 Function of decoding tables, data structures and functions

This subclause describes tables and data structures used to contain necessary data, along with the associated
functions, for decoding the BIFS elementary streams. These are not syntax elements but are descriptions, often in
code or pseudo-code, of data and functions that are required to decode the bitstream. The tables and data
structures may be known a priori at the terminal or may be constructed from data parsed from the bitstream. They
are referenced throughout the syntax.

NOTE — The code or pseudo-code for the non-syntax data elements is purely notational and does not imply a normative
requirement to use these code fragments in implementations.

Coding of individual nodes and field values is very regular, and follows a depth-first order (children or sub-nodes of
a node are present in the bitstream before its siblings).

9.3.2.2 Node Data Type Tables

Identification of nodes and fields within a BIFS scene graph is context-dependent. Each field of a BIFS node that
accepts nodes as fields can only accept a specific set of nodes. Each of these sets of nodes is stored in a node
data type table and is referenced by a node data type (NDT).

A field of type SFNode is fully described by its NDT. Each node belongs to one or more NDT tables. These tables
are provided in Annex H and identify the various nodes and node types they contain.

Identification of a particular node depends on the context of the NDT specified for its parent field. The node data
types are listed in tables in H.2., and extended node data types in Annex H.4. For each node, the value zero
(encoded with as many bits as required to encode the total number of nodes in that NDT table in Annex H.2.) is
used before the actual node type to indicate that the node is of an extended node type. The value 0 in each
extended NDT table is reserved for future extensions. Value one in each extended NDT table is reserved for
encoding of PROTOs (see 9.3.7.2).

EXAMPLE 1 � Anchor is identified by the 5-bit code 0b0000.1 when the context of its parent’s field is SF2DNode, whereas
the 7-bit code 0b0000.001 is used when the context of its parent’s field is SFWorldNode.

EXAMPLE 2 � AcousticScene is identified by a 3-bit code 0b010, when the context of its parent field is SF3DNode in
the extended node data types in Annex H.4. Since that NDT exists in tables in Annex H.2. (where the nodes of that data type
are encoded with six bits), this node is completely encoded with 9 bits as: 0b000000010.

9.3.2.3 Node Coding Tables and field indexing

The syntactic description of fields is context-dependent. For a given node, its fields are indexed using a code called
a fieldID. This fieldID is not unique for each field of a node but varies according to the “mode” in which the
field is referenced. There are five modes in which a field may be referenced and, thus, five types of fieldID. For
each field of each node, the binary values of the fieldIDs for each mode are defined in the node coding tables.

defID
The defIDs refer to the fieldIDs for those fields that may have a value when nodes are declared. They refer to
fields of type exposedField and field. This indexing scheme is further referred to as the “def” mode.

inID
The inIDs refer to the fieldIDs for those events and fields that can be modified from outside the node. They
refer to fields of type exposedField and eventIn types. This indexing scheme is further referred to as the “in” mode.

outID
The outIDs refer to the fieldIDs for those events and fields that can be output from the node. They refer to
fields of type exposedField and eventOut types. This indexing scheme is further referred to as the “out” mode.

dynID
The dynIDs refer to the fieldIDs for those fields that can be animated using the BIFS-Anim scheme. They refer
to a subset of the fields designated by inIDs. This indexing scheme is further referred to as the “dyn” mode.

ISO/IEC 14496-1:2001(E)

76 © ISO/IEC 2001 – All rights reserved

allID
The allIDs refer to all events and fields of the node. That is, there is an allID for each field of a node. This
indexing scheme is further referred to as the “all” mode.

The length of each of the fieldID types for each node depends on the number of fields of that type for the given
node.

EXAMPLE � The AnimationStream node has four fields of type defID. Therefore, three bits are required to code the
defIDs for this node. The Appearance node, however, has just three fields of type defID. Therefore, two bits are sufficient
to code the defIDs for this node.

9.3.2.4 BIFSConfig

This data structure is a global data structure referred to in every BIFS access unit. The data contained in the
BIFSConfiguration data structure is transmitted in either BIFSConfig or BIFSv2Config (see 9.3.5.2 and
9.3.5.3).

Class BIFSConfiguration{
int nodeIDbits; The number of bits used to encode the nodeIDs.
int routeIDbit; The number of bits used to encode the routeIDs.
int PROTOIDbits; The number of bits used to encode the PROTO. This value is in used only

if the data for the structure was transmitted by BIFSv2Config
boolean randomAccess; The randomAccess boolean is set in the BIFSConfig to distinguish

between BIFS-Anim elementary streams in which support random access
at any intra frame, and those where random access may not be possible
at all intra frames. In the latter case, greater compression efficiency may
be achieved because a given intra frame may re-use quantization settings
and statistics from the previous intra frame.

AnimationMask animMask; The AnimationMask used for BIFS-Anim
}

9.3.2.5 AnimationMask

The AnimationMask structure contains all the relevant information to describe a BIFS-Anim session. It is
constructed, upon receipt of the BIFSConfig or BIFSv2Config syntax element, during the configuration of the
BIFS decoder, and updated for every received AnimationFrame.

Class AnimationMask {
int numNodes; The number of nodes to be animated
NodeData animNode[numNodes]; The array of animated nodes.
boolean isIntra; The status of the current frame: intra if isIntra is true,

predictive otherwise.
boolean isActive[numNodes]; The mask of active animated node for the current frame.

If the node is not animated in the current frame, the
boolean shall be false.

}

9.3.2.6 NodeData

This data structure is built to decode the relevant information for one node. It is created from the node coding tables
in Annex H. The following functions support relevant operations on this data structure:

NodeData MakeNode(int nodeType)

This function creates a NodeData structure from the node coding table matching the given nodeType.

NodeData GetNodeFromID (int nodeID)

This function returns the NodeData structure matching the given nodeID.

class NodeData {
int nodeType; The nodeType of the node.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 77

FieldData field[]; The fields of this node whose construction is described below. This
array is indexed in “all” mode.

boolean isAnimField[]; The mask of animated fields for the entire BIFS-Anim session,
indexed in “dyn” mode. This array is only used in BIFS-Anim.

The following data describes the indexing of the fields in “in”, “out”,
“def”, “dyn” and “all” modes

int nDEFbits; The number of bits used for “def” field codes (the width of the
codewords in the 2nd column of the node coding tables).

int nINbits; The number of bits used for “in” field codes (the width of the
codewords in the 3rd column of the node coding tables).

int nOUTbits; The number of bits used for “out” field codes (the width of the
codewords in the 4th column of the node coding tables).

int numDEFfields; The number of “def” fields available for this node
int numDYNfields; The number of “dyn” fields available for this node.
int in2all[]; The ids of eventIns and exposedFields in “all” mode, indexed with

the ids in “in” mode.
int def2all[]; The ids of fields and exposedFields in “all” mode, indexed with the

ids in “def” mode.
int dyn2all[]; The ids of dynamic fields in “all” mode, indexed with the ids in “dyn”

mode.
boolean useQuant; When the NodeData is used for storing a prototype, the useQuant

states whether the quantization is applied on the PROTO or not.

boolean useAnim; When the NodeData is used for storing a prototype, the useQuant
states whether the BIFS-Anim is applied on the PROTO or not.

NodeData proto; In case that a node is contained in a PROTO, its NodeData
structure points to the PROTO NodeData structure in the proto field.

}

9.3.2.7 FieldData

This data structure is built to decode the relevant information for one field. It is created from the field’s entry in the
relevant node coding table (see Annex H).

Class FieldData {
int fieldType; The type of the field (e.g., SFInt32Type). This is given by

the “Field Type” column of the node coding table for the
node to which it belongs.

int quantType; The type of quantization used for the field. This is given by
the “Q” column of the node coding table of the node to
which it belongs. Types refer to Table 19 in 9.3.3.1.1.

int animType; The animation method for the field. This is given by the “A”
column of the node coding table. Types refer to animation
type in Table 25 in 9.3.3.2.1.

boolean useEfficientCoding; Set to true if the efficient coding is to be used. This value is
FALSE by default. If there is a local
QuantizationParameter node this value is the same
as its useEfficientCoding field.

The following data structures are used in the quantization
process:

FieldCodingTable fct; This field is determined from the node coding table as
described in 9.3.2.9.

AnimFieldQP aqp; This field is only used in BIFS-Anim. It references an
AnimFieldQP stucture described in 9.3.2.10.

QuantizationParameter lqp; This field points to the local QuantizationParameter

ISO/IEC 14496-1:2001(E)

78 © ISO/IEC 2001 – All rights reserved

node.
boolean isQuantized; Set to true if the corresponding field is quantized, false

otherwise.
int nbBits; The number of bits used for the quantization of the field.
float floatMin[]; The minimum bounds for the quantization of vector fields.

These values are obtained from the FieldCodingTable
(described in 9.3.2.9) and the current
QuantizationParameter node (for BIFS-Scene) or the
animField (for BIFS-Anim).

float floatMax[]; The maximum bounds for the quantization of vector fields.
These values are obtained from the FieldCodingTable
(described in 9.3.2.9) and the current
QuantizationParameter node (for BIFS-Scene) or the
animField (for BIFS-Anim).

int intMin[]; The minimum bounds for integers (SFInt32 and MFInt32).
These values are obtained from the FieldCodingTable
(described in 9.3.2.9) and the current
QuantizationParameter node (for BIFS-Scene) or the
animField (for BIFS-Anim).

}

It is assumed that the following functions are available:

int isSF(FieldData field)

Returns 1 if the field’s fieldType corresponds to a single field and 0 otherwise.

int getNbComp(FieldData field)

Returns the number of quantized components for the field as given below:

Table 17 - Return values of getNbComp

fieldType quantType animType value returned
SFFloat
SFInt32

any 6,7,8
13

1

SFVec2f
SFVec3f

any
9

2,12
9

2

SFVec3f
SFRotation

!=9
any

1,4,11
10

3

The number of quantized components is the same as the natural number of components (three for SFVec3f, two
for SFVec2f, and so on) except for normals (2) and rotations (3) because of the quantization process (see 9.3.3.3).

9.3.2.8 Node Data Type Table Parameters

The following functions provide access to the node data type tables (described in Annex H):

int GetNodeType(int nodeDataType, int localNodeType)

Returns the nodeType of the node indexed by localNodeType in the node data type table. The nodeType of a
node is its index in the SFWorldNode NDT Table.

int GetNDTnbBits(int nodeDataType)

Returns the number of bits used to index the nodes of the matching node data type table (this number is indicated
in the last column of the first row of the node data type table).

int GetNDTFromID(int id)

Returns the nodeDataType for the children field of the node identified by the nodeID, id. Nodes having a
children field may have restrictions on the types of node that may occupy the field. These node types are
indicated in the node semantics (see 9.4 and ISO/IEC 14772-1:1998 , Table 4.3).

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 79

9.3.2.9 Field Coding Table

This data structure contains parameters relating to the quantization of the field. It is created from the field’s entry in
the relevant node coding table (Annex H).

Class FieldCodingTable {
float floatMin[]; The minimum default bounds for fields of type SFFloat, SFVec2f and

SFVec3f. These values are obtained from the “[m, M]” column of the
node coding table.

float floatMax[]; The minimum default bounds for fields of type SFFloat, SFVec2f and
SFVec3f. These values are obtained from the “[m, M]” column of the
node coding table.

float intMin[]; The minimum default bounds for fields of type SFInt32. These values
are obtained from the “[m, M]” column of the node coding table.

float intMax[]; The minimum default bounds for fields of type SFInt32. These values
are obtained from the “[m, M]” column of the node coding table.

int defaultNbBits; The number of bits used by default for each field. Only used when the
quantization category of the field is 13. For quantization category 13,
the number of bits used for coding is also specified in the node coding
(e.g “13 16” in the node coding table means category 13 with 16 bits).

}

9.3.2.10 AnimFieldQP

This data structure contains the necessary quantization parameters and information for the animation of a field. It is
updated throughout the BIFS-Anim session.

class AnimFieldQP {
int animType; The animation method for the field. This is given by the “A” column of

the node coding table for each node. Types refer to animation type in
Table 25 in 9.3.3.2.1.

boolean useDefault; If this bit is set to TRUE, then the bounds used in intra mode are those
specified in the “[m, M]” column of the node coding table. The default
value is FALSE.

boolean isTotal; If the field is a multiple field and if this boolean is set to TRUE, all the
components of the multiple field are animated.

int numElement; The number of elements being animated in the field. This is 1 for all
single fields, and equal to or greater than 1 for multiple fields.

int indexList[]; If the field is a multiple field and if isTotal is false, this is the list of
the indices of the animated SFFields. For instance, if the field is an
MFField with elements 3,4 and 7 being animated, the valuse of
indexList will be {3,4,7}.

float[] Imin; The minimum values for bounds of the field in intra mode. This value is
obtained from the “[m, M]” column of the node coding table (if
useDefault is TRUE), the InitialAnimQP (if useDefault is
FALSE and the last intra did not hold any new AnimQP), or the
AnimQP.

float[] Imax; The maximum values for bounds of the field in intra mode. This value
is obtained from the “[m, M]” column of the semantics table (if
useDefault is TRUE), the InitialAnimQP (if useDefault is
FALSE and if the last intra did not hold any new AnimQP), or the
AnimQP.

int[] IminInt; The minimum value for bounds of variations of integer fields in intra
mode. This value is obtained from the InitialAnimQP (if the last
intra did not hold any new AnimQP) or AnimQP structure.

int[] Pmin; The minimum value for bounds of variations of the field in predictive
mode. This value is obtained from the InitialAnimQP (if the last
intra did not hold any new AnimQP) or AnimQP.

int INbBits; The number of bits used in intra mode for the field. This value is
obtained from the InitialAnimQP or AnimQP.

int PNbBits; The number of bits used in predictive mode for the field. This value is

ISO/IEC 14496-1:2001(E)

80 © ISO/IEC 2001 – All rights reserved

obtained from the InitialAnimQP (if the last intra did not hold any
new AnimQP) or AnimQP structure.

}

It is assumed that the following function is available :

int getNbBounds(AnimFieldQP aqp)

Returns the number of set of bounds matching the animation type (see 9.3.2.3), as follows :

Table 18 - Return values of getNbBounds

aqp.animType value
returned

4,6,7,8
9,10
11,12,13

1

2 2
1 3

Note that only Position2D and Position3D have specific sets of bounds for each of their components. The
number of bounds is also the number of independent models used in predictive mode during the BIFS-Anim
session.

9.3.3 Quantization

In BIFS scenes, the values of the fields may be quantized. BIFS-Anim data is always quantized. This subclause
describes this quantization process. A number of parameters control the quantization of a field. Here, these
parameters are used to construct a notational data structure called FieldData. In this subclause, the semantics of
how to determine these parameters for BIFS scenes and BIFS-Anim are first described, followed by a description of
the actual quantization process.

9.3.3.1 Quantization of BIFS scenes

9.3.3.1.1 Quantization categories

Single fields are coded according to the type of the field. The fields have a default syntax that specifies a non-
quantized encoding. When quantization is used, the quantization parameters are obtained from a special node
called QuantizationParameter. The following quantization categories are specified, providing suitable
quantization procedures for the various types of quantities represented by the various fields of the BIFS nodes.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 81

Table 19 - Quantization Categories

Category Description

0 None
1 3D position
2 2D positions
3 Drawing order
4 SFColor
5 Texture Coordinate
6 Angle
7 Scale
8 Interpolator keys
9 Normals
10 Rotations
11 Object Size 3D (1)
12 Object Size 2D (2)
13 Linear Scalar Quantization
14 CoordIndex
15 Reserved

Each field that may be quantized is assigned to one of the quantization categories (see Annex H). Along with
quantization parameters, minimum and maximum values are specified for each field of each node.

9.3.3.1.2 Determining the quantization parameters for a given field

The scope of quantization is constrained to a single BIFS access unit. A field is quantized when:

� The field is of type SFInt32, SFFloat, SFRotation, SFVec2f or SFVec3f.

� The quantization category of the field is not 0.

� The node to which the field belongs has a QuantizationParameter (see 9.4.2.89) node in its context

� The quantization for this type of field is activated (by setting the corresponding boolean to TRUE in the
QuantizationParameter node.

The isQuantized, nbBits, floatMin, floatMax and intMin fields of the FieldData structure pertain to
the quantization of the field. The values of these fields are determined from the local QuantizationParameter
(lqp) and the FieldCodingTable (fct) stored in the FieldData. This is done in the following way:

isQuantized

isQuantized is set to true when the three following conditions are met :

� lqp!=0 (there is a QuantizationParameter node in the scope of the field)

� quantType !=0 (the field value is of a type that may be quantized), and

� the following condition is met for the relevant quantization type:

ISO/IEC 14496-1:2001(E)

82 © ISO/IEC 2001 – All rights reserved

Table 20 - Condition for setting isQuantized to true

quantType Condition

1 lqp.position3DQuant == TRUE
2 lqp.position2DQuant == TRUE
3 lqp.drawOrderQuant == TRUE
4 lqp.colorQuant == TRUE
5 lqp.textureCoordinateQuant == TRUE
6 lqp.angleQuant == TRUE
7 lqp.scaleQuant == TRUE
8 lqp.keyQuant == TRUE
9 lqp.normalQuant == TRUE
10 lqp.normalQuant == TRUE
11 lqp.sizeQuant == TRUE
12 lqp.sizeQuant == TRUE
13 Always TRUE
14 Always TRUE
15 Always TRUE

nbBits

In the BIFS scene quantization process, nbBits is set in the following way :

Table 21 - Value of nbBits depending on quantType

quantType nbBits

1 lqp.position3DNbBits
2 lqp.position2DNbBits
3 lqp.drawOrderNbBits
4 lqp.colorNbBits
5 lqp.textureCoordinateNbBits
6 lqp.angleNbBits
7 lqp.scaleNbBits
8 lqp.keyNbBits
9,10 lqp.normalNbBits
11,12 lqp.sizeNbBits
13 fct.defaultNbBits
14 This value is set according to the number

of points received in the last received
coord field of the node. Let N that number,
then:

� �)(logCeilnbBits 2 N�

where the function Ceil returns the
smallest integer greater than its argument

15 0

floatMin[]

In the BIFS scene quantization process, floatMin is set in the following way:

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 83

Table 22 - Value of floatMin, depending on quantType and fieldType

quantType fieldType floatMin

1 SFVec3fType lqp.position3Dmin
2 SFVec2fType lqp.position2Dmin
3 SFFloatType max(fct.min[0],lqp.drawOrderMin)

SFFloatType lqp.colorMin4
SFColorType lqp.colorMin, lqp.colorMin, lqp.colorMin

5 SFVec2fType lqp.textureCoordinateMin
6 SFFloatType Max(fct.min[0],lqp.angleMin)

SFFloatType lqp.scaleMin
SFVec2fType lqp.scaleMin, lqp.scaleMin

7

SFVec3fType lqp.scaleMin, lqp.scaleMin, lqp.scaleMin
8 SFFloatType Max(fct.min[0],lqp.keyMin)
9 SFVec3fType 0.0
10 SFRotationTyp

e
0.0

SFFloatType lqp.sizeMin
SFVec2fType lqp.sizeMin, lqp.sizeMin

11,12

SFVec3fType lqp.sizeMin, lqp.sizeMin, lqp.sizeMin
13,14,15 NULL

floatMax[]

In the BIFS scene quantization process, floatMax is set in the following way:

Table 23 - Value of floatMax, depending on quantType and fieldType

quantType fieldType floatMax

1 SFVec3fType lqp.position3Dmax
2 SFVec2fType lqp.position2Dmax
3 SFFloatType min(fct.max[0],lqp.drawOrderMax)

SFFloatType lqp.colorMax4
SFColorType lqp.colorMax, lqp.colorMax, lqp.colorMax

5 SFVec2fType lqp.textureCoordinateMax
6 SFFloatType min(fct.max[0],lqp.angleMax)

SFFloatType lqp.scaleMax7
SFVec2fType lqp.scaleMax, lqp.scaleMax
SFVec3fType lqp.scaleMax, lqp.scaleMax, lqp.scaleMax

8 SFFloatType min(fct.max[0],lqp.keyMax)
9 SFVec3fType 1.0
10 SFRotationType 1.0

SFFloatType lqp.sizeMax
SFVec2fType lqp.sizeMax, lqp.sizeMax

11,12

SFVec3fType lqp.sizeMax, lqp.sizeMax, lqp.sizeMax
13,14,15 NULL

intMin[]

In the BIFS scene quantization process, intMin is set in the following way:

ISO/IEC 14496-1:2001(E)

84 © ISO/IEC 2001 – All rights reserved

Table 24 - Value of intMin, depending on quantType

quantType intMin

1,2,3,4,5,6,7,8
9,10,11,12

NULL

13,14 fct.intMin[0]
15 NULL

9.3.3.2 Quantization of BIFS-Anim

9.3.3.2.1 Animation Categories

The fields are grouped in the following categories for animation:

Table 25 - Animation Categories

Category Description

0 None
1 Position 3D
2 Positions 2D
3 Reserved
4 Color
5 Reserved
6 Angle
7 Float
8 BoundFloat
9 Normals
10 Rotation
11 Size 3D
12 Size 2D
13 Integer
14 Reserved
15 Reserved

9.3.3.2.2 Determining the quantization parameters for a given field

The isQuantized, nbBits, floatMin, floatMax and intMin fields of the FieldData structure pertain to
the quantization of the field. The values of these fields are determined from the local AnimFieldQP (aqp) and the
FieldCodingTable (fct) stored in the FieldData. This is done in the following way :

isQuantized

In the BIFS-Anim quantization process, isQuantized is always TRUE.

nbBits

In the BIFS-Anim quantization process, nbBits is set in the following way :

Table 26 - Value of nbBits, depending on animType

animType nbBits

1,2,4,6,7,8,9
10,11,12,13

animType.INbBits

floatMin[]

In the BIFS-Anim quantization process, floatMin is set in the following way :

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 85

Table 27 - Value of floatMin, depending on animType

animType aqp.useDefau
lt

floatMin

true fct.min[0], fct.min[0], fct.min[0]4 Color
false aqp.IMin[0], aqp.IMin[0],

aqp.IMin[0]
true fct.min[0]8 BoundFloat
false aqp.IMin[0]

1 Position
3D

false aqp.IMin

2 Position
2D

false aqp.IMin

11 Size 3D false aqp.IMin[0], aqp.IMin[0]
12 Size 2D false aqp.IMin[0], aqp.IMin[0],

aqp.IMin[0]
7 Float false aqp.IMin[0]
6
9
10

Angle
Normal
Rotation

false 0.0

13 Integer false NULL
14,1
5

Reseved NULL

floatMax[]

In the BIFS-Anim quantization process, floatMax is set in the following way:

Table 28 - Value of floatMax, depending on animType

animType aqp.useDefau
lt

floatMax

true fct.max[0], fct.max[0], fct.max[0]4 Color
false aqp.IMax[0], aqp.IMax[0], aqp.IMax[0]
true fct.max[0]8 BoundFloat
false aqp.IMax[0]

1 Position
3D

false aqp.IMax

2 Position
2D

false aqp.IMax

11 Size 3D false aqp.IMax[0], aqp.IMax[0]
12 Size 2D false aqp.IMax[0], aqp.IMax[0], aqp.IMax[0]
7 Float false aqp.IMax[0]

false 2*Pi6
9
10

Angle
Normal
Rotation

false 1.0

13 Integer false NULL
14,1
5

Reseved NULL

intMin[]

In the BIFS-Anim quantization process, intMax is set in the following way:

ISO/IEC 14496-1:2001(E)

86 © ISO/IEC 2001 – All rights reserved

Table 29 - Value of intMin, depending on animType

animType intMin

1,2,4,6,7,8
9,10,11,12

NULL

13 aqp.IminInt[0]
14,15 NULL

9.3.3.3 Quantization process

Let)(tvq be the value decoded from the bitstream at an instant t. Then, the inverse-quantized value at time t is:

� �)(InvQuant)(tvtv q�

The linear quantization and inverse quantization are:

int quantize (float Vmin, float Vmax, float v, int Nb)

which returns)12(
minmax

min
�

�

�

�
Nb

q VV

Vv
v

float invQuantize (float Vmin,float Vmax,int vq, int Nb)

which returns 12
ˆ

)1,max(
minmax

min
�

�

��
Nbq

VV
vVv

If isQuantized is true, the quantization/inverse quantization process is the following :

Table 30 - Quantization and inverse quantization process

QuantType animType Quantization/Inverse Quantization Process

1,2,3,4,5
6,7,8
11,12

1,2,4

6,7,8

11,12

For each component of the vector, the float quantization is applied:

)nbBits],[v],[floatMax],[floatMinquantize(][iiiivq �

For the inverse quantization:

)nbBits],[v],[floatMax],[floatMinuantize(invQ][ˆ q iiiiv �

9,10 9,10 For normals and rotations, the quantization method is as follows.

Normals are first renormalized :

222222222
]2[,]1[,]0[

zux

z

zux

y

zux

x

nnn

n
v

nnn

n
v

nnn

n
v

��

�

��

�

��

�

Rotations (axis n
�

, angle �) are first written as quaternions :

)
2

sin(.]3[)
2

sin(.]2[)
2

sin(.]1[)
2

cos(]0[
����

n

n
v

n

n
v

n

n
vv zyx

���
����

The number of reduced components is defined to be N: 2 for normals, and 3 for
rotations. Note that v is then of dimension N+1. The compression and
quantization process is the same for both :

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 87

QuantType animType Quantization/Inverse Quantization Process

The orientation k of the unit vector v is determined by the largest component in

absolute value:)][argMax(ivk � . This is an integer between 0 and N that is

encoded using two bits.

The direction of the unit vector v is 1 or –1 and is determined by the sign of the
component][kv .Note that this value is not written for rotations (because of the

properties of quaternions).

The N components of the compressed vector are computed by mapping the

square on the unit sphere
��

�
�
�

��

�
�
�

� 1
][

][

kv

iv
v into a N dimensional square :

� �
Ni

kv

Nkiv
ivc ,...,0

][

)1mod()1(
tan

4
][1 ���

�

�
��
�

� ���
� �

�

If nbBits=0, the process is complete. Otherwise, each component of cv (which

lies between –1 and 1) is quantized as a signed integer as follows :

� �1nbBits],[],0[floatMax],0[floatMinquantize2][1nbBits
���

� iviv cq

The value is encoded in the bitstream as

][ivq

The decoding process is the following :

The value decoded from the stream is converted to a signed value

1.nbBits2][�

�� decodedq viv

The inverse quantization is performed

)1nbBits],[],0[floatMin],0[floatMinuantize(invQ][�� iviv qc

After extracting the orientation (k) and direction (dir) , the inverse mapping can
be performed :

�
�

�

�

�
Ni

i

c iv
kv

0

2

4

][.
tan1

1
.dir][̂

�

ISO/IEC 14496-1:2001(E)

88 © ISO/IEC 2001 – All rights reserved

QuantType animType Quantization/Inverse Quantization Process

� � Nikv
iv

Nkiv c ,...,0][ˆ.
4

][.
tan)1mod()1(ˆ ��

�

�
�
�

�
����

�

If the object is a rotation, v can be either used directly or converted back from a
quaternion to a SFRotation :

)2/sin(

]3[ˆ

)2/sin(

]2[ˆ

)2/sin(

]1[ˆ
])0[ˆ(cos.2 1

���

�

v
n

v
n

v
nv zyx ����

�

The entire compression process therefore consists in projecting a vector of the
unit sphere onto the face of a cube inscribed inside the sphere, and transmitting
separately the face’s index (orientation: x, y or z – and direction : + or -) and the
coordinates on the face.

EXAMPLE � How two different normals are encoded in the case nbBits=3. The
compensation process (described in 9.3.4) is also illustrated.

y (ori=1)

z (ori=2)

x (ori=0)

ori=0, dir=+1,vq=[-2,+2]

inv=+1, delta=[+1,+2]

ori=2, dir=+1,vq=[+2,-1]

Note that two quaternions that lie in opposite directions on the unit sphere
actually represent the same rotation. This is the reason why the direction is not
coded for rotations.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 89

QuantType animType Quantization/Inverse Quantization Process

13,14 13 For integers, the quantized value is the integer shifted to fit the interval [0, 2nbBits -
1].

intMin�� vvq

The inverse quantization process in then :

qvv �� intMinˆ

fieldType

SFImage

For SFImage types, the width and height of the image are sent.
numComponents defines the image type. The following four types are
enabled:

If the value is ‘00’, then a grey scale image is defined.

If the value is ‘01’, a grey scale with alpha channel is used.

If the value is ‘10’, then an RGB image is used.

If the value is ‘11’, then an RGB image with alpha channel is used.

9.3.4 Compensation process

This subclause describes the mechanism used to compensate a quantized value for a given FieldData structure.
In other words, how to add a delta to a quantized value to yield the result of addition, which is another quantized
value. For vectorial types, this is simply an addition component by component, but for normals and rotations special
care has to be taken when performing this addition. This process is used in predictive mode in BIFS-Anim
sessions.

Let 1
qv be the initial quantized value, �v be the delta value and 2

qv be the quantized value resulting from the

addition. The general inverse compensation process is :

),(AddDelta 12 �vvv qq �

1
qv and �v are interpreted as follows:

A quantized value qv contains an array of integers vq[]. Additionally, for normals and rotations, 1
qv contains an

orientation and, for normals only, a direction (see 9.3.3.3).

A delta value �v contains an array of integers vDelta[]. Additionnally, for normals, it contains an integer inverse
whose value is –1 or 1.

The size of these arrays is that returned by the function getNbComp(field), as described in 0.

The result 2
qv is then computed in the following way :

ISO/IEC 14496-1:2001(E)

90 © ISO/IEC 2001 – All rights reserved

Table 31 - Compensation process

animType Compensation Process

1,2,4,6,7,8

11,12,13

The components of 2
qv are:

vq2[i] = vq1[i] + vDelta[i]

The addition is first performed component by component and stored in a temporary array:
vqTemp[i] = vq1[i] + vDelta[i].

Let scale = 12)1,0max(
�

�nbBits .
Let N the number of reduced components (2 for normals, 3 for rotations)
There are then three cases are to be considered:
For every index
I,

scalevqTemp[i] �

2
qv is defined by,

vq2[i] = vqTemp[i]

orientation2= orientation1

direction2 = direction1 * inverse

2
qv is rescaled as if gliding on the faces of the mapping cube.

Let inv = 1 if vqTemp[k]>=0 and –1 else

Let dOri = k+1

The components of vq2 are computed as follows

dOri-Ni0 �� vq2[i] = inv*vqTemp[(i+dOri) mod N]

dOri-Ni � vq2[i] = inv*2*scale–vqTemp[dOri–1]

NidOri-N �� vq2[i] = inv*vqTemp[(i+dOri-1) mod N]

There is one
and only one
index k such
that

scalevqTemp[k] �

orientation2 = (orientation1 + dOri) mod (N+1)

direction2 = direction1 * inverse * inv

9,10

There are
several indices
k such that

scalevqTemp[k] �

The result is undefined

9.3.5 BIFS Configuration

9.3.5.1 Overview

This subclause describes the terminal configuration for the BIFS elementary stream. It is encapsulated within the
specificInfo fields of the general DecoderSpecificInfo structure (see 8.6.7), which is contained in the
DecoderConfigDescriptor that is carried in ES_Descriptors. If the session is a BIFS-Anim session, the
BIFS configuration contains some specific information to describe the animation mask, which specifies the
elements of the scene to be animated.

The terminal configuration is defined differently for elementary streams compliant only with this part of ISO/IEC
14496-1 and those compliant with this specification, and it is presented in 9.3.5.2 and 9.3.5.3, respectively. The

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 91

BIFS version of a specific scene description stream is determined by the objectTypeIndication field of the
DecoderConfigDescriptor contained in the ES_Descriptor that describes this stream.

9.3.5.2 BIFSConfig

9.3.5.2.1 Syntax

class BIFSConfig extends DecoderSpecificInfo : bit(8) tag=DecSpecificInfoTag {
unsigned int(5) nodeIDbits;
unsigned int(5) routeIDbits;
bit(1) isCommandStream;
if(isCommandStream) {

bit(1) pixelMetric;
bit(1) hasSize;
if(hasSize) {

unsigned int(16) pixelWidth;
unsigned int(16) pixelHeight;

}
}
else {

bit(1) randomAccess;
AnimationMask animMask();

}
}

9.3.5.2.2 Semantics

BIFSConfig is the terminal configuration for the BIFS elementary stream. It is encapsulated within the
specificInfo fields of the general DecoderSpecificInfo structure (see 8.6.7), which is contained in the
DecoderConfigDescriptor that is carried in ES_Descriptors.

The parameter nodeIDbits sets the number of bits used to represent nodeIDs. Similarly, routeIDbits sets
the number of bits used to represent ROUTEIDs.

The boolean isCommandStream identifies whether the BIFS stream is a BIFS-Command stream or a BIFS-Anim
stream. If the BIFS-Command stream is selected (isCommandStream set to TRUE), the following parameters are
contained in BIFSConfig:

� The boolean isPixelMetric indicates whether pixel metrics or meter metrics are used.

� The boolean hasSize indicates whether a desired scene size (in pixels) is specified. If hasSize is set to true,
pixelWidth and pixelHeight provide to the receiving terminal the desired horizontal and vertical
dimensions (in pixels) of the scene.

If isCommandStream is false, the following information is contained in BIFSConfig:

� The randomAccess boolean signals the mode of the BIFS-Anim stream. If the bit is set to TRUE, it is possible
to perform random access in the BIFS-Anim stream at any intra frame. At each intra frame, the statistics of the
arithmetic decoder shall be reset. New quantization parameters shall be coded in the bistream or the default
parameters sent in the BIFS-Anim mask are used. If the randomAccess bit is set to FALSE, compression may
be more efficient, but random access may not be possible at each intra frame. See 0 for detailed semantics.

� The AnimationMask specifies the animation parameters of the BIFS-Anim elementary stream.

9.3.5.3. BIFSv2Config

9.3.5.3.1. Syntax

class BIFSv2Config {
bit(1) use3DMeshCoding;
bit(1) reserved;
bit(5) nodeIDbits;
bit(5) routeIDbits;
bit(5) PROTOIDbits;

ISO/IEC 14496-1:2001(E)

92 © ISO/IEC 2001 – All rights reserved

bit(1) isCommandStream;
if(isCommandStream) {

bit(1) pixelMetric;
bit(1) hasSize;
if(hasSize) {

int(16) pixelWidth;
int(16) pixelHeight;

}
}
else {

bit(1) randomAccess;
AnimationMask animMask();

}
}

9.3.5.3.2. Semantics

BIFSv2Config is the terminal configuration for elementary streams compliant with this specifcation but not with
this part of ISO/IEC 14496. It is not compatible with BIFSConfig defined in 9.3.5.2. It is encapsulated within the
specificInfo fields of the general DecoderSpecificInfo structure (see 8.6.6), which is contained in the
DecoderConfigDescriptor that is carried in ES_Descriptors.

The use3DmeshCoding flag is used to signal that the syntax of 3D Mesh as sepecified by ISO/IEC 14496-2:1999
is used to encode IndexedFaceSet nodes.

Parameters nodeIDbits and routeIDbits are used similarly as in BIFSConfig.

Boolean variables isCommandStream, isPixelMetric, hasSize, pixelWidth, and pixelHeight are
used similarly as in BIFSConfig. If the BIFS-Command stream is selected (isCommandStream set to TRUE), a
PROTOIDbits field is additionally contained in BIFSv2Config to determine the number
of bits necessary to encode the PROTOs.

If isCommandStream is false, randomAccess, and AnimationMask are contained and used in BIFSv2Config
similarly as in BIFSConfig.

9.3.5.4 AnimationMask

9.3.5.4.1 Syntax

class AnimationMask() {
int numNodes = 0;
do {

ElementaryMask elemMask();
numNodes++;
bit(1) moreMasks;

} while (moreMasks);
}

9.3.5.4.2 Semantics

The AnimationMask describes the nodes and fields to be animated, along with the quantization parameters to
help decode their values. It consists of a list of ElementaryMasks.

If the boolean moreMasks is TRUE, another ElementaryMask shall be present.

9.3.5.5 Elementary mask

9.3.5.5.1 Syntax

Class ElementaryMask() {
bit(BIFSConfiguration.nodeIDbits) nodeID;

NodeUpdateField node = GetNodeFromID(nodeID);
switch (node.nodeType) {

case FaceType:
break;

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 93

case BodyType:
break;
case IndexedFaceSet2DType:
break;
default:
InitialFieldsMask initMask(node);

}
}

9.3.5.5.2 Semantics

The ElementaryMask describes how to animate the elements of a node.

The integer nodeID identifies the animated node.

If the node’s nodeType is FDP, BDP or IndexedFaceSet2D, no further information is expected.

If any other case, an InitialFieldsMask shall be present.

9.3.5.6 InitialFieldsMask

9.3.5.6.1 Syntax

class InitialFieldsMask(NodeUpdateField node) {
for(i=0; i<node.numDYNfields; i++)

bit(1) node.isAnimField[i];
int i;
for(i=0; i<node.numDYNfields; i++) {

if (node.isAnimField[i]) {
FieldData field = node.field[node.dyn2all[i]];
AnimFieldQP aqp = field.aqp;
if (!isSF(field) {

bit(1) aqp.isTotal;
if (!aqp.isTotal) {

unsigned int(5) nbBits;
do {

int(nbBits) aqp.indexList[aqp.numElement++];
bit(1) moreIndices;

} while (moreIndices);
}
InitialAnimQP QP[i](field.aqp);

}
}

}

9.3.5.6.2 Semantics

The InitialFieldsMask specifies which fields of a given node are animated.

The array of booleans isAnimField describes whether the fields (indexed with dynIDs) are animated.

If a multiple field is animated and if the boolean isTotal is TRUE, all the of the field’s individual elements are
animated.

If a multiple field is animated and if the boolean isTotal is FALSE, the indices of the animated individual field are
sent and stored in aqp.indexList[]. The number of bits used to encode them is specified by nbBits. If the
boolean moreIndices is TRUE, another index shall be present.

An InitialAnimQP shall then be expected.

9.3.5.7 InitialAnimQP

9.3.5.7.1 Syntax

InitialAnimQP(animFieldQP aqp) {

ISO/IEC 14496-1:2001(E)

94 © ISO/IEC 2001 – All rights reserved

aqp.useDefault=FALSE;
uint(4) type;
aqp.animType = type;
switch(aqp.animType) {

case 4: // Color
case 8: // BoundFloats

bit(1) aqp.useDefault
case 1: // Position 3D
case 2: // Position 2D
case 11: // Size 3D
case 12: // Size 2D
case 7: // Floats

if (!aqp.useDefault) {
for (i=0;i<getNbBounds(aqp);i++) {

bit(1) useEfficientCoding
GenericFloat aqp.Imin[i](useEfficientCoding);

}
for (i=0;i<getNbBounds(aqp);i++) {

bit(1) useEfficientCoding
GenericFloat aqp.Imax[i](useEfficientCoding);

}
}
break;

case 13: // Integers
int(32) aqp.IminInt[0];

break;
}
unsigned int(5) aqp.INbBits;

for (i=0;i<getNbBounds(aqp);i++) {
int(INbBits+1) vq
aqp.Pmin[i] = vq-2^aqp.INbBits;

}

unsigned int(4) aqp.PNbBits;

}

9.3.5.7.2 Semantics

The InitialAnimQP specifies the field’s default quantization parameters.

The quantization bounds are first coded. For animTypes that have default finite bounds (Colors, BoundFloats),
the default bounds of the field coding tables data structures can optionally be used by setting aqp.useDefault to
TRUE. For all other animTypes, this boolean is set to FALSE. For all vectorial animTypes (Position3D,
Position2D, Size3D, Size2D, Float, BoundFloat, Color), if aqp.useDefault is FALSE, the quantization
bounds aqp.Imin[] and aqp.Imax[] are coded. Depending on the value of useEfficientCoding, these
bounds are coded using GenericFloat as floats of 32 bits or less. For the animTypes Angle, Normal and
Rotation, no quantization bounds are coded.

The number of bits used in the quantization process, aqp.INbBits, is then coded. The quantization process (see
9.3.3.3) is used in intra mode only.

The minimal bounds used to offset the values obtained from the compensatiation process in predictive mode,
Pmin[], are then coded. Pmins may have values in the range –2INbBits to 2INbBits-1. The value is coded as an
unsigned integer using INbBits+1 bits and has the value PMin+2INbBits.

The number of bits used for the predictive values, aqp.PNbBits, is then coded. The compensation process (see
9.3.4) is used in predictive mode only.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 95

9.3.6 BIFS Command Syntax

9.3.6.1 Overview

This subclause describes the commands that can be sent to act on the scene. They allow insertion, modification,
and deletion of elements of the scene (new scenes, nodes, fields). All BIFS information is encapsulated in BIFS
command frames. Each frame may contain commands that perform a number of operations, such as insertion,
deletion, or modification of scene nodes, their fields, or routes.

9.3.6.2 Command Frame

9.3.6.2.1 Syntax

class CommandFrame() {
do {

Command command();
bit(1) continue;

} while (continue);
}

9.3.6.2.2 Semantics

A CommandFrame is a collection of BIFS-Commands, and corresponds to one access unit. A sequence of
commands may be sent. The boolean value continue, when TRUE, indicates that another command follows the
current one.

9.3.6.3 Command

9.3.6.3.1 Syntax

class Command() {
bit(2) code;
switch (code) {
case 0:

InsertionCommand insert();
break;

case 1:
DeletionCommand delete();
break;

case 2:
ReplacementCommand replace();
break;

case 3:
SceneReplaceCommand sceneReplace();
break;

}

9.3.6.3.2 Semantics

For each Command, the 2-bit flag, code, signals one of the four basic commands: insertion, deletion, replacement,
and scene replacement.

9.3.6.4 Insertion Command

9.3.6.4.1 Syntax

class InsertionCommand() {
bit(2) parameterType ;
switch parameterType {
case 0:

NodeInsertion nodeInsert();
break;

case 2:
IndexedValueInsertion idxInsert();
break;

case 3:
ROUTEInsertion ROUTEInsert();

ISO/IEC 14496-1:2001(E)

96 © ISO/IEC 2001 – All rights reserved

break ;
}

}

9.3.6.4.2 Semantics

There are four basic insertion commands, signaled by the 2-bit flag parameterType.

If parameterType is 0, a NodeInsertion is expected.

If parameterType is 2, an IndexedValueInsertion is expected.

If parameterType is 3, a ROUTEInsertion is expected.

9.3.6.5 Node Insertion

9.3.6.5.1 Syntax

class NodeInsertion() {
bit(BIFSConfiguration.nodeIDbits) nodeID ;

int ndt=GetNDTFromID(nodeID);
bit(2) insertionPosition;
switch (insertionPosition) {
case 0: // insertion at a specified position

bit (8) position;
SFNode node(ndt);
break;

case 2: // insertion at the beginning of the field
SFNode node(ndt);
break;

case 3: // insertion at the end of the field
SFNode node(ndt);
break;

}
}

9.3.6.5.2 Semantics

The insertion of a node may be performed on a node that has an MFNode children field. Inserting a node adds the
node at the desired position in the children multiple field. The command is thus valid only if the node referred to by
nodeID contains a children field of type MFNode.

A node may be inserted in the children field of a grouping node. The nodeID of this grouping node is first coded.

The NDT of the inserted node can be determined from the NDT of the children field in which the node is inserted.

The position in the children field where the node shall be inserted, insertionPosition is then coded on two bits :

� If the insertionPosition is 0, the node is inserted at a specified position coded on 8 bits.

� If the insertionPosition is 2, the node is inserted at the beginning of the field.

� If the insertionPosition is 3, the node is inserted at the end of the field.

The node is then coded.

9.3.6.6 IndexedValue Insertion

9.3.6.6.1 Syntax

class IndexedValueInsertion() {
bit(BIFSConfiguration.nodeIDbits) nodeID;
NodeUpdateField node=GetNodeFromID(nodeID);

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 97

int(node.nINbits) inID;
bit(2) insertionPosition;
switch (insertionPosition) {
case 0: // insertion at a specified position

bit (16) position;
SFField value(node.field[node.in2all[inID]]);
break;

case 2: // insertion at the beginning of the field
SFField value(node.field[node.in2all[inID]]);
break;

case 3: // insertion at the end of the field
SFField value(node.field[node.in2all[inID]]);
break;

}
}

9.3.6.6.2 Semantics

The IndexedValueInsertion syntax allows the insertion of a new value in a multiple field at the desired
position.

The nodeID of the node in whose field the value is to be inserted is first coded.

The field in which the value is inserted must be a multiple field type. The field is signaled with an inID. The inID
is parsed using the table for the node type of the node in which the value is inserted. The node type may be
determined from the nodeID.

The position in the children field where the node shall be inserted, insertionPosition, is then coded:

� If the insertionPosition is 0, the node is inserted at a specified position coded using 16 bits.

� If the insertionPosition is 2, the node is inserted at the beginning of the field.

� If the insertionPosition is 3, the node is inserted at the end of the field.

The node is then coded.

9.3.6.7 ROUTE Insertion

9.3.6.7.1 Syntax

class ROUTEInsertion() {
bit(1) isUpdatable;
if (isUpdatable)

bit(BIFSConfiguration.routeIDbits) routeID;

bit(BIFSConfiguration.nodeIDbits) departureNodeID;
NodeData nodeOUT=GetNodeFromID(departureNodeID);

int(nodeOUT.nOUTbits) departureID;
bit(BIFSConfiguration.nodeIDbits) arrivalNodeID;

NodeData nodeIN=GetNodeFromID(arrivalNodeID);
int(nodeIN.nINbits) arrivalID;

}

9.3.6.7.2 Semantics

The ROUTE insertion syntax permits the addition of a new ROUTE in the list of ROUTEs for the current scene.

A ROUTE is inserted in the list of ROUTEs by specifying a new ROUTE.

If the boolean isUpdatable is TRUE, a routeID is coded to allow the ROUTE to be referenced.

The nodeID of the route’s departure, departureNodeID, is first coded.

ISO/IEC 14496-1:2001(E)

98 © ISO/IEC 2001 – All rights reserved

The outID of the departure field in the departure node, departureID,is then coded.

The nodeID of the route’s arrival, arrivalNodeID, is then coded.

The inID of the arrival field in the arrival node, arrivalID, is then coded.

9.3.6.8 Deletion Command

9.3.6.8.1 Syntax

class DeletionCommand() {
bit(2) parameterType ;
switch (parameterType) {
case 0:

NodeDeletion nodeDelete();
break ;

case 2:
IndexedValueDeletion idxDelete();
break ;

case 3:
ROUTEDeletion ROUTEDelete();
break ;

}
}

9.3.6.8.2 Semantics

There are three types of deletion commands, signalled by the 2-bit flag parameterType.

If parameterType is 0, a NodeDeletion is expected.

If parameterType is 2, an IndexedValueDeletion is expected.

If parameterType is 3, a ROUTEDeletion is expected.

9.3.6.9 Node Deletion

9.3.6.9.1 Syntax

class NodeDeletion() {
bit(BIFSConfiguration.nodeIDbits) nodeID;

}

9.3.6.9.2 Semantics

The NodeDeletion syntax permits the deletion of a node with a specific nodeID. The node deletion deletes the
node and all its instances, if it was referenced elsewhere in the scene with a USE statement.

The node deletion is signalled by the nodeID of the node to be deleted. When deleting a node, all fields shall also
deleted, as well as all ROUTEs related to the node or its fields.

9.3.6.10 IndexedValue Deletion

9.3.6.10.1 Syntax

class IndexedValueDeletion() {
bit(BIFSConfiguration.nodeIDbits) nodeID;

NodeData node=GetNodeFromID(nodeID);
int(node.nINbits) inID;
bit(2) deletionPosition;
switch (deletionPosition) {
case 0: // deletion at a specified position

bit(16) position;
break;

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 99

case 2: // deletion at the beginning of the field
break;

case 3: // deletion at the end of the field
break;

}
}

9.3.6.10.2 Semantics

The IndexedValueDeletion syntax permits the deletion of an element of a multiple value field.

The nodeID of the node to be deleted is first coded.

The inID of the field to be deleted is then coded.

The position in the children field from where the value shall be deleted, deletionPosition, is then coded:

� If the insertionPosition is 0, the value at specified position, coded using 16 bits, shall be deleted.

� If the insertionPosition is 2, the value at the beginning of the field shall be deleted.

� If the insertionPosition is 3, the value at the end of the field shall be deleted.

9.3.6.11 ROUTE Deletion

9.3.6.11.1 Syntax

class ROUTEDeletion() {
bit(BIFSConfiguration.routeIDbits) routeID;

}

9.3.6.11.2 Semantics

The ROUTEDeletion syntax permits the deletion of a ROUTE with a given routeID from the list of active
ROUTEs.

Deleting a ROUTE is performed by specifying its routeID. This is similar to the deletion of a node.

9.3.6.12 Replacement Command

9.3.6.12.1 Syntax

class ReplacementCommand() {
bit(2) parameterType ;
switch (parameterType) {
case 0:

NodeReplacement nodeReplace();
break;

case 1:
FieldReplacement fieldReplace();
break;

case 2:
IndexedValueReplacement idxReplace();
break ;

case 3:
ROUTEReplacement ROUTEReplace();
break;

}
}

9.3.6.12.2 Semantics

There are 4 replacement commands, signalled by the 2-bit flag parameterType.

ISO/IEC 14496-1:2001(E)

100 © ISO/IEC 2001 – All rights reserved

If parameterType is 0, a NodeReplacement is expected.

If parameterType is 1, a FieldReplacement is expected.

If parameterType is 2, a IndexedValueReplacement is expected.

If parameterType is 3, a ROUTEReplacement is expected.

9.3.6.13 Node Replacement

9.3.6.13.1 Syntax

class NodeReplacement() {
bit(BIFSConfiguration.nodeIDbits) nodeID;
SFNode node(SFWorldNode);

}

9.3.6.13.2 Semantics

The NodeReplacement syntax permits the deletion of an existing node and its replacement with a new node. All
ROUTEs pointing to the deleted node as well as any instances of the node created through the USE mechanism
shall be deleted.

The node to be replaced is signalled by its nodeID. The new node is encoded with the SFWorldNode node data
type, which is valid for all BIFS nodes, in order to avoid necessitating the NDT of the replaced node to be
established.

9.3.6.14 Field Replacement

9.3.6.14.1 Syntax

class FieldReplacement() {
bit(BIFSConfiguration.nodeIDbits) nodeID ;
NodeData node = GetNodeFromID(nodeID);
int(node.nINbits) inID;
Field value(node.field[node.in2all[inID]]);

}

9.3.6.14.2 Semantics

This FieldReplacement syntax permits the modification of the value of a field of an existing node. The existing
value shall be deleted and replaced with the new value.

The nodeID of the node whose field is to be modified is first coded

The inID of the field to be modified is then coded

The new field is then coded

9.3.6.15 IndexedValueReplacement

9.3.6.15.1 Syntax

class IndexedValueReplacement() {
bit(BIFSConfiguration.nodeIDbits) nodeID;

NodeData node = GetNodeFromID(nodeID);
int(node.nINbits) inID;
bit(2) replacementPosition;
switch (replacementPosition) {
case 0: // replacement at a specified position

bit (16) position;
SFField value(node.field[node.in2all[inID]]);
break;

case 2: // replacement at the beginning of the field

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 101

SFField value(node.field[node.in2all[inID]]);
break;

case 3: // replacement at the end of the field
SFField value(node.field[node.in2all[inID]]);
break;

}
}

9.3.6.15.2 Semantics

The IndexedValueReplacement syntax permits the modification of the value of an element of a multiple field.
As for any multiple field access, it is possible to replace at the beginning, the end or at a specified position in the
multiple field.

The nodeID of the node whose field is to be modified is first coded.

The inID of the field whose value is to be modified is then coded.

The position in the children field where value has to be modified, replacementPosition, is then coded:

� If the insertionPosition is 0, the value at specified position, coded using 16 bits, is modified.

� If the insertionPosition is 2, the value at the beginning of the field is modified.

� If the insertionPosition is 3, the value at the end of the field is modified.

The new value is then coded as a SFField.

9.3.6.16 ROUTE Replacement

9.3.6.16.1 Syntax

class ROUTEReplacement() {
bit(BIFSConfiguration.routeIDbits) routeID;
bit(BIFSConfiguration.nodeIDbits) departureNodeID;

NodeData nodeOUT = GetNodeFromID(nodeID);
int(nodeOUT.nOUTbits) departureID;
bit(BIFSConfiguration.nodeIDbits) arrivalNodeID;

NodeData nodeIN = GetNodeFromID(nodeID);
int(nodeIN.nINbits) arrivalID;

}

9.3.6.16.2 Semantics

Replacing a ROUTE deletes the replaced ROUTE and replaces it with the new ROUTE.

The routeID of the ROUTE to be replaced is first coded.

The nodeID of the new route’s departure, departureNodeID, is then coded.

The outID of the departure field in the departure node, departureID, is then coded.

The nodeID of the route’s arrival, arrivalNodeID, is then coded.

The inID of the arrival field in the arrival node, arrivalID, is then coded.

9.3.6.17 Scene ReplaceCommand

9.3.6.17.1 Syntax

class SceneReplaceCommand() {
BIFSScene scene();

}

ISO/IEC 14496-1:2001(E)

102 © ISO/IEC 2001 – All rights reserved

9.3.6.17.2 Semantics

Replacing a scene results in the entire BIFS scene being replaced with a new BIFSScene scene. When used in
the context of an Inline node, this corresponds to replacement of the sub-scene (previously assumed to be
empty). In a BIFS elementary stream, the SceneReplacement commands are the only random access points.

9.3.7 BIFS Scene

9.3.7.1 BIFSScene

9.3.7.1.1 Syntax

class BIFSScene() {
bit(6) reserved;
bit(1) USENAMES;
PROTOlist protos;
SFNode nodes(SFTopNode);
bit(1) hasROUTEs;
if (hasROUTEs) {

ROUTEs routes();
}

}

9.3.7.1.2 Semantics

The integer reserved may be used in future extensions. It shall be set to 0.

The BIFSScene structure represents the global scene. A BIFSScene is always associated to a ReplaceScene
BIFS-Command message. The BIFSScene is structured in the following way:

The nodes of the scene are described first as an SFNode. The first node in the scene shall be of type SFTopNode
(see Annex H).

A boolean value, USENAMES, sets a global flag that indicates whether PROTOs, SFNodes, and ROUTEs store their
field names and IDs as strings, as well as integer values. (This is needed for MPEG-J and Scripts, which refer to
fields, by their explicit string name).

A list of PROTOs associated with the scene is stored in protos.

ROUTEs are described after all nodes

All BIFS scenes shall begn with a node of type SFTopNode. This implies that the top node may be one of
Layer2D, OrderedGroup, Group or Layer3D.

9.3.7.2. Encoding of PROTOs

This subclause describes how PROTOs, a mechanism that allow scene components to be reused, are encoded.
The encoding of PROTOs allows specification of quantization and animation categories for the PROTO
parameters, so that PROTOs can take advantage of BIFS compression capabilities just like any other (predefined)
node in the node coding tables. A PROTOlist is stored in a BIFSScene and contains a list of PROTOs that are
associated with that scene.

9.3.7.2.1 PROTOlist

9.3.7.2.1.1 Syntax

class PROTOlist() {
bit(1) morePROTOs;
while (morePROTOs) {

PROTOdeclaration() proto;
bit(1) morePROTOs;

}
}

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 103

9.3.7.2.1.2 Semantics

The PROTOlist stores a list of PROTOs. A one-bit flag morePROTOs signals the fact that more PROTOs are being
declared.

9.3.7.2.2 PROTOdeclaration

9.3.7.2.2.1 Syntax

PROTOdeclaration() {
PROTOinterfaceDefintion interface;

NodeData protoData = MakePROTOdata(interface);
PROTOcode code(protoData);
PROTOcodingTable table(protoData);

}

9.3.7.2.2.2 Semantics

The PROTO declaration is made of the PROTOinterface defintion, the PROTO implementation in terms of
nodes, and the PROTO coding table. The PROTO coding table codes the equivalent of the Node Coding table for
the PROTO. This makes it possible to animate, quantize and update the PROTO instantiations using the identical
mechanisms used for the pre-defined nodes.

9.3.7.2.3 PROTOinterfaceDefinition

9.3.7.2.3.1 Syntax

class PROTOinterfaceDefinition {
bit(idBits) id;
if (USENAMES) {

String PROTOname;
}
bit(1) moreFields;
while (moreFields) {

bit(2) eventType;
bit(6) fieldType;
if (USENAMES) {

String fieldName;
}
if ((eventType == 0b00) || (eventType == 0b01)) {

fieldData = makeFieldData(fieldType,eventType,isSF);
Field(fieldData) defaultValue;

}
bit(1) moreFields;

}
}

9.3.7.2.3.2 Semantics

An id is given to the PROTO in order to be able to refer to it. The protoIDbits is obtained from the
BIFSConfiguration and encodes the ID of the PROTO in the PROTO table. The PROTO interface contains a
one bit moreFields field that specifies if more PROTO fields are encoded. Then for each field, the event type
(exposedField, field, eventIn, eventOut) and the fieldType is given (SFBool, SFFloat, et). The eventType is coded
using 2 bits according to Table 32. The fieldType is coded using 6 bits according to Table 32. When the field
type is a node, it is coded as an SFWorldNode or MFWorldNode. The USENAMES is a static constant set at the
BIFSScene level, which selects the fact that node and field names are encoded as Strings as well as IDs.

ISO/IEC 14496-1:2001(E)

104 © ISO/IEC 2001 – All rights reserved

Table 32 - Field and EventTypes.

Field 0b00

exposedField 0b01

eventIn 0b10

eventOut 0b11

9.3.7.2.4 PROTOcode

9.3.7.2.4.1 Syntax

class PROTOcode(NodeData protoData) {
bit(1) reserved;
PROTOlist subProtos;
do {

SFNode node(SFWorldNodeType,protoData);
bit(1) moreNodes;

} while (moreNodes);
bit(1) hasROUTEs;
if (hasROUTEs) {

ROUTEs routes();
}

}

9.3.7.2.4.2 Semantics

The bit reserved is reserved for future extension. The bit shall be set to 0.

First a flag signals whether the prototype is a PROTO, which then has its code included in the proto. The
PROTOcode contains a (possibly empty) list of the sub-PROTOs of this PROTO in subProtos, followed by the
code to execute the PROTO. The code is specified as a set of SFNodes, using a standard SFNode definition with
the additional possibility to declare an IS field. Moreover, the PROTO body may contain ROUTEs if the hasROUTE
flag is set to 1.

9.3.7.2.5 PROTOCodingTable

9.3.7.2.5.1 Syntax

PROTOCodingTable(NodeData protoData) {
InterfaceCodingMask mask(protoData);
InterfaceCodingParameters icp(protoData);

}

9.3.7.2.5.2 Semantics

The PROTO coding table defines the Quant and Anim parameters and the parameters necessary to reconstruct a
NCT table for the PROTO definition.

9.3.7.2.6 InterfaceCodingMask

9.3.7.2.6.1 Syntax

InterfaceCodingMask(NodeData protoData) {
bit(1) protoData.useQuant;
bit(1) protoData.useAnim;

}

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 105

9.3.7.2.6.2 Semantics

The mask encodes two Boolean values to store whether the PROTO can further be animated (using BIFS-Anim),
or quantized.

9.3.7.2.7 InterfaceCodingParameters

9.3.7.2.7.1 Syntax

InterfaceCodingParameters(InterfaceCodingMask mask, NodeData protoData) {
for (int i =0; i < protoData.numALLfields ; i++) {

if (protoData.useQuant) {
if (protoData.field[i].isDEF()) {

bit(4) quantCategory;
if (quantCategory == 13)
bit(5) nbBits;
bit(1) hasMinMax;
if (hasMinMax) {

CastToSF(Field) minFieldValue(protoData.field[i]));
CastToSF(Field) maxFieldValue(protoData.field[i]]));

}
}

}
if (protoData.useAnim) {

if (protoData.field[i].isIN()) {
bit(1) isDyn;
if (isDyn) {

int(4) animCategory;
}

}
}

}
}

9.3.7.2.7.2 Semantics

The InterfaceCodingParameters includes all the necessary parameters to further update, quantize and
animate the PROTO instantiation.

If the useQuant information is TRUE, and the field is of « DEF » type, the quantization category will be encoded. If
the category is 13, the number of bits for this category is further needed. To quantize, it is further necessary to
encode the min and max values for the field. When the field is an SFField, the functions CastToSF(field) parses an
SFField, but when the field is an MFField, the function CastToSF() parses the SFType corresponding the MFType.

If the useAnim is TRUE and the field type is IN, then the anim category will be encoded.

9.3.7.3 SFNode

9.3.7.3.1 Syntax

class SFNode(int nodeDataType) {
bit(1) isReused;
if (isReused) {

bit(BIFSConfiguration.nodeIDbits) nodeID;
}
else {

bit(GetNDTnbBits(nodeDataType)) localNodeType;
nodeType = GetNodeType(nodeDataType,localNodeType);
if ((nodeType == IndexedFaceSetType) &&

(BIFSConfiguration.use3DmeshCoding == 1)) {
bit(1) isUpdateable;
if (isUpdateable) {

bit(BIFSConfiguration.nodeIDbits) nodeID;
if (USENAMES) {

String name;
}

}

ISO/IEC 14496-1:2001(E)

106 © ISO/IEC 2001 – All rights reserved

Mesh3D mnode;
}
else {

if (localNodeType == 0) {
bit(GetNDTnbBitsExt(nodeDataType) extLocalNodeType;
if (extLocalNodeType == 1) {

bit(BIFSConfiguration.PROTOIDbits) PROTOnodeType;
nodeType = GetPROTONodeType(PROTODataType,PROTOnodeType)

}
if (extLocalNodeType > 1) {

nodeType = GetExtNodeType(NodeDataType,extLocalNodeType)
}

}
bit(1) isUpdateable;
if (isUpdateable) {

bit(BIFSConfiguration.nodeIDbits) nodeID;
if (USENAMES) {

String name;
}

}
bit(1) MaskAccess;
if (MaskAccess) {

MaskNodeDescription mnode(MakeNode(nodeDataType, nodeType));
}
else {

ListNodeDescription lnode(MakeNode(nodeDataType, nodeType));
}

}
}

}

9.3.7.3.2 Semantics

The SFNode syntax represents a generic node. The encoding depends on the context of the parent field of the
node. This context is described by the parent field’s node data type (NDT).

If isReused is TRUE then this node is a reference to another node, identified by its nodeID. This is equivalent to
the use of the USE statement in ISO/IEC 14772-1:1998.

If isReused is FALSE, then a complete node is provided in the bitstream. This requires that the nodeType be
inferred from the node data type. The node is referenced by its localNodeType in the node data type table. Then,
this information is converted into the node’s nodeType (e.g. its localNodeType in the SFWorldNode NDT table).

If a node is detected as an IndexedFaceSet node and the Mesh3D syntax is used (see 9.4.2.56), then the
IndexedFaceSet node is coded as a specific visual object (see ISO/IEC 14496-2:1999).

If the node is not an IndexedFaceSet, the localNodeType is checked. If it is 0, then an extra
extLocalNodeType is resolved, corresponding to the list of extended node types for this Node Data Type.

If this extLocalNodeType is equal to 1, this indicates that the NodeType is a PROTO. Then, the global node
type is constructed according to the list of PROTOs declared and their ID.

When a PROTO is declared, a new node type is created and added to the global node type table of supported
nodes. The function GetPROTONodeType(PROTONodeType) returns the ID for the extended global node type of
a given PROTO given its PROTO type.

The function, GetExtNodeType(NodeDataType,extLocalNodeType) is used when a node is of extended
node type, in which case the NodeDataType and extended local node type allow reconstruction of the extended
global node type, i.e. the position of the node in the SFWorldNode extended table.

If the extLocalType is greater than 1 (0 is reserved), then the global node type is resolved using the Node Type
for extended nodes.

The isUpdatable flag enables the assignment of a nodeID to the node. This is equivalent to the DEF statement
of ISO/IEC 14772-1:1998.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 107

The node definition follows using either a MaskNodeDescription, or a ListNodeDescription.

The nodeType is a number that represents the type of the node. This nodeType is coded using a variable number
of bits for efficiency reasons. The exact type of node may be determined from the nodeType as follows:

1. The data type of the field parsed indicates the node data type. The root node is always of type SFTopNode.

2. From the node data type expected and the total number of nodes type in the category, the number of bits
representing the nodeType is obtained (this number is given in the node data type tables in Annex H).

3. The nodeType gives the nature of the node to be parsed.

EXAMPLE � The Shape node has 2 fields defined as:

exposedField SFAppearanceNode Appearance NULL
exposedField SFGeometry3DNode geometry NULL

When decoding a Shape node, if the first field is transmitted, a node of type SFAppearanceNode is expected.
The only node with SFAppearanceNode type is the Appearance node, and hence the nodeType can be coded
using 0 bits. When decoding the Appearance node, the following fields can be found:

exposedField SFMaterialNode Material NULL
exposedField SFTextureNode texture NULL
exposedField SFTextureTransformNode TextureTransform NULL

9.3.7.4 MaskNodeDescription

9.3.7.4.1 Syntax

class MaskNodeDescription(NodeData node) {
if (node.protoData != null) {

for (i=0; i<node.numALLfields; i++) {
bit(1) Mask;
if (Mask) {

bit(1) isedField;
if (isedField) {

unsigned int(node.proto.nALLbits) protoField;
} else {

Field value(node.field[i]]);
}

}
}

} else { //regular list of fields – not from a PROTO
for (i=0; i<node.numDEFfields; i++) {

bit(1) Mask;
if (Mask) {

Field value(node.field[node.def2all[i]]);
}

}
}

}

9.3.7.4.2 Semantics

If the encoded node is a PROTO then all the fields are scanned. Those that have a Mask value of 1 either have a
value read in or are ISed fields indicated by isedField. The ISed fields read a reference to the PROTO interface
field to which they refer.

If the encoded node is not a PROTO, then in the MaskNodeDescription, a mask indicates, for each “def” mode
field (those having a defID) of this node type, if the field value is specified. Fields are sent in the order indicated in
Annex H. The field types are thus known and permit the field’s value to be decoded.

ISO/IEC 14496-1:2001(E)

108 © ISO/IEC 2001 – All rights reserved

9.3.7.5 ListNodeDescription

9.3.7.5.1 Syntax

class ListNodeDescription (NodeData node) {
bit(1) endFlag;
while (!EndFlag){

if (node.protoData != null) {
bit(1) isedField;
if (isedField){

bit(node.nALLbits) fieldRef;
bit(node.proto.nALLbits) protoField;

} else {
bit(node.nDEFbits) fieldRef;
Field value(node.field[node.def2all[fieldRef]]);

}
}
else {

bit(node.nDEFbits) fieldRef;
Field value(node.field[node.def2all[fieldRef]]);

}
bit(1) endFlag;

}
}

9.3.7.5.2 Semantics

In the ListNodeDescription, fields are directly addressed by their field reference, fieldRef. The reference is
sent as a defID and its parsing depends on the node type (see 9.3.2.3). When the fields belong to a PROTO, they
may be ISed fields, indicated by isedField. In this case, a reference to the PROTO interface in coded in
protoField. Since all fields may be ISed, PROTO field references are encoded using node.nALLbits, where
as normal node field references are encoded using only node.nDEFbits. PROTO fields that are not Ised may
have a default value assigned to them.

Non-PROTO fields always have a default value coded.

9.3.7.6 Field

9.3.7.6.1 Syntax

class Field(FieldData field) {
if (isSF(field))

SFField svalue(field);
else

MFField mvalue(field);
}

9.3.7.6.2 Semantics

A field is encoded according to its type: single (SFField) or multiple (MFField). A multiple field is a collection of
single fields.

9.3.7.7 MFField

9.3.7.7.1 Syntax

class MFField(FieldData field) {
bit(1) reserved;
if (!reserved) {

bit(1) isListDescription;
if (isListDescription)

MFListDescription lfield(field);
else

MFVectorDescription vfield(field);
}

}

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 109

9.3.7.7.2 Semantics

The bit reserved is reserved for future extension. The bit shall be set to 0.

MFField types can be encoded with a list (MFListDescription) or vector (MFVectorDescription)
description.

9.3.7.8 MFListDescription

9.3.7.8.1 Syntax

class MFListDescription(FieldData field) {
bit(1) endFlag;
while (!endFlag) {

SFField field(field);
bit(1) endFlag;

}
}

9.3.7.8.2 Semantics

The MFField type is encoded as a list of single fields.

9.3.7.9 MFVectorDescription

9.3.7.9.1 Syntax

class MFVectorDescription(FieldData field) {
int(5) NbBits;
int(NbBits) numberOfFields;
SFField field[numberOfFields](field);

}

9.3.7.9.2 Semantics

The MFField type is encoded as a vector of fields whose dimension is specified.

The number of bits, NbBits, used to specify the dimension of the vector is first coded. The actual dimension is
then coded as an unsigned integer using NbBits. The fields are then coded in order.

9.3.7.10 SFField

9.3.7.10.1 Syntax

class SFField(FieldData field) {
switch (field.fieldType) {

case SFNodeType:
SFNode nValue(field.fieldType);
break;

case SFBoolType:
SFBool bValue;
break;

case SFColorType:
SFColor cValue(field);
break;

case SFFloatType:
SFFloat fValue(field);
break;

case SFInt32Type:
SFInt32 iValue(field);
break;

ISO/IEC 14496-1:2001(E)

110 © ISO/IEC 2001 – All rights reserved

case SFRotationType:
SFRotation rValue(field);
break;

case SFStringType:
SFString sValue;
break;

case SFTimeType:
SFTime tValue;
break;

case SFUrlType:
SFUrl uValue;
break;

case SFVec2fType:
SFVec2f v2Value(field);
break;

case SFVec3fType:
SFVec3f v3Value(field);
break;

case SFImageType:
SFImage imageValue(field);
break;

case SFCommandBufferType:
SFCommandBuffer commandValue(field);
break;

case SFScriptType:
SFScript scriptValue();
break;

}
}

9.3.7.10.2 Semantics

Each field is encoded according to its fieldType.

9.3.7.11 GenericFloat

9.3.7.11.1 Syntax

class GenericFloat(boolean useEfficientCoding) {
if (!useEfficientCoding)

float(32) value;
else {

EfficientFloat value;
}

9.3.7.11.2 Semantics

If the parameter useEfficientCoding is true, the float is coded using the EfficientFloat scheme.
Otherwise, the IEEE 32 bit format for float coding is used.

9.3.7.12 EfficientFloat

9.3.7.12.1 Syntax

class EfficientFloat {
unsigned int(4) mantissaLength;
if (mantissaLength != 0) {

int(3) exponentLength;
int(1) mantissaSign;
int(mantissaLength-1) mantissa;

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 111

if (exponentLength != 0) {
int(1) exponentSign;
int(exponentLength-1) exponent;

}
}

}

9.3.7.12.2 Semantics

For floating point values it is possible to use a more economical representation than the standard 32-bit format, as
specified in the EfficientFloat structure. This representation separately encodes the size of the exponent
(base 2) and mantissa of the number.

If the mantissaLength is 0, the decoded value is 0 and further parameters are not coded.

If the mantissaLength is not 0, the exponentLength, mantissaSign and mantissa are coded. The
mantissa sign is 1 when the mantissa is negative, otherwise it is 0.

The mantissa syntax element contains the actual mantissa with the leading 1 removed, hence only
(mantissaLength-1) bits are needed to encode it.

If the exponentLength is 0 then exponent is not parsed, and the decoded exponent is set, by default, to 0.
Otherwise, the sign is read, with exponentSign=1 used to denote a negative exponent. The leading 1 of the
exponent is not coded, so that exponent can be encoded using exponentLength-1 bits.

The actual mantissa and exponent are, respectively, (2 mantissaLength-1 + mantissa) and

(2 exponentLength-1 + exponent), thus in all other cases the decoded value shall be:

)exponent2Sign).(2.exponent-(11-ngthmantissaLe 1ngthexponentLe

2).mantissaSign).(22.mantissa-(1 �
�

�

9.3.7.13 SFBool

9.3.7.13.1 Syntax

class SFBool {
bit(1) value;

}

9.3.7.13.2 Semantics

If value is 1 the decoded boolean is set to TRUE. If value is 0, the decoded boolean is set to FALSE.

9.3.7.14 SFColor

9.3.7.14.1 Syntax

class SFColor(FieldData field) {
if (field.isQuantized)

QuantizedField qvalue(field);
else {

GenericFloat rValue(field.useEfficientCoding);
GenericFloat gValue(field.useEfficientCoding);
GenericFloat bValue(field.useEfficientCoding);

}
}

9.3.7.14.2 Semantics

If the field’s isQuantized bit is TRUE, the QuantizedField scheme shall be used. Otherwise each component
of the SFColor is coded using the GenericFloat scheme.

ISO/IEC 14496-1:2001(E)

112 © ISO/IEC 2001 – All rights reserved

9.3.7.15 SFFloat

9.3.7.15.1 Syntax

class SFFloat(FieldData field) {
if (field.isQuantized)

QuantizedField qvalue(field);
else

GenericFloat value(field.useEfficientCoding);
}

9.3.7.15.2 Semantics

If the field’s isQuantized bit is TRUE, the QuantizedField scheme shall be used. Otherwise the SFFloat is
coded using the GenericFloat scheme.

9.3.7.16 SFInt32

9.3.7.16.1 Syntax

class SFInt32(FieldData field) {
if (field.isQuantized)

QuantizedField qvalue(field);
else

int(32) value;
}

9.3.7.16.2 Semantics

If the field’s isQuantized bit is TRUE, the QuantizedField scheme shall be used. Otherwise the SFInt32 is
coded as a signed value using 32 bits.

9.3.7.17 SFRotation

9.3.7.17.1 Syntax

class SFRotation(FieldData field) {
if (field.isQuantized)

QuantizedField qvalue(field);
else {

GenericFloat xAxis(field.useEfficientCoding);
GenericFloat yAxis(field.useEfficientCoding);
GenericFloat zAxis(field.useEfficientCoding);
GenericFloat angle(field.useEfficientCoding);

}
}

9.3.7.17.2 Semantics

If the field’s isQuantized bit is TRUE, the QuantizedField scheme shall be used. Otherwise each component
of the SFRotation is coded indepedently using the GenericFloat scheme.

9.3.7.18 SFString

9.3.7.18.1 Syntax

class SFString {
unsigned int(5) lengthBits;
unsigned int(lengthBits) length;
char(8) value[length];

}

9.3.7.18.2 Semantics

The SFString is coded as an array of characters whose length is first specified.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 113

lengthBits is the number of bits used to encode the string length.

length is the length of the string coded using lengthBits.

All characters are coded using the UTF-8 character encoding (ISO/IEC 10646-1).

9.3.7.19 SFTime

9.3.7.19.1 Syntax

class SFTime {
double(64) value;

}

9.3.7.19.2 Semantics

The SFTime value is coded as a 64-bit double.

9.3.7.20 SFUrl

9.3.7.20.1 Syntax

class SFUrl {
bit(1) isOD;
if (isOD)

bit(10) ODid;
else

SFString urlValue;
}

9.3.7.20.2 Semantics

The “od:” URL scheme is used in an url field of a BIFS node to refer to an object descriptor. The integer
immediately following the “od:” prefix identifies the ObjectDescriptorID. For example, “od:12” refers to object
descriptor number 12.

If the SFUrl refers to an object descriptor, the ObjectDescriptorID is coded as a 10-bit integer. Otherwise the
URL is sent as an SFString.

9.3.7.21 SFVec2f

9.3.7.21.1 Syntax

class SFVec2f(FieldData field) {
if (field.isQuantized)

QuantizedField qvalue(field);
else {

GenericFloat value1;
GenericFloat value2;

}
}

9.3.7.21.2 Semantics

If the field’s isQuantized bit is TRUE, the QuantizedField scheme shall be used. Otherwise each component
of the SFVec2f is coded using the GenericFloat scheme.

9.3.7.22 SFVec3f

9.3.7.22.1 Syntax

class SFVec3f(FieldData field) {
if (field.isQuantized)

QuantizedField qvalue(field);
else {

GenericFloat value1(field.useEfficientCoding);

ISO/IEC 14496-1:2001(E)

114 © ISO/IEC 2001 – All rights reserved

GenericFloat value2(field.useEfficientCoding);
GenericFloat value3(field.useEfficientCoding);

}
}

9.3.7.22.2 Semantics

If the field’s isQuantized bit is TRUE, the QuantizedField scheme shall be used. Otherwise each component
of the SFVec3f is coded using the GenericFloat scheme.

9.3.7.23 SFImage

9.3.7.23.1 Syntax

class SFImage {
unsigned int(12) width;
unsigned int(12) height;
bit(2) numComponents;
bit(8) pixels[(numComponents+1)*width*height];

}

9.3.7.23.2 Semantics

The width and height in pixels of the image are coded as 12-bit unsigned integers.

numComponents defines the image type. The following types are permitted:

� If the value is ‘00’, then a grey scale image shall be decoded.

� If the value is ‘01’, then a grey scale with alpha channel shall be decoded.

� If the value is ‘10’, then an RGB image shall be decoded.

� If the value is ‘11’, then an RGB image with alpha channel shall be decoded.

Pixels shall be decoded as unsigned char, 8-bit encoded pixel values.

9.3.7.24 SFCommandBuffer

9.3.7.24.1 Syntax

class SFCommandBuffer {
unsigned int(5) lengthBits;
unsigned int(lengthBits) length;
bit(8) value[length];

}

9.3.7.24.2 Semantics

The SFCommandBuffer syntax element is coded as an array of bytes whose length is first specified.

lengthBits is the number of bits used to encode the buffer length.

length is the length of the buffer coded using lengthBits.

value is an array of bytes of length length. It shall contain a CommandFrame, padded if necessary to complete
the last byte.

9.3.7.25 QuantizedField

9.3.7.25.1 Syntax

class QuantizedField(FieldData field) {
switch (field.quantType) {

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 115

case 9:
int(1) direction

case 10:
int(2) orientation

default:
break;

}
for (i=0;i<getNbComp(field);i++)
int(field.nbBits) vq[i]

}

9.3.7.25.2 Semantics

The value is quantized using the quantization process described in 9.3.3.

For normals, the direction and orientation values specified in the quantization process are first coded. For rotations,
only the orientation value is coded.

The compressed components, vq[i], of the field’s value are then coded in sequence as unsigned integers using
the number of bits specified in the field data structure.

9.3.7.26 SFScript

9.3.7.26.1 Syntax

class SFScript() {
bit(1) isListDescription;
if (isListDescription)

ScriptFieldsListDescripion();
else

ScriptFieldsVectorDescripion();
const bit(1) reserved=1;
EncodedScript();

}

9.3.7.26.2 Semantics

The Script class is used to represent a Script node. This can be done as a list description or as a vector
description, depending on the value in isListDescription. The script is encoded using the bitstream syntax for
EncodedScript, given below. This bitstream is a tree representation of the BNF grammar for ECMAScript
(ISO/IEC 16262). Each node determines the parse decision selected in parsing the script, and thus the resulting
bitstream can be used to interpret the script directly.

9.3.7.27 ScriptFieldsListDescription

9.3.7.27.1 Syntax

class ScriptFieldsListDescription() {
bit(1) endFlag; // List description of the fields
while (!EndFlag) {

ScriptField();
bit(1) endFlag;

}
}

9.3.7.27.2 Semantics

ScriptFieldsListDescription reads a list description of the fields in the Script node. When endFlag has
value 1, the list has ended and no more values are read.

9.3.7.28 ScriptFieldsVectorDescription

9.3.7.28.1 Syntax

class ScriptFieldsVectorDescription() {
bit(4) fieldBits; // Number of bits for number of fields

ISO/IEC 14496-1:2001(E)

116 © ISO/IEC 2001 – All rights reserved

bit(fieldBits) numFields; // Number of fields in the script
for (i=0; i<numFields; ++i) {

ScriptField();
}

}

9.3.7.28.2 Semantics

ScriptFieldsVectorDescription reads a value numFields, to determine how many fields are in the
Script node, and these are read sequentially. The number of bits used to give the number of fields is first read as
4 bits in fieldBits.

9.3.7.29 ScriptField

9.3.7.29.1 Syntax

class ScriptField() {
bit(2) eventType;
bit(6) fieldType;
String fieldName;
if (eventType == FIELD) {

bit(1) hasInitialValue;
if (hasInitialValue){

NodeData node = makeNode(ScriptNodeType);
Field(node.field[fieldType]) value;

}
}

}

9.3.7.29.2 Semantics

The ScriptField contains one field for the Script node. The eventType specifies the type of field, with values
0, 1, and 2 representing fields, eventIns and eventOuts, respectively. The fieldType is given in Table 33. This
determines the type of the field. The fieldName gives the name of this field; the name is used to refer to this field
from within the script.

When the event is a field, it may have a default value. This presence of this value is indicated by
hasInitialValue being 1. In this case, the field value is read using the Field class. In order to be able to use
the Field class, a node of type NodeData is created that then has the appropriate field value for each
fieldType (the fieldType index can be used to reference field structures of the appropriate type).

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 117

Table 33 - Field Types for Script fields and PROTO fields.

fieldType value Field type
0bx000000 SFBool
0bx000001 SFFloat
0bx000010 SFTime
0bx000011 SFInt32
0bx000100 SFString
0bx000101 SFVec3f
0bx000110 FVec2f
0bx000111 SFColor
0bx001000 SFRotation
0bx001001 SFImage
0bx001010 SFNode
0bx100000 MFBool
0bx100001 MFFloat
0bx100010 MFTime
0bx100011 MFInt32
0bx100100 MFString
0bx100101 MFVec3f
0bx100110 MFVec2f
0bx100111 MFColor
0bx101000 MFRotation
0bx101001 MFImage
0bx101010 MFNode

9.3.7.30 EncodedScript

9.3.7.30.1 Syntax

class EncodedScript {
bit(1) hasFunction
while (hasFunction) {

Function function;
bit(1) hasFunction

}
}

9.3.7.30.2 Semantics

A script is a collection of functions, listed sequantially while hasFunction is TRUE.

9.3.7.31 Function

9.3.7.31.1 Syntax

class Function {
Identifier identifier;
Arguments arguments;
StatementBlock statementBlock;

}

9.3.7.31.2 Semantics

Each function consists of an identifier, a list of arguments, and a statementBlock which contains the
script statements executed when the function is called.

9.3.7.32 Arguments

9.3.7.32.1 Syntax

class Arguments {
bit(1) hasArgument

ISO/IEC 14496-1:2001(E)

118 © ISO/IEC 2001 – All rights reserved

while (hasArgument) {
Identifier identifier;
bit(1) hasArgument

}
}

9.3.7.32.2 Semantics

The argument list is of arbitrary length, and terminates when hasArgument is 0. Each argument consists of one
identifier.

9.3.7.33 StatementBlock

9.3.7.33.1 Syntax

class StatementBlock {
bit(1) isCompoundStatement
if (isCompoundStatement) {

bit(1) hasStatement
while (hasStatement) {

Statement statement;
bit(1) hasStatement

}
else {

Statement statement;
}

}
}

9.3.7.33.2 Semantics

A statementBlock consists of either a compoundStatement, which holds several script statements, or a single
statement, indicated by the value of isCompoundStatement. When the statementBlock consists of several
statements, the hasStatement bit is used to signal either the end of the list or the existance of another statement.

9.3.7.34 Statement

9.3.7.34.1 Syntax

class Statement {
bit(3) statementType
switch statementType {

case ifStatementType:
IFStatement ifStatement;
break;

case forStatementType:
FORStatement forStatement;
break;

case whileStatementType:
WHILEStatement whileStatement;
break;

case returnStatementType:
RETURNStatement returnStatement;
break;

case compoundExpressionType:
CompoundExpression compoundExpression;
break;

case breakStatementType:
case continueStatementType:

break;
case switchStatementType:

SWITCHStatement switchStatement;
break;

}
}

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 119

9.3.7.34.2 Semantics

A Statement may consist of one of the following specific statement types:

� ifStatement

� forStatement

� whileStatement

� returnStatement

� compoundExpression

� breakStatement

� continueStatement.

� switchStatement.

These statement types are indicated by a value from 0-7, respectively, called statementType.

9.3.7.35 IFStatement

9.3.7.35.1 Syntax

class IFStatement {
CompoundExpression compoundExpression;
StatementBlock statementBlock;
bit(1) hasELSEStatement
if (hasELSEStatement) {

StatementBlock statementBlock;
}

}

9.3.7.35.2 Semantics

An IFStatement is used for conditional execution of a statementBlock. It consists of a
CompoundExpression followed by a statementBlock. The statementBlock is interpreted when the
CompoundExpression evaluates to a non-zero or non-empty value. The IFStatement has an optional
additional statementBlockwhich is included when hasElseStatement is 1. This second, optional
compoundStatement is interpreted when the CompoundExpression evaluates to a zero or empty value.

9.3.7.36 FORStatement

9.3.7.36.1 Syntax

class FORStatement {
OptionalExpression optionalExpression;
OptionalExpression optionalExpression;
OptionalExpression optionalExpression;
StatementBlock statementBlock;

}

9.3.7.36.2 Semantics

A FORStatement is used to iterate over values, stopping when a conditional expression fails. The first
optionalExpression shall be executed when the statement is interpretted. The second
optionalExpression shall then be evaluated, and if it returns a non-zero or non-empty value, the
statementBlock shall be executed. The third optionalExpression shall then be executed. After this process
shall repeat starting with the execution of the second optionalExpression again, the statementBlock, and
the third optionalExpression.

ISO/IEC 14496-1:2001(E)

120 © ISO/IEC 2001 – All rights reserved

9.3.7.37 WHILEStatement

9.3.7.37.1 Syntax

class WHILEStatement {
CompoundExpression compoundExpression;
StatementBlock statementBlock;

}

9.3.7.37.2 Semantics

The WHILEStatement is used to conditionally execute a statementBlock for so long as the
compoundExpression evaluates to a non-zero or non-empty value.

9.3.7.38 RETURNStatement

9.3.7.38.1 Syntax

class RETURNStatement {
bit(1) returnValue
if (returnValue) {

CompoundExpression compoundExpression;
}

}

9.3.7.38.2 Semantics

The RETURNStatement is used to return a value from a function. When a function has no return value,
returnValue shall be 0. Otherwise, the returned value shall be the last value evaluated for
compoundExpression.

9.3.7.39 CompoundExpression

9.3.7.39.1 Syntax

class CompoundExpression {
do {

Expression expression;
bit(1) hasExpression

} while (hasExpression);
}

9.3.7.39.2 Semantics

A CompoundExpression is a list of expressions, terminated when hasExpression has value 0. The value of
the compound expression shall be the value of the last evaluated expression.

9.3.7.40 SWITCHStatement

9.3.7.40.1 Syntax

class SWITCHStatement {
do {

CompoundExpression compoundExpression; // the switched value
bit(5) numbits // number of bits for the case value
bit(numbits) caseValue compoundExpression; #a case value
StatementBlock statementBlock; // statements in case
bit(1) hasMoreCases

} while (hasMoreCases);
bit(1) hasDefault;
if (hasDefault) {

StatementBlock statementBlock; // default statements in case
}

}

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 121

9.3.7.40.2 Semantics

A SWTICHStatement is an expression that must evaluate to an integer value. It is followed by pairs of integer
values in value stored with numbits bits and StatementBlocks. The values represent the value of a case
statement, which are encoded repeatedly until hasMoreCases is 0. An optinal default StatementBlock is then
encoded.

9.3.7.41 optionalExpression

9.3.7.41.1 Syntax

class optionalExpression {
bit(1) hasCompoundExpression
if (hasCompoundExpression) {

CompoundExpression compoundExpression;
}

}

9.3.7.41.2 Semantics

An optionalExpression may be an empty expression, containing no executable statements, or a
compoundExpression. This is indicated by the value of hasCompoundExpression.

9.3.7.42 Expression

9.3.7.42.1 Syntax

class Expression {
bit(6) expressionType
switch expressionType {

case curvedExpressionType: // (compoundExpression)
CompoundExpression compoundExpression;
break;

case negativeExpressionType: // -expression
case notExpressionType: // !expression
case onescompExpressionType: // ~expression
case incrementExpressionType: // ++expression
case decrementExpressionType: // --expression
case postIncrementExpressionType: // expression++
case postDecrementExpressionType: // expression--

Expression expression;
break;

case conditionExpressionType: // expression ? expression : expression
Expression expression;
Expression expression;
Expression expression;
break;

case stringExpressonType:
String string;
break;

case numberExpressionType:
Number number;
break;

case variableExpressionType:
Identifier identifier;
break;

case functionCallExpressionType:
case objectConstructExpressionType:

Identifier identifier;
Params params;
break;

case objectMemberAccessExpressionType:
Expression expression;
Identifier identifier;
break;

case objectMethodCallExpressionType:
Expression expression;
Identifier identifier;

ISO/IEC 14496-1:2001(E)

122 © ISO/IEC 2001 – All rights reserved

Params params;
break;

case arrayDereferenceExpressionType:
Expression expression;
CompoundExpression compoundExpression;
break;

default: // =, +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=, >>>=,
// ==, !=, <, <=, >, >=, +, -, *, /, %, &&, ||, &, |,
// ^, <<, >>, >>>
Expression expression;
Expression expression;
break;

}
}

9.3.7.42.2 Semantics

An expression may contain one of a number of possible executed statements, specified by the value in
expressionType. These are listed below, according the value of expressionType.

curvedExpressionType=0:

The expression consists of a compoundExpression.

NegativeExpressionType=1:

An expression shall be evaluated and the value returned shall be negated.

NotExpressionType=2:

An expression shall be evaluated and its returned value shall be logically negated (empty values return non-
empty, zero values return non-zero, and vice-versa).

OnescompExpressionType=3:

An expression shall be evaluated numerically (string values will yield an undefined result) and the value returned
shall be bitwise negated.

IncrementExpressionType=4:

An expression shall be evaluated numerically (string values will yield an undefined result) and the value returned
shall incremented by 1.

DecrementExpressionType=5:

An expression shall be evaluated numerically (string values will yield an undefined result) and the value returned
shall be decremented by 1.

PostIncrementExpressionType=6:

An expression shall be evaluated numerically (string values will yield an undefined result) and its returned value
shall be incremented by 1. The returned value of this expression shall be the value prior to the increment being
applied.

PostDecrementExpressionType=7:

An expression shall be evaluated numerically (string values will yield an undefined result) and its returned value
shall be decremented by 1. The returned value of this expression shall be the value prior to the decrement being
applied.

ConditionExpressionType=8:

Three expressions shall be evaluated. If the first expression returns a non-zero or non-empty value, then the
returned value of this expression shall be the value of the second expression. Otherwise, the returned value of
this expression shall be the value of the third expression.

StringExpressonType=9:

The expression contains a string.

NumberExpressionType=10:

The expression is a number.

VariableExpressionType=11:

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 123

The expression is a variable and shall return the value held by the variable determined by identifier.

FunctionCallExpressionType=12:

An identifier determines which function shall be evaluated. The params shall be passed to the function
by value. The returned value of the expression shall be the value returned by the function in its
returnStatement.

ObjectConstructExpressionType=13:
A new object shall be created (using a ‘new’ statement in the script) and the object shall be held in the variable
determined by identifier. A list of params shall be passed to any constructors that exist for the object.

ObjectMemberAccessExpressionType=14:

A member variable of an object shall be accessed and the returned value of the expression shall be the value in
this member variable. Normally, the first expression will evaluate to a node in the scene graph (which is
accessed through a script variable). This means that the first expression will normally evaluate to an
identifier reference. The following identifier will then refer to a field of the node.

ObjectMethodCallExpressionType=15:

A method of an object shall be evaluated. The first expression shall evaluate to an object. The following
identifier shall specify a method of this object. The following params shall be passed to the method. The value
of this expression shall be the value returned by the method.

ArrayDereferenceExpressionType=16:

The expression shall be an array element reference. The first expression shall evaluate to an array reference.
The following compoundExpression shall evaluate to a number that shall then be used to index the array. The
returned value of this expression shall be the value held in the referenced array element.

The following binary operands evaluate two expressions and return a value based on a binary operation of these
two expressions. The binary operation and value of expressionType is listed below for each binary operation.
Unless explicitely stated, a string value for either of the expressions will yield an undefined result.

BinaryOperand(=) = 17:

The first expression shall evaluate to an identifier which shall be assigned the value of the second
expression.

BinaryOperand(+=) = 18:

The first expression shall evaluate to an identifier. If the value held by the variable is numerical, the variable
value shall be incremented by the value of the second expression, which shall also evaluate to a numerical
value. If the variable is a string, then its new value shall be its original value with the second expression (which
shall be a string) appended.

BinaryOperand(-=) = 19:

The first expression shall evaluate to an identifier whose value shall be decremented by the value of the
second expression.

BinaryOperand(*=) = 20:

The first expression shall evaluate to an identifier whose value shall be set to its current value multiplied by
the value of the second expression.

BinaryOperand(/=) = 21:

The first expression shall evaluate to an identifier whose value shall be set to its current value divided by
the value of the second expression.

BinaryOperand(%=) = 22:

The first expression shall evaluate to an identifier whose value shall be set to its current value modulo the
value of the second expression. The expressions shall both evaluate to integer values.

BinaryOperand(&=) = 23:

The first expression shall evaluate to an identifier whose value shall be set to its current value logically
bitwise ANDed with the value of the second expression.

BinaryOperand(|=) = 24:

ISO/IEC 14496-1:2001(E)

124 © ISO/IEC 2001 – All rights reserved

The first expression shall evaluate to an identifier whose value shall be set to its current value logically
bitwise ORed with the value of the second expression.

BinaryOperand(^=) = 25:

The first expression shall evaluate to an identifier whose value shall be set to its current value logically
bitwise EXCLUSIVE-ORed with the value of the second expression.

BinaryOperand(<<=) = 26:

The first expression shall evaluate to an identifier whose value shall be set to its current value bitwise
shifted to the left a number of bits specified by the second expression.

BinaryOperand(>>=) = 27:

The first expression shall evaluate to an identifier whose value shall be set to its current value bitwise
shifted to the right a number of bits specified by the second expression.

BinaryOperand(>>>=) = 28:

The first expression shall evaluate to an identifier whose value shall be set to its current value bitwise
shifted to the right (with the least significant bits looped) a number of bits specified by the second expression.

BinaryOperand(==) = 29:

This expression shall return a non-zero value when the first and second expression are identical. Otherwise, the
result of this expression shall be zero.

BinaryOperand(!=) = 30:

This expression shall return a non-zero value when the first and second expression are not identical. Otherwise,
the result of this expression shall be zero.

BinaryOperand(<) = 31:

This expression shall return a non-zero value when the first expression is numerically or lexicographically less
than the second. Otherwise, the result of this expression shall be zero.

BinaryOperand(<=) = 32:

This expression shall return a non-zero value when the first expression is numerically or lexicographically less
than or equal to the second. Otherwise, the result of this expression shall be zero.

BinaryOperand(>) = 33:

This expression shall return a non-zero value when the first expression is numerically or lexicographically greater
than the second. Otherwise, the result of this expression shall be zero.

BinaryOperan(>=) = 34:

This expression shall return a non-zero value when the first expression is numerically or lexicographically greater
than or equal to the second. Otherwise, the result of this expression shall be zero.

BinaryOperand(+) = 35:

This expression shall return the sum of the first and second expressions. If both expressions are strings, then
the result shall be the first string concatenated with the second.

BinaryOperand(-) = 36:

This expression shall return the difference of the first and second expressions.

BinaryOperand(*) = 37:

This expression shall return the product of the first and second expressions.

BinaryOperand(/) = 38:

This expression shall returns the quotient of the first and second expressions.

BinaryOperand(%) = 39:

This expression shall return the value of the first expression modulo the second expression.

BinaryOperand(&&) = 40:

This expression shall return the logical AND of the first and second expressions.

BinaryOperand(||) = 41:

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 125

This expression shall return the logical OR of the first and second expressions.

BinaryOperand(&) = 42:

This expression shall return the logical bitwise AND of the first and second expressions.

BinaryOperand(|) = 43:

This expression shall return the logical bitwise OR of the first and second expressions.

BinaryOperand(^) = 44:

This expression shall return the logical bitwise XOR of the first and second expressions.

BinaryOperand(<<) = 45:

This expression shall return the value of the first expression shifted to the left by the number of bits specified as
the value of the second expression.

BinaryOperand(>>) = 46:

Returns the value of the first expression shifted to the right by the number of bits specified as the value of the
second expression.

BinaryOperand(>>>) = 47:

This expression shall return the value of the first expression shifted to the right (with the least significant bit
looped to the most significant bit) by the number of bits specified as the value of the second expression.

9.3.7.43 Params

9.3.7.43.1 Syntax

class Params {
bit(1) hasParam
while(hasParam) {

Expression expression;
bit(1) hasParam

}
}

9.3.7.43.2 Semantics

The Params class consists of a (possibly empty) list of expressions. The hasParam bit indicates either the end
of the list, or the existance of another expression.

9.3.7.44 Identifier

9.3.7.44.1 Syntax

class Identifier {
bit(1) received
if (received) {

bit(num) identifierCode // num is calculated by counting
// number of distinguished identifiers
// received so far

}
else {

String string;
}

}

9.3.7.44.2 Semantics

An identifier is used to identify a variable. If the identifier has occurred before in the script (or as a field
name in the Script node), then an identifierCode value is sent using num bits. This is indicated by the
received bit. If the identifier has occured before in the script (or as a field name in the Script node), then an
identifierCode value is sent using num bits. The value of num, that is, the number of bits needed to send the
index of the identifier in a list of all previousy occuring identifiers, is variable and is determined by the minimum
number of bits needed to specify the length of the list of all previously occuring identifiers.

ISO/IEC 14496-1:2001(E)

126 © ISO/IEC 2001 – All rights reserved

9.3.7.45 String

9.3.7.45.1 Syntax

class String {
bit(8) char
while (char!=0) {

bit(8) char
}

}

9.3.7.45.2 Semantics

A String type consist of a null-terminated list of 8 bit characters.

9.3.7.46 Number

9.3.7.46.1 Syntax

class Number {
bit(1) isInteger
if (isInteger) {

bit(5) numbits // number of bits the integer is represented
bit(numbits) value // integer value

}
else {

bit(4) floatChar // 0-9, ., E,-, END_SYMBOL
while (floatChar!=END_SYMBOL) {

bit(4) floatChar
}

}
}

9.3.7.46.2 Semantics

A number shall be represented as an integer, indicated by isInteger, or as a list of 4 bit characters,
represending (in order) the characters 0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9, . , E,- , END-SYMBOL. The END-SYMBOL value is
used to signal the end of the float value list. The list of characters shall result in a human readable float value in
scientific notation.

9.3.7.47 Boolean

9.3.7.47.1 Syntax

class Boolean {
bit(1) value

}

9.3.7.47.2 Semantics

A Boolean value is represented by a one-bit value.

9.3.7.48 ROUTEs

9.3.7.48.1 Syntax

class ROUTEs() {
bit(1) ListDescription;
if (ListDescription)

ListROUTEs lroutes();
else

VectorROUTEs vroutes();
}

9.3.7.48.2 Semantics

ROUTEs may be encoded with a list (ListROUTEs) or vector (VectorROUTEs) description.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 127

9.3.7.49 ListROUTEs

9.3.7.49.1 Syntax

class ListROUTEs() {
do {

ROUTE route();
bit(1) moreROUTEs;

}
while (moreROUTEs);

}

9.3.7.49.2 Semantics

The ROUTEs are coded as a list, with the moreROUTEs flag used to indicate the end of the list (when set to false).

9.3.7.50 VectorROUTEs

9.3.7.50.1 Syntax

class VectorROUTEs() {
int(5) nBits;
int(nBits) length;
ROUTE route[length]();

}

9.3.7.50.2 Semantics

The ROUTEs are coded as a vector whose dimension, length, is first specified.

9.3.7.51 ROUTE

9.3.7.51.1 Syntax

class ROUTE() {
bit(1) isUpdateable;
if (isUpdateable) {

bit(BIFSConfiguration.routeIDbits) routeID;
if (USENAMES) {

String routeName;
}

}

bit(BIFSConfiguration.nodeIDbits) outNodeID;
NodeData nodeOUT = GetNodeFromID(outNodeID);

int(nodeOUT.nOUTbits) outFieldRef;
bit(BIFSConfiguration.nodeIDbits) inNodeID;

NodeData nodeIN = GetNodeFromID(inNodeID);
int(nodeIN.nINbits) inFieldRef;

}

9.3.7.51.2 Semantics

This is the basic syntax element used to represent a ROUTE. If isUpdateable is TRUE (‘1’) then a routeID is
sent to enable further reference to this route. Further, if the global value of USENAMES is set, a string name, used
by MPEG-J to reference the ROUTE, is also sent.

The ROUTE description is then sent. The nodeID of the target node is coded, followed by the target field’s outID.
The nodeID of the source node is then coded, followed by the source field’s inID.

9.3.8 BIFS-Anim

9.3.8.1 Overview

The BIFS-Anim session has two parts: the AnimationMask and the AnimationFrames. The AnimationMask
specifies the nodes and fields to be animated. It is sent in BIFS configuration, in the object descriptor for the BIFS

ISO/IEC 14496-1:2001(E)

128 © ISO/IEC 2001 – All rights reserved

elementary stream. The animation frames are sent in a separate BIFS stream. When parsing the BIFS-Anim
stream, the node structure and related functions as described in Annex H are known at the receiving terminal. The
decoding data structure AnimationMask (see 9.3.2.5) is constructed when the AnimationMask syntax is read,
and further used in the decoding process of the BIFS-Anim frames.

AnimationFrames contain update information for thevalues of the animated fields described in the
AnimationMask. They are the access units of the BIFS-Anim stream. An AnimationFrame can send information
in intra or in predictive mode. In intra mode, the values are quantized and coded directly. In predictive mode, the
difference between the quantized value of the current and the last transmitted value of the field are coded. The
encoding is performed using an adaptative arithmetic coder described in Annex G.

The use of the adaptive arithmetic coder is as follows:

At the beginning of each predictive frame, the adaptive arithmetic coder is reset. At the end of each frame, it is
flushed.

Each animated field has its own set of models. At each intra frame, if the stream has been declared in random
access mode (see 9.3.5.2), the models are reset to the uniform statistics. If the stream is not in random access
mode, the models are not reset unless the decoding structures (AnimQP) are modified.

9.3.8.2 AnimationFrame

9.3.8.2.1 Syntax

class AnimationFrame() {
AnimationFrameHeader header(BIFSConfiguration.animMask);
AnimationFrameData data(BIFSConfiguration.animMask);

}

9.3.8.2.2 Semantics

The AnimationFrame is the access unit of the BIFS-Anim stream. It contains the AnimationFrameHeader,
which specifies timing, and specifies which nodes are animated in the list of animated nodes, and the
AnimationFrameData, which contains the data for all nodes being animated.

9.3.8.3 AnimationFrameHeader

9.3.8.3.1 Syntax

class AnimationFrameHeader(AnimationMask mask) {
bit(23)* next;
if (next==0)

bit(32) AnimationStartCode;

bit(1) mask.isIntra;
bit(1) mask.isActive[mask.numNodes];
if (isIntra) {

bit(1) isFrameRate;
if (isFrameRate)

FrameRate rate;
bit(1) isTimeCode;
if (isTimeCode)

unsigned int(18) timeCode;
}
bit(1) hasSkipFrames;
if (hasSkipFrames)

SkipFrames skip;
}

9.3.8.3.2 Semantics

In the AnimationFrameHeader, a start code may be sent at each intra or prdictive frame to enable
resynchronization. The first 23 bits are read ahead, and stored as the integer next.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 129

If next is 0 (in other words, the first 23 bits if the AnimationFrame are 0), the first 32 bits of the
AnimationFrame shall be read and interpreted as a start code that precedes the AnimationFrame.

If the boolean isIntra is TRUE, the current animation frame contains intra-coded values, otherwise it is a
predictive frame.

The array of booleans isActive specifies which nodes shall be animated for this frame. isActive shall contain
one boolean for each node in the AnimationMask. The boolean is set to TRUE if the node is to be animated;
FALSE otherwise.

In intra mode, some additional timing information is also specified. The timing information obeys the syntax of the
Facial Animation specification in ISO/IEC 14496-2. Finally, it is possible to skip a number of AnimationFrames by
using the FrameSkip syntax specified in ISO/IEC 14496-2.

9.3.8.4 FrameRate

9.3.8.4.1 Syntax

class FrameRate {
unsigned int(8) frameRate;
unsigned int(4) seconds;
bit(1) frequencyOffset;

}

9.3.8.4.2 Semantics

frame_rate is an 8-bit unsigned integer indicating the reference frame rate of the sequence.

seconds is a 4-bit unsigned integer indicating the fractional reference frame rate. The frame rate is computed as
follows:

frame rate = (frame_rate + seconds/16).

frequency_offset is a 1-bit flag which when set to ‘1’ indicates that the frame rate uses the NTSC frequency
offset of 1000/1001. This bit would typically be set when frame_rate = 24, 30 or 60, in which case the resulting
frame rate would be 23.97, 29.94 or 59.97 respectively. When set to ‘0’ no frequency offset is present, i.e. if
(frequency_offset ==1), frame rate = (1000/1001) * (frame_rate + seconds/16).

9.3.8.5 SkipFrame

9.3.8.5.1 Syntax

class SkipFrame {
int nFrame = 0;
do {

bit(4) number_of_frames_to_skip;
nFrame = number_of_frames_to_skip + nFrame;

} while (number_of_frames_to_skip == 0b1111);
}

9.3.8.5.2 Semantics

number_of_frames_to_skip is a 4-bit unsigned integer indicating the number of frames skipped. If the
number_of_frames_to_skip is equal to 15 (pattern “1111”) then another 4-bit word follows allowing a skip of
up to 29 frames (pattern “11111110”) to be specified. If the 8-bits pattern equals “11111111”, then another 4-bits
word shall follow and so on, and the number of frames skipped is incremented by 30. Each 4-bit pattern of ‘1111’
increments the total number of frames to skip with 15.

9.3.8.6 AnimationFrameData

9.3.8.6.1 Syntax

class AnimationFrameData (AnimationMask mask) {

ISO/IEC 14496-1:2001(E)

130 © ISO/IEC 2001 – All rights reserved

int i;
for (i=0; i<mask.numNodes; i++) {

if (mask.isActive[i]) {
NodeData node = mask.animNode[i]

switch (node.nodeType) {
case FaceType:

FaceFrameData fdata;
break;

case BodyType:
BodyFrameData bdata;
break;

case IndexedFaceSet2DType:
Mesh2DframeData mdata;
break;

default
int j;
for(j=0; j<node.numDYNfields; j++) {

if (node.isAnimField[j])
AnimationField AField(node.field[node.dyn2all[j]],mask.isIntra);

}
}

}
}

}

9.3.8.6.2 Semantics

The AnimationFrameData corresponds to the field data for the nodes being animated. In the case of an
IndexedFaceSet2D, a Face, or a Body node pointed to by the AnimationMask, the syntax used is that
defined ISO/IEC 14496-2 for animation frames and not the generic BIFS-Anim syntax as defined in 9.3.8.7. In other
cases, for each field declared as an animated field is the AnimationMask, the AnimationField is sent.

In predictive mode, at the beginning of the AnimationFrameData, an adaptive arithmetic coder session is
initiated by resetting the adaptive arithmetic coder in the way defined by the procedure decoder_reset() in
Annex G. Then, the animated values are sent using this adaptive arithmetic coder, using and updating their own
models.

9.3.8.7 AnimationField

9.3.8.7.1 Syntax

class AnimationField(FieldData field, boolean isIntra) {
AnimFieldQP aqp = field.aqp;
if (isIntra) {

bit(1) hasQP;
if(hasQP) {

AnimQP QP(aqp);
}
int i;
for (i=0; i<aqp.numElements; i++)

AnimIValue ivalue(field);
} else {

int i;
for (i=0; i<aqp.numElements; i++)

AnimPValue pvalue(field);
}

}

9.3.8.7.2 Semantics

In an AnimationField, if in intra mode, a new animation quantization parameter value may be sent. The intra or
predictive frame follows.

In intra mode, if BIFSConfiguration.randomAccess is TRUE , the field’s predictive models shall then be reset
to be uniform models as defined by the procedure model_reset(PNbBits) in Annex G. If
BIFSConfiguration.randomAccess is FALSE, the field’s models are reset only if a new AnimQP is received.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 131

� If randomAccess is set to TRUE, then the InitialAnimQP shall be used until the next intra frame.

� If randomAccess is set to FALSE, then the AnimQP that was valid at the previous intra frame shall be used. In
this case, no random access is possible ato this particular frame.

In intra mode, if BIFSConfig.randomAccess is TRUE , the field’s predictive models shall then be reset to be
uniform models as defined by the procedure model_reset(PNbBits) in Annex G. If
BIFSConfig.randomAccess is FALSE, the field’s models are reset only if a new AnimQP is received.

The value is then sent: in intra mode, an AnimIValue is expected, in predictive mode an AnimPValue is
expected.

9.3.8.8 AnimQP

9.3.8.8.1 Syntax

class AnimQP(AnimFieldQP aqp) {

bit (1) IMinMax ;
if (IMinMax) {

aqp.useDefault=FALSE;
switch(aqp.animType) {

case 4: // Color
case 8: // BoundFloats

bit(1) aqp.useDefault
case 1: // Position 3D
case 2: // Position 2D
case 11: // Size 3D
case 12: // Size 2D
case 7: // Floats

if (!aqp.useDefault) {
for (i=0;i<getNbBounds(aqp);i++) {

bit(1) useEfficientCoding
GenericFloat aqp.Imin[i](useEfficientCoding);

}
for (i=0;i<getNbBounds(aqp);i++)

bit(1) useEfficientCoding
GenericFloat aqp.Imax[i](useEfficientCoding);

}
break;

case 13: // Integers
int(32) aqp.IminInt[0];

break;

}

bit (1) hasINbBits;
if (hasINbBits)

unsigned int(5) aqp.INbBits;

bit (1) PMinMax ;
if (PMinMax) {

for (i=0;i<getNbBounds(aqp);i++) {
int(INbBits+1) vq
aqp.Pmin[i] = vq-2^aqp.INbBits;

}
}

bit (1)hasPNbBits;
if (hasPNbBits)

unsigned int(4) aqp.PNbBits;

}

ISO/IEC 14496-1:2001(E)

132 © ISO/IEC 2001 – All rights reserved

9.3.8.8.2 Semantics

The AnimQP specifies the quantization parameters that shall be used until the next intra frame is received. AnimQP
is identical to InitialAnimQP (subclause 9.3.5.7) with the exception that each quantization parameter may or
may not be sent.

If BIFSConfiguration.randomAccess is TRUE and if the parameter is not coded, then the parameter defined
in the InitialAnimQP in the AnimationMask is used by default.

If BIFSConfiguration.randomAccess is FALSE and if the parameter is not coded, then the parameter defined
in the latest AnimQP (or InitialAnimQP if this parameter was never modified) is used.

9.3.8.9 AnimIValue

9.3.8.9.1 Syntax

class AnimIValue(FieldData field) {
switch (field.animType) {

case 9: // Normal
int(1) direction

case 10: // Rotation
int(2) orientation
break;

default:
break;

}
for (j=0;j<getNbComp(field);j++)

int(field.nbBits) vq[j];
}

9.3.8.9.2 Semantics

The AnimIValue represents the quantized intra value of a field. The value is coded according to the quantization
process described in 9.3.3.3.

For normals the direction and orientation values specified in the quantization process are first coded. For rotations
only the orientation value is coded. If the bit representing the direction is 0, the normal’s direction is set to 1, if the
bit is 1, the normal’s direction is set to –1. The value of the orientation is coded as an unsigned integer using 2 bits.

The compressed components vq[i] of the field’s value are then coded as a sequence of unsigned integers using
the number of bits specified in the field data structure.

The decoding process in intra mode computes the animation values by applying the inverse quantization process.

9.3.8.10 AnimPValue

9.3.8.10.1 Syntax

class AnimPValue(FieldData field) {
switch (field.animType) {

case 9: // Normal
int(1) inverse
break;

default:
break;

}
for (j=0;j<getNbComp(field);j++)
int(aacNbBits) vqDelta[j];

}

9.3.8.10.2 Semantics

The AnimPValue represents the difference between the previously received quantized value and the current
quantized value of a field. The value is coded using the compensation process AddDelta described in 9.3.4.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 133

The values are decoded from the adaptive arithmetic coder bitstream with the procedure

aacv =aa_decode(model) defined in Annex G. The model is updated with the procedure

model_update(model, aacv).

For normals the inverse value is decoded through the adaptive arithmetic coder with a uniform, non-updated model.
If the bit is 0, then inverse is set to 1, the bit it is 1, inverse is set to –1.

The compensation values vqDelta[i] are then decoded in sequence. Let)1(�tvq be the quantized value

decoded at the previous frame and)(tvaac be the value decoded by the frame’s adaptive arithmetic decoder at

instant t with the field’s models. The value a time t is obtained from the previous value as follows:

� �)(InvQuant)(

))(),1((AddDelta)(

)()(

tvtv

tvtvtv

PMintvtv

q

qq

aac

�

��

��

�

�

The field’s models are updated each time a value is decoded through the adaptive arithmetic coder.

If the animType is 1 (Position3D) or 2 (Position2D), each component of the field’s value is using its own
model and offset PMin[i]. In all other cases the same model and offset PMin[0] is used for all the components.

aacNbBits is the variable number of bits needed for the adaptive arithemtic coder to decode the symbol (see
Annex G).

9.4 Node Semantics

9.4.1 Overview

The BIFS nodes include nodes that have been defined in ISO/IEC 14772-1:1998. For these nodes, the semantic
information is given by normative reference with any restrictions defined herein.

9.4.2 Node specifications

9.4.2.1. AcousticMaterial

9.4.2.1.1. Node interface

AcousticMaterial {
field SFFloat reffunc 0
field SFFloat transfunc 1
field MFFloat refFrequency []
field MFFloat transFrequency []
exposedField SFFloat ambientIntensity 0.2
exposedField SFColor diffuseColor 0.8, 0.8, 0.8
exposedField SFColor emissiveColor 0, 0, 0
exposedField SFFloat shininess 0.2
exposedField SFColor specularColor 0, 0, 0
exposedField SFFloat transparency 0

}

NOTE - For the binary encoding of this node see Annex H.3.1.

9.4.2.1.2. Functionality and semantics

The AcousticMaterial node is used for attaching acoustic and visual properties to surfaces (planar polygons)
defined by an IndexedFaceSet node that is a sibling or exist in a sub-graph of a sibling of an AcousticScene
node. The fields of this node define the visual appearance properties, as well as sound reflection and transmission
properties of the IndexedFaceSet surfaces it is attached to. It is used in the material field of an Appearance node
that is attached to a Shape node under which the IndexedFaceSet is defined. Each polygon in an

ISO/IEC 14496-1:2001(E)

134 © ISO/IEC 2001 – All rights reserved

IndexedFaceSet that AcousticMaterial is associated with can produce a single specular reflection to sound
whenever a corresponding sound image source is visible to the listening point (Viewpoint or ListeningPoint), or
obstruct sound transmission when it appears between the sound source and the listener. Note that these reflectivity
and sound transmission properties of a surface are only applied to sounds that are attached to a 3-D scene with a
DirectiveSound node. The delay of a reflection (a predelay that is added to sound) is computed from the relative
distance between the image source corresponding to the reflection, and the speed of sound which is given as a
field in the DirectiveSound node (see 9.4.2.39).

There are two different ways of defining the reflectivity and transmission properties of AcousticMaterial:

The reffunc and refFrequency fields specify the sound reflectivity of the material. If refFrequency is an empty
vector, reffunc is a system function representation of a linear, time-invariant system, the reflectivity transfer
function of a digital filter for that material. Generally, a system function H(z) is represented in the z-domain as a
division of the z-transform of the output sequence Y(z) with the z-transform of the input sequence X(z):

�

�

�

�

�

�

�

�� N

k

k
k

M

k

k
k

za

zb

zX

zY
zH

1

0

1
)(

)(
)(.

The reflection function is given as digital filter coefficients in the following order:

...]...[21210 aabbb

Thus, a simple scalar value 0b can be given to a material for frequency-independent reflectivity of a surface. On

the other hand, complex reflection functions can also be represented using this formulation. For example, if the
reffunc field is 1, the amplitude of the reflection of sound off a surface will be the same as that of the incident
sound, and if the field is set to 0, no sound will reflect off that surface. The default value of this field is 0, implying no
reflectivity.

If refFrequency is different from an empty vector, the semantics of the reffunc is different than described above. In
this case refFrequency specifies a set of frequencies (in Hz) at which the gains in reffunc field are valid; The filter
applied to sound when it is reflected off this surface implements a frequency magnitude response where at the
given frequencies (in refFrequency field) the gains in reffunc field are valid. An example of refFrequency field is:

[250 1000 2000 4000],

and an example of reffunc in this approach is:

[0.75 0.9 0.9 0.2]

The transfunc and transFrequency fields specify the transmission properties of the material, e.g., the filtering that
is applied to sound when it passes through an IndexedFaceSet surface this AcousticMaterial is attached to, when
the IndexedFaceSet surface appears on the direct path between the sound source and the listener. The
transmission function is given similarly as in the reflectivity in reffunc and refFrequency fields with two different
ways of expressing the filtering.

The fields ambientIntensity, diffuseColor, emissiveColor, and shininess are used for the visual appearance
rendering similarly as in the Material node.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 135

9.4.2.2. AcousticScene

9.4.2.2.1. Node interface

AcousticScene {
field SFVec3f center 0 0 0
field SFVec3f size -1 –1 –1
field MFTime reverbTime 0
field MFFloat reverbFreq 1000
exposedField SFFloat reverbLevel 0.4
exposedField SFTime reverbDelay 0.5

}

NOTE - For the binary encoding of this node see Annex H.3.2.

9.4.2.2.2. Functionality and semantics

AcousticScene is a node the parameters of which are used for rendering of the acoustic response of the
environment, together with the acoustic reflectivity or transmission defined in the siblings or their sub-graphs of this
AcousticScene. AcousticScene also defines three fields (reverbTime, reverbFreq, reverbLevel, and
reverbDelay) which can be used to add reverberation to sounds that are affected by this node. Only audio that has
been attached to the scene through a DirectiveSound node performing the physical rendering scheme is
spatialized according to these definitions.

Only those IndexedFaceSet nodes that AcousticMaterial node is associated with, and that are defined in the
siblings of AcousticScene (or in the sub-graph of the siblings) have effect on the room acoustic response that is
applied to sound sources. Only DirectiveSound nodes that are currently positioned in a 3-D rectangular region
defined by center and size fields, are affected by these acoustic surfaces. size field defines the size of a
rectangular 3-D region where the parameters of AcousticScene and the acoustic surfaces in the siblings or sibling
sub-graphs of the AcousticScene are taken into account in the auralization process (sound processing according
to the acoustics of the environment). The default value of this field is –1, -1, -1.

center specifies the center of the above described region in the local coordinate system of the scene. Only when at
the decoder a DirectiveSound and the Viewpoint (or ListeningPoint) are located within the same
AcousticScene region defined by its center and size the sound attached to the DirectiveSound is heard. The
default value (-1, –1, –1) of size equals to an infinite rectangular region (i.e., the sound is heard everywhere in the
scene). DirectiveSound is rendered at one time only according to one AcousticScene, i.e., if the source and the
viewpoint are in an overlapping area of several AcousticScenes, the one which is the first in the rendering order
has effect on the DirectiveSound.

The reverbTime field specifies the reverberation time (time of 60 dB attenuation in the late reverberation response)
at frequencies given in reverbFreq field to be applied to each DirectiveSound node that is within the 3-D region
specified by the AcousticScene. This information is used for producing late reverberation at the maximum quality
possible. With the default value 0, late reverberation is not added to the room response. It should be noted,
however, that this field is useful for enabling simple room response modeling whenever there is not enough
computational power to render several room reflections, or when the reflective properties of the surfaces are not
specified. I.e., it is possible to specify a reverberant room with the boundaries defined by the size and center fields,
even without specifying the reflectivity of individual surfaces. If only one value of reverbTime is given, it is taken as
the reverberation time at the 1kHz frequency, and the decision about the frequency dependence of the
reverberation time would be decided at the terminal (in natural environments the reverberation time decreases as a
function of frequency). An example of reverbTime field is:

[2.0 0.5],

and example of reverbFreq is:

[0 16000],

yielding a late reverberation with a reverberation time of 2.0 s at 0 Hz frequency, and 0.5 s at 16000 Hz frequency.

reverbDelay specifies the time delay between the direct sound and the start of the reverberation in seconds.
reverbLevel defines the level of the first output from the reverberator with respect to the direct sound.

ISO/IEC 14496-1:2001(E)

136 © ISO/IEC 2001 – All rights reserved

In order to define which AcoustcScene is applied to DirectiveSound in the case that it is positioned in an
overlapping area of more than one AcousticScene, an OrderedGroup can be used above the various
AcousticScenes.

9.4.2.3 Anchor

9.4.2.3.1 Node interface

Anchor {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []
exposedField SFString description ""
exposedField MFString parameter []
exposedField MFString url []

}

NOTE — For the binary encoding of this node see Annex H.1.1.

9.4.2.3.2 Functionality and semantics

The semantics of the Anchor node are specified in ISO/IEC 14772-1:1998, subclause 6.2. ISO/IEC 14496-1 does
not support the bounding box parameters (bboxCenter and bboxSize). Constraints on URLs are defined by
profiles and levels.

9.4.2.4 AnimationStream

9.4.2.4.1 Node interface

AnimationStream {
exposedField SFBool loop FALSE
exposedField SFFloat speed 1.0
exposedField SFTime startTime 0
exposedField SFTime stopTime 0
exposedField MFString url [""]
eventOut SFBool isActive

}

NOTE — For the binary encoding of this node see Annex H.1.2.

9.4.2.4.2 Functionality and semantics

The AnimationStream node is designed to implement control parameters for a scene description stream.

The loop, startTime, and stopTime exposedFields and the isActive eventOut, and their effects on the
AnimationStream node are described in 9.2.1.6.1.

The semantics of the speed exposedField are identical to those for the MovieTexture node (see 9.4.2.72).

The url field specifies the data source to be used. The data source referred to shall be a BIFS-Anim stream (see
also 9.2.3.3) or a BIFS-Command stream. In both cases, the stream shall operate within the same name scope as
the scene containing the AnimationStream node.

9.4.2.5 Appearance

9.4.2.5.1 Node interface

Appearance {

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 137

exposedField SFNode material NULL
exposedField SFNode texture NULL
exposedField SFNode textureTransform NULL

}

NOTE — For the binary encoding of this node see Annex H.1.3.

9.4.2.5.2 Functionality and semantics

The semantics of the Appearance node are specified in ISO/IEC 14772-1:1998, subclause 6.3.

The material field, if non-NULL, shall contain either a Material node or a Material2D node depending on the
type of geometry node used in the geometry field of the Shape node that contains the Appearance node. The
list below shows the geometry nodes that require a Material node, those that require a Material2D node and
those where either may apply:

� Material2D only: Circle, Curve2D, IndexedFaceSet2D, IndexedLineSet2D, PointSet2D,
Rectangle;

� Material only: Box, Cone, Cylinder, ElevationGrid, Extrusion, IndexedFaceSet,
IndexedLineSet, PointSet, Sphere;

� Material2D or Material: Bitmap, Text.

Inside a Layer2D node, if no Appearance and therefore no Material2D are defined, the default values and
behavior of the Material2D node shall be used.

9.4.2.6. ApplicationWindow

9.4.2.6.1. Node interface

ApplicationWindow {
exposedField SFBool isActive FALSE
exposedField SFTime startTime 0
exposedField SFTime stopTime 0
exposedField SFString description “”
exposedField MFString parameter []
exposedField MFString url []
exposedField SFVec2f size 0, 0

}

NOTE - For the binary encoding of this node see Annex H.3.3.

9.4.2.6.2. Functionality and semantics

ApplicationWindow is an SF2DNode that allows an external application such as a web browser to exist within the
MPEG-4 scene graph. Unlike a texture node, the windowed region is controlled and rendered by the external
application, allowing natural user interaction with the application. The particular application to be opened is
signaled in the url field, and any required parameters for starting the application may be placed in the parameter
field.

The position of the application, its dimension and whether the application is active or not, is specified through BIFS
scene authoring.

The startTime exposed field indicates when the application is to be started. The application is given control of the
rendering window defined by the size field.
The stopTime exposedField indicates that the application is finished and should be shut down. The rendering
window defined by the size field is returned to the MPEG-4 player.

The isActive exposedField signals the application to relinquish its rendering window to the MPEG-4 player, but to
continue to run.

ISO/IEC 14496-1:2001(E)

138 © ISO/IEC 2001 – All rights reserved

The description exposedField allows a prompt to be displayed as an alternative to the url in the url field. This
choice should be user selectable.

The parameter exposedField carries parameters to be interpreted by the application decoder when the application
window is instantiated.

The url exposedField carries the location of the windowed application.

The size exposedField provides the dimension (width and height) of the application window.

9.4.2.7 AudioBuffer

9.4.2.7.1 Node interface

AudioBuffer {
exposedField SFBool loop FALSE
exposedField SFFloat length 0.0
exposedField SFFloat pitch 1.0
exposedField SFTime startTime 0
exposedField SFTime stopTime 0
exposedField MFNode children []
exposedField SFInt numChan 1
exposedField MFInt phaseGroup [1]
eventOut SFTime duration_changed
eventOut SFBool isActive

}

NOTE — For the binary encoding of this node see Annex H.1.4.

9.4.2.7.2 Functionality and semantics

The AudioBuffer node provides an interface to short snippets of sound to be used in an interactive scene.

EXAMPLE � Sounds triggered as “auditory icons” upon mouse clicks.

It buffers the audio generated by its children to support random restart capability upon interaction events. It differs
from the AudioClip node in the following ways:

� AudioBuffer can be used in broadcast and other one-way applications in which URLs from remote locations
cannot be retrieved interactively

� AudioBuffer can be used to trigger sounds made from processed sound (ie, with the other sound nodes)
rather than only raw sound data as transmitted in the elementary stream

The loop, startTime, and stopTime exposedFields and the isActive eventOut, and their effects on the
AnimationStream node are described in 9.2.1.6.1.

The semantics of the speed exposedField are identical to those for the MovieTexture node (see 9.4.2.72).

The length field specifies the length in seconds of the audio buffer. Audio shall be buffered at the instantiation of
the node, and whenever the length field changes.

The pitch field specifies a pitch-shift to apply to the output sound. The pitch-shift is calculated by simple
resampling; that is, a pitch-shift of 2 corresponds to playing the sound twice as fast and an octave higher. If pitch
is negative, the buffer is played backwards at the indicated speed, beginning at the last sample in the buffer and
proceeding to the first, then returning to the last sample if loop is TRUE.

The children field specifies the child nodes that provide the sound for this node. Each child shall be an AudioBIFS
node; that is, one of the following: AudioSource, AudioDelay, AudioMix, AudioSwitch, AudioFX,
AudioClip or AudioBuffer.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 139

An event shall be generated via the duration_changed field whenever a change is made to the startTime or
stopTime fields. An event shall also be triggered if these fields are changed simultaneously, even if the duration
does not actually change.

The numChan field specifies the number of output channels of this node. If there are more output channels than
input channels, the “extra” channels shall contain all 0s; if there are more input channels than output channels, the
“extra” channels shall be ignored.

The phaseGroup field specifies phase relationships in the output of the node, see 9.2.2.13 and 9.4.2.12.

The output of this node is not calculated based on the current input values, but according to the startTime event,
the pitch field and the contents of the clip buffer. When the startTime is reached (that is, the current scene time
is greater than or equal to startTime), the sound output shall begin at the beginning of the clip buffer and
isActive shall be set to TRUE. At each time step thereafter, the value of the output buffer shall be the value of the
next portion of the clip buffer, upsampled or downsampled as necessary according to pitch. When the end of the
clip buffer according to the value of length is reached, if loop is TRUE, the audio shall begin again from the
beginning of the clip buffer; if loop is FALSE, the playback shall cease. This playback shall be continued until
stopTime is reached. When the current scene time is greater than or equal to stopTime, the node shall cease to
produce sound.

The clip buffer shall be calculated as follows. When the node is instantiated, or whenever the length field is
changed, the first length seconds of the audio input to the AudioBuffer node shall be copied to the clip buffer.
That is, after t seconds, where t < length, audio sample number t * S of channel i (where 0 <= i < numChan) in the
buffer is set to contain the audio sample corresponding to time t of channel i of the input, where S is the sampling
rate of this node. After the first length seconds, the input to this node has no effect. Changes to the length field
that are received when isActive is TRUE shall be ignored.

When the playback is not active, the audio output of the node is all 0s.

9.4.2.8 AudioClip

9.4.2.8.1 Node interface

AudioClip {
exposedField SFString description ""
exposedField SFBool loop FALSE
exposedField SFFloat pitch 1.0
exposedField SFTime startTime 0
exposedField SFTime stopTime 0
exposedField MFString url []
eventOut SFTime duration_changed
eventOut SFBool isActive

}

NOTE — For the binary encoding of this node see Annex H.1.5.

9.4.2.8.2 Functionality and semantics

The semantics of the Audioclip node are specified in ISO/IEC 14772-1:1998, subclause 6.4.

The loop, startTime, and stopTime exposedFields and the isActive eventOut, and their effects on the
AudioClip node are described in 9.2.1.6.1.

The url field specifies the data source to be used (see 9.2.2.7.1).

9.4.2.9 AudioDelay

9.4.2.9.1 Node interface

AudioDelay {

ISO/IEC 14496-1:2001(E)

140 © ISO/IEC 2001 – All rights reserved

eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []
exposedField SFTime delay 0
field SFInt32 numChan 1
field MFInt32 phaseGroup []

}

NOTE — For the binary encoding of this node see Annex H.1.6.

9.4.2.9.2 Functionality and semantics

The AudioDelay node allows sounds to be started and stopped under temporal control. The start time and stop
time of the child sounds are delayed or advanced accordingly.

The addChildren eventIn specifies a list of nodes that shall be added to the children field.

The removeChildren eventIn specifies a list of nodes that shall be removed from the children field.

The children array specifies the nodes affected by the delay. Each child shall be an AudioBIFS node; that is, one
of the following: AudioSource, AudioDelay, AudioMix, AudioSwitch, AudioFX, AudioClip or
AudioBuffer.

The delay field specifies the delay to apply to each child node.

The numChan field specifies the number of channels of audio output by this node.

The phaseGroup field specifies the phase relationships among the various output channels; see 9.2.1.6.1.

Implementation of the AudioDelay node requires the use of a buffer of size d * S * n, where d is the length of the
delay in seconds, S is the sampling rate of the node, and n is the number of output channels from this node. At
scene startup, a multichannel delay line of length d and width n is initialized to reside in this buffer.

At each time step, the k * S audio samples in each channel of the input buffer, where k is the length of the system
time step in seconds, are inserted into this delay line. If the number of input channels is strictly greater than the
number of output channels, the extra input channels are ignored; if the number of input channels is strictly less than
the number of output channels, the extra channels of the delay line shall be taken as all 0’s.

The output buffer of the node is the k * S audio samples which fall off the end of the delay line in this process. Note
that this definition holds regardless of the relationship between k and d.

If the delay field is updated during playback, discontinuties (audible artefacts or “clicks”) in the output sound may
result. If the delay field is updated to a greater value than the current value, the delay line is immediately extended
to the new length, and zero values inserted at the beginning, so that d * S seconds later there will be a short gap in
the output of the node. If the delay field is updated to a lesser value than the current value, the delay line is
immediately shortened to the new length, truncating the values at the end of of the line, so that there is an
immediate discontinuity in sound output. Manipulation of the delay field in this manner is not recommended
unless the audio is muted within the terminal or by appropriate use of an AudioMix node at the same time, since
it gives rise to impaired sound quality.

9.4.2.10 AudioFX

9.4.2.10.1 Node interface

AudioFX {

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 141

eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []
exposedField SFString orch ""
exposedField SFString score ""
exposedField MFFloat params []
field SFInt32 numChan 1
field MFInt32 phaseGroup []

}

NOTE — For the binary encoding of this node see Annex H.1.7.

9.4.2.10.2 Functionality and semantics

The AudioFX node is used to allow arbitrary signal-processing functions defined using structured audio tools to
be included and applied to its children (see ISO/IEC 14496-3, subpart 5, clause 5.15).

The addChildren eventIn specifies a list of nodes that shall be added to the children field.

The removeChildren eventIn specifies a list of nodes that shall be removed from the children field.

The children array contains the nodes operated upon by this effect. Each child shall be an AudioBIFS node; that
is, one of the following: AudioSource, AudioDelay, AudioMix, AudioSwitch, AudioFX, AudioClip
or AudioBuffer. If this array is empty, the node has no function (the node may not be used to create new
synthetic audio in the middle of a scene graph).

The orch string contains a tokenised block of signal-processing code written in SAOL (Structured Audio Orchestra
Language). This code block shall contain an orchestra header and some instrument definitions, and conform to the
bitstream syntax of the orchestra class as defined in ISO/IEC 14496-3, subpart 5, subclause 5.5.2.2 and clause
5.8.

The score string may contain a tokenized score for the given orchestra written in SASL (Structured Audio Score
Language). This score may contain control operators to adjust the parameters of the orchestra, or even new
instrument instantiations. A score is not required. If present it shall conform to the bitstream syntax of the
score_file class as defined in ISO/IEC 14496-3, subpart 5, subclause 5.5.2 and clause 5.11.

The params field allows BIFS commands and events to affect the sound-generation process in the orchestra. The
values of params are available to the FX orchestra as the global array global ksig params[128]; see
ISO/IEC 14496-3, subpart 5, clause 5.15.

The numchan field specifies the number of channels of audio output by this node.

The phaseGroup field specifies the phase relationships among the various output channels; see 9.2.1.6.1.

The node is evaluated according to the semantics of the orchestra code contained in the orch field. See ISO/IEC
14496-3, subpart 5, for the normative description of this process. Within the orchestra code, the multiple channels
of input sound are placed on the global bus, input_bus; first, all channels of the first child, then all the channels of
the second child, and so on. The orchestra header shall ‘send’ this bus to an instrument for processing. The
phaseGroup arrays of the children are made available as the inGroup variable within the instrument(s) to which
the input_bus is sent.

The orchestra code block shall not contain the spatialize statement.

The output buffer of this node is the sound produced as the final output of the orchestra applied to the input
sounds, as described in ISO/IEC 14496-3, subpart 5, subclauses 5.7.3.

9.4.2.11 AudioMix

9.4.2.11.1 Node interface

AudioMix {

ISO/IEC 14496-1:2001(E)

142 © ISO/IEC 2001 – All rights reserved

eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []
exposedField SFInt32 numInputs 1
exposedField MFFloat matrix []
field SFInt32 numChan 1
field MFInt32 phaseGroup []

}

NOTE — For the binary encoding of this node see Annex H.1.8.

9.4.2.11.2 Functionality and semantics

This node is used to mix together several audio signals in a simple, multiplicative way. Any relationship that may be
specified in terms of a mixing matrix may be described using this node.

The addChildren eventIn specifies a list of nodes that shall be added to the children field.

The removeChildren eventIn specifies a list of nodes that shall be removed from the children field.

The children field specifies which nodes’ outputs to mix together. Each child shall be an AudioBIFS node; that is,
one of the following: AudioSource, AudioDelay, AudioMix, AudioSwitch, AudioFX, AudioClip or
AudioBuffer.

The numInputs field specifies the number of input channels. It shall be the sum of the number of channels of the
children.

The matrix array specifies the mixing matrix which relates the inputs to the outputs. matrix is an unrolled
numInputs x numChan matrix which describes the relationship between numInputs input channels and
numChan output channels. The numInputs * numChan values are in row-major order. That is, the first
numInputs values are the scaling factors applied to each of the inputs to produce the first output channel; the
next numInputs values produce the second output channel, and so forth.

That is, if the desired mixing matrix is �
�

�
�
�

�

fed

cba
, specifying a “2 into 3” mix, the value of the matrix field shall be

[a b c d e f].

The numchan field specifies the number of channels of audio output by this node.

The phaseGroup field specifies the phase relationships among the various output channels; see 9.2.1.6.1.

The value of the output buffer for an AudioMix node is calculated as follows. For each sample number x of
output channel i, 1 <= i <= numChan, the value of that sample is

matrix[(0) * numChan + i] * input[1][x] +

matrix[(1) * numChan + i] * input[2][x] + ...

matrix[(numInputs – 1) * numChan + i] * input[numInputs][x],

where input[i][j] represents the jth sample of the ith channel of the input buffer, and the matrix elements are
indexed starting from 1.

9.4.2.12 AudioSource

9.4.2.12.1 Node interface

AudioSource {

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 143

eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []
exposedField MFString url []
exposedField SFFloat pitch 1.0
exposedField SFFloat speed 1.0
exposedField SFTime startTime 0
exposedField SFTime stopTime 0
field SFInt32 numChan 1
field MFInt32 phaseGroup []

}

NOTE — For the binary encoding of this node see Annex H.1.9.

9.4.2.12.2 Functionality and semantics

This node is used to add sound to a BIFS scene. See ISO/IEC 14496-3 for information on the various audio tools
available for coding sound.

The addChildren eventIn specifies a list of nodes that shall be added to the children field.

The removeChildren eventIn specifies a list of nodes that shall be removed from the children field.

The children field allows buffered AudioBuffer data to be used as sound samples within a structured audio
decoding process. Only AudioBuffer nodes shall be children to an AudioSource node, and only in the case
where url indicates a structured audio bitstream.

The pitch field controls the playback pitch for the structured audio and the parametric speech (HVXC) decoder. It
is specified as a ratio, where 1 indicates the original bitstream pitch, values other than 1 indicate pitch-shifting by
the given ratio. This field is available through the getttune() core opcode in the structured audio decoder (see
ISO/IEC 14496-3, subpart 5). The structured audio is the only decoder that may be controlled in this manner; to
adjust the pitch of other decoder types, use the AudioFX node with an appropriate effects orchestra.

The speed field controls the playback speed for the structured audio decoder (see ISO/IEC 14496-3, subpart 5). It
is specified as a ratio, where 1 indicates the original speed; values other than 1 indicate multiplicative time-scaling
by the given ratio (i.e. 0.5 specifies twice as fast). The value of this field shall be made available to the structured
audio decoder indicated by the url field. ISO/IEC 14496-3, subpart 5, subclause 5.7.3.3.6, list item 8, describe the
use of this field to control the structured audio decoder. The structured audio decoder is the only decoder that may
be controlled in this manner; to adjust the speed of other decoder types, use the AudioFX node with an
appropriate orchestra.

The startTime and stopTime exposedFields and their effects on the AudioSource node are described in
9.2.1.6.1.

The numChan field describes how many channels of audio are in the decoded bitstream.

The phaseGroup array specifies whether or not there are important phase relationships between the multiple
channels of audio. If there are such relationships – for example, if the sound is a multichannel spatialized set or a
“stereo pair” – it is in general dangerous to do anything more complex than scaling to the sound. Further filtering or
repeated “spatialization” will destroy these relationships. The values in the array divide the channels of audio into
groups; if phaseGroup[i] = phaseGroup[j] then channel i and channel j are phase-related. Channels for which
the phaseGroup value is 0 are not related to any other channel.

The url field specifies the data source to be used (see 9.2.2.7.1).

The audio output from the decoder according to the bitstream(s), referenced in the specified URL, at the current
scene time is placed in the output buffer for this node, unless the current scene time is earlier than the current
value of startTime or later than the current value of stopTime, in which case 0 values are placed in the output
buffer for this node for the current scene time.

ISO/IEC 14496-1:2001(E)

144 © ISO/IEC 2001 – All rights reserved

For audio sources decoded using the main object of the structured audio decoder (ISO/IEC 14496-3, subpart 5),
several variables from the scene description must be mapped into standard names in the orchestra. See ISO/IEC
14496-3, subpart 5, clause 5.15 and subclause 5.8.6.8.

If AudioBuffer children are provided for a structured audio decoder, the audio data buffered in the
AudioBuffer(s) must be made available to the decoding process. See Subclause ISO/IEC 14496-3, subpart 5,
subclause 5.10.2.

9.4.2.13 AudioSwitch

9.4.2.13.1 Node interface

AudioSwitch {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []
exposedField MFInt32 whichChoice []
field SFInt32 numChan 1
field MFInt32 phaseGroup []

}

NOTE — For the binary encoding of this node see Annex H.1.10.

9.4.2.13.2 Functionality and semantics

The AudioSwitch node is used to select a subset of audio channels from the child nodes specified.

The addChildren eventIn specifies a list of nodes that shall be added to the children field.

The removeChildren eventIn specifies a list of nodes that shall be removed from the children field.

The children field specifies a list of child options. Each child shall be an AudioBIFS node; that is, one of the
following: AudioSource, AudioDelay, AudioMix, AudioSwitch, AudioFX, AudioClip or
AudioBuffer.

The whichChoice field specifies which channels shall be passed through. If whichChoice[i] is 1, then the i-th
child channel shall be passed through.

The numchan field specifies the number of channels of audio output by this node; ie, the number of channels in
the passed child.

The phaseGroup field specifies the phase relationships among the various output channels; see 9.2.1.6.1.

The values for the output buffer are calculated as follows:

For each sample number x of channel number i of the output buffer, 1 <= i <= numChan, the value in the buffer is
the same as the value of sample number x in the jth channel of the input, where j is the least value such that
whichChoice[0] + whichChoice[1] + ... + whichChoice[j] = i.

9.4.2.14 Background

9.4.2.14.1 Node interface

Background {
eventIn SFBool set_bind
exposedField MFFloat groundAngle []
exposedField MFColor groundColor []
exposedField MFString backURL []
exposedField MFString bottomURL []
exposedField MFString frontURL []
exposedField MFString leftURL []
exposedField MFString rightURL []

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 145

exposedField MFString topURL []
exposedField MFFloat skyAngle []
exposedField MFColor skyColor 0, 0, 0
eventOut SFBool isBound

}

NOTE — For the binary encoding of this node see Annex H.1.11.

9.4.2.14.2 Functionality and semantics

The semantics of the Background node are specified in ISO/IEC 14772-1:1998, subclause 6.5.

The backUrl, bottomURL, frontUrl, leftUrl, rightUrl, topUrl fields specify the data sources to be used (see
9.2.2.7.1).

9.4.2.15 Background2D

9.4.2.15.1 Node interface

Background2D {
eventIn SFBool set_bind
exposedField SFColor backColor 0 0 0
exposedField MFString url []
eventOut SFBool isBound

}

NOTE — For the binary encoding of this node see Annex H.1.12.

9.4.2.15.2 Functionality and semantics

There exists a Background2D stack, in which the top-most background is the current active background one.
The Background2D node allows a background to be displayed behind a 2D scene. The functionality of this
node can also be accomplished using other nodes, but use of this node may be more efficient in some
implementations.

If set_bind is set to TRUE the Background2D is moved to the top of the stack.If set_bind is set to FALSE,
the Background2D is removed from the stack so the previous background which is contained in the stack is on
top again.

The isBound event is sent as soon as the backdrop is put at the top of the stack, so becoming the current
backdrop.

The url field specifies the data source to be used (see 9.2.2.7.1).

The backColor field specifies a colour to be used as the background.

This is not a geometry node. The top-left corner of the image is mapped to the top-left corner of the Layer2D and
the right-bottom corner of the image is stretched to the right-bottom corner of the Layer2D, regardless of the
current transformation. Scaling and/or rotation do not have any effect on this node. The background image will
always exactly fill the entire Layer2D, regardless of Layer2D size, without tiling or cropping.

EXAMPLE � Changing the background for 5 seconds.

Group {
children [

…
DEF TIS TimeSensor {

startTime 5.0
stopTime 10.0

}
DEF BG1 Background2D {

…
}

ISO/IEC 14496-1:2001(E)

146 © ISO/IEC 2001 – All rights reserved

]
}
ROUTE TIS.isActive TO BG1.set_bind

9.4.2.16 BAP

9.4.2.16.1 Node interface

BAP {
exposedField SFInt32 sacroiliac_tilt +I
exposedField SFInt32 sacroiliac_torsion +I
exposedField SFInt32 sacroiliac_roll +I
exposedField SFInt32 l_hip_flexion +I
exposedField SFInt32 r_hip_flexion +I
exposedField SFInt32 l_hip_abduct +I
exposedField SFInt32 r_hip_abduct +I
exposedField SFInt32 l_hip_twisting +I
exposedField SFInt32 r_hip_twisting +I
exposedField SFInt32 l_knee_flexion +I
exposedField SFInt32 r_knee_flexion +I
exposedField SFInt32 l_knee_twisting +I
exposedField SFInt32 r_knee_twisting +I
exposedField SFInt32 l_ankle_flexion +I
exposedField SFInt32 r_ankle_flexion +I
exposedField SFInt32 l_ankle_twisting +I
exposedField SFInt32 r_ankle_twisting +I
exposedField SFInt32 l_subtalar_flexion +I
exposedField SFInt32 r_subtalar_flexion +I
exposedField SFInt32 l_midtarsal_flexion +I
exposedField SFInt32 r_midtarsal_flexion +I
exposedField SFInt32 l_metatarsal_flexion +I
exposedField SFInt32 r_metatarsal_flexion +I
exposedField SFInt32 l_sternoclavicular_abduct +I
exposedField SFInt32 r_sternoclavicular_abduct +I
exposedField SFInt32 l_sternoclavicular_rotate +I
exposedField SFInt32 r_sternoclavicular_rotate +I
exposedField SFInt32 l_acromioclavicular_abduct +I
exposedField SFInt32 r_acromioclavicular_abduct +I
exposedField SFInt32 l_acromioclavicular_rotate +I
exposedField SFInt32 r_acromioclavicular_rotate +I
exposedField SFInt32 l_shoulder_flexion +I
exposedField SFInt32 r_shoulder_flexion +I
exposedField SFInt32 l_shoulder_abduct +I
exposedField SFInt32 r_shoulder_abduct +I
exposedField SFInt32 l_shoulder_twisting +I
exposedField SFInt32 r_shoulder_twisting +I
exposedField SFInt32 l_elbow_flexion +I
exposedField SFInt32 r_elbow_flexion +I
exposedField SFInt32 l_elbow_twisting +I
exposedField SFInt32 r_elbow_twisting +I
exposedField SFInt32 l_wrist_flexion +I
exposedField SFInt32 r_wrist_flexion +I
exposedField SFInt32 l_wrist_pivot +I
exposedField SFInt32 r_wrist_pivot +I
exposedField SFInt32 l_wrist_twisting +I
exposedField SFInt32 r_wrist_twisting +I
exposedField SFInt32 skullbase_roll +I
exposedField SFInt32 skullbase_torsion +I
exposedField SFInt32 skullbase_tilt +I
exposedField SFInt32 vc1roll +I
exposedField SFInt32 vc1torsion +I
exposedField SFInt32 vc1tilt +I
exposedField SFInt32 vc2roll +I

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 147

exposedField SFInt32 vc2torsion +I
exposedField SFInt32 vc2tilt +I
exposedField SFInt32 vc3roll +I
exposedField SFInt32 vc3torsion +I
exposedField SFInt32 vc3tilt +I
exposedField SFInt32 vc4roll +I
exposedField SFInt32 vc4torsion +I
exposedField SFInt32 vc4tilt +I
exposedField SFInt32 vc5roll +I
exposedField SFInt32 vc5torsion +I
exposedField SFInt32 vc5tilt +I
exposedField SFInt32 vc6roll +I
exposedField SFInt32 vc6torsion +I
exposedField SFInt32 vc6tilt +I
exposedField SFInt32 vc7roll +I
exposedField SFInt32 vc7torsion +I
exposedField SFInt32 vc7tilt +I
exposedField SFInt32 vt1roll +I
exposedField SFInt32 vt1torsion +I
exposedField SFInt32 vt1tilt +I
exposedField SFInt32 vt2roll +I
exposedField SFInt32 vt2torsion +I
exposedField SFInt32 vt2tilt +I
exposedField SFInt32 vt3roll +I
exposedField SFInt32 vt3torsion +I
exposedField SFInt32 vt3tilt +I
exposedField SFInt32 vt4roll +I
exposedField SFInt32 vt4torsion +I
exposedField SFInt32 vt4tilt +I
exposedField SFInt32 vt5roll +I
exposedField SFInt32 vt5torsion +I
exposedField SFInt32 vt5tilt +I
exposedField SFInt32 vt6roll +I
exposedField SFInt32 vt6torsion +I
exposedField SFInt32 vt6tilt +I
exposedField SFInt32 vt7roll +I
exposedField SFInt32 vt7torsion +I
exposedField SFInt32 vt7tilt +I
exposedField SFInt32 vt8roll +I
exposedField SFInt32 vt8torsion +I
exposedField SFInt32 vt8tilt +I
exposedField SFInt32 vt9roll +I
exposedField SFInt32 vt9torsion +I
exposedField SFInt32 vt9tilt +I
exposedField SFInt32 vt10roll +I
exposedField SFInt32 vt10torsion +I
exposedField SFInt32 vt10tilt +I
exposedField SFInt32 vt11roll +I
exposedField SFInt32 vt11torsion +I
exposedField SFInt32 vt11tilt +I
exposedField SFInt32 vt12roll +I
exposedField SFInt32 vt12torsion +I
exposedField SFInt32 vt12tilt +I
exposedField SFInt32 vl1roll +I
exposedField SFInt32 vl1torsion +I
exposedField SFInt32 vl1tilt +I
exposedField SFInt32 vl2roll +I
exposedField SFInt32 vl2torsion +I
exposedField SFInt32 vl2tilt +I
exposedField SFInt32 vl3roll +I
exposedField SFInt32 vl3torsion +I
exposedField SFInt32 vl3tilt +I

ISO/IEC 14496-1:2001(E)

148 © ISO/IEC 2001 – All rights reserved

exposedField SFInt32 vl4roll +I
exposedField SFInt32 vl4torsion +I
exposedField SFInt32 vl4tilt +I
exposedField SFInt32 vl5roll +I
exposedField SFInt32 vl5torsion +I
exposedField SFInt32 vl5tilt +I
exposedField SFInt32 l_pinky0_flexion +I
exposedField SFInt32 r_pinky0_flexion +I
exposedField SFInt32 l_pinky1_flexion +I
exposedField SFInt32 r_pinky1_flexion +I
exposedField SFInt32 l_pinky1_pivot +I
exposedField SFInt32 r_pinky1_pivot +I
exposedField SFInt32 l_pinky1_twisting +I
exposedField SFInt32 r_pinky1_twisting +I
exposedField SFInt32 l_pinky2_flexion +I
exposedField SFInt32 r_pinky2_flexion +I
exposedField SFInt32 l_pinky3_flexion +I
exposedField SFInt32 r_pinky3_flexion +I
exposedField SFInt32 l_ring0_flexion +I
exposedField SFInt32 r_ring0_flexion +I
exposedField SFInt32 l_ring1_flexion +I
exposedField SFInt32 r_ring1_flexion +I
exposedField SFInt32 l_ring1_pivot +I
exposedField SFInt32 r_ring1_pivot +I
exposedField SFInt32 l_ring1_twisting +I
exposedField SFInt32 r_ring1_twisting +I
exposedField SFInt32 l_ring2_flexion +I
exposedField SFInt32 r_ring2_flexion +I
exposedField SFInt32 l_ring3_flexion +I
exposedField SFInt32 r_ring3_flexion +I
exposedField SFInt32 l_middle0_flexion +I
exposedField SFInt32 r_middle0_flexion +I
exposedField SFInt32 l_middle1_flexion +I
exposedField SFInt32 r_middle1_flexion +I
exposedField SFInt32 l_middle1_pivot +I
exposedField SFInt32 r_middle1_pivot +I
exposedField SFInt32 l_middle1_twisting +I
exposedField SFInt32 r_middle1_twisting +I
exposedField SFInt32 l_middle2_flexion +I
exposedField SFInt32 r_middle2_flexion +I
exposedField SFInt32 l_middle3_flexion +I
exposedField SFInt32 r_middle3_flexion +I
exposedField SFInt32 l_index0_flexion +I
exposedField SFInt32 r_index0_flexion +I
exposedField SFInt32 l_index1_flexion +I
exposedField SFInt32 r_index1_flexion +I
exposedField SFInt32 l_index1_pivot +I
exposedField SFInt32 r_index1_pivot +I
exposedField SFInt32 l_index1_twisting +I
exposedField SFInt32 r_index1_twisting +I
exposedField SFInt32 l_index2_flexion +I
exposedField SFInt32 r_index2_flexion +I
exposedField SFInt32 l_index3_flexion +I
exposedField SFInt32 r_index3_flexion +I
exposedField SFInt32 l_thumb1_flexion +I
exposedField SFInt32 r_thumb1_flexion +I
exposedField SFInt32 l_thumb1_pivot +I
exposedField SFInt32 r_thumb1_pivot +I
exposedField SFInt32 l_thumb1_twisting +I
exposedField SFInt32 r_thumb1_twisting +I
exposedField SFInt32 l_thumb2_flexion +I
exposedField SFInt32 r_thumb2_flexion +I

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 149

exposedField SFInt32 l_thumb3_flexion +I
exposedField SFInt32 r_thumb3_flexion +I
exposedField SFInt32 humanoidRoot_tr_vertical +I
exposedField SFInt32 humanoidRoot_tr_lateral +I
exposedField SFInt32 humanoidRoot_tr_frontal +I
exposedField SFInt32 humanoidRoot_rt_body_turn +I
exposedField SFInt32 humanoidRoot_rt_body_roll +I
exposedField SFInt32 humanoidRoot_rt_body_tilt +I
exposedField SFInt32 extensionBap187 +I
exposedField SFInt32 extensionBap188 +I
exposedField SFInt32 extensionBap189 +I
exposedField SFInt32 extensionBap190 +I
exposedField SFInt32 extensionBap191 +I
exposedField SFInt32 extensionBap192 +I
exposedField SFInt32 extensionBap193 +I
exposedField SFInt32 extensionBap194 +I
exposedField SFInt32 extensionBap195 +I
exposedField SFInt32 extensionBap196 +I
exposedField SFInt32 extensionBap197 +I
exposedField SFInt32 extensionBap198 +I
exposedField SFInt32 extensionBap199 +I
exposedField SFInt32 extensionBap200 +I
exposedField SFInt32 extensionBap201 +I
exposedField SFInt32 extensionBap202 +I
exposedField SFInt32 extensionBap203 +I
exposedField SFInt32 extensionBap204 +I
exposedField SFInt32 extensionBap205 +I
exposedField SFInt32 extensionBap206 +I
exposedField SFInt32 extensionBap207 +I
exposedField SFInt32 extensionBap208 +I
exposedField SFInt32 extensionBap209 +I
exposedField SFInt32 extensionBap210 +I
exposedField SFInt32 extensionBap211 +I
exposedField SFInt32 extensionBap212 +I
exposedField SFInt32 extensionBap213 +I
exposedField SFInt32 extensionBap214 +I
exposedField SFInt32 extensionBap215 +I
exposedField SFInt32 extensionBap216 +I
exposedField SFInt32 extensionBap217 +I
exposedField SFInt32 extensionBap218 +I
exposedField SFInt32 extensionBap219 +I
exposedField SFInt32 extensionBap220 +I
exposedField SFInt32 extensionBap221 +I
exposedField SFInt32 extensionBap222 +I
exposedField SFInt32 extensionBap223 +I
exposedField SFInt32 extensionBap224 +I
exposedField SFInt32 extensionBap225 +I
exposedField SFInt32 extensionBap226 +I
exposedField SFInt32 extensionBap227 +I
exposedField SFInt32 extensionBap228 +I
exposedField SFInt32 extensionBap229 +I
exposedField SFInt32 extensionBap230 +I
exposedField SFInt32 extensionBap231 +I
exposedField SFInt32 extensionBap232 +I
exposedField SFInt32 extensionBap233 +I
exposedField SFInt32 extensionBap234 +I
exposedField SFInt32 extensionBap235 +I
exposedField SFInt32 extensionBap236 +I
exposedField SFInt32 extensionBap237 +I
exposedField SFInt32 extensionBap238 +I
exposedField SFInt32 extensionBap239 +I
exposedField SFInt32 extensionBap240 +I

ISO/IEC 14496-1:2001(E)

150 © ISO/IEC 2001 – All rights reserved

exposedField SFInt32 extensionBap241 +I
exposedField SFInt32 extensionBap242 +I
exposedField SFInt32 extensionBap243 +I
exposedField SFInt32 extensionBap244 +I
exposedField SFInt32 extensionBap245 +I
exposedField SFInt32 extensionBap246 +I
exposedField SFInt32 extensionBap247 +I
exposedField SFInt32 extensionBap248 +I
exposedField SFInt32 extensionBap249 +I
exposedField SFInt32 extensionBap250 +I
exposedField SFInt32 extensionBap251 +I
exposedField SFInt32 extensionBap252 +I
exposedField SFInt32 extensionBap253 +I
exposedField SFInt32 extensionBap254 +I
exposedField SFInt32 extensionBap255 +I
exposedField SFInt32 extensionBap256 +I
exposedField SFInt32 extensionBap257 +I
exposedField SFInt32 extensionBap258 +I
exposedField SFInt32 extensionBap259 +I
exposedField SFInt32 extensionBap260 +I
exposedField SFInt32 extensionBap261 +I
exposedField SFInt32 extensionBap262 +I
exposedField SFInt32 extensionBap263 +I
exposedField SFInt32 extensionBap264 +I
exposedField SFInt32 extensionBap265 +I
exposedField SFInt32 extensionBap266 +I
exposedField SFInt32 extensionBap267 +I
exposedField SFInt32 extensionBap268 +I
exposedField SFInt32 extensionBap269 +I
exposedField SFInt32 extensionBap270 +I
exposedField SFInt32 extensionBap271 +I
exposedField SFInt32 extensionBap272 +I
exposedField SFInt32 extensionBap273 +I
exposedField SFInt32 extensionBap274 +I
exposedField SFInt32 extensionBap275 +I
exposedField SFInt32 extensionBap276 +I
exposedField SFInt32 extensionBap277 +I
exposedField SFInt32 extensionBap278 +I
exposedField SFInt32 extensionBap279 +I
exposedField SFInt32 extensionBap280 +I
exposedField SFInt32 extensionBap281 +I
exposedField SFInt32 extensionBap282 +I
exposedField SFInt32 extensionBap283 +I
exposedField SFInt32 extensionBap284 +I
exposedField SFInt32 extensionBap285 +I
exposedField SFInt32 extensionBap286 +I
exposedField SFInt32 extensionBap287 +I
exposedField SFInt32 extensionBap288 +I
exposedField SFInt32 extensionBap289 +I
exposedField SFInt32 extensionBap290 +I
exposedField SFInt32 extensionBap291 +I
exposedField SFInt32 extensionBap292 +I
exposedField SFInt32 extensionBap293 +I
exposedField SFInt32 extensionBap294 +I
exposedField SFInt32 extensionBap295 +I
exposedField SFInt32 extensionBap296 +I

}

NOTE - For the binary encoding of this node see Annex H.3.4.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 151

9.4.2.16.2 Functionality and semantics

BAP defines the current look of the body by means of body animation parameters. The semantics of the fields of
BAP is described in Annex C of ISO/IEC 14496-2: 1999.

9.4.2.17 BDP

9.4.2.17.1 Semantic Table

BDP {
exposedField MFNode bodySceneGraph []
exposedField MFNode bodyDefTables []
exposedField MFNode bodySegmentConnectionHint []

}

NOTE - For the binary encoding of this node see Annex H.3.5

9.4.2.17.2 Funcionality and semantics

The BDP node is used to customize the proprietary body model of the decoder to a particular body, or to download
a body model along with the information of how to animate it. The Body Definition Parameters (BDPs) are normally
transmitted once per session, followed by a stream of coded Body Animation Parameters (BAPs). It is also possible
to transmit BDPs more than once per session. If the decoder does not receive the BDPs, the use of a default model
ensures that it can still interpret the FBA stream containing BAPs. This insures minimal operation in broadcast or
teleconferencing applications.

BDPs specify the following properties:

1. Body surface geometry (with texture coordinates if texture is used)

� The body surface geometry is downloaded using the BIFS stream. The body geometry surfaces are specified
using the BIFS Segment PROTO definitions as defined In Annex M.2.

2. Joint center locations.

� The positions of the joints are specified using the BIFS Joint PROTO definitions.

� Texture images as part of the BIFS Segment definitions.

3. Deformation tables, that describe how to deform the body surfaces using the received BAPs.

The scene graph or a body definition is strongly based on ISO/IEC 14772-1 Amendment 1. The texture images can
be defined for each surface. Note that the texture images are part of the PROTO SEGMENT geometry, defined in
Annex M.

The following are the basic assumptions about BDP:

1. Default posture to initialize a human body model.

� Standing posture: This posture is defined as follows: the feet should point to the front direction, the two arms
should be placed on the side of the body with the palm of the hands facing inward. This posture also implies
that all BAPs have value zero (see ISO/IEC 14496-2:1999).

2. Establishing the coordinate system.

The origin of the body coordinate system is located at ground (y=0) level, between the humanoid's feet, with the
lateral and frontal position the same as spine origin (l5tilt). The orientation of the coordinate is x points to the left, y
points up, and z points to the front of the humanoid. The BDP node defines the body model to be used at the
receiver. Two options are supported:

� The bodyDefTables is [], the body scene graph is downloaded, in which case the proprietary body of the
decoder has to be replaced by the downloaded graph. The bodySceneGraph field has to be in the syntax
described in Annex M.

ISO/IEC 14496-1:2001(E)

152 © ISO/IEC 2001 – All rights reserved

� The bodyDefTables is different from [], in which case the decoder has to replace its local model by the
downloaded graph. The bodySceneGraph field has to be in the format, as described below. The
bodyDefTables field defines how the IndexedFaceSet child of bodySceneGraph Segment Node is modified
based on sets of BAPs. By means of bodyDefTables, the skin or clothes surface geometry of the model can
be deformed. The bodyDefTables field is defined below.

bodyDefTables defines the behavior of the deformation of the body based on BAP values. See 9.4.2.21.

bodySceneGraph defines the joint center, default geometry, and texture of the body. See Annex M.

bodySegmentConnectionHint contains a BodySegmentConnectionHint node (see 9.4.2.22).

9.4.2.18 Billboard

9.4.2.18.1 Node interface

Billboard {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField SFVec3f axisOfRotation 0, 1, 0
exposedField MFNode children []

}

NOTE — For the binary encoding of this node see Annex H.1.13.

9.4.2.18.2 Functionality and semantics

The semantics of the Billboard node are specified in ISO/IEC 14772-1:1998, subclause 6.6. ISO/IEC 14496-1
does not support the bounding box parameters (bboxCenter and bboxSize).

9.4.2.19 Bitmap

9.4.2.19.1 Node interface

Bitmap {
exposedField SFVec2f scale -1, -1

}

NOTE — For the binary encoding of this node see Annex H.1.14.

9.4.2.19.2 Functionality and semantics

Bitmap is a geometry node centered at (0,0) in the local coordinate system, to be placed in the geometry field of
a Shape node. It is a screen-aligned rectangle, which means that the surface normal of this rectangle will always
be in the same direction as the screen surface normal, namely straight out to the viewer. It is for example not
possible to view the Bitmap under an angle from the side. Bitmap has the dimensions of the texture that is
mapped onto it, as specified in the Appearance node of its parent Shape node. However, the effective
geometry of Bitmap is defined by the non-transparent pixels of the image or video that is mapped onto it. When
no scaling is specified, a trivial texture-mapping (pixel copying) is performed.

The scale field specifies a scaling of the geometry in the x and y dimensions, respectively. The scale values shall
be strictly positive or equal to -1. A scale value of -1 indicates that no scaling shall be applied in the relevant
dimension. The special case where both scale dimensions are -1 indicates that the natural dimensions of the
texture that is mapped onto the Bitmap shall be used.

Bitmap shall not be rotated but may be subject to translation.

Geometry sensors shall respond to the effective geometry of the Bitmap, which is defined by the non-transparent
pixels of the texture that is mapped onto it.

Example � To specify semi-transparent video:

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 153

Shape {
appearance Appearance {

texture MovieTexture { // Visual object
…

}
material Material2D {

transparency 0.5 // semi-transparent
}

}
geometry Bitmap {}

}

9.4.2.20 Body

9.4.2.20.1 Node interface

Body {
exposedField SFNode bdp NULL
exposedField SFNode bap NULL
exposedField MFNode renderedBody []

}

NOTE - For the binary encoding of this node see Annex H.3.6.

9.4.2.20.2 Functionality and semantics

The Body node organizes definition and animation of a body. The bap field shall be always specified. Defining the
particular look of a body by means of downloading the position of joint centers or an entire model is optional. If the
bdp field is NULL, i.e., the BDP node is not specified, the default body model of the decoder is used.

bdp contains a BDP node.

bap contains a BAP node.

renderedBody is the scene graph of the body after it is rendered (all BAP parameters are applied).

If the bdp field of the Body node is [] and the Body node is a child of a Group node that only has one Face and
one Body node, then the Body node is associated to that Face node.

9.4.2.21 BodyDefTable

9.4.2.21.1 Node interface

BodyDefTable {
exposedField SFString bodySceneGraphNodeName NULL
exposedField MFInt32 bapIDs []
exposedField MFInt32 vertexIds []
exposedField MFInt32 bapCombinations []
exposedField MFVec3f displacements []
exposedField SFInt32 numInterpolateKeys 2

}

NOTE - For the binary encoding of this node see Annex H.3.7.

9.4.2.21.2 Functionality and semantics

Defines the behavior of body animation parameters (BAPs) on a downloaded bodySceneGraph by specifying
displacement vectors of moved vertices inside IndexedFaceSet objects as a function of a combination of BAPs.
The listed vertices typically represent the deformable body skin surface, or clothe animation for the body.

The BodyDefTable node is transmitted directly after the BIFS bitstream of the BDP node. There is no limit on the
number of BodyDefTable nodes transmitted for one body. A vertex can be listed on more than one BodyDefTable
nodes. A BAP can be listed on more than one BodyDefTable nodes. In this case, the displacements of the same
vertex from various BodyDefTable nodes are added to obtain resulting displacement.

ISO/IEC 14496-1:2001(E)

154 © ISO/IEC 2001 – All rights reserved

Each BodyDefTable node contains a list of BAPs, and a list of vertices in the bodySceneGraph that are normally
affected by these BAPs (for example, the upper and lower arm skin vertices are affected by the elbow joints).

Detailed semantics:

Contains a BodySegmentConnectionHint node contains the name of the segment containing an IndexedFaceSet
node for which the deformation is defined. This node shall be part of the bodySceneGraph as defined in the BDP
node. This node will be contained in the children field of the Segment node.

bapIDs contains the BAP indices, for which the deformation behavior is defined in the bodySceneGraphNodeName
field. (Any number of BAPs can be listed in this field). The BAP Ids are defined in the Visual FPDAM1. The values
between [1-186] denote the standard BAPs, the values [187-296] denote the user-defined. Other values are
undefined.

vertexIDs contains a list of indices into the Coordinate node of the IndexedFaceSet node specified by the child of
node with name bodySceneGraphNodeName.

bapCombinations contains a list of interval borders for BAP values, i.e. a list of possible BAP combinations, for
the BAPs listed in the bapIDs field. The number of values in this field shall be an integer multiple of BAP indices as
given in the bapIDs field. The entries shall be ordered as follows: first, the BAP combinations with the first listed
BAP having lowest values are listed. If there are more than one entry with the same value for the first BAP, the
entries are sorted considering the second listed BAP, etc.

displacements is a list of vectors; for each vertex indexed in the vertexIDs field, the displacement vectors are
given for the BAP combinations defined in the bapCombinations field. There must be exactly
(num(VertexIDs)*num(bapCombinations)/num(bapIDs)) values in this field.

numInterpolateKeys is the number of BAP keys for interpolation, as defined below. The allowed values are 1-5.

In most cases, the list of BAPs in the bapIDs field will be the related BAPs (for example, the shoulder BAPs will
typically be listed in the same BodyDefTable node). During animation, when the decoder receives a list of BAPs,
which affects one or more IndexedFaceSets of the body model, it finds the associated BAP combination entries in
the BodyDefTable nodes, and displaces the vertices from the original surface, with the vector specified by the
displacement field.

Example:

BodyDefTable {
bodySceneGraphNodeName “l_forearm”
bapIDs [38, 40]
vertexIds [50, 51, 52]
bapCombinations [0, 0, 0, 100, 0, 200,

100, 0, 100, 100, 100, 200,
200, 0, 200, 100, 200, 200]

displacements [1 0 0,0.9 0 0,5.0 0.1 0.1,
0 0.3 0.3,0.4 0 0,5.0 0 0.1,
0.5 0.6 0,0.9 0 0,5 0.7 0.1]

}

This BodyDefTable node defines the deformation of the forearm based on the combination of l_elbow_flexion and
l_elbow_twisting BAPs. The vertices with indices 50,51,52 on surface l_forearm are deformed. The displacements
for vertex 50 are: (1 0 0), (0 0.3 0.3) and (0.5 0.6 0) for the BAP l_elbow_flexion and l_elbow_twisting combinations
(0 0) (0 100) (0 200), respectively.

The number of entries in the displacements field is calculated as:

Ndisplacements = NbapCombinations * NvertexIds

where Nm represents the number of entries in node m.

NbapCombinations = O(NbapIDs , Nkey_postures)

Any number of BAPs can be listed in one table, and a number of BodyDefTable nodes can be used for the same
bodySceneGraphNodeName.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 155

Interpolation

When the current BAP set for one frame does not contain the bapCombinations as listed in the BodyDefTable
node, the entries in this node need to be interpolated to obtain the deformations. (For example, let the deformation
of the right forearm be defined by BAPs 39 and 41 (right_elbow_flexion and right_elbow_twisting). Let the
bapCombination entries in the table be (0,0), (0,10000), (10000,0). Then, when a BAP39-BAP41 combination of
(5000,5000) is received, the displacements for the frame should be interpolated from the listed BAP values.)

Given several BAP keys P1, P2, P3,...,Pn computing linear interpolation at BAP point P. n represents the

numInterpolateKeys field in the BodyDefTable node.

Let d1, d2, d3...dn be respective distances from P to keys.

Let v1, v2, v3,..vn be tabular displacement values of a vertex at the keys.

For any key Pi, the deformation contributed by Pi should be inversely proportional to distance di from point P. Let

this proportionality factor be fi.

Thus DEFi (deformation due to Pi) = fi*vi

DEF (Total deformation at P) = f
1
*v

1
+ f

2
*v

2
+ ...+ f

n
*v

n

With the condition that f
1

+ f
2

+ ...+f
n

= 1.0

computing f
i
is obtained in the following way:

Let total distance D = d
1

+ d
2

+ ...+ d
n

f
i
= (1 - d

i
/D)/(n-1)

calculation:

First compute DIRECT proportionality factors t
i

t
1

= d
1
/D, t

2
= d

2
/D,...,t

n
= d

n
/D

Now t
1

+ t
2

+ ...+ t
n

= 1.0

If we take deformation contribution by P
i
as DEF

i
= t

i
v
i

then keys closest to point p contribute least. To have the opposite effect we get inverse proportionality by replacing
t
i
s

t
i
<-- (1 - t

i
) <-- (1 - d

i
/D)

t
1

<-- 1 -d
1
/D, t

2
<- 1 - d

2
/D, ... t

n
<- 1 -d

n
/D

But now

t
1

+ t
2

+ ...+t
n

= n - 1

To make right hand side 1.0, we divide by n-1. Thus the final factor f
i

f
i
= t

i
/(n-1) = (1-d

i
/D)/(n-1)

ISO/IEC 14496-1:2001(E)

156 © ISO/IEC 2001 – All rights reserved

Note that the default body posture is defined where all BAPs are 0 and the displacements are 0. This default
posture shall not be used as a BAP combinations entry for interpolation, unless it is defined explicitly as BAP
combinations in the BodyDefTable.

9.4.2.22 BodySegmentConnectionHint

9.4.2.22.1 Node Interface

BodySegmentConnectionHint {
exposedField SFString firstSegmentNodeName NULL
exposedField SFString secondSegmentNodeName NULL
exposedField MFInt32 firstVertexIdList []
exposedField MFInt32 secondVertexIdList []

}

NOTE - For the binary encoding of this node see Annex H.3.8.

9.4.2.22.2 Functionality and semantics

Defines the connection information of segments as a hint for maintaining connected surfaces. Typically, two
segments connected by a joint might require listing corresponding vertices in both segments, as a hint to the
BodyDefTable interpreter to remove holes.

The BodySegmentConnectionHint node is transmitted after the BIFS bitstream of BDP and BodyDefTable
nodes. There is no limit on the number of BodySegmentConnectionHint nodes transmitted for one body. This
node is a hint to the BDP interpreter; it is not required to use this node.

Each BodySegmentConnectionHint node contains two segments, a list of vertex ids in the two segments that
need to be connected to each other for smooth rendering (for example, vertices near the elbow joint can be listed).

Detailed Semantics:

firstSegmentNodeName is the name of the segment containing the first IndexedFaceSet node. This node shall
be part of the bodySceneGraph as defined in the BDP node. This node will be contained in the children field of the
Segment node.

secondSegmentNodeName is the name of the segment containing the second IndexedFaceSet node. This node
shall be part of the bodySceneGraph as defined in the BDP node. This node will be contained in the children field
of Segment node.

firstVertexIdList is a list of indices into the Coordinate node of the first IndexedFaceSet node specified by
firstSegmentNodeName.

secondVertexIdList is a list of indices into the Coordinate node of the second IndexedFaceSet node specified by
secondSegmentNodeName.

The number of entries in firstVertexIdList and secondVertexIdList fields has to be the same. The corresponding
vertex ids should be in the same sequence in both fields.

During animation, when the decoder displaces vertices from the original surfaces based on the vectors specified by
BodyDefTable nodes, it can use the BodySegmentConnectionHint node to connect the two surfaces. If two
corresponding vertices are not displaced with the same amount due to different BodyDefTable displacement
values or due to numerical error, then the decoder can take the average displacement of two corresponding
vertices.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 157

9.4.2.23 Box

9.4.2.23.1 Node interface

Box {
field SFVec3f size 2, 2, 2

}

NOTE — For the binary encoding of this node see Annex H.1.15.

9.4.2.23.2 Functionality and semantics

The semantics of the Box node are specified in ISO/IEC 14772-1:1998, subclause 6.7.

9.4.2.24 Circle

9.4.2.24.1 Node interface

Circle {
exposedField SFFloat radius 1.0

}

NOTE — For the binary encoding of this node see Annex H.1.16.

9.4.2.24.2 Functionality and semantics

This node specifies a circle centred at (0,0) in the local coordinate system. The radius field specifies the radius of
the circle and shall be greater than 0.

9.4.2.25 Collision

9.4.2.25.1 Node interface

Collision {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []
exposedField SFBool collide TRUE
field SFNode proxy NULL
eventOut SFTime collideTime

}

NOTE — For the binary encoding of this node see Annex H.1.17.

9.4.2.25.2 Functionality and semantics

The semantics of the Collision node are specified in ISO/IEC 14772-1:1998, subclause 6.8. ISO/IEC 14496-1 does
not support the bounding box parameters (bboxCenter and bboxSize).

9.4.2.26 Color

9.4.2.26.1 Node interface

Color {
exposedField MFColor color []

}

NOTE — For the binary encoding of this node see Annex H.1.18.

9.4.2.26.2 Functionality and semantics

The semantics of the Color node are specified in ISO/IEC 14772-1:1998, subclause 6.9.

ISO/IEC 14496-1:2001(E)

158 © ISO/IEC 2001 – All rights reserved

9.4.2.27 ColorInterpolator

9.4.2.27.1 Node interface

ColorInterpolator {
eventIn SFFloat set_fraction
exposedField MFFloat key []
exposedField MFColor keyValue []
eventOut SFColor value_changed

}

NOTE — For the binary encoding of this node see Annex H.1.19.

9.4.2.27.2 Functionality and semantics

The semantics of the ColorInterpolator node are specified in ISO/IEC 14772-1:1998, subclause 6.10.

9.4.2.28 CompositeTexture2D

9.4.2.28.1 Node interface

CompositeTexture2D {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []
exposedField SFInt32 pixelWidth -1
exposedField SFInt32 pixelHeight -1
exposedField SFNode background NULL
exposedField SFNode viewport NULL

}

NOTE — For the binary encoding of this node see Annex H.1.20.

9.4.2.28.2 Functionality and semantics

The CompositeTexture2D node represents a texture that is composed of a 2D scene, which may be mapped
onto another object.

This node may only be used as the texture field of an Appearance node. All behaviors and user interaction are
enabled when using a CompositeTexture2D.

The addChildren eventIn specifies a list of nodes that shall be added to the children field.

The removeChildren eventIn specifies a list of nodes that shall be removed from the children field.

The children field contains a list of 2D children nodes that define the 2D scene that is to form the texture map.

The pixelWidth and pixelHeight fields specify the ideal size in pixels of this map. The default values result in an
undefined size being used. This is a hint for the content creator to define the quality of the texture mapping.

The semantics of the background and viewport fields are identical to the semantics of the Layer2D (see
9.4.2.63) fields of the same name.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 159

Figure 16 - A CompositeTexture2D example. The 2D scene is projcted onto the 3D cube.

(0,1,0)
(1,1,0)

Z

Y

X

(1,0,0)

Figure 17 - A CompositeTexture2D example.

Here the 2D scene as defined in Figure 16 composed of an image, a logo, and a text, is textured on a rectangle n
in the local X,Y plane of the back wall. A similar effect may be obtained by simply placing the 2D objects in the (3D)
Transform. However, CompositeTexture2D and CompositeTexture3D shall be used when maping
onto non-flat geometries.

9.4.2.29 CompositeTexture3D

9.4.2.29.1 Node interface

CompositeTexture3D {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []

ISO/IEC 14496-1:2001(E)

160 © ISO/IEC 2001 – All rights reserved

exposedField SFInt32 pixelWidth -1
exposedField SFInt32 pixelHeight -1
exposedField SFNode background
exposedField SFNode fog
exposedField SFNode navigationInfo
exposedField SFNode viewpoint

}

NOTE — For the binary encoding of this node see Annex H.1.21.

9.4.2.29.2 Functionality and semantics

The CompositeTexture3D node represents a texture mapped onto a 3D object that is composed of a 3D
scene.

Behaviors and user interaction are enabled when using a CompositeTexture3D. However, the standard user
navigation on the textured scene is disabled. Instead, sensors contained in the scene which forms the
CompositeTexture3D may be used to define behaviours. This node may only be used as a texture field of
an Appearance node.

The addChildren eventIn specifies a list of nodes that shall be added to the children field.

The removeChildren eventIn specifies a list of nodes that shall be removed from the children field.

The children field is the list of 3D children nodes that define the 3D scene that forms the texture map.

The pixelWidth and pixelHeight fields specify the ideal size in pixels of this map. The default values result in an
undefined size being used. This is a hint for the content creator to define the quality of the texture mapping.

The background, fog, navigationInfo and viewpoint fields represent the current values of the bindable
children nodes used in the 3D scene. This node may only be used as the texture field of an Appearance node.
All behaviors and user interaction are enabled when using a CompositeTexture2D.

Figure 18 - CompositeTexture3D example. The 3D view of the earth is projected onto the 3D cube

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 161

9.4.2.30 Conditional

9.4.2.30.1 Node interface

Conditional {
eventIn SFBool activate
eventIn SFBool reverseActivate
exposedField SFString buffer ""
eventOut SFBool isActive

}

NOTE — For the binary encoding of this node see Annex H.1.22.

9.4.2.30.2 Functionality and semantics

The Conditional node interprets a buffered bit string of BIFS-Commands when it is activated. This allows events
to trigger node updates, deletions, and other modifications to the scene. The buffered bit string is interpreted as if it
had just been received.

Upon reception of either an SFBool event of value TRUE on the activate eventIn, or an SFBool event of value
FALSE on the reverseActivate eventIn, the contents of the buffer field shall be interpreted as a BIFS
CommandFrame (see 9.3.6.2). These updates are not time-stamped; they are executed at the time of the event,
assuming a zero-decoding time.

EXAMPLE � A typical use of this node is for the implementation of the action of a button. The button geometry is enclosed in a
grouping node which also contains a TouchSensor node. The isActive eventOut of the TouchSensor is routed to
the activate eventIn of Conditional C1 and to the reverseActivate eventIn of Conditional C2; C1 then implements
the “mouse-down” action and C2 implements the “mouse-up” action.

9.4.2.31 Cone

9.4.2.31.1 Node interface

Cone {
field SFFloat bottomRadius 1.0
field SFFloat height 2.0
field SFBool side TRUE
field SFBool bottom TRUE

}

NOTE — For the binary encoding of this node see Annex H.1.23.

9.4.2.31.2 Functionality and semantics

The semantics of the Cone node are specified in ISO/IEC 14772-1:1998, subclause 6.11.

9.4.2.32 Coordinate

9.4.2.32.1 Node interface

Coordinate {
exposedField MFVec3f point []

}

NOTE — For the binary encoding of this node see Annex H.1.24.

9.4.2.32.2 Functionality and semantics

The semantics of the Coordinate node are specified in ISO/IEC 14772-1:1998, subclause 6.12.

ISO/IEC 14496-1:2001(E)

162 © ISO/IEC 2001 – All rights reserved

9.4.2.33 Coordinate2D

9.4.2.33.1 Node interface

Coordinate2D {
exposedField MFVec2f point []

}

NOTE — For the binary encoding of this node see Annex H.1.25.

9.4.2.33.2 Functionality and semantics

This node defines a set of 2D coordinates to be used in the coord field of geometry nodes.

The point field contains a list of points in the 2D coordinate space (see 9.2.2.2).

9.4.2.34 CoordinateInterpolator

9.4.2.34.1 Node interface

CoordinateInterpolator {
eventIn SFFloat set_fraction
exposedField MFFloat key []
exposedField MFVec3f keyValue []
eventOut MFVec3f value_changed

}

NOTE — For the binary encoding of this node see Annex H.1.26.

9.4.2.34.2 Functionality and semantics

The semantics of the CoordinateInterpolator node are specified in ISO/IEC 14772-1:1998, subclause 6.13.

9.4.2.35 CoordinateInterpolator2D

9.4.2.35.1 Node interface

CoordinateInterpolator2D {
eventIn SFFloat set_fraction
exposedField MFFloat key []
exposedField MFVec2f keyValue []
eventOut MFVec2f value_changed

}

NOTE — For the binary encoding of this node see Annex H.1.27.

9.4.2.35.2 Functionality and semantics

CoordinateInterpolator2D is the 2D equivalent of CoordinateInterpolator (see 9.4.2.34).

9.4.2.36 Curve2D

9.4.2.36.1 Node interface

Curve2D {
exposedField SFNode point NULL
exposedField SFInt32 fineness 0
exposedField MFInt32 type []

}

NOTE — For the binary encoding of this node see Annex H.1.28.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 163

9.4.2.36.2 Functionality and semantics

This node is used to describe the Bezier approximation of a polygon in the scene at an arbitrary level of precision. It
behaves as other “lines”, which means it is sensitive to modifications of line width and “dotted-ness”, and can be
filled or not.

The given parameters are a control polygon and a parameter setting the quality of approximation of the curve.
Internally, another polygon of fineness points is computed on the basis of the control polygon. The coordinates of
that internal polygon are given by the following formula:

in

f

j
i

f

j

ini

n
i

n
xcjx

i

��

��
�

�
��
�

�
����

�

�
��
�

�
�

��

�
�	�

�

1
1

)!1(!

)!1(
][][

0 ,

where x[j] is the jth x coordinate of the internal polygon, n is the number of points in the control polygon, xc[i] is the
ith x coordinate of the control polygon and f is short for the above fineness parameter which is also the number of
points in the internal polygon. A similar formula yields the y coordinates.

The point field shall list the vertices of the control polygon.

The fineness parameter is an SFFloat value that indicates how finely to tessellate the Bezier curves. A value of 1
means that the curve shall be fine enough that no edges are visible. A value of 0 indicates that a straight line shall
be drawn between the two points of the curve. The default value of 0.5 gives an intermediate level of smoothness.
The amount of tessellation may be adjusted according to scale of the shape, making it possible to avoid visible
edges appearing when the shape is zoomed. When the field type is specified, the above functionality is extended
as follows: the curve is now defined piecewise either with the above equation or as straight segments or as non-
segments, depending on the values in type. The point field is now taken to contain all key-points (points where
the curve passes) and control-points (points defining the aspect of the curve around them). The values in the type
field define the semantics of the elements of point.

The point field contains a Coordinate2D field with the list of points. If the type field is non-empty, then it shall
contain tokens indicating how the point list is to be interpreted, according to the following algorithm (expressed in
pseudo-code):

SFInt32 i = 0;
SFInt32 j = 0;
SFVec2f cur = point[i++];
SFVec2f first = cur;
SFVec2f curctl;

while (i < point.length)
SFInt32 t = 0;
if (type.length > j) t = type[j++];

switch(t) {
case 0: // move, use 1 point

if (is_filled) draw_line(cur, point[i]);
cur = point[i];
i++;
break;

case 1: // line, use 1 point
draw_line(cur, point[i]);
cur = point[i];
i++;
break;

case 2: // bezier curve, use 3 points
draw_curve(cur, point[i], point[i+1], point[i+2]);
cur = point[i+2];
curctl =point[i+1];
i += 3;
break;

case 3: // tangent curve, use 2 points

ISO/IEC 14496-1:2001(E)

164 © ISO/IEC 2001 – All rights reserved

SFVec2f tanctl;
tanctl.x = 2*cur.x – curctl.x;
tanctl.y = 2*cur.y – curctl.y;
draw_curve(cur, tanctl, point[i], point[i+1]);
cur = point[i+1];
curctl = point[i];
i += 2;
break;

}
}
if (is_filled) draw_line(cur, first);

In the above pseudo-code, draw_line(a,b) draws a line from a to b and draw_curve(a,b,c,d) draws a
Bezier curve from a to d, using b as the control point for a and c as the control point for d. Note that, because of the
move command (type = 0) multiple disjoint segments are possible. In the case of a filled shape, each segment is
closed by drawing a straight line from the last point in the segment to the first. Shapes are filled using the odd-even
winding fill rule. If one segment is contained within another, the inside of the inner shape is not filled, allowing
shapes with holes.

The first coordinate pair in point is the starting point of the curve. The first value in type describes the treatment to
be applied to the subsequent coordinate pairs. At any time, a value in type describes the characteristics of the next
curve segment. If P is the starting point or the last point of the previous segment of the curve; N the ending point of
the current curve segment; C1 the control point on the side of P and C2 the control point on the side of N.

The permitted values of type are:

� 0 = MoveTo: One coordinate pair in the point list is consumed, defining N. P ends the curve. The curve shall
start again at N. Sequences of two or more MoveTos shall not occur. MoveTo shall not occur as the first
element in type.

� 1 = LineTo: One coordinate pair in the point list is consumed, defining N. A straight line is drawn from P to N.

� 2 = CurveTo: Three coordinate pairs in the point list are consumed, defining C1, C2 and N respectively. The
first coordinate pair specifies the control point the start of this curve segment (C1), the second specifies the
control point for end of the curve segment (C2) and the third specifies the ending point of the curve segment
(N).

� 3 = NextCurveto: Two coordinate pairs in the point list are consumed, defining C2 and N in this order. The first
coordinate pair specifies the control point for the end of the curve segment (C2), and the second specifies the
ending point of the curve segment (N). The control point C1 for the start of the curve segment is derived from
the previous control point. If the previous segment was formed with CurveTo or NextCurveTo, the start control
point C1 is symmetrical to the end control point C’

2 of the previous curve segment with respect to point P. This
control type shall not occur immediately following a MoveTo or LineTo.

The formula for obtaining the coordinates of C1 in the case of a NextCurveTo is:

C1x = 2.Px – C’
2xand C1y = 2.Py – C’

2y

The first point in point, as the first point in the curve, is implicitly a MoveTo.

For CurveTo and NextCurveTo, the piece of curve is constructed using the above formula as applied to a polygon
constructed from four points, that is the starting point P, the first control point C1, the second control point C2 and
the end point N, which is the next point in the point list.

The curve shall be continuous except at points tagged with MoveTo. The tangent of the curve is only continuous at
points tagged with NextCurveTo, or at points where the previous second control point C’

2, the key point P and the
next first control point C1 are aligned.

If there are more values in point than specified by type, then the unused points shall describe a curve as if no
type was defined.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 165

EXAMPLE �

geometry Curve2D {
point Coordinate2D {

points [0 0 0 100 200 100 200 200 210 200 220 200]
}
type [2 0 1]

}

The first segment of curve starts at 0,0 goes to 200,200 and control points are 0,100 and 200,100. The Bezier curve drawn is
the one with the polygon [0 0 0 100 200 100 200 200] (represented in dotted gray) when types=null, with the same fineness.
When types is specified, the fineness parameter is applied to each curve segment. Then we have a "move to", from 200,200 to
210,200. Then we have a "line to", from 210,200 to 220,200 (small segment in upper right corner).

In Figure 19, the curve is drawn in wide black, and the control polygon is drawn in dotted gray. The curve has two connex
components.

Figure 19 - Curve node example

9.4.2.37 Cylinder

9.4.2.37.1 Node interface

Cylinder {
field SFBool bottom TRUE
field SFFloat height 2.0
field SFFloat radius 1.0
field SFBool side TRUE
field SFBool top TRUE

}

NOTE — For the binary encoding of this node see Annex H.1.29.

9.4.2.37.2 Functionality and semantics

The semantics of the Cylinder node are specified in ISO/IEC 14772-1:1998, subclause 6.14.

9.4.2.38 CylinderSensor

9.4.2.38.1 Node interface

CylinderSensor {
exposedField SFBool autoOffset TRUE
exposedField SFFloat diskAngle 0.262
exposedField SFBool enabled TRUE
exposedField SFFloat maxAngle -1.0
exposedField SFFloat minAngle 0.0
exposedField SFFloat offset 0.0
eventOut SFBool isActive
eventOut SFRotation rotation_changed
eventOut SFVec3f trackPoint_changed

}

NOTE — For the binary encoding of this node see Annex H.1.30.

ISO/IEC 14496-1:2001(E)

166 © ISO/IEC 2001 – All rights reserved

9.4.2.38.2 Functionality and semantics

The semantics of the CylinderSensor node are specified in ISO/IEC 14772-1:1998, subclause 6.15.

9.4.2.39 DirectiveSound

9.4.2.39.1 Node interface

DirectiveSound {
field MFFloat angles 0
field MFFloat directivity 1
field MFFloat frequency []
field SFFloat speedOfSound 340
field SFFloat distance 100
field SFBool useAirabs FALSE
exposedField SFVec3f direction 0, 0, 1
exposedField SFFloat intensity 1
exposedField SFVec3f location 0, 0, 0
exposedField SFNode source NULL
exposedField SFNode perceptualParameters NULL
exposedField SFBool roomEffect FALSE
exposedField SFBool spatialize TRUE

}

NOTE - For the binary encoding of this node see Annex H.3.9.

9.4.2.39.2 Functionality and semantics

The purpose of the DirectiveSound node is to obtain sound source directivity which is characteristic to the sound
source present in a 3-D scene. It is also needed for rendering of the acoustic response of the virtual environment.
The modeling of sound propagation from the source to the listening point includes distance dependent attenuation,
propagation delay between the source and the listener, and modeling of sound reflections, transmission through
objects, and reverberation. Two different rendering schemes are applied to DirectiveSound depending on the
value of perceptualParameters field. If this field is NULL, the physical approach is applied, and if it contains a
PerceptualParameters node, the perceptual approach is applied (see 9.2.2.13.4).

DirectiveSound is rendered in a specified area in a 3-D scene. The distance field specifies the radius of a
spherical region around the source where the sound is audible to the user. Additionally, in the physical approach, a
3-D rectangular region specified in the AcousticScene nodes specify areas in the scene where the sound is
audible when the DirectiveSound and the Viewpoint or ListeningPoint are both inside that area.

The direction dependent sound radiation properties of the sound source is defined in the directivity field of the
node for an arbitrary number of angles given in the angles field with respect to the main direction axis (defined in
the direction field) to the back of the sound source.

The angles field specifies the angles between the direction vector of the source and the vector between the sound
source location and the listener (Viewpoint or ListeningPoint) in radians, at which the directivity parameters
apply.

The semantics of the directivity field is defined in two different ways depending on the value of the frequency
field, which in one case is an empty vector [], and in the other case is a MFField containing a set of frequencies at
which digital filter magnitude response gains are valid. Both ways are allowed in the physical approach, but in the
perceptual approach only one is allowed.

frequency field defines the frequencies at which the directivity gains are valid (similarly as refFrequency and
transFrequency for reffunc and transfunc in AcousticMaterial, see 9.4.2.1).

There are two different ways of defining directivity for a sound source. If the frequency field is [], the parameters in
the directivity field are considered as a set of digital filter coefficients, and if this field is different from [] its
semantics are as explained above.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 167

In the physical approach both ways of defining directivity are possible. If frequency is equal to [], the directivity can
be defined as a single scale factor associated to each given azimuth angle, or as frequency modifying digital filter
parameters. In the latter case, the general form for the field is:

[b����, b����, b����, …, b����, a����, a����,.., a����, b����, b����, b����, …, b����, a����, a����,.., a����,..]

where ���is the first specified angle in the angles field, ���is the second angle etc., and M is the order of the digital
filter. If the directivity is specified as gains, the form of the field is:

[b��, b��, …, b�K,]

where K is the number of specified angles.

These coefficients represent a digital filter, whose system function H(z) is represented in the z-domain as a division
of the z-transform of the output sequence Y(z) with the z-transform of the input sequence X(z):

�

�

�

�

�

�

�

��
M

k

k
k

M

k

k
k

za

zb

zX

zY
zH

1

0

1
)(

)(
)(.

The distinction between the coefficients of different filters is obtained by dividing the length of the directivity field by
the amount of specified angles (length of the angles field):

,12
)(

)(
ab mmM

length

length
n ������

angles
ydirectivit

,

where n is the number of coefficients in each filter, and M is the order of the filter, mb is the number of b
coefficients, and ma is the number of a coefficients Thus, the number of a coefficients is

2

1�
�

n
ma ,

and the number of b coefficients is

1
2

1
�

�
�

n
mb .

If the first angle �� > 0, the directivity at angles 0 < � < �� is the same as at ��, and if the last specified angle �M is
smaller than �, the directivity at angles �M < � < � is the same as at �M.

The second way of defining directivity is to give a set of gains in directivity field at frequencies defined in
frequency field. This scheme can be used both in perceptual and in the physical approaches.

The source directivity is defined as gain factors at specified frequencies for a set of reference angles (specified in
the angles field). In this approach, the general form for the directivity field is then:

[gain0
0, gain0

1,...gain0
nf-1,gain1

0, gain1
1,...gain1

nf-1..., gain na-1
0, gain na-1

1,...gain na-1
nf-1].

Where, nf is the number of reference frequencies, and freq j is the jth reference frequency

gaini
j is the gain for the ith reference angle and the jth reference frequency, and na is the length of the angles field.

The form of the frequency field is then:

[freq0, freq1, ...freqnf-1]

ISO/IEC 14496-1:2001(E)

168 © ISO/IEC 2001 – All rights reserved

The number of reference angles is the same as the length of the angles field, and the number of reference
frequencies is the same as the length of frequency field. An example of directivity is given below:

[0.9,0.85,0.7,0.6,0.55,

0.85,0.75,0.6,0.5,0.4,

0.8,0.65,0.5,0.4,0.3,

0.5,0.45,0.3,0.2,0.1]

and an example of frequency in this case is:

[250, 500, 1000, 2000, 4000]

Axisymmetry is assumed, so only angles from 0 to � radians are needed to fully define frequency-dependent
directivity.

If not specified in the node, the default filtering at 0 rad is the same as for the first specified angle (�0). If not
specified in the node, the default gain at � rad is gain na-1

j for the jth frequency.

If not specified in the node, the default gain at ��Hz� is gain i
0 for the ith angle.

By default, the gain for frequencies above fnf-1is gain i
nf-1 for the ith angle.

The directivity filtering is defined by these gains at the specified frequencies.

In both physical and the perceptual approaches the output of directivity filtering between the specified angles
should perform an interpolated result of the magnitude responses of the specified directivities. This can be a result
of, e.g., crossfading between different filter outputs, or suitable interpolation of coefficients of the filters.

The direction field specifies the direction the DirectiveSound node is facing. This field is used in the directivity
computation of the sound source, i.e., it defines the direction of the angle of 0 (rad) in the directivity field.

The intensity field specifies the gain the original sound stream is multiplied with.

The speedOfSound field is used to enable control of the pre-delay added to the sound depending on the distance
between the source and the listener. With other values of speedOfSound than 0 the delay is computed as:

ndspeedOfSou

dist
d � ,

where dist is the current distance between the source and the listener in meters, and speedOfSound is the value of
speedOfSound field in meters.

speedOfSound field also defines the delay of the reflections off acoustic surfaces in the physical approach, since
they are computed according to the corresponding image source locations and the speed of sound. These acoustic
surfaces are polygons defined in IndexedFaceSet nodes that have AcousticMaterial associated to them as their
appearance (see 9.4.2.1). This field also controls the Doppler effect that is caused by the changing distance
between the listening point and the listener. Thus the smaller the value of speedOfSound is, the stronger the
Doppler effect is (pitch shift caused by the changing distance between the source and the listener). The changing
delay caused by a varying distance between the source (direct sound or image source corresponding to a
reflection) and the listener should always be interpolated to avoid artifacts such as clicks in the delayed sound.

The default value of speedOfSound is 0. With this value, and roomEffect = FALSE, no delay of sound
propagation between the direct sound and the listener is rendered (except when there are physically rendered early
reflections, see next paragraph). This enables a DirectiveSound node to be spatialized in a 3-D space so that the
direction and attenuation of the sound are perceived according to the sound source location relative to the listener,
but neither Doppler effect nor delay is implemented.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 169

If the sound is rendered according to the physical approach, and the source and the listening point are located
within an AcousticScene audibility region, and there are IndexedFaceSet surfaces with acoustic reflectivity,
associated to that AcousticScene, and the value of roomEffect is TRUE, the Doppler effect and the delays of the
direct sound and physical early reflections are computed according to the speed of sound in the air (340 m/s), even
if this field is set to 0.

The distance field specifies the distance dependent attenuation of the sound. Within one meter from the source
the sound is multiplied by the value of the intensity field before any spatial processing (directivity filtering,
spatialization, or room effect). At a distance in meters given by the distance field, the sound has attenuated 60dB
from the value within the 1-meter distance. Outside this distance from the sound source the sound is not audible.
The gain function will be linearly attenuated on a dB scale between the source and the given cutoff distance. The
radiation pattern defined by the directivity field will thus give the overall directivity, which will be uniformly
attenuated as a function of distance. If, however, the distance field is set to 0, no distance dependent attenuation
is applied.

Field useAirabs specifies whether the distance dependent air absorption filtering is applied to the direct sound.
ISO 9613-1:1993 specifies equations for air absorption curves in different humidity and temperature conditions, and
the frequency modification of the distance dependent air absorption filtering should follow one of these curves at
maximum accuracy possible.

location field specifies the 3-D location of the sound source in the local coordinate system of the DirectiveSound.

source field allows the connection of an audio source containing the sound.

The spatialize field has the same semantics concerning the direct sound, as in the Sound node, i.e., if this flag is
set to TRUE, the sound stream attached to this node should be processed so that appears to come from the
direction of sound source with respect to the current direction of the viewpoint. In the case of DirectiveSound
(physical approach), this flag is also applied to the reflections caused by acoustic surfaces (specified by
IndexedFaceSets and AcousticMaterials). When spatialize = TRUE, also the directions of the reflections are
rendered. If the value of this flag is FALSE, the sound routed through DirectiveSound node, or its reflections are
not spatialized according to their 3-D direction of arrival at the listener.

Field roomEffect is used for enabling and disabling environmental spatialization of audio. This field specifies
whether the environmental response (physical case: reflections, reverberation, sound transmission filtering when
propagating through surfaces; perceptual case: reverberation according to the PerceptualParameters node) is
applied to this sound node. When this flag is TRUE the DirectiveSound source is spatialized according to the
reflections and reverberation in the virtual environment. If, like mentioned above, also the spatialize flag is TRUE,
the directions of the physical reflections are also rendered, and if spatialize is FALSE (but roomEffect is TRUE), a
monophonic room acoustic effect is produced.

9.4.2.40 DiscSensor

9.4.2.40.1 Node interface

DiscSensor {
exposedField SFBool autoOffset TRUE
exposedField SFBool enabled TRUE
exposedField SFFloat maxAngle -1.0
exposedField SFFloat minAngle -1.0
exposedField SFFloat offset 0.0
EventOut SFBool isActive
EventOut SFFloat rotation_changed
EventOut SFVec2f trackPoint_changed

}

NOTE — For the binary encoding of this node see Annex H.1.31.

9.4.2.40.2 Functionality and semantics

This sensor enables the rotation of an object in the 2D plane around an axis specified in the local coordinate
system. The semantics are as similar to those for CylinderSensor, but restricted to a 2D case.

ISO/IEC 14496-1:2001(E)

170 © ISO/IEC 2001 – All rights reserved

9.4.2.41 DirectionalLight

9.4.2.41.1 Node interface

DirectionalLight {
exposedField SFFloat ambientIntensity 0.0
exposedField SFColor color 1, 1, 1
exposedField SFVec3f direction 0, 0, -1
exposedField SFFloat intensity 1.0
exposedField SFBool on TRUE

}

NOTE — For the binary encoding of this node see Annex H.1.32.

9.4.2.41.2 Functionality and semantics

The semantics of the DirectionalLight node are specified in ISO/IEC 14772-1:1998, subclause 6.16.

9.4.2.42 ElevationGrid

9.4.2.42.1 Node interface

ElevationGrid {
EventIn MFFloat set_height
exposedField SFNode color NULL
exposedField SFNode normal NULL
exposedField SFNode texCoord NULL
Field MFFloat height []
Field SFBool ccw TRUE
Field SFBool colorPerVertex TRUE
Field SFFloat creaseAngle 0.0
Field SFBool normalPerVertex TRUE
Field SFBool solid TRUE
Field SFInt32 xDimension 0
Field SFFloat xSpacing 1.0
Field SFInt32 zDimension 0
Field SFFloat zSpacing 1.0

}

NOTE — For the binary encoding of this node see Annex H.1.33.

9.4.2.42.2 Functionality and semantics

The semantics of the ElevationGrid node are specified in ISO/IEC 14772-1:1998, subclause 6.17.

9.4.2.43 Expression

9.4.2.43.1 Node interface

Expression {
Field SFInt32 expression_select1 0
Field SFInt32 expression_intensity1 0
Field SFInt32 expression_select2 0
Field SFInt32 expression_intensity2 0
Field SFBool init_face FALSE
Field SFBool expression_def FALSE

}

NOTE — For the binary encoding of this node see Annex H.1.34.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 171

9.4.2.43.2 Functionality and semantics

The Expression node is used to define the expression of the face as a combination of two expressions from the
standard set of expressions defined ISO/IEC 14496-2, Annex C, Table C-3.

The expression_select1 and expression_select2 fields specify the expression types. The
expression_intensity1 and expression_intensity2 fields specify the corresponding expression intensities.

If init_face is set, a neutral face may be modified before applying FAPs 1 and 3-68.

If expression_def is set, current FAPs are used to define an expression and store it.

9.4.2.44 Extrusion

9.4.2.44.1 Node interface

Extrusion {
EventIn MFVec2f set_crossSection
EventIn MFRotation set_orientation
EventIn MFVec2f set_scale
EventIn MFVec3f set_spine
Field SFBool beginCap TRUE
Field SFBool ccw TRUE
Field SFBool convex TRUE
Field SFFloat creaseAngle 0.0
Field MFVec2f crossSection 1, 1, 1, -1, -1, -1, -1, 1, 1, 1
Field SFBool endCap TRUE
Field MFRotation orientation 0, 0, 1, 0
Field MFVec2f scale 1, 1
Field SFBool solid TRUE
Field MFVec3f spine 0, 0, 0, 0, 1, 0

}

NOTE — For the binary encoding of this node see Annex H.1.35.

9.4.2.44.2 Functionality and semantics

The semantics of the Extrusion node are specified in ISO/IEC 14772-1:1998, subclause 6.18.

9.4.2.45 Face

9.4.2.45.1 Node interface

Face {
exposedField SFNode fit NULL
exposedField SFNode fdp NULL
exposedField SFNode fap NULL
exposedField SFNode ttsSource NULL
exposedField MFNode renderedFace NULL

}

NOTE — For the binary encoding of this node see Annex H.1.36.

9.4.2.45.2 Functionality and semantics

The Face node is used to define and animate a face in the scene. In order to animate the face with a facial
animation stream, ut us necessary to link the Face node to a BIFS-Anim stream. The node shall be assigned a
nodeID, through the DEF mechanism. Then, as for any BIFS-Anim stream, an animation mask is sent in the
object descriptor of the BIFS-Anim stream (specificInfo field). The animation mask points to the Face node
using its nodeID. The terminal shall then connect the facial animation decoder to the appropriate Face node.

ISO/IEC 14496-1:2001(E)

172 © ISO/IEC 2001 – All rights reserved

The FAP field shall contain a FAP node, describing the facial animation parameters (FAPs). Each Face node
shall contain a non-NULL FAP field.

The FDP field, which defines the particular look of a face by means of downloading the position of face definition
points or an entire model, is optional. If the FDP field is not specified, the default face model of the terminal shall be
used.

The FIT field, when specified, allows a set of FAPs to be defined in terms of another set of FAPs. When this field is
non-NULL, the terminal shall use FIT to compute the maximal set of FAPs before using the FAPs to compute the
mesh.

The ttsSource field shall only be non-NULL if the facial animation is to determine the facial animation parameters
from an audio TTS source (see ISO/IEC 14496-3, subpart 6). In this case the ttsSource field shall contain an
AudioSource node and the face shall be animated using the phonemes and bookmarks received from the TTS.
See also Annex I.

renderedFace is the scene graph of the face after it is rendered (all FAP’s applied).

9.4.2.46 FaceDefMesh

9.4.2.46.1 Node interface

FaceDefMesh {
Field SFNode faceSceneGraphNode NULL
Field MFInt32 intervalBorders []
Field MFInt32 coordIndex []
Field MFVec3f displacements []

}

NOTE — For the binary encoding of this node see Annex H.1.37.

9.4.2.46.2 Functionality and semantics

The FaceDefMesh node allows for the deformation of an IndexedFaceSet as a function of the amplitude of
a FAP as specified in the related FaceDefTable node. The FaceDefMesh node defines the piece-wise linear
motion trajectories for vertices of the faceSceneGraphNode field, which shall contain an IndexedFaceSet
node. This IndexedFaceSet node belongs to the scenegraph of the faceSceneGraph field of the FDP node.

The intervalBorders field specifies interval borders for the piece-wise linear approximation in increasing order.
Exactly one interval border shall have the value 0.

The coordIndex field shall contain a list of indices into the Coordinate node of the IndexedFaceSet node
specified by the faceSceneGraphNode field.

For each vertex indexed in the coordIndex field, displacement vectors are given in the displacements field for
the intervals defined in the intervalBorders field. There must be exactly (num(intervalBorders)-
1)*num(coordIndex) values in this field.

In most cases, the animation generated by a FAP cannot be specified by updating a Transform node. Thus, a
deformation of an IndexedFaceSet node needs to be performed. In this case, the FaceDefTables shall
define which IndexedFaceSets are affected by a given FAP and how the coord fields of these nodes are
updated. This is done by means of tables.

If a FAP affects an IndexedFaceSet, the FaceDefMesh shall specify a table of the following format for this
IndexedFaceSet:

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 173

Table 34 - Vertex displacements

Vertex no. 1st Interval [I1, I2] 2nd Interval [I2, I3] …

Index 1 Displacement D11 Displacement D12 …
Index 2 Displacement D21 Displacement D22 …
… … … …

Exactly one interval border Ik must have the value 0:

[I1, I2], [I2, I3], …[Ik-1, 0], [0, Ik+1], [Ik+1, Ik+2], …[Imax-1, Imax]

During animation, when the terminal receives a FAP, which affects one or more IndexedFaceSets of the face
model, it shall piece-wise linearly approximate the motion trajectory of each vertex of the affected
IndexedFaceSets by using the appropriate table.

Figure 20 - An arbitrary motion trajectory is approximated as a piece-wise linear one.

If Pm is the position of the mth vertex in the IndexedFaceSet in neutral state (FAP = 0), P’m the position of the
same vertex after animation with the given FAP and Dmk the 3D displacement in the kth interval, the following
algorithm shall be applied to determine the new position P’m.

Determine, in which of the intervals listed in the table the received FAP is lying.

If the received FAP is lying in the jth interval [Ij, Ij+1] and 0=Ik � Ij, the new vertex position P’m of the mth vertex of
the IndexedFaceSet is given by:

P’m = FAPU * ((Ik+1-0) * Dm,k + (Ik+2-Ik+1) * Dm, k+1 + … + (Ij - Ij-1) * Dm, j-1 + (FAP-Ij) * Dm, j) + Pm. (Eq. 1)

If FAP � Imax, then P’m is calculated by using equation Eq. 1 and setting the index j = max.

If the received FAP is lying in the jth interval [Ij, Ij+1] and Ij+1 � Ik=0, the new vertex position P’m is given by:

P’m = FAPU * ((Ij+1 - FAP) * Dm, j + (Ij+2 - Ij+1) * Dm, j+1 + … + (Ik-1 - Ik-2) * Dm, k-2 + (0 - Ik-1) * Dm, k-1) + Pm (Eq. 2)

If FAP 	 I1, then P’m is calculated by using equation Eq. 1 and setting the index j+1 = 1.

If for a given FAP and IndexedFaceSet the table contains only one interval, the motion is strictly linear:

P’m = FAPU * FAP * Dm1 + Pm.

EXAMPLE �

FaceDefMesh {
objectDescriptorID UpperLip
intervalBorders [-1000, 0, 500, 1000]
coordIndex [50, 51]
displacements [1 0 0, 0.9 0 0, 1.5 0 4, 0.8 0 0, 0.7 0 0, 2 0 0]

}

This FaceDefMesh defines the animation of the mesh “UpperLip”. For the piecewise-linear motion function three intervals
are defined: [-1000, 0], [0, 500] and [500, 1000]. Displacements are given for the vertices with the indices 50 and 51. The
displacements for the vertex 50 are: (1 0 0), (0.9 0 0) and (1.5 0 4), the displacements for vertex 51 are (0.8 0 0), (0.7 0 0) and
(2 0 0). Given a FAPValue of 600, the resulting displacement for vertex 50 would be:

displacement(vertex 50) = 500*(0.9 0 0)T + 100 * (1.5 0 4)T = (600 0 400)T.

If the FAPValue is outside the given intervals, the boundary intervals are extended to +I or -I, as appropriate.

ISO/IEC 14496-1:2001(E)

174 © ISO/IEC 2001 – All rights reserved

9.4.2.47 FaceDefTables

9.4.2.47.1 Node interface

FaceDefTables {
Field SFInt32 fapID 0
Field SFInt32 highLevelSelect 0
exposedField MFNode faceDefMesh []
exposedField MFNode faceDefTransform []

}

NOTE — For the binary encoding of this node see Annex H.1.38.

9.4.2.47.2 Functionality and semantics

The FaceDefTables node defines the behavior of a facial animation parameter FAP on a downloaded face
model in faceSceneGraph by specifying the displacement vectors for moved vertices inside IndexedFaceSet
objects as a function of the FAP fapID and/or specifying the value of a field of a Transform node as a function
of FAP fapID.

The FaceDefTables node is transmitted directly after the BIFS bitstream of the FDP node. The
FaceDefTables lists all FAPs that animate the face model. The FAPs animate the downloaded face model by
updating the Transform or IndexedFaceSet nodes of the scene graph in faceSceneGraph. For each listed
FAP, the FaceDefTables node describes which nodes are animated by this FAP and how they are animated. All
FAPs that occur in the bitstream have to be specified in the FaceDefTables node. The animation generated by
a FAP can be specified either by updating a Transform node (using a FaceDefTransform), or as a
deformation of an IndexedFaceSet (using a FaceDefMesh).

The FAPUs shall be calculated by the terminal using the feature points that shall be specified in the FDP. The
FAPUs are needed in order to animate the downloaded face model.

9.4.2.47.3 Semantics

The fapID field specifies the FAP, for which the animation behavior is defined in the faceDefMesh and
faceDefTransform fields.

If fapID has value 1 or 2, the highLevelSelect field specifies the type of viseme or expression. In other cases
this field has no meaning and shall be ignored.

The faceDefMesh field shall contain a FaceDefMesh node.

The faceDefTransform field shall contain a FaceDefTransform node.

9.4.2.48 FaceDefTransform

9.4.2.48.1 Node interface

FaceDefTransform {
Field SFNode faceSceneGraphNode NULL
Field SFInt32 fieldId 1
Field SFRotation rotationDef 0, 0, 1, 0
Field SFVec3f scaleDef 1, 1, 1
Field SFVec3f translationDef 0, 0, 0

}

NOTE — For the binary encoding of this node see Annex H.1.39.

9.4.2.48.2 Functionality and semantics

The FaceDefTransform node defines which field (rotation, scale or translation) of a Transform node
(faceSceneGraphNode) of faceSceneGraph (defined in an FDP node) is updated by a facial animation

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 175

parameter, and how the field is updated. If the face is in its neutral position, the faceSceneGraphNode has its
translation, scale, and rotation fields set to the neutral values (0,0,0) T, (1,1,1)T, (0,0,1,0), respectively.

The faceSceneGraphNode field specifies the Transform node for which the animation is defined. The node
shall be part of faceScenegraph as defined in the FDP node.

The fieldId field specifies which field in the Transform node, specified by the faceSceneGraphNode field, is
updated by the FAP during animation. Possible fields are translation, rotation, scale.

� If fieldID==1, rotation shall be updated using rotationDef and FAPValue.

� If fieldID==2, scale shall be updated using scaleDef and FAPValue.

� If fieldID==3, translation shall be updated using translationDef and FAPValue.

The rotationDef field is of type SFRotation. With rotationDef=(rx,ry,rz,
), the new value of the rotation field of
the Transform node faceSceneGraphNode is:

rotation: =(rx,ry,rz,
*FAPValue*AU) [AU is defined in ISO/IEC FCD 14496-2]

The scaleDef field is of type SFVec3f. The new value of the scale field of the Transform node
faceSceneGraphNode is:

scale:= FAPValue*scaleDef

The translationDef field is of type SFVec3f. The new value of the translation field of the Transform node
faceSceneGraphNode is:

translation:= FAPValue*translationDef

9.4.2.49 FAP

9.4.2.49.1 Node interface

FAP {
exposedField SFNode viseme NULL
exposedField SFNode expression NULL
exposedField SFInt32 open_jaw +I
exposedField SFInt32 lower_t_midlip +I
exposedField SFInt32 raise_b_midlip +I
exposedField SFInt32 stretch_l_corner +I
exposedField SFInt32 stretch_r_corner +I
exposedField SFInt32 lower_t_lip_lm +I
exposedField SFInt32 lower_t_lip_rm +I
exposedField SFInt32 lower_b_lip_lm +I
exposedField SFInt32 lower_b_lip_rm +I
exposedField SFInt32 raise_l_cornerlip +I
exposedField SFInt32 raise_r_cornerlip +I
exposedField SFInt32 thrust_jaw +I
exposedField SFInt32 shift_jaw +I
exposedField SFInt32 push_b_lip +I
exposedField SFInt32 push_t_lip +I
exposedField SFInt32 depress_chin +I
exposedField SFInt32 close_t_l_eyelid +I
exposedField SFInt32 close_t_r_eyelid +I
exposedField SFInt32 close_b_l_eyelid +I
exposedField SFInt32 close_b_r_eyelid +I
exposedField SFInt32 yaw_l_eyeball +I
exposedField SFInt32 yaw_r_eyeball +I
exposedField SFInt32 pitch_l_eyeball +I
exposedField SFInt32 pitch_r_eyeball +I

ISO/IEC 14496-1:2001(E)

176 © ISO/IEC 2001 – All rights reserved

exposedField SFInt32 thrust_l_eyeball +I
exposedField SFInt32 thrust_r_eyeball +I
exposedField SFInt32 dilate_l_pupil +I
exposedField SFInt32 dilate_r_pupil +I
exposedField SFInt32 raise_l_i_eyebrow +I
exposedField SFInt32 raise_r_i_eyebrow +I
exposedField SFInt32 raise_l_m_eyebrow +I
exposedField SFInt32 raise_r_m_eyebrow +I
exposedField SFInt32 raise_l_o_eyebrow +I
exposedField SFInt32 raise_r_o_eyebrow +I
exposedField SFInt32 squeeze_l_eyebrow +I
exposedField SFInt32 squeeze_r_eyebrow +I
exposedField SFInt32 puff_l_cheek +I
exposedField SFInt32 puff_r_cheek +I
exposedField SFInt32 lift_l_cheek +I
exposedField SFInt32 lift_r_cheek +I
exposedField SFInt32 shift_tongue_tip +I
exposedField SFInt32 raise_tongue_tip +I
exposedField SFInt32 thrust_tongue_tip +I
exposedField SFInt32 raise_tongue +I
exposedField SFInt32 tongue_roll +I
exposedField SFInt32 head_pitch +I
exposedField SFInt32 head_yaw +I
exposedField SFInt32 head_roll +I
exposedField SFInt32 lower_t_midlip_o +I
exposedField SFInt32 raise_b_midlip_o +I
exposedField SFInt32 stretch_l_cornerlip +I
exposedField SFInt32 stretch_r_cornerlip_o +I
exposedField SFInt32 lower_t_lip_lm_o +I
exposedField SFInt32 lower_t_lip_rm_o +I
exposedField SFInt32 raise_b_lip_lm_o +I
exposedField SFInt32 raise_b_lip_rm_o +I
exposedField SFInt32 raise_l_cornerlip_o +I
exposedField SFInt32 raise_r_cornerlip_o +I
exposedField SFInt32 stretch_l_nose +I
exposedField SFInt32 stretch_r_nose +I
exposedField SFInt32 raise_nose +I
exposedField SFInt32 bend_nose +I
exposedField SFInt32 raise_l_ear +I
exposedField SFInt32 raise_r_ear +I
exposedField SFInt32 pull_l_ear +I
exposedField SFInt32 pull_r_ear +I

}

NOTE — For the binary encoding of this node see Annex H.1.40.

9.4.2.49.2 Functionality and semantics

This node defines the current look of the face by means of expressions and FAPs and gives a hint to TTS
controlled systems on which viseme to use. For a definition of the facial animation parameters see ISO/IEC
14496-2, Annex C.

The viseme field shall contain a Viseme node.

The expression field shall contain an Expression node.

The semantics for the remaining fields are described in the ISO/IEC 14496-2, Annex C and in particular in Table
C-1.

A FAP of value +I shall be interpreted as indicating that the particular FAP is uninitialized.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 177

9.4.2.50 FDP

9.4.2.50.1 Node interface

FDP {
exposedField SFNode featurePointsCoord NULL
exposedField SFNode textureCoords NULL
exposedField SFBool useOrthoTexture FALSE
exposedField MFNode faceDefTables []
exposedField MFNode faceSceneGraph []

}

NOTE — For the binary encoding of this node see Annex H.1.41.

9.4.2.50.2 Functionality and semantics

The FDP node defines the face model to be used at the terminal. Two options are supported:

1. If faceDefTables is NULL, calibration information is downloaded, so that the proprietary face of the terminal
can be calibrated using facial feature points and, optionally, the texture information. In this case, the
featurePointsCoord field shall be set. featurePointsCoord contains the coordinates of facial feature
points, as defined in ISO/IEC 14496-2, Annex C, Figure C-1, corresponding to a neutral face. If a coordinate of
a feature point is set to +I, the coordinates of this feature point shall be ignored. The textureCoord field, if set,
is used to map a texture on the model calibrated by the feature points. The textureCoord points correspond to
the feature points. Tthat is, each defined feature point shall have corresponding texture coordinates. In this
case, the faceSceneGraph shall contain exactly one texture image, and any geometry it might contain shall
be ignored. The terminal shall interpret the feature points, texture coordinates, and the faceSceneGraph in
the following way:

� Feature points of the terminal’s face model shall be moved to the coordinates of the feature points supplied
in featurePointsCoord, unless a feature point is to be ignored, as explained above.

� If textureCoord is set, the texture supplied in the faceSceneGraph shall be mapped onto the terminal's
default face model. The texture coordinates are derived from the texture coordinates of the feature points
supplied in textureCoords. The useOrthoTexture field provides a hint to the decoding terminal that,
when FALSE, indicates that the texture image is best obtained by cylindrical projection of the face. If
useOrthoTexture is TRUE, the texture image is best obtained by orthographic projection of the face.

2. A face model as described in the faceSceneGraph is decoded. This face model replaces the terminal's
default face model in the terminal. The faceSceneGraph shall contain the face in its neutral position (all FAPs
= 0). If desired, the faceSceneGraph shall contain the texture maps of the face. The functions defining the
way in which the faceSceneGraph shall be modified, as a function of the FAPs, shall also be decoded. This
information is described by faceDefTables that define how the faceSceneGraph is to be modified as a
function of each FAP. By means of faceDefTables, IndexedFaceSets and Transform nodes of the
faceSceneGraph can be animated. Since the amplitude of FAPs is defined in units that are dependent on the
size of the face model, the featurePointsCoord field defines the position of facial features on the surface of
the face described by faceSceneGraph. From the location of these feature points, the terminal computes the
units of the FAPs. Generally, only two node types in the scene graph of a decoded face model are affected by
FAPs: IndexedFaceSet and Transform nodes. If a FAP causes a deformation of an object (e.g. lip
stretching), then the coordinate positions in the affected IndexedFaceSets shall be updated. If a FAP
causes a movement which can be described with a Transform node (e.g. FAP 23, yaw_l_eyeball), then the
appropriate fields in this Transform node shall be updated. It shall be assumed that this Transform node
has its rotation, scale, and translation fields set to neutral values if the face is in its neutral position. A
unique nodeId shall be assigned via the DEF statement to all IndexedFaceSet and Transform nodes
which are affected by FAPs so that they can be accessed unambiguously during animation.

The featurePointsCoord field shall contain a Coordinate node that specifies feature points for the calibration
of the terminal's default face. The coordinates are specified in the point field of the Coordinate node in the
prescribed order, that a feature point with a lower label number is listed before a feature point with a higher label
naumber.

EXAMPLE � Feature point 3.14 before feature point 4.1

ISO/IEC 14496-1:2001(E)

178 © ISO/IEC 2001 – All rights reserved

The textureCoords field shall contain a Coordinate node that specifies texture coordinates for the feature
points. The coordinates are listed in the point field in the Coordinate node in the prescribed order, that a
feature point with a lower label is listed before a feature point with a higher label.

The useOrthoTexture field may contain a hint to the terminal as to the type of texture image, in order to allow
better interpolation of texture coordinates for the vertices that are not feature points. If useOrthoTexture is
FALSE, the terminal may assume that the texture image was obtained by cylindrical projection of the face. If
useOrthoTexture is 1, the terminal may assume that the texture image was obtained by orthographic projection
of the face.

The faceDefTables field shall contain FaceDefTables nodes. The behavior of FAPs is defined in this field for
the face in faceSceneGraph.

The faceSceneGraph field shall contain a Group node. In the case of option 1 (above), this may be used to
contain a texture image as described above. In the case of option 2, this shall be the grouping node for the face
model rendered in the compositor and shall contain the face model. In this case, the effect of facial animation
parameters is defined in the faceDefTables field.

9.4.2.51 FIT

9.4.2.51.1 Node interface

FIT {
exposedField MFInt32 FAPs []
exposedField MFInt32 graph []
exposedField MFInt32 numeratorTerms []
exposedField MFInt32 denominatorTerms []
exposedField MFInt32 numeratorExp []
exposedField MFInt32 denominatorExp []
exposedField MFInt32 numeratorImpulse []
exposedField MFFloat numeratorCoefs []
exposedField MFFloat denominatorCoefs []

}

NOTE — For the binary encoding of this node see Annex H.1.42.

9.4.2.51.2 Functionality and semantics

The FIT node allows a smaller set of FAPs to be sent during a facial animation. This small set can then be used to
determine the values of other FAPs, using a rational polynomial mapping between parameters. In a FIT node,
rational polynomials are used to specify interpolation functions.

EXAMPLE � The top inner lip FAPs can be sent and then used to determine the top outer lip FAPs. Another example is that
only viseme and/or expression FAPs are sent to drive the face. In this case, low-level FAPs are interpolated from these two
high-level FAPs.

To make the scheme general, sets of FAPs are specified, along with a FAP interpolation graph (FIG) between the
sets that specifies which sets are used to determine which other sets. The FIG is a graph with directed links. Each
node contains a set of FAPs. Each link from a parent node to a child node indicates that the FAPs in the child node
can be interpolated from the parent node. Expression (FAP#1) or Viseme (FAP #2) and their fields shall not
be interpolated from other FAPs.

In a FIG, a FAP may appear in several nodes, and a node may have multiple parents. For a node that has multiple
parent nodes, the parent nodes are ordered as 1st parent node, 2nd parent node, etc. During the interpolation
process, if this child node needs to be interpolated, it is first interpolated from 1st parent node if all FAPs in that
parent node are available. Otherwise, it is interpolated from 2nd parent node, and so on.

An example of FIG is shown in Figure 21. Each node has a nodeID. The numerical label on each incoming link
indicates the order of these links.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 179

expression

lower_t_midlip

raise_b_midlip

bottom_inner_lip FAPs

bottom_outer_lip FAPs

top_outer_lip FAPs

top_inner_lip FAPs

1
1

1

1

2

2

2

2

1

1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Figure 21 - A FIG example

The interpolation process based on the FAP interpolation graph is described using pseudo-C code as follows:

do {
interpolation_count = 0;
for (all Node_i) { // from Node_1 to Node_N

for (ordered Node_i’s parent Node_k) {
if (FAPs in Node_i need interpolation and

FAPs in Node_k have been interpolated or are available) {
interpolate Node_i from Node_k; //using interpolation function

// table here
interpolation_count ++;
break;

}
}

}
} while (interpolation_count != 0);

Each directed link in a FIG is a set of interpolation functions. Suppose F1, F2, …, Fn are the FAPs in a parent set
and f1, f2, …, fm are the FAPs in a child set.

Then, there are m interpolation functions denoted as:

f1 = I1(F1, F2, …, Fn)

f2 = I2(F1, F2, …, Fn)

…

fm = Im(F1, F2, …, Fn)

Each interpolation function Ik () is in a rational polynomial form if the parent node does not contain viseme FAP or
expression FAP.

� �� ��
�

� �

�

� �

1

0 1

1

0 1
21)()(),...,,(

P

i

n

j

m
ji

K

i

n

j

l
jin

ijij FbFcFFFI

Otherwise, an impulse function is added to each numerator polynomial term to allow selection of expression or
viseme.

ISO/IEC 14496-1:2001(E)

180 © ISO/IEC 2001 – All rights reserved

� �� ���
�

� �

�

� �

1

0 1

1

0 1
21)())((),...,,(

P

i

n

j

m
ji

K

i

n

j

l
jiisn

ijij
i

FbFcaFFFFI �

In both equations, K and P are the numbers of polynomial products, ci and ib are the coefficient of the ith product.

lij and ijm are the power of Fj in the ith product. An impulse function equals 1 when is aF
i
� , otherwise, equals 0.

isF can only be viseme_select1, viseme_select2, expression_select1, and expression_select2. ia is an integer

that ranges from 0 to 6 when
isF is expression_select1 or expression_select2, ranges 0 to 14 when

isF is

viseme_select1 or viseme_select2. The encoder shall send an interpolation function table which contains
K , P , ia , is , ci , ib , lij , ijm to the terminal.

To aid in the explanation below, it is assumed that there are N different sets of FAPs with index 1 to N, and that
each set has ni, i=1,..,N parameters. It is also assumed that there are L directed links in the FIG and that each link
points from the FAP set with index Pi to the FAP set with index Ci, for i = 1, .. , L

The FAPs field shall contain a list of FAP-indices specifying which animation parameters form sets of FAPs. Each
set of FAP indices is terminated by –1. There shall be a total of N + n1 + n2 + … + nN numbers in this field, with N of
them being –1. FAP#1 to FAP#68 are of indices 1 to 68. Fields of the Viseme FAP (FAP#1), namely,
viseme_select1, viseme_select2, viseme_blend, are of indices from 69 to 71. Fields of the Expression
FAP (FAP#2), namely, expression_select1, expression_select2, expression_intensity1,
expression_intensity2 are of indices from 72 to 75. When the parent node contains a Viseme FAP, three
indices, 69, 70, 71, shall be included in the node (but not index 1). When a parent node contains an Expression
FAP, four indices, 72,73,74,75, shall be included in the node (but not index 2).

The graph field shall contain a list of pairs of integers, specifying a directed links between sets of FAPs. The
integers refer to the indices of the sets specified in the FAPs field, and thus range from 1 to N. When more than
one direct link terminates at the same set, that is, when the second value in the pair is repeated, the links have
precedence determined by their order in this field. This field shall have a total of 2L numbers, corresponding to the
directed links between the parents and children in the FIG.

The numeratorTerms field shall be a list containing the number of terms in the polynomials of the numerators of
the rational functions used to interpolae parameter values. Each element in the list corresponds to K in equation 1
above). Each link i (that is, the ith integer pair) in the graph field must have nCi values specified, one for each child
FAP. The order in the numeratorTerms list shall correspond to the order of the links in the graph field and the
order that the child FAP appears in the FAPs field. There shall be nC1 + nC2 + … + nCL numbers in this field.

The denominatorTerms field shall contain a list of the number of terms in the polynomials of the denominator of
the rational functions controlling the parameter value. Each element in the list corresponds to P in equation 1. Each
link i (that is, the ith integer pair) in the graph field must have nCi values specified, one for each child FAP. The
order in the denominatorTerms list corresponds to the order of the links in the graph field and the order that the
child FAP appears in the FAPs field. There shall be nC1 + nC2 + … + nCL numbers in this field.

The numeratorImpulse field shall contain a list of impulse functions in the numerator of the rational function for

links with the Viseme or Expression FAP in parent node. This list corresponds to the)(is aF
i
�� . Each entry

in the list is (is , ia).

The numeratorExp field shall contain a list of exponents of the polynomial terms in the numerator of the rational
function controlling the parameter value. This list corresponds to lij . For each child FAP in each link i, nPi*K values

need to be specified. The order in the numeratorExp list shall correspond to the order of the links in the graph
field and the order that the child FAP appears in the FAPs field.

NOTE — K may be different for each child FAP.

The denominatorExp field shall contain a list of exponents of the polynomial terms of the denominator of the
rational function controlling the parameter value. This list corresponds to ijm . For each child FAP in each link i,

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 181

nPi*P values need to be specified. The order in the denominatorExp list shall correspond to the order of the links
in the graph field and the order that the child FAP appears in the FAPs field.

NOTE — P may be different for each child FAP.

The numeratorCoefs field shall contain a list of coefficients of the polynomial terms of the numerator of the
rational function controlling the parameter value. This list corresponds to ci . The list shall have K terms for each
child parameter that appears in a link in the FIG, with the order in numeratorCoefs corresponding to the order in
graph and FAPs.

NOTE — K is dependent on the polynomial, and is not a fixed constant.

The denominatorCoefs field shall contain a list of coefficients of the polynomial terms in the numerator of the
rational function controlling the parameter value. This list corresponds to ib . The list shall have P terms for each
child parameter that appears in a link in the FIG, with the order in denominatorCoefs corresponding to the order
in graph and FAPs.

NOTE — P is dependent on the polynomial, and is not a fixed constant.

EXAMPLE � Suppose a FIG contains four nodes and 2 links. Node 1 contains FAP#3, FAP#3, FAP#5. Node 2 contains
FAP#6, FAP#7. Node 3 contains an expression FAP, which means contains FAP#72, FAP#73, FAP#74, and FAP#75. Node 4
contains FAP#12 and FAP#17. Two links are from node 1 to node 2, and from node 3 to node 4. For the first link, the
interpolation functions are

)65/()432(5435
2

435436 FFFFFFFFFF �����

47 FF �
.

For the second link, the interpolation functions are

)6.0)(6()6.0)(6(7573747212 FFFFF ���� ��

)5.1)(6()5.1)(6(7573747217 FFFFF ������ ��
.

The second link simply says that when the expression is surprise (FAP#72=6 or FAP#73=6), for FAP#12, the value is 0.6 times
of expression intensity FAP#74 or FAP#75; for FAP#17, the value is –1.5 tims of FAP#74 or FAP#75.

After the FIT node given below, we explain each field separately.

FIT {
FAPs [3 4 5 -1 6 7 –1 72 73 74 75 –1 12 17 -1]
graph [1 2 3 4]
numeratorTerms [4 1 2 2]
denominatorTerms [2 1 1 1]
numeratorExp [1 0 0 0 1 0 0 0 1 1 2 0 0 1 0

0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1]
denominatorExp [0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0]
numeratorImpulse [72 6 73 6 72 6 73 6]
numeratorCoefs [1 2 3 4 1 0.6 0.6 -1.5 –1.5]
denominatorCoefs [5 6 1 1 1]

}

FAPs [3 4 5 -1 6 7 –1 72 73 74 75 –1 12 17 -1]
Four sets of FAPs are defined, the first with FAPs number 3, 4, and 5, the second with FAPs number 6 and 7, the third with
FAPs number 72, 73, 74, 75, and the fourth with FAPs number 12, 17.

graph [1 2 3 4]
The first set is made to be the parent of the second set, so that FAPs number 6 and 7 will be determined by FAPs 3, 4, and 5.
Also, the third set is made to be the parent of the fourth set, so that FAPs number 12 and 17 will be determined by FAPs 72, 73,
74, and 75.

numeratorTerms [4 1 2 2]

ISO/IEC 14496-1:2001(E)

182 © ISO/IEC 2001 – All rights reserved

The rational functions that define F6 and F7 are selected to have 4 and 1 terms in their numerator, respectively. Also, the
rational functions that define F12 and F17 are selected to have 2 and 2 terms in their numerator, respectively.

denominatorTerms [2 1 1 1]
The rational functions that define F6 and F7 are selected to have 2 and 1 terms in their denominator, respectively. Also, the
rational functions that define F12 and F17 are selected to both have 1 term in their denominator.

numeratorExp [1 0 0 0 1 0 0 0 1 1 2 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1]
The numerator selected for the rational function defining F6 is F3 + 2F4 + 3 F5 + 4F3F42. There are 3 parent FAPs, and 4
terms, leading to 12 exponents for this rational function. For F7, the numerator is just F4, so there are three exponents only (one
for each FAP). Values for F12 and F17 are derived in the same way.

denominatorExp [0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0]
The denominator selected for the rational function defining F6 is 5F5+ 6F3F4F5 , so there are 3 parent FAPs and 2 terms and
hence, 6 exponents for this rational function. For F7, the denominator is just 1, so there are three exponents only (one for each
FAP). Values for F12 and F17 are derived in the same way.

numeratorImpulse [72 6 73 6 72 6 73 6]

For the second link, all four numerator polynomial terms contain impulse function
)6(72 �F�

or
)6(73 �F�

.

numeratorCoefs [1 2 3 4 1 0.6 0.6 -1.5 –1.5]
There is one coefficient for each term in the numerator of each rational function.

denominatorCoefs [5 6 1 1 1]
There is one coefficient for each term in the denominator of each rational function.

9.4.2.52 Fog

9.4.2.52.1 Node interface

Fog {
exposedField SFColor color 1 1 1
exposedField SFString fogType "LINEAR"
exposedField SFFloat visibilityRange 0.0
eventIn SFBool set_bind
eventOut SFBool isBound

}

NOTE — For the binary encoding of this node see Annex H.1.43.

9.4.2.52.2 Functionality and semantics

The semantics of the Fog node are specified in ISO/IEC 14772-1:1998, subclause 6.19.

9.4.2.53 FontStyle

9.4.2.53.1 Node interface

FontStyle {
field MFString family ["SERIF"]
field SFBool horizontal TRUE
field MFString justify ["BEGIN"]
field SFString language ""
field SFBool leftToRight TRUE
field SFFloat size 1.0
field SFFloat spacing 1.0
field SFString style "PLAIN"
field SFBool topToBottom TRUE

}

NOTE — For the binary encoding of this node see Annex H.1.44.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 183

9.4.2.53.2 Functionality and semantics

The semantics of the FontStyle node are specified in ISO/IEC 14772-1:1998, subclause 6.20. The distance
between adjacent text baselines is the sum of the size and the spacing. (Note, that this makes that the text size is
the sum of the ascent + descent + leading, the latter which is the interline spacing, the logical amount of space to
be reserved between the descent of one line of text and the ascent of the next line).

9.4.2.54 Form

9.4.2.54.1 Node interface

Form {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []
exposedField SFVec2f size -1, -1
exposedField MFInt32 groups []
exposedField MFInt32 constraints []
exposedField MFInt32 groupsIndex []

}

NOTE — For the binary encoding of this node see Annex H.1.45.

9.4.2.54.2 Functionality and semantics

The Form node specifies the placement of its children according to relative alignment and distribution constraints.
Distribution spreads objects regularly, with an equal spacing between them.

The children field shall specify a list of nodes that are to be arranged. The children’s position is implicit and order
is important.

The size field specifies the width and height of the layout frame.

The groups field specifies the list of groups of objects on which the constraints can be applied. The children of the
Form node are numbered from 1 to n, 0 being reserved for a reference to the form itself. A group is a list of child
indices, terminated by a -1.

The constraints and the groupsIndex fields specify the list of constraints. One constraint is constituted by a
constraint type from the constraints field, coupled with a set of group indices terminated by a –1 contained in the
groupsIndex field. There shall be as many strings in constraints as there are –1-terminated sets in
groupsIndex. The n-th constraint string shall be applied to the n-th set in the groupsIndex field.

Constraints belong to two categories: alignment and distribution constraints.

Components referred to in the tables below are components whose indices appear in the list following the
constraint type. When rank is mentioned, it refers to the rank in that list.

The semantics of the <s>, when present in the name of a constraint, is the following. It shall be a number, integer
when the scene uses pixel metrics, and float otherwise, which specifies the space mentioned in the semantics of
the constraint.

Table 35 - Alignment Constraints

Alignment Constraints Type
Index

Effect

AL: Align Left edges “AL” The xmin of constrained components becomes equal to the xmin
of the left-most component.

AH: Align centers
Horizontally

“AH” The (xmin+xmax)/2 of constrained components becomes equal to
the (xmin+xmax)/2 of the group of constrained components as
computed before this constraint is applied.

AR: Align Right edges “AR” The xmax of constrained components becomes equal to the xmax
of the right-most component.

ISO/IEC 14496-1:2001(E)

184 © ISO/IEC 2001 – All rights reserved

Alignment Constraints Type
Index

Effect

AT: Align Top edges “AT” The ymax of all constrained components becomes equal to the
ymax of the top-most component.

AV: Align centers Vertically “AV” The (ymin+ymax)/2 of constrained components becomes equal to
the (ymin+ymax)/2 of the group of constrained components as
computed before this constraint is applied.

AB: Align Bottom edges “AB” The ymin of constrained components becomes equal to the ymin
of the bottom-most component.

ALspace: Align Left edges
by specified space

“AL <s>” The xmin of the second and following components become equal
to the xmin of the first component plus the specified space.

ARspace: Align Right
edges by specified space

“AR <s>” The xmax of the second and following components becomes equal
to the xmax of the first component minus the specified space.

ATspace: Align Top edges
by specified space

“AT <s>” The ymax of the second and following components becomes equal
to the ymax of the first component minus the specified space.

ABspace: Align Bottom
edges by specified space

“AB <s>” The ymin of the second and following components become equal
to the ymin of the first component plus the specified space.

The purpose of distribution constraints is to specify the space between components, by making such pairwise gaps
equal either to a given value or to the effect of filling available space.

Table 36 - Distribution Constraints

Distribution Constraints Type
Index

Effect

SH: Spread Horizontally “SH” The differences between the xmin of each component and the
xmax of the previous one all become equal. The first and the last
component shall be constrained horizontally already.

SHin: Spread Horizontally
in container

“SHin” The differences between the xmin of each component and the
xmax of the previous one all become equal.
References are the edges of the layout.

SHspace: Spread
Horizontally by specified
space

“SH <s>” The difference between the xmin of each component and the xmax
of the previous one all become equal to the specified space. The
first component is not moved.

SV: Spread Vertically “SV” The differences between the ymin of each component and the
ymax of the previous one all become equal. The first and the last
component shall be constrained vertically already.

SVin: Spread Vertically in
container

“SVin” The differences between the ymin of each component and the
ymax of the previous one all become equal.
References are the edges of the layout.

SVspace: Spread
Vertically by specified
space

“SV <s>” The difference between the ymin of each component and the ymax
of the previous one all become equal to the specified space. The
first component is not moved.

All objects start at the center of the Form. The constraints are then applied in sequence.

EXAMPLE � Laying out five 2D objects.

Shape {
Geometry2D Rectangle { size 50 55 } // draw the Form’s frame.
VisualProps use VPSRect

}

Transform2D {
translation 10 10 {

children [
Form {

children [
Shape2D { use OBJ1 }
Shape2D { use OBJ2 }
Shape2D { use OBJ3 }

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 185

Shape2D { use OBJ4 }
Shape2D { use OBJ5 }

]
size 50 55

groups [1 -1 2 -1 3 -1 4 -1 5 -1 1 3 -1]
constraints [“SH” “SV” “AR” “AB” “AB 6”

“AB 7” “AL 7” “AT –2” “AR –2”]
groupsIndex [6 -1 1 -1 0 2 -1 0 2 -1 0 3 -1

0 4 -1 0 4 -1 0 5 -1 0 5 -1]
}

]
}

}

The above constraints specify the following operations:

� spread group 6 (objects 1 and 3) horizontally in container (object 0)

� spread group 1 (object 1) vertically in container

� align the right edges of groups 0 (container) and 2 (object 2)

� align the bottom edges of the container and group 2 (object 2)

� align the bottom edges of the container and group 3 (object 3) with spacing of size 6

� align the bottom edges of the container and group 4 (object 4) with spacing of size 7

� align the left edges of the container and group 4 (object 4) with spacing of size 7

� align the top edges of the container and group 5 (object 5) with spacing size of -2

� align the right edges of the container and group 5 (object 5) with spacing size of -2

Figure 22 - Visual result of the Form node example

9.4.2.55 Group

9.4.2.55.1 Node interface

Group {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []

}

NOTE — For the binary encoding of this node see Annex H.1.46.

9.4.2.55.2 Functionality and semantics

The semantics of the Group node are specified in ISO/IEC 14772-1:1998, subclause 6.21. ISO/IEC 14496-1 does
not support the bounding box parameters (bboxCenter and bboxSize).

Where multiple sub-graphs containing audio content (i.e. Sound nodes) occur as children of a Group node, the
sounds shall be combined as described in 9.4.2.94.

ISO/IEC 14496-1:2001(E)

186 © ISO/IEC 2001 – All rights reserved

9.4.2.56 Hierarchical3Dmesh

9.4.2.56.1 Node Interface

Hierarchical3DMesh {
eventIn SFInt32 TriangleBudget
exposedField SFFloat level
field MFString url []
eventOut SFBool doneLoading

}

NOTE - For the binary encoding of this node see Annex H.3.10.

9.4.2.56.2 Functionality and Semantics

The Hierarchical3DMesh is used to represent multi-resolution polygonal models with multiple levels of detail
(LOD), smooth transition (interpolation) between consecutive levels, and hierarchical transmission through an
independent elementary stream encoded with the 3D Mesh Coding tools (see ISO/IEC 14496-2:1999). The
implementation of the Hierarchical3DMesh requires two execution threads, the decoder thread, and the player
thread.

The decoder thread decodes the compressed 3D Mesh bitstream from the elementary stream specified in the url
field, and reconstructs the LOD hierarchy and the information necessary to implement the smooth transition
property in internal data structures. How the LOD hierarchy is stored in the internal data structures, and whether all
or a subset of the transmitted hierarchy is stored for player interaction is implementation-dependent.

The decoder thread is started immediately after instantiation. Once this thread finishes decoding the compressed
3D Mesh bitstream, it sends a done_loading eventOut with the value TRUE to the player, and dies.

The Hierarchical3DMesh is seen by the player as a read-only IndexedFaceSet node. That is, the player has
access to the following fields for rendering purposes, but they can neither be explicitly instantiated, nor modified by
routing events into them:

field SFNode color
field SFNode coord
field SFNode normal
field SFNode texCoord
field SFBool ccw
field MFInt32 colorIndex
field SFBool colorPerVertex
field SFBool convex
field MFInt32 coordIndex
field SFFloat creaseAngle
field MFInt32 normalIndex
field SFBool normalPerVertex
field SFBool solid
field MFInt32 texCoordIndex

The player thread is responsible for switching levels of detail responding to the set_level and triangleBudget
eventIn events sent by the player. It does so by modifying the fields of the IndexedFaceSet seen by the player
from information stored in the internal data structures build by the decoder thread.

The level exposedField (between 0 and 1) is used to (1) set a particular fractional level, (2) query the current level,
(3) as an eventOut to notify the browser when a level was actually set and which level it is.

Optionally, the player can set the level of detail by sending a triangleBudget eventIn to the node. The value of the
triangleBudget eventIn represents the desired number of triangles that the player assigns to the node. The node
must select a level of detail that best matches the given budget.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 187

9.4.2.57 ImageTexture

9.4.2.57.1 Node interface

ImageTexture {
exposedField MFString url []
field SFBool repeatS TRUE
field SFBool repeatT TRUE

}

NOTE — For the binary encoding of this node see Annex H.1.47.

9.4.2.57.2 Functionality and semantics

The semantics of the ImageTexture node are specified in ISO/IEC 14772-1:1998, subclause 6.22.

The url field specifies the data source to be used (see 9.2.2.7.1).

9.4.2.58 IndexedFaceSet

9.4.2.58.1 Node interface

IndexedFaceSet {
eventIn MFInt32 set_colorIndex
eventIn MFInt32 set_coordIndex
eventIn MFInt32 set_normalIndex
eventIn MFInt32 set_texCoordIndex
exposedField SFNode color NULL
exposedField SFNode coord NULL
exposedField SFNode normal NULL
exposedField SFNode texCoord NULL
field SFBool ccw TRUE
field MFInt32 colorIndex []
field SFBool colorPerVertex TRUE
field SFBool convex TRUE
field MFInt32 coordIndex []
field SFFloat creaseAngle 0.0
field MFInt32 normalIndex []
field SFBool normalPerVertex TRUE
field SFBool solid TRUE
field MFInt32 texCoordIndex []

}

NOTE — For the binary encoding of this node see Annex H.1.48.

9.4.2.58.2 Functionality and semantics

The semantics of the IndexedFaceSet node are specified in ISO/IEC 14772-1:1998, subclause 6.23. Some
restrictions on these semantics are described below.

The IndexedFaceSet node represents a 3D polygon mesh formed by constructing faces (polygons) from points
specified in the coord field. If the coordIndex field is not NULL, IndexedFaceSet uses the indices in its
coordIndex field to specify the polygonal faces by connecting together points from the coord field. An index of -1
shall indicate that the current face has ended and the next one begins. The last face may be followed by a -1.
IndexedFaceSet shall be specified in the local coordinate system and shall be affected by parent
transformations.

The coord field specifies the vertices of the face set and is specified by Coordinate node.

If the coordIndex field is not NULL, the indices of the coordIndex field shall be used to specify the faces by
connecting together points from the coord field. An index of -1 shall indicate that the current face has ended and
the next one begins. The last face may be followed by a -1.

ISO/IEC 14496-1:2001(E)

188 © ISO/IEC 2001 – All rights reserved

If the coordIndex field is NULL, the vertices of the coord field are laid out in their respective order to specify one
face.

If the color field is NULL and there is a Material node defined for the Appearance affecting this
IndexedFaceSet, then the emissiveColor of the Material node shall be used to draw the faces.

9.4.2.59 IndexedFaceSet2D

9.4.2.59.1 Node interface

IndexedFaceSet2D {
eventIn MFInt32 set_colorIndex
eventIn MFInt32 set_coordIndex
eventIn MFInt32 set_texCoordIndex
exposedField SFNode color NULL
exposedField SFNode coord NULL
exposedField SFNode texCoord NULL
field MFInt32 colorIndex []
field SFBool colorPerVertex TRUE
field SFBool convex TRUE
field MFInt32 coordIndex []
field MFInt32 texCoordIndex []

}

NOTE — For the binary encoding of this node see Annex H.1.49.

9.4.2.59.2 Functionality and semantics

The IndexedFaceSet2D node is the 2D equivalent of the IndexedFaceSet node as defined in 9.4.2.58. The
IndexedFaceSet2D node represents a 2D shape formed by constructing 2D faces (polygons) from 2D vertices
(points) specified in the coord field. The coord field contains a Coordinate2D node that defines the 2D
vertices, referenced by the coordIndex field. The faces of an IndexedFaceSet2D node shall not overlap each
other.

The detailed semantics are identical to those for the IndexedFaceSet node (see 9.4.2.58), restricted to the 2D
case, and with the additional differences described here.

If the texCoord field is NULL, a default texture coordinate mapping is calculated using the local 2D coordinate
system bounding box of the 2D shape, as follows. The X dimension of the bounding box defines the S coordinates,
and the Y dimension defines the T coordinates. The value of the S coordinate ranges from 0 to 1, from the left end
of the bounding box to the right end. The value of the T coordinate ranges from 0 to 1, from the lower end of the
bounding box to the top end. Figure 23 illustrates the default texture mapping coordinates for a simple
IndexedFaceSet2D shape consisting of a single polygonal face.

(x0, y0)
(s=0.0, t=0.0)

(x0+Xsize, y0+Ysize)
(s=1.0, t=1.0)

Xsize

Ysize

s = (x-x0)/Xsize
t = (y-y0)/Ysize

Figure 23 - IndexedFaceSet2D default texture mapping coordinates for a simple shape

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 189

9.4.2.60 IndexedLineSet

9.4.2.60.1 Node interface

IndexedLineSet {
eventIn MFInt32 set_colorIndex
eventIn MFInt32 set_coordIndex
exposedField SFNode color NULL
exposedField SFNode coord NULL
field MFInt32 colorIndex []
field SFBool colorPerVertex TRUE
field MFInt32 coordIndex []

}

NOTE — For the binary encoding of this node see Annex H.1.50.

9.4.2.60.2 Functionality and semantics

The semantics of the IndexedLineSet node are specified in ISO/IEC 14772-1:1998, subclause 6.24.

9.4.2.61 IndexedLineSet2D

9.4.2.61.1 Node interface

IndexedLineSet2D {
eventIn MFInt32 set_colorIndex
eventIn MFInt32 set_coordIndex
exposedField SFNode color NULL
exposedField SFNode coord NULL
field MFInt32 colorIndex []
field SFBool colorPerVertex TRUE
field MFInt32 coordIndex []

}

NOTE — For the binary encoding of this node see Annex H.1.51.

9.4.2.61.2 Functionality and semantics

The IndexedLineSet2D node specifies a collection of lines or polygons.

The coord field shall list the vertices of the lines. When coordIndex is empty, the order of vertices shall be
assumed to be sequential in the coord field. Otherwise, the coordIndex field determines the ordering of the
vertices, with an index of -1 representing an end to the current polyline.

If the color field is not NULL, it shall contain a Color node, and the colors are applied to the line(s) as with the
IndexedLineSet node (see 9.4.2.60).

9.4.2.62 Inline

9.4.2.62.1 Node interface

Inline {
exposedField MFString url []

}

NOTE — For the binary encoding of this node see Annex H.1.52.

9.4.2.62.2 Functionality and semantics

The semantics of the Inline node are specified in ISO/IEC 14772-1:1998, subclause 6.25. ISO/IEC 14496-1 does
not support the bounding box parameters (bboxCenter and bboxSize).

ISO/IEC 14496-1:2001(E)

190 © ISO/IEC 2001 – All rights reserved

The url field specifies the data source to be used (see 9.2.2.7.1). The external source must contain a valid BIFS
scene, and may include BIFS-Commands and BIFS-Anim frames.

9.4.2.63 Layer2D

9.4.2.63.1 Node interface

Layer2D {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children NULL
exposedField SFVec2f size -1, -1
exposedField SFNode background NULL
exposedField SFNode viewport NULL

}

NOTE — For the binary encoding of this node see Annex H.1.53.

9.4.2.63.2 Functionality and semantics

The Layer2D node is a transparent rendering rectangle region on the screen where a 2D scene is drawn. The
rectangle always faces the viewer of the scene. Layer2D and Layer3D nodes enable the composition of
multiple 2D and 3D scenes (see Figure 24).

EXAMPLE � This allows users to have 2D interfaces to a 2D scene, or 3D interfaces to a 2D scene, or to view a 3D scene from
different viewpoints in the same scene.

The addChildren eventIn specifies a list of 2D nodes that shall be added to the Layer2D’s children field.

The removeChildren eventIn specifies a list of 2D nodes that shall be removed from the Layer2D's children
field.

The children field may contain any 2D children nodes that define a 2D scene. Layer nodes are considered to be
2D objects within the scene. The layering of the 2D and 3D layers is specified by any relevant transformations in
the scene graph. The Layer2D node is composed with its center at the origin of the local coordinate system and
shall not be present in 3D contexts (see 9.2.2.1).

The size parameter shall be a floating point number that expresses the width and height of the layer in the units of
the local coordinate system. In case of a layer at the root of the hierarchy, the size is expressed in terms of the
default 2D coordinate system (see 9.2.2.2). A size of -1 in either direction, means that the Layer2D node is not
specified in size in that direction, and that the size is adjusted to the size of the parent layer, or the global rendering
area dimension if the layer is on the top of the hierarchy. In the case where a 2D scene or object is shared between
several Layer2D nodes, the behaviours are defined exactly as for objects that are multiply referenced using the
DEF/USE mechanism. A sensor triggers an event whenever the sensor is triggered in any of the Layer2D in
which it is contained. The behaviors triggered by the shared sensors as well as other behaviors that apply on
objects shared between several layers apply on all layers containing these objects.

A Layer2D stores the stack of bindable children nodes that can affect the children scene of the layer. All relevant
bindable children nodes have a corresponding exposedField in the Layer2D node. During presentation, these
fields take the value of the currently bound bindable children node for the scene that is a child of the Layer2D
node. Initially, the bound bindable children node is the corresponding field value of the Layer2D node if it is
defined. If the field is undefined, the first bindable children node defined in the child scene will be bound. When the
binding mechanism of the bindable children node is used (set_bind field set to TRUE), all the parent layers
containing this node set the corresponding field to the current bound node value. It is therefore possible to share
scenes across layers, and to have different bound nodes active, or to trigger a change of bindable children node for
all layers containing a given bindable children node. For 2D scenes, the background field specifies the bound
Background2D node. The viewport field is reserved for future extensions for 2D scenes.

All the 2D objects contained in a single Layer2D node form a single composed object. This composed object is
considered by other elements of the scene to be a single object. In other words, if a Layer2D node, A, is the
parent of two objects, B and C, layered one on top of the other, it will not be possible to insert a new object, D,
between B and C unless D is added as a child of A.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 191

Layers are transparent to user input, which means that if two layers are overlapping at a given location on the
screen, a user input will affect both layers, regardless of which is drawn on top of the other. For instance, if two
buttons placed in two different layers are overlapping, the click of the user at the location of the topmost button will
also affect the button contained in the layer behind. Authors should carefully design behaviors in the overlapping
layers.

EXAMPLE � In the following example, the same scene is used in two different Layer2D nodes. However, one scene is
initially viewed with background b1, the other with background b2. When the user clicks on the button1 object, all layers are set
with background b3.

OrderedGroup{
children [

Transform2D { # A set of transforms to translate and scale the layer
...
children [

Layer2D {
background DEF b1 Background2D {…}

It is possible to define the bindable children node directly in
the corresponding field

children [
DEF MYSCENE Transform2D {

children [
DEF b3 Background2D {…} # A shared background
DEF TS TouchSensor{}
DEF button1 Shape{..} # The button 1

The objects of my scene
]

}
]

}
]

}
Transform2D {

Another set of transforms to translate and scale the layer
children [

Layer2D {
children [
DEF b2 Background2D{…} # It is possible to define the bindable

children node in the children field.
b2 is initially bound sicne it is the
first background 2D in the children
field OF the parent Layer2d

Transform2D USE MYSCENE
]

}
]

}
]

}

ROUTE TS.isActive TO b3.set_bind

9.4.2.64 Layer3D

9.4.2.64.1 Node interface

Layer3D {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children NULL
exposedField SFVec2f size -1, -1
exposedField SFNode background NULL
exposedField SFNode fog NULL
exposedField SFNode navigationInfo NULL
exposedField SFNode viewpoint NULL

}

ISO/IEC 14496-1:2001(E)

192 © ISO/IEC 2001 – All rights reserved

NOTE — For the binary encoding of this node see Annex H.1.54.

9.4.2.64.2 Functionality and semantics

The Layer3D node is a transparent, rectangular rendering region where a 3D scene is drawn. The Layer3D
node may be composed in the same manner as any other 2D node. It represents a rectangular region on the
screen facing the viewer. The basic Layer3D semantics are identical to those for Layer2D (see 9.4.2.63) but
with 3D (rather than 2D) children. In general, Layer3D nodes shall not be present in 3D co-ordinate systems. The
permitted exception to this in when a Layer3D node is the "top" node that begins a 3D scene or context (see
9.2.2.1).

The following fields specify bindable children nodes for Layer3D:

� background for Background nodes

� fog for Fog nodes

� navigationInfo for NavigationInfo nodes

� viewpoint for Viewpoint nodes

The viewpoint field can be used to allow the viewing of the same scene with several viewpoints.

NOTE — The rule for transparency to behaviors is also true for navigation in Layer3D. Authors should carefully design the
various Layer3D nodes in a given scene to take account of navigation. Overlapping several Layer3D with navigation
turned on may trigger strange navigation effects which are difficult to control by the user. Unless it is a feature of the content,
navigation can be easily turned off using the NavigationInfo type field, or Layer3D’s can be designed not to be
superimposed.

(a) (b)

(c)

Figure 24 - Three Layer2D and Layer3D examples composed in a 2D space.

Layer2D’s are indicated by a continuous line; Layer3D’s by a dashed line. Image (a) shows a Layer3D
containing a 3D view of the earth on top of a Layer2D composed of a video, a logo and a text. Image (b) shows a
Layer3D of the earth with a Layer2D containing various icons on top. Image (c) shows 3 views of a 3D scene
with 3 non-overlapping Layer3D.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 193

9.4.2.65 Layout

9.4.2.65.1 Node interface

Layout {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []
exposedField SFBool wrap FALSE
exposedField SFVec2f size -1, -1
exposedField SFBool horizontal TRUE
exposedField MFString justify ["BEGIN"]
exposedField SFBool leftToRight TRUE
exposedField SFBool topToBottom TRUE
exposedField SFFloat spacing 1.0
exposedField SFBool smoothScroll FALSE
exposedField SFBool loop FALSE
exposedField SFBool scrollVertical TRUE
exposedField SFFloat scrollRate 0.0

}

NOTE — For the binary encoding of this node see Annex H.1.55.

9.4.2.65.2 Functionality and semantics

The Layout node specifies the placement (layout) of its children in various alignment modes as specified. For text
children, this is by their fontStyle fields, and for non-text children by the fields horizontal, justify, leftToRight,
topToBottom and spacing present in this node. It also provides the functionality of scrolling its children
horizontally or vertically.

The children field shall specify a list of nodes that are to be arranged. Note that the children’s position is implicit
and that order is important.

The wrap field specifies whether children are allowed to wrap to the next row (or column in vertical alignment
cases) after the edge of the layout frame is reached. If wrap is set to TRUE, children that would be positioned
across or past the frame boundary are wrapped (vertically or horizontally) to the next row or column. If wrap is set
to FALSE, children are placed in a single row or column that is clipped if it is larger than the layout.

When wrap is TRUE, if text objects larger than the layout frame need to be placed, these texts shall be broken
down into pieces that are smaller than the layout. The preferred places for breaking text are spaces, tabs, hyphens,
carriage returns and line feeds. When there is no such character in the texts to be broken, the texts shall be broken
at the last character that is entirely placed in the layout frame.

The size field specifies the width and height of the layout frame.

The horizontal, justify, leftToRight, topToBottom and spacing fields have the same meaning as in the
FontStyle node (see 9.4.2.53).

The scrollRate field specifies the scroll rate in meters per second. When scrollRate is zero, then there is no
scrolling and the remaining scroll-related fields are ignored.

The smoothScroll field selects between smooth and line-by-line/character-by-character scrolling of children.
When TRUE, smooth scroll is applied.

The loop field specifies continuous looping of children when set to TRUE. When loop is FALSE, child nodes that
have scrolled out of the scroll layout frame will be deleted. When loop is TRUE, then the set of children scrolls
continuously, wrapping around when they have scrolled out of the layout area. If the set of children is smaller than
the layout area, some empty space will be scrolled with the children. If the set of children is bigger than the layout
area, then only some of the children will be displayed at any point in time. When scrollVertical is TRUE and
loop is TRUE and scrollRate is negative (top-to-bottom scrolling), then the bottom-most object will reappear on
top of the layout frame as soon as the top-most object has scrolled entirely into the layout frame.

ISO/IEC 14496-1:2001(E)

194 © ISO/IEC 2001 – All rights reserved

The scrollVertical field specifies whether the scrolling is done vertically or horizontally. When set to TRUE, the
scrolling rate shall be interpreted as a vertical scrolling rate and a positive rate shall be interpreted as scrolling
towards the top. When set to FALSE, the scrolling rate shall be interpreted as a horizontal scrolling rate and a
positive rate shall mean scrolling to the right.

Objects are placed one by one, in the order they are given in the children list. Text objects are placed according to
the horizontal, justify, leftToRight, topToBottom and spacing fields of their FontStyle node. Other
objects are placed according to the same fields of the Layout node. The reference point for the placement of an
object is the reference point as left by the placement of the previous object in the list.

In the case of vertical alignment, objects may be placed with respect to their top, bottom, center or baseline. The
baseline of non-text objects is the same as their bottom.

Spacing shall be coherent only within sequences of objects with the same orientation (same value of horizontal
field). The notions of top edge, bottom edge, base line, vertical center, left edge, right edge, horizontal center, line
height and row width shall have a single meaning over coherent sequences of objects. This means that over a
sequence of objects where horizontal is TRUE, topToBottom is TRUE and spacing has the same value, then
the vertical size of the lines is computed as follows:

� maxAscent is the maximum of the ascent on all text objects.

� maxDescent is the maximum of the descent on all text objects.

� maxHeight is the maximum height of non-text objects.

If the minor mode in the justify field of the layout is FIRST (baseline alignment), then the non-text objects shall be
aligned on the baseline, which means the vertical size of the line is:

size = max(maxAscent, maxHeight) + maxDescent

If the minor mode in the justify field of the layout is any other value, then the non-text objects shall be aligned with
respect to the top, bottom or center, which means the size of the line is:

size = max(maxAscent+maxDescent, maxHeight)

The first line is placed with its top edge flush to the top edge of the layout; the base line is placed maxAscent units
lower, and the bottom edge is placed maxDescent units lower. The center line is in the middle, between the top and
bottom edges. The top edges of subsequent lines are placed at regular intervals of value spacing � size.

The other cases can be inferred from the above description. When the orientation is vertical, then the baseline,
ascent and descent are not useful for the computation of the width of the rows. All objects only have a width.
Column size is the maximum width over all objects.

EXAMPLE �

If wrap is FALSE:

a) If horizontal is TRUE, then objects are placed in a single line. The layout direction is given by the leftToRight field.
Horizontal alignment in the row is done according to the first argument in justify (major mode = flush left, flush right,
centered), and vertical alignment is done according to the second argument in justify (minor mode = flush top, flush
bottom, flush baseline, centered). The topToBottom field is meaningless in this configuration.

b) If horizontal is FALSE, then objects are placed in a single column. The layout direction is given by the topToBottom field.
Vertical alignment in the column is done according to the first argument in justify (major mode), and horizontal alignment is
done according to the second argument in justify (minor mode).

If wrap is TRUE:

a) If horizontal is TRUE, then objects are placed in multiple lines. The layout direction is given by the leftToRight field. The
wrapping direction is given by the topToBottom field. Horizontal alignment in the lines is done according to the first
argument in justify (major mode), and vertical alignment is done according to the second argument in justify (minor mode).

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 195

b) If horizontal is FALSE, then objects are placed in multiple column. The layout direction is given by the topToBottom field.
The wrapping direction is given by the leftToRight field. Vertical alignment in the columns is done according to the first
argument in justify (major mode), and horizontal alignment is done according to the second argument in justify (minor
mode).

If scrollRate is zero, then the Layout is static and positions change only when children are modified.

If scrollRate is non-zero, then the position of the children is updated according to the values of scrollVertical, scrollRate,
smoothScroll and loop.

If scrollVertical is TRUE, then if scrollRate is positive, then the scrolling direction is left-to-right, and vice-versa.

If scrollVertical is FALSE, then if scrollRate is positive, then the scrolling direction is bottom-to-top, and vice-versa.

9.4.2.66 LineProperties

9.4.2.66.1 Node interface

LineProperties {
exposedField SFColor lineColor 0, 0, 0
exposedField SFInt32 lineStyle 0
exposedField SFFloat width 1.0

}

NOTE — For the binary encoding of this node see Annex H.1.56.

9.4.2.66.2 Functionality and semantics

The LineProperties node specifies line parameters used in 2D and 3D rendering.

The lineColor field specifies the color with which to draw the lines and outlines of 2D geometries.

The lineStyle field shall contain the line style type to apply to lines. The allowed values are:

Table 37 - lineStyle description

lineStyle Description

0 solid
1 dash
2 dot
3 dash-dot
4 dash-dash-dot
5 dash-dot-dot

The terminal shall draw each line style in a manner that is distiguishable from each other line style.

The width field determines the width, in the local coordinate system, of rendered lines. The apparent width
depends on the local transformation.

The cap and join style to be used are as follows. The wide lines should end with a square form flush with the end of
the lines. The join style is described in Figure 25.

ISO/IEC 14496-1:2001(E)

196 © ISO/IEC 2001 – All rights reserved

width

Figure 25 - Cap and join style for LineProperties

9.4.2.67 ListeningPoint

9.4.2.67.1 Node interface

ListeningPoint {
eventIn SFBool set_bind
exposedField SFBool jump TRUE
exposedField SFRotation orientation 0, 0, 1, 0
exposedField SFVec3f position 0, 0, 10
field SFString description ""
eventOut SFTime bindTime
eventOut SFBool isBound

}

NOTE — For the binary encoding of this node see Annex H.1.57.

9.4.2.67.2 Functionality and semantics

The ListeningPoint node specifies the reference position and orientation for spatial audio presentation. If there
is no ListeningPoint given in a scene, the apparent listener position is slaved to the active ViewPoint.

The semantics are identical to those of the Viewpoint node (see 9.4.2.109).

9.4.2.68 LOD

9.4.2.68.1 Node interface

LOD {
exposedField MFNode level []
field SFVec3f center 0, 0, 0
field MFFloat range []

}

NOTE — For the binary encoding of this node see Annex H.1.58.

9.4.2.68.2 Functionality and semantics

The semantics of the LOD node are specified in ISO/IEC 14772-1:1998, subclause 6.26.

9.4.2.69 Material

9.4.2.69.1 Node interface

Material {
exposedField SFFloat ambientIntensity 0.2
exposedField SFColor diffuseColor 0.8, 0.8, 0.8
exposedField SFColor emissiveColor 0, 0, 0

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 197

exposedField SFFloat shininess 0.2
exposedField SFColor specularColor 0, 0, 0
exposedField SFFloat transparency 0.0

}

NOTE — For the binary encoding of this node see Annex H.1.59.

9.4.2.69.2 Functionality and semantics

The semantics of the Material node are specified in ISO/IEC 14772-1:1998, subclause 6.27.

9.4.2.70 Material2D

9.4.2.70.1 Node interface

Material2D {
exposedField SFColor emissiveColor 0.8, 0.8, 0.8
exposedField SFBool filled FALSE
exposedField SFNode lineProps NULL
exposedField SFFloat transparency 0.0

}

NOTE — For the binary encoding of this node see Annex H.1.60.

9.4.2.70.2 Functionality and semantics

The Material2D node specifies the characteristics of a rendered 2D Shape. Material2D shall be used as the
material field of an Appearance node in certain circumstances (see 9.4.2.5.2)

The emissiveColor field specifies the color of the 2D Shape. If the shape is not filled, the interior is not drawn.

The filled field specifies whether rendered nodes are filled or drawn using lines. This field affects
IndexedFaceSet2D, Circle and Rectangle nodes. If the rendered node is not filled the line shall be drawn
centered on the rendered node outline. That means that half the line will fall inside the rendered node, and the
other half outside.

The lineProps field contains information about line rendering in the form of a LineProperties node. If the field
is null the line properties take on a default behaviour identical to the default settings of the LineProperties
node. When filled is true, if lineProps is null, no outline is drawn; if lineProps is non null, an outline is drawn
using lineProps information. When filled is false and lineProps is null, an outline is drawn with default width
(1), default style (solid) and as line color the emissive color of the Material2D. When filled is false and lineProps
is defined, line color, width and style, whether explicitly specified or default values, are taken from the lineProps
node. See 9.4.2.66 for more information on LineProperties.

The transparency field specifies the transparency of the 2D Shape.

9.4.2.71 MaterialKey

9.4.2.71.1 Node interface

MaterialKey {
exposedField SFBool isKeyed TRUE
exposedField SFBool isRGB TRUE
exposedField SFColor keyColor 0, 0, 0
exposedField SFFloat lowThreshold 0
exposedField SFFloat highThreshold 0
exposedField SFFloat transparency 0

}

NOTE - For the binary encoding of this node see Annex H.3.11.

ISO/IEC 14496-1:2001(E)

198 © ISO/IEC 2001 – All rights reserved

9.4.2.71.2 Functionality and semantics

The MaterialKey node can be used in the material field of the Appearance node, which only appears in the
appearance field of a Shape node. It can be used when the texture of the Shape node is defined by either an
image (ImageTexture or PixelTexture) or a video sequence (MovieTexture). Its functionality is similar to the
Material2D node, but is specific to the BitMap geometry, so it does not include the line properties functionality. It
generates a shape mask, based on a color and the threshold values defined in the node. It also defines a
transparency value, which will behave identically to the transparency values in both Material and Material2D,
except that it applies only to the visible part of the shape.

The fields of the MaterialKey node are defined as follows:

� The isKeyed field specifies whether the keying functionality is enabled or disabled.

� The isRGB field allows the content author to choose which color space they wish to define the keying in, either
RGB or YUV.

� The keyColor field specifies the reference color used for keying of shape.

� The lowThreshold field defines the magnitude of the variance from the exact key value for which the pixel will
be considered completely transparent.

� The highThreshold field defines the magnitude of the variance from the exact key value for which the pixel will
be considered opaque (visable).

� The transparency field defines the level of transparency assigned to the opaque or visable region of the
shape.

� An example implementation of MaterialKey is given in Annex N.

9.4.2.72 MovieTexture

9.4.2.72.1 Node interface

MovieTexture {
exposedField SFBool loop FALSE
exposedField SFFloat speed 1.0
exposedField SFTime startTime 0
exposedField SFTime stopTime 0
exposedField MFString url []
field SFBool repeatS TRUE
field SFBool repeatT TRUE
eventOut SFTime duration_changed
eventOut SFBool isActive

}

NOTE — For the binary encoding of this node see Annex H.1.61.

9.4.2.72.2 Functionality and semantics

The loop, startTime, and stopTime exposedFields and the isActive eventOut, and their effects on the
MovieTexture node, are described in 9.2.1.6.1.

The speed exposedField controls playback speed. It does not affect the delivery of the stream attached to the
MovieTexture node. For streaming media, value of speed other than 1 shall be ignored.

A MovieTexture shall display frame or VOP 0 if speed is 0. For positive values of speed, the frame or VOP
that an active MovieTexture will display at time now corresponds to the frame or VOP at movie time (i.e., in the
movie’s local time base with frame or VOP 0 at time 0, at speed = 1):

fmod (now - startTime, duration/speed)

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 199

If speed is negative, then the frame or VOP to display is the frame or VOP at movie time:

duration + fmod(now - startTime, duration/speed).

A MovieTexture node is inactive before startTime is reached. If speed is non-negative, then the first VOP
shall be used as texture, if it is already available. If speed is negative, then the last VOP shall be used as texture,
if it is already available.

When a MovieTexture becomes inactive, the VOP corresponding to the time at which the MovieTexture
became inactive shall persist as the texture. The speed exposedField indicates how fast the movie shall be
played. A speed of 2 indicates the movie plays twice as fast. Note that the duration_changed eventOut is not
affected by the speed exposedField. set_speed events shall be ignored while the movie is playing.

The url field specifies the data source to be used (see 9.2.2.7.1).

9.4.2.73 NavigationInfo

9.4.2.73.1 Node interface

NavigationInfo {
eventIn SFBool set_bind
exposedField MFFloat avatarSize [0.25, 1.6, 0.75]
exposedField SFBool headlight TRUE
exposedField SFFloat speed 1.0
exposedField MFString type ["WALK", "ANY"]
exposedField SFFloat visibilityLimit 0.0
eventOut SFBool isBound

}

NOTE — For the binary encoding of this node see Annex H.1.62.

9.4.2.73.2 Functionality and semantics

The semantics of NavigationInfo are specified in ISO/IEC 14772-1:1998, subclause 6.29.

9.4.2.74 Normal

9.4.2.74.1 Node interface

Normal {
exposedField MFVec3f vector []

}

NOTE — For the binary encoding of this node see Annex H.1.63.

9.4.2.74.2 Functionality and semantics

The semantics of the Normal node are specified in ISO/IEC 14772-1:1998, subclause 6.30.

9.4.2.75 NormalInterpolator

9.4.2.75.1 Node interface

NormalInterpolator {
eventIn SFFloat set_fraction
exposedField MFFloat key []
exposedField MFVec3f keyValue []
eventOut MFVec3f value_changed

}

NOTE — For the binary encoding of this node see Annex H.1.64.

ISO/IEC 14496-1:2001(E)

200 © ISO/IEC 2001 – All rights reserved

9.4.2.75.2 Functionality and semantics

The semantics of the NormalInterpolator node are specified in ISO/IEC 14772-1:1998, subclause 6.31.

9.4.2.76 OrderedGroup

9.4.2.76.1 Node interface

OrderedGroup {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []
exposedField MFFloat order []

}

NOTE — For the binary encoding of this node see Annex H.1.65.

9.4.2.76.2 Functionality and semantics

The OrderedGroup node controls the visual layering order of its children. When used as a child of a Layer2D
node, it allows the control of which shapes obscure others. When used as a child of a Layer3D node, it allows
content creators to specify the rendering order of elements of the scene that have identical z values. This allows
conflicts between coplanar or close polygons to be resolved.

The addChildren eventIn specifies a list of objects that shall be added to the OrderedGroup node.

The removeChildren eventIn specifies a list of objects that shall be removed from the OrderedGroup node.

The children field is the current list of objects contained in the OrderedGroup node.

When the order field is empty (the default) children are layered in order, first child to last child, with the last child
being rendered last. If the order field contains values, one value is assigned to each child. Entries in the order
field array match the child in the corresponding element of the children field array. The child with the lowest order
value is rendered before all others. The remaining children are rendered in increasing order. The child
corresponding to the highest order value is rendered last.

Since 2D shapes have no z value, this is the sole determinant of the visual ordering of the shapes. However, when
the OrderedGroup node is used with 3D shapes, its ordering mechanism shall be used in place of the natural z
order of the shapes themselves. The resultant image shall show the shape with the highest order value on top,
regardless of its z value. However, the resultant z-buffer contains a z value corresponding to the shape closest to
the viewer at that pixel. The order shall be used to specify which geometry should be drawn first, to avoid conflicts
between coplanar or close polygons.

NOTE — Content authors must use this functionality carefully since, depending on the Viewpoint, 3D shapes behind a
given object in the natural z order may appear in front of this object.

9.4.2.77 OrientationInterpolator

9.4.2.77.1 Node interface

OrientationInterpolator {
eventIn SFFloat set_fraction
exposedField MFFloat key []
exposedField MFRotation keyValue []
eventOut SFRotation value_changed

}

NOTE — For the binary encoding of this node see Annex H.1.66.

9.4.2.77.2 Functionality and semantics

The semantics of the OrientationInterpolator node are specified in ISO/IEC 14772-1:1998, subclause 6.32.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 201

9.4.2.78 PerceptualParameters

9.4.2.78.1 Node interface

PerceptualParameters {
exposedField Float sourcePresence 1.0
exposedField Float sourceWarmth 1.0
exposedField Float sourceBrilliance 1.0
exposedField Float roomPresence 1.0
exposedField SFTime runningReverberance 1.0
exposedField Float envelopment 0.0
exposedField SFTime lateReverberance 1.0
exposedField Float heavyness 1.0
exposedField Float liveness 1.0
exposedField MFFloat omniDirectivity 1.0
exposedField MFFloat directFilterGains 1.0, 1.0, 1.0
exposedField MFFloat inputFilterGains 1.0, 1.0, 1.0
exposedField SFFloat refDistance 1.0
exposedField SFFloat freqLow 250.0
exposedField SFFloat freqHigh 4000.0
exposedField SFTime timeLimit1 0.02
exposedField SFTime timeLimit2 0.04
exposedField SFTime timeLimit3 0.1
exposedField SFFloat modalDensity 0.8

}

NOTE - For the binary encoding of this node see Annex H.3.12.

9.4.2.78.2 Functionality and Semantics

PerceptualParameters is a node that contains information about the perceptual properties of DirectiveSound
objects to be processed in the same auralization process when the perceptual rendering is desired. It contains a
set of nine perceptual parameters that characterizes, for a given reference distance refDistance and for non-
directive sounds, the acoustic to be rendered in the virtual scene. In addition it allows for physical-like effects such
as transmission through a wall from another room (with inputFilterGains) or occlusion/diffraction of the direct path
by an obstacle (with directFilterGains). The directivity properties of the sound source is defined in the directivity
fields in the DirectiveSound node level and in omniDirectivity field of this node for an arbitrary amount of azimuth
angles from the front (defined in the direction field at the DirectiveSound node level) to the back of the sound
source.

Generic reverberation response model:

The perceptual model is based on a temporal division of the reverberation response into four sections (see Figure
26):

� direct sound (R0)

� directional early reflections (R1)

� diffuse early reflections (R2)

� diffuse late reverberation (R3)

These four sections are separated by temporal limits (denoted l0, l1, l2, l3), and characterized by their energies in 3
frequency bands (low, mid, high). These frequency bands are separated by two cross-over frequencies denoted flow

and fhigh.

ISO/IEC 14496-1:2001(E)

202 © ISO/IEC 2001 – All rights reserved

dB R0
R1

R2 R3

time

l3l2l1l 0

freq

timelow

mid

high

Figure 26 - Generic reverberation response model. R0 represents the direct sound, R1 the directional early
relfections, R2 the diffuse reflections, ad R3 the exponentially decaying, diffuse late reverberation.

Based on the above model, the reverberation response is completely characterized by the following set of
parameters:

energies R0, R1, R2, R3 (low, mid, high)

decay time Rt (low, mid, high)

temporal parameters l0, l1, l2, l3 + modal density

frequencies flow, fhigh

The modal density is defined as the number of modes per Hz. This parameter is useful for the design and control of
artificial reverberation algorithms based on recursive (IIR) digital filter structures.

High-level (perceptual) parameters:

In the perceptual acoustics rendering nine orthogonal perceptual parameters that directly relate to the audible
sensations, are used to define the acoustic response for each sound source. A measurable acoustical criterion is
defined for each perceptual factor. These objective criteria represent an attempt to provide an exhaustive
characterization of room acoustical quality in concert halls, opera houses and auditoria, by use of a minimal set of
independent parameters. They can be expressed from energetic measures derived from a decomposition of the
impulse response in three frequency bands and four temporal sections (see Figure 26), assuming time limits l1, l2,
l3 respectively equal to 20, 40, 100 ms relative to the time of arrival of the direct sound l0, and with a dependence
on the directional distribution of early reflections.

The nine perceptual factors that have been determined in the experiments are denominated as follows, and can be
divided in three groups:

Three perceptual factors describe effects which are characteristic of the room (the corresponding objective criteria
are indicated in parentheses):

� late reverberance (late decay time)

� heaviness and liveness (variation of decay time with frequency)

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 203

The six other factors describe effects that depend of the position, directivity and orientation of the source. The first
three are perceived as characteristics of the source, while the remaining three are perceptually associated with the
room:

� source presence (energy of the direct sound and early room effect)

� brilliance and warmth (variation of early energy with frequency)

� room presence (energy of late room effect)

� running reverberance (early decay time)

� envelopment (energy of early room effect relative to direct sound)

A variation of the source presence creates a convincing effect of proximity or remoteness of the sound source. The
term "reverberance" refers to the sensation that sounds are prolonged by the room reverberation. Late
reverberance differs from running reverberance by the fact that it is essentially perceived during interruptions of the
sound radiated by the source, for example when the source falls silent. Running reverberance, on the contrary,
remains perceived during continuous music.

� sourcePresence field indicates the total absolute energy of the R1 in the room acoustic response in Figure 26.

� sourceWarmth and sourceBrilliance fields are used for calculation of energies of R1 at the frequency limits
freqLow, and freqHigh.

� roomPresence is the total absolut energy of R3 in Figure 26.

� runningReverberance is a relative early decay time (with respect to its minimum and maximum values). It is
used to compute the absolute value of the decay time in seconds from its variation boundaries as explained
below.

� envelopment is the ratio between R1 and R0. This value is relative with respect to its variation boundaries.

� heaviness and liveness define the decay time as a function of frequency. They are used in the computation of
the late reverberance at the different frequency bands defined by freqLow and freqHigh.

omniDirectivity is the diffuse-field spectrum for the source is required in the Room processor. This will be called
the omnidirectional directivity because it defines the directivity of an “equivalent omnidirectional source” (equivalent
with regards to the reverberation, but not the direct path). It could be derived from the directivity field as defined in
the DirectiveSound node by averaging the radiated power over all directions around the source. However, it is
simpler and more reliable to transmit it separately in the bitstream. The same approach as for directivity is
considered except that it doesn’t depend on the angles.

The general form for the omniDirectivity field is:

[nf, freq0,freq1,....freqnf-1, gain0, gain1,....gainnf-1].

Where,

nf is the number of reference frequencies

freq j is the jth reference frequency

gainj is the linear gain for the jth reference frequency.

An example of omniDirectivity is given below:

[5, 250, 500, 1000, 2000, 4000,

0.9, 0.85, 0.7, 0.6, 0.55]

If not specified in the node, the default gains at ��Hz� is gain 0.

ISO/IEC 14496-1:2001(E)

204 © ISO/IEC 2001 – All rights reserved

By default, the gain for frequencies above fnf-1is gain nf-1.

directFilterGains specifies a filter applied to the direct path only (power gains in the three frequency bands defined
by the crossover frequencies freqLow, freqHigh).

inputFilterGains specifies a filter applied to the source signal similarly as directFilterGains for the direct path.

refDistance is a reference distance at which the above set of perceptual parameters is defined (in meters). If the
distance in the scene is different from this value, it is used for calculating a new value for the sourcePresence.

The generic room response that is modeled in the perceptual approach is characterized in the frequency domain by
two frequency limits, freqLow and freqHigh (see Figure 26). This generic room response is also characterized in
the temporal domain by four time limits and by the modal density of the late reverb. The PerceptualParameters
node contains timeLimit1, timeLimit2, timeLimit3 which are the temporal limits l1, l2, l3 (relative to l0) and
modalDensity (in seconds).

9.4.2.78.2.1 Mapping from high-level to low-level parameters

In order to use a reverberator to process the sound sources, it is necessary to convert from perceptual parameters
to energetic parameters.

When an acoustical or perceptual criterion is updated at the higher level, the necessary modifications in the low-
level energetic description of the room response can be readily computed via a nonlinear matrix inversion
procedure (this is explained below). When the signal processing model is scaled down in order to reduce the
computational cost, this is reflected in the behaviour of the perceptual control interface. For instance, if the reverb
block is shared between several sources, the late decay time settings are constrained to be identical for these
sources. If the cluster block is suppressed, the running reverberance and the room envelopment are no longer
independently controllable.

When computing the energetic parameters of the room response, the perceptual parameters are denoted as
follows :

Table 38 - Perceptual parameters

Perceptual parameter field Notation Min max

sourcePresence Es 0.0 1.0

sourceBrilliance Desl 0.1 10.0

sourceWarmth Desh 0.1 10.0

roomPresence Rev 0.0 1.0

runningReverberance Edtrel 0.0 0.1

envelopment Rdlrel 0.0 0.1

lateReverberance Rt (s) 0.1 100.0

heaviness Drtl 0.1 10.0

liveness Drth 0.1 1.0

Es and Rev are absolute energies, and Edtrel is a relative energy value. Desl, Desh, Drtl, Drth are multiplicative
factors. Rt (reverberation time) is expressed in seconds, and Edt is a relative early decay time value.

With the above notations, the energetic factors are calculated as follows:

C = pow(10, -1.2 / Rt)

if Rev/Es =< 2*(1+C)/(1-C)

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 205

R3=(-C + sqrt[C2+0.5*Rev/Es*(1-C)2]) *4*Es/(1-C)2

else

R3= Rev + 2*Es

if (2*Es/R3 =< 30.622)

Edtmin= 0.4 + Rt * [1 - 0.667*log10(1 + 2*Es/R3)]

else

Edtmin= 0.6 / log10(1 + 2*Es/R3)

if (Es/R3 =< 30.622)

Edtmax= 0.4 + Rt * [1 - 0.667*log10(1 + Es/R3)]

else

Edtmax= 0.6 / log10(1 + Es/R3))

The early decay time in seconds is calculated as:

Edt= Edtmin+ (Edtmax- Edtmin)*Edtrel

If Edt > 0.4

R2 = -Es + R3 [pow(10, 1.5 * (1 + (0.4-Edt)/Rt)) -1]

else

R2 = -Es + R3 [pow(10, 0.6 / Edt) -1]

Rdlmin = 0.05*R2 /Es

Rdlmax = 0.27 + 0.05*R2 /Es

The absolute envelopment in seconds is computed as:

Rdl = Rdlmin + (Rdlmax - Rdlmin)* Rdlrel

R1= (Es*Rdl - 0.05*R2) / 0.3

R1low= R1*Desl

R1high= R1*Desh

R0= Es - R1

R0low= R0*Desl

R0high= R0*Desh

Rt low = Drtl * Rt

Rt high = Drth * Rt

NOTE - All the values are energies expressed in the linear domain

ISO/IEC 14496-1:2001(E)

206 © ISO/IEC 2001 – All rights reserved

9.4.2.78.2.2 Mapping from positional to perceptual parameters

If the source is not placed at the reference distance dref for which the perceptual “preset” is defined, the following
correction is applied (when useAttenuation is TRUE):

Es=Es*[d / dref]-2 where d is the actual distance between the source and the viewpoint. For an example
implementation of percpetual approach, see Annex O.

9.4.2.79 PixelTexture

9.4.2.79.1 Node interface

PixelTexture {
exposedField SFImage image 0 0 0
field SFBool repeatS TRUE
field SFBool repeatT TRUE

}

NOTE — For the binary encoding of this node see Annex H.1.67.

9.4.2.79.2 Functionality and semantics

The semantics of the PixelTexture node are specified in ISO/IEC 14772-1:1998, subclause 6.33.

9.4.2.80 PlaneSensor

9.4.2.80.1 Node interface

PlaneSensor {
exposedField SFBool autoOffset TRUE
exposedField SFBool enabled TRUE
exposedField SFVec2f maxPosition -1 -1
exposedField SFVec2f minPosition 0 0
exposedField SFVecf3f offset 0 0 0
eventOut SFBool isActive
eventOut SFVec3f trackPoint_changed
eventOut SFVec3f translation_changed

}

9.4.2.80.2 Fnctionality and semantics

The semantics of the PlaneSensor node are specified in ISO/IEC 14772-1:1998, subclause 6.34.

9.4.2.81 PlaneSensor2D

9.4.2.81.1 Node interface

PlaneSensor2D {
exposedField SFBool autoOffset TRUE
exposedField SFBool enabled TRUE
exposedField SFVec2f maxPosition 0, 0
exposedField SFVec2f minPosition 0, 0
exposedField SFVec2f offset 0, 0
eventOut SFBool isActive
eventOut SFVec2f trackPoint_changed
eventOut SFVec2f translation_changed

}

NOTE — For the binary encoding of this node see Annex H.1.68.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 207

9.4.2.81.2 Functionality and semantics

This sensor detects pointer device dragging and enables the dragging of objects on the 2D rendering plane.

The semantics of PlaneSensor2D are a restricted case for 2D of the semantics for the PlaneSensor node
(see 9.4.2.80).

9.4.2.82 PointLight

9.4.2.82.1 Node interface

PointLight {
exposedField SFFloat ambientIntensity 0.0
exposedField SFVec3f attenuation 1, 0, 0
exposedField SFColor color 1, 1, 1
exposedField SFFloat intensity 1.0
exposedField SFVec3f location 0, 0, 0
exposedField SFBool on TRUE
exposedField SFFloat radius 100.0

}

NOTE — For the binary encoding of this node see Annex H.1.69.

9.4.2.82.2 Functionality and semantics

The semantics of the PointLight node are specified in ISO/IEC 14772-1:1998, subclause 6.35.

9.4.2.83 PointSet

9.4.2.83.1 Node interface

PointSet {
exposedField SFNode color NULL
exposedField SFNode coord NULL

}

NOTE — For the binary encoding of this node see Annex H.1.70.

9.4.2.83.2 Functionality and semantics

The semantics of the PointSet node are specified in ISO/IEC 14772-1:1998, subclause 6.36.

9.4.2.84 PointSet2D

9.4.2.84.1 Node interface

PointSet2D {
exposedField SFNode color NULL
exposedField SFNode coord NULL

}

NOTE — For the binary encoding of this node see Annex H.1.71.

9.4.2.84.2 Functionality and semantics

This is a 2D equivalent of the PointSet node (see 9.4.2.83), with semantics that are the 2D restriction of that
node.

ISO/IEC 14496-1:2001(E)

208 © ISO/IEC 2001 – All rights reserved

9.4.2.85 PositionInterpolator

9.4.2.85.1 Node interface

PositionInterpolator {
eventIn SFFloat set_fraction
exposedField MFFloat key []
exposedField MFVec3f keyValue []
eventOut SFVec3f value_changed

}

NOTE — For the binary encoding of this node see Annex H.1.72.

9.4.2.85.2 Functionality and semantics

The semantics of the PositionInterpolator node are specified in ISO/IEC 14772-1:1998, subclause 6.37.

9.4.2.86 PositionInterpolator2D

9.4.2.86.1 Node interface

PositionInterpolator2D {
eventIn SFFloat set_fraction
exposedField MFFloat key []
exposedField MFVec2f keyValue []
eventOut SFVec2f value_changed

}

NOTE — For the binary encoding of this node see Annex H.1.73.

9.4.2.86.2 Functionality and semantics

This is a 2D equivalent of the PositionInterpolator node (see 9.4.2.85) with semantics that are the 2D
restriction of that node.

9.4.2.87 ProximitySensor

9.4.2.87.1 Node interface

ProximitySensor {
exposedField SFVec3f center 0, 0, 0
exposedField SFVec3f size 0, 0, 0
exposedField SFBool enabled TRUE
eventOut SFBool isActive
eventOut SFVec3f position_changed
eventOut SFRotation orientation_changed
eventOut SFTime enterTime
eventOut SFTime exitTime

}

NOTE — For the binary encoding of this node see Annex H.1.74.

9.4.2.87.2 Functionality and semantics

The semantics of the ProximitySensor node are specified in ISO/IEC 14772-1:1998, subclause 6.38.

9.4.2.88 ProximitySensor2D

9.4.2.88.1 Node interface

ProximitySensor2D {
exposedField SFVec2f center 0, 0
exposedField SFVec2f size 0, 0
exposedField SFBool enabled TRUE

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 209

eventOut SFBool isActive
eventOut SFVec2f position_changed
eventOut SFFloat orientation_changed
eventOut SFTime enterTime
eventOut SFTime exitTime

}

NOTE — For the binary encoding of this node see Annex H.1.75.

9.4.2.88.2 Functionality and semantics

This is the 2D equivalent of the ProximitySensor node (see 9.4.2.87) with semantics that are the 2D restriction
of the that node.

9.4.2.89 QuantizationParameter

9.4.2.89.1 Node interface

QuantizationParameter {
field SFBool isLocal FALSE
field SFBool position3DQuant FALSE
field SFVec3f position3DMin -�, -�, -�
field SFVec3f position3DMax +�, +�, +�
field SFInt32 position3DNbBits 16
field SFBool position2DQuant FALSE
field SFVec2f position2DMin -�, -�
field SFVec2f position2DMax +�, +�
field SFInt32 position2DNbBits 16
field SFBool drawOrderQuant TRUE
field SFVec3f drawOrderMin -�
field SFVec3f drawOrderMax +�
field SFInt32 drawOrderNbBits 8
field SFBool colorQuant TRUE
field SFFloat colorMin 0.0
field SFFloat colorMax 1.0
field SFInt32 colorNbBits 8
field SFBool textureCoordinateQuant TRUE
field SFFloat textureCoordinateMin 0.0
field SFFloat textureCoordinateMax 1.0
field SFInt32 textureCoordinateNbBits 16
field SFBool angleQuant TRUE
field SFFloat angleMin 0.0
field SFFloat angleMax 2¶
field SFInt32 angleNbBits 16
field SFBool scaleQuant FALSE
field SFFloat scaleMin 0.0
field SFFloat scaleMax +�
field SFInt32 scaleNbBits 8
field SFBool keyQuant TRUE
field SFFloat keyMin 0.0
field SFFloat keyMax 1.0
field SFInt32 keyNbBits 8
field SFBool normalQuant TRUE
field SFInt32 normalNbBits 8
field SFBool sizeQuant FALSE
field SFFloat sizeMin 0.0
field SFFloat sizeMax +�
field SFInt32 sizeNbBits 8
field SFBool useEfficientCoding FALSE

}

NOTE — For the binary encoding of this node see Annex H.1.76.

ISO/IEC 14496-1:2001(E)

210 © ISO/IEC 2001 – All rights reserved

9.4.2.89.2 Functionality and semantics

The QuantizationParameter node describes the quantization values to be applied on single fields of
numerical types. For each of identified categories of fields, a minimal and maximal value is given as well as a
number of bits to represent the given class of fields. Additionally, it is possible to set the isLocal field to apply the
quantization only to the node following the QuantizationParameter node. The use of a node structure for
declaring the quantization parameters allows the application of the DEF and USE mechanisms that enable reuse of
the QuantizationParameter node. Also, it enables the parsing of this node in the same manner as any other
scene information.

The QuantizationParameter node may only appear as a child of a grouping node. When a
QuantizationParameter node appears in the scene graph, the quantization is set to TRUE, and will apply to
subsequent nodes as follows:

If the isLocal boolean is set to FALSE, the quantization applies to all siblings following the
QuanitzationParameter node, and thus to all their children as well.

If the isLocal boolean is set to TRUE, the quantization only applies to the following sibling node in the children list
of the parent node. If no sibling is following the QuantizationParameter node declaration, the node has no
effect.

In all cases, the quantization is applied only in the scope of a single BIFS command. That is, if a command in the
same access unit, or in another access unit inserts a node in a context in which the quantization was active, no
quantization will be applied, except if a new QuantizationParameter node is defined in this new command.

The information contained in the QuantizationParameter node fields applies within the context of the node
scope as follows. For each category of fields, a boolean sets the quantization on or off, the minimal and maximal
values are set, as well as the number of bits for the quantization. This information, combined with the node coding
table, enables the relevant information to quantize the fields to be obtained. The quantization parameters are
applied as explained in 9.3.3.

If the useEfficientCoding boolean is set to FALSE, the encoding of floats shall be performed using 32 bits,
according to IEEE Std 754-1985.

If the useEfficientCoding boolean is set to TRUE, the encoding of floats shall use the syntax described in
9.3.7.12. The scope of the use of the efficient coding is the same as that of the QuantizationParameter node.
This means that the values of the fields of the current QuantizationParameter node are not sent in the
efficient coding mode unless the context is within the scope of a previously sent QuantizationParameter
whose useEfficientCoding bit was set to true.

9.4.2.90 Rectangle

9.4.2.90.1 Node interface

Rectangle {
exposedField SFVec2f size 2, 2

}

NOTE — For the binary encoding of this node see Annex H.1.77.

9.4.2.90.2 Functionality and semantics

This node specifies a rectangle centered at (0,0) in the local coordinate system. The size field specifies the
horizontal and vertical size of the rendered rectangle.

9.4.2.91 ScalarInterpolator

9.4.2.91.1 Node interface

ScalarInterpolator {
eventIn SFFloat set_fraction
exposedField MFFloat key []

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 211

exposedField MFFloat keyValue []
eventOut SFFloat value_changed

}

NOTE — For the binary encoding of this node see Annex H.1.78.

9.4.2.91.2 Functionality and semantics

The semantics of the ScalarInterpolator node are specified in ISO/IEC 14772-1:1998, subclause 6.39.

9.4.2.92 Script

9.4.2.92.1 Node interface

Script {
exposedField MFString url []
field SFBool directOutput FALSE
field SFBool mustEvaluate FALSE
Any number of the following may then follow:
eventIn eventType eventName
field fieldType fieldName initialValue
eventOut eventType eventName

}

NOTE — For the binary encoding of this node see Annex H.1.79.

9.4.2.92.2 Functionality and semantics

The Script node is used to describe behaviour in a programmtic way in a scene. Script nodes typically

� signify a change or user action

� receive events from other nodes

� contain a program module that performs some computation

� effect change somewhere else in the scene by sending events

Each Script node has associated programming language code, referenced by the url field, that is executed to
carry out the Script node's function. That code is referred to as the "script" in the rest of this description.

9.4.2.92.2.1 Detailed Semantics

The semantics of this node are as defined in ISO/IEC 14772-1:1998, subclause 6.40, with the following exception.
The interface functions CreateVRMLFromString() and CreateVRMLFromURL() are not supported. The
terminal shall support JavaScript.

EXAMPLE � The following scene contains two spheres that exchange colors when they are clicked with the mouse. The script
is used to hold the current color state (in the variable num). The script variables color1 and color2 are used to hold the colors
that are flipped back and forth between the two spheres. The script variable color is used to hold the last color state of the first
sphere, and this color is routed to the second sphere. The first sphere color is set directly in the script.

Group {
children [

Viewpoint {
fieldOfView 0.785398

}
DirectionalLight {

color 1 1 1
}
Shape {

geometry Sphere { radius 0.5} # first sphere…
appearance Appearance {

material DEF COLOR Material {diffuseColor 1 0 0}

ISO/IEC 14496-1:2001(E)

212 © ISO/IEC 2001 – All rights reserved

}
}
Transform {

translation -2 0 0
children [

Shape {
geometry Sphere { radius 1.0} #second sphere…
appearance Appearance {
material DEF COLOR2 Material {diffuseColor 1 1 1}
}

}
DEF TS TouchSensor{} #clicking on the 2nd sphere will activate the script

]
}
DEF SC Script {

eventIn SFBool touch
field SFNode node USE COLOR
field SFColor color1 0 1 0 # constant color for sphere
field SFColor color2 0 0 1 # same as above
field SFInt32 num 1 # holds the current color state
eventOut SFColor color # holds the last color in COLOR
url "javascript:

function touch (value, tp) {
color = node.diffuseColor;
if (num==1) {

node.diffuseColor = color1;
num = 2;

} else {
node.diffuseColor = color2;
num = 1;

}
}

"
}

]
}
ROUTE TS.isActive TO SC.touch # activates the script when sensor is touched
ROUTE SC.color TO COLOR2.diffuseColor # routes the last color of COLOR to COLOR2

9.4.2.93 Shape

9.4.2.93.1 Node interface

Shape {
exposedField SFNode appearance NULL
exposedField SFNode geometry NULL

}

NOTE — For the binary encoding of this node see Annex H.1.80.

9.4.2.93.2 Functionality and semantics

The semantics of the Shape node are specified in ISO/IEC 14772-1:1998, subclause 6.41.

9.4.2.94 Sound

9.4.2.94.1 Node interface

Sound {
exposedField SFVec3f direction 0, 0, 1
exposedField SFFloat intensity 1.0
exposedField SFVec3f location 0, 0, 0
exposedField SFFloat maxBack 10.0
exposedField SFFloat maxFront 10.0
exposedField SFFloat minBack 1.0
exposedField SFFloat minFront 1.0
exposedField SFFloat priority 0.0

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 213

exposedField SFNode source NULL
field SFBool spatialize TRUE

}

NOTE — For the binary encoding of this node see Annex H.1.81.

9.4.2.94.2 Functionality and semantics

The Sound node is used to attach sound to a scene, thereby giving it spatial qualities and relating it to the visual
content of the scene.

The Sound node relates an audio BIFS sub-graph to the rest of an audio-visual scene. By using this node, sound
may be attached to a group, and spatialized or moved around as appropriate for the spatial transforms above the
node. By using the functionality of the audio BIFS nodes, sounds in an audio scene dscribed using ISO/IEC 14496-
1 may be filtered and mixed before being spatially composited into the scene.

The semantics of this node are as defined in ISO/IEC 14472-1:1997, subclause 6.42, with the following exceptions
and additions.

The source field allows the connection of an audio sub-graph containing the sound.

The spatialize field determines whether the Sound shall be spatialized. If this flag is set, the sound shall be
presented spatially according to the local coordinate system and current listeningPoint, so that it apparently
comes from a source located at the location point, facing in the direction given by direction. The exact manner
of spatialization is implementation-dependant, but implementators are encouraged to provide the maximum
sophistication possible depending on terminal resources.

If there are multiple channels of sound output from the child sound, they may or may not be spatialized, according
to the phaseGroup properties of the child, as follows. Any individual channels, that is, channels not phase-related
to other channels, are summed linearly and then spatialized. Any phase-grouped channels are not spatialized, but
passed through this node unchanged. The sound presented in the scene is thus a single spatialized sound,
represented by the sum of the individual channels, plus an “ambient” sound represented by mapping all the
remaining channels into the presentation system as described in 9.2.2.13.2.2.

If the spatialize field is not set, the audio channels from the child are passed through unchanged, and the sound
presented in the scene due to this node is an “ambient” sound represented by mapping all the audio channels
output by the child into the presentation system as described in 9.2.2.13.2.2.

As with the visual objects in the scene, the Sound node may be included as a child or descendant of any of the
grouping or transform nodes. For each of these nodes, the sound semantics are as follows.

Affine transformations presented in the grouping and transform nodes affect the apparant spatialization position of
spatialized sound. They have no effect on “ambient” sounds.

If a particular grouping or transform node has multiple Sound nodes as descendants, then they are combined for
presentation as follows. Each of the Sound nodes may be producing a spatialized sound, a multichannel ambient
sound, or both. For all of the spatialized sounds in descendant nodes, the sounds are linearly combined through
simple summation from presentation. For multichannel ambient sounds, the sounds are linearly combined channel-
by-channel for presentation.

EXAMPLE � Sound node S1 generates a spatialized sound s1 and five channels of multichannel ambient sound a1[1-5].
Sound node S2 generates a spatialized sound s2 and two channels of multichannel ambient sound a2[1-2]. S1 and S2 are
grouped under a single Group node. The resulting sound is the superposition of the spatialized sound s1, the spatialized
sound s2, and the five-channel ambient multichannel sound represented by a3[1-5], where

a3[1] = a1[1] + a2[1]

a3[2] = a1[2] + a2[2]

a3[3] = a1[3]

a3[4] = a1[4]

a3[5] = a1[5]

ISO/IEC 14496-1:2001(E)

214 © ISO/IEC 2001 – All rights reserved

9.4.2.95 Sound2D

9.4.2.95.1 Node interface

Sound2D {
exposedField SFFloat intensity 1.0
exposedField SFVec2f location 0,0
exposedField SFNode source NULL
field SFBool spatialize TRUE

}

NOTE — For the binary encoding of this node see Annex H.1.82.

9.4.2.95.2 Functionality and semantics

The Sound2D node relates an audio BIFS sub-graph to the other parts of a 2D audio-visual scene. It shall not be
used in 3D contexts (see 9.2.2.1). By using this node, sound may be attached to a group of visual nodes. By using
the functionality of the audio BIFS nodes, sounds in an audio scene may be filtered and mixed before being
spatially composed into the scene.

The intensity field adjusts the loudness of the sound. Its value ranges from 0.0 to 1.0, and this value specifies a
factor that is used during the playback of the sound.

The location field specifies the location of the sound in the 2D scene.

The source field connects the audio source to the Sound2D node.

The spatialize field specifies whether the sound shall be spatialized on the 2D screen. If this flag is set, the sound
shall be spatialized with the maximum sophistication possible. The 2D sound is spatialized assuming a distance of
one meter between the user and a 2D scene of size 2m x 1.5m, giving the minimum and maximum azimuth angles
of –45� and +45�, and the minimum and maximum elevation angles of -37� and +37�.

The same rules for multichannel audio spatialization apply to the Sound2D node as to the Sound (3D) node
(see 9.4.2.94). Using the phaseGroup flag in the AudioSource node it is possible to determine whether the
channels of the source sound contain important phase relations, and that spatialization at the terminal should not
be performed.

As with the visual objects in the scene (and for the Sound node), the Sound2D node may be included as a child
or descendant of any of the grouping or transform nodes. For each of these nodes, the sound semantics are as
follows.

Affine transformations presented in the grouping and transform nodes affect the apparent spatialization position of
spatialized sound.

If a transform node has multiple Sound2D nodes as descendants, then they are combined for presentation as
described in 9.4.2.94. If Sound and Sound2D nodes are both used in a scene, all shall be treated the same
way according to these semantics.

9.4.2.96 Sphere

9.4.2.96.1 Node interface

Sphere {
field SFFloat Radius 1.0

}

NOTE — For the binary encoding of this node see Annex H.1.83.

9.4.2.96.2 Functionality and semantics

The semantics of the Sphere node are specified in ISO/IEC 14772-1:1998, subclause 6.43.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 215

9.4.2.97 SphereSensor

9.4.2.97.1 Node interface

SphereSensor {
exposedField SFBool autoOffset TRUE
exposedField SFBool enabled TRUE
exposedField SFRotation offset 0 1 0 0
eventOut SFBool isActive
eventOut SFRotation rotation_changed
eventOut SFVec3f trackPoint_changed

}

NOTE — For the binary encoding of this node see Annex H.1.84.

9.4.2.97.2 Functionality and semantics

The semantics of the SphereSensor node are specified in ISO/IEC 14772-1:1998, subclause 6.44.

9.4.2.98 SpotLight

9.4.2.98.1 Node interface

SpotLight {
exposedField SFFloat ambientIntensity 0.0
exposedField SFVec3f attenuation 1, 0, 0
exposedField SFFloat beamWidth 1.5708
exposedField SFColor color 1, 1, 1
exposedField SFFloat cutOffAngle 0.785398
exposedField SFVec3f direction 0, 0, -1
exposedField SFFloat intensity 1.0
exposedField SFVec3f location 0, 0, 0
exposedField SFBool on TRUE
exposedField SFFloat radius 100.0

}

NOTE — For the binary encoding of this node see Annex H.1.85.

9.4.2.98.2 Functionality and semantics

The semantics of the SpotLight node are specified in ISO/IEC 14772-1:1998, subclause 6.45.

9.4.2.99 Switch

9.4.2.99.1 Node interface

Switch {
exposedField MFNode choice []
exposedField SFInt32 whichChoice -1

}

NOTE — For the binary encoding of this node see Annex H.1.86.

9.4.2.99.2 Functionality and semantics

The semantics of the Switch node are specified in ISO/IEC 14772-1:1998, subclause 6.46, with the following
restrictions.

If some of the child sub-graphs contain audio content (i.e., the subgraphs contain Sound nodes), the child sounds
are switched on and off according to the value of the whichChoice field. That is, only sound that corresponds to
Sound nodes in the whichChoice’th subgraph of this node are played. The others are muted.

ISO/IEC 14496-1:2001(E)

216 © ISO/IEC 2001 – All rights reserved

9.4.2.100 TermCap

9.4.2.100.1Node interface

TermCap {
eventIn SFTime evaluate
field SFInt32 capability 0
eventOut SFInt32 value

}

NOTE — For the binary encoding of this node see Annex H.1.87.

9.4.2.100.2Functionality and semantics

The TermCap node is used to query the resources of the terminal. By ROUTEing the result to a Switch node,
simple adaptive content may be authored using BIFS.

When this node is instantiated, the value of the capability field shall be examined by the system and the value
eventOut generated to indicate the associated system capability. The value eventOut is updated and generated
whenever an evaluate eventIn is received.

The capability field specifies a terminal resource to query. The semantics of the value field vary depending on
the value of this field. The capabilities which may be queried are:

Table 39 - Semantics of value, dependent on capability

capability Semantics of value

0 frame rate
1 color depth
2 screen size
3 graphics hardware
32 audio output format
33 maximum audio sampling

rate
34 spatial audio capability
64 CPU load
65 memory load

The exact semantics differ depending on the value of the capability field, as follows.

capability: 0 (frame rate)

For this value of capability, the current rendering frame rate is measured. The exact method of measurement not
specified.

Table 40 - Semantics of value for capability=0

value Semantics

0 unknown or can’t determine
1 less than 5 fps
2 5-10 fps
3 10-20 fps
4 20-40 fps
5 more than 40 fps

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 217

For the breakpoint between overlapping values between each range (i.e. 5, 10, 20, and 40), the higher value of
value shall be used (ie, 2, 3, 4, and 5 respectively). This applies to each of the subsequent capability-value
tables as well.

capability: 1 (color depth)

For this value of capability, the color depth of the rendering terminal is measured. At the time this node is
instantiated, the value field is set to indicate the color depth as follows:

Table 41 - Semantics of value for capability=1

value Semantics

0 unknown or can’t determine
1 1 bit/pixel
2 grayscale
3 color, 3-12 bit/pixel
4 color, 12-24 bit/pixel
5 color, more than 24 bit/pixel

capability: 2 (screen size)

For this value of capability, the window size (in horizontal lines) of the output window of the rendering terminal is
measured:

Table 42 - Semantics of value for capability=2

value Semantics

0 unknown or can’t determine
1 less than 200 lines
2 200-400 lines
3 400-800 lines
4 800-1600 lines
5 1600 or more lines

capability: 3 (graphics hardware)

For this value of capability, the available of graphics acceleration hardware of the rendering terminal is
measured. At the time this node is instantiated, the value field is set to indicate the available graphics hardware:

Table 43 - Semantics of value for capability=3

value Semantics

0 unknown or can’t determine
1 no acceleration
2 matrix multiplication
3 matrix multiplication +

texture mapping (less than 1M memory)
4 matrix multiplication +

texture mapping (less than 4M memory)
5 matrix multiplication +

texture mapping (more than 4M memory)

ISO/IEC 14496-1:2001(E)

218 © ISO/IEC 2001 – All rights reserved

capability: 32 (audio output format)

For this value of capability, the audio output format (speaker configuration) of the rendering terminal is measured.
At the time this node is instantiated, the value field is set to indicate the audio output format.

Table 44 - Semantics of value for capability=32

value Semantics

0 unknown or can’t determine
1 mono
2 stereo speakers
3 stereo headphones
4 five-channel surround
5 more than five speakers

capability: 33 (maximum audio sampling rate)

For this value of capability, the maximum audio output sampling rate of the rendering terminal is measured. At
the time this node is instantiated, the value field is set to indicate the maximum audio output sampling rate.

Table 45 - Semantics of value for capability=33

value Semantics

0 unknown or can’t determine
1 less than 16000 Hz
2 16000-32000 Hz
3 32000-44100 Hz
4 44100-48000 Hz
5 48000 Hz or more

capability: 34 (spatial audio capability)

For this value of capability, the spatial audio capability of the rendering terminal is measured. At the time this
node is instantiated, the value field is set to indicate the spatial audio capability.

Table 46 - Semantics of value for capability=34

value Semantics

0 unknown or can’t determine
1 no spatial audio
2 panning only
3 azimuth only
4 full 3-D spatial audio

capability: 64 (CPU load)

For this value of capability, the CPU load of the rendering terminal is measured. The exact method of
measurement is not specified. The value of the value eventOut indicates the available CPU resources as a
percentage of the maximum available; that is, if all of the CPU cycles are being consumed, and no extra calculation
can be performed without compromising real-time performance, the indicated value is 100%; if twice as much
calculation as currently being done can be so performed, the indicated value is 50%.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 219

Table 47 - Semantics of value for capability=64

value Semantics

0 unknown or can’t determine
1 less than 20% loaded
2 20-40% loaded
3 40-60% loaded
4 60-80% loaded
5 80-100% loaded

capability: 65 (RAM available)

For this value of capability, the available memory of the rendering terminal is measured. The exact method of
measurement is not specified.

Table 48 - Semantics of value for capability=65

value Semantics

0 unknown or can’t determine
1 less than 100 KB free
2 100 KB – 500 KB free
3 500 KB – 2 MB free
4 2 MB – 8 MB free
5 8 MB – 32 MB free
6 32 MB – 200 MB free
7 more than 200 MB free

9.4.2.101 Text

9.4.2.101.1Node interface

Text {
exposedField MFString string []
exposedField MFFloat length []
exposedField SFNode fontStyle NULL
exposedField SFFloat maxExtent 0.0

}

NOTE — For the binary encoding of this node see Annex H.1.88.

9.4.2.101.2Functionality and semantics

The semantics of the Text node are specified in ISO/IEC 14772-1:1998, subclause 6.47.

9.4.2.102 TextureCoordinate

9.4.2.102.1Node interface

TextureCoordinate {
exposedField MFVec2f point []

}

NOTE — For the binary encoding of this node see Annex H.1.89.

ISO/IEC 14496-1:2001(E)

220 © ISO/IEC 2001 – All rights reserved

9.4.2.102.2Functionality and semantics

The semantics of the TextureCoordinate node are specified in ISO/IEC 14772-1:1998, subclause 6.48.

9.4.2.103 TextureTransform

9.4.2.103.1Node interface

TextureTransform {
exposedField SFVec2f center 0, 0
exposedField SFFloat rotation 0.0
exposedField SFVec2f scale 1, 1
exposedField SFVec2f translation 0, 0

}

NOTE — For the binary encoding of this node see Annex H.1.90.

9.4.2.103.2Functionality and semantics

The semantics of the TextureTransform node are specified in ISO/IEC 14772-1:1998, subclause 6.49.

9.4.2.104 TimeSensor

9.4.2.104.1Node interface

TimeSensor {
exposedField SFTime cycleInterval 1
exposedField SFBool enabled TRUE
exposedField SFBool loop FALSE
exposedField SFTime startTime 0
exposedField SFTime stopTime 0
eventOut SFTime cycleTime
eventOut SFFloat fraction_changed
eventOut SFBool isActive
eventOut SFTime time

}

NOTE — For the binary encoding of this node see Annex H.1.91.

9.4.2.104.2Functionality and semantics

The semantics of the TimeSensor node are specified in ISO/IEC 14772-1:1998, subclause 6.50.

9.4.2.105 TouchSensor

9.4.2.105.1Node interface

TouchSensor {
exposedField SFBool enabled TRUE
eventOut SFVec3f hitNormal_changed
eventOut SFVec3f hitPoint_changed
eventOut SFVec2f hitTexCoord_changed
eventOut SFBool isActive
eventOut SFBool isOver
eventOut SFTime touchTime

}

NOTE — For the binary encoding of this node see Annex H.1.92.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 221

9.4.2.105.2Functionality and semantics

The semantics of the TouchSensor node are specified in ISO/IEC 14772-1:1998, subclause 6.51.

9.4.2.106 Transform

9.4.2.106.1Node interface

Transform {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField SFVec3f center 0, 0, 0
exposedField MFNode children []
exposedField SFRotation rotation 0, 0, 1, 0
exposedField SFVec3f scale 1, 1, 1
exposedField SFRotation scaleOrientation 0, 0, 1, 0
exposedField SFVec3f translation 0, 0, 0

}

NOTE — For the binary encoding of this node see Annex H.1.93.

9.4.2.106.2Functionality and semantics

The semantics of the Transform node are specified in ISO/IEC 14772-1:1998, subclause 6.52. ISO/IEC 14496-1
does not support the bounding box parameters (bboxCenter and bboxSize).

If some of the child subgraphs contain audio content (i.e., the subgraphs contain Sound nodes), the child sounds
are transformed and mixed as follows.

If each of the child sounds is a spatially presented sound, the Transform node applies to the local coordinate
system of the Sound nodes to alter the apparent spatial location and direction. If the children are not spatially
presented but have equal numbers of channels, the Transform node has no effect on the childrens’ sounds.
After any such transformation, the combination of sounds is performed as described in 9.4.2.94.

If the children are not spatially presented but have equal numbers of channels, the Transform node has no
effect on the childrens’ sounds. The child sounds are summed equally to produce the audio output at this node.

If some children are spatially presented and some not, or all children do not have equal numbers of channels, the
semantics are not defined.

9.4.2.107 Transform2D

9.4.2.107.1Node interface

Transform2D {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField SFVec2f center 0, 0
exposedField MFNode children []
exposedField SFFloat rotationAngle 0.0
exposedField SFVec2f scale 1, 1
exposedField SFFloat scaleOrientation 0.0
exposedField SFVec2f translation 0, 0

}

NOTE — For the binary encoding of this node see Annex H.1.94.

ISO/IEC 14496-1:2001(E)

222 © ISO/IEC 2001 – All rights reserved

9.4.2.107.2Functionality and semantics

The Transform2D node allows the translation, rotation and scaling of its 2D children objects.

The rotation field specifies a rotation of the child objects, in radians, which occurs about the point specified by
center.

The scale field specifies a 2D scaling of the child objects. The scaling operation takes place following a rotation of
the 2D coordinate system that is specified, in radians, by the scaleOrientation field. The rotation of the co-
ordinate system is notional and purely for the purpose of applying the scaling and is undone before any further
actions are performed. No permanent rotation of the co-ordinate system is implied.

The translation field specifies a 2D vector which translates the child objects.

The scaling, rotation and translation are applied in the following order: scale, rotate, translate.

The children field contains a list of zero or more children nodes which are grouped by the Transform2D node.

The addChildren and removeChildren eventIns are used to add or remove child nodes from the children field
of the node. Children are added to the end of the list of children and special note should be taken of the
implications of this for implicit drawing orders.

If some of the child subgraphs contain audio content (i.e., the subgraphs contain Sound nodes), the child sounds
are transformed and mixed as follows.

If each of the child sounds is a spatially presented sound, the Transform node applies to the local coordinate
system of the Sound nodes to alter the apparent spatial location and direction. If the children are not spatially
presented but have equal numbers of channels, the Transform node has no effect on the childrens’ sounds.
After any such transformation, the combination of sounds is performed as described in 9.4.2.94.

If the children are not spatially presented but have equal numbers of channels, the Transform node has no
effect on the children’s sounds. The child sounds are summed equally to produce the audio output at this node.

If some children are spatially presented and some not, or all children do not have equal numbers of channels, the
semantics are not defined.

9.4.2.108 Valuator

9.4.2.108.1Node interface

Valuator {
eventIn SFBool inSFBool
eventIn SFColor inSFColor
eventIn MFColor inMFColor
eventIn SFFloat inSFFloat
eventIn MFFloat inMFFloat
eventIn SFInt32 inSFInt32
eventIn MFInt32 inMFInt32
eventIn SFRotation inSFRotation
eventIn MFRotation inMFRotation
eventIn SFString inSFString
eventIn MFString inMFString
eventIn SFTime inSFTime
eventIn SFVec2f inSFVec2f
eventIn MFVec2f inMFVec2f
eventIn SFVec3f inSFVec3f
eventIn MFVec3f inMFVec3f
eventOut SFBool outSFBool
eventOut SFColor outSFColor

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 223

eventOut MFColor outMFColor
eventOut SFFloat outSFFloat
eventOut MFFloat outMFFloat
eventOut SFInt32 outSFInt32
eventOut MFInt32 outMFInt32
eventOut SFRotation outSFRotation
eventOut MFRotation outMFRotation
eventOut SFString outSFString
eventOut MFString outMFString
eventOut SFTime outSFTime
eventOut SFVec2f outSFVec2f
eventOut MFVec2f outMFVec2f
eventOut SFVec3f outSFVec3f
eventOut MFVec3f outMFVec3f
exposedField SFFloat factor1 1.0
exposedField SFFloat factor2 1.0
exposedField SFFloat factor3 1.0
exposedField SFFloat factor4 1.0
exposedField SFFloat offset1 0.0
exposedField SFFloat offset2 0.0
exposedField SFFloat offset3 0.0
exposedField SFFloat offset4 0.0
exposedField SFBool sum FALSE

}

NOTE — For the binary encoding of this node see Annex H.1.95.

9.4.2.108.2Functionality and semantics

A Valuator node can receive an event of any type, and on reception of such an event, will trigger eventOuts of
many different types. Upon reception of an event on any of its eventIns, on each eventOut connected to a ROUTE
an event will be generated. The value of this event is governed by the equation below. This node serves as a
simple type casting method.

Each output value is dependent on the input value with the following relationship:

output value = factor * x + offset

In the above equation, factor is one of the exposedField values and offset is one of the eventOut values specified in
the node inteface. All values specified in the above equation are floating point values.

ISO/IEC 14496-1:2001(E)

224 © ISO/IEC 2001 – All rights reserved

Output
value

Output
value

Output
value

Output
value

Factor
1

+x

x

x

x

�

+

+

+

Type cast to
output type

Type cast to
output type

Type cast to
output type

Type cast to
output type

Summing
flag

Factor
2

Factor
3

Factor
4

Offset1

Offset2

Offset3

Offset4

Figure 27 - Valuator functionaliy

Referring to the above figure, there are input paths each catering to an input value. Depending on the data type,
there may be one to four input values. For example the SFRotation will require four input paths but the SFInt32 will
only require the first input path. Each input path will operate identically.

Table 49 - Simple typecasting conversion from other data types to float.

From Conversion to float

integer Direct conversion.
(1 to 1.0)

Boolean true – 1.0
false – 0.0

double Truncate to 32-bit precision

Table 50 - Simple typecasting conversion from float to other data types.

To Conversion from float

integer Truncate floating point.
eg (1.11 to 1)

Boolean 0.0 to False
Any other values to true

double Direct conversion

Each input value is converted to a floating-point value using a simple typecasting rule as illustrated in Table 50.
After conversion, the values are multiplied by the corresponding factor value and added to the corresponding offset
value. Depending on whether the summer is enabled, either the summed value or the individual values are
presented at the output.

Depending on the output data type required, the corresponding number of output values are retrieved and
converted to the output types according to Table 49.

In the event that the input value is of a multi-valued type and the output is of a single value type, the first value of
the multi-valued input is used.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 225

EXAMPLE � The Valuator node can be seen as an event type adapter. One use of this node is the modification of the
SFInt32 whichChoice field of a Switch node by an event. There is no interpolator or sensor node with a SFInt32
eventOut. Thus, if a two-state button is described with a Switch containing the description of each state in choices 0 and 1.
The triggering event of any type can be routed to a Valuator node whose SFInt32 field is routed to the whichChoice field
of the Switch.

9.4.2.109 Viewpoint

9.4.2.109.1Node interface

Viewpoint {
eventIn SFBool set_bind
exposedField SFFloat fieldOfView 0.785398
exposedField SFBool jump TRUE
exposedField SFRotation orientation 0, 0, 1, 0
exposedField SFVec3f position 0, 0, 10
field SFString description ""
eventOut SFTime bindTime
eventOut SFBool isBound

}

NOTE — For the binary encoding of this node see Annex H.1.96.

9.4.2.109.2Functionality and semantics

The semantics of the Viewpoint node are specified in ISO/IEC 14772-1:1998, subclause 6.53.

9.4.2.110 Viseme

9.4.2.110.1Node interface

Viseme {
field SFInt32 viseme_select1 0
field SFInt32 viseme_select2 0
field SFInt32 viseme_blend 0
field SFBool viseme_def FALSE

}

NOTE — For the binary encoding of this node see Annex H.1.97.

9.4.2.110.2Functionality and semantics

The Viseme node defines a blend of two visemes from a standard set of 14 visemes as defined in ISO/IEC
14496-2, Annex C, Table C-5.

The viseme_select1 field specifies viseme 1.

The viseme_select2 field specifies viseme 2.

The viseme_blend field specifies the blend of the two visemes.

If viseme_def is TRUE, the current FAPs shall be used to define a viseme and store it.

ISO/IEC 14496-1:2001(E)

226 © ISO/IEC 2001 – All rights reserved

9.4.2.111 VisibilitySensor

9.4.2.111.1Node interface

VisibilitySensor {
exposedField SFVec3f center 0 0 0
exposedField SFBool enabled TRUE
exposedField SFVec3f size 0 0 0
eventOut SFTime enterTime
eventOut SFTime exitTime
eventOut SFBool isActive

}

NOTE — For the binary encoding of this node see Annex H.1.98.

9.4.2.111.2Functionality and semantics

The semantics of the VisibilitySensor node are specified in ISO/IEC 14772-1:1998, subclause 6.54.

9.4.2.112 WorldInfo

9.4.2.112.1Node interface

WorldInfo {
field MFString info []
field SFString title ""

}

NOTE — For the binary encoding of this node see Annex H.1.99.

9.4.2.112.2Functionality and semantics

The semantics of the WorldInfo node are specified in ISO/IEC 14772-1:1998, subclause 6.55.

10 Synchronization of Elementary Streams

10.1 Introduction

This subclause defines the tools to maintain temporal synchronisation within and among elementary streams. The
conceptual elements that are required for this purpose, namely time stamps and clock reference information, have
already been introduced in clause 7. The syntax and semantics to convey these elements to a receiving terminal
are embodied in the sync layer, specified in 10.2. This syntax is configurable to adapt to the needs of different
types of elementary streams. The required configuration information is specified in 10.2.3.

On the sync layer, an elementary stream is mapped into a sequence of packets, called an SL-packetized stream
(SPS). Packetization information has to be exchanged between the entity that generates an elementary stream and
the sync layer. This relation may be described by a conceptual elementary stream interface (ESI) between both
layers (see Annex L). The ESI is a concept to explain the information flow between layers, however, need not be
accessible in an implementation.

SL-packetized streams are conveyed through a delivery mechanism that is outside the scope of ISO/IEC 14496-1.
This delivery mechanism is only described in terms of the DMIF Application Interface (DAI) whose semantics are
specified in ISO/IEC 14496-6. It specifies the information that needs to be exchanged between the sync layer and
the delivery mechanism. The basic data transport feature that this delivery mechanism shall provide is the framing
of the data packets generated by the sync layer. The DAI is a reference point that need not be accessible in an
implementation. The required properties of the DAI are described in 10.3.

The items specified in this clause are depicted in Figure 28 below.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 227

DMIF Application Interface

Elementary Stream Interface

SL-Packetized Streams

Elementary Streams

Sync LayerSL SLSL SL.............

Figure 28 - The sync layer

10.2 Sync Layer

10.2.1 Overview

The sync layer (SL) specifies a syntax for the packetization of elementary streams into access units or parts
thereof. Such a packet is called SL packet. The sequence of SL packets resulting from one elementary stream is
called an SL-packetized stream (SPS). Access units are the only semantic entities at this layer that need to be
preserved from end to end. Their content is opaque. Access units are used as the basic unit for synchronisation.

An SL packet consists of an SL packet header and an SL packet payload. The SL packet header provides means
for continuity checking in case of data loss and carries the coded representation of the time stamps and associated
information. The detailed semantics of the time stamps are specified in 7.3 that defines the timing aspects of the
systems decoder model. The SL packet header is configurable as specified in 10.2.3. The SL packet header itself
is specified in 10.2.4.

An SL packet does not contain an indication of its length. Therefore, SL packets must be framed by a suitable lower
layer protocol using, e.g., the FlexMux tool specified in 12. Consequently, an SL-packetized stream is not a self-
contained data stream that can be stored or decoded without such framing.

An SL-packetized stream does not provide identification of the ES_ID associated to the elementary stream (see
8.6.5) in the SL packet header. This association must be conveyed through a stream map table using the
appropriate signalling means of the delivery mechanism.

10.2.2 SL Packet Specification

10.2.2.1 Syntax

class SL_Packet (SLConfigDescriptor SL) {
aligned(8) SL_PacketHeader slPacketHeader(SL);
aligned(8) SL_PacketPayload slPacketPayload;

}

10.2.2.2 Semantics

In order to properly parse an SL_Packet, it is required that the SLConfigDescriptor for the elementary stream
to which the SL_Packet belongs is known, since the SLConfigDescriptor conveys the configuration of the
syntax of the SL packet header.

slPacketHeader – an SL_PacketHeader element as specified in 10.2.4.

slPacketPayload – an SL_PacketPayload that contains an opaque payload.

10.2.3 SL Packet Header Configuration

10.2.3.1 Syntax

class SLConfigDescriptor extends BaseDescriptor : bit(8) tag=SLConfigDescrTag {
bit(8) predefined;
if (predefined==0) {

bit(1) useAccessUnitStartFlag;
bit(1) useAccessUnitEndFlag;

ISO/IEC 14496-1:2001(E)

228 © ISO/IEC 2001 – All rights reserved

bit(1) useRandomAccessPointFlag;
bit(1) hasRandomAccessUnitsOnlyFlag;
bit(1) usePaddingFlag;
bit(1) useTimeStampsFlag;
bit(1) useIdleFlag;
bit(1) durationFlag;
bit(32) timeStampResolution;
bit(32) OCRResolution;
bit(8) timeStampLength; // must be � 64
bit(8) OCRLength; // must be � 64
bit(8) AU_Length; // must be � 32
bit(8) instantBitrateLength;
bit(4) degradationPriorityLength;
bit(5) AU_seqNumLength; // must be � 16
bit(5) packetSeqNumLength; // must be � 16
bit(2) reserved=0b11;

}
if (durationFlag) {

bit(32) timeScale;
bit(16) accessUnitDuration;
bit(16) compositionUnitDuration;

}
if (!useTimeStampsFlag) {

bit(timeStampLength) startDecodingTimeStamp;
bit(timeStampLength) startCompositionTimeStamp;

}
}

10.2.3.2 Semantics

The SL packet header may be configured according to the needs of each individual elementary stream. Parameters
that can be selected include the presence, resolution and accuracy of time stamps and clock references. This
flexibility allows, for example, a low bitrate elementary stream to incur very little overhead on SL packet headers.

For each elementary stream the configuration is conveyed in an SLConfigDescriptor, which is part of the
associated ES_Descriptor within an object descriptor.

The configurable parameters in the SL packet header can be divided in two classes: those that apply to each SL
packet (e.g. OCR, sequenceNumber) and those that are strictly related to access units (e.g. time stamps,
accessUnitLength, instantBitrate, degradationPriority).

predefined – allows to default the values from a set of predefined parameter sets as detailed below.

NOTE — This table will be updated by amendments to ISO/IEC 14496 to include predefined configurations as required by future
profiles.

Table 51 - Overview of predefined SLConfigDescriptor values

Predefined field value Description

0x00 Custom
0x01 null SL packet header
0x02 Reserved for use in MP4 files
0x03 – 0xFF Reserved for ISO use

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 229

Table 52 – Detailed predefined SLConfigDescriptor values

Predefined field value 0x01 0x02
UseAccessUnitStartFlag 0 0
UseAccessUnitEndFlag 0 0
UseRandomAccessPointFlag 0 0
UsePaddingFlag 0 0
UseTimeStampsFlag 0 1
UseIdleFlag 0 0
DurationFlag - 0
TimeStampResolution 1000 -
OCRResolution - -
TimeStampLength 32 0
OCRlength - 0
AU_length 0 0
InstantBitrateLength - 0
DegradationPriorityLength 0 0
AU_seqNumLength 0 0
PacketSeqNumLength 0 0
TimeScale - -
AccessUnitDuration - -
CompositionUnitDuration - -
StartDecodingTimeStamp - -
StartCompositionTimeStamp - -

useAccessUnitStartFlag – indicates that the accessUnitStartFlag is present in each SL packet header of
this elementary stream.

useAccessUnitEndFlag – indicates that the accessUnitEndFlag is present in each SL packet header of this
elementary stream.

If neither useAccessUnitStartFlag nor useAccessUnitEndFlag are set this implies that each SL packet
corresponds to a complete access unit.

useRandomAccessPointFlag – indicates that the RandomAccessPointFlag is present in each SL packet
header of this elementary stream.

hasRandomAccessUnitsOnlyFlag – indicates that each SL packet corresponds to a random access point. In
that case the randomAccessPointFlag need not be used.

usePaddingFlag – indicates that the paddingFlag is present in each SL packet header of this elementary
stream.

useTimeStampsFlag – indicates that time stamps are used for synchronisation of this elementary stream. They
are conveyed in the SL packet headers. Otherwise, the parameters accessUnitRate, compositionUnitRate,
startDecodingTimeStamp and startCompositionTimeStamp conveyed in this SL packet header
configuration shall be used for synchronisation.

NOTE — The use of start time stamps and durations (useTimeStampsFlag=0) may only be feasible under some conditions,
including an error free environment. Random access is not easily possible.

useIdleFlag – indicates that idleFlag is used in this elementary stream.

durationFlag – indicates that the constant duration of access units and composition units for this elementary
stream is subsequently signaled.

timeStampResolution – is the resolution of the time stamps in clock ticks per second.

ISO/IEC 14496-1:2001(E)

230 © ISO/IEC 2001 – All rights reserved

OCRResolution – is the resolution of the object time base in cycles per second.

timeStampLength – is the length of the time stamp fields in SL packet headers. timeStampLength shall take
values between zero and 64 bit.

OCRlength – is the length of the objectClockReference field in SL packet headers. A length of zero indicates
that no objectClockReferences are present in this elementary stream. If OCRstreamFlag is set,
OCRLength shall be zero. Else OCRlength shall take values between zero and 64 bit.

AU_Length – is the length of the accessUnitLength fields in SL packet headers for this elementary stream.
AU_Length shall take values between zero and 32 bit.

instantBitrateLength – is the length of the instantBitrate field in SL packet headers for this elementary
stream.

degradationPriorityLength – is the length of the degradationPriority field in SL packet headers for
this elementary stream.

AU_seqNumLength – is the length of the AU_sequenceNumber field in SL packet headers for this elementary
stream.

packetSeqNumLength – is the length of the packetSequenceNumber field in SL packet headers for this
elementary stream.

timeScale – used to express the duration of access units and composition units. One second is evenly divided in
timeScale parts.

accessUnitDuration – the duration of an access unit is accessUnitDuration * 1/timeScale seconds.

compositionUnitDuration – the duration of a composition unit is compositionUnitDuration *
1/timeScale seconds.

startDecodingTimeStamp – conveys the time at which the first access unit of this elementary stream shall be
decoded. It is conveyed in the resolution specified by timeStampResolution.

startCompositionTimeStamp – conveys the time at which the composition unit corresponding to the first
access unit of this elementary stream shall be decoded. It is conveyed in the resolution specified by
timeStampResolution.

10.2.4 SL Packet Header Specification

10.2.4.1 Syntax

aligned(8) class SL_PacketHeader (SLConfigDescriptor SL) {
if (SL.useAccessUnitStartFlag)

bit(1) accessUnitStartFlag;
if (SL.useAccessUnitEndFlag)

bit(1) accessUnitEndFlag;
if (SL.OCRLength>0)

bit(1) OCRflag;
if (SL.useIdleFlag)

bit(1) idleFlag;
if (SL.usePaddingFlag)

bit(1) paddingFlag;
if (paddingFlag)

bit(3) paddingBits;

if (!idleFlag && (!paddingFlag || paddingBits!=0)) {
if (SL.packetSeqNumLength>0)

bit(SL.packetSeqNumLength) packetSequenceNumber;
if (SL.degradationPriorityLength>0)

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 231

bit(1) DegPrioflag;
if (DegPrioflag)

bit(SL.degradationPriorityLength) degradationPriority;
if (OCRflag)

bit(SL.OCRLength) objectClockReference;

if (accessUnitStartFlag) {
if (SL.useRandomAccessPointFlag)

bit(1) randomAccessPointFlag;
if (SL.AU_seqNumLength >0)

bit(SL.AU_seqNumLength) AU_sequenceNumber;
if (SL.useTimeStampsFlag) {

bit(1) decodingTimeStampFlag;
bit(1) compositionTimeStampFlag;

}
if (SL.instantBitrateLength>0)

bit(1) instantBitrateFlag;
if (decodingTimeStampFlag)

bit(SL.timeStampLength) decodingTimeStamp;
if (compositionTimeStampFlag)

bit(SL.timeStampLength) compositionTimeStamp;
if (SL.AU_Length > 0)

bit(SL.AU_Length) accessUnitLength;
if (instantBitrateFlag)

bit(SL.instantBitrateLength) instantBitrate;
}

}
}

10.2.4.2 Semantics

accessUnitStartFlag – when set to one indicates that the first byte of the payload of this SL packet is the start
of an access unit. If this syntax element is omitted from the SL packet header configuration its default value is
known from the previous SL packet with the following rule:

accessUnitStartFlag = (previous-SL packet has accessUnitEndFlag==1) ? 1 : 0.

accessUnitEndFlag – when set to one indicates that the last byte of the SL packet payload is the last byte of the
current access unit. If this syntax element is omitted from the SL packet header configuration its default value is
only known after reception of the subsequent SL packet with the following rule:

accessUnitEndFlag = (subsequent-SL packet has accessUnitStartFlag==1) ? 1 : 0.

If neither AccessUnitStartFlag nor AccessUnitEndFlag are configured into the SL packet header this
implies that each SL packet corresponds to a single access unit, hence both accessUnitStartFlag =
accessUnitEndFlag = 1.

NOTE — When the SL packet header is configured to use accessUnitStartFlag but neither accessUnitEndFlag nore
accessUnitLength, it is not guaranteed that the terminal can determine the end of an access unit before the subsequent one
is received.

OCRflag – when set to one indicates that an objectClockReference will follow. The default value for OCRflag
is zero.

idleFlag – indicates that this elementary stream will be idle (i.e., not produce data) for an undetermined period
of time. This flag may be used by the decoder to discriminate between deliberate and erroneous absence of
subsequent SL packets.

paddingFlag – indicates the presence of padding in this SL packet. The default value for paddingFlag is zero.

paddingBits – indicate the mode of padding to be used in this SL packet. The default value for paddingBits is
zero.

ISO/IEC 14496-1:2001(E)

232 © ISO/IEC 2001 – All rights reserved

If paddingFlag is set and paddingBits is zero, this indicates that the subsequent payload of this SL packet
consists of padding bytes only. accessUnitStartFlag, randomAccessPointFlag and OCRflag shall not
be set if paddingFlag is set and paddingBits is zero.

If paddingFlag is set and paddingBits is greater than zero, this indicates that the payload of this SL packet is
followed by paddingBits of zero stuffing bits for byte alignment of the payload.

packetSequenceNumber – if present, it shall be continuously incremented for each SL packet as a modulo
counter. A discontinuity at the decoder corresponds to one or more missing SL packets. In that case, an error shall
be signalled to the sync layer user. If this syntax element is omitted from the SL packet header configuration,
continuity checking by the sync layer cannot be performed for this elementary stream.

Duplication of SL packets: elementary streams that have a sequenceNumber field in their SL packet headers
may use duplication of SL packets for error resilience. The duplicated SL packet(s) shall immediately follow the
original. The packetSequenceNumber of duplicated SL packets shall have the same value and each byte of the
original SL packet shall be duplicated, with the exception of an objectClockReference field, if present, which
shall encode a valid value for the duplicated SL packet.

degPrioFlag - when set to one indicates that degradationPriority is present in this packet.

degradationPriority – indicates the importance of the payload of this SL packet. The streamPriority
defines the base priority of an ES. degradationPriority defines a decrease in priority for this SL packet
relative to the base priority. The priority for this SL packet is given by:

SL_PacketPriority = streamPriority – degradationPriority

degradationPriority remains at this value until its next occurrence. This indication may be for graceful
degradation by the decoder of this elementary stream as well as by the adaptor to a specific delivery layer instance.
The relative amount of complexity degradation among SL packets of different elementary streams increases as
SL_PacketPriority decreases.

objectClockReference – contains an Object Clock Reference time stamp. The OTB time value t is
reconstructed from this OCR time stamp according to the following formula:

t = (objectClockReference/SL.OCRResolution)+ k*(2SL.OCRLength/SL.OCRResolution)

where k is the number of times that the objectClockReference counter has wrapped around.

objectClockReference is only present in the SL packet header if OCRflag is set.

NOTE — It is possible to convey just an OCR value and no payload within an SL packet.

The following is the semantics of the syntax elements that are only present at the start of an access unit when
explicitly signaled by accessUnitStartFlag in the bitstream:

randomAccessPointFlag – when set to one indicates that random access to the content of this elementary
stream is possible here. randomAccessPointFlag shall only be set if accessUnitStartFlag is set. If this
syntax element is omitted from the SL packet header configuration, its default value is the value of
SLConfigDescriptor.hasRandomAccessUnitsOnlyFlag for this elementary stream.

AU_sequenceNumber – if present, it shall be continuously incremented for each access unit as a modulo
counter. A discontinuity at the decoder corresponds to one or more missing access units. In that case, an error
shall be signalled to the sync layer user. If this syntax element is omitted from the SL packet header configuration,
access unit continuity checking by the sync layer cannot be performed for this elementary stream.

Duplication of access units: elementary streams that have a AU_sequenceNumber field in their SL packet
headers may use duplication of access units. The duplicated access unit(s) shall immediately follow the original.
The AU_sequenceNumber of such access units shall have the same value and each byte of the original one or
more SL packets shall be duplicated, with the exception of an objectClockReference field, if present, which
shall encode a valid value for the duplicated access unit.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 233

decodingTimeStampFlag – indicates that a decoding time stamp is present in this packet.

compositionTimeStampFlag – indicates that a composition time stamp is present in this packet.

accessUnitLengthFlag – indicates that the length of this access unit is present in this packet.

instantBitrateFlag – indicates that an instantBitrate is present in this packet.

decodingTimeStamp – is a decoding time stamp as configured in the associated SLConfigDescriptor. The
decoding time td of this access unit is reconstructed from this decoding time stamp according to the formula:

td = (decodingTimeStamp/SL.timeStampResolution + k *
2SL.timeStampLength/SL.timeStampResolution

where k is the number of times that the decodingTimeStamp counter has wrapped around.

A decodingTimeStamp shall only be present if the decoding time is different from the composition time for this
access unit.

compositionTimeStamp – is a composition time stamp as configured in the associated
SLConfigDescriptor. The composition time tc of the first composition unit resulting from this access unit is
reconstructed from this composition time stamp according to the formula:

td = (compositionTimeStamp/SL.timeStampResolution + k *
2SL.timeStampLength/SL.timeStampResolution

where k is the number of times that the compositionTimeStamp counter has wrapped around.

accessUnitLength – is the length of the access unit in bytes. If this syntax element is not present or has the
value zero, the length of the access unit is unknown.

instantBitrate – is the instantaneous bit rate in bits per second of this elementary stream until the next
instantBitrate field is found.

10.2.5 Clock Reference Stream

An elementary stream of streamType = ClockReferenceStream may be declared by means of the object
descriptor. It is used for the sole purpose of conveying Object Clock Reference time stamps. Multiple elementary
streams in a name scope may make reference to such a ClockReferenceStream by means of the OCR_ES_ID
syntax element in the SLConfigDescriptor to avoid redundant transmission of Clock Reference information.
Note, however, that circular references between elementary streams using OCR_ES_ID are not permitted.

On the sync layer a ClockReferenceStream is realized by configuring the SL packet header syntax for this SL-
packetized stream such that only OCR values of the required OCRresolution and OCRlength are present in
the SL packet header.

There shall not be any SL packet payload present in an SL-packetized stream of streamType =
ClockReferenceStream.

In the DecoderConfigDescriptor for a clock reference stream ObjectTypeIndication shall be set to
'0xFF', hasRandomAccessUnitsOnlyFlag to one and bufferSizeDB to '0'.

The following indicates recommended values for the SLConfigDescriptor of a Clock Reference Stream:

Table 53 – SLConfigDescriptor parameter values for a ClockReferenceStream

useAccessUnitStartFlag 0
useAccessUnitEndFlag 0
useRandomAccessPointFlag 0
usePaddingFlag 0

ISO/IEC 14496-1:2001(E)

234 © ISO/IEC 2001 – All rights reserved

useTimeStampsFlag 0
useIdleFlag 0
durationFlag 0
timeStampResolution 0
timeStampLength 0
AU_length 0
degradationPriorityLength 0
AU_seqNumLength 0

10.2.6 Restrictions for elementary streams sharing the same object time base

While it is possible to share an object time base between multiple elementary streams through OCR_ES_ID, a
number of restrictions for the access to and processing of these elementary streams exist as follows:

1. When several elementary streams share a single object time base, the elementary streams without embedded
object clock reference information shall not be used by the player, even if accessible, until the elementary
stream carrying the object clock reference information becomes accessible (see 8.7.3 for the stream access
procedure).

2. If an elementary stream without embedded object clock reference information is made available to the terminal
at a later point in time than the elementary stream carrying the object clock reference information, it shall be
delivered in synchronization with the other stream(s). Note that this implies that such a stream might not start
playing from its beginning, depending on the current value of the object time base.

3. When an elementary stream carrying object clock reference information becomes unavailable or is otherwise
manipulated in its delivery (e.g., paused), all other elementary streams which use the same object time base
shall follow this behavior, i.e., become unavailable or be manipulated in the same way.

4. When an elementary stream without embedded object clock reference information becomes unavailable this
has no influence on the other elementary streams that share the same object time base.

10.2.7 Usage of configuration options for object clock reference and time stamp values

10.2.7.1 Resolution of ambiguity in object time base recovery

Due to the limited length of objectClockReference values these time stamps may be ambiguous. The OTB
time value can be reconstructed each time an objectClockReference is transmitted in the headers of an SL
packet according to the following formula:

tOTB_reconstructed=(objectClockReference/SL.OCRResolution)+k*(2SL.OCRLength/SL.OCRResolution)

with k being an integer value denoting the number of wrap-arounds. The resulting time base tOTB_reconstructed is
measured in seconds.

When the first objectClockReference for an elementary stream is acquired, the value k shall be set to one.
For each subsequent occurence of objectClockReference the value k is estimated as follows:

The terminal shall implement a mechanism to estimate the value of the object time base for any time instant.

Each time an objectClockReference is received, the current estimated value of the OTB tOTB_estimated shall be
sampled. Then, tOTB_rec(k) is evaluated for different values of k. The value k that minimizes the term | tOTB_estimated -
tOTB_rec(k)| shall be assumed to yield the correct value of tOTB_reconstructed. This value may be used as new input to the
object time base estimation mechanism.

The application shall ensure that this procedure yields an unambiguous value of k by selecting an appropriate
length and resolution of the objectClockReference element and a sufficiently high frequency of insertion of
objectClockReference values in the elementary stream. The choices for these values depend on the delivery
jitter for SL packets as well as the anticipated maximum drift between the clocks of the transmitting and receiving
terminal.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 235

10.2.7.2 Resolution of ambiguity in time stamp recovery

Due to the limited length of decodingTimeStamp and compositionTimeStamp values these time stamps may
become ambiguous according to the following formula:

tts(m)=(TimeStamp/SL.timeStampResolution)+m*(2SL.timeStampLength/SL.timeStampResolution)

with TimeStamp being either a decodingTimeStamp or a compositionTimeStamp and m being an integer
value denoting the number of wrap-arounds.

The correct value ttimestamp of the time stamp can be estimated as follows:

Each time a TimeStamp is received, the current estimated value of the OTB tOTB_estimated shall be sampled. tts(m) is
evaluated for different values of m. The value m that minimizes the term | tOTB_estimated – tts(m)| shall be assumed to
yield the correct value of ttimestamp.

The application may choose, separately for every individual elementary stream, the length and resolution of time
stamps so as to match its requirements on unambiguous positioning of time events. This choice depends on the
maximum time that an SL packet with a TimeStamp may be sent prior to the point in time indicated by the
TimeStamp as well as the required precision of temporal positioning.

10.2.7.3 Usage considerations for object clock references and time stamps

The time line of an object time base allows to discriminate two time instants separated by more than
1/SL.OCRResolution. OCRResolution should be chosen sufficiently high to match the accuracy needed by
the application to synchronize a set of elementary streams.

The decoding and composition time stamp allow to discriminate two time instants separated by more than
1/SL.timeStampResolution. timeStampResolution should be chosen sufficiently high to match the
accuracy needed by the application in terms of positioning of access units for a given elementary stream.

A TimeStampResolution higher than the OCRResolution will not achieve better discrimination between
events. If TimeStampResolution is lower than the OCRResolution, events for this specific stream cannot be
positioned with the maximum precision possible with this given OCRResolution.

The parameter OCRLength is signaled in the SL header configuration. 2SL.OCRLength/SL.OCRResolution is the
time interval covered by the objectClockReference counter before it wraps around. OCRLength should be
chosen sufficiently high to match the application needs for unambiguous positioning of time events from a set of
elementary streams.

When an application knows the value k defined in 10.2.7.1, the OTB time line is unambiguous for any time value.
When the application cannot reconstruct the k factor, as for example in any application that permits random access
without additional side information, the OTB time line is ambiguous modulo 2SL.OCRLength/SL.OCRResolution.
Therefore, any time stamp refering to this OTB is ambiguous. Therefore, any time stamp refering to this OTB is
ambiguous. It may, however, be considered unambiguous within an application environment through knowledge
about the maximum expected delivery jitter and constraints on the time by which an access unit can be sent prior to
its decoding time.

Note that elementary streams that choose the time interval 2SL.timeStampLength/SL.timeStampResolution higher
than 2SL.OCRLength/SL.OCRResolution can still only position time events unambiguously in the smaller of the two
intervals.

In cases, where k and m can not be estimated correctly, the buffer model may be violated, resulting in
unpredictable performance of the decoder.

EXAMPLE � Let’s assume an application that wants to synchronize elementary streams with a precision of 1 ms.
OCRResolution should be chosen equal to or higher than 1000 (the time between two successive ticks of the OCR is then
equal to 1ms). Let’s assume OCRResolution=2000.

The application assumes a drift between the STB and the OTB of 0.1% (i.e. 1ms every second). The clocks need therefore to be
adjusted at least every second (i.e. in the worst case, the clocks will have drifted 1ms which is the precision constraint). Let’s
assume that objectClockReference are sent every 1s.

ISO/IEC 14496-1:2001(E)

236 © ISO/IEC 2001 – All rights reserved

The application wants to have an unambiguous OTB time line of 24h without need to reconstruct the k factor. The OCRLength
is therefore chosen accordingly such that 2SL.OCRLength/SL.OCRResolution=24h.

Let’s assume now that the application wants to synchronize events within a single elementary stream with a precision of 10 ms.
TimeStampResolution should be chosen equal to or higher than 100 (the time between two successive ticks of the
TimeStamp is then equal to 10ms). Let’s assume TimeStampResolution=200.

The application wants to be able to send access units at maximum 1 minute ahead of their decoding or composition time. The
timeStampLength is therefore chosen as

2SL.timeStampLength/SL.timeStampResolution = 2 minutes.

10.3 DMIF Application Interface

The DMIF Application Interface is a conceptual interface that specifies which data need to be exchanged between
the sync layer and the delivery mechanism. Communication between the sync layer and the delivery mechanism
includes SL-packetized data as well as additional information to convey the length of each SL packet.

An implementation of ISO/IEC 14496-1 does not have to expose the DMIF Application Interface. A terminal
compliant with ISO/IEC 14496-1, however, shall have the functionality described by the DAI to be able to receive
the SL packets that constitute an SL-packetized stream. Specifically, the delivery mechanism below the sync layer
shall supply a method to frame or otherwise encode the length of the SL packets transported through it.

The DMIF Application Interface specified in ISO/IEC 14496-6 embodies a superset of the required data delivery
functionality. The DAI has data primitives to receive and send data, which include indication of the data size. With
this interface, each invocation of a DA_Data or a DA_DataCallback shall transfer one SL packet between the sync
layer and the delivery mechanism below.

11 MPEG-J

11.1 Introduction

MPEG-J is a flexible programmatic control system that represents an audio-visual session in a manner that allows
the session to adapt to the operating characteristics when presented at the terminal. Two important characteristics
are identified, first, the capability to allow graceful degradation under limited or time varying resources, and second,
the ability to respond to user interaction and provide enhanced multimedia functionality.

This part of the document specifies the format, delivery, interactions and behavior of Java byte code to the MPEG-4
player. More specifically:

� The format and delivery are normatively specified by specifying the MPEG-J stream format and the delivery
mechanism of such a stream (Java byte code and associated data).

� MPEG-J Session and the application lifecycle

� The interactions and behavior of byte code is normatively defined through the Java APIs.

11.1.1 Organization of this document

Subclause 0 gives an overall architecture of the MPEG-J system. MPEG-J Session start up is walked through in
subclause 11.3. The Delivery of MPEG-J data to the terminal is specified in subclause 11.4. Subclause 11.5
specifies the different categories of APIs that a program in the form of Java bytecode would use. Annex S is an
informative annex on starting the Java Virtual Machine. Annex V of this document gives normative javadoc listings
of the MPEG-J APIs in the word97 format, while Annex U gives the same in the HTML format. Annex T illustrates
the usage of MPEG-J APIs through a few examples.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 237

11.2 Architecture

11.2.1 Parametric versus Programmatic System

11.2.1.1 Overview of a Parametric MPEG-4 System

Figure 29 shows an example of the basic MPEG-4 player, a parametric system. MPEG-4 coded data from
storage/network goes through a DMIF and a demultiplex layer. In the demultiplex layer, FlexMux-PDU’s pass
through the Sync Layer resulting in unformatted SL-PDUs of each media type (coded audio, video, speech or facial
animation streams) which are then buffered in the respective decoder buffers and are offered to the corresponding
media decoders. Also, the SL-PDUs corresponding to scene description representation are input to the BIFS
decoder, the output of which goes to the Scene Graph. The output of the media decoders as well as Scene Graph
feeds the Compositor and the Renderer, which may respond to (very basic) user interaction such as mouse clicks
etc. The output of Compositor and Renderer is the scene for presentation.

Dec Buffer 2 Comp Buffer 2

D
e
M
u
x

Channel

Back
Channel

DMIF

Compositor
and Renderer

BIFS Dec Scene Graph

Dec Buffer 1

Dec Buffer n

Comp Buffer 1

Comp Buffer n

Media Dec 1

Media Dec 2

Media Dec n

Legend

control
data

Figure 29 - An MPEG-4 Player

11.2.2 The MPEG-J System

The MPEG-J is a programmatic system, which specifies interfaces for interoperation of an MPEG-4 media player
with Java code. By combining MPEG-4 media and safe executable code, content creators may embed complex
control mechanisms with their media data to intelligently manage the operation of the audio-visual session. Java
byte code is delivered to the MPEG-4 terminal as a separate elementary stream. There, it will be directed to the
MPEG-J run time environment, which includes a Java Virtual Machine, from where the MPEG-J program will have
access to the various components of the MPEG-4 player. Figure 30 shows an example of the components of the
MPEG-J operating environment.

ISO/IEC 14496-1:2001(E)

238 © ISO/IEC 2001 – All rights reserved

MPEG-J App

java….

java.io.

java.lang MPEG-J APIs

Java

Virtual

Machine

MPEG -J

Execution
Engine

Engine
Presentation

Application
Engine

Figure 30 - MPEG-J Software architecture

The software architecture of MPEG-J takes into consideration the resources available on the underlying platform.
The architecture involves the isolation of distinct components, the design of interface that reflects them, and the
characterization of interactions between components. Such components include:

Execution and Presentation Resources: It is assumed that the decoding and presenting resources are limited.
This component abstracts access to information on such static and dynamic resources in the player. It abstracts
notification during changes in such resources. Further, it provides for some minimal control of the same.

Decoders: This component abstracts the media decoders used to decode the received media streams. The
programmatic control and their manipulation to add extra functionality is also abstracted by this component.

Network Resources: Since the device receives media streams, this component abstracts the control of such
streams. It also abstracts the media pipeline, which transports and presents the stream.

Scene Graph: An MPEG-4 session has a Scene Graph which spatially and temporally represents audio visual
objects This component abstracts access and control of the scene graph.

The MPEG-J APIs specified in this document are the interfaces that reflect the above said components. A block
diagram of the MPEG-J player controlling an MPEG-4 player environment is shown in Figure 31. The lower half of
this drawing depicts the parametric MPEG-4 player of Figure 1 and is also referred to as the Presentation Engine.
The upper half of Figure 31 illustrates this the MPEG-J system controlling the Presentation Engine is also referred
to as the Application Engine.. The APIs shown in Figure 31 will be specified later in this document.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 239

D
E
M
U
X

MPEG-J
Application

Buffer

Scene Graph
Manager

Resource
Manager

I/O
Devices

Network
Manager

Class
Loader

DMIF Scene
Graph

BIFS
Decoder

Decoding
Buffers 1..n

Media
Decoders 1..n

Composition
Buffers 1..n

Compositor
and Renderer

Version 1
player

NW API SG API RM API

Legend

Interface

Control
data

Back
Channel

Channel

MD API

Figure 31 - Architecture of an MPEG-J enabled MPEG-4 System

11.3 MPEG-J Session

The MPEG-J session need not be started till it is clear that MPEG-J application programs will be received and are
to be executed. This can be recognized by the presence of one of more of MPEG-J Elementary streams.

11.3.1 Walkthrough of an MPEG-J Session Start-up

The MPEG-J session is initiated when the MPEG-4 player receives an MPEG-J Object Descriptor. The player takes
the following steps:

It opens the MPEG-J elementary stream via a DMIF channel. The MPEG-J Elementary stream is a SL packetized
stream, similar to all other MPEG-4 streams.

It delivers the Access Units to the class loader, which loads the classes.

The MPEG-J "decoder" receives the arriving Access Units (it "decodes" them). There can be more than one class
with an entry point within one MPEG-J stream. Each time such a class containing an entry-point is received (a "run"
method) execution will start there as a new thread.

11.3.2 Local and Remote MPEG-J Applications

MPEG-J application that uses the MPEG-J APIs to control the underlying MPEG-4 player can either be local or
remote. In the case of a remote application that is received in the MPEG-J Elementary Stream, it must implement
the MPEGlet interface. The lifecycle and the security model of such an application (MPEGlet) are described in the
next two sections. However, this does not apply to local applications.

11.3.3 MPEG-J Elementary Stream, Object Descriptor, and the Name Scope

11.3.3.1 MPEG-J Elementary Stream

The MPEG-J data comprising of class files or object data is streamed to the MPEG-J terminal as an MPEG-J
Elementary Stream. The class files and all the associated data in such a stream can be optionally packaged

ISO/IEC 14496-1:2001(E)

240 © ISO/IEC 2001 – All rights reserved

together. Further, the class files in the stream (irrespective of whether it is packaged or not, can be compressed.
The stream type of such an elementary stream is uniquely defined in Table 9 of this document.

11.3.3.2 MPEG-J Object Descriptor

The MPEG-J elementary stream and the application programs (MPEGlets) derive their scope and properties from
its Object Descriptor, which in turn is scoped by the initOD or the updateOD of the scene.

11.3.3.3 The Name Scope of an MPEG-J Stream

The Name Scope of the MPEGlets in an MPEG-J Stream is derived from the Object Descriptor of that MPEG-J
Elementary Stream. Similar to the node identifiers in the scene graph, all the identifiers used by an MPEGlet in an
Elementary Stream are interpreted within the name scope of that Elementary Stream and its Object Descriptor.
Therefore, all the rules that restrict the name scope of an inline scene apply to the MPEG-J session also.

The name scope of an MPEGlet is determined by the managers it receives from the MpegjTerminal. The MPEGlet
must pass a reference to itself in the constructor of the MpegjTerminal to identify the name scope used by the
managers. A local application may use the zero-argument constructor of the MpegjTerminal to imply that the
managers should use the root name scope.

11.3.4 Life Cycle of an MPEGlet

The life cycle of an MPEGlet is very similar to that of an applet. The MPEGlet interface has init(), run(), stop(), and
destroy() methods. When an MPEGlet is received in the bitstream, it is loaded after the Start-Loading Time Stamp
and before the Load-By Time Stamp as described in section 11.4.2. At the time instant specified by the Load-By
Time Stamp, the init() method of the MPEGlet is executed. This is where all the initializations for the MPEGlet are
typically done. After initializing the MPEGlet, the run method is called as a separate thread. Similar to a Java
applet, the stop() and destroy() methods are specified in the MPEGlet interface. If the MPEG-J player receives
another MPEGlet in the bitstream, it is initialized and started as a different thread.

11.3.5 Security Model of an MPEGlet

The security model of an MPEGlet is very similar to that of an applet. However, the security manager implemented
on the player can add or relax the security restrictions. By default all the security restrictions that apply to applets
apply to the MPEGlets too. These default security restrictions of an MPEGlet are:

� MPEGlets cannot load libraries or define native methods.

� MPEGlets can use only their own Java code, MPEG-J APIs, and the Java APIs the underlying platform pro-
vides.

� An MPEGlet cannot normally read or write files on the host that is executing it.

� An MPEGlet cannot start any program on the host that is executing it.

� An MPEGlet cannot read certain system properties except through the Terminal Capability APIs.

11.4 Delivery of MPEG-J Data

The MPEG-J application programs are delivered to the MPEG-4 player as MPEG-4 elementary streams defined in
this document. The MPEG-J data could be classes, serialized objects, or any associated data (in the case of
packaged form). Serialized objects and other auxiliary data are expected to accompany classes that have
knowledge about handling those objects.

11.4.1 Issues in Delivery of Byte Code

The MPEG-J data (classes or objects) must be delivered in a timely fashion to the player. A header is used along
with the class files or objects (serialized) to ensure this. This header, which is called the Java Stream Header, is
attached to each class file or object data before it is passed on to the Sync Layer. After packetization, any “time
aware” transport mechanism, like FlexMux, RTP, and even MPEG2 transport stream, can be used to transport the
data to the client side.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 241

11.4.1.1 Packet Loss

Packet loss in the case of Java byte code streaming will be a problem for the execution of the programs. The
possible options for dealing with data loss are:

Retransmission of the entire class at regular intervals in the absence of a back channel. This would also help to
facilitate random access points in the case of media. However, this may not be possible when there are a large
number of clients or when the class (or object) is huge, making retransmission prohibitive.

When a back channel is present this loss can be signaled to the server and the lost packet can be retransmitted.
There are a number of error resilient schemes, with built-in redundancy, available to recover from a partial loss of
data. For e.g., schemes like forward error correction can be used. However, currently none of these schemes are
mandated in an MPEG-J stream.

Packet Loss is not handled at the MPEG-J layer. It is assumed that the underlying transport layer is reliable enough
to ensure that there is no packet loss.

11.4.1.2 Security

To ensure the safety of the client, the byte code needs to be authentic. There are a number of security schemes
that can be used to ensure the authenticity of the byte code. Any of these schemes can be accommodated in an
IPMP Descriptor or an IPMP stream.

11.4.1.3 Compression

The Java byte code can be optionally compressed for bandwidth efficiency using the Zip compression mechanism.
Files can be both compressed and uncompressed using the java.util.zip package. The underlying compression
technique in Zip is ZLIB.2)

11.4.1.4 Class Dependency

If a given class depends on other classes, the classes that it depends on have to be loaded before the dependent
class can be loaded. Similarly before an object can be instantiated, the class of which it is an instance must be
loaded first. One way of doing this would be using a packaging scheme e.g. JAR to package all the interdependent
class files together. However, this may not always be the optimal solution, especially in lossy transport channels as
a single packet loss could result in a loss of the entire package. As an alternative a simple class-dependency
mechanism is provided in the Java Stream header below. In this mechanism all the dependent classes of a
particular class are listed in the header of that class file. It is required that those classes need to be loaded before
this class can be loaded.

Two time stamps will be used in the next subsection, one signaling a time after which a particular class can be
loaded (also called Start-Loading Time Stamp), and the second signaling the time by which the class is required to
be loaded (Load-By Time Stamp). The Start-Loading Time Stamp of a class that depends on a number of other
classes has to be later than the Load-By Time Stamps of all the classes it depends on. These two timestamps
together aid in ensuring that the dependencies between classes are met.

11.4.2 Semantics of Time Stamps in MPEG-J

The Decoding Time Stamp (DTS) and Composition Time Stamp (CTS) defined in the SL header in the Sync Layer
will be used for the timely delivery of the MPEG-J Elementary Stream. The semantics of these timestamps for the
MPEG-J Elementary Stream is defined in this section.

Start-Loading Time Stamp: This is used to signal the time instant at which the process of loading a class can be
started. This time stamp is essential to avoid name space and resource conflicts. This timestamp also ensures that
the resources for loading the class would be available at the terminal. In addition, this time stamp allows the
terminal to receive classes ahead of the time at which they need to be loaded. This is carried in the SL Header as
the Decoding Time stamp (DTS).

2) More information about ZLIB can be found at the ZLIB Home Page http://www.gzip.org/zlib:. ZLIB is the underlying
compression mechanism used by both gzip and zip.

ISO/IEC 14496-1:2001(E)

242 © ISO/IEC 2001 – All rights reserved

Each class is loaded by calling the loadClass(className) method of the class loader, where className is the
name of the class. The name of class does not include the .class suffix.

Load-By Time Stamp: This time stamp is used to signal the time instant by which a class should be loaded at the
MPEG-J terminal. If the received class implements the MPEGlet interface, it will also be initialized at this instant of
time (by executing the init() method). After initialization, the MPEGlet would be run (by executing the run() method)
as a separate thread at this time instant. This time stamp is carried in the SL Header as the Composition Time
Stamp (CTS).

The above two time stamps define a window in time between which a given class shall be loaded. As described in
the previous section this window helps in resolving the class dependencies between classes. When the window
between these two timestamps are made large enough the problems due to non-uniform loading times on different
client terminals can be avoided. Again, if the channel is lossy, this window can be made large enough to allow re-
transmissions, if possible. With this mechanism the order in which the classes need to be loaded can be different
from the order in which the classes arrive on the terminal.

11.4.3 Streaming Header

11.4.3.1 Description

Each class or a packaged set constitutes a separate Access Unit.

The payload can be classes (compressed or uncompressed) or instances as serialized objects.

Classes are identified by an ID (unique to the session). This ID can be used to identify classes when it is received
multiple times. The ID of a class is also used to identify all its instances in the case of serialized objects. Java class
names are used as IDs. Since these are variable length strings, the length of the string is also included in the
header. The combination of the Class ID and its length (16 bits) are padded till the next 32 bit boundary. When
multiple classes are packaged together, the name of the packaged file is used as the ID. There is a list of required
classes, whose Load-By time need to precede the Start-Loading time of a class that requires it. A 13-bit number is
used to specify the number of classes that are required before loading/instantiating the class/object data. Each
required class is specified by its Class IDs and its length. In the packaged case, the list of required classes specify
the classes in the archive that have to be loaded. Those files in the archive that are not listed as required classes
need not be loaded by the terminal by the DTS or Load-By time.

11.4.3.2 JavaStreamHeader

11.4.3.2.1 Syntax

aligned(32) class JavaStreamHeader {
bit(2) version;
bit(1) isClassFlag;
bit(13) numReqClasses;
bit(1) isPackaged ;
bit(3) compressionScheme;
bit(12) reserved;
JavaClassID classID;

JavaClassID reqClassID[numReqClasses];

}

11.4.3.2.2 Semantics

version - Version number. This is currently 00.

isClassFlag – If set to 1, the payload represents a class. If set to zero, the payload does not represent a class,
but instead represents content accessible to the MPEGlet as a ClassLoader resource. This content can be a java
object or any other data that is useful to the MPEGlet. The MPEGlet may obtain a URL to access the content by
calling the getResource() method of the ClassLoader with the JavaClassID as the parameter. In addition, if
isClassFlag is set to 1 but isPackaged indicates a package, the Zip archive may contain content that does not
represent class data. Such data shall be accessible by calling getResource() of the ClassLoader with the
element name as the parameter.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 243

numReqClasses - Number of classes that are required before loading this class (or before instantiation, in case of
objects).

isPackaged – If set to 0, this indicates a single class file and not a package. 1 indicates that multiple class files
are packaged together using Zip.

compressionScheme - To specify the type of compression scheme used (000 for objects, when no compression
is used, 001 when the contents are compressed using Zip, 010-111 reserved for future use by ISO).

reserved – Bits reserved by ISO for future use. These bits should be 0xFFF.

classID – Information to identify this class or package. The definition of its type JavaClassID is defined in the next
subsection.

reqClassID[n] – Information to identify the n required classes.

11.4.3.3 JavaClassID

11.4.3.3.1 Syntax

aligned(32) class JavaClassID {
bit(16) length;
bit(8 * length) ID;

}

11.4.3.3.2 Semantics

length - Number of bytes for the ID.

ID - Variable length string that identifies the class. The string is padded, so that the length of the combination of ID
length field and the ID is multiple of 32 bits.

11.5 MPEG-J API List

11.5.1 Packages for MPEG-J from MPEG

Packages are a means to organize the implementation of APIs. The MPEG-J APIs are organized as the following
packages:

org.iso.mpeg.mpegj.mpegj

org.iso.mpeg.mpegj.scene

org.iso.mpeg.mpegj.resource

org.iso.mpeg.mpegj.network

org.iso.mpeg.mpegj.decoder

ISO/IEC 14496-1:2001(E)

244 © ISO/IEC 2001 – All rights reserved

Table 54 - Categories of APIs

No API Category and main
classes/interfaces

Explanation

1.
Scene
Scene Graph Means by which MPEG-J applications access and manipulate the scene graph

2.
Resource

ResourceManager
CapabilityManager

Centralized facility for managing system resources
Access to the static and dynamic capabilities of the terminal.

3.
Media Decoders

MPDecoder Access and control to the decoders used to decode the audio-visual objects.

4.
Network

NetworkManager Access and control of the network components of the MPEG-4 player.

5. Section Filtering and
Service Information

MPEG-2 Stream specific APIs defined in Part 9 of DAVIC 1.4.1 specification. This
covers Section Filtering, Service Information, Resource Notification, and MPEG
Component APIs.

11.5.2 MPEG-J API (org.iso.mpeg.mpegj)

The MPEG-J Terminal class provides the information about the managers that are implemented in the terminal.
Each MPEGlet or application instantiates a new MpegjTerminal once it is loaded. This has methods to gain access
to all the managers, viz., SceneManager, ResourceManager, and the NetworkManager.

Although an MPEG-J Terminal is instantiated by each MPEGlet, it should not be interpreted as creating a new
terminal for each MPEGlet. A MPEG-J Terminal implementation gives the appropriate managers to the MPEGlet.
The terminal, along with the managers, controls the environment (for e.g. the name scope) of the MPEGlet.

The ObjectDescriptor, the ESDescriptor, and the DecoderConfigDescriptor interfaces are also part of the
org.iso.mpeg.mpeg.mpegj package. These interfaces provide access and abstraction to the above descriptors.
Information about nodes, elementary streams, their types, and the decoder information can be obtained used these
APIs.

11.5.3 Scene API

The SceneGraph API provides a mechanism by which MPEG-J applications access and manipulate the scene
used for composition by the BIFS player. It is a low-level interface, allowing the MPEG-J application to monitor
events in the scene, and modify the scene tree in a programmatic way. Nodes may also be created and
manipulated, but only the fields of nodes that have been instanced with DEF are accessible to the MPEG-J
application.

This API has been designed to serve as the lowest layer of the MPEG-J scene graph manager. A terminal designer
would only need to implement this package to have MPEG-J bindings to the native scene. Other class libraries
could be specified entirely in Java to allow higher-level access to and control of the scene. Those libraries could be
supplied as packages that run above this org.iso.mpeg.mpegj.scene package, allowing their selection to be
determined based on a profile or level or could sent to the terminal in the bit stream.

11.5.3.1 Events

Events in the BIFS scene graph are identified by the two interface classes EventIn and EventOut. The
EventOutListener class can monitor them.

11.5.3.1.1 EventIn

The EventIn interface class contains an interface class definition for each node type defined in MPEG-4 systems.
These definitions enumerate all of the exposedField and eventIn field types in the node, in the order they are
defined in this document.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 245

11.5.3.1.2 EventOut

Likewise, the EventOut interface class contains an interface class definition for each node type defined in MPEG-4
systems. These definitions enumerate all of the exposedField and eventOut field types in the node, in the order
they are defined in this document.

11.5.3.1.3 EventOutListener

The Scene Graph APIs also provide an EventOutListener interface, which can be used by the scene graph
manager to identify a field value change when an eventOut is triggered.

11.5.3.2 Field Values

The scene graph APIs provide an interface for tagging objects that can return a field value. Similar to VRML, two
general field types are supported. SFField is used for single value fields and MFField is used for multiple value
fields. The supported SFField types are extended directly from the FieldValue interface, while the Multiple field
types are extended through the MFFieldValue interface.

11.5.3.3 Scene Management

The following interfaces are used to facilitate programmatic control over the MPEG-4 terminal’s native scene.

11.5.3.3.1 SceneManager

The SceneManager interface is the interface that allows access to the native scene. It contains methods for adding
and removing a SceneListener. In order to access the BIFS scene graph, the SceneManager requires an instance
of the scene, which it obtains through notification on a SceneListener instance. This method is the only normative
way for an MPEG-J application to obtain a scene instance.

11.5.3.3.2 SceneListener

The SceneListener contains a notify method which can be called by the SceneManager when the BIFS scene has
changed. The notify() method contains arguments to indicate the nature of the change, and an updated Scene
instance. Currently three states can be passed through the scene listener. They indicate that the scene is ready, it
has been replaced, or it has been removed.

11.5.3.3.2.1 Scene

The Scene interface acts as a proxy for the BIFS scene. It contains a getNode() method, which returns a Node
proxy for the desired node in the scene. If the requested node does not exist it throws a BadParameterException,
and if the scene is no longer valid it throws an InvalidSceneException.

11.5.3.3.2.2 Node

The Node interface acts as a proxy for a BIFS node in the scene graph. As previously mentioned, only nodes that
have been instanced by a DEF identifier are available to the MPEG-J application. Three methods are available in
the Node proxy for monitoring output events. The getEventOut() method reads the current value of an eventOut
or exposedField of this node. There are also methods for adding and removing an EventOutListener. All three of
these methods throw a BadParameterException if they fail. The fourth method contained in the Node interface is
the sendEventIn method. This is the only method available to the application for modifying the BIFS scene. It
updates the value of the eventIn or exposedField of the node. It is a synchronous call that will not return until the
field is updated in the scene. The fifth method contained in the Node interface is the getNodeType() method.
This method returns an integer identifying the type of the node (such as Transform). The node type constants are
defined in the NodeType interface. All of the methods contained in the Node interface throw an
InvalidNodeException if the node is no longer valid (if it has been replaced or deleted).

11.5.3.3.2.3 NodeValue

The NodeValue interface is used to represent the values of SFNode and MFNode fields. There are three types of
NodeValue references:

� The getNode()method of the Scene interface returns a Node that acts as a proxy for a node in the BIFS
scene. This object also implements the NodeValue interface.

ISO/IEC 14496-1:2001(E)

246 © ISO/IEC 2001 – All rights reserved

� The getEventOut() method of the Node interface may return a SFNodeFieldValue. Its getSFNodeValue
method returns a NodeValue that acts as a proxy for a child node in the BIFS scene. However, unlike the proxy
returned by the Scene’s getNode method, this proxy does not provide any way to access or modify the child
node.

� The NewNode interface extends NodeValue to support creation of new nodes. This interface has methods that
describe the structure of the new node.

� Sending an eventIn to a SFNode field (such as the geometry field of a Shape node) replaces a sub-graph of a
BIFS scene. The value sent to the eventIn may be any one of the three types of NodeValue references
enumerated above. If the value is a proxy for a node or child node, then the SFNode field value becomes a
reference to the existing node (equivalent to making a USE reference to the node). If the object implements the
NewNode interface, then a new node is created. The node type and DEF identifier of the new node are
determined by calling the getNodeType()and getNodeID()methods (the node is not given a DEF identifier
if the getNodeID()method returns zero). If the DEF identifier is already in use within the scene, then a
BadParameterException shall be thrown. Each field and exposedField of the node shall be initialized to the
value returned by calling getField()with the appropriate field defID (or the field’s default value if null is
returned). This algorithm is applied recursively in the case that the field or exposedField is a SFNode or
MFNode. The recursion may form a directed acyclic graph if the same object is returned more than once.

11.5.4 Resource API

Program execution may be contingent upon the terminal configuration and its capabilities. An MPEG-J program
may need to be aware of its environment, so that it is able to adapt its own execution and the execution of the
various components, as they may be configured and running in the MPEG-4 terminal. The APIs in the
org.iso.mpeg.mpegj.resource package can be used to monitor the system resources, to listen to exceptional
conditions through the event mechanism, and handle such eventualities. The resource package helps the MPEG-4
session to adapt itself to varying terminal resources. The main components of the resource package are the
Resource Manager and the event model, capability manager to monitor dynamic and static capabilities of the
terminal and the terminal profile manager.

11.5.4.1 Resource Manager

The resource manager API is used for regulation of performance. This provides a centralized facility for managing
resources. It is a collection of a number of classes and interfaces summarized as follows.

Interfaces Classes Interfaces
Renderer
ResourceManager

MPDecoderEventGenerator MPDecoderMediaEvents MPDecoderMediaListener
MPRendererEventGenerator MPRendererMediaEvents MPRendererMediaListener

11.5.4.1.1 Overview of the Event Model

For each decoder the Resource Manager would have an instantiation of a class that implements MPDecoder or a
sub-interface. These decoder instantiations generate the different defined events for different conditions in the
terminal. The resource manager implementation can handle events if necessary in addition to the event handlers in
the application (the order of which is left to the implementation). The MPEG-J application can receive the Event
handlers as byte code in the bit stream. The Renderer optionally provides notification of exceptional conditions
(during rendering) and notification of frame completion when an application registers with it for this.

Apart from implicitly specifying the above event model the Resource Manager interface also provides access to the
capability manager, decoders and their priorities. Given a node in the scene graph, this interface provides access
to the decoder associated with that node (through its OD and ESID). It also facilitates setting and getting decoder
priorities. It also enables changing a decoder associated with a node.

11.5.4.2 Capability Manager

The Terminal Capability API is responsible for providing access to dynamic and static terminal resources. The
separation between static and dynamic terminal capabilities has been reflected in the API (the StaticCapability and
the DynamicCapability interfaces). Because applications need to be notified when terminal capabilities change, an
additional interface named TerminalObserver has been defined. The CapabilityManager class implements all these
interfaces. This CapabilityManager handles the terminal capabilities. It is responsible to register/deregister and

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 247

get/set capabilities. This design solution allows developers to dynamically handle an unlimited number of
capabilities without the burden to manage them directly.

In order for the audio-visual session to respond gracefully to these situations, MPEG-J provides mechanisms for an
MPEG-J session object to catch dynamic changes to terminal information and modify its behavior. Upon
initialization, an MPEG-J session object may subscribe with the CapabilityManager object to receive notification of
changes to dynamic terminal information that is important to that particular audio-visual session. If such information
does change during an audio-visual session, the CapabilityManager will notify the MPEG-J session of the change
through standardized interfaces. Then the MPEG-J session may respond in the manner prescribed by the content
creator. For example, consider an MPEG-J scene representing an MPEG-4 video sequence of a newscaster and a
background news clip coded as separate video objects. The content creator might desire to freeze the news clip
whenever the actual display frame rate is too slow, rather than sacrificing the quality of the newscaster in the
foreground. The content creator can specify this behavior programmatically within the media by subscribing to
notifications of frame-rate changes from the terminal. Then, when frame rate drops significantly due, for example,
to limited CPU capacity, the media object can dynamically adapt and not continually decode the news clip and
further degrade the presentation performance.

On some platforms and scenarios, it may be impossible for the terminal to guarantee the constant availability of all
of its resources. For example:

� A wireless multimedia unit may encounter widely varying communication capacities, including intermittent
connections.

� A general-purpose computer may experience varying load factors as other processes run on the system.

� Audio-visual sessions with content generated at multiple sources may cause resource contention on the
terminal.

Due to the large and increasing number of terminal capabilities all the capability that a terminal support is not
defined. The Capability class is used to handle terminal capability in a generic way. Each terminal capability is
mapped to a subclass of Capability and then managed by the CapabilityManager class. In this way the
CapabilityManager class is able to handle a variable number/type of capabilities without the need to modify/extend
it hence to modify the applications that use the CapabilityManager class.

Capability values are not mapped to a specific type such as String but they are handled as generic Java Objects.
Through the Java Reflection API (java.lang.reflect) every type (possibly added at runtime and not at compile time)
can be handled. This facility allows developers to use real types instead of flat types while maintaining the
Capability class generic.

11.5.4.3 Terminal Profile Manager

The purpose of the Profile API is to provide a facility that allows applications to find out what is the profile/level
supported by the terminal where the application runs. Once an application knows the terminal profile/level it can
decide how to behave and what capabilities can operate in the terminal environment. The TerminalProfileManager
class allows applications to query the terminal profiles.

11.5.5 Decoder API

The Decoder API facilitate basic control of all the installed decoders in an MPEG session. The decoder associated
with a specific node can be queried through the Resource Manager interface. The MPDecoder is an interface that
abstracts the most generic decoder.

The MPDecoder APIs allow starting, stopping, pausing, and resuming a decoder. It also facilitates attaching and
detaching streams from a decoder using the ESDescriptor. The Descriptor of the currently attached stream can
also be obtained.

The decoder attached to a specific node and ESID can be changed with another decoder of the same type. The
Resource Manager facilitates getting a list of available decoders of a specific type and also changing one decoder
for another, provided they are of the same type.

ISO/IEC 14496-1:2001(E)

248 © ISO/IEC 2001 – All rights reserved

11.5.6 Net API

The Network APIs intend to allow the control of the network component of the MPEG-4 player. Through these APIs
Java applications can interact with network entities. Due to level of abstraction provided by the MPEG-J Network
APIs (and, in turn provided by the DMIF interface), the applications can be unaware of the details of the network
connections being used (LAN, WAN, Broadcast, local disks, etc.,) to access to a service.

MPEG-J network APIs do not allow full arbitrary usage of the DMIF and Sync Layers to avoid architectural
inconsistencies and duplication of tools.

The functionality provided by the current API can be split into two major groups:

Network query. The ability to perform requests to the network module in order to get statistical information about
the DMIF resources used by the MPEG-4 player has been recognised as an important feature.

Channels control. A simple channel control mechanism is also provided. Using this feature an MPEG-J
application can temporarily disable or enable existing Elementary Stream channels without any negative
influence on the rest of the player. This feature fits with one of the general requirements of MPEG-J: the
capability to allow graceful degradation under limited or time varying resources.

11.5.7 Section Filter and Service Information APIs

This subclause refers to APIs normatively in the DAVIC 1.4.1 Part 9, specification. These APIs are Section
Filtering, Service Information, Resource Notification, and MPEG Component APIs, which are further described in
this section. A compliant MPEG-J Terminal apart from implementing the APIs defined in this document shall also
implement the APIs referred normatively in this section.

11.5.7.1 The Service Information (SI) API

This API (org.davic.net.dvb.si) allows inter-operable applications to access service information data from MPEG-2
streams. One example of such applications would be electronic program guides. This API is a relatively high level
API allowing applications to access information from the SI tables in a clean and efficient way. The specification of
this API is defined by ETSI DI/ MTA-01074, entitled Application Programming Interface (API) for DAVIC Service
Information.

11.5.7.2 The MPEG-2 Section Filter API

The objective of this API (org.davic.mpeg.sections) is to provide a general mechanism allowing access to data held
in MPEG-2 private sections. This provides a mechanism for inter-operable access to data, which is too specialized
to be supported by the high level DVB-SI API or which is not actually related to service information. The definition
of the MPEG-2 section filter API is in Annex E of DAVIC 1.4 Part 9 specification. The API definition does not specify
the lengths of the section filtering patterns. For those methods which do not specify an offset, the length of the
section filtering pattern arrays shall be 8 with their mapping on to the section header as described in the last section
of Annex E. For those methods, which include an offset, the length of the section filtering pattern arrays shall be 7.
The API definition does not specify the efficiency or effectiveness of the section filtering process. If filtering is
happening with filters set beyond the 10th byte of the total section, filtering throughputs must be supported as in
DAVIC part 10, section 115.3 with the restriction that support for filtered throughputs of more than 2 Mbits/second is
not mandatory.

11.5.7.3 The Resource Notification API

The section filter API uses a resource notification API in the org.davic.resources package. This API provides a
standard mechanism for applications to register interest in scarce resources and to be notified of changes in those
resources or removal of those resources by the environment. The description of this API is in Annex F of DAVIC
1.4 Part 9: 1998 Information Representation.

11.5.7.4 The MPEG Component API

Various MPEG related APIs use an MPEG component API in the org.davic.mpeg.sections package. This API
provides a standard way of referring to standard MPEG features. The definition of the MPEG component API is in
Annex G of DAVIC 1.4 Part 9 specification.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 249

11.5.8 Detailed API Listing

The normative detailed API listing can be found in the Annexes to this document:

Annex U (normative): The HTML files (javadocs) of all the APIs defined in this document along with the necessary
images in gif format.

Annex V (normative): Integrated API document (javadocs) of all the html files. This contains the API specification
of all the APIs defined in this document.

12 Multiplexing of Elementary Streams

12.1 Introduction

Elementary stream data encapsulated in SL-packetized streams are sent/received through the DMIF Application
Interface, as specified in clause 10. Multiplexing procedures and the architecture of the delivery protocol layers are
outside the scope of ISO/IEC 14496-1. However, care has been taken to define the sync layer syntax and
semantics such that SL-packetized streams can be easily embedded in various transport protocol stacks.

The analysis of existing transport protocol stacks has shown that, for stacks with fixed length packets (e.g.,
MPEG-2 Transport Stream) or with high multiplexing overhead (e.g., RTP/UDP/IP), it may be advantageous to
have a generic, low complexity multiplexing tool that allows interleaving of data with low overhead and low delay.
This is particularly important for low bit rate applications. Such a multiplex tool is specified in this clause. Its use is
optional.

12.2 FlexMux Tool

12.2.1 Overview

The FlexMux tool is a flexible multiplexer that accommodates interleaving of SL-packetized streams with varying
instantaneous bit rate. The basic data entity of the FlexMux is a FlexMux packet, which has a variable length. One
or more SL packets are embedded in a FlexMux packet as specified in detail in the remainder of this clause. The
FlexMux tool provides identification of SL packets originating from different elementary streams by means of
FlexMux Channel numbers. Each SL-packetized stream is mapped into one FlexMux Channel. FlexMux packets
with data from different SL-packetized streams can therefore be arbitrarily interleaved. The sequence of FlexMux
packets that are interleaved into one stream are called a FlexMux Stream.

A FlexMux Stream retrieved from storage or transmission may be parsed as a single data stream. However,
framing of FlexMux packets by the underlying layer is required for random access or error recovery. There is no
requirement to frame each individual FlexMux packet. The FlexMux also requires reliable error detection by the
underlying layer. This design has been chosen acknowledging the fact that framing and error detection
mechanisms are in many cases provided by the transport protocol stack below the FlexMux.

Two different modes of operation of the FlexMux providing different features and complexity are defined. They are
called Simple Mode and MuxCode Mode. A FlexMux Stream may contain an arbitrary mixture of FlexMux packets
using either Simple Mode or MuxCode Mode. The syntax and semantics of both modes are specified below.

The delivery timing of the FlexMux Stream can be conveyed by means of FlexMux clock reference time stamps.
This functionality may be used to establish a multiplex buffer model on the delivery layer. Both the time stamps and
the MuxCode Mode require out-of-band configuration prior to usage.

12.2.2 Simple Mode

In the simple mode one SL packet is encapsulated in one FlexMux packet and tagged by an index which is equal
to the FlexMux Channel number as indicated in Figure 32. This mode does not require any configuration or
maintenance of state by the receiving terminal.

ISO/IEC 14496-1:2001(E)

250 © ISO/IEC 2001 – All rights reserved

FlexMux-PDU

PayloadHeader

SL-PDUlengthindex

Figure 32 - Structure of FlexMux packet in simple mode

12.2.3 MuxCode mode

In the MuxCode mode one or more SL packets are encapsulated in one FlexMux packet as indicated in Figure 33.
This mode requires configuration and maintenance of state by the receiving terminal. The configuration describes
how FlexMux packets are shared between multiple SL packets. In this mode the index value is used to
dereference configuration information that defines the allocation of the FlexMux packet payload to different
FlexMux Channels.

.......SL-PDUSL-PDUversion SL-PDUlengthindex

.......H PayloadH Payld H Payload

FlexMux-PDU

Figure 33 - Structure of FlexMux packet in MuxCode mode

12.2.4 FlexMux packet specification

12.2.4.1 Syntax

class FlexMuxPacket (MuxCodeTableEntry mct[], FlexMuxTimingDescriptor FM) {
unsigned int(8) index;
bit(8) length;
if (index<238) {

SL_Packet sPayload;
} else if (index == 238) {

bit(FM.FCR_Length) fmxClockReference;
bit(FM.fmxRateLength) fmxRate;

} else if (index == 239) {
bit(8) stuffing[length];

} else {
bit(4) version;
const bit(4) reserved=0b1111;
multiple_SL_Packet mPayload(mct[index-240]);

}
}

12.2.4.2 Semantics

The two modes of the FlexMux, Simple Mode and MuxCode Mode as well as special time stamp and stuffing
packets are distinguished by the value of index as specified below.

index – if index is smaller than 238 then

FlexMux Channel = index

This range of values corresponds to the Simple Mode.

An index value of 238 indicates a FlexMux packet with clock reference information.

An index value of 239 indicates a FlexMux packet with stuffing.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 251

An index value in the range of 240 to 255 (inclusive) indicates that the MuxCode Mode is used and a MuxCode is
referenced as

MuxCode = index - 240

MuxCode is used to associate the payload to FlexMux Channels as described in the Section 12.2.3.

NOTE — Although the number of FlexMux Channels is limited to 256, the use of multiple FlexMux streams allows virtually any
number of elementary streams to be provided to the terminal.

length – the length of the FlexMux packet payload in bytes. This is equal to the length of the single
encapsulated SL packet in Simple Mode and to the total length of the multiple encapsulated SL packets in
MuxCode Mode.

version – indicates the current version of the MuxCodeTableEntry referenced by MuxCode. Version is used
for error resilience purposes. If this version does not match the version of the referenced MuxCodeTableEntry
that has most recently been received, the FlexMux packet cannot be parsed. The implementation is free to either
wait until the required version of MuxCodeTableEntry becomes available or to discard the FlexMux packet.

sPayload – a single SL packet (Simple Mode).

mPayload – one or more SL packets that are identified using the specification of the associated
MuxCodeTableEntry[index-240] (MuxCode Mode).

fmxClockReference – contains a Clock Reference time stamp for the FlexMux stream. The OTB time value t is
reconstructed from this Clock Reference time stamp according to the following formula:

t =(fmxClockReference/FM.FCRResolution)+ k*(2FM.FCRLength /FM.FCRResolution)

where k is the number of times that the fmxClockReference counter has wrapped around.

fmxRate - is the instant rate at which data from this FlexMux stream is delivered to the associated FlexMux
buffers. The rate defined by fmxRate applies to all bytes in the FlexMux Clock Reference
channel packet and each following FlexMux packet until the occurrence of the next
FlexMux Clock Reference channel packet.

stuffing – one or more stuffing bytes that shall be discarded by the demultiplexer.

12.2.5 Configuration and usage of MuxCode Mode

12.2.5.1 Syntax

aligned(8) class MuxCodeTableEntry {
int i, k;
bit(8) length;
bit(4) MuxCode;
bit(4) version;
bit(8) substructureCount;
for (i=0; i<substructureCount; i++) {

bit(5) slotCount;
bit(3) repetitionCount;
for (k=0; k<slotCount; k++){

bit(8) flexMuxChannel[[i]][[k]];
bit(8) numberOfBytes[[i]][[k]];

}
}

}

12.2.5.2 Semantics

The configuration for MuxCode Mode is signaled by MuxCodeTableEntry messages. The transport of the
MuxCodeTableEntry shall be defined during the design of the transport protocol stack that makes use of the

ISO/IEC 14496-1:2001(E)

252 © ISO/IEC 2001 – All rights reserved

FlexMux tool. Part 6 of this Final Committee Draft of International Standard defines a method to convey this
information using the DN_TransmuxConfig primitive.

The basic requirement for the transport of the configuration information is that data arrives reliably in a timely
manner. However, no specific performance bounds are required for this control channel since version numbers
allow to detect FlexMux packets that cannot currently be decoded and, hence, trigger suitable action in the
receiving terminal.

length – the length in bytes of the remainder of the MuxCodeTableEntry following the length element.

MuxCode – the number through which this MuxCode table entry is referenced.

version – indicates the version of the MuxCodeTableEntry. Only the latest received version of a
MuxCodeTableEntry is valid.

substructureCount – the number of substructures of this MuxCodeTableEntry.

slotCount – the number of slots with data from different FlexMux Channels that are described by this
substructure.

repetitionCount – indicates how often this substructure is to be repeated. A repetitionCount zero
indicates that this substructure is to be repeated infinitely. repetitionCount zero is only permitted in the last
substructure of a MuxCodeTableEntry.

flexMuxChannel[i][k] – the FlexMux Channel to which the data in this slot belongs.

numberOfBytes[i][k] – the number of data bytes in this slot associated to flexMuxChannel[i][k]. This
number of bytes corresponds to one SL packet.

12.2.5.3 Usage

The MuxCodeTableEntry describes how a FlexMux packet is partitioned into slots that carry data from different
FlexMux Channels. This is used as a template for parsing FlexMux packets. If a FlexMux packet is longer than the
template, parsing shall resume from the beginning of the template. If a FlexMux packet is shorter than the template,
the remainder of the template is ignored.

Note that the usage of MuxCode mode may not be efficient if SL packets for a given elementary stream do not
have a constant length. Given the overhead for an update of the associated MuxCodeTableEntry, usage of simple
mode might be more efficient.

Note further that data for a single FlexMux channel may be conveyed through an arbitrary sequence of FlexMux
packets with both simple mode and MuxCode mode.

EXAMPLE �

In this example we assume the presence of three substructures. Each one has a different slot count as well as repetition count.
The exact parameters are as follows:

substructureCount = 3

slotCount[i] = 2, 3, 2 (for the corresponding substructure)

repetitionCount[i] = 3, 2, 1 (for the corresponding substructure)

We further assume that each slot configures channel number FMCn (flexMuxChannel) with a number of bytes Bytesn
(numberOfBytes). This configuration would result in a splitting of the FlexMux packet payload to:

FMC1 (Bytes1), FMC2 (Bytes2) repeated 3 times, then

FMC3 (Bytes3), FMC4 (Bytes4), FMC5 (Bytes5) repeated 2 times, then

FMC6 (Bytes6), FMC7 (Bytes7) repeated once

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 253

The layout of the corresponding FlexMux packet would be as shown in Figure 34.

FlexMux-PDU

F
M
C
1

v
e
r
s
i
o
n

l
e
n
g
t
h

I
n
d
e
x

F
M
C
2

F
M
C
1

F
M
C
2

F
M
C
1

F
M
C
2

F
M
C
3

F
M
C
4

F
M
C
5

F
M
C
3

F
M
C
4

F
M
C
5

F
M
C
6

F
M
C
7

Figure 34 - Example for a FlexMux packet in MuxCode mode

12.2.6 Configuration and usage of FlexMux clock references

12.2.6.1 Syntax

aligned(8) class FlexMuxTimingDescriptor {
bit(16) FCR_ES_ID;
bit(32) FCRResolution;
bit(8) FCRLength;
bit(8) FmxRateLength;

}

12.2.6.2 Semantics

The sequence of fmxClockReference time stamps in a FlexMux stream constitutes a clock reference stream,
albeit with a different syntax as specified in clause 10. Elementary streams may be associated to the time base
established by this clock reference by referencing the FCR_ES_ID as their OCR_ES_ID in the
SLConfigDescriptor. The transport of the FlexMuxTimingDescriptor shall be defined during the design of
the transport protocol stack that makes use of the FlexMux tool.

FCR_ES_ID – is the ES_ID associated to this clock reference stream.

FCRResolution – is the resolution of the object time base in cycles per second.

FCRLength – is the length of the fmxClockReference field in FlexMux packets with index = 238. A length of
zero shall indicate that no FlexMux packets with index = 238 are present in this FlexMux stream. FCRlength
shall take values between zero and 64.

FmxRateLength - is the length of the fmxRate field in FlexMux packets with index = 238. FmxRateLength
shall take values between 1 and 32.

12.2.6.3 Usage

The FlexMux clock reference time stamps may be used to establish and verify a multiplex buffer model. The
fmxClockReference information determines the arrival time t(i) of individual bytes i of the FlexMux stream in the
following way:

)(

''

Re

)''(
)(

ifmxRate

ii

solutionFCR

iFCR
it

�
��

where:

i is the index of any byte in the FlexMux stream for i'' < i < i'

i'' is the index of the byte containing the last bit of the most recent fmxClockReference field in the
FlexMux stream

ISO/IEC 14496-1:2001(E)

254 © ISO/IEC 2001 – All rights reserved

FCR(i'') is the time encoded in the fmxClockReference in units of FCRResolution

fmxRate(i) indicates the rate specified by the fmxRate field for byte i

12.2.7 FlexMux buffer descriptor

12.2.7.1 Syntax

aligned(8) class FlexMuxBufferDescriptor {
bit(8) flexMuxChannel;
bit(24) FB_BufferSize;

}

12.2.7.2 Semantics

The size of multiplex buffers for each FlexMux channel is signaled by FlexMuxBufferDescriptors. One
descriptor per FlexMux channel is required unless the DefaultFlexMuxBufferDescriptor is used. The
transport of the FlexMuxBufferDescriptors shall be defined during the design of the transport protocol stack
that makes use of the FlexMux tool.

flexMuxChannel - the number of a FlexMux channel.

FB_BufferSize - the size of the FlexMux buffer for this FlexMux channel in bytes.

12.2.8 Default FlexMux buffer descriptor

12.2.8.1 Syntax

aligned(8) class DefaultFlexMuxBufferDescriptor {
bit(24) FB_DefaultBufferSize;

}
12.2.8.2 Semantics

The default size of multiplex buffers for each individual channel in a FlexMux stream is signaled by the
DefaultFlexMuxBufferDescriptor. FlexMux channels that use a different buffer size may signal this using
the FlexMuxBufferDescriptor. The transport of the DefaultFlexMuxBufferDescriptor shall be defined
during the design of the transport protocol stack that makes use of the FlexMux tool.

FB_DefaultBufferSize - the default size of FlexMux buffers for this FlexMux stream in bytes.

12.2.9 FlexMux buffer model

Rbx

FB
1

FB 2

FB
m

FBn is the FlexMux buffer for the elementary stream in FlexMux channel n
Rbx is the rate at which data enters the FlexMux buffers.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 255

The FlexMux buffer model applies to FlexMux streams that utilize FlexMux Clock reference channel packets to
define the delivery timing of the FlexMux stream. The FlexMux stream enters the FlexMux buffer model at the rate
and timing as defined by the fmxClockReference and fmxRate fields. There may be some periods of time during
which there are no bytes at the input of the FlexMux buffer model, but the bytes of all FlexMux packets that
preceed the next FlexMux Clock reference channel packet shall be delivered to the FlexMux buffer model prior to
the delivery of any byte of the next FlexMux Clock reference channel packet.

For each FlexMux channel i the FlexMux packet is stored in FlexMux Buffer FBi. The bytes in buffer FBi are
removed at a rate specified by the InstantRate field in the SL header of the contained SL-packetized stream. Upon
removal each byte enters the elementary stream buffer DBi. The FlexMux stream shall be constructed so that the
following condition is met :

� Buffer FBi shall not overflow.

13 File Format

13.1 Introduction

The MP4 file format is designed to contain the media information of an ISO/IEC 14496 presentation in a flexible,
extensible format that facilitates interchange, management, editing, and presentation of the media. This
presentation may be ‘local’ to the system containing the presentation, or may be via a network or other stream
delivery mechanism (a TransMux).

The file format is designed to be independent of any particular TransMux while enabling efficient support for
TransMuxes in general.

13.1.1 Usage

The file format is intended to serve as a basis for a number of operations. In these various roles, it may be used in
different ways, and different aspects of the overall design exercised.

13.1.1.1 Interchange

When used as an interchange format, the files would normally be self-contained (not referencing media in other
files), contain only the media data actually used in the presentation, and not contain any information related to
streaming over TransMuxes. This will result in a small, protocol-independent, self-contained file, which contains the
core media data and the information needed to operate on it.

The following diagram gives an example of a simple interchange file, containing three streams.

IOD
moov

mp4 file

mdattrak (BIFS)

trak (OD)

trak (video)

trak (audio)

... other atoms

Interleaved, time-ordered,
BIFS, OD, video, and audio
access units

Figure 35 - Simple interchange file

ISO/IEC 14496-1:2001(E)

256 © ISO/IEC 2001 – All rights reserved

13.1.1.2 Content Creation

During content creation, a number of areas of the format can be exercised to useful effect, particularly:

� the ability to store each elementary stream separately (not interleaved), possibly in separate files.

� the ability to work in a single presentation which contains MPEG-4 data and other streams (e.g. editing the
audio track in the uncompressed format, to align with an already-prepared MPEG-4 video track).

These characteristics mean that presentations may be prepared, edits applied, and content developed and
integrated without either iteratively re-writing the presentation on disc - which would be necessary if interleave was
required and unused data had to be deleted; and also without iteratively decoding and re-encoding the data -
which would be necessary if the data must be stored in an encoded state.

In the following diagram, a set of files being used in the process of content creation is shown.

media file

mp4 file

BIFS access units
possibly un-ordered
with other unused data

Video and audio access units
possibly un-ordered
with other unused data

mdat

IOD
moov

mp4 file

trak (BIFS)

trak (OD)

trak (video)

trak (audio)

... other atoms

... other atoms (inc. moov)

Figure 36 - Content Creation MP4 File

13.1.1.3 Preparation for streaming

When prepared for streaming, the file must contain information to direct the streaming server in the process of
sending the information. In addition, it is helpful if these instructions and the media data are interleaved so that
excessive seeking can be avoided when serving the presentation. It is also important that the original media data
be retained unscathed, so that the files may be verified, or re-edited or otherwise re-used. Finally, it is helpful if a
single file can be prepared for more than one protocol, so differing servers may use it over disparate protocols.

13.1.1.4 Local presentation

‘Locally’ viewing a presentation (i.e. directly from the file, not over a streamed interconnect) is an important
application; it is used when a presentation is distributed (e.g. on CD or DVD ROM), during the process of
development, and when verifying the content on streaming servers. Such local viewing must be supported, with full
random access. If the presentation is on CD or DVD ROM, interleave is important as seeking may be slow.

13.1.1.5 Streamed presentation

When a server operates from the file to make a stream, the resulting stream must be conformant with the
specifications for the protocol(s) used, and should contain no trace of the file-format information in the file itself. The
server needs to be able to random access the presentation. It can be useful to re-use server content (e.g. to make
excerpts) by referencing the same media data from multiple presentations; it can also assist streaming if the media
data can be on read-only media (e.g. CD) and not copied, merely augmented, when prepared for streaming.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 257

The following diagram shows a presentation prepared for streaming over a multiplexing protocol, only one hint track
is required.

IOD
moov

mp4 file

mdattrak (BIFS)

trak (OD)

trak (video)

trak (audio)

... other atoms

Interleaved, time-ordered,
BIFS, OD, video, and audio
access units, and hint
instructions

hint

Figure 37 - Hinted Presentation for Streaming

13.1.2 Design principles

The file structure is object-oriented; a file can be decomposed into constituent objects very simply, and the
structure of the objects inferred directly from their type.

Media-data is not ‘framed’ by the file format; the file format declarations which give the size, type and position of
media data units is not physically contiguous with the media data. This makes it possible to subset the media-data,
and to use it in its natural state, without requiring it to be copied to make space for framing. The meta-data is used
to describe the media data by reference, not by inclusion.

Similarly the protocol information for a particular TransMux does not frame the media data; the protocol headers
are not physically contiguous with the media data. Instead, the media data is included by reference. This makes it
possible to represent media data in its natural state, not favoring any TransMux. It also makes it possible for the
same set of media data to serve for local presentation, and for multiple TransMuxes.

The protocol information is built in such a way that the streaming servers need to know only about the protocol and
the way it should be sent; the protocol information abstracts knowledge of the media so that the servers are, to a
large extent, media-type agnostic. Similarly the media-data, stored as it is in a protocol-unaware fashion, enables
the media tools to be protocol-agnostic.

The file format does not require that a single presentation be in a single file. This enables both sub-setting and re-
use of content. When combined with the non-framing approach, it also makes it possible to include media data in
files not formatted to this specification (e.g. ‘raw’ files containing only media data and no declarative information, or
file formats already in use in the media or computer industries).

The file format is based on a common set of designs and a rich set of possible structures and usage. The same
format serves all usages; translation is not required. However, when used in a particular way (e.g. for local
presentation), profiles may be used to define the optimal structures and use of options for that usage. However,
there is no provision for profiles or levels in the current specification.

13.1.3 Design overview

13.1.3.1 Storage of elementary streams

To maintain the goals of TransMux independence, the media data is stored in its most ‘natural’ format, and not
fragmented. This enables easy local manipulation of the media data. Therefore media-data is stored as access
units, a range of contiguous bytes for each access unit.

ISO/IEC 14496-1:2001(E)

258 © ISO/IEC 2001 – All rights reserved

13.1.3.2 Handling of elementary streams

The elementary streams in an MPEG-4 presentation are stored in the media tracks as access units (a single
access unit is the definition of a ‘sample’ for an MPEG-4 media stream). This is true for all stream types in this
draft, including such ‘meta-information’ streams as Object Descriptor and the Clock Reference. The consequences
of this are, on the positive side, that the file format treats all streams equally; on the negative side, this means that
there are ‘internal’ cross-links between the streams. This means that adding and removing streams from a
presentation will involve more than adding or deleting the track and its associated media-data. Not only must the
stream be placed in, or removed from, the scene, but also the object descriptor stream may need updating.

In a transmitted bit-stream, the access units in the SL Packets are transmitted on byte boundaries. This means
that hint tracks will construct SL Packet headers using the information in the media tracks, and the hint tracks will
reference the access units from the media track.

The SLConfigDescriptor for the media track shall be stored in the file using a default value (predefined = 2), except
when the Elementary Stream Descriptor refers to a stream through a URL, i.e. the referred stream is outside the
scope of the MP4 file. In that case the SLConfigDescriptor is not constrained to this predefined value.

13.1.3.3 Handling of FlexMux

An intermediate, optional, fragmentation and packetization step, called FlexMux, has been defined in this
document. Some TransMuxes may carry a FlexMux stream rather than packetized elementary streams. Flexmux
may be employed for a variety of purposes, including, but not limited to:

� reducing wasted network bandwidth caused by SL Packet header overhead when the payload is small;

� reducing required server resources when providing many streams, by reducing the number of disk reads or
network writes.

The process of building FlexMux PDUs is necessarily aware of the characteristics of the TransMux into which the
FlexMux must be placed. It is not therefore possible to design a TransMux-independent handling of FlexMux.
Instead, in those TransMuxes where FlexMux is used, the hint tracks for that TransMux will encapsulate and
include the formation of FlexMux packets. It is expected that the design of the hint tracks (as defined in Section
13.2.2.2) will, in this case, closely reflect the way that FlexMux is used. For example, a compact table resembling
the MuxCode (a method used to associate the payload to FlexMux Channels) mode may be needed if the
interleave offered by that mode is needed.

Note that in some cases, it may not be possible to create a static FlexMux multiplex via a hint track. Notably, if
stream selection is dynamic (for example, based on application feedback) or the choice of muxcode modes or other
aspects of Flexmux is dynamic, the FlexMux is therefore created dynamically. This is a necessary cost of run-time
multiplexing. It may be difficult for a server to create such a multiplex dynamically at runtime, but with this cost
comes added flexibility. A server that wished to provide such functionality could weigh the costs and benefits, and
choose to perform the multiplexing without the aid of hint tracks.

Several ISO/IEC 14496 structures are intrinsically linked to FlexMux, and therefore must be addressed in the
context of a FlexMux-aware hint track. For example, a stream map table must be supplied to the receiving terminal
which maps FlexMux channel IDs to elementary stream IDs. Similarly, if the MuxCode mode of FlexMux is used, a
MuxCode mode structure for each MuxCode index used must be defined and supplied to the terminal.

These mappings and definitions may change over time, and there is no normative way in ISO/IEC 14496 to supply
these to the terminals; instead, some mechanism, associated with the overall system design or TransMux used,
must be employed. The hinter must store the mappings and definitions. Because they are intimately associated
with a particular time-segment of a particular hint track, it is recommended that they be placed in the sample
description(s) for that hint track. This description would normally be in the form of:

� a table mapping FlexMux channels to elementary stream IDs.

� a set of MuxCode mode structure definitions.

It is recommended further that a format such as that in section 12.2.5, be used for the MuxCode mode definitions.

aligned(8) class MuxCodeTableEntry {
int i, k;

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 259

bit(8) length;
bit(4) MuxCode;
bit(4) version;
bit(8) substructureCount;
for (i=0; i<substructureCount; i++) {

bit(5) slotCount;
bit(3) repetitionCount;
for (k=0; k<slotCount; k++){

bit(8) flexMuxChannel[[i]][[k]];
bit(8) numberOfBytes[[i]][[k]];

}
}

}

Special attention must also be taken when pausing or seeking a stream that is being transported as part of a
FlexMux stream. Pausing or seeking any component stream of a FlexMux must necessarily pause or seek all the
streams. When seeking, care must be taken with random access points. These may not be aligned in time in the
streams which form the FlexMux, which means that any seek operation cannot start them all at a random access
point. Indeed, the random access points of the FlexMux itself are necessarily rather poorly defined under such
circumstances.

It may be necessary for the server to:

� examine the track references to determine the base media tracks (elementary streams) which are formed into
the FlexMux;

� find the latest time before the desired seek point such that there is a random access point for all the streams
between that time and the seek point, by examining each stream separately;

� transmit the FlexMux stream from that time.

This will ensure that the terminal has received a random access point for all streams at or prior to the desired seek
time. However, it may have to discard data for those streams which had data received before the random access
points.

13.1.3.4 Handling of TransMuxes

The file format supports streaming of media data over a network as well as local playback. The process of sending
protocol data units is time-based, just like the display of time-based data, and is therefore suitably described by a
time-based format. A file or ‘movie’ that supports streaming includes information about the data units to stream.
This information is included in additional tracks of the file called “hint” tracks.

Hint tracks contain instructions to assist a streaming server in the formation of packets for transmission. These
instructions may contain immediate data for the server to send (e.g. header information) or reference segments of
the media data. These instructions are encoded in the file in the same way that editing or presentation information
is encoded in a file for local playback. Instead of editing or presentation information, information is provided which
allows a server to packetize the media data in a manner suitable for streaming using a specific network transport or
TransMux.

The same media data is used in a file that contains hints, whether it is for local playback, or streaming over a
number of different TransMuxes. Separate ‘hint’ tracks for different TransMuxes may be included within the same
file and the media will play over all such TransMuxes without making any additional copies of the media itself. In
addition, existing media can be easily made streamable by the addition of appropriate hint tracks for specific
TransMuxes. The media data itself need not be recast or reformatted in any way.

This approach to streaming is more space efficient than an approach that requires that the media information be
partitioned into the actual data units which will be transmitted for a given transport and media format. Under such
an approach, local playback requires either re-assembling the media from the packets, or having two copies of the
media—one for local playback and one for streaming. Similarly, streaming such media over multiple TransMuxes
using this approach requires multiple copies of the media data for each transport. This is inefficient with space,
unless the media data has been heavily transformed for streaming (e.g., by the application of error-correcting
coding techniques, or by encryption).

ISO/IEC 14496-1:2001(E)

260 © ISO/IEC 2001 – All rights reserved

13.1.3.5 TransMux ‘hint’ tracks

Support for streaming is based upon the following three design parameters:

� The media data is represented as a set of network-independent standard tracks, which may be played, edited,
and so on, as normal;

� There is a common declaration and base structure for server hint tracks; this common format is protocol
independent, but contains the declarations of which protocol(s) are described in the server track(s);

� There is a specific design of the server hint tracks for each TransMux that may be transmitted; all these
designs use the same basic structure. For example, there may be designs for RTP (for the Internet) and
MPEG-2 transport (for broadcast), or for new standard or vendor-specific protocols.

The resulting streams, sent by the servers under the direction of the hint tracks, need contain no trace of file-
specific information. This design does not require that the file structures or declaration style, be used either in the
data on the wire or in the decoding station. For example, a file using H.261 video and DVI audio, streamed under
RTP, results in a packet stream which is fully compliant with the IETF specifications for packing those codings into
RTP.

The hint tracks are built and flagged so that when the presentation is viewed directly (not streamed), they may be
ignored.

The specific design of the media data (hint samples), and sample descriptions for a particular TransMux is not
defined by this part of ISO/IEC 14496. Instead, the designer of the system using that TransMux, or the body that
owns and defines the TransMux, would define these tracks. Clearly there is an advantage in having standard hint
track formats for standard TransMuxes, and their development and publication is encouraged.

13.2 File organization

13.2.1 Presentation structure

13.2.1.1 File Structure

A presentation may be contained in several files. One file contains the meta-data for the whole presentation, and is
formatted to this specification. This file may also contain all the media data, whereupon the presentation is self-
contained. The other files, if used, do not have to be formatted to this specification; they can contain used or
unused media data, or other information. This specification concerns the structure of the presentation file only. The
format of the media-data files is constrained by this specification only in that the media-data in the media files must
be able to be described by the meta-data defined here.

If a MP4 file contains hint tracks, the media tracks which reference the media data from which the hints were built
must remain in the file, even if the data within them is not directly referenced by the hint tracks.

13.2.1.2 Object Structure

The file is structured as a sequence of objects; some of these objects may contain other objects. The sequence of
objects in the file must contain exactly one presentation meta-data wrapper (the movie atom). It is usually at the
beginning or end of the file, to permit its easy location. The other objects that are found at this level may be free
space, or media data atoms.

The fields in the objects are stored in network byte order (big-endian format).

13.2.1.3 Meta Data and Media Data

The meta-data is contained within the meta-data wrapper (the movie atom); the media data is contained either in
the same file, within media-data atom(s), or in other files. The media data is composed of access units; the media
data objects, or media data files, may contain other unreferenced information.

13.2.1.4 Track Identifiers

The track identifiers used in an MP4 file are unique within that file; no two tracks may use the same identifier.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 261

Each elementary stream in the file is stored as a media track. The lower two bytes are the elementary stream
identifier (ES_ID). The upper two bytes are zero. Hint tracks may use track identifier values in the same range, if
this number space is adequate (which it generally is). However, hint track identifiers may also use larger values of
track identifier, as their identifiers are not mapped to elementary stream identifiers. Thus very large presentations
can use the entire 16-bit number space for elementary stream identifiers.

The next track identifier value in the movie header generally contains a value one greater than the largest track
identifier value found in the file. This enables easy generation of a track identifier under most circumstances.
However, if this value is equal to or larger than 65535, and a new media track is to be added, then a search must
be made in the file for a free track identifier. If the value is all 1s (32-bit maxint) then this search is needed for all
additions.

If it is desired to add a track with a known track identifier (elementary stream identifier) then the file must be
searched to ensure that there is no conflict. Note that hint tracks can be re-numbered fairly easily while more care
should be taken with media tracks, as there may be references to their ES_ID (track ID) in other tracks.

Note that if it is desired to have hint tracks have track IDs outside the allowed range for elementary stream tracks,
then next track ID will document the next available hint track ID. Since this is larger than 65535, a search will then
always be needed to find a valid elementary stream track ID.

If two presentations are merged, then there may be conflict between their track IDs. In that case, one or more
tracks will have to be re-numbered. There are two actions to be taken here:

� Changing the ID of the track itself, which is easy (track ID in the track header).

� Changing pointers to it.

The pointers may only occur in the file format structure itself. The file format uses track IDs only through track
references, which are easily found and modified. Track IDs become ES_IDs in the MPEG-4 data, and ES_IDs
occur within the OD Stream. Since all pointers to ES_IDs in the OD stream are replaced by means of track
references there is no need to inspect the OD stream for cross-references within MPEG-4 streams.

Note that in ES_DescriptorRemove and IPI_DescrPointer it is a track reference index (using references of type
mpod and ipir respectively – see subclause 13.2.3.7.2) that is stored in the file, and the tag values are specific to
the file format (ES_DescrRemoveRefTag and IPI_DescrPointerRefTag). These reference indexes should be
replaced with the ES_ID when hinting or serving, and the tag values adjusted.

13.2.1.5 Synchronization of streams

In the absence of explicit declarations to the contrary, tracks (streams) coming from the same file should be
presented synchronized. This means that hinters and/or servers should either pick one of the streams to serve as
the OCR source for the others or add an OCR stream to associate all the streams with it. Track references of type
'sync' can be used in the file to defeat the default behavior. In MPEG-4 the OCRStreamFlag and OCR_ES_ID
fields in the ESDescriptor govern the synchronization relationships. The mapping of MP4 structures into those
fields shall obey the following rules:

� The MPEG-4 ESDescriptor, as stored in the file, usually contains OCRStreamFlag set to FALSE, and no
OCR_ES_ID. If an OCR_ES_ID is set, it should be used as is without interpretation or inspection; this case is
normally used to synchronize to streams outside the file.

� If a track (stream) contains a track reference of type 'sync' whose value is 0, then the hinter or server shall set
the OCRStreamFlag field in the MPEG-4 ESDescriptor to FALSE and shall not insert any OCR_ES_ID field.
This means that this stream is not synchronized to another, but other streams can be synchronized to it.

� If a track (stream) contains a track reference of type 'sync' whose value is not 0, then the hinter or server shall
set the OCRStreamFlag field in the MPEG-4 ESDescriptor to TRUE and shall insert an OCR_ES_ID field with
the same value contained in the 'sync' track reference. This means that this stream is synchronized to the
stream indicated in the OCR_ES_ID. Note that other streams may also be synchronized to the same stream,
either explicitly or implicitly.

� If a track (stream) does not contain a track reference of type 'sync', then the default behavior applies. The
hinter or server shall set the OCRStreamFlag field in the MPEG-4 ESDescriptor to TRUE and shall insert an

ISO/IEC 14496-1:2001(E)

262 © ISO/IEC 2001 – All rights reserved

OCR_ES_ID field with a value selected based on the rules below. This means that this stream is synchronized
to the stream indicated in the OCR_ES_ID. The rules for selecting the OCR_ES_ID are as follows:

� if no track (stream) in the file contains a track reference of type 'sync', then the hinter picks one trackId
and uses that value for the OCR_ES_ID field of all ESDescriptors. There is one possible exception
where the ESDescriptor of the stream which corresponds to that trackId, for which the OCRStreamFlag
may be set to FALSE.

� if one or more tracks (streams) in the file contain a track reference of type 'sync', and all such track
references indicate consistently a single trackId, then the hinter uses that trackId. Note that in a track
reference of type 'sync' the value 0 is equivalent to the trackId of the track itself.

� if two or more tracks (streams) in the file contain a track reference of type 'sync', and such track
references do not indicate a single trackId, then the hinter cannot make a deterministic selection and
the behavior is undefined. Note again that in a track reference of type 'sync' the value 0 is equivalent to
the trackId of the track itself.

13.2.2 Media Data Structure

13.2.2.1 Elementary Stream Tracks

In the file format, the media data is stored as access units; for each track the entire ES-descriptor is stored as the
sample description or descriptions. The SLConfigDescriptor is stored according to a default value (predefined = 2)
except when the ES-descriptor contains a URL to point to an elementary stream outside the scope of the MP4 file.

Note that the SL Packet header and payload are byte-aligned, so the placement of the header during hinting is
possible without bit shifting, as each SL Packet and corresponding contained access unit will both start on byte
boundaries.

Note also that an access unit must be stored as a contiguous set of bytes. This greatly facilitates the fragmentation
process used in hint tracks. The file format can describe and use media data stored in other files, however this
restriction still applies. Therefore if a file is to be used which contains ‘pre-fragmented’ media data (e.g. a FlexMux
stream on disc), the media data will need to be copied to re-form the access units, in order to import the data into
this file format.

The ESDescriptor for a stream within the scope of the MP4 file as described in this document is stored in the
sample description and the fields and included structures are restricted as follows:

� ES_ID - set to 0 as stored; when built into a TransMux, the lower 16 bits of the trackID is used.

� streamDependenceFlag – set to 0 as stored; instead, track references of type ‘dpnd’ are used.

� URLflag – set to false, as the stream is in the file, not remote.

� SLConfigDescriptor - is predefined type 2.

� OCRStreamFlag – set to false in the file.

Note that the QoSDescriptor also may need re-writing for transmission as it contains information about PDU sizes
etc.

13.2.2.1.1 Object Descriptors

The initial object descriptor and object descriptor streams are handled specially within the file format. Object
descriptors contain ES descriptors, which in turn contain TransMux specific information. In addition, to facilitate
editing, the information about a track is stored as an ESDescriptor in the sample description within that track. It
must be taken from there, re-written as appropriate, and transmitted as part of the OD stream when the
presentation is streamed.

As a consequence, ES descriptors are not stored within the OD track or initial object descriptor. Instead, the initial
object descriptor has a descriptor used only in the file, containing solely the track ID of the elementary stream.
When used, an appropriately re-written ESDescriptor from the referenced track replaces this descriptor. Likewise,
OD tracks are linked to ES tracks by track references. Where an ES descriptor would be used within the OD track,

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 263

another descriptor is used, which again occurs only in the file. It contains the index into the set of mpod track
references that this OD track owns. A suitably re-written ESDescriptor replaces it by the hinting of this track.

The ES_ID_Inc is used in the initial object descriptor atom:

class ES_ID_Inc extends BaseDescriptor : bit(8) tag=ES_IDIncTag {
unsigned int(32) Track_ID; // ID of the track to use

}

ES_ID_IncTag = 0x0E is reserved for file format usage.

The ES_ID_Ref is used in the OD stream:

class ES_ID_Ref extends BaseDescriptor : bit(8) tag=ES_IDRefTag {
bit(16) ref_index; // track ref. index of the track to use

}

ES_ID_RefTag = 0x0F is reserved for file format usage.
MP4_IOD_Tag = 0x10 is reserved for file format usage.
MP4_OD_Tag = 0x11 is reserved for file format usage.
IPL_DescrPointerRefTag = 0x12 is reserved for file format usage.
ES_DescrRemoveRefTag = 0x07 is reserved for file format usage (command tag).

NOTE - The above tag values are defined in subclause 8.2.2.2 Table 1 and subclause 8.2.3.2 Table 2, and the actual values
should be referenced from those tables.

A hinter may need to send more OD events than actually occur in the OD track: for example, if the ES_description
changes at a time when there is no event in the OD track. In general, any OD events explicitly authored into the OD
track should be sent along with those necessary to indicate other changes. The ES descriptor sent in the OD track
would be taken from the description of the temporally next sample in the ES track (in decoding time).

13.2.2.2 Hint Tracks

Hint tracks are used to describe to a server how to serve the elementary stream data in the file over TransMuxes.
Each TransMux has its own hint track format. The format of the hints is described by the sample description for the
hint track. Most TransMuxes will need only one sample description format for each track.

Servers find their hint tracks by first finding all hint tracks, and then looking within that set for hint tracks using their
protocol (sample description format). If there are choices at this point, then the server chooses on the basis of
preferred protocol or by comparing features in the hint track header or other protocol-specific information in the
sample descriptions.

Hint tracks construct TransMuxes by pulling data out of other tracks by reference. These other tracks may be hint
tracks or elementary stream tracks. The exact form of these pointers is defined by the sample format for the
protocol, but in general they consist of four pieces of information: a track reference index, a sample number, an
offset, and a length. Some of these may be implicit for a particular protocol. Note that these ‘pointers’ always point
to the actual source of the data. If a hint track is built ‘on top’ of another hint track, then the second hint track will
have direct references to the media track(s) used by the first where data from those media tracks is placed in the
TransMux.

All hint tracks use a common set of declarations and structures.

� Hint tracks are linked to the elementary stream tracks they carry, by track references of type ‘hint’

� They use a handler-type of ‘hint’ in the handler reference atom

� They use a hint media header atom

� They use a hint sample entry in the sample description, with a name and format unique to the protocol they
represent.

Hint tracks may be created by an authoring tool, or may be added to an existing presentation by a hinting tool.
Such a tool serves as a ‘bridge’ between MPEG-4 and the protocol, since it intimately understands both. This
permits authoring tools to understand MPEG-4, but not protocols, and for servers to understand protocols (and their
hint tracks) but not the details of MPEG-4 data.

ISO/IEC 14496-1:2001(E)

264 © ISO/IEC 2001 – All rights reserved

13.2.3 Meta-data Structure (Objects)

The following represents the subset of the QuickTime file specification that is required to define an MP4 file. An
object in QuickTime terminology is an Atom. Atoms not explicitly defined in this standard may be ignored.

Atoms start with a header that gives both size and type. The header permits compact or extended size (32 or 64
bits unsigned integer) giving the size of the object in bytes and compact or extended types (32 bits unsigned
integer or full UUIDs). The standard MPEG-4 atoms all use compact types (32-bit) normally interpreted and
presented as four printable characters, for ease of identification. Most atoms will use the compact (32-bit) size.
Typically only the media data atom(s) may need the 64-bit size.

Note that the size is the entire size of the atom, including the size and type header, fields, and all contained atoms.
This facilitates simplified parsing of the file. A zero size field, allowed only at the top-level atoms, indicates that the
last atom in the file which extends to the end of the file. This is normally only used for media data (mdat) atoms.
Note also that all indexes start with the value one rather than zero.

aligned(8) class Atom (unsigned int(32) atomtype,
optional unsigned int(8)[16] extended-type) {

unsigned int(32) size;
unsigned int(32) type = atomtype;
if (size==1) {

unsigned int(64) largesize;
}
if (atomtype==‘uuid’) {

unsigned int(8)[16] usertype = extended-type;
}

}

The semantics of these two fields are:

size - is an integer that specifies the number of bytes in this atom including all its fields and contained atoms;
if size is set to 1 then the actual size is given by the large size field.

type - identifies the atom type. Standard atoms use a compact type that is normally four printable characters
to permit ease of identification, and this is shown in the atoms below. User extensions use an extended
type. In this case the type field is set to ‘uuid’.

Type fields not defined here are reserved. Private extensions shall be achieved through the ‘uuid’ type. The
following types are reserved and will either not be used or will be used only in their existing sense in future versions
of this specification to avoid conflict with existing content using earlier pre-standard versions of this format:

clip, crgn, matt, kmat, pnot, ctab, load, imap; track reference types tmcd, chap,
scpt, ssrc.

Many objects also contain a version number and flags field:

aligned(8) class FullAtom(unsigned int(32) atomtype, unsigned int(8) v, bit(24) f)
extends Atom(atomtype) {
unsigned int(8) version = v;
bit(24) flags = f;

}

The semantics of these two fields are:

version - is an integer that specifies the version of this format of the atom.
flags - is a map of flags.

In a number of atoms in this specification, there are two variant forms: version 0 using 32-bit fields, and version 1
using 64-bit sizes for those same fields. In general, if a version 0 atom (32-bit field sizes) can be used, it should be;
version 1 atoms should be used only when the 64-bit field sizes they permit, are required.

For convenience during content creation there are creation and modification times stored in the file. These can be
32-bit or 64-bit numbers, counting seconds since midnight, Jan. 1, 1904, which is a convenient date for leap-year
calculations. 32 bits are sufficient until approximately year 2040.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 265

Fields shown as reserved in the atom descriptions should be initialized to the given value on atom creation, copied
un-inspected when atoms are copied, and ignored on reading.

An overall view of the normal encapsulation structure is provided in the following table.

The table shows atoms that may occur at the top-level in the left-most column; indentation is used to show possible
containment. Thus, for example, a track header (tkhd) is found in a track (trak), which is found in a movie (moov).
Not all atoms need be used in all files; the mandatory atoms are marked with an asterisk (*). See the description of
the individual atoms for a discussion of what must be assumed if the optional atoms are not present.

Note that user data objects may be found in moov or trak atoms, and objects using an extended type may be
placed in a wide variety of containers, not just the top level.

Table 55 - Overview of Atom Encapsulation Structure

Moov * 13.2.3.1 container for all the meta-data
mvhd * 13.2.3.3 movie header, overall declarations
iods * 13.2.3.4 object descriptor
trak * 13.2.3.4.2 container for an individual track or stream

tkhd * 13.2.3.6 track header, overall information about the track
tref 13.2.3.7 track reference container
edts 13.2.3.25 edit list container

elst 13.2.3.26 an edit list
mdia * 13.2.3.8 container for the media information in a track

mdhd * 13.2.3.9 media header, overall information about the media
hdlr 13.2.3.10 handler, at this level, the media (handler) type
minf * 13.2.3.11 media information container

vmhd 13.2.3.12.1 video media header, overall information (video track only)
smhd 13.2.3.12.2 sound media header, overall information (sound track only)
hmhd 13.2.3.12.3 hint media header, overall information (hint track only)
<mpeg> 13.2.3.12.4 mpeg stream headers
dinf * 13.2.3.13 data information atom, container

dref * 13.2.3.14 data reference atom, declares source(s) of media in track
stbl * 13.2.3.15 sample table atom, container for the time/space map

stts * 13.2.3.16.1 (decoding) time-to-sample
ctts 13.2.3.16.2 composition time-to-sample table
stss 13.2.3.21 sync (key, I-frame) sample map
stsd * 13.2.3.17 sample descriptions (codec types, initialization etc.)
stsz * 13.2.3.18 sample sizes (framing)
stsc 13.2.3.19 sample-to-chunk, partial data-offset information
stco 13.2.3.20 chunk offset, partial data-offset information
stsh 13.2.3.22 shadow sync
stdp 13.2.3.23 degradation priority

mdat 13.2.3.2 Media data container
free 13.2.3.24 free space
skip 13.2.3.24 free space
udta 13.2.3.27 user-data, copyright etc.

13.2.3.1 Movie Atom

Atom Type: ‘moov’
Container: File
Mandatory: Yes
Quantity: Exactly one
The meta-data for a presentation is stored in the single Movie Atom that occurs at the top-level of a file. Normally
this atom is the first or last in the sequence of atoms in a file, though this is not required.

13.2.3.1.1 Syntax

aligned(8) class MovieAtom extends Atom(‘moov’){
}

ISO/IEC 14496-1:2001(E)

266 © ISO/IEC 2001 – All rights reserved

13.2.3.2 Media Data Atom

Atom Type: ‘mdat’
Container: File
Mandatory: No
Quantity: Any number

This atom contains the media data. In elementary stream tracks, this atom will contain MPEG-4 data as access
units. A presentation may contain zero or more media data atoms. The actual media data follows the type field; its
structure is described by the meta-data (see particularly the sample table).

In large presentations, it may be desirable to have more data in this atom than a 32-bit size would permit. In this
case, the large variant of the size field, above, is used.

NOTE - there may be any number of these atoms in the file (including zero, if all the media data is in other files). The meta-data
refers to media data by its absolute offset within the file (see the chunk offset atom); so mdat headers and free space may easily
be skipped, and files without any atom structure may also be referenced and used.

13.2.3.2.1.1 Syntax

aligned(8) class MediaDataAtom extends Atom(‘mdat’) {
bit(8) data[];

}

13.2.3.2.1.2 Semantics

data - is the contained media data

13.2.3.3 Movie Header Atom

Atom Type: ‘mvhd’
Container: Movie Atom (‘moov’)
Mandatory: Yes
Quantity: Exactly one
This atom defines overall information that is media-independent, and relevant to the entire presentation considered
as a whole.

13.2.3.3.1 Syntax

aligned(8) class MovieHeaderAtom (unsigned int(32) version) extends FullAtom(‘mvhd’, version,
0) {

if (version==1) {
unsigned int(64) creation-time;
unsigned int(64) modification-time;
unsigned int(32) timescale;
unsigned int(64) duration;

} else { // version==0
unsigned int(32) creation-time;
unsigned int(32) modification-time;
unsigned int(32) timescale;
unsigned int(32) duration;

}
const bit(32)reserved = 0x00010000;
const bit(16)reserved = 0x0100;
const bit(16)reserved = 0;
const unsigned int(32)[2] reserved = 0;
const bit(32)[9] reserved =

{ 0x00010000, 0, 0, 0, 0x00010000, 0, 0, 0, 0x40000000 };
const bit(32)[6] reserved = 0;
unsigned int(32) next-track-ID;

}

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 267

13.2.3.3.2 Semantics

version - is an integer that specifies the version (0 or 1 in this draft).

creation-time - is an integer which declares the creation time of the presentation (in seconds since midnight,
Jan. 1, 1904.

modification-time - is an integer which declares the most recent time the presentation was modified (in
seconds since midnight, Jan. 1, 1904.

timescale - is an integer which specifies the time-scale for the entire presentation; this is the number of time
units which pass in one second. A time coordinate system that measures time in sixtieths of a second, for example,
has a time scale of 60.

duration - is an integer which declares length of the presentation (in the scale of the timescale). Note that this
property is derived from the presentation’s tracks. The value of this field corresponds to the duration of the longest
track in the presentation.

next-track-ID - is an integer which indicates a value to use for the track ID of the next track to be added to
this presentation. Note that 0 is not a valid track ID value. This must be larger than the largest track-ID in use. If
this value is equal to or larger than 65535, and a new media track is to be added, then a search must be made in
the file for a free track identifier that will fit into 16 bits. If the value is all 1s (32-bit maxint) then this search is
needed for all additions.

13.2.3.4 Object Descriptor Atom

Atom Type: ‘iods’
Container: Movie Atom (‘moov’)
Mandatory: Yes
Quantity: Exactly one

This object contains an Object Descriptor or an Initial Object Descriptor.

There are a number of possible file types based on usage, depending on the descriptor:

� Presentation, contains IOD which contains a BIFS stream (MP4 file)

� Sub-part of a presentation, contains an IOD without a BIFS stream (MP4 file)

� Sub-part of a presentation, contains an OD (MP4 file)

� Free-form file, Referenced by MP4 data references (free-format)

NOTE - The first three are MP4 files, the last file is not necessarily an MP4 file, as it is free-format.

13.2.3.4.1 Syntax

aligned(8) class ObjectDescriptorAtom
extends FullAtom(‘iods’, version = 0, 0) {
ObjectDescriptor OD;

}

The syntax for ObjectDescriptor and InitialObjectDescriptor is described in 8.6.2 through 8.6.4.

13.2.3.4.2 Semantics

The semantics for ObjectDescriptor and InitialObjectDescriptor are described in 8.6.2 through 8.6.4.. The contents
of this atom are formed by taking an object descriptor or initial object descriptor and:

� changing the tag to MP4_OD_Tag or MP4_IOD_Tag as appropriate for this object

� replacing the ES descriptors with ES_ID_Inc referencing the appropriate track.

ISO/IEC 14496-1:2001(E)

268 © ISO/IEC 2001 – All rights reserved

13.2.3.5 Track Atom

Atom Type: ‘trak’
Container: Movie Atom (‘moov’)
Mandatory: Yes
Quantity: 1 or more

This is a container atom for a single track of a presentation. A presentation may consist of one or more tracks.
Each track is independent of the other tracks in the presentation and carries its own temporal and spatial
information. Each track will contain its associated media atom.

Tracks are used for two purposes: (a) to contain elementary media data (media tracks) and (b) to contain
packetization information for streaming protocols (hint tracks).

There must be at least one media track within a MP4 file; and all the media tracks that contributed to the hint tracks
present must remain in the file, even if the media data within them is not referenced by the hint tracks. After
deleting all hint tracks, the entire un-hinted presentation must remain.

13.2.3.5.1 Syntax

aligned(8) class TrackAtom extends Atom(‘trak’) {
}

13.2.3.6 Track Header Atom

Atom Type: ‘tkhd’
Container: Track Atom (‘trak’)
Mandatory: Yes
Quantity: Exactly one

The track header atom specifies the characteristics of a single track. Exactly one track header atom is contained in
a track.

In the absence of an edit list, the presentation of a track starts immediately. An empty edit is used to offset the start
time of a track.

13.2.3.6.1 Syntax

aligned(8) class TrackHeaderAtom
extends FullAtom(‘tkhd’, version, flags){
if (version==1) {

unsigned int(64) creation-time;
unsigned int(64) modification-time;
unsigned int(32) track-ID;
const unsigned int(32) reserved = 0;
unsigned int(64) duration;

} else { // version==0
unsigned int(32) creation-time;
unsigned int(32) modification-time;
unsigned int(32) track-ID;
const unsigned int(32) reserved = 0;
unsigned int(32) duration;

}
const unsigned int(32)[3] reserved = 0;
const bit(16)reserved = { if track_is_audio 0x0100 else 0};
const unsigned int(16) reserved = 0;
const bit(32)[9] reserved =

{ 0x00010000, 0, 0, 0, 0x00010000, 0, 0, 0, 0x40000000 };
const bit(32)reserved = {

if track_is_visual 0x01400000 else 0 };
const bit(32)reserved = {

if track_is_visual 0x00F00000 else 0};
}

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 269

13.2.3.6.2 Semantics

Version - is an integer that specifies the version (0 or 1 in this draft).

flags - is a 24-bit integer with flags; the following values are defined.

Track enabled - Indicates that the track is enabled. Flag value is 0x000001. A disabled track (the low bit is
zero) is treated as if it were not present.

creation-time - is an integer which declares the creation time of this track (in seconds since midnight, Jan. 1,
1904).

modification-time - is an integer which declares the most recent time the track was modified (in seconds
since midnight, Jan. 1, 1904).

track-ID - is an integer which uniquely identifies this track over the entire lifetime of this presentation. Track Ids
are never re-used and cannot be zero.

duration - is an integer that indicates the duration of this track (in the movie’s time coordinate system). Note that
this property is derived from the track’s edits. The value of this field is equal to the sum of the durations of all of the
track’s edits. If there is no edit list, then the duration is the sum of the sample durations, converted into the movie
time-scale.

13.2.3.7 Track reference atom

Atom Type: `tref’
Container: Track Atom (‘trak’)
Mandatory: No
Quantity: 0 or 1

The track reference atom provides a reference from the containing stream to another stream in the presentation.
These references are typed. In particular, a ‘hint’ reference links from the containing hint track to the media data
that it hints. Exactly one track reference atom can be contained within the track atom.

If this atom is not present, the track is not referencing any other track in any way. Note that the reference array is
sized to fill the reference type atom.

Track references with a reference index of 0 are permitted. This indicates no reference, which can be useful to
defeat the implied synchronization reference between tracks in the same file, when this implied behavior is not
desired.

13.2.3.7.1 Syntax

aligned(8) class TrackReferenceAtom extends Atom(‘tref’) {
}

aligned(8) class TrackReferenceTypeAtom (unsigned int(32) reference-type) extends
Atom(reference-type) {

unsigned int(32) track-IDs[];
}

13.2.3.7.2 Semantics

The track reference atom contains track reference type atoms. These are structured as track reference type atoms.

The reference-type must be set to one of the following values:

� hint - the referenced track(s) contain the original media for this hint track

� dpnd - the referencing track has an MPEG-4 dependency on the referenced track

� ipir - this track contains IPI declarations for the referenced track

ISO/IEC 14496-1:2001(E)

270 © ISO/IEC 2001 – All rights reserved

� mpod - the referencing track is an OD track which uses the referenced track as an included elementary
stream track

� sync - this track uses the referenced track as its synchronization source.

13.2.3.8 Media atom

Atom Type: ‘mdia’
Container: Track Atom (‘trak’)
Mandatory: Yes
Quantity: Exactly one

The media declaration container contains all the objects that declare information about the media data within a
stream.

13.2.3.8.1 Syntax

aligned(8) class MediaAtom extends Atom(‘mdia’) {
}

13.2.3.9 Media header atom

Atom Type: ‘mdhd’
Container: Media Atom (‘mdia’)
Mandatory: Yes
Quantity: Exactly one

The media header declares the overall media-independent information relevant to the characteristics of the media
in a stream.

13.2.3.9.1 Syntax

aligned(8) class MediaHeaderAtom extends FullAtom(‘mdhd’, version, 0) {
if (version==1) {

unsigned int(64) creation-time;
unsigned int(64) modification-time;
unsigned int(32) timescale;
unsigned int(64) duration;

} else { // version==0
unsigned int(32) creation-time;
unsigned int(32) modification-time;
unsigned int(32) timescale;
unsigned int(32) duration;

}
bit(1) pad = 0;
unsigned int(5)[3] language; // packed ISO-639-2/T language code
const unsigned int(16) reserved = 0;

}

13.2.3.9.2 Semantics

Version - is an integer that specifies the version.

creation-time - is an integer which declares the creation time of the presentation (in seconds since midnight,
Jan. 1, 1904).

modification-time - is an integer which declares the most recent time the presentation was modified (in
seconds since midnight, Jan. 1, 1904).

timescale - is an integer which specifies the time-scale for this media; this is the number of time units which
pass in one second. A time coordinate system that measures time in sixtieths of a second, for example, has a time
scale of 60.

duration - is an integer which declares length of this media (in the scale of the timescale).

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 271

language - declares the language code for this media. See ISO 639-2/T for the set of three character codes.
Each character is packed as the difference between its ASCII value and 0x60. The code is confined to being three
lower-case letters, so these values are strictly positive. If the language code is unknown, it should be marked as
`und’ for undetermined. The value 0 should be interpreted as undetermined.

13.2.3.10 Handler reference atom

Atom Type: ‘hdlr’
Container: Media Atom (‘mdia’) Atom
Mandatory: Yes
Quantity: 1 only

The handler atom within a Media Atom declares the process by which the media-data in the stream may be
presented, and thus, the nature of the media in a stream. For example, a video handler would handle a video track.

13.2.3.10.1 Syntax

aligned(8) class HandlerAtom extends FullAtom(‘hdlr’, version = 0, 0) {
const unsigned int(32) reserved = 0;
unsigned int(32) handler-type;
const unsigned int(8)[12] reserved = 0;
string name;

}

13.2.3.10.2 Semantics

version - is an integer that specifies the version.

handler-type - is an integer containing one of the following values:

‘odsm’ ObjectDescriptorStream
‘crsm’ ClockReferenceStream
‘sdsm’ SceneDescriptionStream
‘vide’ VisualStream
‘soun’ AudioStream
‘m7sm’ MPEG7Stream
‘ocsm’ ObjectContentInfoStream
‘ipsm’ IPMP Stream
‘mjsm’ MPEG-J Stream
‘hint’ Hint track

name - is a null-terminated string in UTF-8 characters which gives a human-readable name for the stream type (for
debugging and inspection purposes).

13.2.3.11 Media information atom

Atom Type: ‘minf’
Container: Media Atom (‘mdia’)
Mandatory: Yes
Quantity: Exactly one

The media information atom contains all the objects that declare characteristic information of the media in the
stream.

13.2.3.11.1 Syntax

aligned(8) class MediaInformationAtom extends Atom(‘minf’) {
}

13.2.3.12 Media information header atoms

Atom Types: ‘vmhd’,‘smhd’,’hmhd’
Container: Media Information Atom (‘minf’)

ISO/IEC 14496-1:2001(E)

272 © ISO/IEC 2001 – All rights reserved

Mandatory: exactly one media header must be present
Quantity: 1 only

There is a media information header for each track type (corresponding to the media handler type). This header is
used for all tracks containing visual streams.

13.2.3.12.1 Video Media Header Atom

The video media header contains general presentation information, independent of the coding, for visual media.

13.2.3.12.1.1 Syntax

aligned(8) class VideoMediaHeaderAtom
extends FullAtom(‘vmhd’, version = 0, 1) {
const unsigned int(64) reserved = 0;

}

13.2.3.12.1.2 Semantics

version - is an integer that specifies the version.

13.2.3.12.2Sound Media Header Atom

The sound media header contains general presentation information, independent of the coding, for audio media.
This header is used for all tracks containing audio streams.

13.2.3.12.2.1 Syntax

aligned(8) class SoundMediaHeaderAtom
extends FullAtom(‘smhd’, version = 0, 0) {
const unsigned int(32) reserved = 0;

}

13.2.3.12.2.2 Semantics

version - is an integer that specifies the version.

13.2.3.12.3 Hint Media Header Atom

The hint media header contains general information, independent of the protocol, for hint tracks.

13.2.3.12.3.1 Syntax

aligned(8) class HintMediaHeaderAtom
extends FullAtom(‘hmhd’, version = 0, 0) {
unsigned int(16) maxPDUsize;
unsigned int(16) avgPDUsize;
unsigned int(32) maxbitrate;
unsigned int(32) avgbitrate;
unsigned int(32) slidingavgbitrate;

}

13.2.3.12.3.2 Semantics

version - is an integer that specifies the version.

maxPDUsize - gives the size in bytes of the largest PDU in this (hint) stream.

avgPDUsize - gives the average size of a PDU over the entire presentation.

maxbitrate - gives the maximum rate in bits/second over any window of one second.

avgbitrate - gives the average rate in bits/second over the entire presentation.

slidingavgbitrate - gives the maximum rate in bits/second over any one minute window (corresponding to
the avgBitrate field in the DecoderConfigDescriptor).

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 273

13.2.3.12.4 MPEG-4 Media Header Atoms

ISO/IEC 14496 streams other than visual and audio currently use an empty MPEG-4 media header atom, as
defined here. There is a set of reserved types for media headers specific to these ISO/IEC 14496 stream types.

13.2.3.12.4.1 Syntax

aligned(8) class Mpeg4MediaHeaderAtom
extends FullAtom(’nmhd’, version = 0, flags) {

}

13.2.3.12.4.2 Semantics

version - is an integer that specifies the version.

flags - is a 24-bit integer with flags (currently all zero).

The following types are reserved but currently unused:

ObjectDescriptorStream ‘odhd’
ClockReferenceStream ‘crhd’
SceneDescriptionStream ‘sdhd’
MPEG7Stream ‘m7hd’
ObjectContentInfoStream ‘ochd’
IPMP Stream ‘iphd’
MPEG-J Stream ‘mjhd’

13.2.3.13 Data information atom

Atom Type: ‘dinf’
Container: Media Information Atom (‘minf’)
Mandatory: Yes
Quantity: Exactly one

The data information atom contains objects that declare the location of the media information in a stream.

13.2.3.13.1 Syntax

aligned(8) class DataInformationAtom extends Atom(‘dinf’) {
}

13.2.3.14 Data reference atom

Atom Types: ‘url ‘, ‘urn ‘, ‘dref’
Container: Data Information Atom (‘dinf’)
Mandatory: Yes
Quantity: Exactly one

The data reference object contains a table of data references (normally URLs) which declare the location(s) of the
media data used within the presentation. The data reference index in the sample description ties entries in this
table to samples. A track may be split over several sources in this way.

If the flag is set indicating that the data is in the same file as this atom, then no string should be supplied in the
entry field, not even an empty one.

13.2.3.14.1 Syntax

aligned(8) class DataEntryUrlAtom(unsigned int(32) version, bit(24) flags)
extends FullAtom(‘url ’, version = 0, flags) {
string location;

}
aligned(8) class DataEntryUrnAtom(unsigned int(32) version, bit(24) flags)

extends FullAtom(‘urn ’, version = 0, flags) {
string name;
string location;

ISO/IEC 14496-1:2001(E)

274 © ISO/IEC 2001 – All rights reserved

}
aligned(8) class DataReferenceAtom

extends FullAtom(‘dref’, version = 0, 0) {
unsigned int(32) entry-count;
int i;
for (i=0; i < entry-count; i++) {

DataEntryAtom(entry-version, entry-flags) data-entry;
}

}

13.2.3.14.2 Semantics

version - is an integer that specifies the version.

entry-count - is an integer that counts the actual entries.

entry-version - is an integer that specifies the version.

entry-flags - is a 24-bit integer with flags; one flag is defined (x000001) which means that the media data is in
the same file as the movie atom.

data-entry - is a URL or URN entry. Name is a URN, and is required in a URN entry. Location is a URL, and is
required in a URL entry and optional in a URN entry, where it gives a default location to find the resource with the
given name. Each is a null-terminated string using UTF-8 characters. If the self-contained flag is set; the URL form
is used and no string is present; the atom terminates with the entry-flags field. The URL type should be of a service
that delivers a file (e.g. URLs of type file, http, ftp etc.), which ideally also permits random access. Relative URLs
are permissible and are relative to the file containing this data reference.

13.2.3.15 Sample Table atom

Atom Type: ‘stbl’
Container: Media Information Atom (‘minf’)
Mandatory: Yes
Quantity: Exactly one

The sample table contains all the time and data indexing of the media samples in a track. Using the tables here, it
is possible to locate samples in time, determine their type (e.g. I-frame or not), and determine their size, container,
and offset into that container.

If the track that contains the sample table atom references no data, then the sample table atom does not need to
contain any sub-atoms (this is not a very useful media track).

If the track that the sample table atom is contained in does reference data, then the following sub-atoms are
required: Sample Description, Sample Size, Sample to Chunk, and Chunk Offset. All of the sub-tables of the
sample table use the same total sample count. Further, the Sample Description Atom must contain at least one
entry. A Sample Description Atom is required because it contains the data reference index field that indicates
which Data Reference atom to use to retrieve the media samples. Without the Sample Description, it is not possible
to determine where the media samples are stored. The Sync Sample atom is optional. If the Sync Sample atom is
not present, all samples are sync samples.

13.2.3.15.1 Syntax

aligned(8) class SampleTableAtom extends Atom(‘stbl’) {
}

13.2.3.16 Time to Sample Atoms

ISO/IEC 14496 composition time (CT) and decoding time (DT) are derived from the Time to Sample Atoms of
which there are two types. The decoding time is derived in the Decoding Time to Sample Atom decoding time
deltas between successive decoding times. The composition times are derived in the Composition Time to Sample
Atom as composition time offsets from decoding time. If the composition times and decoding times are identical for
every sample in the track, then only the Decoding Time to Sample Atom is required.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 275

Note that the time to sample atoms must give durations for all samples including the last one. Durations in the ‘stts’
atom are strictly positive (non-zero). If the duration of the last sample is indeterminate, use an arbitrary small value
and a ‘dwell’ edit.

In the following example, there is a sequence of I, P, and B frames, each with a decoding time delta of 10. The
samples are stored as follows, with the indicated values for their decoding time deltas and composition time offsets
(the actual CT and DT are given for reference). The re-ordering occurs because the predicted P frames must be
decoded before the bi-directionally predicted B frames. The value of DT for a sample is always the sum of the
deltas of the preceding samples. Note that the total of the decoding deltas is the duration of the media in this track.

Table 56 - Closed GOP Example

GOP /-- --- --- --- --- --- --\ /-- --- --- --- --- --- --\
I1 P4 B2 B3 P7 B5 B6 I8 P11 B9 B10 P14 B12 B13

DT 0 10 20 30 40 50 60 70 80 90 100 110 120 130
CT 10 40 20 30 70 50 60 80 110 90 100 140 120 130
Decode
delta

10 10 10 10 10 10 10 10 10 10 10 10 10 10

Compositio
n
Offset

10 30 0 0 30 0 0 10 30 0 0 30 0 0

Table 57 - Open GOP Example

GOP /-- -- -- -- -- --\ /- -- -- -- --- --\
I3 B1 B2 P6 B4 B5 I9 B7 B8 P12 B10 B11

DT 0 10 20 30 40 50 60 70 80 90 100 110
CT 30 10 20 60 40 50 90 70 80 120 100 110
Decode Delta 10 10 10 10 10 10 10 10 10 10 10 10
Composition
offset

30 0 0 30 0 0 30 0 0 30 0 0

13.2.3.16.1 Decoding Time to Sample atom

Atom Type: ‘stts’
Container: Sample Table Atom (‘stbl’)
Mandatory: Yes
Quantity: Exactly one

This atom contains a compact version of a table that allows indexing from decoding time to sample number. Other
tables give sample sizes and pointers, from the sample number. Each entry in the table gives the number of
consecutive samples with the same time delta, and the delta of those samples. By adding the deltas a complete
time-to-sample map may be built.

The Decoding Time to Sample Atom contains decode time delta's: DT(n+1) = DT(n) + STTS(n) where STTS(n) is
the (uncompressed) table entry for sample n.

The sample entries are ordered by decoding time stamps; therefore the deltas are all non-negative.

The DT axis has a zero origin; DT(i) = SUM(for j=0 to i-1 of delta(j)), and the sum of all deltas gives the length of
the media in the track (not mapped to the overall timescale, and not considering any edit list).

The Edit List Atom provides the initial CT value if it is non-empty (non-zero).

ISO/IEC 14496-1:2001(E)

276 © ISO/IEC 2001 – All rights reserved

13.2.3.16.1.1 Syntax

aligned(8) class TimeToSampleAtom
extends FullAtom(’stts’, version = 0, 0) {
unsigned int(32) entry-count;

int i;
for (i=0; i < entry-count; i++) {

unsigned int(32) sample-count;
int(32) sample-delta;

}
}

For example with table 1.2, the entry would be:

Sample count Sample-delta

14 10

13.2.3.16.1.2 Semantics

version - is an integer that specifies the version.

ttype - is ‘stts’ (for decoding times).

entry-count - is an integer that gives the number of entries in the following table.

sample-count - is an integer that counts the number of consecutive samples that have the given duration.

sample-delta - is an integer that gives the delta of these samples in the time-scale of the media.

13.2.3.16.2 Composition Time to Sample atom

Atom Type: ‘ctts’
Container: Sample Table Atom (‘stbl’)
Mandatory: No
Quantity: Exactly one

This atom provides the offset between decoding time and composition time. Since decoding time must be less than
the composition time, the offsets are expressed as unsigned numbers such that CT(n) = DT(n) + CTTS(n) where
CTTS(n) is the (uncompressed) table entry for sample n.

The composition time to sample table is optional and should only be present if DT and CT differ for any samples.

13.2.3.16.2.1 Syntax

aligned(8) class CompositionOffsetAtom
extends FullAtom(‘ctts’, version = 0, 0) {
unsigned int(32) entry-count;

int i;
for (i=0; i < entry-count; i++) {

unsigned int(32) sample-count;
unsigned int(32) sample-offset;

}
}

For example in table 1.2
Sample count offset

1 10
1 30
2 0
1 30
2 0
1 10
1 30
2 0
1 30
2 0

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 277

13.2.3.16.2.2 Semantics

version - is an integer that specifies the version, 0 in this draft.

ttype - is ‘ctts’ (for composition times).

entry-count - is an integer that gives the number of entries in the following table.

sample-count - is an integer that counts the number of consecutive samples that have the given offset.

sample-offset - is a non-negative integer that gives the offset between CT and DT, such that CT(n) = DT(n) +
CTTS(n).

13.2.3.17 Sample description atom

Atom Types: ‘mp4v’, ‘mp4a’, ‘mp4s’
Container: Sample Table Atom (‘stbl’)
Mandatory: Yes
Quantity: Exactly one

The sample description table gives detailed information about the coding type used, and any initialization
information needed for that coding.

The information stored in the data array is stream-type specific, and may have variants within a stream type (e.g.
different codings may use different specific information after some common fields, even within a visual stream).

For visual streams, a VisualSampleEntry is used; for audio streams, an AudioSampleEntry. For all other MPEG-4
streams, a MpegSampleEntry is used. Hint tracks use an entry format specific to their protocol, with an appropriate
name.

For all the MPEG-4 streams, the data field stores an ES_Descriptor with all its contents. Note that this provides an
SlConfigDescriptor which uses a pre-defined value solely for use within files.

For hint tracks, the sample description contains appropriate declarative data for the TransMux being used, and the
format of the hint track. The definition of the sample description is specific to the TransMux. However, note the
discussion of FlexMux above, and the need for a Stream Map table, and MuxCode mode format definitions.

Note that multiple descriptions may be used within a stream.

13.2.3.17.1 Syntax

aligned(8) class ESDAtom
extends FullAtom(‘esds’, version = 0, 0) {
ES_DescriptorES;

}
aligned(8) abstract class SampleEntry (unsigned int(32) format)
extends Atom(format){
const unsigned int(8)[6] reserved = 0;
unsigned int(16) data-reference-index;
}

class HintSampleEntry() extends SampleEntry (protocol) {
unsigned int(8) data [];
}
// Visual Streams

class VisualSampleEntry() extends SampleEntry ('mp4v'){const unsigned int(32)[4] reserved = 0;
const unsigned int(32) reserved = 0x014000F0;
const unsigned int(32) reserved = 0x00480000;
const unsigned int(32) reserved = 0x00480000;
const unsigned int(32) reserved = 0;
const unsigned int(16) reserved = 1;
const unsigned int(8)[32] reserved = 0;
const unsigned int(16) reserved = 24;

ISO/IEC 14496-1:2001(E)

278 © ISO/IEC 2001 – All rights reserved

const int(16)reserved = -1;
ESDAtom ES;

}
// Audio Streams

class AudioSampleEntry() extends SampleEntry ('mp4a'){
const unsigned int(32)[2] reserved = 0;
const unsigned int(16) reserved = 2 ;
const unsigned int(16) reserved = 16 ;
const unsigned int(32) reserved = 0 ;
unsigned int(16) time-scale ; // copied from track
const unsigned int(16) reserved = 0 ;
ESDAtom ES;
}
// all other Mpeg stream types

class MpegSampleEntry() extends SampleEntry ('mp4s'){
ESDAtom ES;
}

aligned(8) class SampleDescriptionAtom (unsigned int(32) handler-type)
extends FullAtom('stsd', 0, 0){
int i ;
unsigned int(32) entry-count;
for (i = 0 ; i < entry-count ; i++){
switch (handler-type){

case ‘soun’: // AudioStream
AudioSampleEntry();
break;

case ‘vide’: // VisualStream
VisualSampleEntry();
break;

case ‘hint’: // Hint track
HintSampleEntbry();
break;

default :
MpegSampleEntry();
break;

}
}

13.2.3.17.2 Semantics

version - is an integer that specifies the version.

entry-count - is an integer that gives the number of entries in the following table.

SampleEntry - is the appropriate sample entry.

data-reference-index - is integer that contains the index of the data reference to use to retrieve data
associated with samples that use this sample description. Data references are stored in data reference atoms. The
index ranges from 1 to the number of data references.

data - is information specific to the protocol.

ES - is the ES Descriptor for this stream.

13.2.3.18 Sample size atom

Atom Type: ‘stsz’
Container: Sample Table Atom (‘stbl’)
Mandatory: Yes
Quantity: Exactly one

The sample size atom contains the sample count and a table giving the size of each sample. This allows the media
data itself to be unframed. The total number of samples in the media is always indicated in the sample count. If the
default size is indicated, then no table follows.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 279

13.2.3.18.1 Syntax

aligned(8) class SampleSizeAtom extends FullAtom(‘stsz’, version = 0, 0) {
unsigned int(32) sample-size;
unsigned int(32) sample-count;
if (sample-size==0) {

int i;
for (i=0; i < sample-count; i++) {

unsigned int(32) entry-size;
}

}
}

13.2.3.18.2 Semantics

version - is an integer that specifies the version.

sample-size - is integer specifying the default sample size. If all the samples are the same size, this field
contains that size value. If this field is set to 0, then the samples have different sizes, and those sizes are stored in
the sample size table.

sample-count - is an integer that gives the number of entries in the following table.

entry-size - is integer specifying the size of a sample, indexed by its number.

13.2.3.19 Sample to chunk atom

Atom Type: ‘stsc’
Container: Sample Table Atom (‘stbl’)
Mandatory: Yes
Quantity: Exactly one

Samples within the media data are grouped into chunks. Chunks may be of different sizes, and the samples within
a chunk may have different sizes. By using this table, you can find the chunk that contains a sample, its position,
and the associated sample description.

The table is compactly coded. Each entry gives the index of the first chunk of a run of chunks with the same
characteristics; by subtracting one entry here from the previous one, you can compute how many chunks are in this
run. You can convert this to a sample count by multiplying by the appropriate samples-per-chunk.

13.2.3.19.1 Syntax

aligned(8) class SampleToChunkAtom
extends FullAtom(‘stsc’, version = 0, 0) {
unsigned int(32) entry-count;
int i;
for (i=0; i < entry-count; i++) {

unsigned int(32) first-chunk;
unsigned int(32) samples-per-chunk;
unsigned int(32) sample-description-index;

}
}

13.2.3.19.2 Semantics

version - is an integer that specifies the version.

entry-count - is an integer that gives the number of entries in the following table.

first-chunk - is an integer that gives the index of the first chunk in this run of chunks that share the same
samples-per-chunk and sample-description-index.

samples-per-chunk - is an integer that gives the number of samples in each of these chunks.

sample-description-index - is an integer that gives the index of the sample entry that describes the samples
in this chunk. The index ranges from 1 to the number of sample entries in the sample description atom.

ISO/IEC 14496-1:2001(E)

280 © ISO/IEC 2001 – All rights reserved

13.2.3.20 Chunk offset atom

Atom Type: ‘stco’
Container: Sample Table Atom (‘stbl’)
Mandatory: Yes
Quantity: Exactly one

The chunk-offset table gives the index of each chunk into the containing file. There are two variants, permitting the
use of 32-bit or 64-bit offsets. The latter is useful when managing very large presentations. At most one of these
variants will occur in any single instance of a sample table.

Note that offsets are file offsets not the offset into any atom within the file (e.g. a mdat atom). This permits referring
to media data in files without any atom structure. It does also mean that care must be taken when constructing a
self-contained mp4 file with its meta-data (movie atom) at the front, as the size of the movie atom will affect the
chunk offsets to the media data.

13.2.3.20.1 Syntax

aligned(8) class ChunkOffsetAtom
extends FullAtom(‘stco’, version = 0, 0) {
unsigned int(32) entry-count;
int i;
for (i=0; i < entry-count; i++) {

unsigned int(32) chunk-offset;
}

}

aligned(8) class ChunkLargeOffsetAtom
extends FullAtom(‘co64’, version = 0, 0) {
unsigned int(32) entry-count;
int i;
for (i=0; i < entry-count; i++) {

unsigned int(64) chunk-offset;
}

}

13.2.3.20.2 Semantics

version - is an integer that specifies the version.

entry-count - is an integer that gives the number of entries in the following table.

chunk-offset - is a 32 or 64 bit integer that gives the offset of the start of a chunk into its containing media
stream (file).

13.2.3.21 Sync Sample Atom

Atom Type: ‘stss’
Container: Sample Table Atom (‘stbl’)
Mandatory: No
Quantity: Exactly one

The sync sample atom provides a compact marking of the random access points within the stream. Precisely the
samples named here would have the RandomAccessPoint flag set in their SL Packet headers. The table is
arranged in strictly increasing order of sample number.

If this table is not present, every sample is a random access point.

13.2.3.21.1 Syntax

aligned(8) class SyncSampleAtom
extends FullAtom(‘stss’, version = 0, 0) {
unsigned int(32) entry-count;
int i;
for (i=0; i < entry-count; i++) {

unsigned int(32) sample-number;
}

}

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 281

13.2.3.21.2 Semantics

version - is an integer that specifies the version.

entry-count - is an integer that gives the number of entries in the following table.

sample-number - gives the numbers of the samples that are random access points in the stream.

13.2.3.22 Shadow Sync Sample Atom

Atom Type: ‘stsh’
Container: Sample Table Atom (‘stbl’)
Mandatory: No
Quantity: Exactly one

The shadow sync table provides an optional set of sync samples that can be used when seeking or for similar
purposes. In normal forward play they are ignored.

Each entry in the ShadowSyncTable consists of a pair of sample numbers. The first entry (shadowed-sample-
number) indicates the number of the sample that a shadow sync will be defined for. This should always be a non-
sync sample (e.g. a frame difference). The second sample number (sync-sample-number) indicates the sample
number of the sync sample (i.e. key frame) that can be used when there is a random access at, or before, the
shadowed-sample-number.

The entries in the ShadowSyncAtom must be sorted based on the shadowed-sample-number field.

The shadow sync samples are normally placed in an area of the track that is not presented during normal play
(edited out by means of an edit list), though this is not a requirement. Note that shadow sync table can be ignored
and the track will play (and seek) correctly if it is ignored (though perhaps not optimally).

The ShadowSyncSample replaces, not augments, the sample which it shadows (i.e. the next sample sent is
shadowed-sample-number+1). The shadow sync sample is treated as if it occurred at the time of the sample it
shadows, having the duration of the sample it shadows.

Hinting and transmission might become more complex if a shadow sample is used also as part of normal playback,
or is used more than once as a shadow. In this case the hint track might need separate shadow syncs, all of which
can get their media data from the one shadow sync in the media track, to allow for the different time-stamps etc.
needed in their headers.

13.2.3.22.1 Syntax

aligned(8) class ShadowSyncSampleAtom
extends FullAtom(‘stsh’, version = 0, 0) {
unsigned int(32) entry-count;
int i;
for (i=0; i < entry-count; i++) {

unsigned int(32) shadowed-sample-number;
unsigned int(32) sync-sample-number;

}
}

13.2.3.22.2 Semantics

version - is an integer that specifies the version.

entry-count - is an integer that gives the number of entries in the following table.

shadowed-sample-number - gives the number of a sample for which there is an alternative sync sample.

sync-sample-number - gives the number of the alternative sync sample.

ISO/IEC 14496-1:2001(E)

282 © ISO/IEC 2001 – All rights reserved

13.2.3.23 Degradation Priority Atom ('stdp')

Atom Type: ‘stdp’
Container: Sample Table Atom (‘stbl’).
Mandatory: No.
Quantity: Exactly one.

The degradation priority atom contains the MPEG-4 degradation priority of each sample. The values are stored in
the table, one for each sample. The size of the table, sample-count is taken from the sample-count in the
Sample Size Atom ('stsz').

The maximum size of a degradation priority in the SL header is 15 bits, A fixed 15-bit field is used here.

13.2.3.23.1 Syntax

aligned(8) class DegradationPriorityAtom
extends FullAtom(‘stdp’, version = 0, 0) {
int i;
for (i=0; i < sample-count; i++) {

const bit(1) pad = 0; // must be zero
unsigned int(15) priority;

}
}

13.2.3.23.2 Semantics

version - is an integer that specifies the version.

priority - is integer specifying the degradation priority for each sample.

13.2.3.24 Free space atom

Atom Types: ‘free’, ‘skip’
Container: File
Mandatory: No
Quantity: Any number

The contents of a free-space atom are irrelevant and may be ignored, or the object deleted, without affecting the
presentation. (Note that deleting the object may invalidate the offsets used in the sample table, unless this object is
after all the media data).

13.2.3.24.1 Syntax

aligned(8) class FreeSpaceAtom extends Atom(free-type) {
unsigned int(8) data[];

}

13.2.3.24.2 Semantics

free-type - may be ‘free’ or ‘skip’.

13.2.3.25 Edit Atom

Atom Type: ‘edts’
Container: Track Atom (‘trak’)
Mandatory: No
Quantity: Exactly one

An edit atom maps the presentation time-line to the media time-line as it is stored in the file. The edit atom is a
container for the edit lists.

Note that the Edit atom is optional. In the absence of this atom, there is an implicit one-to-one mapping of these
time-lines.

In the absence of an edit list, the presentation of a track starts immediately. An empty edit is used to offset the start
time of a track.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 283

13.2.3.25.1 Syntax

aligned(8) class EditAtom extends Atom(‘edts’) {
}

13.2.3.26 Edit List Atom

Atom Type: ‘elst’
Container: Edit Atom (‘edts’)
Mandatory: No
Quantity: 1 only

The edit list atom contains an explicit timeline map. It is possible to represent ‘empty’ parts if the timeline, where no
media is presented; a ‘dwell’, where a single time-point in the media is held for a period; and a normal mapping.

Edit lists provide a mapping from the relative time (the deltas in the sample table) into absolute time (the time line of
the presentation), possibly introducing ‘silent’ intervals or repeating pieces of media.

Starting offsets for tracks (streams) are represented by an initial empty edit. For example, to play a track from its
start for 30 seconds, but at 10 seconds into the presentation, we have the following edit list:

Entry-count = 2

Segment-duration = 10 seconds
Media-Time = -1
Media-Rate = 1

Segment-duration = 30 seconds (could be the length of the whole track)
Media-Time = 0 seconds
Media-Rate = 1

13.2.3.26.1 Syntax

aligned(8) class EditListAtom extends FullAtom(‘elst’, version, 0) {
unsigned int(32) entry-count;
int i;
for (i=0; i < entry-count; i++) {

if (version==1) {
unsigned int(64) segment-duration;
int(64) media-time;

} else { // version==0
unsigned int(32) segment-duration;
int(32) media-time;

}
int(16) media-rate;

const int(16) reserved = 0;
}

}

13.2.3.26.2 Semantics

version - is an integer that specifies the version.

entry-count - is an integer that gives the number of entries in the following table.

segment-duration - is an integer that specifies the duration of this edit segment in units of the movie’s time
scale.

ISO/IEC 14496-1:2001(E)

284 © ISO/IEC 2001 – All rights reserved

media-time - is an integer containing the starting time within the media of this edit segment (in media time scale
units, in composition time). If this field is set to –1, it is an empty edit. The last edit in a track should never be an
empty edit. Any difference between the movie’s duration and the track’s duration is expressed as an implicit empty
edit.

media-rate - specifies the relative rate at which to play the media corresponding to this edit segment. If this value
is 0, then the edit is specifying a ‘dwell’: the media at media-time is presented for the segment-duration. Otherwise
this field must contain the value 1.

13.2.3.27 User-data atom

Atom Type: ‘udta’
Container: Movie Atom (‘moov’) or Track Atom (‘trak’)
Mandatory: No
Quantity: Any quantity

The stream user-data atom contains objects that declare user information about the containing atom and its data
(presentation or stream).

The user-data atom is a container atom for informative user-data. This user data is formatted as a set of atoms with
more specific atom types, which declare more precisely their content.

Only a copyright notice is defined in this draft. There may be multiple copyright atoms using different language
codes.

13.2.3.27.1 Syntax

aligned(8) class UserDataAtom extends Atom(‘udta’) {
}

aligned(8) class CopyrightAtom
extends FullAtom(‘cprt’, version = 0, 0) {
const bit(1) pad = 0;
unsigned int(5)[3] language; // packed ISO-639-2/T language code
string notice;

}

13.2.3.27.2 Semantics

language - declares the language code for the following text. See ISO 639-2/T for the set of three character
codes. Each character is packed as the difference between its ASCII value and 0x60. The code is confined to
being three lower-case letters, so these values are strictly positive.

notice - is a null-terminated string giving a copyright notice.

13.3 Extensibility

13.3.1 Objects

The normative objects defined in this specification are identified by a 32-bit value, which is normally a set of four
printable characters from the ISO 8859-1 character set.

To permit user extension of the format, to store new object types, and to permit the inter-operation of the files
formatted to this specification with certain distributed computing environments, there is a type mapping and a type
extension mechanism which together form a pair.

Commonly used in distributed computing are UUIDs (universal unique identifiers), which are 16 bytes. Any MPEG-
4 normative type specified here may be mapped directly into the UUID space by composing the four byte type
value with the twelve byte MPEG reserved value, 0xxxxxxxxx-0011-0010-8000-00AA00389B71. The four-character
code replaces the XXXXXXXX in the preceding number. These types are identified to MPEG as the object types
used in this specification.

User objects use the escape type ‘uuid’. They are documented above. After the size and type fields, there is a full
16-byte UUID.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 285

Systems which wish to treat every object as having a UUID should employ the following algorithm:

size := read_uint32();
type := read_uint32();
if (type==‘uuid’)

then uuid := read_uuid()
else uuid := form_uuid(type, MPEG_12_bytes);

Similarly when linearizing a set of objects into files formatted to this specification, the following is applied:

write_uint32(object_size(object));
uuid := object_uuid_type(object);
if (is_MPEG_uuid(uuid))

write_uint32(MPEG_type_of(uuid))
else { write_uint32(‘uuid’); write_uuid(uuid); }

A file containing MPEG-4 objects which have been written using the ‘uuid’ escape and the full UUID is not
compliant; systems may choose to read objects using the uuid escape and an MPEG-4 uuid as equivalent to the
MPEG-4 object of the same type as equivalent, or not.

13.3.2 Elementary streams

MPEG-4 streams may be combined into a presentation with other streams. Such streams and their declarations are
beyond the scope of this specification.

13.3.3 TransMuxes (protocols)

Hint tracks may be defined for a number of different protocols depending on the desired delivery mechanism.
Examples would include RTP and MPEG-2 Transport.

13.3.4 Storage formats

The main file containing the meta-data may use other files to contain media-data. These other files may contain
header declarations from a variety of standards, including this one.

If such a secondary file has a meta-data declaration set in it, that meta-data is not part of the overall presentation.
This allows small presentation files to be aggregated into a larger overall presentation by building new meta-data
and referencing the media-data, rather than copying it.

The references into these other files need not use all the data in those files; in this way, a subset of the media-data
may be used, or unwanted headers ignored.

14 Syntactic Description Language

14.1 Introduction

This subclause describes the mechanism with which bitstream syntax is documented in ISO/IEC 14496. This
mechanism is based on a Syntactic Description Language (SDL), documented here in the form of syntactic
description rules. It directly extends the C-like syntax used in ISO/IEC 11172:1993 and ISO/IEC 13818:1996 into a
well-defined framework that lends itself to object-oriented data representations. In particular, SDL assumes an
object-oriented underlying framework in which bitstream units consist of “classes.” This framework is based on the
typing system of the C++ and Java programming languages. SDL extends the typing system by providing facilities
for defining bitstream-level quantities, and how they should be parsed.

The elementary constructs are described first, followed by the composite syntactic constructs, and arithmetic and
logical expressions. Finally, syntactic control flow and built-in functions are addressed. Syntactic flow control is
needed to take into account context-sensitive data. Several examples are used to clarify the structure.

14.2 Elementary Data Types

The SDL uses the following elementary data types:

1. Constant-length direct representation bit fields or Fixed Length Codes — FLCs. These describe the encoded
value exactly as it is to be used by the appropriate decoding process.

ISO/IEC 14496-1:2001(E)

286 © ISO/IEC 2001 – All rights reserved

2. Variable length direct representation bit fields, or parametric FLCs. These are FLCs for which the actual length
is determined by the context of the bitstream (e.g., the value of another parameter).

3. Constant-length indirect representation bit fields. These require an extra lookup into an appropriate table or
variable to obtain the desired value or set of values.

4. Variable-length indirect representation bit fields (e.g., Huffman codes).

These elementary data types are described in more detail in the clauses to follow immediately.

All quantities shall be represented in the bitstream with the most significant byte first, and also with the most
significant bit first.

14.2.1 Constant-Length Direct Representation Bit Fields

Constant-length direct representation bit fields shall be represented as:

Rule E.1: Elementary Data Types
[aligned] type[(length)] element_name [= value]; // C++-style comments allowed

The type may be any of the following: int for signed integer, unsigned int for unsigned integer, double for
floating point, and bit for raw binary data. The length attribute indicates the length of the element in bits, as it is
actually stored in the bitstream. Note that a data type equal to double shall only use 32 or 64 bit lengths. The
value attribute shall be present only when the value is fixed (e.g., start codes or object IDs), and it may also
indicate a range of values (i.e., ‘0x01..0xAF’). The type and the optional length attributes are always present,
except if the data is non-parsable, i.e., it is not included in the bitstream. The keyword aligned indicates that the
data is aligned on a byte boundary. As an example, a start code would be represented as:

aligned bit(32) picture_start_code=0x00000100;

An optional numeric modifier, as in aligned(32), may be used to signify alignment on other than byte boundary.
Allowed values are 8, 16, 32, 64, and 128. Any skipped bits due to alignment shall have the value ‘0’. An entity
such as temporal reference would be represented as:

unsigned int(5) temporal_reference;

where unsigned int(5) indicates that the element shall be interpreted as a 5-bit unsigned integer. By default,
data shall be represented with the most significant bit first, and the most significant byte first.

The value of parsable variables with declarations that fall outside the flow of declarations (see 14.6) shall be set to
0.

Constants shall be defined using the keyword const.

EXAMPLE �

const int SOME_VALUE=255; // non-parsable constant
const bit(3) BIT_PATTERN=1; // this is equivalent to the bit string “001”

To designate binary values, the 0b prefix shall be used, similar to the 0x prefix for hexadecimal numbers. A period
(‘.’) may be optionally placed after every four digits for readability. Hence 0x0F is equivalent to 0b0000.1111.

In several instances, it may be desirable to examine the immediately following bits in the bitstream, without actually
consuming these bits. To support this behavior, a ‘*’ character shall be placed after the parse size parentheses to
modify the parse size semantics.

Rule E.2: Look-ahead parsing
[aligned] type (length)* element_name;

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 287

For example, the value of next 32 bits in the bitstream can be checked to be an unsigned integer without advancing
the current position in the bitstream using the following representation:

aligned unsigned int (32)* next_code;

14.2.2 Variable Length Direct Representation Bit Fields

This case is covered by Rule E.1, by allowing the length attribute to be a variable included in the bitstream, a non-
parsable variable, or an expression involving such variables.

EXAMPLE �

unsigned int(3) precision;
int(precision) DC;

14.2.3 Constant-Length Indirect Representation Bit Fields

Indirect representation indicates that the actual value of the element at hand is indirectly specified by the bitstream
through the use of a table or map. In other words, the value extracted from the bitstream is an index to a table from
which the final desired value is extracted. This indirection may be expressed by defining the map itself:

Rule E.3: Maps
map MapName (output_type) {

index, {value_1, … value_M},
…

}

These tables are used to translate or map bits from the bitstream into a set of one or more values. The input type of
a map (the index specified in the first column) shall always be bit. The output_type entry shall be either a
predefined type or a defined class (classes are defined in 14.3.1). The map is defined as a set of pairs of such
indices and values. Keys are binary string constants while values are output_type constants. Values shall be
specified as aggregates surrounded by curly braces, similar to C or C++ structures.

EXAMPLE �

class YUVblocks {// classes are fully defined later on
int Yblocks;
int Ublocks;
int Vblocks;

}

// a table that relates the chroma format with the number of blocks
// per signal component
map blocks_per_component (YUVblocks) {

0b00,{4, 1, 1}, // 4:2:0
0b01,{4, 2, 2}, // 4:2:2
0b10,{4, 4, 4} // 4:4:4

}

The next rule describes the use of such a map.

Rule E.4: Mapped Data Types
type (MapName) name;

The type of the variable shall be identical to the type returned from the map.

EXAMPLE �

YUVblocks(blocks_per_component) chroma_format;

Using the above declaration, a particular value of the map may be accessed using the construct: chroma_format.Ublocks.

ISO/IEC 14496-1:2001(E)

288 © ISO/IEC 2001 – All rights reserved

14.2.4 Variable Length Indirect Representation Bit Fields

For a variable length element utilizing a Huffman or variable length code table, an identical specification to the fixed
length case shall be used:

class val {
unsigned int foo;
int bar;

}

map sample_vlc_map (val) {
0b0000.001, {0, 5},
0b0000.0001, {1, -14}

}

The only difference is that the indices of the map are now of variable length. The variable-length codewords are (as
before) binary strings, expressed by default in ‘0b’ or ‘0x’ format, optionally using the period (‘.’) every four digits for
readability.

Very often, variable length code tables are partially defined. Due to the large number of possible entries, it may be
inefficient to keep using variable length codewords for all possible values. This necessitates the use of escape
codes, that signal the subsequent use of a fixed-length (or even variable length) representation. To allow for such
exceptions, parsable type declarations are allowed for map values.

EXAMPLE � This example uses the class type ‘val’ as defined above.

map sample_map_with_esc (val) {
0b0000.001, {0, 5},
0b0000.0001, {1, -14},
0b0000.0000.1, {5, int(32)},
0b0000.0000.0, {0, -20}

}

When the codeword 0b0000.0000.1 is encountered in the bitstream, then the value ‘5’ is assigned to the first element
(val.foo). The following 32 bits are parsed and assigned as the value of the second element (val.bar). Note that, in case
more than one element utilizes a parsable type declaration, the order is significant and is the order in which elements are
parsed. In addition, the type within the map declaration shall match the type used in the class declaration associated with the
map’s return type.

14.3 Composite Data Types

14.3.1 Classes

Classes are the mechanism with which definitions of composite types or objects is performed. Their definition is as
follows.

Rule C.1: Classes
[aligned] [abstract] [expandable[(maxClassSize)]] class object_name [extends parent_class] [:

bit(length) [id_name=] object_id | id_range] {
[element; …] // zero or more elements

}

The different elements within the curly braces are the definitions of the elementary bitstream components
discussed in 12.2 or control flow elements that will be discussed in a subsequent subclause.

The optional keyword extends specifies that the class is “derived” from another class. Derivation implies that
all information present in the base class is also present in the derived class, and that, in the bitstream, all such
information precedes any additional bitstream syntax declarations specified in the new class.

The optional attribute id_name allows to assign an object_id, and, if present, is the key demultiplexing entity which
allows differentiation between base and derived objects. It is also possible to have a range of possible values: the
id_range is specified as start_id .. end_id, inclusive of both bounds.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 289

If the attribute id_name is used, a derived class may appear at any point in the bitstream where its base class is
specified in the syntax. This allows to express polymorphism in the SDL syntax description. The actual class to be
parsed is determined as follows:

� The base class declaration shall assign a constant value or range of values to object_id.

� Each derived class declaration shall assign a constant value or ranges of values to object_id. This value or
set of values shall correspond to legal object_id value(s) for the base class.

NOTE 1 — Derivation of classes is possible even when object_ids are not used. However, in that case derived classes may not
replace their base class in the bitstream.

NOTE 2 — Derived classes may use the same object_id value as the base class. In that case classes can only be
discriminated through context information.

EXAMPLE �

class slice: aligned bit(32) slice_start_code=0x00000101 .. 0x000001AF {
// here we get vertical_size_extension, if present
if (scalable_mode==DATA_PARTITIONING) {

unsigned int(7) priority_breakpoint;
}
…

}

class foo {
int(3) a;
...

}

class bar extends foo {
int(5) b; // this b is preceded by the 3 bits of a
int(10) c;
...

}

The order of declaration of the bitstream components is important: it is the same order in which the elements appear in the
bitstream. In the above examples, bar.b immediately precedes bar.c in the bitstream.

Objects may also be encapsulated within other objects. In this case, the element in Rule C.1 is an object itself.

14.3.2 Abstract Classes

When the abstract keyword is used in the class declaration, it indicates that only derived classes of this class
shall be present in the bitstream. This implies that the derived classes may use the entire range of IDs available.
The declaration of the abstract class requires a declaration of an ID, with the value 0.

EXAMPLE �

abstract class Foo : bit(1) id=0 { // the value 0 is not really used
...

}

// derived classes are free to use the entire range of IDs
class Foo0 extends Foo : bit(1) id=0 {

...
}

class Foo1 extends Foo : bit(1) id=1 {
...

}

class Example {
Foo f; // can only be Foo0 or Foo1, not Foo

}

ISO/IEC 14496-1:2001(E)

290 © ISO/IEC 2001 – All rights reserved

14.3.3 Expandable classes

When the expandable keyword is used in the class declaration, it indicates that the class may contain implicit
arrays or undefined trailing data, called the "expansion". In this case the class encodes its own size in bytes
explicitly. This may be used for classes that require future compatible extension or that may include private data. A
legacy device is able to decode an expandable class up to the last parsable variable that has been defined for a
given revision of this class. Using the size information, the parser shall skip the class data following the last
known syntax element. Anywhere in the syntax where a set of expandable classes with object_id is expected it is
permissible to intersperse expandable classes with unknown object_id values. These classes shall be skipped,
using the size information.

The size encoding precedes any parsable variables of the class. If the class has an object_id, the encoding of
the object_id precedes the size encoding. The size information shall not include the number of bytes needed for the
size and the object_id encoding. Instances of expandable classes shall always have a size corresponding to an
integer number of bytes. The size information is accessible within the class as class instance variable
sizeOfInstance.

If the expandable keyword has a maxClassSize attribute, then this indicates the maximum permissible size of this
class in bytes, including any expansion.

The length encoding is itself defined in SDL as follows:

int sizeOfInstance = 0;
bit(1) nextByte;
bit(7) sizeOfInstance;
while(nextByte) {

bit(1) nextByte;
bit(7) sizeByte;
sizeOfInstance = sizeOfInstance<<7 | sizeByte;

}

14.3.4 Parameter types

A parameter type defines a class with parameters. This is to address cases where the data structure of the
class depends on variables of one or more other objects. Since SDL follows a declarative approach, references to
other objects, in such cases, cannot be performed directly (none is instantiated). Parameter types provide
placeholders for such references, in the same way as the arguments in a C function declaration. The syntax of a
class definition with parameters is as follows.

Rule C.2: Class Parameter Types
[aligned] [abstract] class object_name [(parameter list)] [extends parent_class]

[: bit(length) [id_name=] object_id | id_range] {
[element; …] // zero or more elements

}

The parameter list is a list of type names and variable name pairs separated by commas. Any element of the
bitstream, or value derived from the bitstream with a variable-length codeword, or a constant, can be passed as a
parameter.

A class that uses parameter types is dependent on the objects in its parameter list, whether class objects or
simple variables. When instantiating such a class into an object, the parameters have to be instantiated objects of
their corresponding classes or types.

EXAMPLE �

class A {
// class body
...
unsigned int(4) format;

}

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 291

class B (A a, int i) { // B uses parameter types
unsigned int(i) bar;
...
if(a.format == SOME_FORMAT) {

...
}
...

}

class C {
int(2) i;
A a;
B foo(a, I); // instantiated parameters are required

}

14.3.5 Arrays

Arrays are defined in a similar way as in C/C++, i.e., using square brackets. Their length, however, can depend on
run-time parameters such as other bitstream values or expressions that involve such values. The array declaration
is applicable to both elementary as well as composite objects.

Rule A.1: Arrays
typespec name [length];

typespec is a type specification (including bitstream representation information, e.g. ‘int(2)’). The attribute
name is the name of the array, and length is its length.

EXAMPLE �

unsigned int(4) a[5];
int(10) b;
int(2) c[b];

Here ‘a’ is an array of 5 elements, each of which is represented using 4 bits in the bitstream and interpreted as an unsigned
integer. In the case of ‘c’, its length depends on the actual value of ‘b’. Multi-dimensional arrays are allowed as well. The parsing
order from the bitstream corresponds to scanning the array by incrementing first the right-most index of the array, then the
second, and so on.

14.3.6 Partial Arrays

In several situations, it is desirable to load the values of an array one by one, in order to check, for example, a
terminating or other condition. For this purpose, an extended array declaration is allowed in which individual
elements of the array may be accessed.

Rule A.2: Partial Arrays
typespec name[[index]];

Here index is the element of the array that is defined. Several such partial definitions may be given, but they shall
all agree on the type specification. This notation is also valid for multidimensional arrays.

EXAMPLE �

int(4) a[[3]][[5]];

indicates the element a(5, 3) of the array (the element in the 6th row and the 4th column), while

int(4) a[3][[5]];

indicates the entire sixth column of the array, and

int(4) a[[3]][5];

indicates the entire fourth row of the array, with a length of 5 elements.

NOTE � a[5] means that the array has five elements, whereas a[[5]] implies that there are at least six.

ISO/IEC 14496-1:2001(E)

292 © ISO/IEC 2001 – All rights reserved

14.3.7 Implicit Arrays

When a series of polymorphic classes is present in the bitstream, it may be represented as an array of the same
type as that of the base class. Let us assume that a set of polymorphic classes is defined, derived from the base
class Foo (may or may not be abstract):

class Foo : int(16) id = 0 {
...

}

For an array of such objects, it is possible to implicitly determine the length by examining the validity of the class
ID. Objects are inserted in the array as long as the ID can be properly resolved to one of the IDs defined in the
base (if not abstract) or its derived classes. This behavior is indicated by an array declaration without a length
specification.

EXAMPLE 1 �

class Example {
Foo f[]; // length implicitly obtained via ID resolution

}

To limit the minimum and maximum length of the array, a range specification may be inserted in the specification of the length.

EXAMPLE 2 �

class Example {
Foo f[1 .. 255]; // at least 1, at most 255 elements

}

In this example, ‘f’ may have at least 1 and at most 255 elements.

14.4 Arithmetic and Logical Expressions

All standard arithmetic and logical operators of C++ are allowed, including their precedence rules.

14.5 Non-Parsable Variables

In order to accommodate complex syntactic constructs, in which context information cannot be directly obtained
from the bitstream but only as a result of a non-trivial computation, non-parsable variables are allowed. These are
strictly of local scope to the class they are defined in. They may be used in expressions and conditions in the
same way as bitstream-level variables. In the following example, the number of non-zero elements of an array is
computed.

unsigned int(6) size;
int(4) array[size];
…
int i; // this is a temporary, non-parsable variable
for (i=0, n=0; i<size; i++) {

if (array[[i]]!=0)
n++;

}

int(3) coefficients[n];
// read as many coefficients as there are non-zero elements in array

14.6 Syntactic Flow Control

The syntactic flow control provides constructs that allow conditional parsing, depending on context, as well as
repetitive parsing. The familiar C/C++ if-then-else construct is used for testing conditions. Similarly to C/C++, zero
corresponds to false, and non-zero corresponds to true.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 293

Rule FC.1: Flow Control Using If-Then-Else
if (condition) {

…
} [else if (condition) {

…
}] [else {

…
}]

EXAMPLE 1 �

class conditional_object {
unsigned int(3) foo;
bit(1) bar_flag;
if (bar_flag) {

unsigned int(8) bar;
}
unsigned int(32) more_foo;

}

Here the presence of the entity ‘bar’ is determined by the ‘bar_flag’.

EXAMPLE 2 �

class conditional_object {
unsigned int(3) foo;
bit(1) bar_flag;
if (bar_flag) {

unsigned int(8) bar;
} else {

unsigned int(some_vlc_table) bar;
}
unsigned int(32) more_foo;

}

Here we allow two different representations for ‘bar’, depending on the value of ‘bar_flag’. We could equally well have another
entity instead of the second version (the variable length one) of ‘bar’ (another object, or another variable). Note that the use of a
flag necessitates its declaration before the conditional is encountered. Also, if a variable appears twice (as in the example
above), the types shall be identical.

In order to facilitate cascades of if-then-else constructs, the ‘switch’ statement is also allowed.

Rule FC.2: Flow Control Using Switch
switch (condition) {

[case label1: …]
[default:]

}

The same category of context-sensitive objects also includes iterative definitions of objects. These simply imply the
repetitive use of the same syntax to parse the bitstream, until some condition is met (it is the conditional repetition
that implies context, but fixed repetitions are obviously treated the same way). The familiar structures of ‘for’,
‘while’, and ‘do’ loops can be used for this purpose.

Rule FC.3: Flow Control Using For
for (expression1; expression2; expression3) {

…
}

ISO/IEC 14496-1:2001(E)

294 © ISO/IEC 2001 – All rights reserved

expression1 is executed prior to starting the repetitions. Then expression2 is evaluated, and if it is non-zero (true)
the declarations within the braces are executed, followed by the execution of expression3. The process repeats
until expression2 evaluates to zero (false).

Note that it is not allowed to include a variable declaration in expression1 (in contrast to C++).

Rule FC.4: Flow Control Using Do
do {

…
} while (condition);

Here the block of statements is executed until condition evaluates to false. Note that the block will be executed at
least once.

Rule FC.5: Flow Control Using While
while (condition) {

…
}

The block is executed zero or more times, as long as condition evalutes to non-zero (true).

14.7 Built-In Operators

The following built-in operators are defined.

Rule O.1: lengthof() Operator
lengthof(variable)

This operator returns the length, in bits, of the quantity contained in parentheses. The length is the number of bits
that was most recently used to parse the quantity at hand. A return value of 0 means that no bits were parsed for
this variable.

14.8 Scoping Rules

All parsable variables have class scope, i.e., they are available as class member variables.

For non-parsable variables, the usual C++/Java scoping rules are followed (a new scope is introduced by curly
braces: ‘{‘ and ‘}’). In particular, only variables declared in class scope are considered class member variables, and
are thus available in objects of that particular type.

15 Profiles

15.1 Introduction

This clause defines profiles and levels for the usage of the tools defined in this part of ISO/IEC 14496. Each profile
at a given level constitutes a subset of this part of ISO/IEC 14496 to which system manufacturers and content
creators can claim conformance in order to ensure interoperability.

The object descriptor profiles (OD profiles) specify the allowed configurations of the object descriptor tool and the
sync layer tool. The scene graph profiles specify the allowed scene graph elements of the BIFS tool. The graphics
profiles specify the graphics elements of the BIFS tool that are allowed. The MPEG-J profiles specify the packages
of the MPEG-J API specification that are allowed in an MPEG-J terminal.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 295

Profile definitions, by themselves, are not sufficient to provide a full characterization of a receiving terminal’s
capabilities and the resources needed for a presentation. For this reason, levels are defined within each profile.
Levels constrain the values of parameters in a given profile in order to specify an upper complexity bound.

15.2 OD Profile Definitions

15.2.1 Overview

The object descriptor profiles (OD profiles) specify the configurations of the object descriptor tool and the sync layer
tool that are allowed. The object descriptor tool provides a structure for all descriptive information. The sync layer
tool provides the syntax to convey, among others, timing information for elementary streams. object descriptor
profiles are used, in particular, to reduce the amount of asynchronous operations as well as the amount of
permanent storage.

15.2.2 OD Profiles Tools

The following tools are available to construct OD profiles:

� Object descriptor (OD) tool as defined in 8.5.

� Sync layer (SL) tool as defined in 10.2.

� Object content information (OCI) tool as defined in 8.4.

� Intellectual property management and protection (IPMP) tool as defined in 8.3.

15.2.3 OD Profiles

The OD profiles are defined in the following table. Currently, only one profile is defined, comprising all the tools. No
additional profiles are foreseen at the moment, but the possibility of adding Profiles through amendments is left
open.

Table 58 - OD Profiles

OD Profiles

OD Tools Core

SL X
OD X
OCI X
IPMP X

Decoders that claim compliance to a given profile shall implement all the tools with an ‘X’ entry for that profile.

15.2.4 OD Profiles@Levels

15.2.4.1 Levels for the Core Profile

No levels are defined yet for the OD Core profile. Future definition of Levels is anticipated; this will happen by
means of an amendment to this part of the standard.

15.3 Scene Graph Profile Definitions

15.3.1 Overview

The scene graph profiles specify the scene graph elements of the BIFS tool that are allowed. These elements
provide the means to describe the spatio-temporal locations, the hierarchical dependencies as well as the
behaviors of audio-visual objects in a scene. Profiling of scene graph elements of the BIFS tool serves to restrict
the memory requirements and computational complexities of scene graph traversal and processing of specified
behaviors during the composition and rendering processes.

ISO/IEC 14496-1:2001(E)

296 © ISO/IEC 2001 – All rights reserved

15.3.2 Scene Graph Profiles Tools

The following tools are available to construct the definitions for scene graph profiles:

� BIFS nodes related to scene description as defined in Table 59.

� BIFS commands and BIFS animation as defined in 9.3.6 and 0, respectively.

� BIFS ROUTES as defined in 9.3.7.47.1.

15.3.3 Scene Graph Profiles

The following table defines the scene graph profiles:

Table 59 - Scene graph profiles

Scene Graph Profiles

Scene Graph Tools Audio Simple 2D Complete 2D Complete

Anchor X X
AudioBuffer X X X
AudioDelay X X X
AudioFX X X X
AudioMix X X X
AudioSwitch X X X
Billboard X
Collision X
Composite2DTexture X X
Composite3DTexture X
Form X X
Group X X X X
Inline X X
Layer2D X X
Layer3D X
Layout X X
ListeningPoint X X
LOD X
NavigationInfo X
OrderedGroup X X X
QuantizationParameter X X
Sound X
Sound2D X X X X
Switch X X
Transform X
Transform2D X X X
Viewpoint X
WorldInfo X X
Node Update X X
Route Update X X
Scene Update X X X X
AnimationStream X X
Script ? X
ColorInterpolator X X
Conditional X X
CoordinateInterpolator2D X X
CoordinateInterpolator X

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 297

CylinderSensor X
DiscSensor X X
NormalInterpolator X
OrientationInterpolator X
PlaneSensor2D X X
PlaneSensor X
PositionInterpolator X
PositionInterpolator2D X X
ProximitySensor X
ProximitySensor2D X X
ROUTE X X
ScalarInterpolator X X
SphereSensor X
TermCap X X
TimeSensor X X
TouchSensor X X
VisibilitySensor X
Valuator X X

Decoders that claim compliance to a given profile shall implement all the tools with an ‘X’ entry for that profile.

15.3.3.1 BIFS nodes for audio objects

The presence of AudioClip and AudioSource nodes in BIFS scene graph depends on the selected Audio profile.
The following table describes what nodes are allowed in the BIFS scene graph depending on the Audio profile.

Table 60 - BIFS nodes for audio objects

Audio Profiles Allowed Audio Object Nodes

Main AudioClip, AudioSource
Scalable AudioClip, AudioSource
Speech AudioClip, AudioSource
Low Rate Synthesis AudioClip, AudioSource

15.3.3.2 BIFS nodes for visual objects

The presence of ImageTexture, Background2D, Background, MovieTexture, Face, Expression, FAP, FDP, FIT,
FaceDefMesh, FaceDefTable, FaceDefTransform, Viseme nodes in a BIFS scene graph depends on the selected
Visual profile. The following table describes what nodes are allowed in the BIFS scene graph depending on the
choice of the Visual profile.

Table 61 - BIFS nodes for visual objects

Visual Profiles Allowed visual object nodes

Simple ImageTexture, Background2D, Background, MovieTexture
Simple Scalable ImageTexture, Background2D, Background, MovieTexture
Core ImageTexture, Background2D, Background, MovieTexture
Main ImageTexture, Background2D, Background, MovieTexture
Simple Scalable ImageTexture, Background2D, Background, MovieTexture
N-Bit ImageTexture, Background2D, Background, MovieTexture
Hybrid ImageTexture, Background2D, Background, MovieTexture,

Face, Expression, FAP, FDP, FIT, FaceDefMesh,
FaceDefTable, FaceDefTransform, Viseme

ISO/IEC 14496-1:2001(E)

298 © ISO/IEC 2001 – All rights reserved

Basic Animated Texture ImageTexture, Background2D, Background, Face, Expression,
FAP, FDP, FIT, FaceDefMesh, FaceDefTable,
FaceDefTransform, Viseme

Scaleable Texture ImageTexture, Background2D, Background
Simple Face Face, Expression, FAP, FDP, FIT, FaceDefMesh,

FaceDefTable, FaceDefTransform, Viseme

If the terminal complies with a 2D graphics profile only, the terminal may choose to ignore the contents of the FDP,
FIT, FaceDefMesh, FaceDefTable, FaceDefTransform nodes.

15.3.4 Scene Graph Profiles@Levels

15.3.4.1 Levels for the Audio Scene Graph Profile

15.3.4.1.1 Functionalities provided

The Audio scene graph profile provides for a set of BIFS scene graph elements for usage in audio only
applications. The Audio scene graph profile supports applications like broadcast radio.

15.3.4.1.2 Levels

No levels are yet defined for the Audio scene graph profile. Future definition of Levels is anticipated; this will
happen by means of an amendment to this part of the standard.

15.3.4.2 Levels for the Simple 2D Scene Graph Profile

15.3.4.2.1 Functionalities provided

The Simple 2D scene graph profile provides for only those BIFS scene graph elements necessary to place one or
more audio-visual objects in a scene. The Simple 2D scene graph profile allows presentation of audio-visual
content with potential update of the complete scene but no interaction capabilities. The Simple 2D scene graph
profile supports applications like broadcast television.

15.3.4.2.2 Level 1

The following restrictions apply for the Simple 2D scene graph profile at Level 1:

Table 62 - Restrictions for Simple 2D scene graph profile at Level 1

Transform2D

Field name

addChildren Ignored
removeChildren Ignored
children X.
center Ignored
rotationAngle 0
scale 1, 1
scaleOrientation 0
translation X

X = allowed;
else: default value

The metric shall be the pixel metrics. BIFSConfig.isPixel=1.

A cascade of Transform2D nodes is not allowed. Children nodes of a Transform2D node shall not be Transform2D
nodes. Only one initial update to convey the complete scene graph is allowed.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 299

15.3.4.3 Levels for the Complete 2D Scene Graph Profile

15.3.4.3.1 Functionalities provided

The Complete 2D scene graph profile provides for all the 2D scene description elements of the BIFS tool. It
supports features such as 2D transformations and alpha blending. The Complete 2D scene graph profile enables
2D applications that require extensive and customized interactivity.

15.3.4.3.2 Levels

No levels are yet defined for the Complete 2D scene graph profile. Future definition of Levels is anticipated; this will
happen by means of an amendment to this part of the standard.

15.3.4.4 Levels for the Complete Scene Graph Profile

15.3.4.4.1 Functionalities provided

The Complete scene graph profile provides the complete set of scene graph elements of the BIFS tool. The
Complete scene graph profile will enable applications like dynamic virtual 3D world and games.

15.3.4.4.2 Levels

No levels are yet defined for the Complete scene graph profile. Future definition of Levels is anticipated; this will
happen by means of an amendment to this part of the standard.

15.4 Graphics Profile Definitions

15.4.1 Overview

The graphics profiles specify the graphics elements of the BIFS tool that are allowed. These elements provide
means to represent graphics visual objects in a scene. Profiling of graphics elements of the BIFS tool serves to
restrict the memory requirements for the storage of the graphical elements as well as to restrict the computational
complexities of composition and rendering processes.

15.4.2 Graphics Profiles Tools

The following tools are available to construct the graphics profiles:

� BIFS nodes related to graphics as defined in Table 63.

15.4.3 Graphics Profiles

The following table defines the graphics profiles:

Table 63 - Graphics profiles

Graphics Profiles

Graphics Tools Simple 2D Complete 2D Complete

Appearance X X X
Box X
Bitmap X X X
Background X
Background2D X X
Circle X X
Color X X
Cone X
Coordinate X
Coordinate2D X X
Curve2D X X
Cylinder X

ISO/IEC 14496-1:2001(E)

300 © ISO/IEC 2001 – All rights reserved

DirectionalLight X
ElevationGrid X
Expression X
Extrusion X
Face X
FaceDefMesh X
FaceDefTable X
FaceDefTransform X
FAP X
FDP X
FIT X
Fog X
FontStyle X X
IndexedFaceSet X
IndexedFaceSet2D X X
IndexedLineSet X
IndexedLineSet2D X X
LineProperties X X
Material X
Material2D X X
Normal X
PixelTexture X X
PointLight X
PointSet X
PointSet2D X X
Rectangle X X
Shape X X X
Sphere X
SpotLight X
Text X X
TextureCoordinate X X
TextureTransform X X
Viseme X

Decoders that claim compliance to a given profile shall implement all the tools with an ‘X’ entry for that profile.

15.4.4 Graphics Profiles@Levels

15.4.4.1 Levels for the Simple 2D Graphics Profile

15.4.4.1.1 Functionalities provided

The Simple 2D graphics profile provides for only those graphics elements of the BIFS tool that are necessary to
place one or more visual objects in a scene.

15.4.4.1.2 Levels

No levels are yet defined for the Simple 2D graphics profile. Future definition of Levels is anticipated; this will
happen by means of an amendment to this part of the standard.

15.4.4.2 Levels for the Complete 2D Graphics Profile

15.4.4.2.1 Provided functionality

The Complete 2D graphics profile provides two-dimensional graphics functionalities and supports features such as
arbitrary two-dimensional graphics and text, possibly in conjunction with visual objects.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 301

15.4.4.2.2 Levels

No levels are yet defined for the Complete 2D graphics profile. Future definition of Levels is anticipated; this will
happen by means of an amendment to this part of the standard.

15.4.4.3 Levels for the Complete Graphics Profile

15.4.4.3.1 Provided functionality

The Complete graphics profile provides advanced graphical elements such as elevation grids and extrusions and
allows creating content with sophisticated lighting. The Complete Graphics profile enables applications such as
complex virtual worlds that exhibit a high degree of realism.

15.4.4.3.2 Levels

No levels are yet defined for the Complete Graphics profile. Future definition of Levels is anticipated; this will
happen by means of an amendment to this part of the standard.

15.5 MPEG-J Profile Definitions

15.5.1 Overview

MPEG-J specifies the format, delivery, and behavior of downloadable byte code on MPEG-4 terminals. This
enables content owners to embed complex control algorithms with the data. MPEG-J aplications, however, can be
local or remote (MPEGlet). These applications use a specified set of Java APIs.

15.6 MPEG-J Profiles Tools

The following API packages are available to construct MPEG-J profiles:

� Scene APIs (package org.iso.mpeg.mpegj.scene) as defined in 11.5.3.

� Resource APIs (package org.iso.mpeg.mpegj.resource) as defined in 11.5.4.

� Net APIs (package org.iso.mpeg.mpegj.net) as defined in 11.5.6.

� Decoder APIs (package org.iso.mpeg.mpegj.decoder) as defined in 11.5.5.

� Section Filtering and Service Information as defined in 11.5.7.

� Please note that the package org.iso.mpeg.mpegj is required in all terminals.

15.7 MPEG-J Profiles

The MPEG-J profiles are defined in Table 64. Currently, the are two profiles defined, comprising all the API
packages.

The Personal profile addresses a range of constrained devices ranging from mobile and portable devices up to
personal computers. Examples of such devices are cell videophones, PDAs, personal gaming devices, multimedia
computers, etc.

The Main profile is a superset of Personal profile and it addresses the broadcast oriented devices including
entertainment devices. Examples of such devices are set top boxes, digital TVs, etc.

ISO/IEC 14496-1:2001(E)

302 © ISO/IEC 2001 – All rights reserved

Table 64 - MPEG-J Profiles

MPEG-J ProfilesMPEG-J
Packages

Personal Main

Scene X X
Resource X X
Decoder X X
Net X X
SI/SF X

� Decoders that claim compliance to a given profile shall implement all the packages with an ‘X’ entry for that
profile and the org.iso.mpeg.mpegj package (required for all profiles).

15.8 MPEG-J Profiles@Levels

15.8.1 Levels for the Personal MPEG-J Profile

No levels are defined yet for the MPEG-J Personal profile. No Levels are foreseen at the moment, but the
possibility of adding Levels through amendments is left open.

15.8.2 Levels for the Main MPEG-J Profile

No levels are defined yet for the MPEG-J Main profile. No Levels are foreseen at the moment, but the possibility of
adding Levels through amendments is left open.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 303

Annex A
(informative)

Bibliography

[1] A. Eleftheriadis, “Flavor: A Language for Media Representation,” Proceedings, ACM Multimedia ’97
Conference, Seattle, Washington, November 1997, pp. 1–9.

[2] C. Herpel, “Elementary Stream Management in MPEG-4,” IEEE Trans. on Circuits and Systems for Video
Technology, 1998 (to appear).

[3] Flavor Web Site, http://www.ee.columbia.edu/flavor.

[4] R. Koenen, F. Pereira, and L. Chiariglione, “MPEG-4: Context and Objectives,” Signal Processing: Image
Communication, Special Issue on MPEG-4, Vol. 9, Nr. 4, May 1997.

[5] F. Pereira, and R. Koenen, “Very Low Bitrate Audio-Visual Applications,” Signal Processing: Image
Communication, Vol. 9, Nr. 1, November 1996, pp. 55-77.

[6] A. Puri and A. Eleftheriadis, “MPEG-4: An Object-Based Multimedia Coding Standard Supporting Mobile
Application,” ACM Mobile Networks and Applications Journal, 1998 (to appear).

ISO/IEC 14496-1:2001(E)

304 © ISO/IEC 2001 – All rights reserved

Annex B
(informative)

Time Base Reconstruction

B.1 Time Base Reconstruction

The time stamps present in the sync layer are the means to synchronize events related to decoding, composition
and overall buffer management. In particular, the clock references are the sole means of reconstructing the sending
terminal’s clock at the receiving terminal, when required (e.g., for broadcast applications). A normative method for
this reconstruction is not specified. The following describes the process at a conceptual level.

B.1.1 Adjusting the Receiving Terminal’s OTB

Each elementary stream may be generated by an encoder at the sending terminal with a different object time base
(OTB). For each stream that conveys OCR information, it is possible for the receiving terminal to adjust a local OTB
to the sending terminals’ OTB. This is done by using well-known PLL techniques. The notion of time for each data
stream can therefore be recovered at the receiving end.

B.1.2 Mapping Time Stamps to the STB

The OTBs of all data streams may run at a different speed than the STB of the receiving terminal. Therefore, a
method is needed to map the value of time stamps expressed in any OTB to the STB of the receiving terminal. This
step may be done jointly with the recovery of individual OTB’s as described in the previous subclause.

Note that the receiving terminals’ system time base need not be locked to any of the available object time bases.

The composition time tSCT of a composition unit, expressed in terms of STB of the receiving terminal, can be
calculated from the composition time stamp value tOCT, expressed in terms of the OTB of the relevant sending
terminal, by a linear transformation:

STARTSTBSTARTOTB
OTB

STB
OCT

OTB

STB
SCT tt

t

t
t

t

t
t

��

��
�

�
��

�

�
�

with:

tSCT composition time of a composition unit measured in units of tSTB

tSTB current time in the receiving terminal’s STB

tOCT composition time of a composition unit measured in units of tOTB

tOTB current time in the data stream’s OTB, conveyed by an OCR

tSTB START�

value of receiving terminal’s STB when the first byte of the OCR time stamp of the data stream is
encountered

tOTB START�

value of the first OCR time stamp of the data stream

�t t tOTB OTB OTB START� �
�

�t t tSTB STB STB START� �
�

The quotient � �t tSTB OTB is the instantaneous scaling factor between the two time bases. In cases where the clock

speed and resolution of the sending terminal and of the receiving terminal are nominally identical, this quotient is
very near 1. To avoid long term rounding errors, the quotient � �t tSTB OTB should always be recalculated whenever

the formula is applied to a newly received composition time stamp. The quotient can be updated each time an OCR
time stamp is encountered.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 305

A similar formula can be derived for decoding times by replacing composition time stamps with decoding time
stamps. If time stamps for some access units or composition units are only known implicitly, e.g., given by known
update rates, these have to be mapped with the same mechanism.

With this procedure it is possible to synchronize the STB at a receiving terminal to several OTBs so that correct
decoding and composition from several data streams is possible.

B.1.3 Adjusting the STB to an OTB

When all data streams in a presentation use the same OTB, it is possible to lock the STB at the receiving terminal
to this OTB using well-known PLL techniques. In this case the mapping described in the previous subclause is not
necessary and the following mapping may be used.

OCTSCT

OTBSTB

STARTOTBSTARTSTB

tt

tt

tt

�

���

�
��

B.1.4 System Operation without Object Time Base

If a time base for an elementary stream is neither conveyed by OCR information nor derived from another
elementary stream, time stamps can still be used by a receiving terminal but not in applications that require flow-
control. For example, file-based playback may not require time base reconstruction: time stamps alone are
sufficient for synchronization if a single time base is assumed for all the data streams.

In the absence of time stamps, the receiving terminal may only operate under the assumption that each access unit
is to be decoded and presented as soon as it is received. In this case the systems decoder model does not apply
and cannot be used as a model for the terminal’s behavior.

In the case that a universal clock is available which can be shared between peer terminals, it may be used as a
common time base. It is then possible to use the systems decoder model without explicit OCR transmission. The
procedures for doing so are application-dependent and are not defined in ISO/IEC 14496-1.

B.2 Temporal aliasing and audio resampling

A receiving terminal compliant with ISO/IEC 14496 is not required to synchronize decoding of AUs and composition
of CUs. In other words, its STB does not have to be identical to any of the OTBs of received data streams. The
number of decoded and actually presented (displayed/played back) units per second may therefore differ.
Temporal aliasing may then manifest itself as composition units being either presented multiple times or skipped.

If audio signals are encoded on a system with an OTB different from the STB of the receiving terminal, even
nominally identical sampling rates of the audio samples may not match exactly, so that audio samples may be
dropped or repeated.

Proper re-sampling techniques may of course in both cases be applied at the receiving terminal.

B.3 Reconstruction of a Synchronised Audio-visual Scene: A Walkthrough

The different steps to reconstruct a synchronized scene are as follows:

1. The time base for each data stream is recovered either from the OCR conveyed with the SL-packetized
elementary stream of this data stream or from another data stream present in the presentation.

2. Object time stamps are mapped to the STB of the receiving terminal according to a suitable algorithm (e.g., the
one detailed above).

3. Received access units are placed in the decoding buffer.

ISO/IEC 14496-1:2001(E)

306 © ISO/IEC 2001 – All rights reserved

4. Each access unit is instantaneously decoded by the decoder at instants of time (in terms of the receiver
terminal’s STB) corresponding to its implicit or explicit DTS and the resulting one or more composition units are
placed in the composition memory.

5. The compositor may access each CU at time instants between the one corresponding its CTS and the one
corresponding to the CTS of the subsequent CU.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 307

Annex C
(normative)

View Dependent Object Scalability

C.1 Introduction

Coding of View-Dependent Scalability (VDS) parameters for texture can provide for efficient incremental decoding
of 3D images (e.g. 2D texture mapped onto a 3D mesh such as terrain). Corresponding tools from the Visual and
Systems parts of this specification (ISO/IEC 14496-2 and ISO/IEC 14496-1, respectively) are used in conjunction
with downstream and upstream channels of a receiving terminal. The combined capabilities provide the means for
a sending terminal to react to a stream of viewpoint information received from a receiving terminal. The sending
terminal transmits a series of coded textures optimized for the viewing conditions, which can be applied to the
rendering of, textured 3D meshes by the receiving terminal. Each encoded view-dependent texture (initial texture
and incremental updates) typically corresponds to a specific 3D view in the user’s viewpoint that is first transmitted
from the receiving terminal.

A Systems tool transmits 3D viewpoint parameters in the upstream channel back to the sending terminal. The
encoder's response is a frequency-selective, view-dependent update of DCT coefficients for the 2D texture (based
upon view-dependent projection of the 2D texture in 3D) back to the receiving terminal, via the downstream
channel, for decoding by a Visual DCT tool at the receiving terminal. This bilateral communication supports
interactive server-based refinement of texture for low-bandwidth transmissions to a receiving terminal that renders
the texture in 3D for a user controlling the viewpoint movement. A gain in texture transmission efficiency is traded
for longer closed-loop latency in the rendering of the textures in 3D. The receiving terminal coordinates inbound
texture updates with local 3D renderings, accounting for network delays so that texture cached in the terminal
matches each rendered 3D view.

A method to obtain an optimal coding of 3D data is to take into account the viewing position in order to transmit
only the most visible information. This approach reduces greatly the transmission delay, in comparison to
transmitting all scene texture that might be viewable in 3D from the sending terminal’s database server to the
receiving terminal. At a given time, only the most important information is sent, depending on object geometry and
viewpoint displacement. This technique allows the data to be streamed across a network, given that a upstream
channel is available for sending the new viewing conditions to the remote database. This principle is applied to the
texture data to be mapped on a 3D grid mesh. The mesh is first downloaded into the memory of the receiving
terminal using the appropriate BIFS node, and then the DCT coefficients of the texture image are updated by taking
into account the viewing parameters, i.e. the field of view, the distance and the direction to the viewpoint.

C.2 Bitstream Syntax

This subclause details the bitstream syntax for the upstream data and details the rules that govern the way in which
higher level syntactic elements may be combined together to generate a compliant bitstream that can be decoded
correctly by the receiving terminal.

C.3.1 specifies the bitstream syntax for a View Dependent Object which initializes the session at the upstream data
decoder. C.3.2 specifies the View Dependent Object Layer and contains the viewpoint information that is to be
communicated back to the texture data encoder in the sending terminal.

C.2.1 View Dependent Object

class ViewDependentObject {
unsigned int (32) View_dep_object_start_code;
unsigned int (16) Field_of_View;
bit (1) Marker_bit;
unsigned int (16) Xsize_of_rendering_window;
bit (1) Marker_bit;
unsigned int (16) Ysize_of_rendering_window
bit (1) Marker_bit;
unsigned int (32)* NextStartCode;
while (NextStartCode == view_dep_object_layer_start_code){

ViewDependentObjectLayer vdol;
unsigned int (32)* NextStartCode;

ISO/IEC 14496-1:2001(E)

308 © ISO/IEC 2001 – All rights reserved

}
}

class ViewDependentObjectLayer() {
unsigned int (32) View_dep_object_layer_start_code;
unsigned int (16) Xpos1 ;
bit (1) Marker_bit;
unsigned int (16) Xpos2;
bit (1) Marker_bit;
unsigned int (16) Ypos1;
bit (1)Marker_bit;
unsigned int (16) Ypos2;
bit (1) Marker_bit;
unsigned int (16) Zpos1;
bit (1) Marker_bit;
unsigned int (16) Zpos2;
bit (1) Marker_bit;
unsigned int (16) Xaim1;
bit (1) Marker_bit;
unsigned int (16) Xaim2;
bit (1) Marker_bit;
unsigned int (16) Yaim1;
bit (1) Marker_bit;
unsigned int (16) Yaim2;
bit (1) Marker_bit;
unsigned int (16) Zaim1;
bit (1) Marker_bit;
unsigned int (16) Zaim2;

}

C.3 Bitstream Semantics

C.3.1 View Dependent Object

view_dep_object_start_code: The view_dep_object_start_code is the string ‘000001BF’ in hexadecimal. It
initiates a view dependent object session.

field_of_view: This is a 16-bit unsigned integer that specifies the field of view.

marker bit: This is a one bit field, set to ‘1’, to prevent start code emulation within the bitstream.

xsize_of_rendering_window: This is a 16-bit unsigned integer that specifies the horizontal size of the rendering
window.

ysize_of_rendering_window: This is a 16-bit unsigned integer that specifies the vertical size of the rendering
window.

C.3.2 View Dependent Object Layer

view_dep_object_layer_start_code: The view_dep_object_layer_start_code is the bit string ‘000001BE’ in
hexadecimal. It initiates a view dependent object layer.

xpos1: This is a 16-bit codeword which forms the lower 16 bits of the 32-bit integer xpos. The integer xpos is to be
computed as follows: xpos = xpos1 + (xpos2 << 16). The quantities xpos, ypos, zpos describe the 3D coordinates
of the viewer's position.

xpos2: This is a 16-bit codeword which forms the upper 16-bit word of the 32-bit integer xpos.

ypos1: This is a 16-bit codeword which forms the lower 16-bit word of the 32-bit integer ypos. The integer ypos
can be computed as follows: ypos = ypos1 + (ypos2 << 16).

ypos2: This is a 16-bit codeword which forms the upper 16bit word of the 32-bit integer xpos.

zpos1: This is a 16-bit codeword which forms the lower 16 bits of the 32-bit integer xpos. The integer zpos can be
computed as follows: zpos = zpos1 + (zpos2 << 16).

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 309

zpos2: This is a 16-bit codeword which forms the upper 16 bits of the 32-bit integer xpos.

xaim1 – This is a 16-bit codeword which forms the lower 16 bits of the 32-bit integer xaim. The integer xaim can be
computed as follows: xaim = xaim1 + (xaim2 << 16). The quantities xaim, yaim, zaim describe the 3D position of
the aim point.

xaim2: This is a 16-bit codeword which forms the upper 16 bits of the 32-bit integer xaim.

yaim1: This is a 16-bit codeword which forms the lower 16 bits of the 32-bit integer yaim. The integer yaim can be
computed as follows: yaim = yaim1 + (yaim2 << 16).

yaim2: This is a 16-bit codeword which forms the upper 16 bits of the 32-bit integer yaim.

zaim1: This is a 16-bit codeword which forms the lower 16 bits of the 32-bit integer zaim. The integer zaim can be
computed as follows: zaim = zaim1 + (zaim2 << 16).

zaim2: This is a 16-bit codeword which forms the upper 16 bits of the 32-bit integer zaim.

ISO/IEC 14496-1:2001(E)

310 © ISO/IEC 2001 – All rights reserved

Annex D
(informative)

Registration procedure

D.1 Procedure for the request of a Registration ID (RID)

Requesters of a RID shall apply to the Registration Authority. Registration forms shall be available from the
Registration Authority. The requester shall provide the information specified in D.3. Companies and organizations
are eligible to apply.

D.2 Responsibilities of the Registration Authority

The primary responsibilities of the Registration Authority administrating the registration of either the private data
format identifiers or the IPMP system type values are outlined in this annex; certain other responsibilities may be
found in the JTC 1 Directives. The Registration Authority shall:

a) implement a registration procedure for application for a unique RID in accordance with the JTC 1
Directives;

b) receive and process the applications for allocation of an identifier from application providers;

c) ascertain which applications received are in accordance with this registration procedure, and to inform the
requester within 30 days of receipt of the application of their assigned RID;

d) inform application providers whose request is denied in writing with 30 days of receipt of the application,
and to consider resubmissions of the application in a timely manner;

e) maintain an accurate register of the allocated identifiers. Revisions to format specifications shall be
accepted and maintained by the Registration Authority;

f) make the contents of this register available upon request to National Bodies of JTC 1 that are members of
ISO or IEC, to liaison organizations of ISO or IEC and to any interested party;

g) maintain a data base of RID request forms, granted and denied. Parties seeking technical information on
the format of private data which has a RID shall have access to such information which is part of the data
base maintained by the Registration Authority.;

h) report its activities annually to JTC 1, the ITTF, and the SC 29 Secretariat, or their respective designees;
and

i) accommodate the use of existing RIDs whenever possible.

D.3 Contact information for the Registration Authority

To Be Determined

D.4 Responsibilities of Parties Requesting a RID

The party requesting a format identifier or an IPMP system type identifier shall:

a) apply using the Form and procedures supplied by the Registration Authority;

b) include a description of the purpose of the registered bitstream, and the required technical details as
specified in the application form;

c) provide contact information describing how a complete description can be obtained on a non-discriminatory
basis;

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 311

d) agree to institute the intended use of the granted RID within a reasonable time frame; and

e) to maintain a permanent record of the application form and the notification received from the Registration
Authority of a granted RID.

D.5 Appeal Procedure for Denied Applications

The Registration Management Group is formed to have jurisdiction over appeals to denied request for a RID. The
RMG shall have a membership who is nominated by P- and L-members of the ISO technical committee responsible
for ISO/IEC 14496. It shall have a convenor and secretariat nominated from its members. The Registration
Authority is entitled to nominate one non-voting observing member.

The responsibilities of the RMG shall be:

a) to review and act on all appeals within a reasonable time frame;

b) to inform, in writing, organizations which make an appeal for reconsideration of its petition of the RMGs
disposition of the matter;

c) to review the annual report of the Registration Authorities summary of activities; and

d) to supply Member Bodies of ISO and National Committees of IEC with information concerning the scope of
operation of the Registration Authority.

D.6 Registration Application Form

D.6.1 Contact Information of organization requesting a RID

Organization Name:
Address:

Telephone:
Fax:
E-mail:
Telex:

D.6.2 Request for a specific RID

NOTE — If the system has already been implemented and is in use, fill in this item and item D.6.3 and skip to D.6.5, otherwise
leave this space blank and skip to D.6.3)

D.6.3 Short description of RID that is in use and date system was implemented

D.6.4 Statement of an intention to apply the assigned RID

ISO/IEC 14496-1:2001(E)

312 © ISO/IEC 2001 – All rights reserved

D.6.5 Date of intended implementation of the RID

D.6.6 Authorized representative

Name:
Title:
Address:
Email:

Signature __________________________________

D.6.7 For official use of the Registration Authority

Registration Rejected _____

Reason for rejection of the application:

Registration Granted ______ Registration Value ____________________

Attachment 1 � Attachment of technical details of the registered data format.
Attachment 2 � Attachment of notification of appeal procedure for rejected applications.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 313

Annex E
(informative)

The QoS Management Model for ISO/IEC 14496 Content

The Quality of Service (QoS) aspects deserve particular attention in ISO/IEC 14496: the ability of the standard to
adapt to different service scenarios is affected by its ability to consistently manage QoS requirements. Current
techniques on error resilience are already effective, but are not and will not be able to satisfy every possible
requirement.

In general terms, the end-user acceptance of a particular service varies depending on the kind of service. As an
example, person to person communication is severely affected by the audio quality, while it can tolerate variations
in the video quality. However, a television broadcast with higher video and lower audio quality may be acceptable
depending on the program being transmitted. The acceptability of a particular service thus depends very much on
the service itself. It is not possible to define universal Quality of Service levels that may be suitable for all
circumstances. Thus the most suitable solution is to let the content creator decide what QoS the end-user should
obtain for every particular elementary stream: the author has the best knowledge of the service.

The QoS so defined represents the QoS that should be offered to the end-user, i.e., the QoS at the output of the
receiving terminal. This may be the output of the decoder, but may also take into account the compositor and
renderer if they significantly impact the QoS of the presentation as seen by the end-user, and if a capacity for
processing a specific stream can be quantified. Note that the QoS information is not mandatory. In the absence of
QoS requirements, a best effort approach should be pursued. This QoS concept is defined as total QoS.

In ISO/IEC 14496-1 the information concerning the total QoS of a particular elementary stream is carried in a QoS
Descriptor as part of its elementary stream descriptor (ES_Descriptor). The receiving terminal, upon reception of
the ES_Descriptor, is therefore aware of the characteristics of the elementary stream and of the total QoS to be
offered to the end-user. Moreover the receiving terminal knows about its own performance capabilities. It is
therefore the only possible entity able to compute the Quality of Service to be requested to the delivery layer in
order to fit the user requirements. Note that this computation could also ignore/override the total QoS parameters.

The QoS that is requested to the delivery layer is named media QoS, since it is expressed with a semantic which is
media oriented. The delivery layer will process the requests, determine whether to bundle multiple elementary
streams into a single network connection (TransMux) and compute the QoS for the network connection, using the
QoS parameters as defined by the network infrastructure. This QoS concept is named network QoS, since it is
specific for a particular network technology.

The above categorization of the various QoS concepts managed in ISO/IEC 14496 may suggest that this issue is
only relevant when operating in a network environment. However the concepts are of general value, and are
applicable to systems operating on local files as well, when taking into account the overall capacity of the system.

ISO/IEC 14496-1:2001(E)

314 © ISO/IEC 2001 – All rights reserved

Annex F
(informative)

Conversion Between Time and Date Conventions

The types of conversions that may be required are summarized in the diagram below.

Figure 38 - Conversion routes between Modified Julian Date (MJD) and
Coordinated Universal Time (UTC)

The conversion between MJD + UTC and the “local” MJD + local time is simply a matter of adding or subtracting
the local offset. This process may, of course, involve a “carry” or “borrow” from the UTC affecting the MJD. The
other five conversion routes shown on the diagram are detailed in the formulas below.

Symbols used:

MJD: Modified Julian Day
UTC: Co-ordinated Universal Time
Y: Year from 1900 (e.g. for 2003, Y = 103)
M: Month from January (= 1) to December (= 12)
D: Day of month from 1 to 31
WY: "Week number" Year from 1900
MN: Week number according to ISO 2015
WD: Day of week from Monday (= 1) to Sunday (= 7)
K, L ,M' , W, Y': Intermediate variables
�: Multiplication
int: Integer part, ignoring remainder
mod 7: Remainder (0-6) after dividing integer by 7

a) To find Y, M, D from MJD

Y' = int [(MJD - 15 078,2) / 365,25]
M' = int { [MJD - 14 956,1 - int (Y' � 365,25)] / 30,6001 }
D = MJD - 14 956 - int (Y' � 365,25) - int (M' � 30,6001)
If M' = 14 or M' = 15, then K = 1; else K = 0

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 315

Y = Y' + K
M = M' - 1 - K � 12

b) To find MJD from Y, M, D

If M = 1 or M = 2, then L = 1; else L = 0
MJD = 14 956 + D + int [(Y - L) � 365,25] + int [(M + 1 + L � 12) � 30,6001]

c) To find WD from WJD

WD = [(MJD + 2) mod 7] + 1

d) To find MJD from WY, WN, WD

MJD = 15 012 + WD + 7 � { WN + int [(WY � 1 461 / 28) + 0,41] }

e) To find WY, WN from MJD

W = int [(MJD / 7) - 2 144,64]
WY = int [(W � 28 / 1 461) - 0,0079]
WN = W - int [(WY � 1 461 / 28) + 0,41]

EXAMPLE �

MJD = 45 218 W = 4 315

Y = (19)82 WY = (19)82

M = 9 (September) WN = 36

D = 6 WD = 1 (Monday)

NOTE — These formulas are applicable between the inclusive dates 1 900 March 1 to 2 100 February 28.

ISO/IEC 14496-1:2001(E)

316 © ISO/IEC 2001 – All rights reserved

Annex G
(normative)

Adaptive Arithmetic Decoder for BIFS-Anim

The follwing procedures, in C code, describe the adaptative arithmetic deoder used in a BIFS-Anim session. The
model is specified through the array int* cumul_freq[]. The decoded symbol is returned through its index in
the model.

First, the following integers are defined :

static long bottom=0, q1=2^14, q2=2^15, q3=3*2^14, top=2^16;

The decoder is initialized to start decoding an arithmetic coded bitstream by calling the following procedure.

static long low, high, code_value, bit, length, sacindex, cum, zerorun=0;

void decoder_reset()
{

int i;
zerorun = 0; /* clear consecutive zero's counter */
code_value = 0;
low = 0;
high = top;
for (i = 1; i <= 16; i++) { //16 bits are read ahead

bit_out_psc_layer();
code_value = 2 * code_value + bit;

}
used_bits = 0;

}

In the BIFS-Anim decoding process, a symbol is decoded using a model specified through the array
cumul_freq[] and by calling the following procedure.

static long low, high, code_value, bit, length, sacindex, cum, zerorun=0;

int aa_decode(int cumul_freq[])
{

length = high - low + 1;
cum = (-1 + (code_value - low + 1) * cumul_freq[0]) / length;
for (sacindex = 1; cumul_freq[sacindex] > cum; sacindex++);
high = low - 1 + (length * cumul_freq[sacindex-1]) / cumul_freq[0];
low += (length * cumul_freq[sacindex]) / cumul_freq[0];

for (; ;) {
if (high < q2) ;
else if (low >= q2) {

code_value -= q2;
low -= q2;
high -= q2;

}
else if (low >= q1 && high < q3) {

code_value -= q1;
low -= q1;
high -= q1;

}
else {

break;
}
low *= 2;
high = 2*high + 1;
bit_out_psc_layer();
code_value = 2*code_value + bit;
used_bits++;

}
return (sacindex-1);

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 317

}

void bit_out_psc_layer()
{

bit = getbits(1);
if (zerorun > 22) {

if (!bit) {
// Error condition… long zero runs shouldn’t occur

} else {
bit = getbits(1); // removed startCode prevsition bit
zerorun = !bit; // if 0, start counting again at zerorun = 1

}
else { // not close to hitting a fake startCode

if (!bit) {
++zerorun;

} else {
zerorun = 0;

}
}

}

The model is specified in the array cumul_freq[]. It is reset with the following procedure.

void model_reset(int nbBits)
{

int nbValues = (1<<nbBits)+1;
int* cumul_freq = (int*) malloc(sizeof(int)*nbValues);
int i;
for (i=1;i<=nbValues;i++) {

cumul_freq[i] = nbValues-i;
}

The model is updated when the value symbol is read with the following procedure.

void update_model(int cumul_freq[], int symbol) {
if (cumul_freq[0] == q1) { //The model is rescaled to avoid overflow

int cum = 0;
for(int i=nb_of_symbols-1; i>=0; i--) {

cum += (cumul_freq[i]-cumul_freq[i+1]+1)/2;
cumul_freq[i] = cum;

}
cumul_freq[nb_of_symbols] = 0;

}

while(symbol>0)
cumul_freq[symbol--] ++;

}

ISO/IEC 14496-1:2001(E)

318 © ISO/IEC 2001 – All rights reserved

Annex H
(normative)

Node coding tables

Nodes: Anchor AnimationStream Appearance AudioBuffer AudioClip AudioDelay AudioFX AudioMix AudioSource
AudioSwitch Background Background2D Billboard Bitmap Box Circle Collision Color ColorInterpolator
CompositeTexture2D CompositeTexture3D Conditional Cone Coordinate Coordinate2D CoordinateInterpolator
CoordinateInterpolator2D Curve2D Cylinder CylinderSensor DirectionalLight DiscSensor ElevationGrid Expression
Extrusion Face FaceDefMesh FaceDefTables FaceDefTransform FAP FDP FIT Fog FontStyle Form Group
ImageTexture IndexedFaceSet IndexedFaceSet2D IndexedLineSet IndexedLineSet2D Inline LOD Layer2D
Layer3D Layout LineProperties ListeningPoint Material Material2D MovieTexture NavigationInfo Normal
NormalInterpolator OrderedGroup OrientationInterpolator PixelTexture PlaneSensor PlaneSensor2D PointLight
PointSet PointSet2D PositionInterpolator PositionInterpolator2D ProximitySensor2D ProximitySensor
QuantizationParameter Rectangle ScalarInterpolator Script Shape Sound Sound2D Sphere SphereSensor
SpotLight Switch TermCap Text TextureCoordinate TextureTransform TimeSensor TouchSensor Transform
Transform2D Valuator Viewpoint VisibilitySensor Viseme WorldInfo

Node Data Types: SF2DNode SF3DNode SFAppearanceNode SFAudioNode SFBackground2DNode
SFBackground3DNode SFColorNode SFCoordinate2DNode SFCoordinateNode SFExpressionNode SFFAPNode
SFFDPNode SFFITNode SFFaceDefMeshNode SFFaceDefTablesNode SFFaceDefTransformNode SFFogNode
SFFontStyleNode SFGeometryNode SFLinePropertiesNode SFMaterialNode SFNavigationInfoNode
SFNormalNode SFStreamingNode SFTextureCoordinateNode SFTextureNode SFTextureTransformNode
SFTopNode SFViewpointNode SFVisemeNode SFWorldNode

Extended Nodes: : AcousticMaterial AcousticScene ApplicationWindow BAP BDP Body BodyDefTable
BodySegmentConnectionHint DirectiveSound Hierarchical3DMesh MaterialKey PerceptualParameters

Extended Node Data Types: : SF2DNode SF3DNode SFBAPNode SFBDPNode SFBodyDefTableNode
SFBodySegmentConnectionHintNode SFMaterialNode SFPerceptualParameterNode SFWorldNode

H.1 Node Tables

Legend:

Node Name Node Data Type list nodeType/NDT
Field name Field type DEF id IN id OUT id DYN id [min, max] Quantizer id Animation method

H.1.1 Anchor

Anchor
SFWorldNode
SF3DNode
SF2DNode

0000001
000001
00001

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
addChildren MF3DNode 000
removeChildren MF3DNode 001
children MF3DNode 00 010 00
description SFString 01 011 01
parameter MFString 10 100 10
url MFURL 11 101 11

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 319

H.1.2 AnimationStream

AnimationStream

SFWorldNode
SF3DNode
SF2DNode
SFStreamingNode

0000010
000010
00010
001

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
loop SFBool 000 000 000
speed SFFloat 001 001 001 [-I, +I] 0 7
startTime SFTime 010 010 010 [-I, +I]
stopTime SFTime 011 011 011 [-I, +I]
url MFURL 100 100 100
duration_changed SFTime 101
isActive SFBool 110

H.1.3 Appearance

Appearance SFWorldNode
SFAppearanceNode

0000011
1

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
material SFMaterialNode 00 00 00
texture SFTextureNode 01 01 01

textureTransform SFTextureTransform
Node

10 10 10

H.1.4 AudioBuffer

AudioBuffer SFWorldNode
SFAudioNode

0000100
001

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
loop SFBool 000 000 0000
pitch SFFloat 001 001 0001 [0, +I] 0 7
startTime SFTime 010 010 0010 [0, +I] 0
stopTime SFTime 011 011 0011 [0, +I] 0
children MFAudioNode 100 100 0100
numChan SFInt32 101 101 0101 [0, 255] 13,8
phaseGroup MFInt32 110 110 0110
length SFFloat 111 [0, +I] 0
duration_changed SFTime 0111
isActive SFBool 1000

H.1.5 AudioClip

AudioClip
SFWorldNode
SFAudioNode
SFStreamingNode

0000101
010
010

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
description SFString 000 000 000
loop SFBool 001 001 001
pitch SFFloat 010 010 010 [0, +I] 0 7
startTime SFTime 011 011 011 [-I, +I]
stopTime SFTime 100 100 100 [-I, +I]
url MFURL 101 101 101
duration_changed SFTime 110
isActive SFBool 111

ISO/IEC 14496-1:2001(E)

320 © ISO/IEC 2001 – All rights reserved

H.1.6 AudioDelay

AudioDelay SFWorldNode
SFAudioNode

0000110
011

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
addChildren MFAudioNode 00
removeChildren MFAudioNode 01
children MFAudioNode 00 10 0
delay SFTime 01 11 1 [0, +I]
numChan SFInt32 10 [0, 255] 13,8
phaseGroup MFInt32 11 [0, 255] 13,8

H.1.7 AudioFX

AudioFX SFWorldNode
SFAudioNode

0000111
100

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
addChildren MFAudioNode 000
removeChildren MFAudioNode 001
children MFAudioNode 000 010 00
orch SFString 001 011 01
score SFString 010 100 10
params MFFloat 011 101 11 [-I, +I] 0 7
numChan SFInt32 100 [0, 255] 13,8
phaseGroup MFInt32 101 [0, 255] 13,8

H.1.8 AudioMix

AudioMix SFWorldNode
SFAudioNode

0001000
101

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
addChildren MFAudioNode 000
removeChildren MFAudioNode 001
children MFAudioNode 000 010 00
numInputs SFInt32 001 011 01 [1, 255] 13,8
matrix MFFloat 010 100 10 [0, 1] 0 7
numChan SFInt32 011 [0, 255] 13,8
phaseGroup MFInt32 100 [0, 255] 13,8

H.1.9 AudioSource

AudioSource
SFWorldNode
SFAudioNode
SFStreamingNode

0001001
110
011

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
addChildren MFAudioNode 000
removeChildren MFAudioNode 001
children MFAudioNode 000 010 000
url MFURL 001 011 001
pitch SFFloat 010 100 010 0 [0, +I] 0 7
speed SFFloat 011 101 011 1 [0, +I] 0 7
startTime SFTime 100 110 100
stopTime SFTime 101 111 101
numChan SFInt32 110 [0, 255] 13,8
phaseGroup MFInt32 111 [0, 255] 13,8

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 321

H.1.10 AudioSwitch

AudioSwitch SFWorldNode
SFAudioNode

0001010
111

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
addChildren MFAudioNode 00
removeChildren MFAudioNode 01
children MFAudioNode 00 10 0
whichChoice MFInt32 01 11 1 [0, 1] 13,1
numChan SFInt32 10 [0, 255] 13,8
phaseGroup MFInt32 11 [0, 255] 13,8

H.1.11 Background

Background
SFWorldNode
SF3DNode
SFBackground3DNode

0001011
000011
1

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
set_bind SFBool 0000
groundAngle MFFloat 0000 0001 0000 00 [0, 1.5707963] 6 8
groundColor MFColor 0001 0010 0001 01 [0, 1] 4 4
backUrl MFURL 0010 0011 0010
bottomUrl MFURL 0011 0100 0011
frontUrl MFURL 0100 0101 0100
leftUrl MFURL 0101 0110 0101
rightUrl MFURL 0110 0111 0110
topUrl MFURL 0111 1000 0111

skyAngle MFFloat 1000 1001 1000 10 [0,
3.14159265]

6 8

skyColor MFColor 1001 1010 1001 11 [0, 1] 4 4
isBound SFBool 1010

H.1.12 Background2D

Background2D

SFWorldNode
SF2DNode
SF3DNode
SFBackground2DNode

0001100
00011
000100
1

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
set_bind SFBool 00
backColor SFColor 0 01 00 [0, 1] 4 4
url MFURL 1 10 01
isBound SFBool 10

H.1.13 Billboard

Billboard SFWorldNode
SF3DNode

0001101
000101

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
addChildren MF3DNode 00
removeChildren MF3DNode 01
children MF3DNode 0 10 0
axisOfRotation SFVec3f 1 11 1 9 9

H.1.14 Bitmap

Bitmap SFWorldNode
SFGeometryNode

0001110
00001

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
scale SFVec2f [-1, +I] 12 12

ISO/IEC 14496-1:2001(E)

322 © ISO/IEC 2001 – All rights reserved

H.1.15 Box

Box SFWorldNode
SFGeometryNode

0001111
00010

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
size SFVec3f [0, +I] 11

H.1.16 Circle

Circle SFWorldNode
SFGeometryNode

0010000
00011

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
radius SFFloat [0, +I] 12 7

H.1.17 Collision

Collision SFWorldNode
SF3DNode

0010001
000110

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
addChildren MF3DNode 00
removeChildren MF3DNode 01
children MF3DNode 00 10 00
collide SFBool 01 11 01
proxy SF3DNode 10
collideTime SFTime 10

H.1.18 Color

Color SFWorldNode
SFColorNode

0010010
1

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
color MFColor [0, 1] 4 4

H.1.19 ColorInterpolator

ColorInterpolator
SFWorldNode
SF3DNode
SF2DNode

0010011
000111
00100

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
set_fraction SFFloat 00
key MFFloat 0 01 00 [0, 1] 8
keyValue MFColor 1 10 01 [0, 1] 4
value_changed SFColor 10

H.1.20 CompositeTexture2D

CompositeTexture2
D

SFWorldNode
SFTextureNode

0010100
001

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
addChildren MF2DNode 000
removeChildren MF2DNode 001
children MF2DNode 000 010 000
pixelWidth SFInt32 001 011 001 [0, 65535] 13,16
pixelHeight SFInt32 010 100 010 [0, 65535] 13,16

background SFBackground2DNod
e

011 101 011

viewport SFViewportNode 100 110 100

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 323

H.1.21 CompositeTexture3D

CompositeTexture3
D

SFWorldNode
SFTextureNode

0010101
010

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
addChildren MF3DNode 0000
removeChildren MF3DNode 0001
children MF3DNode 000 0010 000
pixelWidth SFInt32 001 0011 001 [0, 65535] 13,16
pixelHeight SFInt32 010 0100 010 [0, 65535] 13,16

background SFBackground3DNod
e

011 0101 011

fog SFFogNode 100 0110 100

navigationInfo SFNavigationInfoNod
e

101 0111 101

viewpoint SFViewpointNode 110 1000 110

H.1.22 Conditional

Conditional
SFWorldNode
SF3DNode
SF2DNode

0010110
001000
00101

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
activate SFBool 00
reverseActivate SFBool 01
buffer SFCommandBuffer 10 0
isActive SFBool 1

H.1.23 Cone

Cone SFWorldNode
SFGeometryNode

0010111
00100

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
bottomRadius SFFloat 00 [0, +I] 11
height SFFloat 01 [0, +I] 11
side SFBool 10
bottom SFBool 11

H.1.24 Coordinate

Coordinate SFWorldNode
SFCoordinateNode

0011000
1

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
point MFVec3f [-I, +I] 1 1

H.1.25 Coordinate2D

Coordinate2D SFWorldNode
SFCoordinate2DNode

0011001
1

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
point MFVec2f [-I, +I] 2 2

H.1.26 CoordinateInterpolator

CoordinateInterpolat
or

SFWorldNode
SF3DNode

0011010
001001

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
set_fraction SFFloat 00
key MFFloat 0 01 00 [0, 1] 8
keyValue MFVec3f 1 10 01 [-I, +I] 1
value_changed MFVec3f 10

ISO/IEC 14496-1:2001(E)

324 © ISO/IEC 2001 – All rights reserved

H.1.27 CoordinateInterpolator2D

CoordinateInterpolat
or2D

SFWorldNode
SF2DNode
SF3DNode

0011011
00110
001010

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
set_fraction SFFloat 00
key MFFloat 0 01 00 [0, 1] 8
keyValue MFVec2f 1 10 01 [-I, +I] 2
value_changed MFVec2f 10

H.1.28 Curve2D

Curve2D SFWorldNode
SFGeometryNode

0011100
00101

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A

point SFCoordinate2DNode 00 00 00

fineness SFFloat 01 01 01 [0, 1] 0 7
type MFInt32 10 10 10 [0, 3] 13,2

H.1.29 Cylinder

Cylinder SFWorldNode
SFGeometryNode

0011101
00110

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
bottom SFBool 000
height SFFloat 001 [0, +I] 11
radius SFFloat 010 [0, +I] 11
side SFBool 011
top SFBool 100

H.1.30 CylinderSensor

CylinderSensor SFWorldNode
SF3DNode

0011110
001011

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
autoOffset SFBool 000 000 0000
diskAngle SFFloat 001 001 0001 [0, 6.2831853] 6
enabled SFBool 010 010 0010
maxAngle SFFloat 011 011 0011 [0, 6.2831853] 6
minAngle SFFloat 100 100 0100 [0, 6.2831853] 6
offset SFFloat 101 101 0101 [0, 6.2831853] 6
isActive SFBool 0110
rotation_changed SFRotation 0111
trackPoint_changed SFVec3f 1000

H.1.31 DirectionalLight

DirectionalLight SFWorldNode
SF3DNode

0011111
001100

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
ambientIntensity SFFloat 000 000 000 00 [0, 1] 4 8
color SFColor 001 001 001 01 [0, 1] 4 4
direction SFVec3f 010 010 010 10 9 9
intensity SFFloat 011 011 011 11 [0, 1] 4 8
on SFBool 100 100 100

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 325

H.1.32 DiscSensor

DiscSensor
SFWorldNode
SF2DNode
SF3DNode

0100000
00111
001101

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
autoOffset SFBool 000 000 000
enabled SFBool 001 001 001

maxAngle SFFloat 010 010 010 [-6.2831853,
6.2831853]

6

minAngle SFFloat 011 011 011
[-6.2831853,
6.2831853] 6

offset SFFloat 100 100 100 [0, 6.2831853] 6
isActive SFBool 101
rotation_changed SFFloat 110
trackPoint_changed SFVec2f 111

H.1.33 ElevationGrid

ElevationGrid SFWorldNode
SFGeometryNode

0100001
00111

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
set_height MFFloat 00
color SFColorNode 0000 01 00
normal SFNormalNode 0001 10 01

texCoord SFTextureCoordinate
Node 0010 11 10

height MFFloat 0011 [-I, +I] 11 7
ccw SFBool 0100
colorPerVertex SFBool 0101
creaseAngle SFFloat 0110 [0, 6.2831853] 6
normalPerVertex SFBool 0111
solid SFBool 1000
xDimension SFInt32 1001 [0, +I] 11
xSpacing SFFloat 1010 [0, +I] 11
zDimension SFInt32 1011 [0, +I] 11
zSpacing SFFloat 1100 [0, +I] 11

H.1.34 Expression

Expression SFWorldNode
SFExpressionNode

0100010
1

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
expression_select1 SFInt32 000 000 000 [0, 31] 13,5
expression_intensity1 SFInt32 001 001 001 [0, 63] 13,6
expression_select2 SFInt32 010 010 010 [0, 31] 13,5
expression_intensity2 SFInt32 011 011 011 [0, 63] 13,6
init_face SFBool 100 100 100
expression_def SFBool 101 101 101

ISO/IEC 14496-1:2001(E)

326 © ISO/IEC 2001 – All rights reserved

H.1.35 Extrusion

Extrusion SFWorldNode
SFGeometryNode

0100011
01000

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
set_crossSection MFVec2f 00
set_orientation MFRotation 01
set_scale MFVec2f 10
set_spine MFVec3f 11
beginCap SFBool 0000
ccw SFBool 0001
convex SFBool 0010
creaseAngle SFFloat 0011 [0, 6.2831853] 6
crossSection MFVec2f 0100 [-I, +I] 2
endCap SFBool 0101
orientation MFRotation 0110 [-I, +I] 10
scale MFVec2f 0111 [0, +I] 7
solid SFBool 1000
spine MFVec3f 1001 [-I, +I] 1

H.1.36 Face

Face
SFWorldNode
SF3DNode
SF2DNode

0100100
001110
01000

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
fap SFFAPNode 000 000 000
fdp SFFDPNode 001 001 001
fit SFFITNode 010 010 010
ttsSource SFAudioNode 011 011 011
renderedFace MF3DNode 100 100 100

H.1.37 FaceDefMesh

FaceDefMesh SFWorldNode
SFFaceDefMeshNode

0100101
1

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
faceSceneGraphNode SF3DNode 00

intervalBorders MFInt32 01 0
coordIndex MFInt32 10 0
displacements MFVec3f 11 0

H.1.38 FaceDefTables

FaceDefTables SFWorldNode
SFFaceDefTablesNode

0100110
1

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
fapID SFInt32 00 [1, 68] 13,7
highLevelSelect SFInt32 01 [1, 64] 13,6

faceDefMesh MFFaceDefMeshNod
e 10 0 0

faceDefTransform MFFaceDefTransform
Node 11 1 1

H.1.39 FaceDefTransform

FaceDefTransform SFWorldNode
SFFaceDefTransformNode

0100111
1

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
faceSceneGraphNode SF3DNode 000

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 327

fieldId SFInt32 001
rotationDef SFRotation 010 [-I, +I] 10
scaleDef SFVec3f 011 7
translationDef SFVec3f 100 1

H.1.40 FAP

FAP SFWorldNode
SFFAPNode

0101000
1

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
viseme SFVisemeNode 0000000 0000000 0000000
expression SFExpressionNode 0000001 0000001 0000001
open_jaw SFInt32 0000010 0000010 0000010 [0, +I] 0
lower_t_midlip SFInt32 0000011 0000011 0000011 [-I, +I] 0
raise_b_midlip SFInt32 0000100 0000100 0000100 [-I, +I] 0
stretch_l_corner SFInt32 0000101 0000101 0000101 [-I, +I] 0
stretch_r_corner SFInt32 0000110 0000110 0000110 [-I, +I] 0
lower_t_lip_lm SFInt32 0000111 0000111 0000111 [-I, +I] 0
lower_t_lip_rm SFInt32 0001000 0001000 0001000 [-I, +I] 0
lower_b_lip_lm SFInt32 0001001 0001001 0001001 [-I, +I] 0
lower_b_lip_rm SFInt32 0001010 0001010 0001010 [-I, +I] 0
raise_l_cornerlip SFInt32 0001011 0001011 0001011 [-I, +I] 0
raise_r_cornerlip SFInt32 0001100 0001100 0001100 [-I, +I] 0
thrust_jaw SFInt32 0001101 0001101 0001101 [0, +I] 0
shift_jaw SFInt32 0001110 0001110 0001110 [-I, +I] 0
push_b_lip SFInt32 0001111 0001111 0001111 [-I, +I] 0
push_t_lip SFInt32 0010000 0010000 0010000 [-I, +I] 0
depress_chin SFInt32 0010001 0010001 0010001 [-I, +I] 0
close_t_l_eyelid SFInt32 0010010 0010010 0010010 [-I, +I] 0
close_t_r_eyelid SFInt32 0010011 0010011 0010011 [-I, +I] 0
close_b_l_eyelid SFInt32 0010100 0010100 0010100 [-I, +I] 0
close_b_r_eyelid SFInt32 0010101 0010101 0010101 [-I, +I] 0
yaw_l_eyeball SFInt32 0010110 0010110 0010110 [-I, +I] 0
yaw_r_eyeball SFInt32 0010111 0010111 0010111 [-I, +I] 0
pitch_l_eyeball SFInt32 0011000 0011000 0011000 [-I, +I] 0
pitch_r_eyeball SFInt32 0011001 0011001 0011001 [-I, +I] 0
thrust_l_eyeball SFInt32 0011010 0011010 0011010 [-I, +I] 0
thrust_r_eyeball SFInt32 0011011 0011011 0011011 [-I, +I] 0
dilate_l_pupil SFInt32 0011100 0011100 0011100 [-I, +I] 0
dilate_r_pupil SFInt32 0011101 0011101 0011101 [-I, +I] 0
raise_l_i_eyebrow SFInt32 0011110 0011110 0011110 [-I, +I] 0
raise_r_i_eyebrow SFInt32 0011111 0011111 0011111 [-I, +I] 0
raise_l_m_eyebrow SFInt32 0100000 0100000 0100000 [-I, +I] 0
raise_r_m_eyebrow SFInt32 0100001 0100001 0100001 [-I, +I] 0
raise_l_o_eyebrow SFInt32 0100010 0100010 0100010 [-I, +I] 0
raise_r_o_eyebrow SFInt32 0100011 0100011 0100011 [-I, +I] 0
squeeze_l_eyebrow SFInt32 0100100 0100100 0100100 [-I, +I] 0
squeeze_r_eyebrow SFInt32 0100101 0100101 0100101 [-I, +I] 0
puff_l_cheek SFInt32 0100110 0100110 0100110 [-I, +I] 0
puff_r_cheek SFInt32 0100111 0100111 0100111 [-I, +I] 0
lift_l_cheek SFInt32 0101000 0101000 0101000 [0, +I] 0
lift_r_cheek SFInt32 0101001 0101001 0101001 [0, +I] 0
shift_tongue_tip SFInt32 0101010 0101010 0101010 [-I, +I] 0
raise_tongue_tip SFInt32 0101011 0101011 0101011 [-I, +I] 0
thrust_tongue_tip SFInt32 0101100 0101100 0101100 [-I, +I] 0
raise_tongue SFInt32 0101101 0101101 0101101 [-I, +I] 0
tongue_roll SFInt32 0101110 0101110 0101110 [0, +I] 0
head_pitch SFInt32 0101111 0101111 0101111 [-I, +I] 0
head_yaw SFInt32 0110000 0110000 0110000 [-I, +I] 0
head_roll SFInt32 0110001 0110001 0110001 [-I, +I] 0
lower_t_midlip_o SFInt32 0110010 0110010 0110010 [-I, +I] 0

ISO/IEC 14496-1:2001(E)

328 © ISO/IEC 2001 – All rights reserved

raise_b_midlip_o SFInt32 0110011 0110011 0110011 [-I, +I] 0
stretch_l_cornerlip SFInt32 0110100 0110100 0110100 [-I, +I] 0
stretch_r_cornerlip SFInt32 0110101 0110101 0110101 [-I, +I] 0
lower_t_lip_lm_o SFInt32 0110110 0110110 0110110 [-I, +I] 0
lower_t_lip_rm_o SFInt32 0110111 0110111 0110111 [-I, +I] 0
raise_b_lip_lm_o SFInt32 0111000 0111000 0111000 [-I, +I] 0
raise_b_lip_rm_o SFInt32 0111001 0111001 0111001 [-I, +I] 0
raise_l_cornerlip_o SFInt32 0111010 0111010 0111010 [-I, +I] 0
raise_r_cornerlip_o SFInt32 0111011 0111011 0111011 [-I, +I] 0
stretch_l_nose SFInt32 0111100 0111100 0111100 [-I, +I] 0
stretch_r_nose SFInt32 0111101 0111101 0111101 [-I, +I] 0
raise_nose SFInt32 0111110 0111110 0111110 [-I, +I] 0
bend_nose SFInt32 0111111 0111111 0111111 [-I, +I] 0
raise_l_ear SFInt32 1000000 1000000 1000000 [-I, +I] 0
raise_r_ear SFInt32 1000001 1000001 1000001 [-I, +I] 0
pull_l_ear SFInt32 1000010 1000010 1000010 [-I, +I] 0
pull_r_ear SFInt32 1000011 1000011 1000011 [-I, +I] 0

H.1.41 FDP

FDP SFWorldNode
SFFDPNode

0101001
1

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
featurePointsCoord SFCoordinateNode 000 00 00

textureCoord SFTextureCoordinate
Node

001 01 01

faceDefTables MFFaceDefTablesNo
de

010 10 10

faceSceneGraph MF3DNode 011 11 11
useOrthoTexture SFBool 100

H.1.42 FIT

FIT SFWorldNode
SFFITNode

0101010
1

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
FAPs MFInt32 0000 0000 0000 [-1, 68] 13,7
Graph MFInt32 0001 0001 0001 [0, 68] 13,7
numeratorExp MFInt32 0010 0010 0010 [0, 15] 13,4
denominatorExp MFInt32 0011 0011 0011 [0, 15] 13,4
numeratorImpulse MFInt32 0100 0100 0100 [0, 1023] 13,10
numeratorTerms MFInt32 0101 0101 0101 [0, 10] 13,4
denominatorTerms MFInt32 0110 0110 0110 [0, 10] 13,4
numeratorCoefs MFFloat 0111 0111 0111 [-I, +I]
denominatorCoefs MFFloat 1000 1000 1000 [-I, +I]

H.1.43 Fog

Fog
SFWorldNode
SF3DNode
SFFogNode

0101011
001111
1

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
color SFColor 00 00 00 0 [0, 1] 4 4
fogType SFString 01 01 01
visibilityRange SFFloat 10 10 10 1 [0, +I] 11 7
set_bind SFBool 11
isBound SFBool 11

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 329

H.1.44 FontStyle

FontStyle SFWorldNode
SFFontStyleNode

0101100
1

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
family MFString 0000
horizontal SFBool 0001
justify MFString 0010
language SFString 0011
leftToRight SFBool 0100
size SFFloat 0101 [0, +I] 11
spacing SFFloat 0110 [0, +I] 11
style SFString 0111
topToBottom SFBool 1000

H.1.45 Form

Form
SFWorldNode
SF2DNode
SF3DNode

0101101
01001
010000

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
addChildren MF2DNode 000
removeChildren MF2DNode 001
children MF2DNode 000 010 000
size SFVec2f 001 011 001 [0, +I] 12 12
groups MFInt32 010 100 010 [-1, 1022] 13,10
constraints MFString 011 101 011
groupsIndex MFInt32 100 110 100 [-1, 1022] 13,10

H.1.46 Group

Group

SFWorldNode
SFTopNode
SF3DNode
SF2DNode

0101110
001
010001
01010

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
addChildren MF3DNode 00
removeChildren MF3DNode 01
children MF3DNode 10

H.1.47 ImageTexture

ImageTexture SFWorldNode
SFTextureNode

0101111
011

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
url MFURL 00
repeatS SFBool 01
repeatT SFBool 10

H.1.48 IndexedFaceSet

IndexedFaceSet SFWorldNode
SFGeometryNode

0110000
01001

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
set_colorIndex MFInt32 000
set_coordIndex MFInt32 001
set_normalIndex MFInt32 010
set_texCoordIndex MFInt32 011
color SFColorNode 0000 100 00
coord SFCoordinateNode 0001 101 01
normal SFNormalNode 0010 110 10

texCoord SFTextureCoordinate
Node

0011 111 11

ISO/IEC 14496-1:2001(E)

330 © ISO/IEC 2001 – All rights reserved

ccw SFBool 0100
colorIndex MFInt32 0101 [-1, +I] 14
colorPerVertex SFBool 0110
convex SFBool 0111
coordIndex MFInt32 1000 [-1, +I] 14
creaseAngle SFFloat 1001 [0, 6.2831853] 6
normalIndex MFInt32 1010 [-1, +I] 14
normalPerVertex SFBool 1011
solid SFBool 1100
texCoordIndex MFInt32 1101 [-1, +I] 14

H.1.49 IndexedFaceSet2D

IndexedFaceSet2D SFWorldNode
SFGeometryNode

0110001
01010

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
set_colorIndex MFInt32 000
set_coordIndex MFInt32 001
set_texCoordIndex MFInt32 010
color SFColorNode 000 011 00

coord SFCoordinate2DNode 001 100 01

texCoord SFTextureCoordinate
Node

010 101 10

colorIndex MFInt32 011 [0, +I] 14
colorPerVertex SFBool 100
convex SFBool 101
coordIndex MFInt32 110 [0, +I] 14
texCoordIndex MFInt32 111 [0, +I] 14

H.1.50 IndexedLineSet

IndexedLineSet SFWorldNode
SFGeometryNode

0110010
01011

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
set_colorIndex MFInt32 00
set_coordIndex MFInt32 01
color SFColorNode 000 10 0
coord SFCoordinateNode 001 11 1
colorIndex MFInt32 010 [-1, +I] 14
colorPerVertex SFBool 011
coordIndex MFInt32 100 [-1, +I] 14

H.1.51 IndexedLineSet2D

IndexedLineSet2D SFWorldNode
SFGeometryNode

0110011
01100

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
set_colorIndex MFInt32 00
set_coordIndex MFInt32 01
color SFColorNode 000 10 0

coord SFCoordinate2DNode 001 11 1

colorIndex MFInt32 010 [0, +I] 14
colorPerVertex SFBool 011
coordIndex MFInt32 100 [0, +I] 14

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 331

H.1.52 Inline

Inline

SFWorldNode
SF3DNode
SFStreamingNode
SF2DNode

0110100
010010
100
01011

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
url MFURL

H.1.53 LOD

LOD
SFWorldNode
SF3DNode
SF2DNode

0110101
010011
01100

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
level MF3DNode 00
center SFVec3f 01 [-I, +I] 1
range MFFloat 10 [0, +I] 11

H.1.54 Layer2D

Layer2D

SFWorldNode
SFTopNode
SF2DNode
SF3DNode

0110110
010
01101
010100

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
addChildren MF2DNode 000
removeChildren MF2DNode 001
children MF2DNode 00 010 00
size SFVec2f 01 011 01 [-I, +I] 12 12

background SFBackground2DNod
e

10 100 10

viewport SFViewportNode 11 101 11

H.1.55 Layer3D

Layer3D

SFWorldNode
SFTopNode
SF2DNode
SF3DNode

0110111
011
01110
010101

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
addChildren MF3DNode 000
removeChildren MF3DNode 001
children MF3DNode 000 010 000
size SFVec2f 001 011 001 [-I, +I] 12 12

background SFBackground3DNod
e

010 100 010

fog SFFogNode 011 101 011

navigationInfo SFNavigationInfoNod
e 100 110 100

viewpoint SFViewpointNode 101 111 101

H.1.56 Layout

Layout
SFWorldNode
SF2DNode
SF3DNode

0111000
01111
010100

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
addChildren MF2DNode 0000
removeChildren MF2DNode 0001
children MF2DNode 0000 0010 0000
wrap SFBool 0001 0011 0001
size SFVec2f 0010 0100 0010 00 [0, +I] 12 12
horizontal SFBool 0011 0101 0011
justify MFString 0100 0110 0100
leftToRight SFBool 0101 0111 0101

ISO/IEC 14496-1:2001(E)

332 © ISO/IEC 2001 – All rights reserved

topToBottom SFBool 0110 1000 0110
spacing SFFloat 0111 1001 0111 01 [0, +I] 0 7
smoothScroll SFBool 1000 1010 1000
loop SFBool 1001 1011 1001
scrollVertical SFBool 1010 1100 1010
scrollRate SFFloat 1011 1101 1011 10 [-I, +I] 0 7

H.1.57 LineProperties

LineProperties SFWorldNode
SFLinePropertiesNode

0111001
1

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
lineColor SFColor 00 00 00 0 [0, 1] 4 4
lineStyle SFInt32 01 01 01 [0, 5] 13,3
width SFFloat 10 10 10 1 [0, +I] 12 7

H.1.58 ListeningPoint

ListeningPoint SFWorldNode
SF3DNode

0111010
010111

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
set_bind SFBool 00
jump SFBool 00 01 000
orientation SFRotation 01 10 001 0 10 10
position SFVec3f 10 11 010 1 [-I, +I] 1 1
description SFString 11
bindTime SFTime 011
isBound SFBool 100

H.1.59 Material

Material SFWorldNode
SFMaterialNode

0111011
01

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
ambientIntensity SFFloat 000 000 000 000 [0, 1] 4 8
diffuseColor SFColor 001 001 001 001 [0, 1] 4 4
emissiveColor SFColor 010 010 010 010 [0, 1] 4 4
shininess SFFloat 011 011 011 011 [0, 1] 4 8
specularColor SFColor 100 100 100 100 [0, 1] 4 4
transparency SFFloat 101 101 101 101 [0, 1] 4 8

H.1.60 Material2D

Material2D SFWorldNode
SFMaterialNode

0111100
10

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
emissiveColor SFColor 00 00 00 0 [0, 1] 4 4
filled SFBool 01 01 01

lineProps SFLinePropertiesNod
e

10 10 10

transparency SFFloat 11 11 11 1 [0, 1] 4 8

H.1.61 MovieTexture

MovieTexture
SFWorldNode
SFTextureNode
SFStreamingNode

0111101
100
101

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
loop SFBool 000 000 000
speed SFFloat 001 001 001 [-I, +I] 0 7

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 333

startTime SFTime 010 010 010 [-I, +I]
stopTime SFTime 011 011 011 [-I, +I]
url MFURL 100 100 100
repeatS SFBool 101
repeatT SFBool 110
duration_changed SFTime 101
isActive SFBool 110

H.1.62 NavigationInfo

NavigationInfo
SFWorldNode
SF3DNode
SFNavigationInfoNode

0111110
011000
1

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
set_bind SFBool 000
avatarSize MFFloat 000 001 000 [0, +I] 11
headlight SFBool 001 010 001
speed SFFloat 010 011 010 [0, +I] 0
type MFString 011 100 011
visibilityLimit SFFloat 100 101 100 [0, +I] 11 7
isBound SFBool 101

H.1.63 Normal

Normal SFWorldNode
SFNormalNode

0111111
1

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
vector MFVec3f 9 9

H.1.64 NormalInterpolator

NormalInterpolator SFWorldNode
SF3DNode

1000000
011001

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
set_fraction SFFloat 00
key MFFloat 0 01 00 [0, 1] 8
keyValue MFVec3f 1 10 01 [-I, +I] 9
value_changed MFVec3f 10

H.1.65 OrderedGroup

OrderedGroup

SFWorldNode
SF3DNode
SF2DNode
SFTopNode

1000001
011010
10000
100

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
addChildren MF3DNode 00
removeChildren MF3DNode 01
children MF3DNode 0 10 0
order MFFloat 1 11 1 [0, +I] 3

H.1.66 OrientationInterpolator

OrientationInterpolat
or

SFWorldNode
SF3DNode

1000010
011011

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
set_fraction SFFloat 00
key MFFloat 0 01 00 [0, 1] 8
keyValue MFRotation 1 10 01 [-I, +I] 10
value_changed SFRotation 10

ISO/IEC 14496-1:2001(E)

334 © ISO/IEC 2001 – All rights reserved

H.1.67 PixelTexture

PixelTexture SFWorldNode
SFTextureNode

1000011
101

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
image SFImage 00 0
repeatS SFBool 01
repeatT SFBool 10

H.1.68 PlaneSensor

PlaneSensor SFWorldNode
SF3DNode

1000100
011100

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
autoOffset SFBool 000 000 000
enabled SFBool 001 001 001
maxPosition SFVec2f 010 010 010 [-I, +I] 2
minPosition SFVec2f 011 011 011 [-I, +I] 2
offset SFVec3f 100 100 100 [-I, +I] 1
isActive SFBool 101
trackPoint_changed SFVec3f 110
translation_changed SFVec3f 111

H.1.69 PlaneSensor2D

PlaneSensor2D
SFWorldNode
SF2DNode
SF3DNode

1000101
10001
011101

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
autoOffset SFBool 000 000 000
enabled SFBool 001 001 001
maxPosition SFVec2f 010 010 010 [-I, +I] 2
minPosition SFVec2f 011 011 011 [-I, +I] 2
offset SFVec2f 100 100 100 [-I, +I] 12
isActive SFBool 101
trackPoint_changed SFVec2f 110
translation_changed SFVec2f 111

H.1.70 PointLight

PointLight SFWorldNode
SF3DNode

1000110
011110

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
ambientIntensity SFFloat 000 000 000 000 [0, 1] 4 8
attenuation SFVec3f 001 001 001 001 [0, +I] 11 1
color SFColor 010 010 010 010 [0, 1] 4 4
intensity SFFloat 011 011 011 011 [0, 1] 4 8
location SFVec3f 100 100 100 100 [-I, +I] 1 1
on SFBool 101 101 101
radius SFFloat 110 110 110 101 [0, +I] 11 7

H.1.71 PointSet

PointSet SFWorldNode
SFGeometryNode

1000111
01101

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
color SFColorNode 0 0 0
coord SFCoordinateNode 1 1 1

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 335

H.1.72 PointSet2D

PointSet2D SFWorldNode
SFGeometryNode

1001000
01110

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
color SFColorNode 0 0 0
coord SFCoordinate2DNode 1 1 1

H.1.73 PositionInterpolator

PositionInterpolator SFWorldNode
SF3DNode

1001001
011111

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
set_fraction SFFloat 00
key MFFloat 0 01 00 [0, 1] 8
keyValue MFVec3f 1 10 01 [-I, +I] 1
value_changed SFVec3f 10

H.1.74 PositionInterpolator2D

PositionInterpolator
2D

SFWorldNode
SF2DNode
SF3DNode

1001010
10010
100000

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
set_fraction SFFloat 00
key MFFloat 0 01 00 [0, 1] 8
keyValue MFVec2f 1 10 01 [-I, +I] 2
value_changed SFVec2f 10

H.1.75 ProximitySensor2D

ProximitySensor2D
SFWorldNode
SF2DNode
SF3DNode

1001011
10011
100001

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
center SFVec2f 00 00 000 [-1, +I] 2
size SFVec2f 01 01 001 [0, +I] 12
enabled SFBool 10 10 010
isActive SFBool 011
position_changed SFVec2f 100
orientation_changed SFFloat 101
enterTime SFTime 110
exitTime SFTime 111

H.1.76 ProximitySensor

ProximitySensor SFWorldNode
SF3DNode

1001100
100010

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
center SFVec3f 00 00 000 [-I, +I] 1
size SFVec3f 01 01 001 [0, +I] 11
enabled SFBool 10 10 010
isActive SFBool 011
position_changed SFVec3f 100
orientation_changed SFRotation 101
enterTime SFTime 110
exitTime SFTime 111

H.1.77 QuantizationParameter

QuantizationParame
ter

SFWorldNode
SF2DNode
SF3DNode

1001101
10100
100011

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
isLocal SFBool 000000
position3DQuant SFBool 000001

ISO/IEC 14496-1:2001(E)

336 © ISO/IEC 2001 – All rights reserved

position3DMin SFVec3f 000010 [-I, +I] 0
position3DMax SFVec3f 000011 [-I, +I] 0
position3DNbBits SFInt32 000100 [0, 31] 13,5
position2DQuant SFBool 000101
position2DMin SFVec2f 000110 [-I, +I] 0
position2DMax SFVec2f 000111 [-I, +I] 0
position2DNbBits SFInt32 001000 [0, 31] 13,5
drawOrderQuant SFBool 001001
drawOrderMin SFFloat 001010 [-I, +I] 0
drawOrderMax SFFloat 001011 [-I, +I] 0
drawOrderNbBits SFInt32 001100 [0, 31] 13,5
colorQuant SFBool 001101
colorMin SFFloat 001110 [0, 1] 0
colorMax SFFloat 001111 [0, 1] 0
colorNbBits SFInt32 010000 [0, 31] 13,5
textureCoordinateQua
nt

SFBool 010001

textureCoordinateMin SFFloat 010010 [0, 1] 0
textureCoordinateMax SFFloat 010011 [0, 1] 0
textureCoordinateNbB
its

SFInt32 010100 [0, 31] 13,5

angleQuant SFBool 010101
angleMin SFFloat 010110 [0, 6.2831853] 0
angleMax SFFloat 010111 [0, 6.2831853] 0
angleNbBits SFInt32 011000 [0, 31] 13,5
scaleQuant SFBool 011001
scaleMin SFFloat 011010 [0, +I] 0
scaleMax SFFloat 011011 [0, +I] 0
scaleNbBits SFInt32 011100 [0, 31] 13,5
keyQuant SFBool 011101
keyMin SFFloat 011110 [-I, +I] 0
keyMax SFFloat 011111 [-I, +I] 0
keyNbBits SFInt32 100000 [0, 31] 13,5
normalQuant SFBool 100001
normalNbBits SFInt32 100010 [0, 31] 13,5
sizeQuant SFBool 100011
sizeMin SFFloat 100100 [-I, +I] 0
sizeMax SFFloat 100101 [-I, +I] 0
sizeNbBits SFInt32 100110 [0, 31] 13,5
useEfficientCoding SFBool 100111

H.1.78 Rectangle

Rectangle SFWorldNode
SFGeometryNode

1001110
01111

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
size SFVec2f [0, +I] 12 2

H.1.79 ScalarInterpolator

ScalarInterpolator
SFWorldNode
SF3DNode
SF2DNode

1001111
100100
10101

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
set_fraction SFFloat 00
key MFFloat 0 01 00 [0, 1] 8
keyValue MFFloat 1 10 01 [-I, +I] 0
value_changed SFFloat 10

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 337

H.1.80 Script

Script
SFWorldNode
SF3DNode
SF2DNode

1010000
100101
10110

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
url MFScript 00
directOutput SFBool 01
mustEvaluate SFBool 10

H.1.81 Shape

Shape
SFWorldNode
SF3DNode
SF2DNode

1010001
100110
10111

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
appearance SFAppearanceNode 0 0 0
geometry SFGeometryNode 1 1 1

H.1.82 Sound

Sound SFWorldNode
SF3DNode

1010010
100111

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
direction SFVec3f 0000 0000 0000 [-I, +I] 9
intensity SFFloat 0001 0001 0001 000 [0, 1] 4 7
location SFVec3f 0010 0010 0010 001 [-I, +I] 1 1
maxBack SFFloat 0011 0011 0011 010 [0, +I] 11 7
maxFront SFFloat 0100 0100 0100 011 [0, +I] 11 7
minBack SFFloat 0101 0101 0101 100 [0, +I] 11 7
minFront SFFloat 0110 0110 0110 101 [0, +I] 11 7
priority SFFloat 0111 0111 0111 [0, 1] 4
source SFAudioNode 1000 1000 1000
spatialize SFBool 1001

H.1.83 Sound2D

Sound2D
SFWorldNode
SF2DNode
SF3DNode

1010011
11000
101000

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
intensity SFFloat 00 00 00 0 [0, 1] 4 7
location SFVec2f 01 01 01 1 [-I, +I] 2 2
source SFAudioNode 10 10 10
spatialize SFBool 11

H.1.84 Sphere

Sphere SFWorldNode
SFGeometryNode

1010100
10000

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
radius SFFloat [0, +I] 11

H.1.85 SphereSensor

SphereSensor SFWorldNode
SF3DNode

1010101
101001

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
autoOffset SFBool 00 00 000
enabled SFBool 01 01 001
offset SFRotation 10 10 010 [-I, +I] 10
isActive SFBool 011
rotation_changed SFRotation 100
trackPoint_changed SFVec3f 101

ISO/IEC 14496-1:2001(E)

338 © ISO/IEC 2001 – All rights reserved

H.1.86 SpotLight

SpotLight SFWorldNode
SF3DNode

1010110
101010

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
ambientIntensity SFFloat 0000 0000 0000 0000 [0, 1] 4 8
attenuation SFVec3f 0001 0001 0001 0001 [0, +I] 11 1
beamWidth SFFloat 0010 0010 0010 0010 [0, 1.5707963] 6 8
color SFColor 0011 0011 0011 0011 [0, 1] 4 4
cutOffAngle SFFloat 0100 0100 0100 0100 [0, 1.5707963] 6 8
direction SFVec3f 0101 0101 0101 0101 [-I, +I] 9 9
intensity SFFloat 0110 0110 0110 0110 [0, 1] 4 8
location SFVec3f 0111 0111 0111 0111 [-I, +I] 1 1
on SFBool 1000 1000 1000
radius SFFloat 1001 1001 1001 1000 [0, +I] 11 7

H.1.87 Switch

Switch
SFWorldNode
SF3DNode
SF2DNode

1010111
101011
11001

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
choice MF3DNode 0 0 0
whichChoice SFInt32 1 1 1 [-1, 1022] 13,10

H.1.88 TermCap

TermCap
SFWorldNode
SF3DNode
SF2DNode

1011000
11010
101100

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
evaluate SFTime 0
capability SFInt32 1 0 [0, 127] 13,7
value SFInt32 1 [0, 7] 13,3

H.1.89 Text

Text SFWorldNode
SFGeometryNode

1011001
10001

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
string MFString 00 00 00
length MFFloat 01 01 01 0 [0, +I] 11 7
fontStyle SFFontStyleNode 10 10 10
maxExtent SFFloat 11 11 11 1 [0, +I] 11 7

H.1.90 TextureCoordinate

TextureCoordinate SFWorldNode
SFTextureCoordinateNode

1011010
1

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
point MFVec2f [-I, +I] 5 2

H.1.91 TextureTransform

TextureTransform SFWorldNode
SFTextureTransformNode

1011011
1

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
center SFVec2f 00 00 00 00 [-I, +I] 2 2
rotation SFFloat 01 01 01 01 [0, 6.2831853] 6 6
scale SFVec2f 10 10 10 10 [-I, +I] 7 12
translation SFVec2f 11 11 11 11 [-I, +I] 2 2

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 339

H.1.92 TimeSensor

TimeSensor
SFWorldNode
SF3DNode
SF2DNode

1011100
101101
11011

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
cycleInterval SFTime 000 000 0000 [0, +I]
enabled SFBool 001 001 0001
loop SFBool 010 010 0010
startTime SFTime 011 011 0011 [-I, +I]
stopTime SFTime 100 100 0100 [-I, +I]
cycleTime SFTime 0101
fraction_changed SFFloat 0110
isActive SFBool 0111
time SFTime 1000

H.1.93 TouchSensor

TouchSensor
SFWorldNode
SF2DNode
SF3DNode

1011101
11100
101110

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
enabled SFBool 000
hitNormal_changed SFVec3f 001
hitPoint_changed SFVec3f 010
hitTexCoord_changed SFVec2f 011
isActive SFBool 100
isOver SFBool 101
touchTime SFTime 110

H.1.94 Transform

Transform SFWorldNode
SF3DNode

1011110
101111

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
addChildren MF3DNode 000
removeChildren MF3DNode 001
center SFVec3f 000 010 000 000 [-I, +I] 1 1
children MF3DNode 001 011 001
rotation SFRotation 010 100 010 001 10 10
scale SFVec3f 011 101 011 010 [0, +I] 7 11
scaleOrientation SFRotation 100 110 100 011 10 10
translation SFVec3f 101 111 101 100 [-I, +I] 1 1

H.1.95 Transform2D

Transform2D
SFWorldNode
SF2DNode
SF3DNode

1011111
11101
110000

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
addChildren MF2DNode 000
removeChildren MF2DNode 001
children MF2DNode 000 010 000
center SFVec2f 001 011 001 000 [-I, +I] 2 2
rotationAngle SFFloat 010 100 010 001 [0, 6.2831853] 6 6
scale SFVec2f 011 101 011 010 [0, +I] 7 12
scaleOrientation SFFloat 100 110 100 011 [0, 6.2831853] 6 6
translation SFVec2f 101 111 101 100 [-I, +I] 2 2

ISO/IEC 14496-1:2001(E)

340 © ISO/IEC 2001 – All rights reserved

H.1.96 Valuator

Valuator
SFWorldNode
SF3DNode
SF2DNode

1100000
110001
11110

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
inSFBool SFBool 00000
inSFColor SFColor 00001
inMFColor MFColor 00010
inSFFloat SFFloat 00011
inMFFloat MFFloat 00100
inSFInt32 SFInt32 00101
inMFInt32 MFInt32 00110
inSFRotation SFRotation 00111
inMFRotation MFRotation 01000
inSFString SFString 01001
inMFString MFString 01010
inSFTime SFTime 01011
inSFVec2f SFVec2f 01100
inMFVec2f MFVec2f 01101
inSFVec3f SFVec3f 01110
inMFVec3f MFVec3f 01111
outSFBool SFBool 00000
outSFColor SFColor 00001
outMFColor MFColor 00010
outSFFloat SFFloat 00011
outMFFloat MFFloat 00100
outSFInt32 SFInt32 00101
outMFInt32 MFInt32 00110
outSFRotation SFRotation 00111
outMFRotation MFRotation 01000
outSFString SFString 01001
outMFString MFString 01010
outSFTime SFTime 01011
outSFVec2f SFVec2f 01100
outMFVec2f MFVec2f 01101
outSFVec3f SFVec3f 01110
outMFVec3f MFVec3f 01111
Factor1 SFFloat 0000 10000 10000 [-I, +I] 0
Factor2 SFFloat 0001 10001 10001 [-I, +I] 0
Factor3 SFFloat 0010 10010 10010 [-I, +I] 0
Factor4 SFFloat 0011 10011 10011 [-I, +I] 0
Offset1 SFFloat 0100 10100 10100 [-I, +I] 0
Offset2 SFFloat 0101 10101 10101 [-I, +I] 0
Offset3 SFFloat 0110 10110 10110 [-I, +I] 0
Offset4 SFFloat 0111 10111 10111 [-I, +I] 0
Sum SFBool 1000 11000 11000

H.1.97 Viewpoint

Viewpoint
SFWorldNode
SF3DNode
SFViewpointNode

1100001
110010
1

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
set_bind SFBool 000
fieldOfView SFFloat 000 001 000 00 [0, 3.1415927] 6 8
jump SFBool 001 010 001
orientation SFRotation 010 011 010 01 10 10
position SFVec3f 011 100 011 10 [-I, +I] 1 1
description SFString 100
bindTime SFTime 100
isBound SFBool 101

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 341

H.1.98 VisibilitySensor

VisibilitySensor SFWorldNode
SF3DNode

1100010
110011

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
center SFVec3f 00 00 000 0 1 1
enabled SFBool 01 01 001
size SFVec3f 10 10 010 1 11 11
enterTime SFTime 011
exitTime SFTime 100
isActive SFBool 101

H.1.99 Viseme

Viseme SFWorldNode
SFVisemeNode

1100011
1

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
viseme_select1 SFInt32 00 00 00 [0, 31] 13,5
viseme_select2 SFInt32 01 01 01 [0, 31] 13,5
viseme_blend SFInt32 10 10 10 [0, 63] 13,6
viseme_def SFBool 11 11 11

H.1.100WorldInfo

WorldInfo
SFWorldNode
SF2DNode
SF3DNode

1100100
11111
110100

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
info MFString 0
title SFString 1

H.2 Node Definition Type Tables

Legend:

Node Definition Type Number of nodes
Node name nodeType DEF IN OUT DYN

H.2.1 SF2DNode

SF2DNode 31 Nodes
reserved 00000
Anchor 00001 2 DEF bits 3 IN bits 2 OUT bits 0 DYN bits
AnimationStream 00010 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
Background2D 00011 1 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
ColorInterpolator 00100 1 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
Conditional 00101 0 DEF bits 2 IN bits 1 OUT bits 0 DYN bits
CoordinateInterpolator2D 00110 1 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
DiscSensor 00111 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
Face 01000 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
Form 01001 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
Group 01010 0 DEF bits 2 IN bits 0 OUT bits 0 DYN bits
Inline 01011 0 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
LOD 01100 2 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
Layer2D 01101 2 DEF bits 3 IN bits 2 OUT bits 0 DYN bits
Layer3D 01110 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
Layout 01111 4 DEF bits 4 IN bits 4 OUT bits 2 DYN bits
OrderedGroup 10000 1 DEF bits 2 IN bits 1 OUT bits 0 DYN bits
PlaneSensor2D 10001 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
PositionInterpolator2D 10010 1 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
ProximitySensor2D 10011 2 DEF bits 2 IN bits 3 OUT bits 0 DYN bits
QuantizationParameter 10100 6 DEF bits 0 IN bits 0 OUT bits 0 DYN bits

ISO/IEC 14496-1:2001(E)

342 © ISO/IEC 2001 – All rights reserved

ScalarInterpolator 10101 1 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
Script 10110 2 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
Shape 10111 1 DEF bits 1 IN bits 1 OUT bits 0 DYN bits
Sound2D 11000 2 DEF bits 2 IN bits 2 OUT bits 1 DYN bits
Switch 11001 1 DEF bits 1 IN bits 1 OUT bits 0 DYN bits
TermCap 11010 0 DEF bits 1 IN bits 1 OUT bits 0 DYN bits
TimeSensor 11011 3 DEF bits 3 IN bits 4 OUT bits 0 DYN bits
TouchSensor 11100 0 DEF bits 0 IN bits 3 OUT bits 0 DYN bits
Transform2D 11101 3 DEF bits 3 IN bits 3 OUT bits 3 DYN bits
Valuator 11110 4 DEF bits 5 IN bits 5 OUT bits 0 DYN bits
WorldInfo 11111 1 DEF bits 0 IN bits 0 OUT bits 0 DYN bits

H.2.2 SF3DNode

SF3DNode 52 Nodes
reserved 000000
Anchor 000001 2 DEF bits 3 IN bits 2 OUT bits 0 DYN bits
AnimationStream 000010 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
Background 000011 4 DEF bits 4 IN bits 4 OUT bits 2 DYN bits
Background2D 000100 1 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
Billboard 000101 1 DEF bits 2 IN bits 1 OUT bits 0 DYN bits
Collision 000110 2 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
ColorInterpolator 000111 1 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
Conditional 001000 0 DEF bits 2 IN bits 1 OUT bits 0 DYN bits
CoordinateInterpolator 001001 1 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
CoordinateInterpolator2D 001010 1 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
CylinderSensor 001011 3 DEF bits 3 IN bits 4 OUT bits 0 DYN bits
DirectionalLight 001100 3 DEF bits 3 IN bits 3 OUT bits 2 DYN bits
DiscSensor 001101 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
Face 001110 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
Fog 001111 2 DEF bits 2 IN bits 2 OUT bits 1 DYN bits
Form 010000 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
Group 010001 0 DEF bits 2 IN bits 0 OUT bits 0 DYN bits
Inline 010010 0 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
LOD 010011 2 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
Layer2D 010100 2 DEF bits 3 IN bits 2 OUT bits 0 DYN bits
Layer3D 010101 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
Layout 010110 4 DEF bits 4 IN bits 4 OUT bits 2 DYN bits
ListeningPoint 010111 2 DEF bits 2 IN bits 3 OUT bits 1 DYN bits
NavigationInfo 011000 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
NormalInterpolator 011001 1 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
OrderedGroup 011010 1 DEF bits 2 IN bits 1 OUT bits 0 DYN bits
OrientationInterpolator 011011 1 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
PlaneSensor 011100 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
PlaneSensor2D 011101 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
PointLight 011110 3 DEF bits 3 IN bits 3 OUT bits 3 DYN bits
PositionInterpolator 011111 1 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
PositionInterpolator2D 100000 1 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
ProximitySensor2D 100001 2 DEF bits 2 IN bits 3 OUT bits 0 DYN bits
ProximitySensor 100010 2 DEF bits 2 IN bits 3 OUT bits 0 DYN bits
QuantizationParameter 100011 6 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
ScalarInterpolator 100100 1 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
Script 100101 2 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
Shape 100110 1 DEF bits 1 IN bits 1 OUT bits 0 DYN bits
Sound 100111 4 DEF bits 4 IN bits 4 OUT bits 3 DYN bits
Sound2D 101000 2 DEF bits 2 IN bits 2 OUT bits 1 DYN bits
SphereSensor 101001 2 DEF bits 2 IN bits 3 OUT bits 0 DYN bits
SpotLight 101010 4 DEF bits 4 IN bits 4 OUT bits 4 DYN bits
Switch 101011 1 DEF bits 1 IN bits 1 OUT bits 0 DYN bits
TermCap 101100 0 DEF bits 1 IN bits 1 OUT bits 0 DYN bits
TimeSensor 101101 3 DEF bits 3 IN bits 4 OUT bits 0 DYN bits
TouchSensor 101110 0 DEF bits 0 IN bits 3 OUT bits 0 DYN bits

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 343

Transform 101111 3 DEF bits 3 IN bits 3 OUT bits 3 DYN bits
Transform2D 110000 3 DEF bits 3 IN bits 3 OUT bits 3 DYN bits
Valuator 110001 4 DEF bits 5 IN bits 5 OUT bits 0 DYN bits
Viewpoint 110010 3 DEF bits 3 IN bits 3 OUT bits 2 DYN bits
VisibilitySensor 110011 2 DEF bits 2 IN bits 3 OUT bits 1 DYN bits
WorldInfo 110100 1 DEF bits 0 IN bits 0 OUT bits 0 DYN bits

H.2.3 SFAppearanceNode

SFAppearanceNode 1 Node
reserved 0
Appearance 1 2 DEF bits 2 IN bits 2 OUT bits 0 DYN bits

H.2.4 SFAudioNode

SFAudioNode 7 Nodes
reserved 000
AudioBuffer 001 3 DEF bits 3 IN bits 4 OUT bits 0 DYN bits
AudioClip 010 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
AudioDelay 011 2 DEF bits 2 IN bits 1 OUT bits 0 DYN bits
AudioFX 100 3 DEF bits 3 IN bits 2 OUT bits 0 DYN bits
AudioMix 101 3 DEF bits 3 IN bits 2 OUT bits 0 DYN bits
AudioSource 110 3 DEF bits 3 IN bits 3 OUT bits 1 DYN bits
AudioSwitch 111 2 DEF bits 2 IN bits 1 OUT bits 0 DYN bits

H.2.5 SFBackground2DNode

SFBackground2DNode 1 Node
reserved 0
Background2D 1 1 DEF bits 2 IN bits 2 OUT bits 0 DYN bits

H.2.6 SFBackground3DNode

SFBackground3DNode 1 Node
reserved 0
Background 1 4 DEF bits 4 IN bits 4 OUT bits 2 DYN bits

H.2.7 SFColorNode

SFColorNode 1 Node
reserved 0
Color 1 0 DEF bits 0 IN bits 0 OUT bits 0 DYN bits

H.2.8 SFCoordinate2DNode

SFCoordinate2DNode 1 Node
reserved 0
Coordinate2D 1 0 DEF bits 0 IN bits 0 OUT bits 0 DYN bits

H.2.9 SFCoordinateNode

SFCoordinateNode 1 Node
reserved 0
Coordinate 1 0 DEF bits 0 IN bits 0 OUT bits 0 DYN bits

H.2.10 SFExpressionNode

SFExpressionNode 1 Node
reserved 0
Expression 1 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits

ISO/IEC 14496-1:2001(E)

344 © ISO/IEC 2001 – All rights reserved

H.2.11 SFFAPNode

SFFAPNode 1 Node
reserved 0
FAP 1 7 DEF bits 7 IN bits 7 OUT bits 0 DYN bits

H.2.12 SFFDPNode

SFFDPNode 1 Node
reserved 0
FDP 1 3 DEF bits 2 IN bits 2 OUT bits 0 DYN bits

H.2.13 SFFITNode

SFFITNode 1 Node
reserved 0
FIT 1 4 DEF bits 4 IN bits 4 OUT bits 0 DYN bits

H.2.14 SFFaceDefMeshNode

SFFaceDefMeshNode 1 Node
reserved 0
FaceDefMesh 1 2 DEF bits 0 IN bits 0 OUT bits 0 DYN bits

H.2.15 SFFaceDefTablesNode

SFFaceDefTablesNode 1 Node
reserved 0
FaceDefTables 1 2 DEF bits 1 IN bits 1 OUT bits 0 DYN bits

H.2.16 SFFaceDefTransformNode

SFFaceDefTransformNode 1 Node
reserved 0

FaceDefTransform 1 3 DEF bits 0 IN bits 0 OUT bits 0 DYN bits

H.2.17 SFFogNode

SFFogNode 1 Node
reserved 0
Fog 1 2 DEF bits 2 IN bits 2 OUT bits 1 DYN bits

H.2.18 SFFontStyleNode

SFFontStyleNode 1 Node
reserved 0
FontStyle 1 4 DEF bits 0 IN bits 0 OUT bits 0 DYN bits

H.2.19 SFGeometryNode

SFGeometryNode 17 Nodes
reserved 00000
Bitmap 00001 0 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
Box 00010 0 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
Circle 00011 0 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
Cone 00100 2 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
Curve2D 00101 2 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
Cylinder 00110 3 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
ElevationGrid 00111 4 DEF bits 2 IN bits 2 OUT bits 0 DYN bits

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 345

Extrusion 01000 4 DEF bits 2 IN bits 0 OUT bits 0 DYN bits
IndexedFaceSet 01001 4 DEF bits 3 IN bits 2 OUT bits 0 DYN bits
IndexedFaceSet2D 01010 3 DEF bits 3 IN bits 2 OUT bits 0 DYN bits
IndexedLineSet 01011 3 DEF bits 2 IN bits 1 OUT bits 0 DYN bits
IndexedLineSet2D 01100 3 DEF bits 2 IN bits 1 OUT bits 0 DYN bits
PointSet 01101 1 DEF bits 1 IN bits 1 OUT bits 0 DYN bits
PointSet2D 01110 1 DEF bits 1 IN bits 1 OUT bits 0 DYN bits
Rectangle 01111 0 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
Sphere 10000 0 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
Text 10001 2 DEF bits 2 IN bits 2 OUT bits 1 DYN bits

H.2.20 SFLinePropertiesNode

SFLinePropertiesNode 1 Node
reserved 0
LineProperties 1 2 DEF bits 2 IN bits 2 OUT bits 1 DYN bits

H.2.21 SFMaterialNode

SFMaterialNode 2 Nodes
reserved 00
Material 01 3 DEF bits 3 IN bits 3 OUT bits 3 DYN bits
Material2D 10 2 DEF bits 2 IN bits 2 OUT bits 1 DYN bits

H.2.22 SFNavigationInfoNode

SFNavigationInfoNode 1 Node
reserved 0
NavigationInfo 1 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits

H.2.23 SFNormalNode

SFNormalNode 1 Node
reserved 0
Normal 1 0 DEF bits 0 IN bits 0 OUT bits 0 DYN bits

H.2.24 SFStreamingNode

SFStreamingNode 5 Nodes
reserved 000
AnimationStream 001 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
AudioClip 010 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
AudioSource 011 3 DEF bits 3 IN bits 3 OUT bits 1 DYN bits
Inline 100 0 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
MovieTexture 101 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits

H.2.25 SFTextureCoordinateNode

SFTextureCoordinateNode 1 Node
reserved 0
TextureCoordinate 1 0 DEF bits 0 IN bits 0 OUT bits 0 DYN bits

H.2.26 SFTextureNode

SFTextureNode 5 Nodes
reserved 000
CompositeTexture2D 001 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
CompositeTexture3D 010 3 DEF bits 4 IN bits 3 OUT bits 0 DYN bits
ImageTexture 011 2 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
MovieTexture 100 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
PixelTexture 101 2 DEF bits 0 IN bits 0 OUT bits 0 DYN bits

ISO/IEC 14496-1:2001(E)

346 © ISO/IEC 2001 – All rights reserved

H.2.27 SFTextureTransformNode

SFTextureTransformNode 1 Node
reserved 0
TextureTransform 1 2 DEF bits 2 IN bits 2 OUT bits 2 DYN bits

H.2.28 SFTopNode

SFTopNode 4 Nodes
reserved 000
Group 001 0 DEF bits 2 IN bits 0 OUT bits 0 DYN bits
Layer2D 010 2 DEF bits 3 IN bits 2 OUT bits 0 DYN bits
Layer3D 011 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
OrderedGroup 100 1 DEF bits 2 IN bits 1 OUT bits 0 DYN bits

H.2.29 SFViewpointNode

SFViewpointNode 1 Node
reserved 0
Viewpoint 1 3 DEF bits 3 IN bits 3 OUT bits 2 DYN bits

H.2.30 SFViewportNode

SFViewportNode 0 Nodes
Reserved 0

H.2.31 SFVisemeNode

SFVisemeNode 1 Node
reserved 0
Viseme 1 2 DEF bits 2 IN bits 2 OUT bits 0 DYN bits

H.2.32 SFWorldNode

SFWorldNode 100 Nodes
reserved 0000000
Anchor 0000001 2 DEF bits 3 IN bits 2 OUT bits 0 DYN bits
AnimationStream 0000010 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
Appearance 0000011 2 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
AudioBuffer 0000100 3 DEF bits 3 IN bits 4 OUT bits 0 DYN bits
AudioClip 0000101 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
AudioDelay 0000110 2 DEF bits 2 IN bits 1 OUT bits 0 DYN bits
AudioFX 0000111 3 DEF bits 3 IN bits 2 OUT bits 0 DYN bits
AudioMix 0001000 3 DEF bits 3 IN bits 2 OUT bits 0 DYN bits
AudioSource 0001001 3 DEF bits 3 IN bits 3 OUT bits 1 DYN bits
AudioSwitch 0001010 2 DEF bits 2 IN bits 1 OUT bits 0 DYN bits
Background 0001011 4 DEF bits 4 IN bits 4 OUT bits 2 DYN bits
Background2D 0001100 1 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
Billboard 0001101 1 DEF bits 2 IN bits 1 OUT bits 0 DYN bits
Bitmap 0001110 0 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
Box 0001111 0 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
Circle 0010000 0 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
Collision 0010001 2 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
Color 0010010 0 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
ColorInterpolator 0010011 1 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
CompositeTexture2D 0010100 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
CompositeTexture3D 0010101 3 DEF bits 4 IN bits 3 OUT bits 0 DYN bits
Conditional 0010110 0 DEF bits 2 IN bits 1 OUT bits 0 DYN bits
Cone 0010111 2 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
Coordinate 0011000 0 DEF bits 0 IN bits 0 OUT bits 0 DYN bits

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 347

Coordinate2D 0011001 0 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
CoordinateInterpolator 0011010 1 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
CoordinateInterpolator2D 0011011 1 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
Curve2D 0011100 2 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
Cylinder 0011101 3 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
CylinderSensor 0011110 3 DEF bits 3 IN bits 4 OUT bits 0 DYN bits
DirectionalLight 0011111 3 DEF bits 3 IN bits 3 OUT bits 2 DYN bits
DiscSensor 0100000 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
ElevationGrid 0100001 4 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
Expression 0100010 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
Extrusion 0100011 4 DEF bits 2 IN bits 0 OUT bits 0 DYN bits
Face 0100100 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
FaceDefMesh 0100101 2 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
FaceDefTables 0100110 2 DEF bits 1 IN bits 1 OUT bits 0 DYN bits
FaceDefTransform 0100111 3 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
FAP 0101000 7 DEF bits 7 IN bits 7 OUT bits 0 DYN bits
FDP 0101001 3 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
FIT 0101010 4 DEF bits 4 IN bits 4 OUT bits 0 DYN bits
Fog 0101011 2 DEF bits 2 IN bits 2 OUT bits 1 DYN bits
FontStyle 0101100 4 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
Form 0101101 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
Group 0101110 0 DEF bits 2 IN bits 0 OUT bits 0 DYN bits
ImageTexture 0101111 2 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
IndexedFaceSet 0110000 4 DEF bits 3 IN bits 2 OUT bits 0 DYN bits
IndexedFaceSet2D 0110001 3 DEF bits 3 IN bits 2 OUT bits 0 DYN bits
IndexedLineSet 0110010 3 DEF bits 2 IN bits 1 OUT bits 0 DYN bits
IndexedLineSet2D 0110011 3 DEF bits 2 IN bits 1 OUT bits 0 DYN bits
Inline 0110100 0 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
LOD 0110101 2 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
Layer2D 0110110 2 DEF bits 3 IN bits 2 OUT bits 0 DYN bits
Layer3D 0110111 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
Layout 0111000 4 DEF bits 4 IN bits 4 OUT bits 2 DYN bits
LineProperties 0111001 2 DEF bits 2 IN bits 2 OUT bits 1 DYN bits
ListeningPoint 0111010 2 DEF bits 2 IN bits 3 OUT bits 1 DYN bits
Material 0111011 3 DEF bits 3 IN bits 3 OUT bits 3 DYN bits
Material2D 0111100 2 DEF bits 2 IN bits 2 OUT bits 1 DYN bits
MovieTexture 0111101 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
NavigationInfo 0111110 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
Normal 0111111 0 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
NormalInterpolator 1000000 1 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
OrderedGroup 1000001 1 DEF bits 2 IN bits 1 OUT bits 0 DYN bits
OrientationInterpolator 1000010 1 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
PixelTexture 1000011 2 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
PlaneSensor 1000100 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
PlaneSensor2D 1000101 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
PointLight 1000110 3 DEF bits 3 IN bits 3 OUT bits 3 DYN bits
PointSet 1000111 1 DEF bits 1 IN bits 1 OUT bits 0 DYN bits
PointSet2D 1001000 1 DEF bits 1 IN bits 1 OUT bits 0 DYN bits
PositionInterpolator 1001001 1 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
PositionInterpolator2D 1001010 1 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
ProximitySensor2D 1001011 2 DEF bits 2 IN bits 3 OUT bits 0 DYN bits
ProximitySensor 1001100 2 DEF bits 2 IN bits 3 OUT bits 0 DYN bits
QuantizationParameter 1001101 6 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
Rectangle 1001110 0 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
ScalarInterpolator 1001111 1 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
Script 1010000 2 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
Shape 1010001 1 DEF bits 1 IN bits 1 OUT bits 0 DYN bits
Sound 1010010 4 DEF bits 4 IN bits 4 OUT bits 3 DYN bits
Sound2D 1010011 2 DEF bits 2 IN bits 2 OUT bits 1 DYN bits
Sphere 1010100 0 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
SphereSensor 1010101 2 DEF bits 2 IN bits 3 OUT bits 0 DYN bits
SpotLight 1010110 4 DEF bits 4 IN bits 4 OUT bits 4 DYN bits

ISO/IEC 14496-1:2001(E)

348 © ISO/IEC 2001 – All rights reserved

Switch 1010111 1 DEF bits 1 IN bits 1 OUT bits 0 DYN bits
TermCap 1011000 0 DEF bits 1 IN bits 1 OUT bits 0 DYN bits
Text 1011001 2 DEF bits 2 IN bits 2 OUT bits 1 DYN bits
TextureCoordinate 1011010 0 DEF bits 0 IN bits 0 OUT bits 0 DYN bits
TextureTransform 1011011 2 DEF bits 2 IN bits 2 OUT bits 2 DYN bits
TimeSensor 1011100 3 DEF bits 3 IN bits 4 OUT bits 0 DYN bits
TouchSensor 1011101 0 DEF bits 0 IN bits 3 OUT bits 0 DYN bits
Transform 1011110 3 DEF bits 3 IN bits 3 OUT bits 3 DYN bits
Transform2D 1011111 3 DEF bits 3 IN bits 3 OUT bits 3 DYN bits
Valuator 1100000 4 DEF bits 5 IN bits 5 OUT bits 0 DYN bits
Viewpoint 1100001 3 DEF bits 3 IN bits 3 OUT bits 2 DYN bits
VisibilitySensor 1100010 2 DEF bits 2 IN bits 3 OUT bits 1 DYN bits
Viseme 1100011 2 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
WorldInfo 1100100 1 DEF bits 0 IN bits 0 OUT bits 0 DYN bits

H.3 Node Tables for Extended Nodes

Node Name Node Data Type list nodeType/NDT
Field name Field type DEF id IN id OUT id DYN id [min, max] Quantizer id Animation method

H.3.1 AcousticMaterial

AcousticMaterial SFMaterialNode
SFWorldNode

10
0010

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
ambientIntensity SFFloat 0000 000 000 000 [0, 1] 4 8
diffuseColor SFColor 0001 001 001 001 [0, 1] 4 8
emissiveColor SFColor 0010 010 010 010 [0, 1] 4 8
shininess SFFloat 0011 011 011 011 [0, 1] 4 8
specularColor SFColor 0100 100 100 100 [0, 1] 4 8
transparency SFFloat 0101 101 101 101 [0, 1] 4 8
reffunc MFFloat 0110 [-I, +I] 0
transfunc MFFloat 0111 [-I, +I] 0
refFrequency MFFloat 1000 [0, +I] 0
transFrequency MFFloat 1001 [0, +I] 0

H.3.2 AcousticScene

AcousticScene SFWorldNode
SF3DNode

0011
010

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
center SFVec3f 000 [-I, +I] 1
Size SFVec3f 001 [-I, +I] 11
reverbTime MFTime 010 [0, +I] 0
reverbFreq MFFloat 011 [0, +I] 0
reverbLevel SFFloat 100 0 0 0 [0, +I] 0 7
reverbDelay SFTime 101 1 1 1 [0, +I] 0 0

H.3.3 ApplicationWindow

ApplicationWindow SFWorldNode
SF2DNode

0100
10

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
isActive SFBool 000 000 000
startTime SFTime 001 001 001 [-I, +I] 0
stopTime SFTime 010 010 010 [-I, +I] 0
description SFString 011 011 011
parameter MFString 100 100 100
url MFURL 101 101 101
size SFVec2f 110 110 110 [-I, +I] 12

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 349

H.3.4 BAP

BAP SFWorldNode
SFBAPNode

0101
10

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
sacroiliac_tilt SFInt32 000000000 000000000 000000000 [-I, +I] 0
sacroiliac_torsion SFInt32 000000001 000000001 000000001 [-I, +I] 0
sacroiliac_roll SFInt32 000000010 000000010 000000010 [-I, +I] 0
l_hip_flexion SFInt32 000000011 000000011 000000011 [-I, +I] 0
r_hip_flexion SFInt32 000000100 000000100 000000100 [-I, +I] 0
l_hip_abduct SFInt32 000000101 000000101 000000101 [-I, +I] 0
r_hip_abduct SFInt32 000000110 000000110 000000110 [-I, +I] 0
l_hip_twisting SFInt32 000000111 000000111 000000111 [-I, +I] 0
r_hip_twisting SFInt32 000001000 000001000 000001000 [-I, +I] 0
l_knee_flexion SFInt32 000001001 000001001 000001001 [-I, +I] 0
r_knee_flexion SFInt32 000001010 000001010 000001010 [-I, +I] 0
l_knee_twisting SFInt32 000001011 000001011 000001011 [-I, +I] 0
r_knee_twisting SFInt32 000001100 000001100 000001100 [-I, +I] 0
l_ankle_flexion SFInt32 000001101 000001101 000001101 [-I, +I] 0
r_ankle_flexion SFInt32 000001110 000001110 000001110 [-I, +I] 0
l_ankle_twisting SFInt32 000001111 000001111 000001111 [-I, +I] 0
r_ankle_twisting SFInt32 000010000 000010000 000010000 [-I, +I] 0
l_subtalar_flexion SFInt32 000010001 000010001 000010001 [-I, +I] 0
r_subtalar_flexion SFInt32 000010010 000010010 000010010 [-I, +I] 0
l_midtarsal_flexion SFInt32 000010011 000010011 000010011 [-I, +I] 0
r_midtarsal_flexion SFInt32 000010100 000010100 000010100 [-I, +I] 0
l_metatarsal_flexion SFInt32 000010101 000010101 000010101 [-I, +I] 0
r_metatarsal_flexion SFInt32 000010110 000010110 000010110 [-I, +I] 0
l_sternoclavicular_abduct SFInt32 000010111 000010111 000010111 [-I, +I] 0
r_sternoclavicular_abduct SFInt32 000011000 000011000 000011000 [-I, +I] 0
l_sternoclavicular_rotate SFInt32 000011001 000011001 000011001 [-I, +I] 0
r_sternoclavicular_rotate SFInt32 000011010 000011010 000011010 [-I, +I] 0
l_acromioclavicular_abduct SFInt32 000011011 000011011 000011011 [-I, +I] 0
r_acromioclavicular_abduct SFInt32 000011100 000011100 000011100 [-I, +I] 0
l_acromioclavicular_rotate SFInt32 000011101 000011101 000011101 [-I, +I] 0
r_acromioclavicular_rotate SFInt32 000011110 000011110 000011110 [-I, +I] 0
l_shoulder_flexion SFInt32 000011111 000011111 000011111 [-I, +I] 0
r_shoulder_flexion SFInt32 000100000 000100000 000100000 [-I, +I] 0
l_shoulder_abduct SFInt32 000100001 000100001 000100001 [-I, +I] 0
r_shoulder_abduct SFInt32 000100010 000100010 000100010 [-I, +I] 0
l_shoulder_twisting SFInt32 000100011 000100011 000100011 [-I, +I] 0
r_shoulder_twisting SFInt32 000100100 000100100 000100100 [-I, +I] 0
l_elbow_flexion SFInt32 000100101 000100101 000100101 [-I, +I] 0
r_elbow_flexion SFInt32 000100110 000100110 000100110 [-I, +I] 0
l_elbow_twisting SFInt32 000100111 000100111 000100111 [-I, +I] 0
r_elbow_twisting SFInt32 000101000 000101000 000101000 [-I, +I] 0
l_wrist_flexion SFInt32 000101001 000101001 000101001 [-I, +I] 0
r_wrist_flexion SFInt32 000101010 000101010 000101010 [-I, +I] 0
l_wrist_pivot SFInt32 000101011 000101011 000101011 [-I, +I] 0
r_wrist_pivot SFInt32 000101100 000101100 000101100 [-I, +I] 0
l_wrist_twisting SFInt32 000101101 000101101 000101101 [-I, +I] 0
r_wrist_twisting SFInt32 000101110 000101110 000101110 [-I, +I] 0
Skullbase_roll SFInt32 000101111 000101111 000101111 [-I, +I] 0
Skullbase_torsion SFInt32 000110000 000110000 000110000 [-I, +I] 0
Skullbase_tilt SFInt32 000110001 000110001 000110001 [-I, +I] 0
vc1roll SFInt32 000110010 000110010 000110010 [-I, +I] 0
vc1torsion SFInt32 000110011 000110011 000110011 [-I, +I] 0
vc1tilt SFInt32 000110100 000110100 000110100 [-I, +I] 0
vc2roll SFInt32 000110101 000110101 000110101 [-I, +I] 0
vc2torsion SFInt32 000110110 000110110 000110110 [-I, +I] 0
vc2tilt SFInt32 000110111 000110111 000110111 [-I, +I] 0
vc3roll SFInt32 000111000 000111000 000111000 [-I, +I] 0

ISO/IEC 14496-1:2001(E)

350 © ISO/IEC 2001 – All rights reserved

vc3torsion SFInt32 000111001 000111001 000111001 [-I, +I] 0
vc3tilt SFInt32 000111010 000111010 000111010 [-I, +I] 0
vc4roll SFInt32 000111011 000111011 000111011 [-I, +I] 0
vc4torsion SFInt32 000111100 000111100 000111100 [-I, +I] 0
vc4tilt SFInt32 000111101 000111101 000111101 [-I, +I] 0
vc5roll SFInt32 000111110 000111110 000111110 [-I, +I] 0
vc5torsion SFInt32 000111111 000111111 000111111 [-I, +I] 0
vc5tilt SFInt32 001000000 001000000 001000000 [-I, +I] 0
vc6roll SFInt32 001000001 001000001 001000001 [-I, +I] 0
vc6torsion SFInt32 001000010 001000010 001000010 [-I, +I] 0
vc6tilt SFInt32 001000011 001000011 001000011 [-I, +I] 0
vc7roll SFInt32 001000100 001000100 001000100 [-I, +I] 0
vc7torsion SFInt32 001000101 001000101 001000101 [-I, +I] 0
vc7tilt SFInt32 001000110 001000110 001000110 [-I, +I] 0
vt1roll SFInt32 001000111 001000111 001000111 [-I, +I] 0
vt1torsion SFInt32 001001000 001001000 001001000 [-I, +I] 0
vt1tilt SFInt32 001001001 001001001 001001001 [-I, +I] 0
vt2roll SFInt32 001001010 001001010 001001010 [-I, +I] 0
vt2torsion SFInt32 001001011 001001011 001001011 [-I, +I] 0
vt2tilt SFInt32 001001100 001001100 001001100 [-I, +I] 0
vt3roll SFInt32 001001101 001001101 001001101 [-I, +I] 0
vt3torsion SFInt32 001001110 001001110 001001110 [-I, +I] 0
vt3tilt SFInt32 001001111 001001111 001001111 [-I, +I] 0
vt4roll SFInt32 001010000 001010000 001010000 [-I, +I] 0
vt4torsion SFInt32 001010001 001010001 001010001 [-I, +I] 0
vt4tilt SFInt32 001010010 001010010 001010010 [-I, +I] 0
vt5roll SFInt32 001010011 001010011 001010011 [-I, +I] 0
vt5torsion SFInt32 001010100 001010100 001010100 [-I, +I] 0
vt5tilt SFInt32 001010101 001010101 001010101 [-I, +I] 0
vt6roll SFInt32 001010110 001010110 001010110 [-I, +I] 0
vt6torsion SFInt32 001010111 001010111 001010111 [-I, +I] 0
vt6tilt SFInt32 001011000 001011000 001011000 [-I, +I] 0
vt7roll SFInt32 001011001 001011001 001011001 [-I, +I] 0
vt7torsion SFInt32 001011010 001011010 001011010 [-I, +I] 0
vt7tilt SFInt32 001011011 001011011 001011011 [-I, +I] 0
vt8roll SFInt32 001011100 001011100 001011100 [-I, +I] 0
vt8torsion SFInt32 001011101 001011101 001011101 [-I, +I] 0
vt8tilt SFInt32 001011110 001011110 001011110 [-I, +I] 0
vt9roll SFInt32 001011111 001011111 001011111 [-I, +I] 0
vt9torsion SFInt32 001100000 001100000 001100000 [-I, +I] 0
vt9tilt SFInt32 001100001 001100001 001100001 [-I, +I] 0
vt10roll SFInt32 001100010 001100010 001100010 [-I, +I] 0
vt10torsion SFInt32 001100011 001100011 001100011 [-I, +I] 0
vt10tilt SFInt32 001100100 001100100 001100100 [-I, +I] 0
vt11roll SFInt32 001100101 001100101 001100101 [-I, +I] 0
vt11torsion SFInt32 001100110 001100110 001100110 [-I, +I] 0
vt11tilt SFInt32 001100111 001100111 001100111 [-I, +I] 0
vt12roll SFInt32 001101000 001101000 001101000 [-I, +I] 0
vt12torsion SFInt32 001101001 001101001 001101001 [-I, +I] 0
vt12tilt SFInt32 001101010 001101010 001101010 [-I, +I] 0
vl1roll SFInt32 001101011 001101011 001101011 [-I, +I] 0
vl1torsion SFInt32 001101100 001101100 001101100 [-I, +I] 0
vl1tilt SFInt32 001101101 001101101 001101101 [-I, +I] 0
vl2roll SFInt32 001101110 001101110 001101110 [-I, +I] 0
vl2torsion SFInt32 001101111 001101111 001101111 [-I, +I] 0
vl2tilt SFInt32 001110000 001110000 001110000 [-I, +I] 0
vl3roll SFInt32 001110001 001110001 001110001 [-I, +I] 0
vl3torsion SFInt32 001110010 001110010 001110010 [-I, +I] 0
vl3tilt SFInt32 001110011 001110011 001110011 [-I, +I] 0
vl4roll SFInt32 001110100 001110100 001110100 [-I, +I] 0
vl4torsion SFInt32 001110101 001110101 001110101 [-I, +I] 0
vl4tilt SFInt32 001110110 001110110 001110110 [-I, +I] 0

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 351

vl5roll SFInt32 001110111 001110111 001110111 [-I, +I] 0
vl5torsion SFInt32 001111000 001111000 001111000 [-I, +I] 0
vl5tilt SFInt32 001111001 001111001 001111001 [-I, +I] 0
l_pinky0_flexion SFInt32 001111010 001111010 001111010 [-I, +I] 0
r_pinky0_flexion SFInt32 001111011 001111011 001111011 [-I, +I] 0
l_pinky1_flexion SFInt32 001111100 001111100 001111100 [-I, +I] 0
r_pinky1_flexion SFInt32 001111101 001111101 001111101 [-I, +I] 0
l_pinky1_pivot SFInt32 001111110 001111110 001111110 [-I, +I] 0
r_pinky1_pivot SFInt32 001111111 001111111 001111111 [-I, +I] 0
l_pinky1_twisting SFInt32 010000000 010000000 010000000 [-I, +I] 0
r_pinky1_twisting SFInt32 010000001 010000001 010000001 [-I, +I] 0
l_pinky2_flexion SFInt32 010000010 010000010 010000010 [-I, +I] 0
r_pinky2_flexion SFInt32 010000011 010000011 010000011 [-I, +I] 0
l_pinky3_flexion SFInt32 010000100 010000100 010000100 [-I, +I] 0
r_pinky3_flexion SFInt32 010000101 010000101 010000101 [-I, +I] 0
l_ring0_flexion SFInt32 010000110 010000110 010000110 [-I, +I] 0
r_ring0_flexion SFInt32 010000111 010000111 010000111 [-I, +I] 0
l_ring1_flexion SFInt32 010001000 010001000 010001000 [-I, +I] 0
r_ring1_flexion SFInt32 010001001 010001001 010001001 [-I, +I] 0
l_ring1_pivot SFInt32 010001010 010001010 010001010 [-I, +I] 0
r_ring1_pivot SFInt32 010001011 010001011 010001011 [-I, +I] 0
l_ring1_twisting SFInt32 010001100 010001100 010001100 [-I, +I] 0
r_ring1_twisting SFInt32 010001101 010001101 010001101 [-I, +I] 0
l_ring2_flexion SFInt32 010001110 010001110 010001110 [-I, +I] 0
r_ring2_flexion SFInt32 010001111 010001111 010001111 [-I, +I] 0
l_ring3_flexion SFInt32 010010000 010010000 010010000 [-I, +I] 0
r_ring3_flexion SFInt32 010010001 010010001 010010001 [-I, +I] 0
l_middle0_flexion SFInt32 010010010 010010010 010010010 [-I, +I] 0
r_middle0_flexion SFInt32 010010011 010010011 010010011 [-I, +I] 0
l_middle1_flexion SFInt32 010010100 010010100 010010100 [-I, +I] 0
r_middle1_flexion SFInt32 010010101 010010101 010010101 [-I, +I] 0
l_middle1_pivot SFInt32 010010110 010010110 010010110 [-I, +I] 0
r_middle1_pivot SFInt32 010010111 010010111 010010111 [-I, +I] 0
l_middle1_twisting SFInt32 010011000 010011000 010011000 [-I, +I] 0
r_middle1_twisting SFInt32 010011001 010011001 010011001 [-I, +I] 0
l_middle2_flexion SFInt32 010011010 010011010 010011010 [-I, +I] 0
r_middle2_flexion SFInt32 010011011 010011011 010011011 [-I, +I] 0
l_middle3_flexion SFInt32 010011100 010011100 010011100 [-I, +I] 0
r_middle3_flexion SFInt32 010011101 010011101 010011101 [-I, +I] 0
l_index0_flexion SFInt32 010011110 010011110 010011110 [-I, +I] 0
r_index0_flexion SFInt32 010011111 010011111 010011111 [-I, +I] 0
l_index1_flexion SFInt32 010100000 010100000 010100000 [-I, +I] 0
r_index1_flexion SFInt32 010100001 010100001 010100001 [-I, +I] 0
l_index1_pivot SFInt32 010100010 010100010 010100010 [-I, +I] 0
r_index1_pivot SFInt32 010100011 010100011 010100011 [-I, +I] 0
l_index1_twisting SFInt32 010100100 010100100 010100100 [-I, +I] 0
r_index1_twisting SFInt32 010100101 010100101 010100101 [-I, +I] 0
l_index2_flexion SFInt32 010100110 010100110 010100110 [-I, +I] 0
r_index2_flexion SFInt32 010100111 010100111 010100111 [-I, +I] 0
l_index3_flexion SFInt32 010101000 010101000 010101000 [-I, +I] 0
r_index3_flexion SFInt32 010101001 010101001 010101001 [-I, +I] 0
l_thumb1_flexion SFInt32 010101010 010101010 010101010 [-I, +I] 0
r_thumb1_flexion SFInt32 010101011 010101011 010101011 [-I, +I] 0
l_thumb1_pivot SFInt32 010101100 010101100 010101100 [-I, +I] 0
r_thumb1_pivot SFInt32 010101101 010101101 010101101 [-I, +I] 0
l_thumb1_twisting SFInt32 010101110 010101110 010101110 [-I, +I] 0
r_thumb1_twisting SFInt32 010101111 010101111 010101111 [-I, +I] 0
l_thumb2_flexion SFInt32 010110000 010110000 010110000 [-I, +I] 0
r_thumb2_flexion SFInt32 010110001 010110001 010110001 [-I, +I] 0
l_thumb3_flexion SFInt32 010110010 010110010 010110010 [-I, +I] 0
r_thumb3_flexion SFInt32 010110011 010110011 010110011 [-I, +I] 0
humanoidRoot_tr_vertical SFInt32 010110100 010110100 010110100 [-I, +I] 0

ISO/IEC 14496-1:2001(E)

352 © ISO/IEC 2001 – All rights reserved

humanoidRoot_tr_lateral SFInt32 010110101 010110101 010110101 [-I, +I] 0
humanoidRoot_tr_frontal SFInt32 010110110 010110110 010110110 [-I, +I] 0
humanoidRoot_rt_body_turn SFInt32 010110111 010110111 010110111 [-I, +I] 0
humanoidRoot_rt_body_roll SFInt32 010111000 010111000 010111000 [-I, +I] 0
humanoidRoot_rt_body_tilt SFInt32 010111001 010111001 010111001 [-I, +I] 0
extensionBap187 SFInt32 010111010 010111010 010111010 [-I, +I] 0
extensionBap188 SFInt32 010111011 010111011 010111011 [-I, +I] 0
extensionBap189 SFInt32 010111100 010111100 010111100 [-I, +I] 0
extensionBap190 SFInt32 010111101 010111101 010111101 [-I, +I] 0
extensionBap191 SFInt32 010111110 010111110 010111110 [-I, +I] 0
extensionBap192 SFInt32 010111111 010111111 010111111 [-I, +I] 0
extensionBap193 SFInt32 011000000 011000000 011000000 [-I, +I] 0
extensionBap194 SFInt32 011000001 011000001 011000001 [-I, +I] 0
extensionBap195 SFInt32 011000010 011000010 011000010 [-I, +I] 0
extensionBap196 SFInt32 011000011 011000011 011000011 [-I, +I] 0
extensionBap197 SFInt32 011000100 011000100 011000100 [-I, +I] 0
extensionBap198 SFInt32 011000101 011000101 011000101 [-I, +I] 0
extensionBap199 SFInt32 011000110 011000110 011000110 [-I, +I] 0
extensionBap200 SFInt32 011000111 011000111 011000111 [-I, +I] 0
extensionBap201 SFInt32 011001000 011001000 011001000 [-I, +I] 0
extensionBap202 SFInt32 011001001 011001001 011001001 [-I, +I] 0
extensionBap203 SFInt32 011001010 011001010 011001010 [-I, +I] 0
extensionBap204 SFInt32 011001011 011001011 011001011 [-I, +I] 0
extensionBap205 SFInt32 011001100 011001100 011001100 [-I, +I] 0
extensionBap206 SFInt32 011001101 011001101 011001101 [-I, +I] 0
extensionBap207 SFInt32 011001110 011001110 011001110 [-I, +I] 0
extensionBap208 SFInt32 011001111 011001111 011001111 [-I, +I] 0
extensionBap209 SFInt32 011010000 011010000 011010000 [-I, +I] 0
extensionBap210 SFInt32 011010001 011010001 011010001 [-I, +I] 0
extensionBap211 SFInt32 011010010 011010010 011010010 [-I, +I] 0
extensionBap212 SFInt32 011010011 011010011 011010011 [-I, +I] 0
extensionBap213 SFInt32 011010100 011010100 011010100 [-I, +I] 0
extensionBap214 SFInt32 011010101 011010101 011010101 [-I, +I] 0
extensionBap215 SFInt32 011010110 011010110 011010110 [-I, +I] 0
extensionBap216 SFInt32 011010111 011010111 011010111 [-I, +I] 0
extensionBap217 SFInt32 011011000 011011000 011011000 [-I, +I] 0
extensionBap218 SFInt32 011011001 011011001 011011001 [-I, +I] 0
extensionBap219 SFInt32 011011010 011011010 011011010 [-I, +I] 0
extensionBap220 SFInt32 011011011 011011011 011011011 [-I, +I] 0
extensionBap221 SFInt32 011011100 011011100 011011100 [-I, +I] 0
extensionBap222 SFInt32 011011101 011011101 011011101 [-I, +I] 0
extensionBap223 SFInt32 011011110 011011110 011011110 [-I, +I] 0
extensionBap224 SFInt32 011011111 011011111 011011111 [-I, +I] 0
extensionBap225 SFInt32 011100000 011100000 011100000 [-I, +I] 0
extensionBap226 SFInt32 011100001 011100001 011100001 [-I, +I] 0
extensionBap227 SFInt32 011100010 011100010 011100010 [-I, +I] 0
extensionBap228 SFInt32 011100011 011100011 011100011 [-I, +I] 0
extensionBap229 SFInt32 011100100 011100100 011100100 [-I, +I] 0
extensionBap230 SFInt32 011100101 011100101 011100101 [-I, +I] 0
extensionBap231 SFInt32 011100110 011100110 011100110 [-I, +I] 0
extensionBap232 SFInt32 011100111 011100111 011100111 [-I, +I] 0
extensionBap233 SFInt32 011101000 011101000 011101000 [-I, +I] 0
extensionBap234 SFInt32 011101001 011101001 011101001 [-I, +I] 0
extensionBap235 SFInt32 011101010 011101010 011101010 [-I, +I] 0
extensionBap236 SFInt32 011101011 011101011 011101011 [-I, +I] 0
extensionBap237 SFInt32 011101100 011101100 011101100 [-I, +I] 0
extensionBap238 SFInt32 011101101 011101101 011101101 [-I, +I] 0
extensionBap239 SFInt32 011101110 011101110 011101110 [-I, +I] 0
extensionBap240 SFInt32 011101111 011101111 011101111 [-I, +I] 0
extensionBap241 SFInt32 011110000 011110000 011110000 [-I, +I] 0
extensionBap242 SFInt32 011110001 011110001 011110001 [-I, +I] 0
extensionBap243 SFInt32 011110010 011110010 011110010 [-I, +I] 0

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 353

extensionBap244 SFInt32 011110011 011110011 011110011 [-I, +I] 0
extensionBap245 SFInt32 011110100 011110100 011110100 [-I, +I] 0
extensionBap246 SFInt32 011110101 011110101 011110101 [-I, +I] 0
extensionBap247 SFInt32 011110110 011110110 011110110 [-I, +I] 0
extensionBap248 SFInt32 011110111 011110111 011110111 [-I, +I] 0
extensionBap249 SFInt32 011111000 011111000 011111000 [-I, +I] 0
extensionBap250 SFInt32 011111001 011111001 011111001 [-I, +I] 0
extensionBap251 SFInt32 011111010 011111010 011111010 [-I, +I] 0
extensionBap252 SFInt32 011111011 011111011 011111011 [-I, +I] 0
extensionBap253 SFInt32 011111100 011111100 011111100 [-I, +I] 0
extensionBap254 SFInt32 011111101 011111101 011111101 [-I, +I] 0
extensionBap255 SFInt32 011111110 011111110 011111110 [-I, +I] 0
extensionBap256 SFInt32 011111111 011111111 011111111 [-I, +I] 0
extensionBap257 SFInt32 100000000 100000000 100000000 [-I, +I] 0
extensionBap258 SFInt32 100000001 100000001 100000001 [-I, +I] 0
extensionBap259 SFInt32 100000010 100000010 100000010 [-I, +I] 0
extensionBap260 SFInt32 100000011 100000011 100000011 [-I, +I] 0
extensionBap261 SFInt32 100000100 100000100 100000100 [-I, +I] 0
extensionBap262 SFInt32 100000101 100000101 100000101 [-I, +I] 0
extensionBap263 SFInt32 100000110 100000110 100000110 [-I, +I] 0
extensionBap264 SFInt32 100000111 100000111 100000111 [-I, +I] 0
extensionBap265 SFInt32 100001000 100001000 100001000 [-I, +I] 0
extensionBap266 SFInt32 100001001 100001001 100001001 [-I, +I] 0
extensionBap267 SFInt32 100001010 100001010 100001010 [-I, +I] 0
extensionBap268 SFInt32 100001011 100001011 100001011 [-I, +I] 0
extensionBap269 SFInt32 100001100 100001100 100001100 [-I, +I] 0
extensionBap270 SFInt32 100001101 100001101 100001101 [-I, +I] 0
extensionBap271 SFInt32 100001110 100001110 100001110 [-I, +I] 0
extensionBap272 SFInt32 100001111 100001111 100001111 [-I, +I] 0
extensionBap273 SFInt32 100010000 100010000 100010000 [-I, +I] 0
extensionBap274 SFInt32 100010001 100010001 100010001 [-I, +I] 0
extensionBap275 SFInt32 100010010 100010010 100010010 [-I, +I] 0
extensionBap276 SFInt32 100010011 100010011 100010011 [-I, +I] 0
extensionBap277 SFInt32 100010100 100010100 100010100 [-I, +I] 0
extensionBap278 SFInt32 100010101 100010101 100010101 [-I, +I] 0
extensionBap279 SFInt32 100010110 100010110 100010110 [-I, +I] 0
extensionBap280 SFInt32 100010111 100010111 100010111 [-I, +I] 0
extensionBap281 SFInt32 100011000 100011000 100011000 [-I, +I] 0
extensionBap282 SFInt32 100011001 100011001 100011001 [-I, +I] 0
extensionBap283 SFInt32 100011010 100011010 100011010 [-I, +I] 0
extensionBap284 SFInt32 100011011 100011011 100011011 [-I, +I] 0
extensionBap285 SFInt32 100011100 100011100 100011100 [-I, +I] 0
extensionBap286 SFInt32 100011101 100011101 100011101 [-I, +I] 0
extensionBap287 SFInt32 100011110 100011110 100011110 [-I, +I] 0
extensionBap288 SFInt32 100011111 100011111 100011111 [-I, +I] 0
extensionBap289 SFInt32 100100000 100100000 100100000 [-I, +I] 0
extensionBap290 SFInt32 100100001 100100001 100100001 [-I, +I] 0
extensionBap291 SFInt32 100100010 100100010 100100010 [-I, +I] 0
extensionBap292 SFInt32 100100011 100100011 100100011 [-I, +I] 0
extensionBap293 SFInt32 100100100 100100100 100100100 [-I, +I] 0
extensionBap294 SFInt32 100100101 100100101 100100101 [-I, +I] 0
extensionBap295 SFInt32 100100110 100100110 100100110 [-I, +I] 0
extensionBap296 SFInt32 100100111 100100111 100100111 [-I, +I] 0

H.3.5 BDP

BDP SFWorldNode
SFBDPNode

0110
10

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
bodyDefTables MFBodyDefTableNode 0 0 0
bodySceneGraph MF3DNode 1 1 1

ISO/IEC 14496-1:2001(E)

354 © ISO/IEC 2001 – All rights reserved

H.3.6 Body

Body
SFWorldNode
SF3DNode
SF2DNode

0111
011
11

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
bdp SFBDPNode 00 00 00
bap SFBAPNode 01 01 01
renderedBody MF3DNode 10 10 10

H.3.7 BodyDefTable

BodyDefTable SFWorldNode
SFBodyDefTableNode

1000
10

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
bodySceneGraphNodeName SFString 000 000 000
bapIDs MFInt32 001 001 001 [1, 296] 13,9
vertexIds MFInt32 010 010 010 [0, +I] 0
bapCombinations MFInt32 011 011 011 [-I, +I] 0
displacements MFVec3f 100 100 100
numInterpolateKeys SFInt32 101 101 101 [2, +I] 0

H.3.8 BodySegmentConnectionHint

BodySegmentConnectionHint SFWorldNode
SFBodySegmentConnectionHintNode

1001
10

Field name Field
type DEF id IN id OUT id DYN id [m, M] Q A

firstSegmentNodeName SFString 00 00 00
secondSegmentNodeName SFString 01 01 01
firstVertexIdList MFInt32 10 10 10 [0, +I] 0
secondVertexIdList MFInt32 11 11 11 [0, +I]

H.3.9 DirectiveSound

DirectiveSound SFWorldNode
SF3DNode

1010
100

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
direction SFVec3f 0000 000 000 00 [-I, +I] 9 9
intensity SFFloat 0001 001 001 01 [0, +I] 0 7
location SFVec3f 0010 010 010 10 [-I, +I] 1 1
source SFAudioNode 0011 011 011
perceptualParameters SFPerceptualParameterNode 0100 100 100
roomEffect SFBool 0101 101 101
spatialize SFBool 0110 110 110
directivity MFFloat 0111 [-I, +I] 0
angles MFFloat 1000 [0, 3.14159265] 6
Frequency MFFloat 1001 [0, +I] 0
speedOfSound SFFloat 1010 [0, +I] 1
distance SFFloat 1011 [0, +I] 0
UseAirabs SFBool 1100

H.3.10 Hierarchical3DMesh

Hierarchical3DMesh SFWorldNode
SF3DNode

1011
101

Field name Field
type DEF id IN id OUT id DYN id [m, M] Q A

triangleBudget SFInt32 0 [-1, +I] 0
level SFFloat 0 1 0 [-1, +I] 0
url MFURL 1
DoneLoading SFBool 1

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 355

H.3.11 MaterialKey

MaterialKey SFWorldNode
SFMaterialNode

1100
11

Field name Field
type DEF id IN id OUT id DYN id [m, M] Q A

isKeyed SFBool 000 000 000
isRGB SFBool 001 001 001
keyColor SFColor 010 010 010 00 [0, 1] 4 4
LowThreshold SFFloat 011 011 011 01 [0, 1] 4 8
highThreshold SFFloat 100 100 100 10 [0, 1] 4 8
transparency SFFloat 101 101 101 11 [0, 1] 4 8

H.3.12 PerceptualParameters

PerceptualParameters SFWorldNode
SFPerceptualParameterNode

1101
10

Field name Field
type DEF id IN id OUT id DYN id [m, M] Q A

sourcePresence SFFloat 00000 00000 00000 00000 [-I, +I] 0 7
sourceWarmth SFFloat 00001 00001 00001 00001 [-I, +I] 0 7
sourceBrilliance SFFloat 00010 00010 00010 00010 [-I, +I] 0 7
roomPresence SFFloat 00011 00011 00011 00011 [-I, +I] 0 7
runningReverberance SFFloat 00100 00100 00100 00100 [-I, +I] 0 7
envelopment SFFloat 00101 00101 00101 00101 [-I, +I] 0 7
lateReverberance SFFloat 00110 00110 00110 00110 [-I, +I] 0 7
heavyness SFFloat 00111 00111 00111 00111 [-I, +I] 0 7
liveness SFFloat 01000 01000 01000 01000 [-I, +I] 0 7
omniDirectivity MFFloat 01001 01001 01001 01001 [-I, +I] 0 7
directFilterGains MFFloat 01010 01010 01010 01010 [-I, +I] 0 7
inputFilterGains MFFloat 01011 01011 01011 01011 [-I, +I] 0 7
refDistance SFFloat 01100 01100 01100 01100 [-I, +I] 0 7
freqLow SFFloat 01101 01101 01101 01101 [-I, +I] 0 7
freqHigh SFFloat 01110 01110 01110 01110 [-I, +I] 0 7
timeLimit1 SFTime 01111 01111 01111 01111 [-I, +I] 0 0
timeLimit2 SFTime 10000 10000 10000 10000 [-I, +I] 0 0
timeLimit3 SFTime 10001 10001 10001 10001 [-I, +I] 0 0
modalDensity SFTime 10010 10010 10010 10010 [-I, +I] 0 0

H.4 Node Definition Type Tables for extended node types

Node Definition Type Number of nodes
Node name nodeType DEF IN OUT DYN

H.4.1 SF2DNode

SF2DNode 2 Nodes
reserved 00
PROTO 01
ApplicationWindow 10 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
Body 11 2 DEF bits 2 IN bits 2 OUT bits N bits

H.4.2 SF3DNode

SF3DNode 4 Nodes
reserved 000
PROTO 001
AcousticScene 010 3 DEF bits 1 IN bits 1 OUT bits 1 DYN bits
Body 011 2 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
DirectiveSound 100 4 DEF bits 3 IN bits 3 OUT bits 2 DYN bits
Hierarchical3DMesh 101 1 DEF bits 1 IN bits 1 OUT bits bits

ISO/IEC 14496-1:2001(E)

356 © ISO/IEC 2001 – All rights reserved

H.4.3 SFBAPNode

SFBAPNode 1 Node
reserved 00
PROTO 01
BAP 10 9 DEF bits 9 IN bits 9 OUT bits bits

H.4.4 SFBDPNode

SFBDPNode 1 Node
reserved 00
PROTO 01
BDP 10 1 DEF bits 1 IN bits 1 OUT bits 0 DYN bits

H.4.5 SFBodyDefTableNode

SFBodyDefTableNode 1 Node
reserved 00
PROTO 01
BodyDefTable 10 3 DEF bits 3 IN bits 3 OUT bits N bits

H.4.6 SFBodySegmentConnectionHintNode

SFBodySegmentConnectionHintNode 1 Node
reserved 00
PROTO 01
BodySegmentConnectionHint 10 2 DEF bits 2 IN bits 2 OUT bits bits

H.4.7 SFMaterialNode

SFMaterialNode 2 Nodes
reserved 00
PROTO 01
AcousticMaterial 10 4 DEF bits 3 IN bits 3 OUT bits 3 DYN bits
MaterialKey 11 3 DEF bits 3 IN bits 3 OUT bits bits

H.4.8 SFPerceptualParameterNode

SFPerceptualParameterNode 1 Node
reserved 00
PROTO 01
PerceptualParameters 10 5 DEF bits 5 IN bits 5 OUT bits bits

H.4.9 SFWorldNode

SFWorldNode 12 Nodes
reserved 0000
PROTO 0001
AcousticMaterial 0010 4 DEF bits 3 IN bits 3 OUT bits 3 DYN bits
AcousticScene 0011 3 DEF bits 1 IN bits 1 OUT bits 1 DYN bits
ApplicationWindow 0100 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
BAP 0101 9 DEF bits 9 IN bits 9 OUT bits 0 DYN bits
BDP 0110 1 DEF bits 1 IN bits 1 OUT bits 0 DYN bits
Body 0111 2 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
BodyDefTable 1000 3 DEF bits 3 IN bits 3 OUT bits 0 DYN bits
BodySegmentConnectionHint 1001 2 DEF bits 2 IN bits 2 OUT bits 0 DYN bits
DirectiveSound 1010 4 DEF bits 3 IN bits 3 OUT bits 2 DYN bits
Hierarchical3DMesh 1011 1 DEF bits 1 IN bits 1 OUT bits 0 DYN bits
MaterialKey 1100 3 DEF bits 3 IN bits 3 OUT bits 2 DYN bits
PerceptualParameters 1101 5 DEF bits 5 IN bits 5 OUT bits 5 DYN bits

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 357

Annex I
(informative)

MPEG-4 Audio TTS application with Facial Animation

To clarify the basic architecture and operations of an MPEG-4 terminal when the MPEG-4 Audio Text-to-Speech
Decoder is used with Facial Animation, application specific interpretations of the bitstream syntax and semantics of
MPEG-4 Systems and MPEG-4 Audio are addressed here.

As this application has two different outputs including synthesized speech and animated face decoders, the TTS
synthesizer and the face decoder should be incorporated. In addition to these decoders, a special component
"Phoneme/bookmark-to-FAP converter" is used to animate the face synchronously with synthesized phonemes. As
the TTS stream drives the face decoder, the Phoneme/bookmark-to-FAP converter generates FAPs with
appropriate timing information. The speech synthesizer feeds phonemes and their duration to the
Phoneme/bookmark-to-FAP converter. The MPEG-4 terminal is configured to associate a Sound node and a
Face node through the TTSsource field of the Face node which may contain the AudioSource node of the
TTS.

If the MPEG-4 terminal receives a Face node with a non-NULL TTSsource field, it connects the Face node to
the AudioSource node as defined in this TTSsource field. The AudioSource node contains the MPEG-4
Audio Text-to-Speech. The MPEG-4 Audio Text-to-Speech Decoder communicates with the Face node using the
ttsFAPInterface of the Phoneme/bookmark-to-FAP converter.

ISO/IEC 14496-1:2001(E)

358 © ISO/IEC 2001 – All rights reserved

Annex J
(informative)

Graphical representation of object descriptor and sync layer syntax

J.1 Length encoding of descriptors and commands

« Length field » : from one byte, up to four bytes

length

71

1 length

71

1 length

71

1 length

71

0length

71

0 --------------

J.2 Object Descriptor Stream and OD commands

8/16/24/32

Object
Descriptor

ID

ES_D [1..30]

« Length
field »

10

OD [1...255]

ES_DescriptorUpdate

ObjectDescriptorUpdate

TAG=
0x03

TAG=
0x01

8

8

ObjectDescriptorRemove

ES_DescriptorRemove

ObjectDescriptor
ID[(« Lengthfield »*8)/10]

TAG=
0x02

Object
Descriptor

ID

ES_ID [1..30]TAG=
0x04

Reserved=1111.11

108 6 n*16

8

ObjectDescriptor
Update

... ...

IPMP_Descriptor
Update

ES_Descriptor
Update

... ...

ObjectDescriptor
Remove

IPMP_Descriptor
Remove

...

ES_Descriptor
Remove

ObjectDescriptor
Update

...

« Length
field »

« Length
field »

« Length
field »

IPMP_DescriptorUpdate TAG=
0x05

8

« Length
field »

IPMP_Descriptor [1..255]

IPMP_DescriptorRemove TAG=
0x06

8

« Length
field »

IPMP_DescriptorID [1..255]

Object Descriptor Stream

8/16/24/32

8/16/24/32

8/16/24/32

8/16/24/32

8/16/24/32

n*8

6

Reserved=1111.11

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 359

J.3 IPMP stream

URLString IPMP_dataIPMPS
_TypeIPMP message

16

« Length
field »

8/16/24/32

or

J.4 OCI stream

OCI_Descr[1...255]OCI_Events

15

« Length
field »

1

absolute
TimeFlag

event
ID

starting
Time

duration

32 328/16/24/32

J.5 Object descriptor and its components

Object
Descriptor

ID

URL_
Flag

Reserved

=1111.1

10 51

URL_Flag == 1

Optional
Fields

TAG=

0x1

ObjectDescriptor

URL_Flag == 0

8

ociDescr
[0...255]

esDescr
[1...30]

extDescr
[0...255]

length
field

URLstringURL
length

[0...255]
ipmpDescrPtr

8 8*URLlength

8/16/24/32

« Length
field »

8

Object
Descriptor

ID

URL_
Flag Reserved

=1111

10 1 4

8

1

extDescr
[0...255]

Include
Inline

Profiles
Flag

URL_Flag == 1

Optional

Fields

TAG=
0x2

8/16/24/32

InitialObjectDescriptor

URL String
URL
length

8*URLlength

88 8

URL_Flag == 0
graphics
Profile
Level

Indication

ESD [1...30]
ociDescr

[0...255]

audio
Profile
Level

Indication

OD
Profile
Level

Indication

scene
Profile
Level

Indication

visual
Profile
Level

Indication
[0...255]

ipmpDescrPtr

8 8

ISO/IEC 14496-1:2001(E)

360 © ISO/IEC 2001 – All rights reserved

ipIDS

[0….255]

qos
Descr
[0….1]

lang
Descr

[0….255]

ipmp
DescrPtr

[0….255]

extDescr

[0….255]

sl ipiPtr

[0….1]

ES_Descriptor ES_ID

8/16/24/32

« Length
field »

1

stream

Dependence
Flag

URL_
Flag

Res.
=1

stream
Priority

dec
Config
Descr

Config
Descr

dependsOn
_ES_ID URLstring

1 116 165 8

TAG=
0x03

8

URL
length

8*URLlength

8 6

object
Type

Indication

upStream

1

stream
Type reserved

=1
bufferSizeDB

24

TAG
=0x04

DecoderConfigDescriptor maxBitRate
avg

BitRate

dec

Specific

Info[0..1]

18 32 32

« Length
field »

8/16/24/32

ContentIdentificationDescriptor

8/16/24/32

« Length
field »

2

Compatibility
=0

contentType
Flag

1 11 3

TAG=
0x07

8 8

Content
Identifier

Flag

protected
Content

reserved
= 111

content
Type

Content
Identifier

Type

Content
Identifier

8 n*8

SupplementaryContentIdentificationDescriptor

8/16/24/32

« Length
field »

24

TAG=

0x8

8

languageCode

Suppl
Content
Identifier

Title
Length

8*TitleLength8

Suppl
Content
Identifier

Title

Suppl
Content
Identifier

Value
Length

Suppl
Content
Identifier

Value

8*ValueLength8

IPI_DescrPointer

IPI_ES_ID

8/16/24/32

« Length
field »

16

TAG=
0x09

8

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 361

IPMP_DescriptorPointer

IPMP_DescriptorID

8/16/24/32

« Length
field »

8

TAG=
0x0A

8

IPMPDescriptor

8/16/24/32

« Length
field »

8

IPMP_DescriptorID IPMPS_Type

n*8

16

TAG=
0x0B

8

Optional
Fields

IPMPS_Type == 0 URLString

IPMP_dataIPMPS_Type ==1

QoS_Descriptor

8/16/24/32

« Length
field »

8

predefined

TAG=
0x0C

8

Optional
Fields

QoS_
Qualifier

Count

QoS_
Qualifier

Tag

QoS_
Qualifier
Length

QoS_
Qualifier
Data

QoS_
Qualifier

Tag

QoS_
Qualifier
Length

QoS_
Qualifier
Data

Length*8

if predefined == 0

Length*88 8 8 8 8

RegistrationDescriptor

formatIdentifier

8/16/24/32

« Length
field »

32

TAG=
0x0D

8

additionalIdentificationInfo

n*8

ISO/IEC 14496-1:2001(E)

362 © ISO/IEC 2001 – All rights reserved

J.6 OCI Descriptors

ContentClassificationDescriptor

classificationEntity

8/16/24/32

« Length
field »

32

TAG=
0x40

8 n*8

classificationTable contentClassificationData

16

KeyWordDescriptor

languageCode

8/16/24/32

« Length
field »

24

TAG=
0x41

8

keyWord
Count

8 8

8*

keyWord
Length ---

keyWord
Length

keyWord[---]keyWord[---]

8

keyWordLength

keyWordLength / 2

If languageCode == latin

If languageCode != latin

keyWordLength

keyWordLength / 2

first keyWord last keyWord

8*

16*16*

RatingDescriptor

8/16/24/32

« Length
field »

TAG=
0x42

8 32

ratingEntity ratingCriteria ratingInfo

16 n*8

ShortTextualDescriptor

8/16/24/32

« Length
field »

24

TAG=
0x44

8

nameLength

nameLength

8

languageCode textLength

textLengthIf languageCode == latin

If languageCode != latin nameLength / 2 textLength / 2

eventName eventText

8

8* 8*

16*16*

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 363

ExpandedTextualDescriptor

8/16/24/32

« Length
field »

24

TAG=
0x45

8
itemDescriptionLength

8

languageCode

itemLengthIf languageCode == latin

If languageCode != latin itemLength / 2

item
Description

Length

8

item
Description

itemDescriptionLength / 2

item
Length

item
Text

8

first item last item

item
Count

text
Length
=255

nonItem
Text

8*

text
Length
<255

(text Length)

text Length) / 2(

8 8
8*

..

8*

16* 16* 16*

ContentCreatorNameDescriptor

8/16/24/32

« Length
field »

24

TAG=
0x46

8

languageCode

contentCreatorLength

8

content
Creator
Count

If languageCode == latin

If languageCode != latin

8*

content
Creator
Length

content
Creator
Name

8

contentCreatorLength /216*

ContentCreationDateDescriptor

8/16/24/32

« Length
field »

TAG=
0x47

8 40

contentCreationDate

LanguageDescriptor

languageCode

8/16/24/32

« Length
field »

24

TAG=
0x43

8

ISO/IEC 14496-1:2001(E)

364 © ISO/IEC 2001 – All rights reserved

OCICreatorNameDescriptor

8/16/24/32

« Length
field »

24

TAG=
0x48

8

languageCode

OCICreatorLength

8

OCI
Creator
Count

If languageCode == latin

If languageCode != latin

8*

OCI
Creator
Length

OCI
Creator
Name

8

OCICreatorLength /216*

24 8

OCICreationDateDescriptor

8/16/24/32

« Length
field »

TAG=
0x49

8 40

OCICreationDate

SmpteCameraPositionDescriptor

last
paramet
er

first
paramete
r

TAG =
0x4A

<<length
field>>

para-
meter
Count

camera
ID

para-
meter
ID

parameter
para-
meter
ID

parameter

8 8/16/24/32 8 8 8 32 8 32

last
paramet
er

first
paramete
r

TAG =
0x4A

<<length
field>>

para-
meter
Count

camera
ID

para-
meter
ID

parameter
para-
meter
ID

parameter

8 8/16/24/32 8 8 8 32 8 32

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 365

J.7 Sync layer configuration and syntax

7 Flags: useAccessUnitStart,
useRandom AccessPoint,

usePadding
! useTimeStamps,

useIdle

8

timeStamp
Resolution

OCR
Resolution

timeStamp
Length

OCR
Length

32 8 8 8 832

AU_
Length

instant
BitRate
Length

degradation
Priority
Length

4 5

AU_seq
Num

Length

Optional
Fields

timeScale

32

accessUnit
Duration

composition
Unit

Duration

16 16

7

« Length
field »

8/16/24/32

Predefined
OCR

stream
Flag

8

8 Optional

Fields

reserved

=1111.111

1 16

startDecoding
TimeStamp

startComposition
TimeStamp

timeStamp
Length

timeStamp
Length

TAG=
0x06

SLConfigDescriptor

8

OCR_ES_Id

1 duration Flag

useAccessUnitEnd
hasRandom AccessUnitOnly packetSeq

Num
Length

2

reserved

=11

5

startDecoding

SL_PDU

access
Unit
Start
Flag

1

instant
Bitrate

Flag

1

decoding
TimeStamp

composition
TimeStamp

OCR
flag

access
Unit
End
Flag

idle
Flag

padding
Flag

packet
Sequence
Number

Object
Clock

Reference

Optional
Fields

1 1 1 1

padding
Bits

Optional
Fields

3

decoding
TimeStamp

Flag

composition
TimeStamp

Flag

accessUnit
Length

instant
BitRate

Degradation
Priority

SL_Packet
Header

SL_Packet
Payload

paddingFlag == 0

from
SLConfigDescriptor

SL_Packet Header:

when non idle and
when the payload is
not only padding bytes

lengths

SL_Packet Payload:

Payloadaccording to padding flag and bits, it is either Payload padding
bits

or Padding bytesor only

lengths

random
Access
Point
Flag

1 1 1

AU_
sequence
Number

ISO/IEC 14496-1:2001(E)

366 © ISO/IEC 2001 – All rights reserved

Annex K
(informative)

Patent statements

The International Organization for Standardization and the International Electrotechnical Commission (IEC) draw
attention to the fact that it is claimed that compliance with this part of ISO/IEC 14496 may involve the use of
patents.

ISO and IEC take no position concerning the evidence, validity and scope of these patent rights.

The holders of these patent right have assured the ISO and IEC that they are willing to negotiate licences under
reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the
statements of the holders of these patents right are registered with ISO and IEC. Information may be obtained from
the companies listed below.

Attention is drawn to the possibility that some of the elements of this part of ISO/IEC 14496 may be the subject of
patent rights other than those identified in this annex. ISO and IEC shall not be held responsible for identifying any
or all such patent rights.

K.1 Patent Statements for Version 1

The table summarises the formal patent statements received and indicates the parts of the standard to which the
statement applies. (S: Systems, V: Visual, A: Audio, R: Reference Software, D: DMIF) The list includes all
organisations that have submitted informal patent statements. However, if no "X" is present, no formal patent
statement has yet been received from that organisation.

Company S V A R D

1. Alcatel x x x x x
2. AT&T
3. BBC x x x x x
4. Bosch x x x
5. British Telecommunications x x x x x
6. Canon x x x x x
7. CCETT x x x x x
8. Columbia University x x x x x
9. Creative x x x
10. CSELT x
11. DEmoGraFX x x
12. DirecTV x x x
13. Dolby x x x x x
14. EPFL x x x
15. ETRI x x x x x
16. FhG x x x x x
17. France Telecom x x x x x
18. Fujitsu Limited x x x x x
19. GC Technology Corporation x x x
20. General Instrument x x
21. Hitachi x x x x x
22. Hyundai x x x x x
23. IBM
24. Institut für Rundfunktechnik x x x x
25. InterTrust
26. JVC x x x x x

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 367

27. KDD Corporation x x
28. KPN x x x x x
29. LG Semicon
30. Lucent
31. Matsushita x x x x x
32. Microsoft x x x x x
33. MIT
34. Mitsubishi x x x x
35. Motorola x x
36. NEC Corporation x x x x x
37. NHK x x x x x
38. Nokia x x x
39. NTT x x x x x
40. OKI x x x x x
41. Philips x x x x x
42. PictureTel Corporation x x
43. Rockwell x x x x x
44. Samsung x x x
45. Sarnoff x x x x x
46. Scientific Atlanta x x x x x
47. Sharp x x x x x
48. Siemens x x x
49. Sony x x x x x
50. Telenor x x x x x
51. Teltec DCU x x
52. Texas Instruments
53. Thomson x x x
54. Toshiba x
55. Unisearch Ltd. x x
56. Vector Vision x

K.2 Patent Statements for Version 2

The table summarises the patent statements received for Version 2 and indicates the parts of the Version 2
standard to which the statement applies. A Legend to interpret the table is given below.

Legend: The presence of a name of a company in the list below indicates that a patent statement has been received from
that company

The presence of a cross indicates that the statement identifies the part of the MPEG-4 version 2 standard to
which the statement applies

No cross in a line indicates that the statement does not identify which part of the standard the statement applies

Company S V A R D

1. Apple x x

2. British Telecommunications

3. Bosch x x x x x

4. CCETT x x x x x

5. Columbia Innovation Enterprise x x x x x

6. DemoGraFX x x x x x

7. DirecTV x x x

8. Dolby x x x x x

ISO/IEC 14496-1:2001(E)

368 © ISO/IEC 2001 – All rights reserved

9. EPFL x x x

10. France Telecom x x x x x

11. Fraunhofer x x

12. Fujitsu x x

13. Hitachi x x x x x

14. Hyundai x x x x x

15. IBM x x x x x

16. Intertrust

17. JVC x x x x x

18. KPN x

19. Lucent

20. Matsushita Electric Industrial
Co., Ltd.

x x x x x

21. Microsoft x x x x x

22. Mitsubishi x x x x x

23. NEC x x x x x

24. NHK x x x x x

25. Nokia x x x x x

26. NTT x

27. NTT Mobile Communication
Networks

x

28. OKI x x x

29. Optibase x x

30. Philips

31. Samsung x x x x

32. Sarnoff x x x x x

33. Sharp x x x x x

34. Siemens x x x x x

35. Sony x x x x x

36. Sun x

37. Thomson x x x x x

38. Toshiba x

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 369

Annex L
(informative)

Elementary Stream Interface

The elementary stream interface (ESI) is a conceptual interface that specifies which data need to be exchanged
between the entity that generates an elementary stream and the sync layer. Communication between the coding
and sync layers cannot only include compressed media, but requires additional information such as time codes,
length of access units, etc.

An implementation of ISO/IEC 14496-1, however, does not have to implement the elementary stream interface. It is
possible to integrate parsing of the SL-packetized stream and media data decompression in one decoder entity.
Note that even in this case the decoder receives a sequence of packets at its input through the DMIF Application
Interface (see 10.3) rather than a data stream.

The interface to receive elementary stream data from the sync layer has a number of parameters that reflect the
side information that has been retrieved while parsing the incoming SL-packetized stream:

ESI.receiveData (ESdata, dataLength, idleFlag, objectClockReference, decodingTimeStamp,
compositionTimeStamp, accessUnitStartFlag, randomAccessFlag, accessUnitEndFlag,
accessUnitLength, degradationPriority, errorStatus)

ESdata - a number of dataLength data bytes for this elementary stream

dataLength - the length in byte of ESdata

idleFlag – if set to one it indicates that this elementary stream will not produce further data for an undetermined
period of time.

objectClockReference – contains a reading of the object time base valid for the point in time when the first byte of
ESdata enters the decoder buffer.

decodingTimeStamp - the decoding time for the access unit to which this ESdata belongs

compositionTimeStamp - the composition time for the access unit to which this ESdata belongs

accessUnitStartFlag - indicates that the first byte of ESdata is the start of an access unit

randomAccessFlag - indicates that the first byte of ESdata is the start of an access unit allowing for random access

accessUnitEndFlag - indicates that the last byte of ESdata is the end of an access unit

accessUnitLength - the length of the access unit to which this Esdata belongs in byte

degradationPriority - indicates the degradation priority for this access unit

errorStatus - indicates whether ESdata is error free, possibly erroneous or whether data has been lost preceding
the current ESdata bytes

A similar interface to send elementary stream data to the sync layer requires the following parameters that will
subsequently be encoded on the sync layer:

ESI.sendData (ESdata, dataLength, idleFlag, objectClockReference, decodingTimeStamp, compositionTimeStamp,
accessUnitStartFlag, randomAccessFlag, accessUnitEndFlag, accessUnitLength,
degradationPriority)

ESdata - a number of dataLength data bytes for this elementary stream

dataLength - the length in byte of ESdata

ISO/IEC 14496-1:2001(E)

370 © ISO/IEC 2001 – All rights reserved

idleFlag – if set to one it indicates that this elementary stream will not produce further data for an undetermined
period of time.

objectClockReference – contains a reading of the object time base valid for the point in time when the first byte of
ESdata enters the decoder buffer.

decodingTimeStamp - the decoding time for the access unit to which this ESdata belongs

compositionTimeStamp - the composition time for the access unit to which this ESdata belongs

accessUnitStartFlag - indicates that the first byte of ESdata is the start of an access unit

randomAccessFlag - indicates that the first byte of ESdata is the start of an access unit allowing for random access

accessUnitEndFlag - indicates that the last byte of ESdata is the end of an access unit

accessUnitLength - the length of the access unit to which this Esdata belongs in byte

degradationPriority - indicates the degradation priority for this access unit

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 371

Annex M
(Informative)

Definition of bodySceneGraph nodes

M.1 Introduction

This Annex includes the normative definitions of the nodes used in the bodySceneGraph field of the BDP node
(see 9.4.2.17)

M.2 Detailed Semantics

The VRML working group on Humanoid Animation (H-Anim) is working on a standard specification of bodies. The
bodySceneGraph syntax is strongly based on ISO/IEC 14772-1:1997/Amd.1.

The H-Anim specification contains 3 types of Nodes, among other nodes: Joint node describes the skeleton
hierarchy of the body, Segment node describes the surface information of the body, HumanoidInfo node
includes information about the model.

M.3 Overview

The human body consists of a number of segments (such as the forearm, hand and foot) which are connected to
each other by joints (such as the elbow, wrist and ankle). In order for a decoder to animate a humanoid, it needs to
obtain access to the joints and alter the joint angles.

Each segment of the body will typically be defined by children nodes of type IndexedFaceSet, and an application
may need to alter the locations of the vertices in that mesh. The application may also need to obtain information
about which vertices should be treated as a group for the purpose of deformation.

The bodySceneGraph field of a BDP node contains a set of Joint nodes that are arranged to form a hierarchy.
Each Joint node can contain other Joint nodes, and may also contain a Segment node which describes the body
part associated with that joint. Each Segment can also have a number of Site nodes, which define locations
relative to the segment. Sites nodes can be used for attaching clothing and jewelry, and can be used as end-
effectors for inverse kinematics applications. They can also be used to define eyepoints and viewpoint locations.

Each Segment node can have a number of Displacer nodes, which specify which vertices within the segment
correspond to particular feature or configuration of vertices. The bodySceneGraph node also contains a single
Humanoid node which stores human-readable data about the humanoid such as author and copyright information.
That node also stores references to all the Joint, Segment and Site nodes, and serves as a "wrapper" for the
humanoid. In addition, it provides a top-level Transform for positioning the humanoid in its environment.

Keyframe animation sequences can be stored in the same file, with the outputs of various interpolator nodes being
ROUTEd to the joints of the body. Alternatively, the file may include Script nodes which access the joints directly.
In addition, applications can obtain references to the individual joints and segments from the Humanoid node.
Such applications will typically animate the humanoid by setting the joint rotations through BAPs.

M.4 The Nodes

In order to simplify the creation of humanoids, several new node types are introduced. Each node is defined by a
PROTO. The basic implementation of all the nodes is very straightforward, yet each provides enough flexibility to
allow more advanced techniques to be used.

M.4.1 The Joint Node

Each joint in the body is represented by a Joint node. The implementation for a Joint is a Transform node, which
is used to define the relationship of each body segment to its immediate parent.

ISO/IEC 14496-1:2001(E)

372 © ISO/IEC 2001 – All rights reserved

The Joint node is also used to store other joint-specific information. In particular, a joint name is provided so that
applications can identify each Joint node at runtime.

In addition, the Joint node may contain hints for inverse-kinematics systems that wish to control the H-Anim
figure. These hints include the upper and lower joint limits, the orientation of the joint limits, and a
stiffness/resistance value. Note that these limits are not enforced by any mechanism within the scene graph of the
humanoid, and are provided for information purposes only. Use of this information and enforcement of the joint
limits is up to the application.

The Joint PROTO looks like follows:

PROTO Joint [
exposedField SFString name ""
exposedField SFVec3f center 0 0 0
exposedField SFRotation rotation 0 0 1 0
exposedField SFVec3f scale 1 1 1
exposedField SFRotation scaleOrientation 0 0 1 0
exposedField SFVec3f translation 0 0 0
exposedField MFFloat ulimit []
exposedField MFFloat llimit []
exposedField SFRotation limitOrientation 0 0 1 0
exposedField MFFloat stiffness [1 1 1]
exposedField MFNode children []

]

NOTE - Most of the fields correspond to those of the Transform node. This is because the typical implementation of
the Joint PROTO will be:

{
Transform {

translation IS translation
rotation IS rotation
scale IS scale
scaleOrientation IS scaleOrientation
center IS center
children IS children

}
}

The center exposedField gives the position of the Joint's center of rotation, relative to the root of the overall
humanoid body description. Note that the center field is not intended to receive events. The locations of the joint
centers are available by reading the center fields of the Joint nodes.

Since the locations of the joint centers are all in the same coordinate frame, the length of any segment can be
determined by simply subtracting the locations of the joint centers. The exception will be segments at the ends of
the fingers and toes, for which the Site locations within the Segment must be used (see the description of Sites
below for details).

The ulimit and llimit fields of the Joint PROTO specify the upper and lower joint rotation limits. Both fields
are three-element MFFloats containing separate values for the X, Y and Z rotation limits. The ulimit field stores the
upper (i.e. maximum) values for rotation around the X, Y and Z axes. The llimit field stores the lower (i.e. minimum)
values for rotation around those axes. Note that the default values for each of these fields is [], which means that
the joint is assumed to be unconstrained.

The limitOrientation exposedField gives the orientation of the coordinate frame in which the ulimit and llimit
values are to be interpreted. The limitOrientation describes the orientation of a local coordinate frame, relative to
the Joint center position described by the center exposedField.

The stiffness exposedField, if present, contains values ranging between 0.0 and 1.0 which give the inverse
kinematics system hints about the "willingness" of a joint to move a particular degree of freedom. For example, a
Joint node's stiffness can be used in an arm joint chain to give preference to moving the left wrist and left elbow
over moving the left shoulder, or it can be used within a single Joint node with multiple degrees of freedom to
give preference to individual degrees of freedom. The larger the stiffness value, the more the joint will resist
movement.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 373

Each Joint should have a DEF name that matches the name field for that Joint, but with a distinguishing prefix
in front of it. Only a single humanoid is contained within a Body node, the prefix should be "hanim_..." (for
Humanoid Animation). For example, the left shoulder would have a DEF name of "hanim_l_shoulder".

The DEF name is used for static routing, which would typically connect the BAPs to segments, and define segment
names for bodyDefTables. In addition, optionally, it may be used for connect OrientationInterpolators in the
humanoid file to the joints.

It will occasionally be useful for the person creating a humanoid to be able to add additional joints to the body. The
body remains humanoid in form, and is still generally expected to have the basic joints described later in this
document. However, they may be thought of as a minimal set to which extensions may be added (such as a
prehensile tail). See the section on Non-standard Joints and Segments. If necessary, some of the joints (such as
the many vertebrae) may be omitted.

Each body segment is stored in a Segment node. The Segment node will typically be implemented as a Group
node containing one or more Shapes or perhaps Transform nodes that position the body part within its coordinate
system (see Annex, for details). The use of LOD nodes is recommended if the geometry of the Segment is
complex.

PROTO Segment [
exposedField SFString name ""
exposedField SFVec3f centerOfMass 0 0 0
exposedField SFVec3f momentsOfInertia 1 1 1
exposedField SFFloat mass 0
exposedField MFNode children []
exposedField SFNode coord NULL
exposedField MFNode displacers []
eventIn MFNode addChildren
eventIn MFNode removeChildren

]

This will typically be implemented as follows:

{
Group {

children IS children
addChildren IS addChildren
removeChildren IS removeChildren

}
}

The fields except name are optional.

The mass is the total mass of the segment, and the centerOfMass is the location within the segment of its center
of mass.

If bodyDefTables need to be used, the Segment node contains one IndexedFaceSet child that shall be used for
these tables. The indices of vertices in the IndexedFaceSet node should correspond to the indices in
bodyDefTable node.

M.4.2 The Humanoid Node

The Humanoid node is used to store human-readable data such as author and copyright information, as well as to
store references to the joints, segments and views and to serve as a container for the entire humanoid. It also
provides a convenient way of moving the humanoid through its environment.

PROTO Humanoid [
exposedField SFString name ""
exposedField MFString info []
exposedField SFString version "1.1"
exposedField MFNode joints []
exposedField MFNode segments []
exposedField MFNode sites []
exposedField MFNode viewpoints []
exposedField MFNode humanoidBody []

ISO/IEC 14496-1:2001(E)

374 © ISO/IEC 2001 – All rights reserved

exposedField SFVec3f center 0 0 0
exposedField SFRotation rotation 0 0 1 0
exposedField SFVec3f scale 1 1 1
exposedField SFRotation scaleOrientation 0 0 1 0
exposedField SFVec3f translation 0 0 0

]

The Humanoid node is typically implemented as follows:

{
Transform {
center IS center
rotation IS rotation
scale IS scale
scaleOrientation IS scaleOrientation
translation IS translation
children [

Group {
children IS viewpoints

}
Group {

children IS humanoidBody
}

]
}

}

The Humanoid node can be used to position the humanoid in space. Note that the HumanoidRoot Joint is
typically used to handle animations within the local coordinate system of the humanoid, such as jumping or walking.
For example, while walking, the overall movement of the body (such as a swagger) would affect the
HumanoidRoot Joint, while the average linear velocity through the scene would affect the Humanoid node.

The humanoidBody field contains the HumanoidRoot node. The version field stores the version of this
specification that the Humanoid file conforms to. Value of ‘1.1’ is excepted.

The info field consists of an array of strings, each of which is of the form "tag=value". The following tags are
defined:

authorName
authorEmail
copyright
creationDate
usageRestrictions
humanoidVersion
age
gender (typically "male" or "female")
height
weight

Additional tag=value pairs can be included as needed.

The HumanoidVersion tag refers to the version of the humanoid being used, in order to track revisions to the
data. It is not the same as the version field of the Humanoid node, which refers to the version of the H-Anim
specification which was used when building the humanoid.

The joints field contains references (i.e. USEs) of each of the Joint nodes in the body. Each of the referenced
joints should be a Joint node. The order in which they are listed is irrelevant, since the names of the joints are
stored in the joints themselves. Similarly, the segments field contains references to each of the Segment nodes of
the body, the viewpoints field contains references to the Viewpoint nodes in the file, and the sites field contains
references to the Site nodes in the file.

M.4.3 Modeling the Humanoid

Humanoid should be modeled in a standing position, facing in the +Z direction with +Y up and +X to the humanoid's
left. The origin (0, 0, 0) should be located at ground level, between the humanoid's feet.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 375

The feet should be flat on the ground, spaced apart about the same distance as the width of the hips. The bottom
of the feet should be at Y=0. The arms should be straight and parallel to the sides of the body with the palms of the
hands facing inwards towards the thighs. The hands should be flat, with the axes of joints "1" through "3" of the
fingers being parallel to the Y axis and the axis of the thumb being angled up at 45 degrees towards the +Z
direction. Note that the coordinate system for each joint in the thumb is still oriented to align with that of the overall
humanoid.

Movement of the "0" joints of the fingers is typically quite limited, and the rigidity of those articulations varies from
finger to finger. Further details about the placement, orientation and movement of the "0" joints can be obtained
from any anatomy reference text.

The humanoid should be built with actual human size ranges in mind. All dimensions are in meters. A typical
human is roughly 1.75 meters tall.

The default position of the humanoid is defined in ISO/IEC 14496-2:1999.

In this position, all the joint angles should be zero. In other words, all the rotation fields in all the Joint nodes
should be left at their default value of (0 0 1 0). In addition, the translation fields should be left at their default value
of (0 0 0) and the scale factors should be left at their default value of (1 1 1). The only field which should have a
non-default value is center, which is used to specify the point around which the joint (and its attached children and
body segment if any) will rotate. Sending the default values for translation, rotation and scaling to all the Joints in
the body must return the body to the neutral position described above.The center field of each joint should be
placed so that the joints rotate in the same way that they would on a real human body.

It is suggested, but not required, that all of the body segments should be built in place. That is, they should require
no translation, rotation, or scaling to be connected with their neighbors. For example, the hand should be built so
that it's in the correct position in relation to the forearm. The forearm should be built so that it's in the correct
position in relation to the upper arm, and so on. All the body's coordinates will share a common origin, which is that
of the humanoid itself. If this proves difficult for an authoring tool to implement, it is acceptable to use a Transform
node inside each Segment, or even several Transforms, in order to position the geometry for that segment
correctly.

Note that the coordinate system for each Joint is oriented to align with that of the overall humanoid.

M.4.3.1 The Joint Hierarchy

The body is typically built as a series of nested Joints, each of which may have a Segment associated with it.
For example:

...
DEF hanim_l_shoulder Joint { name "l_shoulder"
center 0.167 1.36 -0.0518
children [

DEF hanim_l_elbow Joint { name "l_elbow"
center 0.196 1.07 -0.0518
children [

DEF hanim_l_wrist Joint { name "l_wrist"
center 0.213 0.811 -0.0338
children [

DEF hanim_l_hand Segment { name "l_hand"
...

}
]

}
DEF hanim_l_forearm Segment { name "l_forearm"

...
}

]
}
DEF hanim_l_upperArm Segment { name "l_upperArm"

...
}

]
}

ISO/IEC 14496-1:2001(E)

376 © ISO/IEC 2001 – All rights reserved

M.4.3.2 The Body

The names of the Joint nodes for the body are listed in the following list:

l_hip, l_knee, l_ankle, l_subtalar, l_midtarsal, l_metatarsal
r_hip, r_knee, r_ankle, r_subtalar, r_midtarsal, r_metatarsal
vl5, vl4, vl3, vl2, vl1,
vt12, vt11, vt10, vt9, vt8, vt7, vt6, vt5, vt4, vt3, vt2, vt1
vc7, vc6, vc5, vc4, vc3, vc2, vc1
l_sternoclavicular, l_acromioclavicular, l_shoulder, l_elbow, l_wrist
r_sternoclavicular, r_acromioclavicular, r_shoulder, r_elbow, r_wrist
HumanoidRoot, sacroiliac (pelvis), skullbase

The vl5 and sacroiliac Joints are children of the HumanoidRoot. The HumanoidRoot is stored in the
humanoidBody field of the Humanoid node, but all other Joints are descended from either vl5 or sacroiliac. If
those Joints are missing, lower-level Joints can be children of the HumanoidRoot.

M.4.3.3 The Hands

The hands Joint nodes, if present, should use the following naming convention:

l_pinky0, l_pinky1, l_pinky2, l_pinky3,
l_ring0, l_ring1, l_ring2, l_ring3
l_middle0, l_middle1, l_middle2, l_middle3
l_index0, l_index1, l_index2, l_index3
l_thumb1, l_thumb2, l_thumb3
r_pinky0, r_pinky1, r_pinky2, r_pinky3
r_ring0, r_ring1, r_ring2, r_ring3
r_middle0, r_middle1, r_middle2, r_middle3
r_index0, r_index1, r_index2, r_index3
r_thumb1, r_thumb2, r_thumb3

M.4.3.4 Hierarchy

The complete hierarchy is as follows, with the segment names listed beside the Joints to which they're attached:

HumanoidRoot : sacrum
sacroiliac : pelvis
| l_hip : l_thigh
| l_knee : l_calf
| l_ankle : l_hindfoot
| l_subtalar : l_midproximal
| l_midtarsal : l_middistal
| l_metatarsal : l_forefoot
| r_hip : r_thigh
| r_knee : r_calf
| r_ankle : r_hindfoot
| r_subtalar : r_midproximal
| r_midtarsal : r_middistal
| r_metatarsal : r_forefoot
vl5 : l5
vl4 : l4
vl3 : l3
vl2 : l2
vl1 : l1
vt12 : t12
vt11 : t11
vt10 : t10
vt9 : t9
vt8 : t8
vt7 : t7
vt6 : t6
vt5 : t5
vt4 : t4
vt3 : t3
vt2 : t2
vt1 : t1
vc7 : c7
| vc6 : c6
| vc5 : c5
| vc4 : c4

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 377

| vc3 : c3
| vc2 : c2
| vc1 : c1
| skullbase : skull
| l_eyelid_joint : l_eyelid
| r_eyelid_joint : r_eyelid
| l_eyeball_joint : l_eyeball
| r_eyeball_joint : r_eyeball
| l_eyebrow_joint : l_eyebrow
| r_eyebrow_joint : r_eyebrow
| temporomandibular : jaw
l_sternoclavicular : l_clavicle
| l_acromioclavicular : l_scapula
| l_shoulder : l_upperarm
| l_elbow : l_forearm
| l_wrist : l_hand
| l_thumb1 : l_thumb_metacarpal
| l_thumb2 : l_thumb_proximal
| l_thumb3 : l_thumb_distal
| l_index0 : l_index_metacarpal
| l_index1 : l_index_proximal
| l_index2 : l_index_middle
| l_index3 : l_index_distal
| l_middle0 : l_middle_metacarpal
| l_middle1 : l_middle_proximal
| l_middle2 : l_middle_middle
| l_middle3 : l_middle_distal
| l_ring0 : l_ring_metacarpal
| l_ring1 : l_ring_proximal
| l_ring2 l_ring_middle
| l_ring3 : l_ring_distal
| l_pinky0 : l_pinky_metacarpal
| l_pinky1 : l_pinky_proximal
| l_pinky2 : l_pinky_middle
| l_pinky3 : l_pinky_distal
r_sternoclavicular : r_clavicle
r_acromioclavicular : r_scapula
r_shoulder : r_upperarm
r_elbow : r_forearm
r_wrist : r_hand
r_thumb1 : r_thumb_metacarpal
r_thumb2 : r_thumb_proximal
r_thumb3 : r_thumb_distal

r_index0 : r_index_metacarpal
r_index1 : r_index_proximal
r_index2 : r_index_middle
r_index3 : r_index_distal

r_middle0 : r_middle_metacarpal
r_middle1 : r_middle_proximal
r_middle2 : r_middle_middle
r_middle3 : r_middle_distal

r_ring0 : r_ring_metacarpal
r_ring1 : r_ring_proximal
r_ring2 : r_ring_middle
r_ring3 : r_ring_distal

r_pinky0 : r_pinky_metacarpal
r_pinky1 : r_pinky_proximal
r_pinky2 : r_pinky_middle
r_pinky3 : r_pinky_distal

Depending on your fonts, the number '1' and the letter 'l' may look similar. This is particularly true for the lumbar
vertebrae and their corresponding joints (e.g. vl5 and l5). The letter 'l' is for Lumbar, the letter 't' is for Thorasic, and
the letter 'c' is for Cervical.

The term "proximal" means "the nearer" segment, and "distal" means "the farther" segment.

Both the sacroiliac and the vl5 vertebrae are top-level Joints, and are stored in the bodyDefinition field of
the Humanoid node.

The l_sternoclavicular and r_sternoclavicular Joints are children of vt1, and siblings of vc7.

The skullbase Joint is technically the "atlanto-occipital" Joint.

The left and right metatarsals are technically the left and right "tarsometatarsal" joints.

ISO/IEC 14496-1:2001(E)

378 © ISO/IEC 2001 – All rights reserved

A Joint node may contain 1-3 BAPs. The following table presents the joints, and associated BAPs and segment
names.

Table 65 - BAPs in the Joint node

JOINT NODE ASSOCIATED BAPs ATTACHED SEGMENT
sacroiliac sacroiliac_tilt, sacroiliac_torsion, sacroiliac_roll Pelvis
l_hip l_hip_flexion, l_hip_abduct, l_hip_twisting l_thigh
r_hip r_hip_flexion, r_hip_abduct, r_hip_twisting r_thigh
l_knee l_knee_flexion, l_knee_twisting l_calf
r_knee r_knee_flexion, r_knee_twisting r_calf
l_ankle l_ankle_flexion, l_ankle_twisting l_hindfoot
r_ankle r_ankle_flexion, r_ankle_twisting r_hindfoot
l_subtalar l_subtalar_flexion l_midproximal
r_subtalar r_subtalar_flexion r_midproximal
l_midtarsal l_midtarsal_flexion l_middistal
r_midtarsal r_midtarsal_flexion r_middistal
l_metatarsal l_metatarsal_flexion l_forefoot
r_metatarsal r_metatarsal_flexion r_forefoot
vl5 vl5roll, vl5torsion, vl5tilt l5
vl4 vl4roll, vl4torsion, vl4tilt l4
vl3 vl3roll, vl3torsion, vl3tilt l3
vl2 vl2roll, vl2torsion, vl2tilt l2
vl1 vl1roll, vl1torsion, vl1tilt l1
vt12 vt12roll, vt12torsion, vt12tilt t12
vt11 vt11roll, vt11torsion, vt11tilt t11
vt10 vt10roll, vt10torsion, vt10tilt t10
vt9 vt9roll, vt9torsion, vt9tilt t9
vt8 vt8roll, vt8torsion, vt8tilt t8
vt7 vt7roll, vt7torsion, vt7tilt t7
vt6 vt6roll, vt6torsion, vt6tilt t6
vt5 vt5roll, vt5torsion, vt5tilt t5
vt4 vt4roll, vt4torsion, vt4tilt t4
vt3 vt3roll, vt3torsion, vt3tilt t3
vt2 vt2roll, vt2torsion, vt2tilt t2
vt1 vt1roll, vt1torsion, vt1tilt t1
vc7 vc7roll, vc7torsion, vc7tilt c7
vc6 vc6roll, vc6torsion, vc6tilt c6
vc5 vc5roll, vc5torsion, vc5tilt c5
vc4 vc4roll, vc4torsion, vc4tilt c4
vc3 vc3roll, vc3torsion, vc3tilt c3
vc2 vc2roll, vc2torsion, vc2tilt c2
vc1 vc1roll, vc1torsion, vc1tilt c1
Skullbase skullbase_roll, skullbase_torsion, skullbase_tilt skull
l_sternoclavicular l_sternoclavicular_abduct, l_sternoclavicular_rotate l_clavicle
l_acromioclavicular l_acromioclavicular_abduct, l_acromioclavicular_rotate l_scapula
l_shoulder l_shoulder_flexion,

l_shoulder_abduct,l_shoulder_twisting
l_upperarm

l_elbow l_elbow_flexion, l_elbow_twisting l_forearm
r_sternoclavicular r_sternoclavicular_abduct, r_sternoclavicular_rotate r_clavicle
r_acromioclavicular r_acromioclavicular_abduct, r_acromioclavicular_rotate r_scapula
r_shoulder r_shoulder_flexion, r_shoulder_abduct,

r_shoulder_twisting
r_upperarm

r_elbow r_elbow_flexion, r_elbow_twisting r_forearm
r_wrist r_wrist_flexion, r_wrist_pivot, r_wrist_twisting r_wrist
r_thumb1 r_thumb1_flexion, r_thumb1_pivot, r_thumb1_twisting r_thumb_metacarpal
r_thumb2 r_thumb2_flexion r_thumb_proximal
r_thumb3 r_thumb3_flexion r_thumb_distal
r_index0 r_index0_flexion r_index_metacarpal
r_index1 r_index1_flexion, r_index1_pivot, r_index1_twisting r_index_proximal
r_index2 r_index2_flexion r_index_middle
r_index3 r_index3_flexion r_index_distal
r_middle0 r_middle0_flexion r_middle_metacarpal
r_middle1 r_middle1_flexion, r_middle1_pivot, r_middle1_twisting r_middle_proximal
r_middle2 r_middle2_flexion r_middle_middle
r_middle3 r_middle3_flexion r_middle_distal
r_ring0 r_ring0_flexion r_ring_metacarpal
r_ring1 r_ring1_flexion, r_ring1_pivot, r_ring1_twisting r_ring_proximal
r_ring2 r_ring2_flexion r_ring_middle
r_ring3 r_ring3_flexion r_ring_distal

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 379

r_pinky0 r_pinky0_flexion r_pinky_metacarpal
r_pinky1 r_pinky1_flexion, r_pinky1_pivot, r_pinky1_twisting r_pinky_proximal
r_pinky2 r_pinky2_flexion r_pinky_middle
r_pinky3 r_pinky3_flexion r_pinky_distal
l_wrist l_wrist_flexion, l_wrist_pivot, l_wrist_twisting l_wrist
l_thumb1 l_thumb1_flexion, l_thumb1_pivot, l_thumb1_twisting l_thumb_metacarpal
l_thumb2 l_thumb2_flexion l_thumb_proximal
l_thumb3 l_thumb3_flexion l_thumb_distal
l_index0 l_index0_flexion l_index_metacarpal
l_index1 l_index1_flexion, l_index1_pivot, l_index1_twisting l_index_proximal
l_index2 l_index2_flexion l_index_middle
l_index3 l_index3_flexion l_index_distal
l_middle0 l_middle0_flexion l_middle_metacarpal
l_middle1 l_middle1_flexion, l_middle1_pivot, l_middle1_twisting l_middle_proximal
l_middle2 l_middle2_flexion l_middle_middle
l_middle3 l_middle3_flexion l_middle_distal
l_ring0 l_ring0_flexion l_ring_metacarpal
l_ring1 l_ring1_flexion, l_ring1_pivot, l_ring1_twisting l_ring_proximal
l_ring2 l_ring2_flexion l_ring_middle
l_ring3 l_ring3_flexion l_ring_distal
l_pinky0 l_pinky0_flexion l_pinky_metacarpal
l_pinky1 l_pinky1_abduct, l_pinky1_flexion l_pinky_proximal
l_pinky2 l_pinky2_flexion l_pinky_middle
l_pinky3 l_pinky3_flexion l_pinky_distal

Note that the body can be defined by a subset of Joint nodes.

Many Joints may be omitted, such as most of the vertebrae, the midtarsal, and the acromioclavicular. The spinal
Joints that belong to first spine groups are the ones that should be given priority if a full spine is not implemented.

Note that VRML H-Anim syntax permits having multiple humanoids in the same file. However, for the files used for
BDPs, it is required that the BodySceneGraph node contains only one humanoid.

M.4.3.5 Other Nodes

Other nodes, such as non-standard joints, viewpoint nodes, displacement nodes, can be defined. These nodes are
ignored for the purposes of body animation from FBA elementary stream, but could be updated using BIFS stream.

ISO/IEC 14496-1:2001(E)

380 © ISO/IEC 2001 – All rights reserved

Annex N
(Informative)

Implementation of MaterialKey node

An example implementation is presented below to reveal the intended use of the color key information. To calculate
the transparency (alpha) value for each pixel, first the distance d between the unnormalized key color (C1, C2, C3)
and the color (X1, X2, X3) of the pixel of interest is calculated.

If the magnitude of the variance of the pixel falls between the 2 thresholds, the alpha value for that pixel will be
scaled between completely transparent, and the transparency value given for the opaque region. The following
describes how the alpha value for a given pixel is determined.

c1 – The normalized value of the R (or Y) component of the keycolor (in range 0.0 to 1.0)

c2 – The normalized value of the G (or U) component of the keycolor (in range 0.0 to 1.0)

c3 – The normalized value of the B (or V) component of the keycolor (in range 0.0 to 1.0)

The respective unnormalized values of c1, c2, c3 are C1, C2, C3 and are obtained by multiplying c1, c2, c3 by k = 2n

–1, which for n=8 bit video is 255; this computation is performed only once at the time of selection of a new
keycolor and the results are stored. Also, by scaling k, a factor K=3�k can be precomputed and stored; this needs
to be done just once.

X1 – The value of the R (orY) component (in the range 0 to k) of the pixel for which the alpha value is to be
computed

X2 – The value of the G (or U) component (in the range 0 to k) of the pixel for which the alpha value is to be
computed

X3 – The value of the B (or V) component (in the range 0 to k) of the pixel for which the alpha value is to be
computed

T – Transparency value assigned to the opaque region (in range 0.0 to 1.0)

d1 – Low threshold for transparency detection (in range 0.0 to T)

d2 – High threshold for transparency detection (in range 0.0 to T)

d =(| C1 – X1| + | C2 – X2| + | C3 – X3 |)*T/K

The resulting normalized value of distortion d lies in the range of 0.0 to T.

T

0
d1 d2

d

alpha

Figure 39 - Alpha value as a function of distance measure

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 381

The reconstructed alpha value for each pixel is computed by comparing the distance d with the thresholds as
follows:

if (d � d1) then alpha = 0,

else if (d > d2) then alpha = T,

else if (d1 � d � d2) then alpha = (d-d1)/(d2-d1)* T

Here, alpha = 0 is transparent and alpha = T is the transparency value assigned to the opaque region.

Further, d1 = d2 implies binary shape, otherwise grey scale shape is obtained.

ISO/IEC 14496-1:2001(E)

382 © ISO/IEC 2001 – All rights reserved

Annex O
(Informative)

Example implementation of spatial audio processing (perceptual approach)

O.1 Example algorithm implementation

This section describes a rendering algorithm which can be controlled by the proposed perceptual parameters. It
receives as inputs an audio source url, the nine perceptual parameters, the position of the source with respect to
the view point, the directivity diagram of the source, and the directFilter and inputFilter parameters. It produces
seven channels, one for the direct sound C, two for the early reflections L and R, and four for the diffuse field S1,
S2, S3 and S4. Ideally these are to be played back according to the diagram shown below. The four main parts of
the Room module are detailed below in the case of an 8-channel implementation of the complete model (including
the early and cluster blocks).

C

early

reverb

cluster
diff

R1+

R2+

R3+

+

R0 pan

pan

pan

diff

delays

matrix

matrix

delays

d. line L

R

S1

S2

S3

S4

Pan

Room

Figure 40 - Association of Room and Pan modules forming a Spat processor.

Cluster
�1 �2 �3 �4 �5 �6 �7 �8

G

G

C

L,R

S1,..,S4

Eq

R2

R1l,R1m,R1h

Eq Eq Eq Eq Eq Eq Eq Eq Rtl, Rtm, Rth

R3/K

Eq Eq

Ol, Om, OhIl, Im,Ih

Eq

(Dl* Al*R0l), (Dm* Am*R0m), (Dh* Ah*R0h)

�1 �2 �3 �4 �5 �6 �7 �8

�1 �2 �3 �4 �5 �6 �7 �8

Gain

Equalizer

Unitary mixing
matrix NxN

Delay

Direct

Early

Reverb

l0

Figure 41 - Block diagram of the Room module

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 383

����

d

S

C
R

L

S2

S4 S1

S3

x

z

Figrue 42 - Directional rendering by the Pan module

O.2 Elementary spectral corrector

An elementary component used in multiple instances in the Room module is the second order IIR filter whose
equation is given by :

y(n)=box(n)+b1x(n-1)+b2x(n-2)-a1y(n-1)-a2y(n-2).

This filter is used as a 3-band parametric equalizer, the characteristics of which are given by:

flow : higher crossover frequency expressed in Hz

fhigh : lower crossover frequency expressed in Hz

glow : filter gain in the low band expressed w.r.t amplitude

gmid : filter gain in the mid band expressed w.r.t amplitude

ghigh : filter gain in the high band expressed w.r.t amplitude

The method to calculate the 2nd order cell coefficients is given by :

a)

frlow= flow/fs

frhigh= fhigh/fs

where fs is the sampling rate

b)

gr
low = gr

low/g

gr
mid = gr

mid/g

gr
high = gr

high/g

ISO/IEC 14496-1:2001(E)

384 © ISO/IEC 2001 – All rights reserved

where g is a gain factor that prevent the filter coefficients from being inaccurate for very low values of glow, gmid and
ghigh and so degrading the filtering process. Generally, gain is taken to be equal to gmid .

c)

k1= gr
low/ gr

mid

r1=tan(� * frlow)/k1
0.5

�1=(r1-1)/(r1+1)

�1= (k1*r1-1)/(k1*r1+1)

�1= (k1*r1-1)/(r1+1)

d)

k2= gr
mid/ gr

high

r2=tan(�* frhigh)/k2
0.5

�2=(r2-1)/(r2+1)

�2= (k2*r2-1)/(k2*r2+1)

�2= (k2*r2-1)/(r2+1)

e)

k= gr
mid* g

bo= �1*�2*k

b1 = (�1+�2)*bo

b2 = (�1*�2)*bo

a1 = �1+�2

a2 = �1*�2

O.3 Input Filter

In order to simulate sound sources that are outside the virtual room, a pre-filtering process can be performed with
the values given in the inpultFilter field, Ilow, Imid, Ihigh, via a three-band equalization.

O.4 Direct path

The signal which stands for the direct path (without any reflection) is calculated via a 3-band equalizer from the
input signal S. The coefficients of this equalizer are calculated according to the avant-propos with the following
energetic parameters Alow*Dlow*R0low, Amid*Dmid*R0mid, Ahigh*Dhigh*R0high, fmin and fmax, where the A's, D's and R0's
represents respectively the axis directivity, the direct filter coefficients and the energetic repartition of the source in
the three bands [0, fmin],[fmin, fmax] and [fmax,fs/2]

fmin and fmax are given in the PerceptualParameters node fields.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 385

O.5 Directional early reflections

The source signal S is first filtered in an equalizer which depends only on the diffuse-field frequency response of
the source, i.e. the omnidirectivity of the source. Its parameters are Olow,Omid,Ohigh, fmin and fmax where the O's give
the diffuse-field amplitude of the source in the three bands [0, fmin],[fmin, fmax] and [fmax,fs/2]

The output of this equalizer feeds a delay line that produces eight channels, early[i], i=0,..7, which are time shifted.

The eight delay lengths are randomly distributed between approximately 20 and 40 ms for a large room, but could
be set differently in order to simulate a smaller room. The exact values to be used are given in 1.2.6.6.6.

The early signals are multiplied by gains, gi, and combined to produce two signals, Lo and Ro as follows :

Lo= early[0]*g0 + early[2]*g2 + early[4]*g4 + early[6]*g8

Ro= early[1]*g1 + early[3]*g3 + early[5]*g5 + early[7]*g7

Note - In the proposed implementation gi = 1.0, i=0,...,7

Lo and Ro are then filtered with two equalizers having the following parameters R1low, R1mid, R1high, fmin and fmax, in
order to produce L and R that represent the early reflections.

Diffuse early reflections

The eight outputs of the Early delay line are mixed in a unitary Hadamard (8x8) matrix to produce eight scrambled
signals :

[Cscramb i]i=0,..., 7=H8x8[earlyi],i=0,..., 7

The scrambled signals are independently delayed :

Cscramb d[i](t)=Cscramb[i](t-�i), i=0,...,7

The values of the �i are randomly distributed between 20 and 60 ms approximately (default setting for a large
room). The exact values to be used are given in 1.2.6.6.6.

The Cscrambd[i] are combined to produce four intermediate signals that will feed the cluster equalizers R2 :

Ctemp1= Cscrambd[0]+ Cscrambd[4]

Ctemp2= Cscrambd[1]+ Cscrambd[5]

Ctemp3= Cscrambd[2]+ Cscrambd[6]

Ctemp4= Cscrambd[3]+ Cscrambd[7]

The four signals Ctempi i=0,...,3, are then filtered with four equalizers that have the following parameters
R2low,R2mid,R2high, fmin and fmax, in order to produce the diffuse field signals corresponding to the cluster part of the
impulse response: R20, R21, R22 and R23

O.6 Diffuse late reverberation

This stage is quite similar to the previous one except that in order to reproduce the late reverberation decay, a
feedback delay network (FDN) is used.

The eight input signals are mixed in a unitary Hadamard (8x8) matrix producing eight scrambled signals :

[Rscramb i]i=0,..., 7=H8x8[Cscrambd
i+Rscrambd

i],i=0,..., 7

The scrambled signals are independently delayed:

Rscramb d[i](t)=Rscramb[i](t-�i), i=0,...,7

ISO/IEC 14496-1:2001(E)

386 © ISO/IEC 2001 – All rights reserved

The values of the �i are randomly distributed between 60 and 140 ms approximately (for a large room). The exact
values to be used are given in 1.2.6.6.6.

Then these signals are filtered with 8 equalizers that have the following parameters :

plowi,pmidi,phighi,fmin,fmax

where

plowi=10(-60*��i/Rtlow)

pmidi=10(-60*��i/Rtmid)

phighi=10(-60*��i/Rthigh)

to produce the Rscrambeq[i] signals

The Rscrambeq[i] are combined to produce four intermediate signals :

Rtemp1= Rscrambeq [0]+ Rscrambeq [4]

Rtemp2= Rscrambeq [1]+ Rscrambeq [5]

Rtemp3= Rscrambeq [2]+ Rscrambeq [6]

Rtemp4= Rscrambeq [3]+ Rscrambeq [7]

The four signals Rtempi i=0,...,3, are then scaled by a gain R3.

The complete diffuse field is simply calculated from the cluster and the late reverberation fields signals as follows :

S1= R20 + R30

S2= R21 + R31

S3= R22 + R32

S4= R23 + R33

O.7 Setting the delays

In the Perceptual node field, four values related to the temporal characteristics of the impulse response are given:
the time limits l1, l2, l3 and the modal density.

The Room structure has three sets of delays, respectively for the Early, Cluster and Reverb modules.

The delay ranges to be used can be calculated as follows :

Table 66 - delay ranges

min max
early delays l1 l2
cluster delays l2	l1 L3	l2+e
reverb delays l3	l2	e (*)

e can be used to create some overlapping between the temporal sections R2 and R3 if necessary.

(*): in the Reverb module, the distribution of delay lengths is not constrained by their maximum, but by their sum,
which is equal to the value modal density (expressed indifferently in seconds or modes per hertz).

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 387

O.8 Scalability

The above modular signal processing model provides several forms of scalability:

 modifying the number of discrete reflections in the early block

 modifying the number of delay channels in the cluster and reverb blocks (typically 4, 6 or 8 channels)

 suppressing the cluster block, and possibly the early block

 sharing the reverb block and possibly the cluster block between several sources (located in the same room)

 replacing the equalizers by simple gains. In that case the frequency effects will not be rendered, e.g room
liveness and source warmth.

ISO/IEC 14496-1:2001(E)

388 © ISO/IEC 2001 – All rights reserved

Annex P
(informative)

Upstream walkthrough

P.1 Introduction

Upstream messages from a client terminal to the server terminal are categorized in two types, application specific
command messages and media stream specific messages. Application specific command messages are general
messages applied to a set of different media streams, for example, stream control messages. These messages
may be defined based on the BIFS ServerCommand node. Media stream specific messages are used to establish
communication between a specific media stream decoder and its encoder. This may be used, for example, to
control the encoder remotely from the client terminal side as a result of the decoding process or user interaction.
The syntax and semantics of media stream specific messages are defined in the relevant part of the standard. For
example, the syntax and semantics of messages for the visual NEWPRED tool are defined in IS 14496-2, defining
the Visual tools of this specification.

The need for an upstream channel is signaled to the client terminal by supplying an appropriate elementary stream
descriptor declaring the parameters for that stream. The client terminal opens this upstream channel in a similar
manner as it opens the downstream channels. The entities (e.g. media encoders & decoders) that are connected
through an upstream channel are known from the parameters in its elementary stream descriptor and from the
association of the elementary stream descriptor to a specific object descriptor.

Packetization of upstream messages for transmission and synchronization with downstream channel data is done
by the synchronization layer. The configuration of the SL packet header for upstreams may be selected as
appropriate. All messages that are related to a single point in time should be packetized into a single access unit.

P.2 Configuration

An upstream can be associated to a single downstream or a group of downstreams. The scope of the upstream is
defined by the stream type of the downstream to which the upstream is associated. When the upstream is
associated to a single downstream it carries messages about the downstream it is associated to. If the upstream
should carry messages related to a group of downstreams, its elementary stream descriptor is associated to the
ObjectDescriptorStream containing object descriptors or the SceneDescriptionStream describing the scene, as
specified in 8.7.1.5.2.

In the case that the upstream is attached to the ObjectDescriptorStream, only the object descriptors grouped
together for this single upstream would be carried by it. The other object descriptors outside the scope of this
upstream would be carried by other ObjectDescriptorStreams. This implies that the object descriptors requiring a
single upstream should be carried separately from the other object descriptors. If the upstream depends on a
SceneDescriptionStream, all the objects inside the scene would get the upstream messages from this upstream.

Detailed configuration rules for each case are as described below.

P.2.1 Upstream for single ES

In this case the upstream is attached to a single independent ES and will carry media specific information valid for
a single downstream it is dependent on. Because only one of the independent elementary streams defined in the
same OD can be selected for use in the scene, the upstream is not related to the ES itself but rather to the object
represented by this OD.

The ObjectDescriptor has one or more additional ES_Descriptors defining upstream configuration for each ES
which needs a backchannel.

ES_Descriptor of upstream shall be defined as follows

streamDependenceFlag shall be set to ‘1’ to indicate this stream depends on a downstream.

dependsOn_ES_ID shall be set to the ES_ID value of the downstream.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 389

DecoderConfigDescriptor in ES_Descriptor of upstream shall be defined as follows.

objectTypeIndication and streamType shall be set to the same value of the downstream

upStream flag shall be set to ‘1’ to indicate this is a backchannel stream.

bufferSizeDB, maxBitrate, avgBitrate and DecoderSpecificInfor shall be set appropriately.

P.2.2 Upstream for a group of ESs

In this case the upstream is attached to an ObjectDescriptorStream or a SceneDescriptionStream to be used as an
upstream for a group of elementary streams. The basic configuration rules for the ObjectDescriptor are the same
as in the case of upstream for a single ES. The scope and type of messages carried by the upstream is decided by
the following rules.

If an upstream is configured to be dependent on a certain ObjectDescriptorStream and its streamType is either
VisualStream or AudioStream, it carries media stream specific information that may relate to more than one of
the downstreams that are described by the ObjectDescriptors transmitted within the ObjectDescriptorStream
upon which the upstream depends. All decoders for streams with matching streamType within that set of
streams may use the upstream channel to send messages.

If an upstream is configured to be dependent on a certain SceneDescriptionStream and its streamType is either
VisualStream or AudioStream, it carries media specific information for downstreams in the whole scene as
described by the SceneDescriptionStream upon which the upstream depends. All decoders for streams with
matching streamType within that set of streams may use the upstream channel to send messages.

If an upstream is configured to be dependent on a certain SceneDescriptionStream and its streamType is
SceneDescriptionStream, it will carry messages related to the BIFS scene or to application signaling (e.g.
based on the ServerCommand specification).

P.3 Content access procedure with DAI

When the receiving terminal receives a DecoderConfigDescriptor whose upStream flag is set to ‘1’, it opens a
logical channel for the upstream ES by setting the ‘direction’ field of the DA_ChannelAdd primitive to UPSTREAM.
Other procedures and rules for accessing and managing content at the client terminal are basically the same as for
the case of downstream. The syntax and semantics of upstream messages, defining their functionality and the
expected interaction between encoder and decoder, are defined in the appropriate part of ISO/IEC 14496.
Messages related to streams of streamType SceneDescriptionStream and ObjectDescriptorStream are defined in
this part of the specification. Concerning upstream management at the sending terminal, this standard does not
normatively specify any behavioral procedures or rules.

P.4 Example

This section describes an example of the setup and the usage of MPEG-4 upstreams, according to the rules
described in the above sections.

P.4.1 Example scene having objects with upstream

Figure P-1 shows a simple scene with 3 objects (1 natural video and 2 SNHC objects) for which information is
gathered through different upstreams:

 ServerCommand upstream is used to control the animation (start, stop, …) of all objects (natural video and
SNHC) in the scene (possibly also audio objects).

 NewPred upstream is used for error correction of a single natural video object.

 SNHC_QoS upstream conveys information of the client terminal w.r.t. its decoding and rendering capabilities
for all 3D (SNHC) objects.

The example scene of Figure P-1 is described through the object descriptor Full_Scene, which points to different
streams:

ISO/IEC 14496-1:2001(E)

390 © ISO/IEC 2001 – All rights reserved

InitialObjectDescriptor Full_Scene{
bit(10) Full_Scene_ID (=OD_ID);
bit(1) 0 (=URL_Flag);
bit(1) 1 (=includeInlineProfileLevelFlag);
const bit(4) reserved=0b1111;
bit(8) ODProfileLevelIndication;
bit(8) sceneProfileLevelIndication;
bit(8) audioProfileLevelIndication;
bit(8) visualProfileLevelIndication;
bit(8) graphicsProfileLevelIndication;
ES_Descriptor SceneDescriptionStream_Scene_1_down;
ES_Descriptor SceneDescriptionStream_Scene_1_up;
ES_Descriptor ObjectDescriptorStream_Scene_1_down;
ES_Descriptor ObjectDescriptorStream_Scene_1_up;

}

InitialObjectDescriptor Full_Scene

Object 1
(video)

Scene 1

Object 2
(3D)

Object 3
(3D)

SNHC_QoS

NewPred

ServerCommand

Figure 43 - Backchannel information transport in a simple audio-visual scene

P.4.2 Stream configuration

Graphical summaries of the stream configuration for the example scene shown in Figure 43 are given in Figure 44
to Figure 46. In those figures configuration rules of the important fields and stream dependencies are described in
detail.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 391

InitialObjectDescriptor Full_Scene{
ES_Descriptor SceneDescriptionStream_Scene_1_down;
ES_Descriptor SceneDescriptionStream_Scene_1_up;
ES_Descriptor ObjectDescriptorStream_Scene_1_down;
ES_Descriptor ObjectDescriptorStream_Scene_1_up;
}

ES_Descriptor SceneDescriptionStream_Scene_1_down {
bit(16) SceneDescriptionStream_Scene_1_down_ID (=ES_ID);
bit(1) 0 (=streamDependenceFlag);
DecoderConfigDescriptor dec_config_SceneDescriptionStream_Scene_1_down;

}

DecoderConfigDescriptor dec_config_SceneDescriptionStream_Scene_1_down {
bit(8) 0x01 (=objectTypeIndication); // System ISO/IEC 14496-1
bit(6) 0x03 (=streamType); // SceneDescriptionStream
bit(1) 0 (=down/upstream); // Downstream

}

ES_Descriptor SceneDescriptionStream_Scene_1_up {
bit(16) SceneDescriptionStream_Scene_1_up_ID (=ES_ID);
bit(1) 1 (=streamDependenceFlag);
bit(16) SceneDescriptionStream_Scene_1_down_ID;
DecoderConfigDescriptor dec_config_SceneDescriptionStream_Scene_1_up;

}

DecoderConfigDescriptor dec_config_SceneDescriptionStream_Scene_1_up {
bit(8) 0x01 (=objectTypeIndication); // System ISO/IEC 14496-1
bit(6) 0x03 (=streamType); // SceneDescriptionStream

// => conveys ServerCommand
bit(1) 1 (=down/upstream); // Upstream

}

2

3
4

1

Figure 44 - Syntax for SceneDescription streams

InitialObjectDescriptor Full_Scene{
ES_Descriptor SceneDescriptionStream_Scene_1_down;
ES_Descriptor SceneDescriptionStream_Scene_1_up;
ES_Descriptor ObjectDescriptorStream_Scene_1_down;
ES_Descriptor ObjectDescriptorStream_Scene_1_up;
}

ES_Descriptor ObjectDescriptorStream_Scene_1_down {
bit(16) ObjectDescriptorStream_Scene_1_down_ID (=ES_ID);
bit(1) 0 (=streamDependenceFlag);
DecoderConfigDescriptor dec_config_ObjectDescriptorStream_Scene_1_down;

}

DecoderConfigDescriptor dec_config_ObjectDescriptorStream_Scene_1_down {
bit(8) 0x01 (=objectTypeIndication); // System ISO/IEC 14496-1
bit(6) 0x01 (=streamType); // ObjectDescriptorStream
bit(1) 0 (=down/upstream); // Downstream

}

ES_Descriptor ObjectDescriptorStream_Scene_1_up {
bit(16) ObjectDescriptorStream_Scene_1_up_ID (=ES_ID);
bit(1) 1 (=streamDependenceFlag);
bit(16) ObjectDescriptorStream_Scene_1_down_ID;
DecoderConfigDescriptor dec_config_ObjectDescriptorStream_Scene_1_up;

}

DecoderConfigDescriptor dec_config_ObjectDescriptorStream_Scene_1_up {
bit(8) 0x20 (=objectTypeIndication); // Visual ISO/IEC 14496-2
bit(6) 0x01 (=streamType); // ObjectDescriptorStream

// => conveys SNHC_QoS
bit(1) 1 (=down/upstream); // Upstream

}

6

7 8

5

Figure 45 - Syntax for ObjectDescriptor streams

ISO/IEC 14496-1:2001(E)

392 © ISO/IEC 2001 – All rights reserved

In Figure 44, dependencies and configurations of two SceneDescriptionStreams are shown. Upstream
SceneDescriptionStream_Scene_1_up is dependent on downstream SceneDescriptionStream_Scene_1_down
(see arrows 1 and 2 in figure). Its streamType is set to SceneDescriptionStream since it will carry
ServerCommand messages (see arrows 3 and 4 in figure).

In Figure 45, dependencies and configurations of two ObjectDescriptionStreams are shown. Upstream
ObjectDescriptionStream_Scene_1_up is dependent on downstream ObjectDescriptionStream_Scene_1_down
(see arrows 5 and 6 in figure). Its streamType is set to VisualStream since it will carry SNHC_QoS messages
for object 2 and object 3 in this example (see arrows 7 and 8 in figure). ObjectDescriptorStream_Scene_1_up
conveys SNHC_QoS information that is related to all SNHC objects of the underlying group of objects (possibly
single object). This SNHC_QoS information is basically attached to all Visual objects (see dashed box in Figure P-
1), but the definition of SNHC_QoS constrains the scope of application to SNHC objects only. Whether the Visual
objects are of type SNHC or Natural cannot be determined at the system level : it is determined at the Visual syntax
level, by the visual_object_type, in accordance to table 6-5 of ISO/IEC14496-2.

ObjectDescriptor Object_1 {
bit(10) Object_1_ID (=OD_ID);
ES_Descriptor Object_1_down;
ES_Descriptor Object_1_up;

}

ES_Descriptor Object_1_down{
bit(16) Object_1_down_ID (=ES_ID);
bit(1) 0 (=streamDependenceFlag);
DecoderConfigDescriptor dec_config_Object_1_down;

}

DecoderConfigDescriptor dec_config_Object_1_down {
bit(8) 0x20 (=objectTypeIndication); // Visual ISO/IEC 14496-2
bit(6) 0x04 (=streamType); // Visual stream
bit(1) 0 (=down/upstream); // Downstream

}

ES_Descriptor Object_1_up{
bit(16) Object_1_up_ID (=ES_ID);
bit(1) 1 (=streamDependenceFlag);
bit(16) Object_1_down_ID;
DecoderConfigDescriptor dec_config_Object_1_up;

}

DecoderConfigDescriptor dec_config_Object_1_up {
bit(8) 0x20 (=objectTypeIndication); // Visual ISO/IEC 14496-2
bit(6) 0x04 (=streamType); // Visual stream

// => conveys NewPred
bit(1) 1 (=down/upstream); // Upstream

}

10

11 12

9

Figure 46 - Syntax for Object_1 streams

In Figure 46, dependencies and configurations of two Elementary Streams are shown. Upstream Object_1_up is
dependent on downstream Object_1_down (see arrows 9 and 10 in figure). Its streamType is set to
VisualStream since it will carry NewPred messages for object 1 in this example (see arrows 11 and 12 in figure).
Object_1_up conveys NewPred information for the corresponding natural video object. The definition of NewPred
automatically constrains its application to single natural video objects, i.e. the behavior of the server-client system
is undefined if a NewPred command is associated to a group of objects and/or a single non-natural video object.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 393

Annex Q
(Informative)

Layout of Media Data

The MP4 format provides a great deal of flexibility in how the media data is physically arranged within a file. This
flexibility is desirable and useful. However, it allows media layouts to be created that may be inefficient for play
back on a given device. It should also be noted, however, that a media layout which is inefficient for a given device
may be very efficient for another. Therefore, it is not the intention of this discussion to define a given type of media
layout as wrong. Rather, the intention is to define some common uses of MP4 files and describe the media layout
in these circumstances.

An MP4 file can reference media data stored in a number of files, including the MP4 file itself. If an MP4 file only
references media data contained within itself, the MP4 file is said to be "self-contained".

An MP4 file can reference media data stored in files that are not MP4 files. This is because the MP4 format
references media within a URL by file offset, rather than by a data structuring mechanism of a particular file format.
This allows an MP4 file to refer to data stored in any container format.

It is often convenient to store a single elementary stream per file, for example when encoding content. It is also
useful for content reuse — to reuse an elementary stream, it is not necessary to extract it from a larger, possibly
multiplexed file. Because MP4 can reference media stored in any file, it is not required that elementary stream files
be stored in the MP4 format. However, this is recommended. Putting the elementary streams in a MP4 file has
several advantages, particularly in enabling interchange of the content between different tools (since MP4 is the
only normative file format for MPEG-4 media). Further, the MP4 format adds very little overhead to the elementary
stream — as little as a few hundred bytes in many cases — so there is no great penalty in storage space. It may be
useful to give a name to these types of files — MP4 files that contain a single elementary stream — so that they
can be consistently described.

One of the issues facing any device (server, local workstation) that is attempting to play back an MP4 file in real
time is the number of file seeks that must be performed. It is possible to arrange the data in an MP4 file to
minimize, and potentially eliminate, any seeks during the course of normal playback. (Of course random access
and other kinds of interactivity will require seeks). This is accomplished by interleaving the elementary stream data
in the MP4 file in such a way that the layout of the media in the file corresponds to the order in which the media
data will be required. It is expected that most servers, for example, will stream MPEG-4 media using the facilities of
the hint track. Let's take a scenario where the MP4 file contains a single hint track that reference an audio and a
visual elementary stream. In order to eliminate all seeks, the hint track media must be interleaved with the audio
and visual stream data. Furthermore, because the hint track sample must always be read before the audio and/or
visual media that it references, the hint track samples must always immediately precede the samples they
reference. Here's a simple illustration of the ordering of data (time and file offset increasing from left to right).

H0 A0 H1 V1 H2 V2 H3 A1 H4 A2 V3 H5 V4

Note that when a single hint sample references to multiple pieces of elementary stream data, those pieces of media
data must be occur in the order that they are referenced.

ISO/IEC 14496-1:2001(E)

394 © ISO/IEC 2001 – All rights reserved

Annex R
(Informative)

Random Access

Seeking with a MP4 file is accomplished primarily by using the subatoms contained in the Sample Table atom. If an
edit list is present, it must also be consulted. When asked to seek a given track to a time T, where T is in the time
scale of the movie header atom, you may perform the following operations:

If the track contains an edit list, determine which edit contains the time T by iterating over the edits. The start
time of the edit in the Movie time scale must then be subtracted from the time T to generate T', the duration
into the edit in the Movie time scale. T' is next converted to the timescale of the track's media to generate
T''. Finally, the time in the media scale to use is calculated by adding the media start time of the edit to T''.

The time-to-sample atom for a track indicates what times are associated with which sample for that track. Use
this track to find the first sample prior to the given time.

The sample that was located in step one may not be a random access point. Locating the nearest random
access point requires consulting two atoms. The sync sample table indicates which samples are in fact
random access points. Using this table, you can locate which is the first sync sample prior to the specified
time. The absence of the sync sample table indicates that all samples are synchronization points, and
makes this problem easy. The shadow sync atom gives the opportunity for a content author to provide
samples that are not delivered in the normal course of delivery, but which can be inserted to provide
additional random access points. This improves random access without impacting bitrate during normal
delivery. This atom maps samples that are not random access points to alternate samples that are. You
should also consult this table if present to find the first shadow sync sample prior to the sample in question.
Having consulted the sync sample table and the shadow sync table, you probably wish to seek to whichever
resultant sample is closest to, but prior to, the sample found in step 1.

At this point you know the sample that will be used for random access. Use the sample-to-chunk table to
determine in which chunk this sample is located.

Knowing which chunk contained the sample in question, use the chunk offset atom to figure out where that
chunk begins.

Starting from this offset, you can use the information contained in the sample-to-chunk atom and the sample
size atom to figure out where within this chunk the sample in question is located. This is the desired
information.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 395

Annex S
(Informative)

Starting the Java Virtual Machine

The objective of this annex is to describe the issues involved in deciding when a Java Virtual Machine (JVM) is
required to be started, in cases where it is started by the terminal. Typically, invoking or starting a Java Virtual
Machine can be time consuming.

The JVM needs to be started only when there is an OD with an MPEG-J Elementary Stream. If starting the JVM is
delayed till such time, it obviates the need for starting a JVM in an MPEG-J terminal when there is no MPEG-J ES.
By changing the time at which the OD corresponding to the MPEG-J ES is received the terminal, the time at which
the JVM is started can be controlled. By sending the OD sufficiently ahead it can be ensured that terminals of
varying compute resources can still start the JVM by the required time.

It is not necessary to start the MPEG-J session until it is clear that MPEG-J application programs will be received
and are to be executed. When an MPEG-J stream is received right in the beginning the JVM is instantiated and the
MPEG-J "decoder" is set up along with all the other Elementary Stream decoders that are essential for that MPEG-
4 session. The MPEG-4 Player is started only after this is done. This could result in some delay.

If the OD of MPEG-J elementary streams received by the terminal later than the ODs of the other elementary
streams, the terminal could start the MPEG-4 session while the MPEG-J decoder will be setup only after the
reception of the OD of MPEG-J ES. However, there is no implicit relationship in the time instants between when an
MPEG-J ES is received and its corresponding Object Descriptor.

ISO/IEC 14496-1:2001(E)

396 © ISO/IEC 2001 – All rights reserved

Annex T
(Informative)

Examples of MPEG-J API usage

This annex will include code snippets on the usage of the different categories of MPEG-J APIs. The purpose of this
annex is, however, not to show typical applications. The scope of this annex is to enable a user to quickly get
started on using MPEG-J APIs.

T.1 Scene APIs :

Examples in this subclause show how to use the scene APIs. Given below is an example that shows how an
MPEGlet can access, modify, and created nodes in the scene.

import org.iso.mpeg.mpegj.resourceManager.*;
import org.iso.mpeg.mpegj.scene.*;
import org.iso.mpeg.mpegj.*;
import org.iso.mpeg.mpegj.net.*;

public class Scene_Example implements MPEGlet
{

MpegjTerminal mpegjTerminal;
Scene m_scene;
MySceneListener m_sceneListener;
MyTranslate m_translate;
MyEventOutListener m_eventoutListener;
MyNodeCreator m_nodeCreater;

// other declarations

public void init()
{

mpegjTerminal = new MpegjTerminal(MPEGlet);
// all the initialization goes here for net and resource
//managers

//getting a reference to the Scene object from the //MpegjTerminal object
try {

m_scene = m_sceneListener.getScene(mpegjTerminal);
}catch(MPEGJException mpegj_exp) { }
catch (InterruptedException ie) { }

}

public void run() {
//to access and modify a field in the BIFS scene
try {

m_translate.translate(m_scene);
}catch(MPEGJException mpegj_exp) { }

//to receive notifications of changes to the scene
try {

m_eventoutListener.register(m_scene);
}catch(MPEGJException mpegj_exp) { }

// creating and adding a new node (in this case, a Box node) to //the Scene
try {

m_modeCreator.createBox(m_scene);
}catch(MPEGJException mpegj_exp) { }

}

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 397

public void stop(){}
public void destroy(){}

}

T.1.1 MySceneListener

The Scene object is the sole entry point for accessing and modifying the BIFS scene. This example shows how to
get a reference to the Scene object from the MpegjTerminal object.

import org.iso.mpeg.mpegj.*;
import org.iso.mpeg.mpegj.scene.*;

/**
Gets the scene from the MpegjTerminal.

*/
public class MySceneListener implements SceneListener {

private Scene m_scene;

/**
Waits for and returns the scene associated with the given MpegjTerminal.

@param terminal the MpegjTerminal containing the scene
@return the scene
@exception MPEGJException if an MPEG-J failure occurs
@exception InterruptedException if interrupted while waiting for the

scene
*/

public synchronized Scene getScene(MpegjTerminal terminal)
throws MPEGJException, InterruptedException {

SceneManager mgr = terminal.getSceneManager();

mgr.addSceneListener(this);

while (m_scene == null) {
wait();

}

return m_scene;
}
/**

Called back by the SceneManager to provide the scene.
*/

public synchronized void notify(int what, Scene scene) {
if (what == SceneListener.Message.SCENE_READY) {

m_scene = scene;
notify();

}
}

}

T.1.2 MyTranslate

This example shows how to access and modify a field in the BIFS scene. Firstly, the value of the translation field of
a Transform2D node is printed out. Secondly, the example modifies the translation field by sending a new value to
its eventIn. Note that a reference to the Transform2D node was obtained by calling the scene.getNode()
method with a parameter of 1, which must correspond to the DEF ID of the Transform2D node in the scene.

import org.iso.mpeg.mpegj.*;
import org.iso.mpeg.mpegj.scene.*;

/**
Translates the translation field of a DEF 1 Transform2D node.

ISO/IEC 14496-1:2001(E)

398 © ISO/IEC 2001 – All rights reserved

*/
public class MyTranslate {

/**
Translates the translation field of node 1.

@param scene the scene
@exception MPEGJException if an MPEG-J failure occurs

*/
public void translate(Scene scene) throws MPEGJException {

Node node = scene.getNode(1);

// Check that the node is a Transform2D.
if (node.getNodeType() != NodeType.Transform2D) {

System.err.println("Node 1 is not a Transform2D!");
return;

}

// Get the current translation and print it.
int outID = EventOut.Transform2D.translation;
SFVec2fFieldValue translationEventOut =

(SFVec2fFieldValue) node.getEventOut(outID);
float[] translation = translationEventOut.getSFVec2fValue();
System.out.println("Node 1 translation is " +

translation[0] + "," + translation[1]);

// Calculate a new translation.
final float[] newTranslation = {

translation[0] + 2,
translation[1] + 2

};

// Set the new translation via the eventIn.
int inID = EventIn.Transform2D.translation;
SFVec2fFieldValue translationEventIn =

new SFVec2fFieldValue() {
public float[] getSFVec2fValue() {

return newTranslation;
}

};
node.sendEventIn(inID, translationEventIn);

}
}

T.1.3 MyEventOutListener

This example shows how to receive notifications of changes to the scene. The MyEventOutListener object registers
as a listener of the fraction_changed field of a TimeSensor node. When the field value changes, the notify()
method of the MyEventOutListener object is called with the new value.

import org.iso.mpeg.mpegj.*;
import org.iso.mpeg.mpegj.scene.*;

/**
Listens to the fraction_changed field of a DEF 2 TimeSensor.

*/
public class MyEventOutListener implements EventOutListener {

/**
Registers as a listener on the fraction_changed field.

@param scene the scene
@exception MPEGJException if an MPEG-J failure occurs

*/
public void register(Scene scene) throws MPEGJException {

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 399

Node node = scene.getNode(2);

// Check that the node is a TimeSensor.
if (node.getNodeType() != NodeType.TimeSensor) {

System.err.println("Node 2 is not a TimeSensor!");
return;

}

// Add ourselves as a listener.
node.addEventOutListener(EventOut.TimeSensor.fraction_changed, this);

}

/**
Called back when the fraction_changed field changes.

@param outID the eventOut identifier
@param newValue the new value of the field

*/
public void notify(int outID, FieldValue newValue) {

float fractionChanged = ((SFFloatFieldValue) newValue).getSFFloatValue();
System.out.println("fraction_changed=" + fractionChanged);

}
}

T.1.4 MyNodeCreator

This example demonstrates how a new node (in this case, a Box node) can be created and added to the scene.
This is achieved by setting the value of a SFNode field with an object implementing the NewNode interface. This
example uses a utility class called MyNewNode that implements the NewNode interface. The MyNewNode class
exposes the attributes of the Box node including its node type, DEF ID and field values (in particular, the size field).
The value of the size field is represented using another utility class called MySFVec3f that implements the
SFVec3fFieldValue interface. Once the MyNewNode object has been created, it can be added to the scene by
sending it as an eventIn to the geometry field of a Shape node.

import org.iso.mpeg.mpegj.*;
import org.iso.mpeg.mpegj.scene.*;
import java.util.Hashtable;

/**
Sets the geometry of a DEF 3 Shape node to a Box node with size 2,3,4.
Uses two extra utility classes: MySFNode and MySFVec3f.

*/
public class MyNodeCreator {

public void createBox(Scene scene) throws MPEGJException {
Node shapeNode = scene.getNode(3);

// Create the representation of the Box node.
MyNewNode box = new MyNewNode(NodeType.Box, 0);

// Add the size field to the representation.
box.setField(Field.Box.size, new MySFVec3f(2, 3, 4));

// Send the Box node as an eventIn to the geometry field.
shapeNode.sendEventIn(EventIn.Shape.geometry, box);

}
}

/**
Utility class to represent a new node.

*/
class MyNewNode implements SFNodeFieldValue, NewNode {

int m_type;
int m_id;

ISO/IEC 14496-1:2001(E)

400 © ISO/IEC 2001 – All rights reserved

Hashtable m_fields = new Hashtable();
NodeValue m_value;

MyNewNode(NodeValue value) {
m_value = value;

}

MyNewNode(int type, int id) {
m_type = type;
m_id = id;
m_value = this;

}

void setField(int defID, FieldValue value) {
m_fields.put(new Integer(defID), value);

}

public NodeValue getSFNodeValue() {
return m_value;

}

public int getNodeType() {
return m_type;

}

public int getNodeID() {
return m_id;

}

public FieldValue getField(int defID) {
return (FieldValue) m_fields.get(new Integer(defID));

}
}

/**
Utility class to represent an SFVec3f.

*/
class MySFVec3f implements SFVec3fFieldValue {

float[] m_value;

MySFVec3f(float x, float y, float z) {
m_value = new float[] { x, y, z };

}

public float[] getSFVec3fValue() {
return m_value;

}
}

T.2 Resource and Decoder APIs

Examples in this section show how the ResourceManager and Decoder APIs can be used to monitor resources
and adapt to time varying resource conditions.

import org.iso.mpeg.mpegj.resourceManager.*;
import org.iso.mpeg.mpegj.decoder.*;
import org.iso.mpeg.mpegj.scene.*;
import org.iso.mpeg.mpegj.*;
import org.iso.mpeg.mpegj.net.*;

public class RM_Example implements MPEGlet
{

MpegjTerminal mpegjTerminal;

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 401

private ResourceManager resourceManager;
RendererEventHandler renderer_EH;
DecoderEventHandler decoder_EH;
// other declarations

Node m_node;
Renderer m_renderer;
java.util.Vector m_decoders;

public void RM_Example() {
m_decoders = new java.util.Vector(3, 3);

}

public void init()
{

// intialize the mpegjterminal
mpegjTerminal = new MpegjTerminal(MPEGlet);

// other initializations go here

// get resource manager from the mpegjterminal
try
{

resourceManager = mpegjTerminal.getResourceManager();
}catch(MPEGJException ex){ }

// create event handlers for renderer and decoders
renderer_EH = new EventHandler();
decoder_EH = new EventHandler();

// getting the renderer from the Resource Manager
try {

m_renderer = resourceManager.getRenderer();
} catch(RendererNotFoundException rnfe) { }

// to add event listener to the Renderer
if(m_renderer != null)

m_renderer.addMPRendererMediaListener(renderer_EH);

// to get the required decoder from the resource manager
try {

MPdecoderImp dec1 =
resourceManager.getDecoder(m_node);

// registering the decoder as listener to the events
dec1.addMPDecoderMediaListener(decoder_EH);

} catch(DecoderNotFoundException dnfe) { }
catch (BadNodeException bne) { }

// to change a decoder associated with a node
// get a decoder from the available decoders list
MPdecoder decoder = resourceManager.getAvailableDecoder(

decoder_type);

try {
resourceManager.changeDecoder(node, decoder)

}catch (DecoderNotFoundException dnfe) { }
catch(BadNodeException bne) { }

// to stop a decoder and restarting again

ISO/IEC 14496-1:2001(E)

402 © ISO/IEC 2001 – All rights reserved

decoder.stop();
decoder.start();

// to retrieve all capabilities (static, dynamic, profile) of // the
terminal
try {

CapabilityManager cm =
resourceManager.getCapabilityManager();

}catch (CapabilityManagerNotFoundException cmnfe) { }
// other code goes here

}
public void stop(){}
public void destroy(){}

}

T.2.1 Listener class for Decoder Events :

import org.iso.mpeg.mpegj.resourceManager.*;
import org.iso.mpeg.mpegj.decoder.*;

public class DecoderEventHandler implements MPDecoderMediaListener{
public void mPDecoderMediaHandler(MPDecoderMediaEvents event) {

MPDecoderImp dec = ((MPDecoderImp)event.getSource());

int condition = event.getCondition();
System.out.println("Event in Decoder with condition "+ condition);

// we can stop the decoder and restart it again
dec.stop();
// can change the decoder if we want
// restart it again
dec.start();

}
public DecoderEventHandler() {

super();
}

}

T.2.1 Listener class for Renderer Events

import org.iso.mpeg.mpegj.resourceManager.*;
public class RendererEventHandler implements MPRendererMediaListener{

public void mPCompositeMediaHandler(MPRendererMediaEvents event){
System.out.println("Renderer Event with condition "+event.getCondition());
// other code goes here

}
public RendererEventHandler() {

super();
}

}

T.3 Net APIs

This section illlustrates how to use the Net APIs through a simple example which enables and disables channels.

import org.iso.mpeg.mpegj.resourceManager.*;
import org.iso.mpeg.mpegj.scene.*;
import org.iso.mpeg.mpegj.*;
import org.iso.mpeg.mpegj.net.*;

public class Net_Example implements MPEGlet
{

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 403

MpegjTerminal mpegjTerminal;
private NetworkManager netManager;
ChannelController cc;
public void Net_Example() {
}
public void init()
{

mpegjTerminal = new MpegjTerminal(MPEGlet);
try
{

netManager = mpegjTerminal.getNetworkManager();
} catch(NetworkManagerNotFoundException ex){ }
catch(MPEGJException ex){ }

// to get the channel controller used to enable/ disable //the channels
cc = netManager.getChannelController();
// to enable a channel
cc.enable(serviceSessionID, channelID);
// to disable a channel
cc.disable(serviceSessionID, channelID);

}
public void stop(){}
public void destroy(){}

}

T.4 Section Filtering APIs

This shows a simple example of how the section information can be extracted from the MPEG-2 Transort Stream.

import org.iso.mpeg.mpegj.*;
import java.lang.Boolean;

public class SI_SF_Example implements MPEGlet
{

MpegjTerminal mpegjTerminal;
SimpleSectionFilter ssFilter;
SectionFilterListener sfListener;
int milliSecs;

// Class public methods
public SI_SF_Example() {

// intialize the mpegjterminal
mpegjTerminal = new MpegjTerminal(this);
// other initializations go here

ssFilter = new SimpleSectionFilter();
sfListener = new SectionFilterListener();

// Specify an object to be notified of events relating to this SectionFilter
object.

ssFilter.addSectionFilterListener(sfListener);

//Set the time-out for this section filter
ssFilter.setTimeOut(milliSecs);

// create mask and value parameters
byte[] posValue = new byte[12];
byte[] posMask = new byte[12];
for (int i=0; i<12; i++)
{ posValue[i] = 0;

posMask[i] = 0;

ISO/IEC 14496-1:2001(E)

404 © ISO/IEC 2001 – All rights reserved

}
posMask[0] = (byte)0xFF; // only check first byte
posValue[0] = (byte)0; // table_id PAT

//sets the SectionFilter object as filtering only for sections matching a
specific PID and

//table_id, and where contents of the section match the specified filter pattern.
ssFilter.startFilter

(0 // index, the number of this section filter
, 100 // id, uniquely identifying this filter action
, ssFilter // the listener to receive the events indicating a new

section has arrived
, 0 // PID, in the case of the PAT 0
, posMask // mask, which bits to check
, posValue // value, the value checked bits should have
, null // neg masking not done, always call this function in

SommitSectionFilter, other startfilter methods are incorrect.
, null
);

Section m_section = ssFilter.getSection()
try {

byte[] m_data = m_section.getData();
} catch (NoDataAvailableException ndae) { }

// sections matching this SectionFilter object will stop.
ssFilter.stopFiltering();

}
public void init() {}
public void stop(){}
public void destroy(){}

}

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 405

Annex U
(Normative)

MPEG-J APIs Listing (HTML)

This is a normative annex containing the javadocs of the MPEG-J APIs in the HTML format. This is included in the
electronic attachment to this Amendment.

ISO/IEC 14496-1:2001(E)

406 © ISO/IEC 2001 – All rights reserved

Annex V
(Normative)

MPEG-J APIs Listing

This is a normative annex containing the javadocs of the MPEG-J APIs. The API documentation was automatically
generated from Java sources of the specified MPEG-J APIs.

Package Summary
Packages
Package
org.iso.mpeg.mpegj

Access to MpegjTerminal which sets the namescope and provides the managers for
all the other categories (ResourceManager, SceneManager, etc.)

Package
org.iso.mpeg.mpegj.
decoder

Access and control to the decoders used to decode the audio-visual objects.

Package
org.iso.mpeg.mpegj.
net

Access and control of the network components of the MPEG-4 player.

Package
org.iso.mpeg.mpegj.
resource

Centralized facility for managing system resources
Access to the static and dynamic capabilities of the terminal.

Package
org.iso.mpeg.mpegj.
scene

Means by which MPEG-J applications access and manipulate the scene graph

V.1 package org.iso.mpeg.mpegj

V.1.1 Description

Class Summary
Interfaces
DecoderConfigDescrip-
tor

interface for DecoderConfigDescriptor

ObjectDescriptor interface for ObjectDescriptor
MPEGlet This the interface that has to be implemented by a remote MPEG-J Application.
ESDescriptor interface for ESDescriptor
Classes
MpegjTerminal MPEG-J Terminal class.
Exceptions
MPEGJException The class MPEGJException is a subclass of java.lang.Exception and is the

parent of all MPEG-J Exceptions.
NetworkManagerNot-
FoundException
SceneManagerNotFoun-
dException

V.1.2 org.iso.mpeg.mpegj.DecoderConfigDescriptor

V.1.2.1 Syntax

public interface DecoderConfigDescriptor
Description

interface for DecoderConfigDescriptor

Member Summary
Methods

int getStreamType()
int getavgBitRate()
int getBuffersizeDB()
int getmaxBitrate()
int getObjectTypeIndication()

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 407

V.1.2.2 Methods

getavgBitRate()
public int getavgBitRate()

Returns average bitrate in bits per second of this elementary stream

Returns:
average bit rate

getBuffersizeDB()
public int getBuffersizeDB()

Returns the size of the decoding buffer for this elementary stream in byte

Returns:
size of the buffer

getmaxBitrate()
public int getmaxBitrate()

Returns the maximum bitrate in bits/second of this elementary stream

Returns:
maximum bitrate

getObjectTypeIndication()
public int getObjectTypeIndication()

Returns the indication of the object or scene description type

Returns:
value representing the object or scene description type that needs to be supported by the decoder for this
elementary stream

getStreamType()
public int getStreamType()

Returns the type of this elementary stream

Returns:
stream type value

V.1.3 org.iso.mpeg.mpegj.ESDescriptor

V.1.3.1 Syntax

public interface ESDescriptor

V.1.3.2 Description

interface for ESDescriptor

Member Summary
Methods

int getESID()
boolean isStreamDependent()

int getdependsOn_ESID()
int getStreamPriority()

DecoderConfigDescriptor getDecoderConfigDescriptor()

V.1.3.3 Methods

getDecoderConfigDescriptor()
public org.iso.mpeg.mpegj.DecoderConfigDescriptor getDecoderConfigDescriptor()

Returns the decoder config Descriptor

ISO/IEC 14496-1:2001(E)

408 © ISO/IEC 2001 – All rights reserved

Returns: DecoderConfigDescriptor
getdependsOn_ESID()
public int getdependsOn_ESID()

Returns the ESID of another elementary stream on which this elementary stream depends.

Returns:
ESID or -1 if the stream is not dependent on another

getESID()
public int getESID()

Returns the ID associated with this ESdescriptor

Returns:
ESID

getStreamPriority()
public int getStreamPriority()

Returns the relative measure for the priority of this stream. An elementary stream with higher stream priority is
more important than one with a lower stream priority.

Returns:
priority

isStreamDependent()
public boolean isStreamDependent()

Returns whether this elementary stream depends another elementary stream

Returns:
true or false

V.1.4 org.iso.mpeg.mpegj.MPEGJException

V.1.4.1 Syntax

public class MPEGJException extends java.lang.Exception

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--org.iso.mpeg.mpegj.MPEGJException

Direct Known Subclasses:
org.iso.mpeg.mpegj.net.AccessLayerException,
org.iso.mpeg.mpegj.scene.BadNodeException,
org.iso.mpeg.mpegj.scene.BadParameterException,
org.iso.mpeg.mpegj.resource.CapabilityManagerNotFoundException,
org.iso.mpeg.mpegj.resource.IllegalDecoderMediaEventsException,
org.iso.mpeg.mpegj.resource.IllegalRendererMediaEventsException,
org.iso.mpeg.mpegj.resource.IllegalStreamMediaEventsException,
org.iso.mpeg.mpegj.scene.InvalidNodeException,
org.iso.mpeg.mpegj.scene.InvalidSceneException,
org.iso.mpeg.mpegj.decoder.MediaDecoderException, org.iso.mpeg.mpegj.resource.Render-
erNotFoundException, org.iso.mpeg.mpegj.resource.ResourceManagerNotFoundException

All Implemented Interfaces:
java.io.Serializable

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 409

V.1.4.2 Description

The class MPEGJException is a subclass of java.lang.Exception and is the parent of all MPEG-J Exceptions.

Member Summary
Constructors

MPEGJException()
MPEGJException(String)

V.1.4.3 Constructors

MPEGJException()
public MPEGJException()

Constructs an MPEGJException with no specified detail message.

MPEGJException(String)
public MPEGJException(java.lang.String)

Constructs an MPEGJException with a detailed message.

V.1.5 org.iso.mpeg.mpegj.MpegjTerminal

V.1.5.1 Syntax

public class MpegjTerminal extends java.lang.Object

java.lang.Object
|
+--org.iso.mpeg.mpegj.MpegjTerminal

V.1.5.2 Description

MPEG-J Terminal class. This class provides the information about the managers that are implemented in the
terminal. Each applet or application instantiates a new environment once it is loaded.

Member Summary
Constructors

MpegjTerminal()
MpegjTerminal(MPEGlet)

Methods
ResourceManager getResourceManager()
SceneManager getSceneManager()

NetworkManager getNetworkManager()
ObjectDescriptor getinitOD()

Vector getODs(int)

V.1.5.3 Constructors

MpegjTerminal()
public MpegjTerminal()

Constructor for the MpegjTerminal. This constructor may only be used by local applications.

Throws:
SecurityException - Thrown if this method is called by a non-local application.

MpegjTerminal(MPEGlet)
public MpegjTerminal(org.iso.mpeg.mpegj.MPEGlet)

Constructor for the MpegjTerminal. This constructor may be called by an MPEGlet to indicate the name scope in
which this MPEG-J Terminal object should operate.

Parameters:
mpeglet - the MPEGlet that identifies the name scope to use.

ISO/IEC 14496-1:2001(E)

410 © ISO/IEC 2001 – All rights reserved

Throws:
SecurityException - Thrown if this method is called by an unrecognized caller.

V.1.5.4 Methods

getinitOD()
public org.iso.mpeg.mpegj.ObjectDescriptor getinitOD()

Returns initOD associated with the scene

Returns:
ObjectDescriptor

getNetworkManager()
public org.iso.mpeg.mpegj.net.NetworkManager getNetworkManager()

Obtain the NetworkManager used to get all the information related to a DMIF session and to enable/disable DMIF
channels.

Returns:
the NetworkManager if available.

Throws:
org.iso.mpeg.mpegj.NetworkManagerNotFoundException - Thrown when the NetworkManager is not
available.

getODs(int)
public java.util.Vector getODs(int)

Returns the vector of ODs associated to that scene that were received by the OD stream.

Parameters:
int - initOD

Returns:
vector of Object Descriptors

getResourceManager()
public org.iso.mpeg.mpegj.resource.ResourceManager getResourceManager()

Obtain the ResourceManager.

Returns:
the ResourceManager if available.

Throws:
org.iso.mpeg.mpegj.resource.ResourceManagerNotFoundException - Thrown when the
ResourceManager is not available.

getSceneManager()
public org.iso.mpeg.mpegj.scene.SceneManager getSceneManager()

Obtain the SceneManager.

Returns:
the SceneManager if available.

Throws:
org.iso.mpeg.mpegj.SceneManagerNotFoundException - Thrown when the SceneManager is not
available.

V.1.6 org.iso.mpeg.mpegj.MPEGlet

V.1.6.1 Syntax

public interface MPEGlet extends java.lang.Runnable

All Superinterfaces:
java.lang.Runnable

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 411

V.1.6.2 Description

This the interface that has to be implemented by a remote MPEG-J Application. This methods in this interface are
very similar syntactically and semantically to the Applet Class, except that this is an interface and it extends the
Runnable interface, so that it can be executed as separate thread. Note that there is no start method. This is
because run() of the Runnable interface is used instead of start

Member Summary
Methods

void init()
void stop()
void destroy()

V.1.6.3 Methods

destroy()
public void destroy()

Called by the MPEG-J player to inform the MPEGlet that is beinf reclaimed and that is should destroy any
resources it has allocated. The stop method will always be called before destroy. Any operations before it is
destroyed should go in here.

init()
public void init()

Called by the MPEG-J player to inform the MPEGlet that it has been loaded into the system. This is always called
before the first time the MPEGlet is run as a separate by calling the run() method. Any initialization goes here.

stop()
public void stop()

Called by the MPEG-J player to inform the MPEGlet that it should stop its execution. This always called before
destroy() is called. This can also be called anytime the execution of the MPEGlet has to be stopped. Any
operations before it is stopped should go in here.

V.1.7 org.iso.mpeg.mpegj.NetworkManagerNotFoundException

V.1.7.1 Syntax

public class NetworkManagerNotFoundException extends java.lang.Exception

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--org.iso.mpeg.mpegj.NetworkManagerNotFoundException

All Implemented Interfaces:
java.io.Serializable

V.1.7.2 Description

Member Summary
Constructors

NetworkManagerNotFoundException()

V.1.7.3 Constructors

NetworkManagerNotFoundException()
public NetworkManagerNotFoundException()

ISO/IEC 14496-1:2001(E)

412 © ISO/IEC 2001 – All rights reserved

V.1.8 org.iso.mpeg.mpegj.ObjectDescriptor

V.1.9 Syntax

public interface ObjectDescriptor

V.1.9.1 Description

interface for ObjectDescriptor

Member Summary
Methods

int getObjectDescriptorID()
Vector getESDescriptors()

ESDescriptor getESDescriptor(int)
String getURL()

V.1.9.2 Methods

getESDescriptor(int)
public org.iso.mpeg.mpegj.ESDescriptor getESDescriptor(int)

Returns the ESDescriptor associated with the given ESID

Parameters:
ESDescriptor - ID

Returns:
ESDescriptor object

getESDescriptors()
public java.util.Vector getESDescriptors()

Returns the ESDescriptors associated with this ObjectDescriptor

Returns:
vector of ESDescriptors

getObjectDescriptorID()
public int getObjectDescriptorID()

Returns the ID associated with this Object Descriptor

Returns:
ObjectDescriptorID

getURL()
public java.lang.String getURL()

Returns the URL String

Returns:
String

V.1.10 org.iso.mpeg.mpegj.SceneManagerNotFoundException

V.1.10.1 Syntax

public class SceneManagerNotFoundException extends java.lang.Exception

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--org.iso.mpeg.mpegj.SceneManagerNotFoundException

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 413

All Implemented Interfaces:
java.io.Serializable

V.1.10.2 Description

Member Summary
Constructors

SceneManagerNotFoundException()

V.1.10.3 Constructors

SceneManagerNotFoundException()
public SceneManagerNotFoundException()

V.2 package org.iso.mpeg.mpegj.resource

V.2.1 Description

Class Summary
Interfaces
MPRendererFrameEvent-
Generator

An interface for adding and removing frame event listeners.

Dimension Interface for Dimension with set and get methods for Width and Height
StaticCapability This interface is used to provide developers a simple way to access basic

dynamic terminal capabilities.
MPRendererMediaLis-
tener

An interface that is called by the renderer when registered.

MPRendererEventGener-
ator

An interface for adding and removing Renderer event listeners.

TerminalProfileMan-
ager Thisinterface allows applications to query the terminal profiles.
Renderer Interface for the Rendering Engine.
DynamicCapabilityOb-
server

Interface to observe Dynamic capabilities.

MPDecoderMediaLis-
tener

An interface that is called by an MPDecoder when registered.

DynamicCapability This interface is used to provide developers a simple way to access basic
dynamic terminal capabilities.

MPDecoderEventGenera-
tor

An interface for adding and removing Decoder event listeners.

MPRendererFrameLis-
tener

An interface that is called periodically by the renderer.

Classes
MPDecoderMediaEvents An event object that is given to an MPDecoderMediaListener.
MPDecoderEventGenera-
torImp

An interface for adding and removing Decoder event listeners.

MPRendererFrameEvents An event object that is given to an MPRendererFrameListener.
CapabilityManager A CapabilityManager monitors latency and bandwidth of network connections

and manages peripheral devices.
ResourceManager The resource manager is used for regulation of performance.
CapabilityInfo This class is used to store information related to dynamic observers.
MPRendererMediaEvents An event object that is given to an MPRendererMediaListener.
CPUmonitor The CPUmonitor class is used to monitor selected terminal activities including

CPU load, and free/available system memory utilisation.
CapabilityObserver This class is used to store information related to dynamic observers.
Exceptions
IllegalDecoderMediaE-
ventsException
ResourceManagerNot-
FoundException

The class ResourceManagerNotFoundException is a subclass of
MPEGJException.

RendererNotFoundEx-
ception

The class RendererNotFoundException is a subclass of MPEGJException.

IllegalStreamMediaE-
ventsException

ISO/IEC 14496-1:2001(E)

414 © ISO/IEC 2001 – All rights reserved

CapabilityManagerNot-
FoundException

The class CapabilityManagerNotFoundException is a subclass of
MPEGJException.

IllegalRendererMedi-
aEventsException

This a subclass of MPEGJException.

V.2.2 org.iso.mpeg.mpegj.resource.CapabilityInfo

V.2.2.1 Syntax

public class CapabilityInfo extends java.lang.Object

java.lang.Object
|
+--org.iso.mpeg.mpegj.resource.CapabilityInfo

V.2.2.2 Description

This class is used to store information related to dynamic observers.

Member Summary
Constructors

CapabilityInfo(Observer, long, boolean)
Methods

boolean verifyCapabilityValue(long)

V.2.2.3 Constructors

CapabilityInfo(Observer, long, boolean)
public CapabilityInfo(java.util.Observer, long, boolean)

V.2.2.4 Methods

verifyCapabilityValue(long)
public boolean verifyCapabilityValue(long)

Verify Capability Value

Parameters:
value - the capability value that has to be verified

Returns:
true is the passed value exceeds the threshold, false otherwise.

V.2.3 org.iso.mpeg.mpegj.resource.CapabilityManager

V.2.3.1 Syntax

public class CapabilityManager extends java.lang.Object implements
org.iso.mpeg.mpegj.resource.DynamicCapability,
org.iso.mpeg.mpegj.resource.StaticCapability,
org.iso.mpeg.mpegj.resource.DynamicCapabilityObserver,
org.iso.mpeg.mpegj.resource.TerminalProfileManager

java.lang.Object
|
+--org.iso.mpeg.mpegj.resource.CapabilityManager

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 415

All Implemented Interfaces:
org.iso.mpeg.mpegj.resource.DynamicCapability,
org.iso.mpeg.mpegj.resource.DynamicCapabilityObserver,
org.iso.mpeg.mpegj.resource.StaticCapability,
org.iso.mpeg.mpegj.resource.TerminalProfileManager

V.2.3.2 Description

A CapabilityManager monitors latency and bandwidth of network connections and manages peripheral devices.

Functionality:

Interacts with DMIF.

Interacts with presentation devices.

Throws profile exceptions.

Interacts with input devices.

Throws MPEG4Events.

The CapabilityManager class handles capability through the CapabilityManager. The CapabilityManager offers a
simple and generic way to handle capabilities. The CapabilityManager implements some interfaces in order to
simplify developers work when basic capabilities need to be managed. [An interface incapsulates a coherent set of
services and attributes, i.e. a Role, without exlicitly binding this function to that of any particular object or code]. The
interfaces are:

DynamicCapability This interface is used to provide developers a simple way to access basic dynamic terminal
capabilities. A capability is dynamic if it can change value/status at runtime. For instance memory usage is a
dynamic capability.

StaticCapabilityThis interface is used to provide developers a simple way to access basic dynamic terminal
capabilities. A capability is considered static if its value/static cannot change at runtime. For instance the audio card
type is a static capability.

CapabilityObserverThis interface is used to provide developers a few methods that allow them to simply monitor
the value of common capabilities such as memory and resource usage.

Member Summary
Constructors

CapabilityManager()
Methods

void notifyApplicationFreeMemory(long, Observer)
void notifyTerminalFreeMemory(long, Observer)
void notifyTerminalLoad(long, Observer)
void notifyTerminalNetworkLoad(long, Observer)
void deleteObserver(Observer)
int getNumCPUs()
int getCPUSpeed(int)

String getCPUType(int)
String getMouseType()
int getDisplayColorDepth()

String getDisplayType()
String getKeyboardType()
String getNetworkType()
int getNumParallelPorts()
int getNumSerialPorts()

Dimension getScreenSize()
short getScreenDepth()
short getScreenResolution()
String getOSLanguage()
String getOSType()
String getTerminalArchitecture()

String[] getAudioDrivers()
String[] getMIDIDrivers()
String[] getVideoDrivers()
String getModemType()

ISO/IEC 14496-1:2001(E)

416 © ISO/IEC 2001 – All rights reserved

long getFreeTerminalMemory()
long getTotalTerminalMemory()
long getTotalApplicationMemory()
long getFreeApplicationMemory()
long getTerminalLoad()
long getNetworkLoad()
short getSceneDescriptionProfile()
short getVisualProfile()
short getAudioProfile()

V.2.3.3 Constructors

CapabilityManager()
public CapabilityManager()

V.2.3.4 Methods

deleteObserver(Observer)
public void deleteObserver(java.util.Observer)

deleteObserver

Specified By:
deleteObserver(Observer) in interface org.iso.mpeg.mpegj.resource.DynamicCapability-
Observer

Parameters:
objToDeregister - observer object previously registered using registerXXX methods

getAudioDrivers()
public java.lang.String[] getAudioDrivers()

Terminal Audio Enc/Dec

Specified By:
getAudioDrivers() in interface org.iso.mpeg.mpegj.resource.StaticCapability

Returns:
the available audio drivers.

getAudioProfile()
public short getAudioProfile()

Specified By:
getAudioProfile() in interface org.iso.mpeg.mpegj.resource.TerminalProfileManager

getCPUSpeed(int)
public int getCPUSpeed(int)

Terminal CPU Speed

Specified By:
getCPUSpeed(int) in interface org.iso.mpeg.mpegj.resource.StaticCapability

Returns:
the speed of the 'idx' CPU or -1 is an error occurs

getCPUType(int)
public java.lang.String getCPUType(int)

Terminal CPU type (Pentium for instance)

Specified By:
getCPUType(int) in interface org.iso.mpeg.mpegj.resource.StaticCapability

Parameters:
idx - the index of the CPU (idx >= 0)

Returns:
the type of CPU

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 417

Throws:
IllegalArgumentException - the index is either negative or out of range.

getDisplayColorDepth()
public int getDisplayColorDepth()

Terminal Display Color Depth

Specified By:
getDisplayColorDepth() in interface org.iso.mpeg.mpegj.resource.StaticCapability

Returns:
the display color depth (bits per pixel)

getDisplayType()
public java.lang.String getDisplayType()

Terminal Display Type (e.g. VGA)

Specified By:
getDisplayType() in interface org.iso.mpeg.mpegj.resource.StaticCapability

Returns:
the display type

getFreeApplicationMemory()
public long getFreeApplicationMemory()

Free application memory (RAM)

Specified By:
getFreeApplicationMemory() in interface org.iso.mpeg.mpegj.resource.DynamicCapability

Returns:
the amount of available (at application level e.g. JavaVM) free memory (bytes).

getFreeTerminalMemory()
public long getFreeTerminalMemory()

Terminal free memory (RAM)

Specified By:
getFreeTerminalMemory() in interface org.iso.mpeg.mpegj.resource.DynamicCapability

Returns:
the amount of free memory (bytes) installed on the terminal.

getKeyboardType()
public java.lang.String getKeyboardType()

Terminal Keyboard Type

Specified By:
getKeyboardType() in interface org.iso.mpeg.mpegj.resource.StaticCapability

Returns:
the keyboard type, NULL if the keyboard is not present.

getMIDIDrivers()
public java.lang.String[] getMIDIDrivers()

Terminal MIDI Enc/Dec

Specified By:
getMIDIDrivers() in interface org.iso.mpeg.mpegj.resource.StaticCapability

Returns:
the available MIDI drivers.

getModemType()
public java.lang.String getModemType()

Terminal modem type

Specified By:
getModemType() in interface org.iso.mpeg.mpegj.resource.StaticCapability

ISO/IEC 14496-1:2001(E)

418 © ISO/IEC 2001 – All rights reserved

Returns:
the modem speed ("28K", "56K" etc.) or "" is the modem is not installed.

getMouseType()
public java.lang.String getMouseType()

Terminal Mouse Type

Specified By:
getMouseType() in interface org.iso.mpeg.mpegj.resource.StaticCapability

Returns:
the mouse type or null if an error occurred

getNetworkLoad()
public long getNetworkLoad()

Terminal Network Load

Specified By:
getNetworkLoad() in interface org.iso.mpeg.mpegj.resource.DynamicCapability

Returns:
the network load (percentage).

getNetworkType()
public java.lang.String getNetworkType()

Terminal Network Type

Specified By:
getNetworkType() in interface org.iso.mpeg.mpegj.resource.StaticCapability

Returns:
the network type or null if an error occurred.

getNumCPUs()
public int getNumCPUs()

Number of Terminal CPUs

Specified By:
getNumCPUs() in interface org.iso.mpeg.mpegj.resource.StaticCapability

Returns:
the number of CPUs that equip the terminal or -1 is an error occurs

getNumParallelPorts()
public int getNumParallelPorts()

Terminal parallel IEEE-1284 port(s)

Specified By:
getNumParallelPorts() in interface org.iso.mpeg.mpegj.resource.StaticCapability

Returns:
the number of parallel ports present on the terminal.

getNumSerialPorts()
public int getNumSerialPorts()

Terminal serial RS-232 port(s)

Specified By:
getNumSerialPorts() in interface org.iso.mpeg.mpegj.resource.StaticCapability

Returns:
the number of serial ports present on the terminal.

getOSLanguage()
public java.lang.String getOSLanguage()

Terminal OS language

Specified By:
getOSLanguage() in interface org.iso.mpeg.mpegj.resource.StaticCapability

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 419

Returns:
the language of the OS version installed on the terminal.

getOSType()
public java.lang.String getOSType()

Terminal OS type (for instance JavaPC, Windows, MacOS)

Specified By:
getOSType() in interface org.iso.mpeg.mpegj.resource.StaticCapability

Returns:
the OS type installed on the terminal.

getSceneDescriptionProfile()
public short getSceneDescriptionProfile()

Scene Description Profile

Specified By:
getSceneDescriptionProfile() in interface org.iso.mpeg.mpegj.resource.TerminalPro-
fileManager

Returns:
the actual scene description profile.

getScreenDepth()
public short getScreenDepth()

Terminal screen depth

Specified By:
getScreenDepth() in interface org.iso.mpeg.mpegj.resource.StaticCapability

Returns:
the screen depth (bits/inch)

getScreenResolution()
public short getScreenResolution()

Terminal screen resolution

Specified By:
getScreenResolution() in interface org.iso.mpeg.mpegj.resource.StaticCapability

Returns:
the screen resolution (dots/inch)

getScreenSize()
public org.iso.mpeg.mpegj.resource.Dimension getScreenSize()

Terminal screen size

Specified By:
getScreenSize() in interface org.iso.mpeg.mpegj.resource.StaticCapability

Returns:
the screen size (pixel x pixel)

getTerminalArchitecture()
public java.lang.String getTerminalArchitecture()

Terminal architecture (for instance Alpha, x86)

Specified By:
getTerminalArchitecture() in interface org.iso.mpeg.mpegj.resource.StaticCapability

Returns:
the terminal architecture type.

getTerminalLoad()
public long getTerminalLoad()

Terminal CPU Load

Specified By:
getTerminalLoad() in interface org.iso.mpeg.mpegj.resource.DynamicCapability

ISO/IEC 14496-1:2001(E)

420 © ISO/IEC 2001 – All rights reserved

Returns:
the load (percentage) of the terminal CPUs

getTotalApplicationMemory()
public long getTotalApplicationMemory()

Total application memory (RAM)

Specified By:
getTotalApplicationMemory() in interface org.iso.mpeg.mpegj.resource.DynamicCapability

Returns:
the total amount of memory (bytes).

getTotalTerminalMemory()
public long getTotalTerminalMemory()

Terminal total memory (RAM)

Specified By:
getTotalTerminalMemory() in interface org.iso.mpeg.mpegj.resource.DynamicCapability

Returns:
the total amount of memory (bytes) installed on the terminal.

getVideoDrivers()
public java.lang.String[] getVideoDrivers()

Terminal Video Enc/Dec

Specified By:
getVideoDrivers() in interface org.iso.mpeg.mpegj.resource.StaticCapability

Returns:
the available video drivers.

getVisualProfile()
public short getVisualProfile()

Specified By:
getVisualProfile() in interface org.iso.mpeg.mpegj.resource.TerminalProfileManager

notifyApplicationFreeMemory(long, Observer)
public void notifyApplicationFreeMemory(long, java.util.Observer)

notifyApplicationFreeMemory

Specified By:
notifyApplicationFreeMemory(long, Observer) in interface
org.iso.mpeg.mpegj.resource.DynamicCapabilityObserver

Parameters:
freeApplicationMemory - application memory threshold

objToNotify - object to notify when the specified threshold is exceeded

Throws:
IllegalArgumentException - the freeApplicationMemory is either negative or out of range.

notifyTerminalFreeMemory(long, Observer)
public void notifyTerminalFreeMemory(long, java.util.Observer)

notifyTerminalFreeMemory

Specified By:
notifyTerminalFreeMemory(long, Observer) in interface
org.iso.mpeg.mpegj.resource.DynamicCapabilityObserver

Parameters:
freeTerminalMemory - terminal memory threshold

objToNotify - object to notify when the specified threshold is exceeded

Throws:
IllegalArgumentException - the freeTerminalMemory is either negative or out of range.

notifyTerminalLoad(long, Observer)
public void notifyTerminalLoad(long, java.util.Observer)

notifyTerminalLoad

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 421

Specified By:
notifyTerminalLoad(long, Observer) in interface org.iso.mpeg.mpegj.resource.Dynamic-
CapabilityObserver

Parameters:
cpuLoadPercentage - terminal CPU load percentage threshold

objToNotify - object to notify when the specified threshold is exceeded

Throws:
IllegalArgumentException - the cpuLoadPercentage is either negative or out of range.

notifyTerminalNetworkLoad(long, Observer)
public void notifyTerminalNetworkLoad(long, java.util.Observer)

notifyTerminalNetworkLoad

Specified By:
notifyTerminalNetworkLoad(long, Observer) in interface
org.iso.mpeg.mpegj.resource.DynamicCapabilityObserver

Parameters:
nwLoadPercentage - network load percentage threshold

objToNotify - object to notify when the specified threshold is exceeded

Throws:
IllegalArgumentException - the nwLoadPercentage is either negative or out of range.

V.2.4 org.iso.mpeg.mpegj.resource.CapabilityManagerNotFoundException

V.2.4.1 Syntax

public class CapabilityManagerNotFoundException extends
org.iso.mpeg.mpegj.MPEGJException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--org.iso.mpeg.mpegj.MPEGJException

|
+--org.iso.mpeg.mpegj.resource.CapabilityManagerNotFoundException

All Implemented Interfaces:
java.io.Serializable

V.2.4.2 Description

The class CapabilityManagerNotFoundException is a subclass of MPEGJException. This Exception is thrown by
the method getCapabilityManager() of Resource Manager.

Member Summary
Constructors

CapabilityManagerNotFoundException()
CapabilityManagerNotFoundException(String)

V.2.4.3 Constructors

CapabilityManagerNotFoundException()
public CapabilityManagerNotFoundException()

Constructs an CapabilityManagerNotFoundException with no specified detail message.

ISO/IEC 14496-1:2001(E)

422 © ISO/IEC 2001 – All rights reserved

CapabilityManagerNotFoundException(String)
public CapabilityManagerNotFoundException(java.lang.String)

Constructs an CapabilityManagerFoundException with a detailed message.

V.2.5 org.iso.mpeg.mpegj.resource.CapabilityObserver

V.2.5.1 Syntax

public class CapabilityObserver extends java.util.Observable implements
java.lang.Runnable

java.lang.Object
|
+--java.util.Observable

|
+--org.iso.mpeg.mpegj.resource.CapabilityObserver

All Implemented Interfaces:
java.lang.Runnable

V.2.5.2 Description

This class is used to store information related to dynamic observers.

Member Summary
Constructors

CapabilityObserver(CapabilityManager, short)
Methods

void addObserver(Observer, long, boolean)
void deleteObserver(Observer)
void deleteObservers()
void run()

V.2.5.3 Constructors

CapabilityObserver(CapabilityManager, short)
public CapabilityObserver(org.iso.mpeg.mpegj.resource.CapabilityManager, short)

CapabilityObserver constructor

Parameters:
t - a reference to the CapabilityManager

_capabilityCode - objToDeregister the object to be deregistered.

V.2.5.4 Methods

addObserver(Observer, long, boolean)
public synchronized void addObserver(java.util.Observer, long, boolean)

Add a new observer

Parameters:
o - the Observer

_threshold - the threshold value

deleteObserver(Observer)
public synchronized void deleteObserver(java.util.Observer)

deleteObserver: overrided method

Overrides:
java.util.Observable.deleteObserver(java.util.Observer) in class java.util.Observable

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 423

Parameters:
o - the Observer

deleteObservers()
public synchronized void deleteObservers()

deleteObservers: overrided method

Overrides:
java.util.Observable.deleteObservers() in class java.util.Observable

Parameters:
o - the Observer

run()
public void run()

run: the run() method (called by Thread)

Specified By:
java.lang.Runnable.run() in interface java.lang.Runnable

V.2.6 org.iso.mpeg.mpegj.resource.CPUmonitor

V.2.6.1 Syntax

public class CPUmonitor extends java.lang.Object

java.lang.Object
|
+--org.iso.mpeg.mpegj.resource.CPUmonitor

V.2.6.2 Description

The CPUmonitor class is used to monitor selected terminal activities including CPU load, and free/available system
memory utilisation.

Member Summary
Constructors

CPUmonitor()
Methods

short getCPUload()
long getFreeSystemMemory()
long getAvailSystemMemory()

V.2.6.3 Constructors

CPUmonitor()
public CPUmonitor()

V.2.6.4 Methods

getAvailSystemMemory()
public static native long getAvailSystemMemory()

getCPUload()
public static native short getCPUload()

getFreeSystemMemory()
public static native long getFreeSystemMemory()

V.2.7 org.iso.mpeg.mpegj.resource.Dimension

V.2.7.1 Syntax

public interface Dimension

ISO/IEC 14496-1:2001(E)

424 © ISO/IEC 2001 – All rights reserved

V.2.7.2 Description

Interface for Dimension with set and get methods for Width and Height

Member Summary
Methods

int getHeight()
int getWidth()
int setHeight(int)
int setWidth(int)

V.2.7.3 Methods

getHeight()
public int getHeight()

Returns Height as an integer

getWidth()
public int getWidth()

Returns Width as an integer

setHeight(int)
public int setHeight(int)

Sets the Height to the specified value

setWidth(int)
public int setWidth(int)

Sets the Width to the specified value

V.2.8 org.iso.mpeg.mpegj.resource.DynamicCapability

V.2.8.1 Syntax

public interface DynamicCapability

All Known Implementing Classes:
org.iso.mpeg.mpegj.resource.CapabilityManager

V.2.8.2 Description

This interface is used to provide developers a simple way to access basic dynamic terminal capabilities. A
capability is dynamic if it can change value/status at runtime. For instance memory usage is a dynamic capability.

Member Summary
Methods

long getFreeTerminalMemory()
long getTotalTerminalMemory()
long getTotalApplicationMemory()
long getFreeApplicationMemory()
long getTerminalLoad()
long getNetworkLoad()

V.2.8.3 Methods

getFreeApplicationMemory()
public long getFreeApplicationMemory()

Free application memory (RAM)

Returns:
the amount of available (at application level e.g. JavaVM) free memory (bytes).

getFreeTerminalMemory()
public long getFreeTerminalMemory()

Terminal free memory (RAM)

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 425

Returns:
the amount of free memory (bytes) installed on the terminal.

getNetworkLoad()
public long getNetworkLoad()

Terminal Network Load

Returns:
the network load (percentage).

getTerminalLoad()
public long getTerminalLoad()

Terminal CPU Load

Returns:
the load (percentage) of the terminal CPUs

getTotalApplicationMemory()
public long getTotalApplicationMemory()

Total application memory (RAM)

Returns:
the total amount of memory (bytes).

getTotalTerminalMemory()
public long getTotalTerminalMemory()

Terminal total memory (RAM)

Returns:
the total amount of memory (bytes) installed on the terminal.

V.2.9 org.iso.mpeg.mpegj.resource.DynamicCapabilityObserver

V.2.9.1 Syntax

public interface DynamicCapabilityObserver

All Known Implementing Classes:
org.iso.mpeg.mpegj.resource.CapabilityManager

V.2.9.2 Description

Interface to observe Dynamic capabilities. This interface is used to be notified of varying capabilities.

Member Summary
Methods

void notifyApplicationFreeMemory(long, Observer)
void notifyTerminalFreeMemory(long, Observer)
void notifyTerminalLoad(long, Observer)
void notifyTerminalNetworkLoad(long, Observer)
void deleteObserver(Observer)

V.2.9.3 Methods

deleteObserver(Observer)
public void deleteObserver(java.util.Observer)

This method is used to deregister an observer previously registered using any of the notifyXXX methods.

Parameters:
objToDeregister - the object to be deregistered.

notifyApplicationFreeMemory(long, Observer)
public void notifyApplicationFreeMemory(long, java.util.Observer)

This method is used by AVSession objects that want to be notified when the application free memory goes below a
certain threshold.

ISO/IEC 14496-1:2001(E)

426 © ISO/IEC 2001 – All rights reserved

Parameters:
freeApplicationMemory - the free application memory threshold (bytes).

objToNotify - the object to be notified.

Throws:
IllegalArgumentException - the threshold is out of range.

notifyTerminalFreeMemory(long, Observer)
public void notifyTerminalFreeMemory(long, java.util.Observer)

This method is used by AVSession objects that want to be notified when the total terminal free memory goes below
a certain threshold.

Parameters:
freeTerminalMemory - the free application memory threshold (bytes).

objToNotify - the object to be notified.

Throws:
IllegalArgumentException - the threshold is out of range.

notifyTerminalLoad(long, Observer)
public void notifyTerminalLoad(long, java.util.Observer)

This method is used by AVSession objects that want to be notified when the terminal CPU load goes above a
certain percentage.

Parameters:
cpuLoadPercentage - the cpu load (percentage) threshold.

objToNotify - the object to be notified.

Throws:
IllegalArgumentException - the threshold out of range [0...100].

notifyTerminalNetworkLoad(long, Observer)
public void notifyTerminalNetworkLoad(long, java.util.Observer)

This method is used by AVSession objects that want to be notified when the terminal network load goes above a
certain percentage.

Parameters:
nwLoadPercentage - the network load (percentage) threshold.

objToNotify - the object to be notified.

Throws:
IllegalArgumentException - the threshold out of range [0...100].

V.2.10 org.iso.mpeg.mpegj.resource.IllegalDecoderMediaEventsException

V.2.10.1 Syntax

public class IllegalDecoderMediaEventsException extends
org.iso.mpeg.mpegj.MPEGJException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--org.iso.mpeg.mpegj.MPEGJException

|
+--org.iso.mpeg.mpegj.resource.IllegalDecoderMediaEventsException

All Implemented Interfaces:
java.io.Serializable

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 427

V.2.10.2 Description

Member Summary
Constructors

IllegalDecoderMediaEventsException()
IllegalDecoderMediaEventsException(String)

V.2.10.3 Constructors

IllegalDecoderMediaEventsException()
public IllegalDecoderMediaEventsException()

Constructs an IllegalDecoderMediaEventsException with no specified detail message.

IllegalDecoderMediaEventsException(String)
public IllegalDecoderMediaEventsException(java.lang.String)

Constructs an IllegalDecoderMediaEventsException with a detailed message.

V.2.11 org.iso.mpeg.mpegj.resource.IllegalRendererMediaEventsException

V.2.11.1 Syntax

public class IllegalRendererMediaEventsException extends
org.iso.mpeg.mpegj.MPEGJException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--org.iso.mpeg.mpegj.MPEGJException

|
+--org.iso.mpeg.mpegj.resource.IllegalRendererMediaEventsException

All Implemented Interfaces:
java.io.Serializable

V.2.11.2 Description

This a subclass of MPEGJException. This is thrown when an illegal Renderer Media Event is posted

Member Summary
Constructors

IllegalRendererMediaEventsException()
IllegalRendererMediaEventsException(String)

V.2.11.3 Constructors

IllegalRendererMediaEventsException()
public IllegalRendererMediaEventsException()

Constructs an IllegalRendererMediaEventsException with no specified detail message.

IllegalRendererMediaEventsException(String)
public IllegalRendererMediaEventsException(java.lang.String)

Constructs an IllegalRendererMediaEventsException with a detailed message.

ISO/IEC 14496-1:2001(E)

428 © ISO/IEC 2001 – All rights reserved

V.2.12 org.iso.mpeg.mpegj.resource.IllegalStreamMediaEventsException

V.2.12.1 Syntax

public class IllegalStreamMediaEventsException extends
org.iso.mpeg.mpegj.MPEGJException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--org.iso.mpeg.mpegj.MPEGJException

|
+--org.iso.mpeg.mpegj.resource.IllegalStreamMediaEventsException

All Implemented Interfaces:
java.io.Serializable

V.2.12.2 Description

Member Summary
Constructors

IllegalStreamMediaEventsException()

V.2.12.3 Constructors

IllegalStreamMediaEventsException()
public IllegalStreamMediaEventsException()

V.2.13 org.iso.mpeg.mpegj.resource.MPDecoderEventGenerator

V.2.13.1 Syntax

public interface MPDecoderEventGenerator

All Known Subinterfaces:
org.iso.mpeg.mpegj.decoder.MPDecoder

All Known Implementing Classes:
org.iso.mpeg.mpegj.resource.MPDecoderEventGeneratorImp

V.2.13.2 Description

An interface for adding and removing Decoder event listeners.

Member Summary
Methods

void addMPDecoderMediaListener(MPDecoderMediaListener)
void removeMPDecoderMediaListener(MPDecoderMediaListener)

V.2.13.3 Methods

addMPDecoderMediaListener(MPDecoderMediaListener)
public void
addMPDecoderMediaListener(org.iso.mpeg.mpegj.resource.MPDecoderMediaListener)

Add a Render event listener. The listener is called by an MPdecoder when registered.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 429

Parameters:
l - the listener to add.

removeMPDecoderMediaListener(MPDecoderMediaListener)
public void
removeMPDecoderMediaListener(org.iso.mpeg.mpegj.resource.MPDecoderMediaListener)

Remove a Decoder event listener.

Parameters:
l - the listener to remove.

V.2.14 org.iso.mpeg.mpegj.resource.MPDecoderEventGeneratorImp

V.2.14.1 Syntax

public class MPDecoderEventGeneratorImp extends java.lang.Object implements
org.iso.mpeg.mpegj.resource.MPDecoderEventGenerator

java.lang.Object
|
+--org.iso.mpeg.mpegj.resource.MPDecoderEventGeneratorImp

All Implemented Interfaces:
org.iso.mpeg.mpegj.resource.MPDecoderEventGenerator

V.2.14.2 Description

An interface for adding and removing Decoder event listeners.

Member Summary
Constructors

MPDecoderEventGeneratorImp()
Methods

void addMPDecoderMediaListener(MPDecoderMediaListener)
void removeMPDecoderMediaListener(MPDecoderMediaListener)

V.2.14.3 Constructors

MPDecoderEventGeneratorImp()
public MPDecoderEventGeneratorImp()

V.2.14.4 Methods

addMPDecoderMediaListener(MPDecoderMediaListener)
public void
addMPDecoderMediaListener(org.iso.mpeg.mpegj.resource.MPDecoderMediaListener)

Add a Render event listener. The listener is called by an MPdecoder when registered.

Specified By:
addMPDecoderMediaListener(MPDecoderMediaListener) in interface
org.iso.mpeg.mpegj.resource.MPDecoderEventGenerator

Parameters:
l - the listener to add.

removeMPDecoderMediaListener(MPDecoderMediaListener)
public void
removeMPDecoderMediaListener(org.iso.mpeg.mpegj.resource.MPDecoderMediaListener)

Remove a Decoder event listener.

Specified By:
removeMPDecoderMediaListener(MPDecoderMediaListener) in interface
org.iso.mpeg.mpegj.resource.MPDecoderEventGenerator

Parameters:
l - the listener to remove.

ISO/IEC 14496-1:2001(E)

430 © ISO/IEC 2001 – All rights reserved

V.2.15 org.iso.mpeg.mpegj.resource.MPDecoderMediaEvents

V.2.15.1 Syntax

public class MPDecoderMediaEvents extends java.util.EventObject

java.lang.Object
|
+--java.util.EventObject

|
+--org.iso.mpeg.mpegj.resource.MPDecoderMediaEvents

All Implemented Interfaces:
java.io.Serializable

V.2.15.2 Description

An event object that is given to an MPDecoderMediaListener.

Member Summary
Fields

int DECODER_OVERFLOW
int DECODER_SYNC_ERROR
int STREAM_UNDERFLOW
int STREAM_OVERFLOW
int STREAM_START
int STREAM_END

Constructors
MPDecoderMediaEvents(Object, int)

Methods
int getCondition()

V.2.15.3 Fields

DECODER_OVERFLOW
public static final int DECODER_OVERFLOW

DECODER_OVERFLOW = 0

DECODER_SYNC_ERROR
public static final int DECODER_SYNC_ERROR

DECODER_SYNC_ERROR = 1

STREAM_END
public static final int STREAM_END

STREAM_END = 5

STREAM_OVERFLOW
public static final int STREAM_OVERFLOW

STREAM_OVERFLOW = 3

STREAM_START
public static final int STREAM_START

STREAM_START = 4

STREAM_UNDERFLOW
public static final int STREAM_UNDERFLOW

STREAM_UNDERFLOW = 2

V.2.15.4 Constructors

MPDecoderMediaEvents(Object, int)
public MPDecoderMediaEvents(java.lang.Object, int)

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 431

Construct an event object with condition. condition can be decoder overflow, sync error, or end of decode,
otherwise throws exception

Parameters:
source - the source of the event

condition - The condition variable can correspond the to decoder overflow, sync error, stream start or stop

Throws:
org.iso.mpeg.mpegj.resource.IllegalDecoderMediaEventsException - thrown an Illegal Decoder
Event is thrown

V.2.15.5 Methods

getCondition()
public int getCondition()

The obtained condition can correspond to decoder overflow, sync error, stream underflow, stream overflow, stream
start or stream end

V.2.16 org.iso.mpeg.mpegj.resource.MPDecoderMediaListener

V.2.16.1 Syntax

public interface MPDecoderMediaListener extends java.util.EventListener

All Superinterfaces:
java.util.EventListener

V.2.16.2 Description

An interface that is called by an MPDecoder when registered.

See Also:
org.iso.mpeg.mpegj.resource.MPDecoderEventGenerator

Member Summary
Methods

void mPDecoderMediaHandler(MPDecoderMediaEvents)

V.2.16.3 Methods

mPDecoderMediaHandler(MPDecoderMediaEvents)
public void mPDecoderMediaHandler(org.iso.mpeg.mpegj.resource.MPDecoderMediaEvents)

Notification of a Renderer event, called by a MPDecoder during decoder overflow, sync error, stream start or stop.

Parameters:
event - refers to the source of the event.

V.2.17 org.iso.mpeg.mpegj.resource.MPRendererEventGenerator

V.2.17.1 Syntax

public interface MPRendererEventGenerator

All Known Subinterfaces:
org.iso.mpeg.mpegj.resource.Renderer

ISO/IEC 14496-1:2001(E)

432 © ISO/IEC 2001 – All rights reserved

V.2.17.2 Description

An interface for adding and removing Renderer event listeners.

Member Summary
Methods

void addMPRendererMediaListener(MPRendererMediaListener)
void removeMPRendererMediaListener(MPRendererMediaListener)

V.2.17.3 Methods

addMPRendererMediaListener(MPRendererMediaListener)
public void
addMPRendererMediaListener(org.iso.mpeg.mpegj.resource.MPRendererMediaListener)

Add a Renderer event listener. The listener is called by the renderer when registered.

Parameters:
l - the listener to add.

removeMPRendererMediaListener(MPRendererMediaListener)
public void
removeMPRendererMediaListener(org.iso.mpeg.mpegj.resource.MPRendererMediaListener)

Remove a Renderer event listener.

Parameters:
l - the listener to remove.

V.2.18 org.iso.mpeg.mpegj.resource.MPRendererFrameEventGenerator

V.2.18.1 Syntax

public interface MPRendererFrameEventGenerator

All Known Subinterfaces:
org.iso.mpeg.mpegj.resource.Renderer

V.2.18.2 Description

An interface for adding and removing frame event listeners.

Member Summary
Methods

void addMPRendererFrameListener(MPRendererFrameListener, int)
void removeMPRendererFrameListener(MPRendererFrameListener)

V.2.18.3 Methods

addMPRendererFrameListener(MPRendererFrameListener, int)
public void
addMPRendererFrameListener(org.iso.mpeg.mpegj.resource.MPRendererFrameListener, int)

Add a frame event listener. The listener is called periodically by the renderer. The frames parameter indicates the
number of frames between each callback.

Parameters:
l - the listener to add.

frames - the number of frames between each callback.

removeMPRendererFrameListener(MPRendererFrameListener)
public void
removeMPRendererFrameListener(org.iso.mpeg.mpegj.resource.MPRendererFrameListener)

Remove a frame event listener.

Parameters:
l - the listener to remove.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 433

V.2.19 org.iso.mpeg.mpegj.resource.MPRendererFrameEvents

V.2.19.1 Syntax

public class MPRendererFrameEvents extends java.util.EventObject

java.lang.Object
|
+--java.util.EventObject

|
+--org.iso.mpeg.mpegj.resource.MPRendererFrameEvents

All Implemented Interfaces:
java.io.Serializable

V.2.19.2 Description

An event object that is given to an MPRendererFrameListener.

Member Summary
Constructors

MPRendererFrameEvents(Object)

V.2.19.3 Constructors

MPRendererFrameEvents(Object)
public MPRendererFrameEvents(java.lang.Object)

Construct a frame event object with a source.

Parameters:
source - the source of the event.

V.2.20 org.iso.mpeg.mpegj.resource.MPRendererFrameListener

V.2.20.1 Syntax

public interface MPRendererFrameListener

V.2.20.2 Description

An interface that is called periodically by the renderer. The number of frames between each call is specified when
the listener is registered.

See Also:
org.iso.mpeg.mpegj.resource.MPRendererFrameEventGenerator

Member Summary
Methods

void frameEvent(MPRendererFrameEvents)

V.2.20.3 Methods

frameEvent(MPRendererFrameEvents)
public void frameEvent(org.iso.mpeg.mpegj.resource.MPRendererFrameEvents)

Notification of a frame event, called periodically by the renderer.

Parameters:
event - refers to the source of the event.

ISO/IEC 14496-1:2001(E)

434 © ISO/IEC 2001 – All rights reserved

V.2.21 org.iso.mpeg.mpegj.resource.MPRendererMediaEvents

V.2.21.1 Syntax

public class MPRendererMediaEvents extends java.util.EventObject

java.lang.Object
|
+--java.util.EventObject

|
+--org.iso.mpeg.mpegj.resource.MPRendererMediaEvents

All Implemented Interfaces:
java.io.Serializable

V.2.21.2 Description

An event object that is given to an MPRendererMediaListener.

Member Summary
Fields

int DECODER_UNDERFLOW
int MISSED_FRAMES

Constructors
MPRendererMediaEvents(Object, int)

Methods
int getCondition()

V.2.21.3 Fields

DECODER_UNDERFLOW
public static final int DECODER_UNDERFLOW

DECODER_UNDERFLOW = 0

MISSED_FRAMES
public static final int MISSED_FRAMES

MISSED_FRAMES = 1

V.2.21.4 Constructors

MPRendererMediaEvents(Object, int)
public MPRendererMediaEvents(java.lang.Object, int)

Construct an event object with condition. condition can be decoder underflow or missed frames

Parameters:
source - the source of the event

condition - The condition variable can correspond the to decoder underflow or missed frame.

Throws:
org.iso.mpeg.mpegj.resource.IllegalRendererMediaEventsException - thrown an Illegal Renderer
Event is thrown

V.2.21.5 Methods

getCondition()
public int getCondition()

Gets the Condtion. The obtained condition can correspond to decoder underflow or a missed frame.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 435

V.2.22 org.iso.mpeg.mpegj.resource.MPRendererMediaListener

V.2.22.1 Syntax

public interface MPRendererMediaListener extends java.util.EventListener

All Superinterfaces:
java.util.EventListener

V.2.22.2 Description

An interface that is called by the renderer when registered.

See Also:
org.iso.mpeg.mpegj.resource.MPRendererEventGenerator

Member Summary
Methods

void mPCompositeMediaHandler(MPRendererMediaEvents)

V.2.22.3 Methods

mPCompositeMediaHandler(MPRendererMediaEvents)
public void
mPCompositeMediaHandler(org.iso.mpeg.mpegj.resource.MPRendererMediaEvents)

Notification of a Renderer event, called by the renderer during decoder underflow or a missed frame.

Parameters:
event - refers to the source of the event.

V.2.23 org.iso.mpeg.mpegj.resource.Renderer

V.2.23.1 Syntax

public interface Renderer extends
org.iso.mpeg.mpegj.resource.MPRendererEventGenerator,
org.iso.mpeg.mpegj.resource.MPRendererFrameEventGenerator

All Superinterfaces:
org.iso.mpeg.mpegj.resource.MPRendererEventGenerator,
org.iso.mpeg.mpegj.resource.MPRendererFrameEventGenerator

V.2.23.2 Description

Interface for the Rendering Engine.

V.2.24 org.iso.mpeg.mpegj.resource.RendererNotFoundException

V.2.24.1 Syntax

public class RendererNotFoundException extends org.iso.mpeg.mpegj.MPEGJException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--org.iso.mpeg.mpegj.MPEGJException

|
+--org.iso.mpeg.mpegj.resource.RendererNotFoundException

ISO/IEC 14496-1:2001(E)

436 © ISO/IEC 2001 – All rights reserved

All Implemented Interfaces:
java.io.Serializable

V.2.24.2 Description

The class RendererNotFoundException is a subclass of MPEGJException. This Exception is thrown by the method
getRenderer() of Resource Manager.

Member Summary
Constructors

RendererNotFoundException()
RendererNotFoundException(String)

V.2.24.3 Constructors

RendererNotFoundException()
public RendererNotFoundException()

Constructs an RendererNotFoundException with no specified detail message.

RendererNotFoundException(String)
public RendererNotFoundException(java.lang.String)

Constructs an RendererFoundException with a detailed message.

V.2.25 org.iso.mpeg.mpegj.resource.ResourceManager

V.2.25.1 Syntax

public class ResourceManager extends java.lang.Object

java.lang.Object
|
+--org.iso.mpeg.mpegj.resource.ResourceManager

V.2.25.2 Description

The resource manager is used for regulation of performance. The Resource Manager API provides a centralized
facility for managing resources. It is a collection of a number of classes and interfaces summarized as follows.

Member Summary
Constructors

ResourceManager()
Methods

CapabilityManager getCapabilityManager()
void setDecPriority(MPDecoder, int)
int getDecPriority(MPDecoder)

MPDecoder getDecoder(ObjectDescriptor, ESDescriptor)
Renderer getRenderer()

void changeDecoder(ObjectDescriptor, ESDescriptor, MPDecoder)
MPDecoder[] getAvailableDecoder(DecoderType)

V.2.25.3 Constructors

ResourceManager()
public ResourceManager()

V.2.25.4 Methods

changeDecoder(ObjectDescriptor, ESDescriptor, MPDecoder)
public void changeDecoder(org.iso.mpeg.mpegj.ObjectDescriptor,
org.iso.mpeg.mpegj.ESDescriptor, org.iso.mpeg.mpegj.decoder.MPDecoder)

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 437

Change decoder on the given Object Descriptor and ESDescriptor The underlying implementation is expected to
instantiate, attach and start a decoder similar to establishing a new decoder for a BIFS node. All the elementary
streams attached to the original decoder is attached to the new decoder.

Throws:
org.iso.mpeg.mpegj.decoder.DecoderNotFoundException - Thrown when the Decoder is not available

org.iso.mpeg.mpegj.scene.BadNodeException - is thrown when the OD does not correspond to a valid
node in the scenegraph

getAvailableDecoder(DecoderType)
public org.iso.mpeg.mpegj.decoder.MPDecoder
getAvailableDecoder(org.iso.mpeg.mpegj.decoder.DecoderType)

Get available decoders given decoder type.

Returns:
returns an array of available decoders that are not used currently.

Throws:
org.iso.mpeg.mpegj.decoder.InvalidDecoderTypeException - Thrown when the DecoderType not
valid

getCapabilityManager()
public org.iso.mpeg.mpegj.resource.CapabilityManager getCapabilityManager()

Returns the CapabilityManager used to retrieve all the capabilities (static, dynamic, profile) of the terminal.

Returns:
the CapabilityManager if available

Throws:
org.iso.mpeg.mpegj.resource.CapabilityManagerNotFoundException - Thrown when the
CapabilityManager is not available (e.g. it is impossible to retrieve information about CPU load, memory etc.)

getDecoder(ObjectDescriptor, ESDescriptor)
public org.iso.mpeg.mpegj.decoder.MPDecoder
getDecoder(org.iso.mpeg.mpegj.ObjectDescriptor, org.iso.mpeg.mpegj.ESDescriptor)

Get Decoder for the given ObjectDescriptor and ESDescriptor.

Throws:
org.iso.mpeg.mpegj.decoder.DecoderNotFoundException - Thrown when the Decoder is not available

org.iso.mpeg.mpegj.scene.BadNodeException - is thrown when the nodeId does not correspond to a valid
node in the scenegraph

getDecPriority(MPDecoder)
public int getDecPriority(org.iso.mpeg.mpegj.decoder.MPDecoder)

Get priority of a media elementary stream.

Throws:
org.iso.mpeg.mpegj.decoder.DecoderNotFoundException - Thrown when the Decoder is not available

getRenderer()
public org.iso.mpeg.mpegj.resource.Renderer getRenderer()

Get renderer and be ready to add events to renderer.

Throws:
org.iso.mpeg.mpegj.resource.RendererNotFoundException - is thrown if the Renderer is not available

setDecPriority(MPDecoder, int)
public void setDecPriority(org.iso.mpeg.mpegj.decoder.MPDecoder, int)

Override/change priority of a media elementary stream.

Throws:
org.iso.mpeg.mpegj.decoder.DecoderNotFoundException - Thrown when the Decoder is not available

org.iso.mpeg.mpegj.decoder.InvalidDecoderPriorityException - thrown when the prirority is invalid

V.2.26 org.iso.mpeg.mpegj.resource.ResourceManagerNotFoundException

V.2.26.1 Syntax

public class ResourceManagerNotFoundException extends
org.iso.mpeg.mpegj.MPEGJException

ISO/IEC 14496-1:2001(E)

438 © ISO/IEC 2001 – All rights reserved

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--org.iso.mpeg.mpegj.MPEGJException

|
+--org.iso.mpeg.mpegj.resource.ResourceManagerNotFoundException

All Implemented Interfaces:
java.io.Serializable

V.2.26.2 Description

The class ResourceManagerNotFoundException is a subclass of MPEGJException. This Exception is thrown by
the method getRM() of MpegjTerminal.

Member Summary
Constructors

ResourceManagerNotFoundException()
ResourceManagerNotFoundException(String)

V.2.26.3 Constructors

ResourceManagerNotFoundException()
public ResourceManagerNotFoundException()

Constructs an ResourceManagerNotFoundException with no specified detail message.

ResourceManagerNotFoundException(String)
public ResourceManagerNotFoundException(java.lang.String)

Constructs an ResourceManagerNotFoundException with a detailed message.

V.2.27 org.iso.mpeg.mpegj.resource.StaticCapability

V.2.27.1 Syntax

public interface StaticCapability

All Known Implementing Classes:
org.iso.mpeg.mpegj.resource.CapabilityManager

V.2.27.2 Description

This interface is used to provide developers a simple way to access basic dynamic terminal capabilities. A
capability is considered static if its value cannot change at runtime. For instance the audio card type is a static
capability.

Member Summary
Methods

int getNumCPUs()
int getCPUSpeed(int)

String getCPUType(int)
String getMouseType()
int getDisplayColorDepth()

String getDisplayType()
String getKeyboardType()
String getNetworkType()
int getNumParallelPorts()
int getNumSerialPorts()

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 439

Dimension getScreenSize()
short getScreenDepth()
short getScreenResolution()
String getOSLanguage()
String getOSType()
String getTerminalArchitecture()

String[] getAudioDrivers()
String[] getMIDIDrivers()
String[] getVideoDrivers()
String getModemType()

V.2.27.3 Methods

getAudioDrivers()
public java.lang.String[] getAudioDrivers()

Terminal Audio Enc/Dec

Returns:
the available audio drivers.

getCPUSpeed(int)
public int getCPUSpeed(int)

Terminal CPU Speed

Parameters:
idx - the index of the video card (idx >= 0)

Returns:
the speed (Mhz) of a terminal CPU.

Throws:
IllegalArgumentException - the index is either negative or out of range.

getCPUType(int)
public java.lang.String getCPUType(int)

Terminal CPU type (Pentium for instance)

Parameters:
idx - the index of the CPU (idx >= 0)

Returns:
the type of CPU

Throws:
IllegalArgumentException - the index is either negative or out of range.

getDisplayColorDepth()
public int getDisplayColorDepth()

Terminal Display Color Depth

Returns:
the display color depth (bits per pixel)

getDisplayType()
public java.lang.String getDisplayType()

Terminal Display Type (e.g. VGA)

Returns:
the display type

getKeyboardType()
public java.lang.String getKeyboardType()

Terminal Keyboard Type

ISO/IEC 14496-1:2001(E)

440 © ISO/IEC 2001 – All rights reserved

Returns:
the keyboard type, NULL if the keyboard is not present.

getMIDIDrivers()
public java.lang.String[] getMIDIDrivers()

Terminal MIDI Enc/Dec

Returns:
the available MIDI drivers.

getModemType()
public java.lang.String getModemType()

Terminal modem type [lsInternalModem]

Returns:
the modem speed ("28K", "56K" etc.) or NULL is the modem is not installed.

getMouseType()
public java.lang.String getMouseType()

Terminal Mouse Type

Returns:
the mouse type

getNetworkType()
public java.lang.String getNetworkType()

Terminal Network Type

Returns:
the network type.

getNumCPUs()
public int getNumCPUs()

Number of Terminal CPUs

Returns:
the number of CPUs that equip the terminal

getNumParallelPorts()
public int getNumParallelPorts()

Terminal parallel IEEE-1284 port(s)

Returns:
the number of parallel ports present on the terminal.

getNumSerialPorts()
public int getNumSerialPorts()

Terminal serial RS-232 port(s)

Returns:
the number of serial ports present on the terminal.

getOSLanguage()
public java.lang.String getOSLanguage()

Terminal OS language [lsLanguage]

Returns:
the language of the OS version installed on the terminal.

getOSType()
public java.lang.String getOSType()

Terminal OS type (for instance JavaPC, Windows, MacOS) [lsOpSys/lsSysType]

Returns:
the OS type installed on the terminal.

getScreenDepth()
public short getScreenDepth()

Terminal screen depth

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 441

Returns:
the screen depth (bits/inch)

getScreenResolution()
public short getScreenResolution()

Terminal screen resolution

Returns:
the screen resolution (dots/inch)

getScreenSize()
public org.iso.mpeg.mpegj.resource.Dimension getScreenSize()

Terminal screen size

Returns:
the screen size (pixel x pixel)

getTerminalArchitecture()
public java.lang.String getTerminalArchitecture()

Terminal architecture (for instance Alpha, x86)

Returns:
the terminal architecture type.

getVideoDrivers()
public java.lang.String[] getVideoDrivers()

Terminal Video Enc/Dec

Returns:
the available video drivers.

V.2.28 org.iso.mpeg.mpegj.resource.TerminalProfileManager

V.2.28.1 Syntax

public interface TerminalProfileManager

All Known Implementing Classes:
org.iso.mpeg.mpegj.resource.CapabilityManager

V.2.28.2 Description

Thisinterface allows applications to query the terminal profiles. Profiles are specified in the document ISO/IEC
14496-1.

Member Summary
Methods

short getVisualProfile()
short getAudioProfile()
short getSceneDescriptionProfile()
short getODProfile()
short getGraphicsProfile()
short getMPEGJProfile()

V.2.28.3 Methods

getAudioProfile()
public short getAudioProfile()

This method returns the supported audio profile The value of the return value is as given in
audioProfileLevelIndication Table in ISO/ IEC 14496-1

Returns:
the audio description profile and level.

getGraphicsProfile()
public short getGraphicsProfile()

This method returns the supported scene description profile The value of the return value is as given in
graphicsProfileLevelIndication Table in ISO/IEC 14496-1

ISO/IEC 14496-1:2001(E)

442 © ISO/IEC 2001 – All rights reserved

Returns:
the supported Graphics profile and level.

getMPEGJProfile()
public short getMPEGJProfile()

This method returns the supported scene description profile The value of the return value is as given in MPEG-
JProfileLevelIndication Table in ISO/IEC 14496-1

Returns:
the supported MPEG-J profile and level.

getODProfile()
public short getODProfile()

This method returns the supported scene description profile The value of the return value is as given in
ODProfileLevelIndication Table in ISO/IEC 14496-1

Returns:
the supported OD profile and level.

getSceneDescriptionProfile()
public short getSceneDescriptionProfile()

This method returns the supported scene description profile The value of the return value is as given in
sceneProfileLevelIndication Table in ISO/IEC 14496-1

Returns:
the supported sceen description profile and level.

getVisualProfile()
public short getVisualProfile()

This method returns the supported visual profile The value of the return value is as given in
visualProfileLevelIndication Table in ISO/ IEC 14496-1

Returns:
the supported visual profile and level.

V.3 package org.iso.mpeg.mpegj.decoder

V.3.1 Description

Class Summary
Interfaces
MPDecoder This is the base interface for media decoders.
DecoderType Interface for decoder types.
Exceptions
MediaDecoderException The class MediaDecoderException is a subclass of MPEGJException and is the

parent of all ScenManagerExceptions.
InvalidDecoderLevel-
Exception

The class InvalidDecoderLevelException is a subclass of
MediaDecoderException.

DecoderNotFoundExcep-
tion

The class DecoderNotFoundException is a subclass of MediaDecoderException.

InvalidDecoderPriori-
tyException

The class InvalidDecoderPriorityException is a subclass of
MediaDecoderException.

InvalidDecoderSpeed-
Exception

The class InvalidDecoderSpeedException is a subclass of
MediaDecoderException.

InvalidDecoderModeEx-
ception

The class InvalidDecoderModeException is a subclass of
MediaDecoderException.

DecoderNotRunningEx-
ception

The class DecoderNotRunningException is a subclass of
MediaDecoderException.

DecoderAlreadyAt-
tachedException

The class DecoderAlreadyAttachedException is a subclass of
MediaDecoderException.

DecoderNotAttachedEx-
ception

The class DecoderNotAttachedException is a subclass of
MediaDecoderException.

DecoderAlreadyRun-
ningException

The class DecoderAlreadyRunningException is a subclass of
MediaDecoderException.

InvalidDecoderTypeEx-
ception

The class InvalidDecoderTypeException is a subclass of MediaDecoderException.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 443

V.3.2 org.iso.mpeg.mpegj.decoder.DecoderAlreadyAttachedException

V.3.2.1 Syntax

public class DecoderAlreadyAttachedException extends
org.iso.mpeg.mpegj.decoder.MediaDecoderException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--org.iso.mpeg.mpegj.MPEGJException

|
+--org.iso.mpeg.mpegj.decoder.MediaDecoderException

|
+--org.iso.mpeg.mpegj.decoder.DecoderAlreadyAttachedException

All Implemented Interfaces:
java.io.Serializable

V.3.2.2 Description

The class DecoderAlreadyAttachedException is a subclass of MediaDecoderException. This Exception is thrown
when a Decoder that is already attached is attempted to attach again.

Member Summary
Constructors

DecoderAlreadyAttachedException()
DecoderAlreadyAttachedException(String)

V.3.2.3 Constructors

DecoderAlreadyAttachedException()
public DecoderAlreadyAttachedException()

Constructs an DecoderAlreadyAttachedException with no specified detail message.

DecoderAlreadyAttachedException(String)
public DecoderAlreadyAttachedException(java.lang.String)

Constructs an DecoderAttachedException with a detailed message.

V.3.3 org.iso.mpeg.mpegj.decoder.DecoderAlreadyRunningException

V.3.3.1 Syntax

public class DecoderAlreadyRunningException extends
org.iso.mpeg.mpegj.decoder.MediaDecoderException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--org.iso.mpeg.mpegj.MPEGJException

|

ISO/IEC 14496-1:2001(E)

444 © ISO/IEC 2001 – All rights reserved

+--org.iso.mpeg.mpegj.decoder.MediaDecoderException
|
+--org.iso.mpeg.mpegj.decoder.DecoderAlreadyRunningException

All Implemented Interfaces:
java.io.Serializable

V.3.3.2 Description

The class DecoderAlreadyRunningException is a subclass of MediaDecoderException. This Exception is thrown
when a Decoder that is already running is attempted to start.

Member Summary
Constructors

DecoderAlreadyRunningException()
DecoderAlreadyRunningException(String)

V.3.3.3 Constructors

DecoderAlreadyRunningException()
public DecoderAlreadyRunningException()

Constructs an DecoderAlreadyRunningException with no specified detail message.

DecoderAlreadyRunningException(String)
public DecoderAlreadyRunningException(java.lang.String)

Constructs an DecoderRunningException with a detailed message.

V.3.4 org.iso.mpeg.mpegj.decoder.DecoderNotAttachedException

V.3.4.1 Syntax

public class DecoderNotAttachedException extends
org.iso.mpeg.mpegj.decoder.MediaDecoderException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--org.iso.mpeg.mpegj.MPEGJException

|
+--org.iso.mpeg.mpegj.decoder.MediaDecoderException

|
+--org.iso.mpeg.mpegj.decoder.DecoderNotAttachedException

All Implemented Interfaces:
java.io.Serializable

V.3.4.2 Description

The class DecoderNotAttachedException is a subclass of MediaDecoderException. This Exception is thrown when
a Decoder that is not attached is attempted detach.

Member Summary
Constructors

DecoderNotAttachedException()
DecoderNotAttachedException(String)

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 445

V.3.4.3 Constructors

DecoderNotAttachedException()
public DecoderNotAttachedException()

Constructs an DecoderNotAttachedException with no specified detail message.

DecoderNotAttachedException(String)
public DecoderNotAttachedException(java.lang.String)

Constructs an DecoderAttachedException with a detailed message.

V.3.5 org.iso.mpeg.mpegj.decoder.DecoderNotFoundException

V.3.5.1 Syntax

public class DecoderNotFoundException extends
org.iso.mpeg.mpegj.decoder.MediaDecoderException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--org.iso.mpeg.mpegj.MPEGJException

|
+--org.iso.mpeg.mpegj.decoder.MediaDecoderException

|
+--org.iso.mpeg.mpegj.decoder.DecoderNotFoundException

All Implemented Interfaces:
java.io.Serializable

V.3.5.2 Description

The class DecoderNotFoundException is a subclass of MediaDecoderException. This Exception is thrown by the
method getDecoder() of ResourceManager.

Member Summary
Constructors

DecoderNotFoundException()
DecoderNotFoundException(String)

V.3.5.3 Constructors

DecoderNotFoundException()
public DecoderNotFoundException()

Constructs an DecoderNotFoundException with no specified detail message.

DecoderNotFoundException(String)
public DecoderNotFoundException(java.lang.String)

Constructs an DecoderFoundException with a detailed message.

V.3.6 org.iso.mpeg.mpegj.decoder.DecoderNotRunningException

V.3.6.1 Syntax

public class DecoderNotRunningException extends
org.iso.mpeg.mpegj.decoder.MediaDecoderException

ISO/IEC 14496-1:2001(E)

446 © ISO/IEC 2001 – All rights reserved

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--org.iso.mpeg.mpegj.MPEGJException

|
+--org.iso.mpeg.mpegj.decoder.MediaDecoderException

|
+--org.iso.mpeg.mpegj.decoder.DecoderNotRunningException

All Implemented Interfaces:
java.io.Serializable

V.3.6.2 Description

The class DecoderNotRunningException is a subclass of MediaDecoderException. This Exception is thrown when
a Decoder that is not running is attempted to pause or stop.

Member Summary
Constructors

DecoderNotRunningException()
DecoderNotRunningException(String)

V.3.6.3 Constructors

DecoderNotRunningException()
public DecoderNotRunningException()

Constructs an DecoderNotRunningException with no specified detail message.

DecoderNotRunningException(String)
public DecoderNotRunningException(java.lang.String)

Constructs an DecoderRunningException with a detailed message.

V.3.7 org.iso.mpeg.mpegj.decoder.DecoderType

V.3.7.1 Syntax

public interface DecoderType

V.3.7.2 Description

Interface for decoder types.

Member Summary
Fields

int MPEG1V
int MPEG1A
int MPEG2TS
int MPEG2V
int MPEG2A
int MPEG4S
int MPEG4V
int MPEG4VS
int MPEG4T
int MPEG4TS
int MPEG4M
int MPEG4F
int MPEG4FS
int MPEG4A

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 447

int MPEG4AS
int MPEG4TT
int MPEG4SA

Methods
int getDecoderType()

V.3.7.3 Fields

MPEG1A
public static final int MPEG1A

MPEG1 audio. MPEG1A = 1

MPEG1V
public static final int MPEG1V

MPEG1 video. MPEG1V = 0

MPEG2A
public static final int MPEG2A

MPEG2 audio. MPEG2A = 4

MPEG2TS
public static final int MPEG2TS

MPEG2 transport stream. MPEG2TS = 2

MPEG2V
public static final int MPEG2V

MPEG2 video. MPEG2V = 3

MPEG4A
public static final int MPEG4A

MPEG4 audio. MPEG4A = 13

MPEG4AS
public static final int MPEG4AS

MPEG4 scalable audio MPEG4AS = 14

MPEG4F
public static final int MPEG4F

MPEG4 face decoder. MPEG4F = 11

MPEG4FS
public static final int MPEG4FS

MPEG4 scalable face decoder. MPEG4FS = 12

MPEG4M
public static final int MPEG4M

MPEG4M = 10

MPEG4S
public static final int MPEG4S

MPEG4 systems. MPEG4S = 5

MPEG4SA
public static final int MPEG4SA

MPEG4 structured audio. MPEG4SA = 16

MPEG4T
public static final int MPEG4T

MPEG4 image texture. MPEG4T = 8

MPEG4TS
public static final int MPEG4TS

MPEG4 scalable texture. MPEG4TS = 9

MPEG4TT
public static final int MPEG4TT

ISO/IEC 14496-1:2001(E)

448 © ISO/IEC 2001 – All rights reserved

MPEG4 TTS audio MPEG4TT = 15

MPEG4V
public static final int MPEG4V

MPEG4 video. MPEG4V = 6

MPEG4VS
public static final int MPEG4VS

MPEG4 scalable video. MPEG4VS = 7

V.3.7.4 Methods

getDecoderType()
public int getDecoderType()

Get decoder type.

V.3.8 org.iso.mpeg.mpegj.decoder.InvalidDecoderLevelException

V.3.8.1 Syntax

public class InvalidDecoderLevelException extends
org.iso.mpeg.mpegj.decoder.MediaDecoderException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--org.iso.mpeg.mpegj.MPEGJException

|
+--org.iso.mpeg.mpegj.decoder.MediaDecoderException

|
+--org.iso.mpeg.mpegj.decoder.InvalidDecoderLevelException

All Implemented Interfaces:
java.io.Serializable

V.3.8.2 Description

The class InvalidDecoderLevelException is a subclass of MediaDecoderException. This Exception is thrown by the
when a decoder Level is attempted to be set to an invalid value (by the Media APIs).

Member Summary
Constructors

InvalidDecoderLevelException()
InvalidDecoderLevelException(String)

V.3.8.3 Constructors

InvalidDecoderLevelException()
public InvalidDecoderLevelException()

Constructs an InvalidDecoderLevelException with no specified detail message.

InvalidDecoderLevelException(String)
public InvalidDecoderLevelException(java.lang.String)

Constructs an InvalidDecoderLevelException with a detailed message.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 449

V.3.9 org.iso.mpeg.mpegj.decoder.InvalidDecoderModeException

V.3.9.1 Syntax

public class InvalidDecoderModeException extends
org.iso.mpeg.mpegj.decoder.MediaDecoderException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--org.iso.mpeg.mpegj.MPEGJException

|
+--org.iso.mpeg.mpegj.decoder.MediaDecoderException

|
+--org.iso.mpeg.mpegj.decoder.InvalidDecoderModeException

All Implemented Interfaces:
java.io.Serializable

V.3.9.2 Description

The class InvalidDecoderModeException is a subclass of MediaDecoderException. This Exception is thrown by the
when a decoder mode is attempted to be set to an invalid value (by the Media APIs).

Member Summary
Constructors

InvalidDecoderModeException()
InvalidDecoderModeException(String)

V.3.9.3 Constructors

InvalidDecoderModeException()
public InvalidDecoderModeException()

Constructs an InvalidDecoderModeException with no specified detail message.

InvalidDecoderModeException(String)
public InvalidDecoderModeException(java.lang.String)

Constructs an InvalidDecoderModeException with a detailed message.

V.3.10 org.iso.mpeg.mpegj.decoder.InvalidDecoderPriorityException

V.3.10.1 Syntax

public class InvalidDecoderPriorityException extends
org.iso.mpeg.mpegj.decoder.MediaDecoderException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--org.iso.mpeg.mpegj.MPEGJException

|
+--org.iso.mpeg.mpegj.decoder.MediaDecoderException

ISO/IEC 14496-1:2001(E)

450 © ISO/IEC 2001 – All rights reserved

|
+--org.iso.mpeg.mpegj.decoder.InvalidDecoderPriorityException

All Implemented Interfaces:
java.io.Serializable

V.3.10.2 Description

The class InvalidDecoderPriorityException is a subclass of MediaDecoderException. This Exception is thrown by
the when a decoder priority is attempted to be set to an invalid value (by the Resource Manager).

Member Summary
Constructors

InvalidDecoderPriorityException()
InvalidDecoderPriorityException(String)

V.3.10.3 Constructors

InvalidDecoderPriorityException()
public InvalidDecoderPriorityException()

Constructs an InvalidDecoderPriorityException with no specified detail message.

InvalidDecoderPriorityException(String)
public InvalidDecoderPriorityException(java.lang.String)

Constructs an InvalidDecoderPriorityException with a detailed message.

V.3.11 org.iso.mpeg.mpegj.decoder.InvalidDecoderSpeedException

V.3.11.1 Syntax

public class InvalidDecoderSpeedException extends
org.iso.mpeg.mpegj.decoder.MediaDecoderException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--org.iso.mpeg.mpegj.MPEGJException

|
+--org.iso.mpeg.mpegj.decoder.MediaDecoderException

|
+--org.iso.mpeg.mpegj.decoder.InvalidDecoderSpeedException

All Implemented Interfaces:
java.io.Serializable

V.3.11.2 Description

The class InvalidDecoderSpeedException is a subclass of MediaDecoderException. This Exception is thrown by
the when a decoder mode is attempted to be set to an invalid value (by the Media APIs).

Member Summary
Constructors

InvalidDecoderSpeedException()
InvalidDecoderSpeedException(String)

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 451

V.3.11.3 Constructors

InvalidDecoderSpeedException()
public InvalidDecoderSpeedException()

Constructs an InvalidDecoderSpeedException with no specified detail message.

InvalidDecoderSpeedException(String)
public InvalidDecoderSpeedException(java.lang.String)

Constructs an InvalidDecoderSpeedException with a detailed message.

V.3.12 org.iso.mpeg.mpegj.decoder.InvalidDecoderTypeException

V.3.12.1 Syntax

public class InvalidDecoderTypeException extends
org.iso.mpeg.mpegj.decoder.MediaDecoderException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--org.iso.mpeg.mpegj.MPEGJException

|
+--org.iso.mpeg.mpegj.decoder.MediaDecoderException

|
+--org.iso.mpeg.mpegj.decoder.InvalidDecoderTypeException

All Implemented Interfaces:
java.io.Serializable

V.3.12.2 Description

The class InvalidDecoderTypeException is a subclass of MediaDecoderException. This Exception is thrown by the
when a decoder mode is attempted to be set to an invalid value (by the Resource Manager).

Member Summary
Constructors

InvalidDecoderTypeException()
InvalidDecoderTypeException(String)

V.3.12.3 Constructors

InvalidDecoderTypeException()
public InvalidDecoderTypeException()

Constructs an InvalidDecoderTypeException with no specified detail message.

InvalidDecoderTypeException(String)
public InvalidDecoderTypeException(java.lang.String)

Constructs an InvalidDecoderTypeException with a detailed message.

V.3.13 org.iso.mpeg.mpegj.decoder.MediaDecoderException

V.3.13.1 Syntax

public class MediaDecoderException extends org.iso.mpeg.mpegj.MPEGJException

java.lang.Object

ISO/IEC 14496-1:2001(E)

452 © ISO/IEC 2001 – All rights reserved

|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--org.iso.mpeg.mpegj.MPEGJException

|
+--org.iso.mpeg.mpegj.decoder.MediaDecoderException

Direct Known Subclasses:
org.iso.mpeg.mpegj.decoder.DecoderAlreadyAttachedException,
org.iso.mpeg.mpegj.decoder.DecoderAlreadyRunningException,
org.iso.mpeg.mpegj.decoder.DecoderNotAttachedException,
org.iso.mpeg.mpegj.decoder.DecoderNotFoundException,
org.iso.mpeg.mpegj.decoder.DecoderNotRunningException,
org.iso.mpeg.mpegj.decoder.InvalidDecoderLevelException,
org.iso.mpeg.mpegj.decoder.InvalidDecoderModeException,
org.iso.mpeg.mpegj.decoder.InvalidDecoderPriorityException,
org.iso.mpeg.mpegj.decoder.InvalidDecoderSpeedException,
org.iso.mpeg.mpegj.decoder.InvalidDecoderTypeException

All Implemented Interfaces:
java.io.Serializable

V.3.13.2 Description

The class MediaDecoderException is a subclass of MPEGJException and is the parent of all
ScenManagerExceptions. This is thrown by the MediaDecoder APIs.

Member Summary
Constructors

MediaDecoderException()
MediaDecoderException(String)

V.3.13.3 Constructors

MediaDecoderException()
public MediaDecoderException()

Constructs an MediaDecoderException with no specified detail message.

MediaDecoderException(String)
public MediaDecoderException(java.lang.String)

Constructs an MediaDecoderException with a detailed message.

V.3.14 org.iso.mpeg.mpegj.decoder.MPDecoder

V.3.14.1 Syntax

public interface MPDecoder extends
org.iso.mpeg.mpegj.resource.MPDecoderEventGenerator

All Superinterfaces:
org.iso.mpeg.mpegj.resource.MPDecoderEventGenerator

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 453

V.3.14.2 Description

This is the base interface for media decoders.

Member Summary
Methods

void start()
void stop()
void pause()
void resume()
void attach(ESDescriptor)
void detach()

DecoderType getType()
String getVendor()
int getInstance()

boolean isPauseable()
ESDescriptor getESDescriptor()

V.3.14.3 Methods

attach(ESDescriptor)
public void attach(org.iso.mpeg.mpegj.ESDescriptor)

Attach a decoder for decoding of data.

detach()
public void detach()

Detach a decoder already decoding data.

getESDescriptor()
public org.iso.mpeg.mpegj.ESDescriptor getESDescriptor()

Get the attached ESDescriptor

getInstance()
public int getInstance()

Get instance number.

getType()
public org.iso.mpeg.mpegj.decoder.DecoderType getType()

Get decoder type.

getVendor()
public java.lang.String getVendor()

Get decoder vendor name.

isPauseable()
public boolean isPauseable()

Determines if the decoder is pauseable.

pause()
public void pause()

Pause decoding of data.

resume()
public void resume()

Resume decoding of data from paused instant.

start()
public void start()

Start decoding of data. This method should not be called for normal decoding. Because normal decoding starts
automatically from the underlying BIFS construct

stop()
public void stop()

Stop decoding of data.

ISO/IEC 14496-1:2001(E)

454 © ISO/IEC 2001 – All rights reserved

V.4 package org.iso.mpeg.mpegj.net

V.4.1 Description

Class Summary
Interfaces
NetworkManager
ChannelDescriptor This interface allows to retrieve all the information about a channel in a specified

service session.
DMIFMonitor
ChannelController
ServiceSessionDe-
scriptor

This interface allows to retrieve information about a specific service session.

QoSDescriptor
Classes
Qualifier
ChannelsDescriptor
QoSData
QualifierTag This class contains all the constants that may be used to describe a Qualifier metric

(see the DMIF specification).
Exceptions
AccessLayerException

V.4.2 org.iso.mpeg.mpegj.net.AccessLayerException

V.4.2.1 Syntax

public class AccessLayerException extends org.iso.mpeg.mpegj.MPEGJException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--org.iso.mpeg.mpegj.MPEGJException

|
+--org.iso.mpeg.mpegj.net.AccessLayerException

All Implemented Interfaces:
java.io.Serializable

V.4.2.2 Description

Member Summary
Fields

int INVALID_SERVICE_SESSION_ID
int INVALID_STREAMPRIORITY
int INVALID_QOSDATA
int INVALID_QUALIFIERTAG
int BAD_URL_STRING
int INVALID_QUALIFIER_VALUE_TYPE
int ACCESS_LAYER_NOT_FOUND

Constructors
AccessLayerException()
AccessLayerException(int)

Methods
int getValue()

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 455

V.4.2.3 Fields

ACCESS_LAYER_NOT_FOUND
public static final int ACCESS_LAYER_NOT_FOUND

BAD_URL_STRING
public static final int BAD_URL_STRING

INVALID_QOSDATA
public static final int INVALID_QOSDATA

INVALID_QUALIFIER_VALUE_TYPE
public static final int INVALID_QUALIFIER_VALUE_TYPE

INVALID_QUALIFIERTAG
public static final int INVALID_QUALIFIERTAG

INVALID_SERVICE_SESSION_ID
public static final int INVALID_SERVICE_SESSION_ID

INVALID_STREAMPRIORITY
public static final int INVALID_STREAMPRIORITY

V.4.2.4 Constructors

AccessLayerException()
public AccessLayerException()

This constructor allows a method to throw an exception related to the underlying Access Layer.

AccessLayerException(int)
public AccessLayerException(int)

This constructor allows a method to throw an exception related to the underlying Access Layer.

Parameters:
Gripe - input parameter int, allows the application to know the reason of the exception. It can assume a constant
value defined in this class.

V.4.2.5 Methods

getValue()
public int getValue()

This method enables the application to know the illegal parameter that caused the AccessLayerException

Returns:
An integer value defined in the class, indicating the wrong input parameter

V.4.3 org.iso.mpeg.mpegj.net.ChannelController

V.4.3.1 Syntax

public interface ChannelController

V.4.3.2 Description

Member Summary
Methods

void enable(long, long)
void disable(long, long)

V.4.3.3 Methods

disable(long, long)
public void disable(long, long)

This method allows to disable a specified channel in a specified service session. This means that the particular
channel won't be able to accept data from the Access Layer.

ISO/IEC 14496-1:2001(E)

456 © ISO/IEC 2001 – All rights reserved

Parameters:
serviceSessionID: - specifies the service session identifier

channelID: - specifies a particular channel (by gining a channel identifier) within the given service session.

enable(long, long)
public void enable(long, long)

This method allows to enable a specified channel in a specified service session. This means that the particular
channel will be able to accept data from the Access Layer.

Parameters:
serviceSessionID: - specifies the service session identifier

channelID: - specifies a particular channel (by gining a channel identifier) within the given service session.

V.4.4 org.iso.mpeg.mpegj.net.ChannelDescriptor

V.4.4.1 Syntax

public interface ChannelDescriptor

V.4.4.2 Description

This interface allows to retrieve all the information about a channel in a specified service session.

Member Summary
Methods

long getServiceSessionID()
long getChannelID()
int getAURate()
int getError()
int getStatus()

QoSDescriptor getQoS()

V.4.4.3 Methods

getAURate()
public int getAURate()

This method retrieves the actual Access Unit rate of the channel. This value may change over the time.

getChannelID()
public long getChannelID()

This method retrieves the channel identifier of the channel associated to the descriptor. Using this value it is
possible to obtain both the Object Descriptor Identifier and the Elementary stream identifier associated to the
channel: OD ID: (channelID >> 6) ES ID: (channelId & 0x0000003F)

getError()
public int getError()

This method retrieves information about error conditions associated to the channel (see DMIF specification). This
value may change over the time.

getQoS()
public org.iso.mpeg.mpegj.net.QoSDescriptor getQoS()

This method retrieves information about the Quality of service associated to the channel (see QualifierTag).

getServiceSessionID()
public long getServiceSessionID()

This method retrieves the service session identifier associated to the specific channel

getStatus()
public int getStatus()

This method retrieves information about the status of the channel (see DMIF specification). This value may change
over the time.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 457

V.4.5 org.iso.mpeg.mpegj.net.ChannelsDescriptor

V.4.5.1 Syntax

public class ChannelsDescriptor extends java.lang.Object implements
java.io.Serializable

java.lang.Object
|
+--org.iso.mpeg.mpegj.net.ChannelsDescriptor

All Implemented Interfaces:
java.io.Serializable

V.4.5.2 Description

Member Summary
Fields

int auRate
long channelId
long serviceSessionId
int error
int status

QoSData qos
Constructors

ChannelsDescriptor(long)

V.4.5.3 Fields

auRate
public int auRate

channelId
public long channelId

error
public int error

qos
public org.iso.mpeg.mpegj.net.QoSData qos

serviceSessionId
public long serviceSessionId

status
public int status

V.4.5.4 Constructors

ChannelsDescriptor(long)
public ChannelsDescriptor(long)

V.4.6 org.iso.mpeg.mpegj.net.DMIFMonitor

V.4.6.1 Syntax

public interface DMIFMonitor

V.4.6.2 Description

Member Summary
Methods

Vector getServiceSessionDescriptors()
Vector getChannelDescriptors(long)

ISO/IEC 14496-1:2001(E)

458 © ISO/IEC 2001 – All rights reserved

V.4.6.3 Methods

getChannelDescriptors(long)
public java.util.Vector getChannelDescriptors(long)

This method returns a Vector of object ChannelsDescriptors that contains informations about the channels existing
in a specified session. The returned value refers to entities that may change over the time.

getServiceSessionDescriptors()
public java.util.Vector getServiceSessionDescriptors()

This method returns a Vector of object SessionDescriptors that contains information about the existing sessions.
The returned value refers to entities that may change over the time.

V.4.7 org.iso.mpeg.mpegj.net.NetworkManager

V.4.7.1 Syntax

public interface NetworkManager

V.4.7.2 Description

Member Summary
Methods

DMIFMonitor getDMIFMonitor()
ChannelController getChannelController()

V.4.7.3 Methods

getChannelController()
public org.iso.mpeg.mpegj.net.ChannelController getChannelController()

This method returns the ChannelController that is used to enable and disable channels

Returns:
the ChannelControllerif available

getDMIFMonitor()
public org.iso.mpeg.mpegj.net.DMIFMonitor getDMIFMonitor()

This method returns the DMIFMonitor that is used to retrieve all the data associated with the DMIF

Returns:
the DMIFMonitor if available

V.4.8 org.iso.mpeg.mpegj.net.QoSData

V.4.8.1 Syntax

public class QoSData extends java.lang.Object implements java.io.Serializable

java.lang.Object
|
+--org.iso.mpeg.mpegj.net.QoSData

All Implemented Interfaces:
java.io.Serializable

V.4.8.2 Description

Member Summary
Fields

byte qualifierCount
Vector qualifiers

Constructors
QoSData()

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 459

V.4.8.3 Fields

qualifierCount
public byte qualifierCount

qualifiers
public java.util.Vector qualifiers

This attributes is an array of Qualifiers objects

V.4.8.4 Constructors

QoSData()
public QoSData()

V.4.9 org.iso.mpeg.mpegj.net.QoSDescriptor

V.4.9.1 Syntax

public interface QoSDescriptor

V.4.9.2 Description

Member Summary
Methods

byte getQualifierCount()
Vector getQualifiers()

V.4.9.3 Methods

getQualifierCount()
public byte getQualifierCount()

getQualifiers()
public java.util.Vector getQualifiers()

This attributes is an array of Qualifiers objects

V.4.10 org.iso.mpeg.mpegj.net.Qualifier

V.4.10.1 Syntax

public class Qualifier extends java.lang.Object implements java.io.Serializable

java.lang.Object
|
+--org.iso.mpeg.mpegj.net.Qualifier

All Implemented Interfaces:
java.io.Serializable

V.4.10.2 Description

Member Summary
Fields

byte metric
Number tagValue

Constructors
Qualifier()

ISO/IEC 14496-1:2001(E)

460 © ISO/IEC 2001 – All rights reserved

V.4.10.3 Fields

metric
public byte metric

This attribute identifies the QoS metric type.

tagValue
public java.lang.Number tagValue

This attribute contains the value of the specified metric type

V.4.10.4 Constructors

Qualifier()
public Qualifier()

V.4.11 org.iso.mpeg.mpegj.net.QualifierTag

V.4.11.1 Syntax

public class QualifierTag extends java.lang.Object

java.lang.Object
|
+--org.iso.mpeg.mpegj.net.QualifierTag

V.4.11.2 Description

This class contains all the constants that may be used to describe a Qualifier metric (see the DMIF specification).

Member Summary
Fields

byte PRIORITY
byte MAX_DELAY
byte AVG_DELAY
byte LOSS_PROB
byte MAX_GAP_LOSS
byte MAX_AU_SIZE
byte MAX_AU_RATE
byte AVG_AU_SIZE

Constructors
QualifierTag()

V.4.11.3 Fields

AVG_AU_SIZE
public static final byte AVG_AU_SIZE

AVG_AU_SIZE = 0x43

AVG_DELAY
public static final byte AVG_DELAY

AVG_DELAY = 0x12

LOSS_PROB
public static final byte LOSS_PROB

LOSS_PROB = 0x13

MAX_AU_RATE
public static final byte MAX_AU_RATE

MAX_AU_RATE = 0x42

MAX_AU_SIZE
public static final byte MAX_AU_SIZE

MAX_AU_SIZE = 0x41

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 461

MAX_DELAY
public static final byte MAX_DELAY

MAX_DELAY = 0x11

MAX_GAP_LOSS
public static final byte MAX_GAP_LOSS

MAX_GAP_LOSS = 0x14

PRIORITY
public static final byte PRIORITY

PRIORITY = 0x01

V.4.11.4 Constructors

QualifierTag()
public QualifierTag()

V.4.12 org.iso.mpeg.mpegj.net.ServiceSessionDescriptor

V.4.12.1 Syntax

public interface ServiceSessionDescriptor
V.4.12.2 Description

This interface allows to retrieve information about a specific service session.

Member Summary
Methods

String getURL()
long getServiceSessionID()
int getNumberOfChannels()

V.4.12.3 Methods

getNumberOfChannels()
public int getNumberOfChannels()

This method returns the number of the opened channels associated to the service session.

getServiceSessionID()
public long getServiceSessionID()

This method returns the service session identifier associated to the service session.

getURL()
public java.lang.String getURL()

This method returns a string describing the URL associated to the service session.

V.5 package org.iso.mpeg.mpegj.scene

V.5.1 Description

Class Summary
Interfaces
Scene An interface that acts as a proxy for a BIFS scene.
Node An interface that acts as a proxy for a BIFS node in the scene graph.
SceneListener An interface that allows monitoring of changes to a BIFS scene graph.
SceneListener.Message The message numbers used in the notify method.
MFStringFieldValue An interface used for obtaining MFString values.
MFFloatFieldValue An interface used for obtaining MFFloat values.
MFFieldValue A tagging interface used to classify FieldValue objects that return compound

values.
SFStringFieldValue An interface used for obtaining SFString values.
SFVec2fFieldValue An interface used for obtaining SFVec2f values.
NodeType An interface defining constants for node types.

ISO/IEC 14496-1:2001(E)

462 © ISO/IEC 2001 – All rights reserved

MFTimeFieldValue An interface used for obtaining MFTime values.
SFNodeFieldValue An interface used for obtaining SFNode values.
NodeValue An interface for node values that either act as a proxy for a node in the BIFS

scene, or specify the creation of a new node.
FieldValue A tagging interface used to identify objects that can return field values.
Field An interface with inner classes defining the constants for the field defIDs of each

node.
Field.Anchor An interface defining constants for the field defIDs of the Anchor node.
Field.AnimationStream An interface defining constants for the field defIDs of the AnimationStream node.
Field.Appearance An interface defining constants for the field defIDs of the Appearance node.
Field.AudioBuffer An interface defining constants for the field defIDs of the AudioBuffer node.
Field.AudioClip An interface defining constants for the field defIDs of the AudioClip node.
Field.AudioDelay An interface defining constants for the field defIDs of the AudioDelay node.
Field.AudioFX An interface defining constants for the field defIDs of the AudioFX node.
Field.AudioMix An interface defining constants for the field defIDs of the AudioMix node.
Field.AudioSource An interface defining constants for the field defIDs of the AudioSource node.
Field.AudioSwitch An interface defining constants for the field defIDs of the AudioSwitch node.
Field.Background An interface defining constants for the field defIDs of the Background node.
Field.Background2D An interface defining constants for the field defIDs of the Background2D node.
Field.Billboard An interface defining constants for the field defIDs of the Billboard node.
Field.Bitmap An interface defining constants for the field defIDs of the Bitmap node.
Field.Box An interface defining constants for the field defIDs of the Box node.
Field.Circle An interface defining constants for the field defIDs of the Circle node.
Field.Collision An interface defining constants for the field defIDs of the Collision node.
Field.Color An interface defining constants for the field defIDs of the Color node.
Field.ColorInterpola-
tor

An interface defining constants for the field defIDs of the ColorInterpolator node.

Field.CompositeTextur
e2D

An interface defining constants for the field defIDs of the CompositeTexture2D
node.

Field.CompositeTextur
e3D

An interface defining constants for the field defIDs of the CompositeTexture3D
node.

Field.Conditional An interface defining constants for the field defIDs of the Conditional node.
Field.Cone An interface defining constants for the field defIDs of the Cone node.
Field.Coordinate An interface defining constants for the field defIDs of the Coordinate node.
Field.Coordinate2D An interface defining constants for the field defIDs of the Coordinate2D node.
Field.CoordinateIn-
terpolator

An interface defining constants for the field defIDs of the CoordinateInterpolator
node.

Field.CoordinateInter
polator2D

An interface defining constants for the field defIDs of the
CoordinateInterpolator2D node.

Field.Curve2D An interface defining constants for the field defIDs of the Curve2D node.
Field.Cylinder An interface defining constants for the field defIDs of the Cylinder node.
Field.CylinderSensor An interface defining constants for the field defIDs of the CylinderSensor node.
Field.Directional-
Light

An interface defining constants for the field defIDs of the DirectionalLight node.

Field.DiscSensor An interface defining constants for the field defIDs of the DiscSensor node.
Field.ElevationGrid An interface defining constants for the field defIDs of the ElevationGrid node.
Field.Expression An interface defining constants for the field defIDs of the Expression node.
Field.Extrusion An interface defining constants for the field defIDs of the Extrusion node.
Field.Face An interface defining constants for the field defIDs of the Face node.
Field.FaceDefMesh An interface defining constants for the field defIDs of the FaceDefMesh node.
Field.FaceDefTables An interface defining constants for the field defIDs of the FaceDefTables node.
Field.FaceDefTrans-
form

An interface defining constants for the field defIDs of the FaceDefTransform
node.

Field.FAP An interface defining constants for the field defIDs of the FAP node.
Field.FDP An interface defining constants for the field defIDs of the FDP node.
Field.FIT An interface defining constants for the field defIDs of the FIT node.
Field.Fog An interface defining constants for the field defIDs of the Fog node.
Field.FontStyle An interface defining constants for the field defIDs of the FontStyle node.
Field.Form An interface defining constants for the field defIDs of the Form node.
Field.Group An interface defining constants for the field defIDs of the Group node.
Field.ImageTexture An interface defining constants for the field defIDs of the ImageTexture node.
Field.IndexedFaceSet An interface defining constants for the field defIDs of the IndexedFaceSet node.
Field.IndexedFaceSet2
D

An interface defining constants for the field defIDs of the IndexedFaceSet2D
node.

Field.IndexedLineSet An interface defining constants for the field defIDs of the IndexedLineSet node.
Field.IndexedLineSet2 An interface defining constants for the field defIDs of the IndexedLineSet2D

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 463

D node.
Field.Inline An interface defining constants for the field defIDs of the Inline node.
Field.LOD An interface defining constants for the field defIDs of the LOD node.
Field.Layer2D An interface defining constants for the field defIDs of the Layer2D node.
Field.Layer3D An interface defining constants for the field defIDs of the Layer3D node.
Field.Layout An interface defining constants for the field defIDs of the Layout node.
Field.LineProperties An interface defining constants for the field defIDs of the LineProperties node.
Field.ListeningPoint An interface defining constants for the field defIDs of the ListeningPoint node.
Field.Material An interface defining constants for the field defIDs of the Material node.
Field.Material2D An interface defining constants for the field defIDs of the Material2D node.
Field.MovieTexture An interface defining constants for the field defIDs of the MovieTexture node.
Field.NavigationInfo An interface defining constants for the field defIDs of the NavigationInfo node.
Field.Normal An interface defining constants for the field defIDs of the Normal node.
Field.NormalInterpo-
lator

An interface defining constants for the field defIDs of the NormalInterpolator
node.

Field.OrderedGroup An interface defining constants for the field defIDs of the OrderedGroup node.
Field.OrientationIn-
terpolator

An interface defining constants for the field defIDs of the OrientationInterpolator
node.

Field.PixelTexture An interface defining constants for the field defIDs of the PixelTexture node.
Field.PlaneSensor An interface defining constants for the field defIDs of the PlaneSensor node.
Field.PlaneSensor2D An interface defining constants for the field defIDs of the PlaneSensor2D node.
Field.PointLight An interface defining constants for the field defIDs of the PointLight node.
Field.PointSet An interface defining constants for the field defIDs of the PointSet node.
Field.PointSet2D An interface defining constants for the field defIDs of the PointSet2D node.
Field.PositionInter-
polator

An interface defining constants for the field defIDs of the PositionInterpolator
node.

Field.PositionInterpo
lator2D

An interface defining constants for the field defIDs of the PositionInterpolator2D
node.

Field.ProximitySensor
2D

An interface defining constants for the field defIDs of the ProximitySensor2D
node.

Field.ProximitySensor An interface defining constants for the field defIDs of the ProximitySensor node.
Field.QuantizationPa-
rameter

An interface defining constants for the field defIDs of the QuantizationParameter
node.

Field.Rectangle An interface defining constants for the field defIDs of the Rectangle node.
Field.ScalarInterpo-
lator

An interface defining constants for the field defIDs of the ScalarInterpolator
node.

Field.Script An interface defining constants for the field defIDs of the Script node.
Field.Shape An interface defining constants for the field defIDs of the Shape node.
Field.Sound An interface defining constants for the field defIDs of the Sound node.
Field.Sound2D An interface defining constants for the field defIDs of the Sound2D node.
Field.Sphere An interface defining constants for the field defIDs of the Sphere node.
Field.SphereSensor An interface defining constants for the field defIDs of the SphereSensor node.
Field.SpotLight An interface defining constants for the field defIDs of the SpotLight node.
Field.Switch An interface defining constants for the field defIDs of the Switch node.
Field.TermCap An interface defining constants for the field defIDs of the TermCap node.
Field.Text An interface defining constants for the field defIDs of the Text node.
Field.TextureCoordi-
nate

An interface defining constants for the field defIDs of the TextureCoordinate
node.

Field.TextureTrans-
form

An interface defining constants for the field defIDs of the TextureTransform
node.

Field.TimeSensor An interface defining constants for the field defIDs of the TimeSensor node.
Field.TouchSensor An interface defining constants for the field defIDs of the TouchSensor node.
Field.Transform An interface defining constants for the field defIDs of the Transform node.
Field.Transform2D An interface defining constants for the field defIDs of the Transform2D node.
Field.Valuator An interface defining constants for the field defIDs of the Valuator node.
Field.WorldInfo An interface defining constants for the field defIDs of the WorldInfo node.
NewNode An interface used to specify the creation of a new node.
SFColorFieldValue An interface used for obtaining SFColor values.
MFVec2fFieldValue An interface used for obtaining MFVec2f values.
EventOut
EventOut.Anchor
EventOut.Animation-
Stream
EventOut.Appearance
EventOut.AudioBuffer

ISO/IEC 14496-1:2001(E)

464 © ISO/IEC 2001 – All rights reserved

EventOut.AudioClip
EventOut.AudioDelay
EventOut.AudioFX
EventOut.AudioMix
EventOut.AudioSource
EventOut.AudioSwitch
EventOut.Background
EventOut.Background2D
EventOut.Billboard
EventOut.Bitmap
EventOut.Box
EventOut.Circle
EventOut.Collision
EventOut.Color
EventOut.ColorInter-
polator
EventOut.CompositeTex
ture2D
EventOut.CompositeTex
ture3D
EventOut.Conditional
EventOut.Cone
EventOut.Coordinate
EventOut.Coordinate2D
EventOut.Coordi-
nateInterpolator
EventOut.CoordinateIn
terpolator2D
EventOut.Curve2D
EventOut.Cylinder
EventOut.CylinderSen-
sor
EventOut.Directional-
Light
EventOut.DiscSensor
EventOut.Elevation-
Grid
EventOut.Expression
EventOut.Extrusion
EventOut.Face
EventOut.FaceDefMesh
EventOut.FaceDefTa-
bles
EventOut.Face-
DefTransform
EventOut.FAP
EventOut.FDP
EventOut.FIT
EventOut.Fog
EventOut.FontStyle
EventOut.Form
EventOut.Group
EventOut.ImageTexture
EventOut.IndexedFac-
eSet
EventOut.IndexedFaceS
et2D
EventOut.Indexed-
LineSet
EventOut.IndexedLineS
et2D
EventOut.Inline
EventOut.LOD
EventOut.Layer2D
EventOut.Layer3D
EventOut.Layout

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 465

EventOut.LineProper-
ties
EventOut.Listening-
Point
EventOut.Material
EventOut.Material2D
EventOut.MovieTexture
EventOut.Navigation-
Info
EventOut.Normal
EventOut.NormalInter-
polator
EventOut.OrderedGroup
EventOut.Orientation-
Interpolator
EventOut.PixelTexture
EventOut.PlaneSensor
EventOut.PlaneSensor2
D
EventOut.PointLight
EventOut.PointSet
EventOut.PointSet2D
EventOut.PositionIn-
terpolator
EventOut.PositionInte
rpolator2D
EventOut.ProximitySen
sor2D
EventOut.Proximity-
Sensor
EventOut.Quantiza-
tionParameter
EventOut.Rectangle
EventOut.ScalarInter-
polator
EventOut.Script
EventOut.Shape
EventOut.Sound
EventOut.Sound2D
EventOut.Sphere
EventOut.SphereSensor
EventOut.SpotLight
EventOut.Switch
EventOut.TermCap
EventOut.Text
EventOut.TextureCoor-
dinate
EventOut.Texture-
Transform
EventOut.TimeSensor
EventOut.TouchSensor
EventOut.Transform
EventOut.Transform2D
EventOut.Valuator
EventOut.Viewpoint
EventOut.Visibility-
Sensor
EventOut.Viseme
EventOut.WorldInfo
SFRotationFieldValue An interface used for obtaining SFRotation values.
MFColorFieldValue An interface used for obtaining MFColor values.
SFVec3fFieldValue An interface used for obtaining SFVec3f values.
SFInt32FieldValue An interface used for obtaining SFInt32 values.
SceneManager An interface that allows access to the MPEG-4 terminal's native scene.
MFNodeFieldValue An interface used for obtaining MFNode values.
SFBoolFieldValue An interface used for obtaining SFBool values.

ISO/IEC 14496-1:2001(E)

466 © ISO/IEC 2001 – All rights reserved

EventOutListener An interface to be implemented by objects that wish to receive eventOut
notification from fields in the scene.

EventIn
EventIn.Anchor
EventIn.Animation-
Stream
EventIn.Appearance
EventIn.AudioBuffer
EventIn.AudioClip
EventIn.AudioDelay
EventIn.AudioFX
EventIn.AudioMix
EventIn.AudioSource
EventIn.AudioSwitch
EventIn.Background
EventIn.Background2D
EventIn.Billboard
EventIn.Bitmap
EventIn.Box
EventIn.Circle
EventIn.Collision
EventIn.Color
EventIn.ColorInterpo-
lator
Even-
tIn.CompositeTexture2
D
Even-
tIn.CompositeTexture3
D
EventIn.Conditional
EventIn.Cone
EventIn.Coordinate
EventIn.Coordinate2D
EventIn.CoordinateIn-
terpolator
Even-
tIn.CoordinateInterpo
lator2D
EventIn.Curve2D
EventIn.Cylinder
EventIn.CylinderSen-
sor
EventIn.Directional-
Light
EventIn.DiscSensor
EventIn.ElevationGrid
EventIn.Expression
EventIn.Extrusion
EventIn.Face
EventIn.FaceDefMesh
EventIn.FaceDefTables
EventIn.FaceDefTrans-
form
EventIn.FAP
EventIn.FDP
EventIn.FIT
EventIn.Fog
EventIn.FontStyle
EventIn.Form
EventIn.Group
EventIn.ImageTexture
EventIn.IndexedFac-
eSet
Even-

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 467

tIn.IndexedFaceSet2D
EventIn.Indexed-
LineSet
Even-
tIn.IndexedLineSet2D
EventIn.Inline
EventIn.LOD
EventIn.Layer2D
EventIn.Layer3D
EventIn.Layout
EventIn.LineProper-
ties
EventIn.Listening-
Point
EventIn.Material
EventIn.Material2D
EventIn.MovieTexture
EventIn.Navigation-
Info
EventIn.Normal
EventIn.NormalInter-
polator
EventIn.OrderedGroup
EventIn.Orientation-
Interpolator
EventIn.PixelTexture
EventIn.PlaneSensor
EventIn.PlaneSensor2D
EventIn.PointLight
EventIn.PointSet
EventIn.PointSet2D
EventIn.PositionIn-
terpolator
Even-
tIn.PositionInterpola
tor2D
Even-
tIn.ProximitySensor2D
EventIn.ProximitySen-
sor
EventIn.Quantization-
Parameter
EventIn.Rectangle
EventIn.ScalarInter-
polator
EventIn.Script
EventIn.Shape
EventIn.Sound
EventIn.Sound2D
EventIn.Sphere
EventIn.SphereSensor
EventIn.SpotLight
EventIn.Switch
EventIn.TermCap
EventIn.Text
EventIn.TextureCoor-
dinate
EventIn.TextureTrans-
form
EventIn.TimeSensor
EventIn.TouchSensor
EventIn.Transform
EventIn.Transform2D
EventIn.Valuator
EventIn.Viewpoint
EventIn.Visibility-

ISO/IEC 14496-1:2001(E)

468 © ISO/IEC 2001 – All rights reserved

Sensor
EventIn.Viseme
EventIn.WorldInfo
MFRotationFieldValue An interface used for obtaining MFRotation values.
SFTimeFieldValue An interface used for obtaining SFTime values.
SFFloatFieldValue An interface used for obtaining SFFloat values.
MFVec3fFieldValue An interface used for obtaining MFVec3f values.
MFInt32FieldValue An interface used for obtaining MFInt32 values.
Exceptions
InvalidSceneException An exception used by this package to indicate that an operation was attempted

on a Scene that is no longer valid.
BadNodeException The class BadNodeException is a subclass of MPEGJException.
BadParameterException An exception used by this package to indicate that a parameter to a member

function is not valid.
InvalidNodeException An exception used to indicate that an operation was attempted on a node that is no

longer valid.

V.5.2 org.iso.mpeg.mpegj.scene.BadNodeException

V.5.2.1 Syntax

public class BadNodeException extends org.iso.mpeg.mpegj.MPEGJException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--org.iso.mpeg.mpegj.MPEGJException

|
+--org.iso.mpeg.mpegj.scene.BadNodeException

All Implemented Interfaces:
java.io.Serializable

V.5.2.2 Description

The class BadNodeException is a subclass of MPEGJException. This Exception is thrown by the method
getRenderer() of Resource Manager.

Member Summary
Constructors

BadNodeException()
BadNodeException(String)

V.5.2.3 Constructors

BadNodeException()
public BadNodeException()

Constructs an BadNodeException with no specified detail message.

BadNodeException(String)
public BadNodeException(java.lang.String)

Constructs an RendererFoundException with a detailed message.

V.5.3 org.iso.mpeg.mpegj.scene.BadParameterException

V.5.3.1 Syntax

public class BadParameterException extends org.iso.mpeg.mpegj.MPEGJException

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 469

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--org.iso.mpeg.mpegj.MPEGJException

|
+--org.iso.mpeg.mpegj.scene.BadParameterException

All Implemented Interfaces:
java.io.Serializable

V.5.3.2 Description

An exception used by this package to indicate that a parameter to a member function is not valid.

Member Summary
Constructors

BadParameterException()
BadParameterException(String)

V.5.3.3 Constructors

BadParameterException()
public BadParameterException()

Default constructor.

BadParameterException(String)
public BadParameterException(java.lang.String)

String constructor.

V.5.4 org.iso.mpeg.mpegj.scene.EventIn

V.5.4.1 Syntax

public interface EventIn

V.5.4.2 Description

Member Summary
Inner Classes

static interface EventIn.Anchor
static interface EventIn.AnimationStream
static interface EventIn.Appearance
static interface EventIn.AudioBuffer
static interface EventIn.AudioClip
static interface EventIn.AudioDelay
static interface EventIn.AudioFX
static interface EventIn.AudioMix
static interface EventIn.AudioSource
static interface EventIn.AudioSwitch
static interface EventIn.Background
static interface EventIn.Background2D
static interface EventIn.Billboard
static interface EventIn.Bitmap
static interface EventIn.Box
static interface EventIn.Circle
static interface EventIn.Collision
static interface EventIn.Color
static interface EventIn.ColorInterpolator

ISO/IEC 14496-1:2001(E)

470 © ISO/IEC 2001 – All rights reserved

static interface EventIn.CompositeTexture2D
static interface EventIn.CompositeTexture3D
static interface EventIn.Conditional
static interface EventIn.Cone
static interface EventIn.Coordinate
static interface EventIn.Coordinate2D
static interface EventIn.CoordinateInterpolator
static interface EventIn.CoordinateInterpolator2D
static interface EventIn.Curve2D
static interface EventIn.Cylinder
static interface EventIn.CylinderSensor
static interface EventIn.DirectionalLight
static interface EventIn.DiscSensor
static interface EventIn.ElevationGrid
static interface EventIn.Expression
static interface EventIn.Extrusion
static interface EventIn.Face
static interface EventIn.FaceDefMesh
static interface EventIn.FaceDefTables
static interface EventIn.FaceDefTransform
static interface EventIn.FAP
static interface EventIn.FDP
static interface EventIn.FIT
static interface EventIn.Fog
static interface EventIn.FontStyle
static interface EventIn.Form
static interface EventIn.Group
static interface EventIn.ImageTexture
static interface EventIn.IndexedFaceSet
static interface EventIn.IndexedFaceSet2D
static interface EventIn.IndexedLineSet
static interface EventIn.IndexedLineSet2D
static interface EventIn.Inline
static interface EventIn.LOD
static interface EventIn.Layer2D
static interface EventIn.Layer3D
static interface EventIn.Layout
static interface EventIn.LineProperties
static interface EventIn.ListeningPoint
static interface EventIn.Material
static interface EventIn.Material2D
static interface EventIn.MovieTexture
static interface EventIn.NavigationInfo
static interface EventIn.Normal
static interface EventIn.NormalInterpolator
static interface EventIn.OrderedGroup
static interface EventIn.OrientationInterpolator
static interface EventIn.PixelTexture
static interface EventIn.PlaneSensor
static interface EventIn.PlaneSensor2D
static interface EventIn.PointLight
static interface EventIn.PointSet
static interface EventIn.PointSet2D
static interface EventIn.PositionInterpolator
static interface EventIn.PositionInterpolator2D
static interface EventIn.ProximitySensor2D
static interface EventIn.ProximitySensor
static interface EventIn.QuantizationParameter
static interface EventIn.Rectangle
static interface EventIn.ScalarInterpolator
static interface EventIn.Script
static interface EventIn.Shape
static interface EventIn.Sound
static interface EventIn.Sound2D
static interface EventIn.Sphere
static interface EventIn.SphereSensor
static interface EventIn.SpotLight
static interface EventIn.Switch
static interface EventIn.TermCap
static interface EventIn.Text
static interface EventIn.TextureCoordinate

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 471

static interface EventIn.TextureTransform
static interface EventIn.TimeSensor
static interface EventIn.TouchSensor
static interface EventIn.Transform
static interface EventIn.Transform2D
static interface EventIn.Valuator
static interface EventIn.Viewpoint
static interface EventIn.VisibilitySensor
static interface EventIn.Viseme
static interface EventIn.WorldInfo

V.5.5 org.iso.mpeg.mpegj.scene.EventIn.Anchor

V.5.5.1 Syntax

public static interface EventIn.Anchor

V.5.5.2 Description

Member Summary
Fields

int addChildren
int removeChildren
int children
int description
int parameter
int url

V.5.5.3 Fields

addChildren
public static final int addChildren

addChildren = 0

children
public static final int children

children = 2

description
public static final int description

description = 3

parameter
public static final int parameter

parameter = 4

removeChildren
public static final int removeChildren

removeChildren = 1

url
public static final int url

url = 5

V.5.6 org.iso.mpeg.mpegj.scene.EventIn.AnimationStream

V.5.6.1 Syntax

public static interface EventIn.AnimationStream
V.5.6.2 Description

Member Summary
Fields

int loop
int speed

ISO/IEC 14496-1:2001(E)

472 © ISO/IEC 2001 – All rights reserved

int startTime
int stopTime
int url

V.5.6.3 Fields

loop
public static final int loop

loop = 0

speed
public static final int speed

speed = 1

startTime
public static final int startTime

startTime = 2

stopTime
public static final int stopTime

stopTime = 3

url
public static final int url

url = 4

V.5.7 org.iso.mpeg.mpegj.scene.EventIn.Appearance

V.5.7.1 Syntax

public static interface EventIn.Appearance

V.5.7.2 Description

Member Summary
Fields

int material
int texture
int textureTransform

V.5.7.3 Fields

material
public static final int material

material = 0

texture
public static final int texture

texture = 1

textureTransform
public static final int textureTransform

textureTransform = 2

V.5.8 org.iso.mpeg.mpegj.scene.EventIn.AudioBuffer

V.5.8.1 Syntax

public static interface EventIn.AudioBuffer

V.5.8.2 Description

Member Summary
Fields

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 473

int loop
int pitch
int startTime
int stopTime
int children
int numChan
int phaseGroup

V.5.8.3 Fields

children
public static final int children

children = 4

loop
public static final int loop

loop = 0

numChan
public static final int numChan

numChan = 5

phaseGroup
public static final int phaseGroup

phaseGroup = 6

pitch
public static final int pitch

pitch = 1

startTime
public static final int startTime

startTime = 2

stopTime
public static final int stopTime

stopTime = 3

V.5.9 org.iso.mpeg.mpegj.scene.EventIn.AudioClip

V.5.9.1 Syntax

public static interface EventIn.AudioClip

V.5.9.2 Description

Member Summary
Fields

int description
int loop
int pitch
int startTime
int stopTime
int url

V.5.9.3 Fields

description
public static final int description

description = 0

loop
public static final int loop

loop = 1

ISO/IEC 14496-1:2001(E)

474 © ISO/IEC 2001 – All rights reserved

pitch
public static final int pitch

pitch = 2

startTime
public static final int startTime

startTime = 3

stopTime
public static final int stopTime

stopTime = 4

url
public static final int url

url = 5

V.5.10 org.iso.mpeg.mpegj.scene.EventIn.AudioDelay

V.5.10.1 Syntax

public static interface EventIn.AudioDelay

V.5.10.2 Description

Member Summary
Fields

int addChildren
int removeChildren
int children
int delay

V.5.10.3 Fields

addChildren
public static final int addChildren

addChildren = 0

children
public static final int children

children = 2

delay
public static final int delay

delay = 3

removeChildren
public static final int removeChildren

removeChildren = 1

V.5.11 org.iso.mpeg.mpegj.scene.EventIn.AudioFX

V.5.11.1 Syntax

public static interface EventIn.AudioFX
V.5.11.2 Description

Member Summary
Fields

int addChildren
int removeChildren
int children
int orch
int score
int params

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 475

V.5.11.3 Fields

addChildren
public static final int addChildren

addChildren = 0

children
public static final int children

children = 2

orch
public static final int orch

orch = 3

params
public static final int params

params = 5

removeChildren
public static final int removeChildren

removeChildren = 1

score
public static final int score

score = 4

V.5.12 org.iso.mpeg.mpegj.scene.EventIn.AudioMix

V.5.12.1 Syntax

public static interface EventIn.AudioMix

V.5.12.2 Description

Member Summary
Fields

int addChildren
int removeChildren
int children
int numInputs
int matrix

V.5.12.3 Fields

addChildren
public static final int addChildren

addChildren = 0

children
public static final int children

children = 2

matrix
public static final int matrix

matrix = 4

numInputs
public static final int numInputs

numInputs = 3

removeChildren
public static final int removeChildren

removeChildren = 1

ISO/IEC 14496-1:2001(E)

476 © ISO/IEC 2001 – All rights reserved

V.5.13 org.iso.mpeg.mpegj.scene.EventIn.AudioSource

V.5.13.1 Syntax

public static interface EventIn.AudioSource

V.5.13.2 Description

Member Summary
Fields

int addChildren
int removeChildren
int children
int url
int pitch
int speed
int startTime
int stopTime

V.5.13.3 Fields

addChildren
public static final int addChildren

addChildren = 0

children
public static final int children

children = 2

pitch
public static final int pitch

pitch = 4

removeChildren
public static final int removeChildren

removeChildren = 1

speed
public static final int speed

speed = 5

startTime
public static final int startTime

startTime = 6

stopTime
public static final int stopTime

stopTime = 7

url
public static final int url

url = 3

V.5.14 org.iso.mpeg.mpegj.scene.EventIn.AudioSwitch

V.5.14.1 Syntax

public static interface EventIn.AudioSwitch

V.5.14.2 Description

Member Summary
Fields

int addChildren
int removeChildren
int children

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 477

int whichChoice

V.5.14.3 Fields

addChildren
public static final int addChildren

addChildren = 0

children
public static final int children

children = 2

removeChildren
public static final int removeChildren

removeChildren = 1

whichChoice
public static final int whichChoice

whichChoice = 3

V.5.15 org.iso.mpeg.mpegj.scene.EventIn.Background

V.5.15.1 Syntax

public static interface EventIn.Background

V.5.15.2 Description

Member Summary
Fields

int set_bind
int groundAngle
int groundColor
int backUrl
int bottomUrl
int frontUrl
int leftUrl
int rightUrl
int topUrl
int skyAngle
int skyColor

V.5.15.3 Fields

backUrl
public static final int backUrl

backUrl = 3

bottomUrl
public static final int bottomUrl

bottomUrl = 4

frontUrl
public static final int frontUrl

frontUrl = 5

groundAngle
public static final int groundAngle

groundAngle = 1

groundColor
public static final int groundColor

groundColor = 2

leftUrl

ISO/IEC 14496-1:2001(E)

478 © ISO/IEC 2001 – All rights reserved

public static final int leftUrl

leftUrl = 6

rightUrl
public static final int rightUrl

rightUrl = 7

set_bind
public static final int set_bind

set_bind = 0

skyAngle
public static final int skyAngle

skyAngle = 9

skyColor
public static final int skyColor

skyColor = 10

topUrl
public static final int topUrl

topUrl = 8

V.5.16 org.iso.mpeg.mpegj.scene.EventIn.Background2D

V.5.16.1 Syntax

public static interface EventIn.Background2D

V.5.16.2 Description

Member Summary
Fields

int set_bind
int backColor
int url

V.5.16.3 Fields

backColor
public static final int backColor

backColor = 1

set_bind
public static final int set_bind

set_bind = 0

url
public static final int url

url = 2

V.5.17 org.iso.mpeg.mpegj.scene.EventIn.Billboard

V.5.17.1 Syntax

public static interface EventIn.Billboard

V.5.17.2 Description

Member Summary
Fields

int addChildren
int removeChildren
int children

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 479

int axisOfRotation

V.5.17.3 Fields

addChildren
public static final int addChildren

addChildren = 0

axisOfRotation
public static final int axisOfRotation

axisOfRotation = 3

children
public static final int children

children = 2

removeChildren
public static final int removeChildren

removeChildren = 1

V.5.18 org.iso.mpeg.mpegj.scene.EventIn.Bitmap

V.5.18.1 Syntax

public static interface EventIn.Bitmap

V.5.18.2 Description

Member Summary
Fields

int scale

V.5.18.3 Fields

scale
public static final int scale

scale = 0

V.5.19 org.iso.mpeg.mpegj.scene.EventIn.Box

V.5.19.1 Syntax

public static interface EventIn.Box

V.5.19.2 Description

V.5.20 org.iso.mpeg.mpegj.scene.EventIn.Circle

V.5.20.1 Syntax

public static interface EventIn.Circle

V.5.20.2 Description

Member Summary
Fields

int radius

V.5.20.3 Fields

radius
public static final int radius

ISO/IEC 14496-1:2001(E)

480 © ISO/IEC 2001 – All rights reserved

radius = 0

V.5.21 org.iso.mpeg.mpegj.scene.EventIn.Collision

V.5.21.1 Syntax

public static interface EventIn.Collision

V.5.21.2 Description

Member Summary
Fields

int addChildren
int removeChildren
int children
int collide

V.5.21.3 Fields

addChildren
public static final int addChildren

addChildren = 0

children
public static final int children

children = 2

collide
public static final int collide

collide = 3

removeChildren
public static final int removeChildren

removeChildren = 1

V.5.22 org.iso.mpeg.mpegj.scene.EventIn.Color

V.5.22.1 Syntax

public static interface EventIn.Color

V.5.22.2 Description

Member Summary
Fields

int color

V.5.22.3 Fields

color
public static final int color

color = 0

V.5.23 org.iso.mpeg.mpegj.scene.EventIn.ColorInterpolator

V.5.23.1 Syntax

public static interface EventIn.ColorInterpolator

V.5.23.2 Description

Member Summary
Fields

int set_fraction

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 481

int key
int keyValue

V.5.23.3 Fields

key
public static final int key

key = 1

keyValue
public static final int keyValue

keyValue = 2

set_fraction
public static final int set_fraction

set_fraction = 0

V.5.24 org.iso.mpeg.mpegj.scene.EventIn.CompositeTexture2D

V.5.24.1 Syntax

public static interface EventIn.CompositeTexture2D

V.5.24.2 Description

Member Summary
Fields

int addChildren
int removeChildren
int children
int pixelWidth
int pixelHeight
int background
int viewport

V.5.24.3 Fields

addChildren
public static final int addChildren

addChildren = 0

background
public static final int background

background = 5

children
public static final int children

children = 2

pixelHeight
public static final int pixelHeight

pixelHeight = 4

pixelWidth
public static final int pixelWidth

pixelWidth = 3

removeChildren
public static final int removeChildren

removeChildren = 1

viewport
public static final int viewport

viewport = 6

ISO/IEC 14496-1:2001(E)

482 © ISO/IEC 2001 – All rights reserved

V.5.25 org.iso.mpeg.mpegj.scene.EventIn.CompositeTexture3D

V.5.25.1 Syntax

public static interface EventIn.CompositeTexture3D

V.5.25.2 Description

Member Summary
Fields

int addChildren
int removeChildren
int children
int pixelWidth
int pixelHeight
int background
int fog
int navigationInfo
int viewpoint

V.5.25.3 Fields

addChildren
public static final int addChildren

addChildren = 0

background
public static final int background

background = 5

children
public static final int children

children = 2

fog
public static final int fog

fog = 6

navigationInfo
public static final int navigationInfo

navigationInfo = 7

pixelHeight
public static final int pixelHeight

pixelHeight = 4

pixelWidth
public static final int pixelWidth

pixelWidth = 3

removeChildren
public static final int removeChildren

removeChildren = 1

viewpoint
public static final int viewpoint

viewpoint = 8

V.5.26 org.iso.mpeg.mpegj.scene.EventIn.Conditional

V.5.26.1 Syntax

public static interface EventIn.Conditional

V.5.26.2 Description

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 483

Member Summary
Fields

int activate
int reverseActivate
int buffer

V.5.26.3 Fields

activate
public static final int activate

activate = 0

buffer
public static final int buffer

buffer = 2

reverseActivate
public static final int reverseActivate

reverseActivate = 1

V.5.27 org.iso.mpeg.mpegj.scene.EventIn.Cone

V.5.27.1 Syntax

public static interface EventIn.Cone

V.5.27.2 Description

V.5.28 org.iso.mpeg.mpegj.scene.EventIn.Coordinate

V.5.28.1 Syntax

public static interface EventIn.Coordinate

V.5.28.2 Description

Member Summary
Fields

int point

V.5.28.3 Fields

point
public static final int point

point = 0

V.5.29 org.iso.mpeg.mpegj.scene.EventIn.Coordinate2D

V.5.29.1 Syntax

public static interface EventIn.Coordinate2D

V.5.29.2 Description

Member Summary
Fields

int point

V.5.29.3 Fields

point
public static final int point

ISO/IEC 14496-1:2001(E)

484 © ISO/IEC 2001 – All rights reserved

point = 0

V.5.30 org.iso.mpeg.mpegj.scene.EventIn.CoordinateInterpolator

V.5.30.1 Syntax

public static interface EventIn.CoordinateInterpolator

V.5.30.2 Description

Member Summary
Fields

int set_fraction
int key
int keyValue

V.5.30.3 Fields

key
public static final int key

key = 1

keyValue
public static final int keyValue

keyValue = 2

set_fraction
public static final int set_fraction

set_fraction = 0

V.5.31 org.iso.mpeg.mpegj.scene.EventIn.CoordinateInterpolator2D

V.5.31.1 Syntax

public static interface EventIn.CoordinateInterpolator2D

V.5.31.2 Description

Member Summary
Fields

int set_fraction
int key
int keyValue

V.5.31.3 Fields

key
public static final int key

key = 1

keyValue
public static final int keyValue

keyValue = 2

set_fraction
public static final int set_fraction

set_fraction = 0

V.5.32 org.iso.mpeg.mpegj.scene.EventIn.Curve2D

V.5.32.1 Syntax

public static interface EventIn.Curve2D

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 485

V.5.32.2 Description

Member Summary
Fields

int point
int fineness
int type

V.5.32.3 Fields

fineness
public static final int fineness

fineness = 1

point
public static final int point

point = 0

type
public static final int type

type = 2

V.5.33 org.iso.mpeg.mpegj.scene.EventIn.Cylinder

V.5.33.1 Syntax

public static interface EventIn.Cylinder

V.5.33.2 Description

V.5.34 org.iso.mpeg.mpegj.scene.EventIn.CylinderSensor

V.5.34.1 Syntax

public static interface EventIn.CylinderSensor
V.5.34.2 Description

Member Summary
Fields

int autoOffset
int diskAngle
int enabled
int maxAngle
int minAngle
int offset

V.5.34.3 Fields

autoOffset
public static final int autoOffset

autoOffset = 0

diskAngle
public static final int diskAngle

diskAngle = 1

enabled
public static final int enabled

enabled = 2

maxAngle
public static final int maxAngle

maxAngle = 3

ISO/IEC 14496-1:2001(E)

486 © ISO/IEC 2001 – All rights reserved

minAngle
public static final int minAngle

minAngle = 4

offset
public static final int offset

offset = 5

V.5.35 org.iso.mpeg.mpegj.scene.EventIn.DirectionalLight

V.5.35.1 Syntax

public static interface EventIn.DirectionalLight

V.5.35.2 Description

Member Summary
Fields

int ambientIntensity
int color
int direction
int intensity
int on

V.5.35.3 Fields

ambientIntensity
public static final int ambientIntensity

ambientIntensity = 0

color
public static final int color

color = 1

direction
public static final int direction

direction = 2

intensity
public static final int intensity

intensity = 3

on
public static final int on

on = 4

V.5.36 org.iso.mpeg.mpegj.scene.EventIn.DiscSensor

V.5.36.1 Syntax

public static interface EventIn.DiscSensor

V.5.36.2 Description

Member Summary
Fields

int autoOffset
int enabled
int maxAngle
int minAngle
int offset

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 487

V.5.36.3 Fields

autoOffset
public static final int autoOffset

enabled
public static final int enabled

enabled = 1

maxAngle
public static final int maxAngle

maxAngle = 2

minAngle
public static final int minAngle

minAngle = 3

offset
public static final int offset

offset = 4

V.5.37 org.iso.mpeg.mpegj.scene.EventIn.ElevationGrid

V.5.37.1 Syntax

public static interface EventIn.ElevationGrid

V.5.37.2 Description

Member Summary
Fields

int set_height
int color
int normal
int texCoord

V.5.37.3 Fields

color
public static final int color

color = 1

normal
public static final int normal

normal = 2

set_height
public static final int set_height

set_height = 0

texCoord
public static final int texCoord

texCoord = 3

V.5.38 org.iso.mpeg.mpegj.scene.EventIn.Expression

V.5.38.1 Syntax

public static interface EventIn.Expression

V.5.38.2 Description

Member Summary
Fields

int expression_select1

ISO/IEC 14496-1:2001(E)

488 © ISO/IEC 2001 – All rights reserved

int expression_intensity1
int expression_select2
int expression_intensity2
int init_face
int expression_def

V.5.38.3 Fields

expression_def
public static final int expression_def

expression_def = 5

expression_intensity1
public static final int expression_intensity1

expression_intensity1 = 1

expression_intensity2
public static final int expression_intensity2

expression_intensity2 = 3

expression_select1
public static final int expression_select1

expression_select1 = 0

expression_select2
public static final int expression_select2

expression_select2 = 2

init_face
public static final int init_face

init_face = 4

V.5.39 org.iso.mpeg.mpegj.scene.EventIn.Extrusion

V.5.39.1 Syntax

public static interface EventIn.Extrusion

V.5.39.2 Description

Member Summary
Fields

int set_crossSection
int set_orientation
int set_scale
int set_spine

V.5.39.3 Fields

set_crossSection
public static final int set_crossSection

set_crossSection = 0

set_orientation
public static final int set_orientation

set_orientation = 1

set_scale
public static final int set_scale

set_scale = 2

set_spine
public static final int set_spine

set_spine = 3

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 489

V.5.40 org.iso.mpeg.mpegj.scene.EventIn.Face

V.5.40.1 Syntax

public static interface EventIn.Face

V.5.40.2 Description

Member Summary
Fields

int fap
int fdp
int fit
int ttsSource
int renderedFace

V.5.40.3 Fields

fap
public static final int fap

fap = 0

fdp
public static final int fdp

fdp = 1

fit
public static final int fit

fit = 2

renderedFace
public static final int renderedFace

renderedFace = 4

ttsSource
public static final int ttsSource

ttsSource = 3

V.5.41 org.iso.mpeg.mpegj.scene.EventIn.FaceDefMesh

V.5.41.1 Syntax

public static interface EventIn.FaceDefMesh

V.5.41.2 Description

V.5.42 org.iso.mpeg.mpegj.scene.EventIn.FaceDefTables

V.5.42.1 Syntax

public static interface EventIn.FaceDefTables

V.5.42.2 Description

Member Summary
Fields

int faceDefMesh
int faceDefTransform

V.5.42.3 Fields

faceDefMesh
public static final int faceDefMesh

faceDefMesh = 0

ISO/IEC 14496-1:2001(E)

490 © ISO/IEC 2001 – All rights reserved

faceDefTransform
public static final int faceDefTransform

faceDefTransform = 1

V.5.43 org.iso.mpeg.mpegj.scene.EventIn.FaceDefTransform

V.5.43.1 Syntax

public static interface EventIn.FaceDefTransform

V.5.43.2 Description

V.5.44 org.iso.mpeg.mpegj.scene.EventIn.FAP

V.5.44.1 Syntax

public static interface EventIn.FAP

V.5.44.2 Description

Member Summary
Fields

int viseme
int expression
int open_jaw
int lower_t_midlip
int raise_b_midlip
int stretch_l_corner
int stretch_r_corner
int lower_t_lip_lm
int lower_t_lip_rm
int lower_b_lip_lm
int lower_b_lip_rm
int raise_l_cornerlip
int raise_r_cornerlip
int thrust_jaw
int shift_jaw
int push_b_lip
int push_t_lip
int depress_chin
int close_t_l_eyelid
int close_t_r_eyelid
int close_b_l_eyelid
int close_b_r_eyelid
int yaw_l_eyeball
int yaw_r_eyeball
int pitch_l_eyeball
int pitch_r_eyeball
int thrust_l_eyeball
int thrust_r_eyeball
int dilate_l_pupil
int dilate_r_pupil
int raise_l_i_eyebrow
int raise_r_i_eyebrow
int raise_l_m_eyebrow
int raise_r_m_eyebrow
int raise_l_o_eyebrow
int raise_r_o_eyebrow
int squeeze_l_eyebrow
int squeeze_r_eyebrow
int puff_l_cheek
int puff_r_cheek
int lift_l_cheek
int lift_r_cheek
int shift_tongue_tip
int raise_tongue_tip
int thrust_tongue_tip
int raise_tongue

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 491

int tongue_roll
int head_pitch
int head_yaw
int head_roll
int lower_t_midlip_o
int raise_b_midlip_o
int stretch_l_cornerlip
int stretch_r_cornerlip
int lower_t_lip_lm_o
int lower_t_lip_rm_o
int raise_b_lip_lm_o
int raise_b_lip_rm_o
int raise_l_cornerlip_o
int raise_r_cornerlip_o
int stretch_l_nose
int stretch_r_nose
int raise_nose
int bend_nose
int raise_l_ear
int raise_r_ear
int pull_l_ear
int pull_r_ear

V.5.44.3 Fields

bend_nose
public static final int bend_nose

bend_nose = 63

close_b_l_eyelid
public static final int close_b_l_eyelid

close_b_l_eyelid = 20

close_b_r_eyelid
public static final int close_b_r_eyelid

close_b_r_eyelid = 21

close_t_l_eyelid
public static final int close_t_l_eyelid

close_t_l_eyelid = 18

close_t_r_eyelid
public static final int close_t_r_eyelid

close_t_r_eyelid = 19

depress_chin
public static final int depress_chin

depress_chin = 17

dilate_l_pupil
public static final int dilate_l_pupil

dilate_l_pupil = 28

dilate_r_pupil
public static final int dilate_r_pupil

dilate_r_pupil = 29

expression
public static final int expression

expression = 1

head_pitch
public static final int head_pitch

head_pitch = 47

head_roll
public static final int head_roll

head_roll = 49

ISO/IEC 14496-1:2001(E)

492 © ISO/IEC 2001 – All rights reserved

head_yaw
public static final int head_yaw

head_yaw = 48

lift_l_cheek
public static final int lift_l_cheek

lift_l_cheek = 40

lift_r_cheek
public static final int lift_r_cheek

lift_r_cheek = 41

lower_b_lip_lm
public static final int lower_b_lip_lm

lower_b_lip_lm = 9

lower_b_lip_rm
public static final int lower_b_lip_rm

lower_b_lip_rm = 10

lower_t_lip_lm
public static final int lower_t_lip_lm

lower_t_lm = 7

lower_t_lip_lm_o
public static final int lower_t_lip_lm_o

lower_t_lip_lm_o = 54

lower_t_lip_rm
public static final int lower_t_lip_rm

lower_t_lip_rm = 8

lower_t_lip_rm_o
public static final int lower_t_lip_rm_o

lower_t_lip_rm_o = 55

lower_t_midlip
public static final int lower_t_midlip

lower_t_midlip = 3

lower_t_midlip_o
public static final int lower_t_midlip_o

lower_t_midlip_o = 50

open_jaw
public static final int open_jaw

open_jaw = 2

pitch_l_eyeball
public static final int pitch_l_eyeball

pitch_l_eyeball = 24

pitch_r_eyeball
public static final int pitch_r_eyeball

pitch_r_eyeball = 25

puff_l_cheek
public static final int puff_l_cheek

puff_l_cheek = 38

puff_r_cheek
public static final int puff_r_cheek

puff_r_cheek = 39

pull_l_ear
public static final int pull_l_ear

pull_l_ear = 66

pull_r_ear

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 493

public static final int pull_r_ear

pull_r_ear = 67

push_b_lip
public static final int push_b_lip

push_b_lip = 15

push_t_lip
public static final int push_t_lip

push_t_lip = 16

raise_b_lip_lm_o
public static final int raise_b_lip_lm_o

raise_b_lip_lm_o = 56

raise_b_lip_rm_o
public static final int raise_b_lip_rm_o

raise_b_lip_rm_o = 57

raise_b_midlip
public static final int raise_b_midlip

raise_b_midlip = 4

raise_b_midlip_o
public static final int raise_b_midlip_o

raise_b_midlip_o = 51

raise_l_cornerlip
public static final int raise_l_cornerlip

raise_l_cornerlip = 11

raise_l_cornerlip_o
public static final int raise_l_cornerlip_o

raise_l_cornerlip_o = 58

raise_l_ear
public static final int raise_l_ear

raise_l_ear = 64

raise_l_i_eyebrow
public static final int raise_l_i_eyebrow

raise_l_i_eyebrow = 30

raise_l_m_eyebrow
public static final int raise_l_m_eyebrow

raise_l_m_eyebrow = 32

raise_l_o_eyebrow
public static final int raise_l_o_eyebrow

raise_l_o_eyebrow = 34

raise_nose
public static final int raise_nose

raise_nose = 62

raise_r_cornerlip
public static final int raise_r_cornerlip

raise_r_cornerlip = 12

raise_r_cornerlip_o
public static final int raise_r_cornerlip_o

raise_r_cornerlip_o = 59

raise_r_ear
public static final int raise_r_ear

raise_r_ear = 65

raise_r_i_eyebrow

ISO/IEC 14496-1:2001(E)

494 © ISO/IEC 2001 – All rights reserved

public static final int raise_r_i_eyebrow

raise_r_i_eyebrow = 31

raise_r_m_eyebrow
public static final int raise_r_m_eyebrow

raise_r_m_eyebrow = 33

raise_r_o_eyebrow
public static final int raise_r_o_eyebrow

raise_r_o_eyebrow = 35

raise_tongue
public static final int raise_tongue

raise_tongue = 45

raise_tongue_tip
public static final int raise_tongue_tip

raise_tongue_tip = 43

shift_jaw
public static final int shift_jaw

shift_jaw = 14

shift_tongue_tip
public static final int shift_tongue_tip

shift_tongue_tip = 42

squeeze_l_eyebrow
public static final int squeeze_l_eyebrow

squeeze_l_eyebrow = 36

squeeze_r_eyebrow
public static final int squeeze_r_eyebrow

squeeze_r_eyebrow = 37

stretch_l_corner
public static final int stretch_l_corner

stretch_l_corner = 5

stretch_l_cornerlip
public static final int stretch_l_cornerlip

stretch_l_cornerlip = 52

stretch_l_nose
public static final int stretch_l_nose

stretch_l_nose = 60

stretch_r_corner
public static final int stretch_r_corner

stretch_r_corner = 6

stretch_r_cornerlip
public static final int stretch_r_cornerlip

stretch_r_cornerlip = 53

stretch_r_nose
public static final int stretch_r_nose

stretch_r_nose = 61

thrust_jaw
public static final int thrust_jaw

thrust_jaw = 13

thrust_l_eyeball
public static final int thrust_l_eyeball

thrust_l_eyeball = 26

thrust_r_eyeball

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 495

public static final int thrust_r_eyeball

thrust_r_eyeball = 27

thrust_tongue_tip
public static final int thrust_tongue_tip

thrust_tongue_tip = 44

tongue_roll
public static final int tongue_roll

tongue_roll = 46

viseme
public static final int viseme

viseme = 0

yaw_l_eyeball
public static final int yaw_l_eyeball

yaw_l_eyeball = 22

yaw_r_eyeball
public static final int yaw_r_eyeball

yaw_r_eyeball = 23

V.5.45 org.iso.mpeg.mpegj.scene.EventIn.FDP

V.5.45.1 Syntax

public static interface EventIn.FDP

V.5.45.2 Description

Member Summary
Fields

int featurePointsCoord
int textureCoord
int faceDefTables
int faceSceneGraph

V.5.45.3 Fields

faceDefTables
public static final int faceDefTables

faceDefTables = 2

faceSceneGraph
public static final int faceSceneGraph

faceSceneGraph = 3

featurePointsCoord
public static final int featurePointsCoord

featurePointsCoord = 0

textureCoord
public static final int textureCoord

textureCoord = 1

V.5.46 org.iso.mpeg.mpegj.scene.EventIn.FIT

V.5.46.1 Syntax

public static interface EventIn.FIT

V.5.46.2 Description

Member Summary

ISO/IEC 14496-1:2001(E)

496 © ISO/IEC 2001 – All rights reserved

Fields
int FAPs
int Graph
int numeratorExp
int denominatorExp
int numeratorImpulse
int numeratorTerms
int denominatorTerms
int numeratorCoefs
int denominatorCoefs

V.5.46.3 Fields

denominatorCoefs
public static final int denominatorCoefs

denominatorCoefs = 8

denominatorExp
public static final int denominatorExp

denominatorExp = 3

denominatorTerms
public static final int denominatorTerms

denominatorTerms = 6

FAPs
public static final int FAPs

FAPs = 0

Graph
public static final int Graph

Graph = 1

numeratorCoefs
public static final int numeratorCoefs

numeratorCoefs = 7

numeratorExp
public static final int numeratorExp

numeratorExp = 2

numeratorImpulse
public static final int numeratorImpulse

numeratorImpulse = 4

numeratorTerms
public static final int numeratorTerms

numeratorTerms = 5

V.5.47 org.iso.mpeg.mpegj.scene.EventIn.Fog

V.5.47.1 Syntax

public static interface EventIn.Fog

V.5.47.2 Description

Member Summary
Fields

int color
int fogType
int visibilityRange
int set_bind

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 497

V.5.47.3 Fields

color
public static final int color

color = 0

fogType
public static final int fogType

fogType = 1

set_bind
public static final int set_bind

set_bind = 3

visibilityRange
public static final int visibilityRange

visibilityRange = 2

V.5.48 org.iso.mpeg.mpegj.scene.EventIn.FontStyle

V.5.48.1 Syntax

public static interface EventIn.FontStyle

V.5.48.2 Description

V.5.49 org.iso.mpeg.mpegj.scene.EventIn.Form

V.5.49.1 Syntax

public static interface EventIn.Form

V.5.49.2 Description

Member Summary
Fields

int addChildren
int removeChildren
int children
int size
int groups
int constraints
int groupsIndex

V.5.49.3 Fields

addChildren
public static final int addChildren

addChildren = 0

children
public static final int children

children = 2

constraints
public static final int constraints

constraints = 5

groups
public static final int groups

groups = 4

groupsIndex
public static final int groupsIndex

groupsIndex = 6

ISO/IEC 14496-1:2001(E)

498 © ISO/IEC 2001 – All rights reserved

removeChildren
public static final int removeChildren

removeChildren = 1

size
public static final int size

size = 3

V.5.50 org.iso.mpeg.mpegj.scene.EventIn.Group

V.5.50.1 Syntax

public static interface EventIn.Group

V.5.50.2 Description

Member Summary
Fields

int addChildren
int removeChildren
int children

V.5.50.3 Fields

addChildren
public static final int addChildren

addChildren = 0

children
public static final int children

children = 2

removeChildren
public static final int removeChildren

removeChildren = 1

V.5.51 org.iso.mpeg.mpegj.scene.EventIn.ImageTexture

V.5.51.1 Syntax

public static interface EventIn.ImageTexture

V.5.51.2 Description

Member Summary
Fields

int url

V.5.51.3 Fields

url
public static final int url

url = 0

V.5.52 org.iso.mpeg.mpegj.scene.EventIn.IndexedFaceSet

V.5.52.1 Syntax

public static interface EventIn.IndexedFaceSet

V.5.52.2 Description

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 499

Member Summary
Fields

int set_colorIndex
int set_coordIndex
int set_normalIndex
int set_texCoordIndex
int color
int coord
int normal
int texCoord

V.5.52.3 Fields

color
public static final int color

color = 4

coord
public static final int coord

coord = 5

normal
public static final int normal

normal = 6

set_colorIndex
public static final int set_colorIndex

set_colorIndex = 0

set_coordIndex
public static final int set_coordIndex

set_coordIndex = 1

set_normalIndex
public static final int set_normalIndex

set_normalIndex = 2

set_texCoordIndex
public static final int set_texCoordIndex

set_texCoordIndex = 3

texCoord
public static final int texCoord

texCoord = 7

V.5.53 org.iso.mpeg.mpegj.scene.EventIn.IndexedFaceSet2D

V.5.53.1 Syntax

public static interface EventIn.IndexedFaceSet2D

V.5.53.2 Description

Member Summary
Fields

int set_colorIndex
int set_coordIndex
int set_texCoordIndex
int color
int coord
int texCoord

V.5.53.3 Fields

color
public static final int color

ISO/IEC 14496-1:2001(E)

500 © ISO/IEC 2001 – All rights reserved

color = 3

coord
public static final int coord

coord = 4

set_colorIndex
public static final int set_colorIndex

set_colorIndex = 0

set_coordIndex
public static final int set_coordIndex

set_coordIndex = 1

set_texCoordIndex
public static final int set_texCoordIndex

set_texCoordIndex = 2

texCoord
public static final int texCoord

texCoord = 5

V.5.54 org.iso.mpeg.mpegj.scene.EventIn.IndexedLineSet

V.5.54.1 Syntax

public static interface EventIn.IndexedLineSet

V.5.54.2 Description

Member Summary
Fields

int set_colorIndex
int set_coordIndex
int color
int coord

V.5.54.3 Fields

color
public static final int color

color = 2

coord
public static final int coord

coord = 3

set_colorIndex
public static final int set_colorIndex

set_colorIndex = 0

set_coordIndex
public static final int set_coordIndex

set_coordIndex = 1

V.5.55 org.iso.mpeg.mpegj.scene.EventIn.IndexedLineSet2D

V.5.55.1 Syntax

public static interface EventIn.IndexedLineSet2D

V.5.55.2 Description

Member Summary
Fields

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 501

int set_colorIndex
int set_coordIndex
int color
int coord

V.5.55.3 Fields

color
public static final int color

color = 2

coord
public static final int coord

coord = 3

set_colorIndex
public static final int set_colorIndex

set_colorIndex = 0

set_coordIndex
public static final int set_coordIndex

set_coordIndex = 1

V.5.56 org.iso.mpeg.mpegj.scene.EventIn.Inline

V.5.56.1 Syntax

public static interface EventIn.Inline

V.5.56.2 Description

Member Summary
Fields

int url

V.5.56.3 Fields

url
public static final int url

url = 0

V.5.57 org.iso.mpeg.mpegj.scene.EventIn.Layer2D

V.5.57.1 Syntax

public static interface EventIn.Layer2D

V.5.57.2 Description

Member Summary
Fields

int addChildren
int removeChildren
int children
int size
int background
int viewport

V.5.57.3 Fields

addChildren
public static final int addChildren

addChildren = 0

ISO/IEC 14496-1:2001(E)

502 © ISO/IEC 2001 – All rights reserved

background
public static final int background

background = 4

children
public static final int children

children = 2

removeChildren
public static final int removeChildren

removeChildren = 1

size
public static final int size

size = 3

viewport
public static final int viewport

viewport = 5

V.5.58 org.iso.mpeg.mpegj.scene.EventIn.Layer3D

V.5.58.1 Syntax

public static interface EventIn.Layer3D

V.5.58.2 Description

Member Summary
Fields

int addChildren
int removeChildren
int children
int size
int background
int fog
int navigationInfo
int viewpoint

V.5.58.3 Fields

addChildren
public static final int addChildren

addChildren = 0

background
public static final int background

background = 4

children
public static final int children

children = 2

fog
public static final int fog

fog = 5

navigationInfo
public static final int navigationInfo

navigationInfo = 6

removeChildren
public static final int removeChildren

removeChildren = 1

size

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 503

public static final int size

size = 3

viewpoint
public static final int viewpoint

viewpoint = 7

V.5.59 org.iso.mpeg.mpegj.scene.EventIn.Layout

V.5.59.1 Syntax

public static interface EventIn.Layout

V.5.59.2 Description

Member Summary
Fields

int addChildren
int removeChildren
int children
int wrap
int size
int horizontal
int justify
int leftToRight
int topToBottom
int spacing
int smoothScroll
int loop
int scrollVertical
int scrollRate

V.5.59.3 Fields

addChildren
public static final int addChildren

addChildren = 0

children
public static final int children

children = 2

horizontal
public static final int horizontal

horizontal = 5

justify
public static final int justify

justify = 6

leftToRight
public static final int leftToRight

leftToRight = 7

loop
public static final int loop

loop = 11

removeChildren
public static final int removeChildren

removeChildren = 1

scrollRate
public static final int scrollRate

scrollRate = 13

scrollVertical

ISO/IEC 14496-1:2001(E)

504 © ISO/IEC 2001 – All rights reserved

public static final int scrollVertical

scrollVertical = 12

size
public static final int size

size = 4

smoothScroll
public static final int smoothScroll

smoothScroll = 10

spacing
public static final int spacing

spacing = 9

topToBottom
public static final int topToBottom

topToBottom = 8

wrap
public static final int wrap

wrap = 3

V.5.60 org.iso.mpeg.mpegj.scene.EventIn.LineProperties

V.5.60.1 Syntax

public static interface EventIn.LineProperties

V.5.60.2 Description

Member Summary
Fields

int lineColor
int lineStyle
int width

V.5.60.3 Fields

lineColor
public static final int lineColor

lineColor = 0

lineStyle
public static final int lineStyle

lineStyle = 1

width
public static final int width

width = 2

V.5.61 org.iso.mpeg.mpegj.scene.EventIn.ListeningPoint

V.5.61.1 Syntax

public static interface EventIn.ListeningPoint

V.5.61.2 Description

Member Summary
Fields

int set_bind
int jump
int orientation
int position

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 505

V.5.61.3 Fields

jump
public static final int jump

jump = 1

orientation
public static final int orientation

orientation = 2

position
public static final int position

position = 3

set_bind
public static final int set_bind

set_bind = 0

V.5.62 org.iso.mpeg.mpegj.scene.EventIn.LOD

V.5.62.1 Syntax

public static interface EventIn.LOD

V.5.62.2 Description

Member Summary
Fields

int level

V.5.62.3 Fields

level
public static final int level

level = 0

V.5.63 org.iso.mpeg.mpegj.scene.EventIn.Material

V.5.63.1 Syntax

public static interface EventIn.Material

V.5.63.2 Description

Member Summary
Fields

int ambientIntensity
int diffuseColor
int emissiveColor
int shininess
int specularColor
int transparency

V.5.63.3 Fields

ambientIntensity
public static final int ambientIntensity

ambientIntensity = 0

diffuseColor
public static final int diffuseColor

diffuseColor = 1

emissiveColor

ISO/IEC 14496-1:2001(E)

506 © ISO/IEC 2001 – All rights reserved

public static final int emissiveColor

emissiveColor = 2

shininess
public static final int shininess

shininess = 3

specularColor
public static final int specularColor

specularColor = 4

transparency
public static final int transparency

transparency = 5

V.5.64 org.iso.mpeg.mpegj.scene.EventIn.Material2D

V.5.64.1 Syntax

public static interface EventIn.Material2D

V.5.64.2 Description

Member Summary
Fields

int emissiveColor
int filled
int lineProps
int transparency

V.5.64.3 Fields

emissiveColor
public static final int emissiveColor

emissiveColor = 0

filled
public static final int filled

filled = 1

lineProps
public static final int lineProps

lineProps = 2

transparency
public static final int transparency

transparency = 3

V.5.65 org.iso.mpeg.mpegj.scene.EventIn.MovieTexture

V.5.65.1 Syntax

public static interface EventIn.MovieTexture

V.5.65.2 Description

Member Summary
Fields

int loop
int speed
int startTime
int stopTime
int url

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 507

V.5.65.3 Fields

loop
public static final int loop

loop = 0

speed
public static final int speed

speed = 1

startTime
public static final int startTime

startTime = 2

stopTime
public static final int stopTime

stopTime = 3

url
public static final int url

url = 4

V.5.66 org.iso.mpeg.mpegj.scene.EventIn.NavigationInfo

V.5.66.1 Syntax

public static interface EventIn.NavigationInfo

V.5.66.2 Description

Member Summary
Fields

int set_bind
int avatarSize
int headlight
int speed
int type
int visibilityLimit

V.5.66.3 Fields

avatarSize
public static final int avatarSize

avatarSize = 1

headlight
public static final int headlight

headlight = 2

set_bind
public static final int set_bind

set_bind = 0

speed
public static final int speed

speed = 3

type
public static final int type

type = 4

visibilityLimit
public static final int visibilityLimit

visibilityLimit = 5

ISO/IEC 14496-1:2001(E)

508 © ISO/IEC 2001 – All rights reserved

V.5.67 org.iso.mpeg.mpegj.scene.EventIn.Normal

V.5.67.1 Syntax

public static interface EventIn.Normal

V.5.67.2 Description

Member Summary
Fields

int vector

V.5.67.3 Fields

vector
public static final int vector

vector = 0

V.5.68 org.iso.mpeg.mpegj.scene.EventIn.NormalInterpolator

V.5.68.1 Syntax

public static interface EventIn.NormalInterpolator

V.5.68.2 Description

Member Summary
Fields

int set_fraction
int key
int keyValue

V.5.68.3 Fields

key
public static final int key

key = 1

keyValue
public static final int keyValue

keyValue = 2

set_fraction
public static final int set_fraction

set_fraction = 0

V.5.69 org.iso.mpeg.mpegj.scene.EventIn.OrderedGroup

V.5.69.1 Syntax

public static interface EventIn.OrderedGroup

V.5.69.2 Description

Member Summary
Fields

int addChildren
int removeChildren
int children
int order

V.5.69.3 Fields

addChildren

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 509

public static final int addChildren

addChildren = 0

children
public static final int children

children = 2

order
public static final int order

order = 3

removeChildren
public static final int removeChildren

removeChildren = 1

V.5.70 org.iso.mpeg.mpegj.scene.EventIn.OrientationInterpolator

V.5.70.1 Syntax

public static interface EventIn.OrientationInterpolator

V.5.70.2 Description

Member Summary
Fields

int set_fraction
int key
int keyValue

V.5.70.3 Fields

key
public static final int key

key = 1

keyValue
public static final int keyValue

keyValue = 2

set_fraction
public static final int set_fraction

set_fraction = 0

V.5.71 org.iso.mpeg.mpegj.scene.EventIn.PixelTexture

V.5.71.1 Syntax

public static interface EventIn.PixelTexture

V.5.71.2 Description

Member Summary
Fields

int image

V.5.71.3 Fields

image
public static final int image

image = 0

ISO/IEC 14496-1:2001(E)

510 © ISO/IEC 2001 – All rights reserved

V.5.72 org.iso.mpeg.mpegj.scene.EventIn.PlaneSensor

V.5.72.1 Syntax

public static interface EventIn.PlaneSensor

V.5.72.2 Description

Member Summary
Fields

int autoOffset
int enabled
int maxPosition
int minPosition
int offset

V.5.72.3 Fields

autoOffset
public static final int autoOffset

autoOffset = 0

enabled
public static final int enabled

enabled = 1

maxPosition
public static final int maxPosition

maxPosition = 2

minPosition
public static final int minPosition

minPosition = 3

offset
public static final int offset

offset = 4

V.5.73 org.iso.mpeg.mpegj.scene.EventIn.PlaneSensor2D

V.5.73.1 Syntax

public static interface EventIn.PlaneSensor2D

V.5.73.2 Description

Member Summary
Fields

int autoOffset
int enabled
int maxPosition
int minPosition
int offset

V.5.73.3 Fields

autoOffset
public static final int autoOffset

autoOffset = 0

enabled
public static final int enabled

enabled = 1

maxPosition

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 511

public static final int maxPosition

maxPosition = 2

minPosition
public static final int minPosition

minPosition = 3

offset
public static final int offset

offset = 4

V.5.74 org.iso.mpeg.mpegj.scene.EventIn.PointLight

V.5.74.1 Syntax

public static interface EventIn.PointLight

V.5.74.2 Description

Member Summary
Fields

int ambientIntensity
int attenuation
int color
int intensity
int location
int on
int radius

V.5.74.3 Fields

ambientIntensity
public static final int ambientIntensity

ambientIntensity = 0

attenuation
public static final int attenuation

attenuation = 1

color
public static final int color

color = 2

intensity
public static final int intensity

intensity = 3

location
public static final int location

location = 4

on
public static final int on

on = 5

radius
public static final int radius

radius = 6

V.5.75 org.iso.mpeg.mpegj.scene.EventIn.PointSet

V.5.75.1 Syntax

public static interface EventIn.PointSet

ISO/IEC 14496-1:2001(E)

512 © ISO/IEC 2001 – All rights reserved

V.5.75.2 Description

Member Summary
Fields

int color
int coord

V.5.75.3 Fields

color
public static final int color

color = 0

coord
public static final int coord

coord = 1

V.5.76 org.iso.mpeg.mpegj.scene.EventIn.PointSet2D

V.5.76.1 Syntax

public static interface EventIn.PointSet2D

V.5.76.2 Description

Member Summary
Fields

int color
int coord

V.5.76.3 Fields

color
public static final int color

color = 0

coord
public static final int coord

coord = 1

V.5.77 org.iso.mpeg.mpegj.scene.EventIn.PositionInterpolator

V.5.77.1 Syntax

public static interface EventIn.PositionInterpolator

V.5.77.2 Description

Member Summary
Fields

int set_fraction
int key
int keyValue

V.5.77.3 Fields

key
public static final int key

key = 1

keyValue
public static final int keyValue

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 513

keyValue = 2

set_fraction
public static final int set_fraction

set_fraction = 0

V.5.78 org.iso.mpeg.mpegj.scene.EventIn.PositionInterpolator2D

V.5.78.1 Syntax

public static interface EventIn.PositionInterpolator2D

V.5.78.2 Description

Member Summary
Fields

int set_fraction
int key
int keyValue

V.5.78.3 Fields

key
public static final int key

key = 1

keyValue
public static final int keyValue

keyValue = 2

set_fraction
public static final int set_fraction

set_fraction = 0

V.5.79 org.iso.mpeg.mpegj.scene.EventIn.ProximitySensor

V.5.79.1 Syntax

public static interface EventIn.ProximitySensor

V.5.79.2 Description

Member Summary
Fields

int center
int size
int enabled

V.5.79.3 Fields

center
public static final int center

center = 0

enabled
public static final int enabled

enabled = 2

size
public static final int size

size = 1

ISO/IEC 14496-1:2001(E)

514 © ISO/IEC 2001 – All rights reserved

V.5.80 org.iso.mpeg.mpegj.scene.EventIn.ProximitySensor2D

V.5.80.1 Syntax

public static interface EventIn.ProximitySensor2D

V.5.80.2 Description

Member Summary
Fields

int center
int size
int enabled

V.5.80.3 Fields

center
public static final int center

center = 0

enabled
public static final int enabled

enabled = 2

size
public static final int size

size = 1

V.5.81 org.iso.mpeg.mpegj.scene.EventIn.QuantizationParameter

V.5.81.1 Syntax

public static interface EventIn.QuantizationParameter

V.5.81.2 Description

V.5.82 org.iso.mpeg.mpegj.scene.EventIn.Rectangle

V.5.82.1 Syntax

public static interface EventIn.Rectangle

V.5.82.2 Description

Member Summary
Fields

int size

V.5.82.3 Fields

size
public static final int size

size = 0

V.5.83 org.iso.mpeg.mpegj.scene.EventIn.ScalarInterpolator

V.5.83.1 Syntax

public static interface EventIn.ScalarInterpolator

V.5.83.2 Description

Member Summary

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 515

Fields
int set_fraction
int key
int keyValue

V.5.83.3 Fields

key
public static final int key

key = 1

keyValue
public static final int keyValue

keyValue = 2

set_fraction
public static final int set_fraction

set_fraction = 0

V.5.84 org.iso.mpeg.mpegj.scene.EventIn.Script

V.5.84.1 Syntax

public static interface EventIn.Script

V.5.84.2 Description

Member Summary
Fields

int url

V.5.84.3 Fields

url
public static final int url

url = 0

V.5.85 org.iso.mpeg.mpegj.scene.EventIn.Shape

V.5.85.1 Syntax

public static interface EventIn.Shape

V.5.85.2 Description

Member Summary
Fields

int appearance
int geometry

V.5.85.3 Fields

appearance
public static final int appearance

appearance = 0

geometry
public static final int geometry

geometry = 1

ISO/IEC 14496-1:2001(E)

516 © ISO/IEC 2001 – All rights reserved

V.5.86 org.iso.mpeg.mpegj.scene.EventIn.Sound

V.5.86.1 Syntax

public static interface EventIn.Sound

V.5.86.2 Description

Member Summary
Fields

int direction
int intensity
int location
int maxBack
int maxFront
int minBack
int minFront
int priority
int source

V.5.86.3 Fields

direction
public static final int direction

direction = 0

intensity
public static final int intensity

intensity = 1

location
public static final int location

location = 2

maxBack
public static final int maxBack

maxBack = 3

maxFront
public static final int maxFront

maxFront = 4

minBack
public static final int minBack

minBack = 5

minFront
public static final int minFront

minFront = 6

priority
public static final int priority

priority = 7

source
public static final int source

source = 8

V.5.87 org.iso.mpeg.mpegj.scene.EventIn.Sound2D

V.5.87.1 Syntax

public static interface EventIn.Sound2D

V.5.87.2 Description

Member Summary

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 517

Fields
int intensity
int location
int source

V.5.87.3 Fields

intensity
public static final int intensity

intensity = 0

location
public static final int location

location = 1

source
public static final int source

source = 2

V.5.88 org.iso.mpeg.mpegj.scene.EventIn.Sphere

V.5.88.1 Syntax

public static interface EventIn.Sphere

V.5.88.2 Description

V.5.89 org.iso.mpeg.mpegj.scene.EventIn.SphereSensor

V.5.89.1 Syntax

public static interface EventIn.SphereSensor

V.5.89.2 Description

Member Summary
Fields

int autoOffset
int enabled
int offset

V.5.89.3 Fields

autoOffset
public static final int autoOffset

autoOffset = 0

enabled
public static final int enabled

enabled = 1

offset
public static final int offset

offset = 2

V.5.90 org.iso.mpeg.mpegj.scene.EventIn.SpotLight

V.5.90.1 Syntax

public static interface EventIn.SpotLight

V.5.90.2 Description

Member Summary

ISO/IEC 14496-1:2001(E)

518 © ISO/IEC 2001 – All rights reserved

Fields
int ambientIntensity
int attenuation
int beamWidth
int color
int cutOffAngle
int direction
int intensity
int location
int on
int radius

V.5.90.3 Fields

ambientIntensity
public static final int ambientIntensity

ambientIntensity = 0

attenuation
public static final int attenuation

attenuation = 1

beamWidth
public static final int beamWidth

beamWidth = 2

color
public static final int color

color = 3

cutOffAngle
public static final int cutOffAngle

cutOffAngle = 4

direction
public static final int direction

direction = 5

intensity
public static final int intensity

intensity = 6

location
public static final int location

location = 7

on
public static final int on

on = 8

radius
public static final int radius

radius = 9

V.5.91 org.iso.mpeg.mpegj.scene.EventIn.Switch

V.5.91.1 Syntax

public static interface EventIn.Switch

V.5.91.2 Description

Member Summary
Fields

int choice
int whichChoice

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 519

V.5.91.3 Fields

choice
public static final int choice

choice = 0

whichChoice
public static final int whichChoice

whichChoice = 1

V.5.92 org.iso.mpeg.mpegj.scene.EventIn.TermCap

V.5.92.1 Syntax

public static interface EventIn.TermCap

V.5.92.2 Description

Member Summary
Fields

int evaluate
int capability

V.5.92.3 Fields

capability
public static final int capability

capability = 1

evaluate
public static final int evaluate

evaluate = 0

V.5.93 org.iso.mpeg.mpegj.scene.EventIn.Text

V.5.93.1 Syntax

public static interface EventIn.Text

V.5.93.2 Description

Member Summary
Fields

int string
int length
int fontStyle
int maxExtent

V.5.93.3 Fields

fontStyle
public static final int fontStyle

fontStyle = 2

length
public static final int length

length = 1

maxExtent
public static final int maxExtent

maxExtent = 3

string
public static final int string

string = 0

ISO/IEC 14496-1:2001(E)

520 © ISO/IEC 2001 – All rights reserved

V.5.94 org.iso.mpeg.mpegj.scene.EventIn.TextureCoordinate

V.5.94.1 Syntax

public static interface EventIn.TextureCoordinate

V.5.94.2 Description

Member Summary
Fields

int point

V.5.94.3 Fields

point
public static final int point

point = 0

V.5.95 org.iso.mpeg.mpegj.scene.EventIn.TextureTransform

V.5.95.1 Syntax

public static interface EventIn.TextureTransform

V.5.95.2 Description

Member Summary
Fields

int center
int rotation
int scale
int translation

V.5.95.3 Fields

center
public static final int center

center = 0

rotation
public static final int rotation

rotation = 1

scale
public static final int scale

scale = 2

translation
public static final int translation

translation = 3

V.5.96 org.iso.mpeg.mpegj.scene.EventIn.TimeSensor

V.5.96.1 Syntax

public static interface EventIn.TimeSensor

V.5.96.2 Description

Member Summary
Fields

int cycleInterval
int enabled
int loop

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 521

int startTime
int stopTime

V.5.96.3 Fields

cycleInterval
public static final int cycleInterval

cycleInterval = 0

enabled
public static final int enabled

enabled = 1

loop
public static final int loop

loop = 2

startTime
public static final int startTime

startTime = 3

stopTime
public static final int stopTime

stopTime = 4

V.5.97 org.iso.mpeg.mpegj.scene.EventIn.TouchSensor

V.5.97.1 Syntax

public static interface EventIn.TouchSensor

V.5.97.2 Description

Member Summary
Fields

int enabled

V.5.97.3 Fields

enabled
public static final int enabled

enabled = 0

V.5.98 org.iso.mpeg.mpegj.scene.EventIn.Transform

V.5.98.1 Syntax

public static interface EventIn.Transform

V.5.98.2 Description

Member Summary
Fields

int addChildren
int removeChildren
int center
int children
int rotation
int scale
int scaleOrientation
int translation

ISO/IEC 14496-1:2001(E)

522 © ISO/IEC 2001 – All rights reserved

V.5.98.3 Fields

addChildren
public static final int addChildren

addChildren = 0

center
public static final int center

center = 2

children
public static final int children

children = 3

removeChildren
public static final int removeChildren

removeChildren = 1

rotation
public static final int rotation

rotation = 4

scale
public static final int scale

scale = 5

scaleOrientation
public static final int scaleOrientation

scaleOrientation = 6

translation
public static final int translation

translation = 7

V.5.99 org.iso.mpeg.mpegj.scene.EventIn.Transform2D

V.5.99.1 Syntax

public static interface EventIn.Transform2D

V.5.99.2 Description

Member Summary
Fields

int addChildren
int removeChildren
int children
int center
int rotationAngle
int scale
int scaleOrientation
int translation

V.5.99.3 Fields

addChildren
public static final int addChildren

addChildren = 0

center
public static final int center

center = 3

children
public static final int children

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 523

children = 2

removeChildren
public static final int removeChildren

removeChildren = 1

rotationAngle
public static final int rotationAngle

rotationAngle = 4

scale
public static final int scale

scale = 5

scaleOrientation
public static final int scaleOrientation

scaleOrientation = 6

translation
public static final int translation

translation = 7

V.5.100 org.iso.mpeg.mpegj.scene.EventIn.Valuator

V.5.100.1Syntax

public static interface EventIn.Valuator

V.5.100.2Description

Member Summary
Fields

int inSFBool
int inSFColor
int inMFColor
int inSFFloat
int inMFFloat
int inSFInt32
int inMFInt32
int inSFRotation
int inMFRotation
int inSFString
int inMFString
int inSFTime
int inSFVec2f
int inMFVec2f
int inSFVec3f
int inMFVec3f
int Factor1
int Factor2
int Factor3
int Factor4
int Offset1
int Offset2
int Offset3
int Offset4
int Sum

V.5.100.3Fields

Factor1
public static final int Factor1

Factor1 = 16

Factor2
public static final int Factor2

Factor2 = 17

ISO/IEC 14496-1:2001(E)

524 © ISO/IEC 2001 – All rights reserved

Factor3
public static final int Factor3

Factor3 = 18

Factor4
public static final int Factor4

Factor4 = 19

inMFColor
public static final int inMFColor

inMFColor = 2

inMFFloat
public static final int inMFFloat

inMFFloat = 4

inMFInt32
public static final int inMFInt32

inMFInt32 = 6

inMFRotation
public static final int inMFRotation

inMFRotation = 8

inMFString
public static final int inMFString

inMFString = 10

inMFVec2f
public static final int inMFVec2f

inMFVec2f = 13

inMFVec3f
public static final int inMFVec3f

inMFVec3f = 15

inSFBool
public static final int inSFBool

inSFBool = 0

inSFColor
public static final int inSFColor

inSFColor = 1

inSFFloat
public static final int inSFFloat

inSFFloat = 3

inSFInt32
public static final int inSFInt32

inSFInt32 = 5

inSFRotation
public static final int inSFRotation

inSFRotation = 7

inSFString
public static final int inSFString

inSFString = 9

inSFTime
public static final int inSFTime

inSFTime = 11

inSFVec2f
public static final int inSFVec2f

inSFVec2f = 12

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 525

inSFVec3f
public static final int inSFVec3f

inSFVec3f = 14

Offset1
public static final int Offset1

Offset1 = 20

Offset2
public static final int Offset2

Offset2 = 21

Offset3
public static final int Offset3

Offset3 = 22

Offset4
public static final int Offset4

Offset4 = 23

Sum
public static final int Sum

Sum = 24

V.5.101 org.iso.mpeg.mpegj.scene.EventIn.Viewpoint

V.5.101.1Syntax

public static interface EventIn.Viewpoint

V.5.101.2Description

Member Summary
Fields

int set_bind
int fieldOfView
int jump
int orientation
int position

V.5.101.3Fields

fieldOfView
public static final int fieldOfView

fieldOfView = 1

jump
public static final int jump

jump = 2

orientation
public static final int orientation

orientation = 3

position
public static final int position

position = 4

set_bind
public static final int set_bind

set_bind = 0

ISO/IEC 14496-1:2001(E)

526 © ISO/IEC 2001 – All rights reserved

V.5.102 org.iso.mpeg.mpegj.scene.EventIn.Viseme

V.5.102.1Syntax

public static interface EventIn.Viseme

V.5.102.2Description

Member Summary
Fields

int viseme_select1
int viseme_select2
int viseme_blend
int viseme_def

V.5.102.3Fields

viseme_blend
public static final int viseme_blend

viseme_blend = 2

viseme_def
public static final int viseme_def

viseme_def = 3

viseme_select1
public static final int viseme_select1

viseme_select1 = 0

viseme_select2
public static final int viseme_select2

viseme_select2 = 1

V.5.103 org.iso.mpeg.mpegj.scene.EventIn.VisibilitySensor

V.5.103.1Syntax

public static interface EventIn.VisibilitySensor

V.5.103.2Description

Member Summary
Fields

int center
int enabled
int size

V.5.103.3Fields

center
public static final int center

center = 0

enabled
public static final int enabled

enabled = 1

size
public static final int size

size = 2

V.5.104 org.iso.mpeg.mpegj.scene.EventIn.WorldInfo

V.5.104.1Syntax

public static interface EventIn.WorldInfo

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 527

V.5.104.2Description

V.5.105 org.iso.mpeg.mpegj.scene.EventOut

V.5.105.1Syntax

public interface EventOut

V.5.105.2Description

Member Summary
Inner Classes

static interface EventOut.Anchor
static interface EventOut.AnimationStream
static interface EventOut.Appearance
static interface EventOut.AudioBuffer
static interface EventOut.AudioClip
static interface EventOut.AudioDelay
static interface EventOut.AudioFX
static interface EventOut.AudioMix
static interface EventOut.AudioSource
static interface EventOut.AudioSwitch
static interface EventOut.Background
static interface EventOut.Background2D
static interface EventOut.Billboard
static interface EventOut.Bitmap
static interface EventOut.Box
static interface EventOut.Circle
static interface EventOut.Collision
static interface EventOut.Color
static interface EventOut.ColorInterpolator
static interface EventOut.CompositeTexture2D
static interface EventOut.CompositeTexture3D
static interface EventOut.Conditional
static interface EventOut.Cone
static interface EventOut.Coordinate
static interface EventOut.Coordinate2D
static interface EventOut.CoordinateInterpolator
static interface EventOut.CoordinateInterpolator2D
static interface EventOut.Curve2D
static interface EventOut.Cylinder
static interface EventOut.CylinderSensor
static interface EventOut.DirectionalLight
static interface EventOut.DiscSensor
static interface EventOut.ElevationGrid
static interface EventOut.Expression
static interface EventOut.Extrusion
static interface EventOut.Face
static interface EventOut.FaceDefMesh
static interface EventOut.FaceDefTables
static interface EventOut.FaceDefTransform
static interface EventOut.FAP
static interface EventOut.FDP
static interface EventOut.FIT
static interface EventOut.Fog
static interface EventOut.FontStyle
static interface EventOut.Form
static interface EventOut.Group
static interface EventOut.ImageTexture
static interface EventOut.IndexedFaceSet
static interface EventOut.IndexedFaceSet2D
static interface EventOut.IndexedLineSet
static interface EventOut.IndexedLineSet2D
static interface EventOut.Inline
static interface EventOut.LOD
static interface EventOut.Layer2D
static interface EventOut.Layer3D
static interface EventOut.Layout
static interface EventOut.LineProperties
static interface EventOut.ListeningPoint
static interface EventOut.Material

ISO/IEC 14496-1:2001(E)

528 © ISO/IEC 2001 – All rights reserved

static interface EventOut.Material2D
static interface EventOut.MovieTexture
static interface EventOut.NavigationInfo
static interface EventOut.Normal
static interface EventOut.NormalInterpolator
static interface EventOut.OrderedGroup
static interface EventOut.OrientationInterpolator
static interface EventOut.PixelTexture
static interface EventOut.PlaneSensor
static interface EventOut.PlaneSensor2D
static interface EventOut.PointLight
static interface EventOut.PointSet
static interface EventOut.PointSet2D
static interface EventOut.PositionInterpolator
static interface EventOut.PositionInterpolator2D
static interface EventOut.ProximitySensor2D
static interface EventOut.ProximitySensor
static interface EventOut.QuantizationParameter
static interface EventOut.Rectangle
static interface EventOut.ScalarInterpolator
static interface EventOut.Script
static interface EventOut.Shape
static interface EventOut.Sound
static interface EventOut.Sound2D
static interface EventOut.Sphere
static interface EventOut.SphereSensor
static interface EventOut.SpotLight
static interface EventOut.Switch
static interface EventOut.TermCap
static interface EventOut.Text
static interface EventOut.TextureCoordinate
static interface EventOut.TextureTransform
static interface EventOut.TimeSensor
static interface EventOut.TouchSensor
static interface EventOut.Transform
static interface EventOut.Transform2D
static interface EventOut.Valuator
static interface EventOut.Viewpoint
static interface EventOut.VisibilitySensor
static interface EventOut.Viseme
static interface EventOut.WorldInfo

V.5.106 org.iso.mpeg.mpegj.scene.EventOut.Anchor

V.5.106.1Syntax

public static interface EventOut.Anchor

V.5.106.2Description

Member Summary
Fields

int children
int description
int parameter
int url

V.5.106.3Fields

children
public static final int children

children = 0

description
public static final int description

description = 1

parameter
public static final int parameter

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 529

parameter = 2

url
public static final int url

url = 3

V.5.107 org.iso.mpeg.mpegj.scene.EventOut.AnimationStream

V.5.107.1Syntax

public static interface EventOut.AnimationStream

V.5.107.2Description

Member Summary
Fields

int loop
int speed
int startTime
int stopTime
int url
int duration_changed
int isActive

V.5.107.3Fields

duration_changed
public static final int duration_changed

duration_changed = 5

isActive
public static final int isActive

isActive = 6

loop
public static final int loop

loop = 0

speed
public static final int speed

speed = 1

startTime
public static final int startTime

startTime = 2

stopTime
public static final int stopTime

stopTime = 3

url
public static final int url

url = 4

V.5.108 org.iso.mpeg.mpegj.scene.EventOut.Appearance

V.5.108.1Syntax

public static interface EventOut.Appearance

V.5.108.2Description

Member Summary
Fields

int material

ISO/IEC 14496-1:2001(E)

530 © ISO/IEC 2001 – All rights reserved

int texture
int textureTransform

V.5.108.3Fields

material
public static final int material

material = 0

texture
public static final int texture

texture = 1

textureTransform
public static final int textureTransform

textureTransform = 2

V.5.109 org.iso.mpeg.mpegj.scene.EventOut.AudioBuffer

V.5.109.1Syntax

public static interface EventOut.AudioBuffer

V.5.109.2Description

Member Summary
Fields

int loop
int pitch
int startTime
int stopTime
int children
int numChan
int phaseGroup
int duration_changed
int isActive

V.5.109.3Fields

children
public static final int children

children = 4

duration_changed
public static final int duration_changed

duration_changed = 7

isActive
public static final int isActive

isActive = 8

loop
public static final int loop

loop = 0

numChan
public static final int numChan

numChan = 5

phaseGroup
public static final int phaseGroup

phaseGroup = 6

pitch
public static final int pitch

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 531

pitch = 1

startTime
public static final int startTime

startTime = 2

stopTime
public static final int stopTime

stopTime = 3

V.5.110 org.iso.mpeg.mpegj.scene.EventOut.AudioClip

V.5.110.1Syntax

public static interface EventOut.AudioClip

V.5.110.2Description

Member Summary
Fields

int description
int loop
int pitch
int startTime
int stopTime
int url
int duration_changed
int isActive

V.5.110.3Fields

description
public static final int description

description = 0

duration_changed
public static final int duration_changed

duration_changed = 6

isActive
public static final int isActive

isActive = 7

loop
public static final int loop

loop = 1

pitch
public static final int pitch

pitch = 2

startTime
public static final int startTime

startTime = 3

stopTime
public static final int stopTime

stopTime = 4

url
public static final int url

url = 5

ISO/IEC 14496-1:2001(E)

532 © ISO/IEC 2001 – All rights reserved

V.5.111 org.iso.mpeg.mpegj.scene.EventOut.AudioDelay

V.5.111.1Syntax

public static interface EventOut.AudioDelay

V.5.111.2Description

Member Summary
Fields

int children
int delay

V.5.111.3Fields

children
public static final int children

children = 0

delay
public static final int delay

delay = 1

V.5.112 org.iso.mpeg.mpegj.scene.EventOut.AudioFX

V.5.112.1Syntax

public static interface EventOut.AudioFX

V.5.112.2Description

Member Summary
Fields

int children
int orch
int score
int params

V.5.112.3Fields

children
public static final int children

children = 0

orch
public static final int orch

orch = 1

params
public static final int params

params = 3

score
public static final int score

score = 2

V.5.113 org.iso.mpeg.mpegj.scene.EventOut.AudioMix

V.5.113.1Syntax

public static interface EventOut.AudioMix

V.5.113.2Description

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 533

Member Summary
Fields

int children
int numInputs
int matrix

V.5.113.3Fields

children
public static final int children

children = 0

matrix
public static final int matrix

matrix = 2

numInputs
public static final int numInputs

numInputs = 1

V.5.114 org.iso.mpeg.mpegj.scene.EventOut.AudioSource

V.5.114.1Syntax

public static interface EventOut.AudioSource

V.5.114.2Description

Member Summary
Fields

int children
int url
int pitch
int speed
int startTime
int stopTime

V.5.114.3Fields

children
public static final int children

children = 0

pitch
public static final int pitch

pitch = 2

speed
public static final int speed

speed = 3

startTime
public static final int startTime

startTime = 4

stopTime
public static final int stopTime

stopTime = 5

url
public static final int url

url = 1

ISO/IEC 14496-1:2001(E)

534 © ISO/IEC 2001 – All rights reserved

V.5.115 org.iso.mpeg.mpegj.scene.EventOut.AudioSwitch

V.5.115.1Syntax

public static interface EventOut.AudioSwitch

V.5.115.2Description

Member Summary
Fields

int children
int whichChoice

V.5.115.3Fields

children
public static final int children

children = 0

whichChoice
public static final int whichChoice

whichChoice = 1

V.5.116 org.iso.mpeg.mpegj.scene.EventOut.Background

V.5.116.1Syntax

public static interface EventOut.Background

V.5.116.2Description

Member Summary
Fields

int groundAngle
int groundColor
int backUrl
int bottomUrl
int frontUrl
int leftUrl
int rightUrl
int topUrl
int skyAngle
int skyColor
int isBound

V.5.116.3Fields

backUrl
public static final int backUrl

backUrl = 2

bottomUrl
public static final int bottomUrl

bottomUrl = 3

frontUrl
public static final int frontUrl

frontUrl = 4

groundAngle
public static final int groundAngle

groundAngle = 0

groundColor
public static final int groundColor

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 535

groundColor = 1

isBound
public static final int isBound

isBound = 10

leftUrl
public static final int leftUrl

leftUrl = 5

rightUrl
public static final int rightUrl

rightUrl = 6

skyAngle
public static final int skyAngle

skyAngle = 8

skyColor
public static final int skyColor

skyColor = 9

topUrl
public static final int topUrl

topUrl = 7

V.5.117 org.iso.mpeg.mpegj.scene.EventOut.Background2D

V.5.117.1Syntax

public static interface EventOut.Background2D

V.5.117.2Description

Member Summary
Fields

int backColor
int url
int isBound

V.5.117.3Fields

backColor
public static final int backColor

backColor = 0

isBound
public static final int isBound

isBound = 2

url
public static final int url

url = 1

V.5.118 org.iso.mpeg.mpegj.scene.EventOut.Billboard

V.5.118.1Syntax

public static interface EventOut.Billboard

V.5.118.2Description

Member Summary
Fields

int children

ISO/IEC 14496-1:2001(E)

536 © ISO/IEC 2001 – All rights reserved

int axisOfRotation

V.5.118.3Fields

axisOfRotation
public static final int axisOfRotation

axisOfRotation = 1

children
public static final int children

children = 0

V.5.119 org.iso.mpeg.mpegj.scene.EventOut.Bitmap

V.5.119.1Syntax

public static interface EventOut.Bitmap

V.5.119.2Description

Member Summary
Fields

int scale

V.5.119.3Fields

scale
public static final int scale

scale = 0

V.5.120 org.iso.mpeg.mpegj.scene.EventOut.Box

V.5.120.1Syntax

public static interface EventOut.Box
V.5.120.2Description

V.5.121 org.iso.mpeg.mpegj.scene.EventOut.Circle

V.5.121.1Syntax

public static interface EventOut.Circle

V.5.121.2Description

Member Summary
Fields

int radius

V.5.121.3Fields

radius
public static final int radius

radius = 0

V.5.122 org.iso.mpeg.mpegj.scene.EventOut.Collision

V.5.122.1Syntax

public static interface EventOut.Collision

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 537

V.5.122.2Description

Member Summary
Fields

int children
int collide
int collideTime

V.5.122.3Fields

children
public static final int children

children = 0

collide
public static final int collide

collide = 1

collideTime
public static final int collideTime

collideTime = 2

V.5.123 org.iso.mpeg.mpegj.scene.EventOut.Color

V.5.123.1Syntax

public static interface EventOut.Color

V.5.123.2Description

Member Summary
Fields

int color

V.5.123.3Fields

color
public static final int color

color = 0

V.5.124 org.iso.mpeg.mpegj.scene.EventOut.ColorInterpolator

V.5.124.1Syntax

public static interface EventOut.ColorInterpolator

V.5.124.2Description

Member Summary
Fields

int key
int keyValue
int value_changed

V.5.124.3Fields

key
public static final int key

key = 0

keyValue
public static final int keyValue

ISO/IEC 14496-1:2001(E)

538 © ISO/IEC 2001 – All rights reserved

keyValue = 1

value_changed
public static final int value_changed

value_changed = 2

V.5.125 org.iso.mpeg.mpegj.scene.EventOut.CompositeTexture2D

V.5.125.1Syntax

public static interface EventOut.CompositeTexture2D

V.5.125.2Description

Member Summary
Fields

int children
int pixelWidth
int pixelHeight
int background
int viewport

V.5.125.3Fields

background
public static final int background

background = 3

children
public static final int children

children = 0

pixelHeight
public static final int pixelHeight

pixelHeight = 2

pixelWidth
public static final int pixelWidth

pixelWidth = 1

viewport
public static final int viewport

viewport = 4

V.5.126 org.iso.mpeg.mpegj.scene.EventOut.CompositeTexture3D

V.5.126.1Syntax

public static interface EventOut.CompositeTexture3D

V.5.126.2Description

Member Summary
Fields

int children
int pixelWidth
int pixelHeight
int background
int fog
int navigationInfo
int viewpoint

V.5.126.3Fields

background

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 539

public static final int background

background = 3

children
public static final int children

children = 0

fog
public static final int fog

fog = 4

navigationInfo
public static final int navigationInfo

navigationInfo = 5

pixelHeight
public static final int pixelHeight

pixelHeight = 2

pixelWidth
public static final int pixelWidth

pixelWidth = 1

viewpoint
public static final int viewpoint

viewpoint = 6

V.5.127 org.iso.mpeg.mpegj.scene.EventOut.Conditional

V.5.127.1Syntax

public static interface EventOut.Conditional

V.5.127.2Description

Member Summary
Fields

int buffer
int isActive

V.5.127.3Fields

buffer
public static final int buffer

buffer = 0

isActive
public static final int isActive

isActive = 1

V.5.128 org.iso.mpeg.mpegj.scene.EventOut.Cone

V.5.128.1Syntax

public static interface EventOut.Cone

V.5.128.2Description

V.5.129 org.iso.mpeg.mpegj.scene.EventOut.Coordinate

V.5.129.1Syntax

public static interface EventOut.Coordinate

ISO/IEC 14496-1:2001(E)

540 © ISO/IEC 2001 – All rights reserved

V.5.129.2Description

Member Summary
Fields

int point

V.5.129.3Fields

point
public static final int point

point = 0

V.5.130 org.iso.mpeg.mpegj.scene.EventOut.Coordinate2D

V.5.130.1Syntax

public static interface EventOut.Coordinate2D

V.5.130.2Description

Member Summary
Fields

int point

V.5.130.3Fields

point
public static final int point

point = 0

V.5.131 org.iso.mpeg.mpegj.scene.EventOut.CoordinateInterpolator

V.5.131.1Syntax

public static interface EventOut.CoordinateInterpolator

V.5.131.2Description

Member Summary
Fields

int key
int keyValue
int value_changed

V.5.131.3Fields

key
public static final int key

key = 0

keyValue
public static final int keyValue

keyValue = 1

value_changed
public static final int value_changed

value_changed = 2

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 541

V.5.132 org.iso.mpeg.mpegj.scene.EventOut.CoordinateInterpolator2D

V.5.132.1Syntax

public static interface EventOut.CoordinateInterpolator2D

V.5.132.2Description

Member Summary
Fields

int key
int keyValue
int value_changed

V.5.132.3Fields

key
public static final int key

key = 0

keyValue
public static final int keyValue

keyValue = 1

value_changed
public static final int value_changed

value_changed = 2

V.5.133 org.iso.mpeg.mpegj.scene.EventOut.Curve2D

V.5.133.1Syntax

public static interface EventOut.Curve2D

V.5.133.2Description

Member Summary
Fields

int point
int fineness
int type

V.5.133.3Fields

fineness
public static final int fineness

fineness = 1

point
public static final int point

point = 0

type
public static final int type

type = 2

V.5.134 org.iso.mpeg.mpegj.scene.EventOut.Cylinder

V.5.134.1Syntax

public static interface EventOut.Cylinder

ISO/IEC 14496-1:2001(E)

542 © ISO/IEC 2001 – All rights reserved

V.5.134.2Description

V.5.135 org.iso.mpeg.mpegj.scene.EventOut.CylinderSensor

V.5.135.1Syntax

public static interface EventOut.CylinderSensor

V.5.135.2Description

Member Summary
Fields

int autoOffset
int diskAngle
int enabled
int maxAngle
int minAngle
int offset
int isActive
int rotation_changed
int trackPoint_changed

V.5.135.3Fields

autoOffset
public static final int autoOffset

autoOffset = 0

diskAngle
public static final int diskAngle

diskAngle = 1

enabled
public static final int enabled

enabled = 2

isActive
public static final int isActive

isActive = 6

maxAngle
public static final int maxAngle

maxAngle = 3

minAngle
public static final int minAngle

minAngle = 4

offset
public static final int offset

offset = 5

rotation_changed
public static final int rotation_changed

rotation_changed = 7

trackPoint_changed
public static final int trackPoint_changed

trackPoint_changed = 8

V.5.136 org.iso.mpeg.mpegj.scene.EventOut.DirectionalLight

V.5.136.1Syntax

public static interface EventOut.DirectionalLight

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 543

V.5.136.2Description

Member Summary
Fields

int ambientIntensity
int color
int direction
int intensity
int on

V.5.136.3Fields

ambientIntensity
public static final int ambientIntensity

ambientIntensity = 0

color
public static final int color

color = 1

direction
public static final int direction

direction = 2

intensity
public static final int intensity

intensity = 3

on
public static final int on

on = 4

V.5.137 org.iso.mpeg.mpegj.scene.EventOut.DiscSensor

V.5.137.1Syntax

public static interface EventOut.DiscSensor

V.5.137.2Description

Member Summary
Fields

int autoOffset
int enabled
int maxAngle
int minAngle
int offset
int isActive
int rotation_changed
int trackPoint_changed

V.5.137.3Fields

autoOffset
public static final int autoOffset

autoOffset = 0

enabled
public static final int enabled

enabled = 1

isActive
public static final int isActive

isActive = 5

ISO/IEC 14496-1:2001(E)

544 © ISO/IEC 2001 – All rights reserved

maxAngle
public static final int maxAngle

maxAngle = 2

minAngle
public static final int minAngle

minAngle = 3

offset
public static final int offset

offset = 4

rotation_changed
public static final int rotation_changed

rotation_changed = 6

trackPoint_changed
public static final int trackPoint_changed

trackPoint_changed = 7

V.5.138 org.iso.mpeg.mpegj.scene.EventOut.ElevationGrid

V.5.138.1Syntax

public static interface EventOut.ElevationGrid

V.5.138.2Description

Member Summary
Fields

int color
int normal
int texCoord

V.5.138.3Fields

color
public static final int color

color = 0

normal
public static final int normal

normal = 1

texCoord
public static final int texCoord

texCoord = 2

V.5.139 org.iso.mpeg.mpegj.scene.EventOut.Expression

V.5.139.1Syntax

public static interface EventOut.Expression

V.5.139.2Description

Member Summary
Fields

int expression_select1
int expression_intensity1
int expression_select2
int expression_intensity2
int init_face
int expression_def

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 545

V.5.139.3Fields

expression_def
public static final int expression_def

expression_def = 5

expression_intensity1
public static final int expression_intensity1

expression_intensity1 = 1

expression_intensity2
public static final int expression_intensity2

expression_intensity2 = 3

expression_select1
public static final int expression_select1

expression_select1 = 0

expression_select2
public static final int expression_select2

expression_select2 = 2

init_face
public static final int init_face

init_face = 4

V.5.140 org.iso.mpeg.mpegj.scene.EventOut.Extrusion

V.5.140.1Syntax

public static interface EventOut.Extrusion

V.5.140.2Description

V.5.141 org.iso.mpeg.mpegj.scene.EventOut.Face

V.5.141.1Syntax

public static interface EventOut.Face

V.5.141.2Description

Member Summary
Fields

int fap
int fdp
int fit
int ttsSource
int renderedFace

V.5.141.3Fields

fap
public static final int fap

fap = 0

fdp
public static final int fdp

fdp = 1

fit
public static final int fit

fit = 2

renderedFace

ISO/IEC 14496-1:2001(E)

546 © ISO/IEC 2001 – All rights reserved

public static final int renderedFace

renderedFace = 4

ttsSource
public static final int ttsSource

ttsSource = 3

V.5.142 org.iso.mpeg.mpegj.scene.EventOut.FaceDefMesh

V.5.142.1Syntax

public static interface EventOut.FaceDefMesh

V.5.142.2Description

V.5.143 org.iso.mpeg.mpegj.scene.EventOut.FaceDefTables

V.5.143.1Syntax

public static interface EventOut.FaceDefTables

V.5.143.2Description

Member Summary
Fields

int faceDefMesh
int faceDefTransform

V.5.143.3Fields

faceDefMesh
public static final int faceDefMesh

faceDefMesh = 0

faceDefTransform
public static final int faceDefTransform

faceDefTransform = 1

V.5.144 org.iso.mpeg.mpegj.scene.EventOut.FaceDefTransform

V.5.144.1Syntax

public static interface EventOut.FaceDefTransform

V.5.144.2Description

V.5.145 org.iso.mpeg.mpegj.scene.EventOut.FAP

V.5.145.1Syntax

public static interface EventOut.FAP

V.5.145.2Description

Member Summary
Fields

int viseme
int expression
int open_jaw
int lower_t_midlip
int raise_b_midlip
int stretch_l_corner
int stretch_r_corner
int lower_t_lip_lm

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 547

int lower_t_lip_rm
int lower_b_lip_lm
int lower_b_lip_rm
int raise_l_cornerlip
int raise_r_cornerlip
int thrust_jaw
int shift_jaw
int push_b_lip
int push_t_lip
int depress_chin
int close_t_l_eyelid
int close_t_r_eyelid
int close_b_l_eyelid
int close_b_r_eyelid
int yaw_l_eyeball
int yaw_r_eyeball
int pitch_l_eyeball
int pitch_r_eyeball
int thrust_l_eyeball
int thrust_r_eyeball
int dilate_l_pupil
int dilate_r_pupil
int raise_l_i_eyebrow
int raise_r_i_eyebrow
int raise_l_m_eyebrow
int raise_r_m_eyebrow
int raise_l_o_eyebrow
int raise_r_o_eyebrow
int squeeze_l_eyebrow
int squeeze_r_eyebrow
int puff_l_cheek
int puff_r_cheek
int lift_l_cheek
int lift_r_cheek
int shift_tongue_tip
int raise_tongue_tip
int thrust_tongue_tip
int raise_tongue
int tongue_roll
int head_pitch
int head_yaw
int head_roll
int lower_t_midlip_o
int raise_b_midlip_o
int stretch_l_cornerlip
int stretch_r_cornerlip
int lower_t_lip_lm_o
int lower_t_lip_rm_o
int raise_b_lip_lm_o
int raise_b_lip_rm_o
int raise_l_cornerlip_o
int raise_r_cornerlip_o
int stretch_l_nose
int stretch_r_nose
int raise_nose
int bend_nose
int raise_l_ear
int raise_r_ear
int pull_l_ear
int pull_r_ear

V.5.145.3Fields

bend_nose
public static final int bend_nose

bend_nose = 63

close_b_l_eyelid
public static final int close_b_l_eyelid

close_b_l_eyelid = 20

ISO/IEC 14496-1:2001(E)

548 © ISO/IEC 2001 – All rights reserved

close_b_r_eyelid
public static final int close_b_r_eyelid

close_b_r_eyelid = 21

close_t_l_eyelid
public static final int close_t_l_eyelid

close_t_l_eyelid = 18

close_t_r_eyelid
public static final int close_t_r_eyelid

close_t_r_eyelid = 19

depress_chin
public static final int depress_chin

depress_chin = 17

dilate_l_pupil
public static final int dilate_l_pupil

dilate_l_pupil = 28

dilate_r_pupil
public static final int dilate_r_pupil

dilate_r_pupil = 29

expression
public static final int expression

expression = 1

head_pitch
public static final int head_pitch

head_pitch = 47

head_roll
public static final int head_roll

head_roll = 49

head_yaw
public static final int head_yaw

head_yaw = 48

lift_l_cheek
public static final int lift_l_cheek

lift_l_cheek = 40

lift_r_cheek
public static final int lift_r_cheek

lift_r_cheek = 41

lower_b_lip_lm
public static final int lower_b_lip_lm

lower_b_lip_lm = 9

lower_b_lip_rm
public static final int lower_b_lip_rm

lower_b_lip_rm = 10

lower_t_lip_lm
public static final int lower_t_lip_lm

lower_t_lip_lm = 7

lower_t_lip_lm_o
public static final int lower_t_lip_lm_o

lower_t_lip_lm_o = 54

lower_t_lip_rm
public static final int lower_t_lip_rm

lower_t_lip_rm = 8

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 549

lower_t_lip_rm_o
public static final int lower_t_lip_rm_o

lower_t_lip_rm_o = 55

lower_t_midlip
public static final int lower_t_midlip

lower_t_midlip = 3

lower_t_midlip_o
public static final int lower_t_midlip_o

lower_t_midlip_o = 50

open_jaw
public static final int open_jaw

open_jaw = 2

pitch_l_eyeball
public static final int pitch_l_eyeball

pitch_l_eyeball = 24

pitch_r_eyeball
public static final int pitch_r_eyeball

pitch_r_eyeball = 25

puff_l_cheek
public static final int puff_l_cheek

puff_l_cheek = 38

puff_r_cheek
public static final int puff_r_cheek

puff_r_cheek = 39

pull_l_ear
public static final int pull_l_ear

pull_l_ear = 66

pull_r_ear
public static final int pull_r_ear

pull_r_ear = 67

push_b_lip
public static final int push_b_lip

push_b_lip = 15

push_t_lip
public static final int push_t_lip

push_t_lip = 16

raise_b_lip_lm_o
public static final int raise_b_lip_lm_o

raise_b_lip_lm_o = 56

raise_b_lip_rm_o
public static final int raise_b_lip_rm_o

raise_b_lip_rm_o = 57

raise_b_midlip
public static final int raise_b_midlip

raise_b_midlip = 4

raise_b_midlip_o
public static final int raise_b_midlip_o

raise_b_midlip_o = 51

raise_l_cornerlip
public static final int raise_l_cornerlip

raise_l_cornerlip = 11

ISO/IEC 14496-1:2001(E)

550 © ISO/IEC 2001 – All rights reserved

raise_l_cornerlip_o
public static final int raise_l_cornerlip_o

raise_l_cornerlip_o = 58

raise_l_ear
public static final int raise_l_ear

raise_l_ear = 64

raise_l_i_eyebrow
public static final int raise_l_i_eyebrow

raise_l_i_eyebrow = 30

raise_l_m_eyebrow
public static final int raise_l_m_eyebrow

raise_l_m_eyebrow = 32

raise_l_o_eyebrow
public static final int raise_l_o_eyebrow

raise_l_o_eyebrow = 34

raise_nose
public static final int raise_nose

raise_nose = 62

raise_r_cornerlip
public static final int raise_r_cornerlip

raise_r_cornerlip = 12

raise_r_cornerlip_o
public static final int raise_r_cornerlip_o

raise_r_cornerlip_o = 59

raise_r_ear
public static final int raise_r_ear

raise_r_ear = 65

raise_r_i_eyebrow
public static final int raise_r_i_eyebrow

raise_r_i_eyebrow = 31

raise_r_m_eyebrow
public static final int raise_r_m_eyebrow

raise_r_m_eyebrow = 33

raise_r_o_eyebrow
public static final int raise_r_o_eyebrow

raise_r_o_eyebrow = 35

raise_tongue
public static final int raise_tongue

raise_tongue = 45

raise_tongue_tip
public static final int raise_tongue_tip

raise_tongue_tip = 43

shift_jaw
public static final int shift_jaw

shift_jaw = 14

shift_tongue_tip
public static final int shift_tongue_tip

shift_tongue_tip = 42

squeeze_l_eyebrow
public static final int squeeze_l_eyebrow

squeeze_l_eyebrow = 36

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 551

squeeze_r_eyebrow
public static final int squeeze_r_eyebrow

squeeze_r_eyebrow = 37

stretch_l_corner
public static final int stretch_l_corner

stretch_l_corner = 5

stretch_l_cornerlip
public static final int stretch_l_cornerlip

stretch_l_cornerlip = 52

stretch_l_nose
public static final int stretch_l_nose

stretch_l_nose = 60

stretch_r_corner
public static final int stretch_r_corner

stretch_r_corner = 6

stretch_r_cornerlip
public static final int stretch_r_cornerlip

stretch_r_cornerlip = 53

stretch_r_nose
public static final int stretch_r_nose

stretch_r_nose = 61

thrust_jaw
public static final int thrust_jaw

thrust_jaw = 13

thrust_l_eyeball
public static final int thrust_l_eyeball

thrust_l_eyeball = 26

thrust_r_eyeball
public static final int thrust_r_eyeball

thrust_r_eyeball = 27

thrust_tongue_tip
public static final int thrust_tongue_tip

thrust_tongue_tip = 44

tongue_roll
public static final int tongue_roll

tongue_roll = 46

viseme
public static final int viseme

viseme = 0

yaw_l_eyeball
public static final int yaw_l_eyeball

yaw_l_eyeball = 22

yaw_r_eyeball
public static final int yaw_r_eyeball

yaw_r_eyeball = 23

V.5.146 org.iso.mpeg.mpegj.scene.EventOut.FDP

V.5.146.1Syntax

public static interface EventOut.FDP

ISO/IEC 14496-1:2001(E)

552 © ISO/IEC 2001 – All rights reserved

V.5.146.2Description

Member Summary
Fields

int featurePointsCoord
int textureCoord
int faceDefTables
int faceSceneGraph

V.5.146.3Fields

faceDefTables
public static final int faceDefTables

faceDefTables = 2

faceSceneGraph
public static final int faceSceneGraph

faceSceneGraph = 3

featurePointsCoord
public static final int featurePointsCoord

featurePointsCoord = 0

textureCoord
public static final int textureCoord

textureCoord = 1

V.5.147 org.iso.mpeg.mpegj.scene.EventOut.FIT

V.5.147.1Syntax

public static interface EventOut.FIT

V.5.147.2Description

Member Summary
Fields

int FAPs
int Graph
int numeratorExp
int denominatorExp
int numeratorImpulse
int numeratorTerms
int denominatorTerms
int numeratorCoefs
int denominatorCoefs

V.5.147.3Fields

denominatorCoefs
public static final int denominatorCoefs

denominatorCoefs = 8

denominatorExp
public static final int denominatorExp

denominatorExp = 3

denominatorTerms
public static final int denominatorTerms

denominatorTerms = 6

FAPs
public static final int FAPs

FAPs = 0

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 553

Graph
public static final int Graph

Graph = 1

numeratorCoefs
public static final int numeratorCoefs

numeratorCoefs = 7

numeratorExp
public static final int numeratorExp

numeratorExp = 2

numeratorImpulse
public static final int numeratorImpulse

numeratorImpulse = 4

numeratorTerms
public static final int numeratorTerms

numeratorTerms = 5

V.5.148 org.iso.mpeg.mpegj.scene.EventOut.Fog

V.5.148.1Syntax

public static interface EventOut.Fog

V.5.148.2Description

Member Summary
Fields

int color
int fogType
int visibilityRange
int isBound

V.5.148.3Fields

color
public static final int color

color = 0

fogType
public static final int fogType

fogType = 1

isBound
public static final int isBound

isBound = 3

visibilityRange
public static final int visibilityRange

visibilityRange = 2

V.5.149 org.iso.mpeg.mpegj.scene.EventOut.FontStyle

V.5.149.1Syntax

public static interface EventOut.FontStyle

ISO/IEC 14496-1:2001(E)

554 © ISO/IEC 2001 – All rights reserved

V.5.149.2Description

V.5.150 org.iso.mpeg.mpegj.scene.EventOut.Form

V.5.150.1Syntax

public static interface EventOut.Form

V.5.150.2Description

Member Summary
Fields

int children
int size
int groups
int constraints
int groupsIndex

V.5.150.3Fields

children
public static final int children

children = 0

constraints
public static final int constraints

constraints = 3

groups
public static final int groups

groups = 2

groupsIndex
public static final int groupsIndex

groupsIndex = 4

size
public static final int size

size = 1

V.5.151 org.iso.mpeg.mpegj.scene.EventOut.Group

V.5.151.1Syntax

public static interface EventOut.Group

V.5.151.2Description

Member Summary
Fields

int children

V.5.151.3Fields

children
public static final int children

children = 0

V.5.152 org.iso.mpeg.mpegj.scene.EventOut.ImageTexture

V.5.152.1Syntax

public static interface EventOut.ImageTexture

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 555

V.5.152.2Description

Member Summary
Fields

int url

V.5.152.3Fields

url
public static final int url

url = 0

V.5.153 org.iso.mpeg.mpegj.scene.EventOut.IndexedFaceSet

V.5.153.1Syntax

public static interface EventOut.IndexedFaceSet

V.5.153.2Description

Member Summary
Fields

int color
int coord
int normal
int texCoord

V.5.153.3Fields

color
public static final int color

color = 0

coord
public static final int coord

coord = 1

normal
public static final int normal

normal = 2

texCoord
public static final int texCoord

texCoord = 3

V.5.154 org.iso.mpeg.mpegj.scene.EventOut.IndexedFaceSet2D

V.5.154.1Syntax

public static interface EventOut.IndexedFaceSet2D

V.5.154.2Description

Member Summary
Fields

int color
int coord
int texCoord

V.5.154.3Fields

color
public static final int color

ISO/IEC 14496-1:2001(E)

556 © ISO/IEC 2001 – All rights reserved

color = 0

coord
public static final int coord

coord = 1

texCoord
public static final int texCoord

texCoord = 2

V.5.155 org.iso.mpeg.mpegj.scene.EventOut.IndexedLineSet

V.5.155.1Syntax

public static interface EventOut.IndexedLineSet

V.5.155.2Description

Member Summary
Fields

int color
int coord

V.5.155.3Fields

color
public static final int color

color = 0

coord
public static final int coord

coord = 1

V.5.156 org.iso.mpeg.mpegj.scene.EventOut.IndexedLineSet2D

V.5.156.1Syntax

public static interface EventOut.IndexedLineSet2D

V.5.156.2Description

Member Summary
Fields

int color
int coord

V.5.156.3Fields

color
public static final int color

color = 0

coord
public static final int coord

coord = 1

V.5.157 org.iso.mpeg.mpegj.scene.EventOut.Inline

V.5.157.1Syntax

public static interface EventOut.Inline

V.5.157.2Description

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 557

Member Summary
Fields

int url

V.5.157.3Fields

url
public static final int url

url = 0

V.5.158 org.iso.mpeg.mpegj.scene.EventOut.Layer2D

V.5.158.1Syntax

public static interface EventOut.Layer2D

V.5.158.2Description

Member Summary
Fields

int children
int size
int background
int viewport

V.5.158.3Fields

background
public static final int background

background = 2

children
public static final int children

children = 0

size
public static final int size

size = 1

viewport
public static final int viewport

viewport = 3

V.5.159 org.iso.mpeg.mpegj.scene.EventOut.Layer3D

V.5.159.1Syntax

public static interface EventOut.Layer3D

V.5.159.2Description

Member Summary
Fields

int children
int size
int background
int fog
int navigationInfo
int viewpoint

V.5.159.3Fields

background

ISO/IEC 14496-1:2001(E)

558 © ISO/IEC 2001 – All rights reserved

public static final int background

background = 2

children
public static final int children

children = 0

fog
public static final int fog

fog = 3

navigationInfo
public static final int navigationInfo

navigationInfo = 4

size
public static final int size

size = 1

viewpoint
public static final int viewpoint

viewpoint = 5

V.5.160 org.iso.mpeg.mpegj.scene.EventOut.Layout

V.5.160.1Syntax

public static interface EventOut.Layout

V.5.160.2Description

Member Summary
Fields

int children
int wrap
int size
int horizontal
int justify
int leftToRight
int topToBottom
int spacing
int smoothScroll
int loop
int scrollVertical
int scrollRate

V.5.160.3Fields

children
public static final int children

children = 0

horizontal
public static final int horizontal

horizontal = 3

justify
public static final int justify

justify = 4

leftToRight
public static final int leftToRight

leftToRight = 5

loop
public static final int loop

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 559

loop = 9

scrollRate
public static final int scrollRate

scrollRate = 11

scrollVertical
public static final int scrollVertical

scrollVertical = 10

size
public static final int size

size = 2

smoothScroll
public static final int smoothScroll

smoothScroll = 8

spacing
public static final int spacing

spacing = 7

topToBottom
public static final int topToBottom

topToBottom = 6

wrap
public static final int wrap

wrap = 1

V.5.161 org.iso.mpeg.mpegj.scene.EventOut.LineProperties

V.5.161.1Syntax

public static interface EventOut.LineProperties

V.5.161.2Description

Member Summary
Fields

int lineColor
int lineStyle
int width

V.5.161.3Fields

lineColor
public static final int lineColor

lineColor = 0

lineStyle
public static final int lineStyle

lineStyle = 1

width
public static final int width

width = 2

V.5.162 org.iso.mpeg.mpegj.scene.EventOut.ListeningPoint

V.5.162.1Syntax

public static interface EventOut.ListeningPoint

V.5.162.2Description

ISO/IEC 14496-1:2001(E)

560 © ISO/IEC 2001 – All rights reserved

Member Summary
Fields

int jump
int orientation
int position
int bindTime
int isBound

V.5.162.3Fields

bindTime
public static final int bindTime

bindTime = 3

isBound
public static final int isBound

isBound = 4

jump
public static final int jump

jump = 0

orientation
public static final int orientation

orientation = 1

position
public static final int position

position = 2

V.5.163 org.iso.mpeg.mpegj.scene.EventOut.LOD

V.5.163.1Syntax

public static interface EventOut.LOD

V.5.163.2Description

Member Summary
Fields

int level

V.5.163.3Fields

level
public static final int level

level = 0

V.5.164 org.iso.mpeg.mpegj.scene.EventOut.Material

V.5.164.1Syntax

public static interface EventOut.Material

V.5.164.2Description

Member Summary
Fields

int ambientIntensity
int diffuseColor
int emissiveColor
int shininess
int specularColor
int transparency

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 561

V.5.164.3Fields

ambientIntensity
public static final int ambientIntensity

ambientIntensity = 0

diffuseColor
public static final int diffuseColor

diffuseColor = 1

emissiveColor
public static final int emissiveColor

emissiveColor = 2

shininess
public static final int shininess

shininess = 3

specularColor
public static final int specularColor

specularColor = 4

transparency
public static final int transparency

transparency = 5

V.5.165 org.iso.mpeg.mpegj.scene.EventOut.Material2D

V.5.165.1Syntax

public static interface EventOut.Material2D

V.5.165.2Description

Member Summary
Fields

int emissiveColor
int filled
int lineProps
int transparency

V.5.165.3Fields

emissiveColor
public static final int emissiveColor

emissiveColor = 0

filled
public static final int filled

filled = 1

lineProps
public static final int lineProps

lineProps = 2

transparency
public static final int transparency

transparency = 3

V.5.166 org.iso.mpeg.mpegj.scene.EventOut.MovieTexture

V.5.166.1Syntax

public static interface EventOut.MovieTexture

ISO/IEC 14496-1:2001(E)

562 © ISO/IEC 2001 – All rights reserved

V.5.166.2Description

Member Summary
Fields

int loop
int speed
int startTime
int stopTime
int url
int duration_changed
int isActive

V.5.166.3Fields

duration_changed
public static final int duration_changed

duration_changed = 5

isActive
public static final int isActive

isActive = 6

loop
public static final int loop

loop = 0

speed
public static final int speed

speed = 1

startTime
public static final int startTime

startTime = 2

stopTime
public static final int stopTime

stopTime = 3

url
public static final int url

url = 4

V.5.167 org.iso.mpeg.mpegj.scene.EventOut.NavigationInfo

V.5.167.1Syntax

public static interface EventOut.NavigationInfo

V.5.167.2Description

Member Summary
Fields

int avatarSize
int headlight
int speed
int type
int visibilityLimit
int isBound

V.5.167.3Fields

avatarSize
public static final int avatarSize

avatarSize = 0

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 563

headlight
public static final int headlight

headlight = 1

isBound
public static final int isBound

isBound = 5

speed
public static final int speed

speed = 2

type
public static final int type

type = 3

visibilityLimit
public static final int visibilityLimit

visibilityLimit = 4

V.5.168 org.iso.mpeg.mpegj.scene.EventOut.Normal

V.5.168.1Syntax

public static interface EventOut.Normal

V.5.168.2Description

Member Summary
Fields

int vector

V.5.168.3Fields

vector
public static final int vector

vector = 0

V.5.169 org.iso.mpeg.mpegj.scene.EventOut.NormalInterpolator

V.5.169.1Syntax

public static interface EventOut.NormalInterpolator

V.5.169.2Description

Member Summary
Fields

int key
int keyValue
int value_changed

V.5.169.3Fields

key
public static final int key

key = 0

keyValue
public static final int keyValue

keyValue = 1

value_changed
public static final int value_changed

ISO/IEC 14496-1:2001(E)

564 © ISO/IEC 2001 – All rights reserved

value_changed = 2

V.5.170 org.iso.mpeg.mpegj.scene.EventOut.OrderedGroup

V.5.170.1Syntax

public static interface EventOut.OrderedGroup

V.5.170.2Description

Member Summary
Fields

int children
int order

V.5.170.3Fields

children
public static final int children

children = 0

order
public static final int order

order = 1

V.5.171 org.iso.mpeg.mpegj.scene.EventOut.OrientationInterpolator

V.5.171.1Syntax

public static interface EventOut.OrientationInterpolator

V.5.171.2Description

Member Summary
Fields

int key
int keyValue
int value_changed

V.5.171.3Fields

key
public static final int key

key = 0

keyValue
public static final int keyValue

keyValue = 1

value_changed
public static final int value_changed

value_changed = 2

V.5.172 org.iso.mpeg.mpegj.scene.EventOut.PixelTexture

V.5.172.1Syntax

public static interface EventOut.PixelTexture

V.5.172.2Description

Member Summary
Fields

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 565

int image

V.5.172.3Fields

image
public static final int image

image = 0

V.5.173 org.iso.mpeg.mpegj.scene.EventOut.PlaneSensor

V.5.173.1Syntax

public static interface EventOut.PlaneSensor

V.5.173.2Description

Member Summary
Fields

int autoOffset
int enabled
int maxPosition
int minPosition
int offset
int isActive
int trackPoint_changed
int translation_changed

V.5.173.3Fields

autoOffset
public static final int autoOffset

autoOffset = 0

enabled
public static final int enabled

enabled = 1

isActive
public static final int isActive

isActive = 5

maxPosition
public static final int maxPosition

maxPosition = 2

minPosition
public static final int minPosition

minPosition = 3

offset
public static final int offset

offset = 4

trackPoint_changed
public static final int trackPoint_changed

trackPoint_changed = 6

translation_changed
public static final int translation_changed

translation_changed = 7

V.5.174 org.iso.mpeg.mpegj.scene.EventOut.PlaneSensor2D

V.5.174.1Syntax

public static interface EventOut.PlaneSensor2D

ISO/IEC 14496-1:2001(E)

566 © ISO/IEC 2001 – All rights reserved

V.5.174.2Description

Member Summary
Fields

int autoOffset
int enabled
int maxPosition
int minPosition
int offset
int isActive
int trackPoint_changed
int translation_changed

V.5.174.3Fields

autoOffset
public static final int autoOffset

autoOffset = 0

enabled
public static final int enabled

enabled = 1

isActive
public static final int isActive

isActive = 5

maxPosition
public static final int maxPosition

maxPosition = 2

minPosition
public static final int minPosition

minPosition = 3

offset
public static final int offset

offset = 4

trackPoint_changed
public static final int trackPoint_changed

trackPoint_changed = 6

translation_changed
public static final int translation_changed

translation_changed = 7

V.5.175 org.iso.mpeg.mpegj.scene.EventOut.PointLight

V.5.175.1Syntax

public static interface EventOut.PointLight

V.5.175.2Description

Member Summary
Fields

int ambientIntensity
int attenuation
int color
int intensity
int location
int on
int radius

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 567

V.5.175.3Fields

ambientIntensity
public static final int ambientIntensity

ambientIntensity = 0

attenuation
public static final int attenuation

attenuation = 1

color
public static final int color

color = 2

intensity
public static final int intensity

intensity = 3

location
public static final int location

location = 4

on
public static final int on

on = 5

radius
public static final int radius

radius = 6

V.5.176 org.iso.mpeg.mpegj.scene.EventOut.PointSet

V.5.176.1Syntax

public static interface EventOut.PointSet

V.5.176.2Description

Member Summary
Fields

int color
int coord

V.5.176.3Fields

color
public static final int color

color = 0

coord
public static final int coord

coord = 1

V.5.177 org.iso.mpeg.mpegj.scene.EventOut.PointSet2D

V.5.177.1Syntax

public static interface EventOut.PointSet2D

V.5.177.2Description

Member Summary
Fields

int color
int coord

ISO/IEC 14496-1:2001(E)

568 © ISO/IEC 2001 – All rights reserved

V.5.177.3Fields

color
public static final int color

color = 0

coord
public static final int coord

coord = 1

V.5.178 org.iso.mpeg.mpegj.scene.EventOut.PositionInterpolator

V.5.178.1Syntax

public static interface EventOut.PositionInterpolator

V.5.178.2Description

Member Summary
Fields

int key
int keyValue
int value_changed

V.5.178.3Fields

key
public static final int key

key = 0

keyValue
public static final int keyValue

keyValue = 1

value_changed
public static final int value_changed

value_changed = 2

V.5.179 org.iso.mpeg.mpegj.scene.EventOut.PositionInterpolator2D

V.5.179.1Syntax

public static interface EventOut.PositionInterpolator2D

V.5.179.2Description

Member Summary
Fields

int key
int keyValue
int value_changed

V.5.179.3Fields

key
public static final int key

key = 0

keyValue
public static final int keyValue

keyValue = 1

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 569

value_changed
public static final int value_changed

value_changed = 2

V.5.180 org.iso.mpeg.mpegj.scene.EventOut.ProximitySensor

V.5.180.1Syntax

public static interface EventOut.ProximitySensor

V.5.180.2Description

Member Summary
Fields

int center
int size
int enabled
int isActive
int position_changed
int orientation_changed
int enterTime
int exitTime

V.5.180.3Fields

center
public static final int center

center = 0

enabled
public static final int enabled

enabled = 2

enterTime
public static final int enterTime

enterTime = 6

exitTime
public static final int exitTime

exitTime = 7

isActive
public static final int isActive

isActive = 3

orientation_changed
public static final int orientation_changed

orientation_changed = 5

position_changed
public static final int position_changed

position_changed = 4

size
public static final int size

size = 1

V.5.181 org.iso.mpeg.mpegj.scene.EventOut.ProximitySensor2D

V.5.181.1Syntax

public static interface EventOut.ProximitySensor2D

V.5.181.2Description

ISO/IEC 14496-1:2001(E)

570 © ISO/IEC 2001 – All rights reserved

Member Summary
Fields

int center
int size
int enabled
int isActive
int position_changed
int orientation_changed
int enterTime
int exitTime

V.5.181.3Fields

center
public static final int center

center = 0

enabled
public static final int enabled

enabled = 2

enterTime
public static final int enterTime

enterTime = 6

exitTime
public static final int exitTime

exitTime = 7

isActive
public static final int isActive

isActive = 3

orientation_changed
public static final int orientation_changed

orientation_changed = 5

position_changed
public static final int position_changed

position_changed = 4

size
public static final int size

size = 1

V.5.182 org.iso.mpeg.mpegj.scene.EventOut.QuantizationParameter

V.5.182.1Syntax

public static interface EventOut.QuantizationParameter

V.5.182.2Description

V.5.183 org.iso.mpeg.mpegj.scene.EventOut.Rectangle

V.5.183.1Syntax

public static interface EventOut.Rectangle

V.5.183.2Description

Member Summary
Fields

int size

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 571

V.5.183.3Fields

size
public static final int size

size = 0

V.5.184 org.iso.mpeg.mpegj.scene.EventOut.ScalarInterpolator

V.5.184.1Syntax

public static interface EventOut.ScalarInterpolator

V.5.184.2Description

Member Summary
Fields

int key
int keyValue
int value_changed

V.5.184.3Fields

key
public static final int key

key = 0

keyValue
public static final int keyValue

keyValue = 1

value_changed
public static final int value_changed

value_changed = 2

V.5.185 org.iso.mpeg.mpegj.scene.EventOut.Script

V.5.185.1Syntax

public static interface EventOut.Script

V.5.185.2Description

Member Summary
Fields

int url

V.5.185.3Fields

url
public static final int url

url = 0

V.5.186 org.iso.mpeg.mpegj.scene.EventOut.Shape

V.5.186.1Syntax

public static interface EventOut.Shape

V.5.186.2Description

Member Summary
Fields

int appearance

ISO/IEC 14496-1:2001(E)

572 © ISO/IEC 2001 – All rights reserved

int geometry

V.5.186.3Fields

appearance
public static final int appearance

appearance = 0

geometry
public static final int geometry

geometry = 1

V.5.187 org.iso.mpeg.mpegj.scene.EventOut.Sound

V.5.187.1Syntax

public static interface EventOut.Sound

V.5.187.2Description

Member Summary
Fields

int direction
int intensity
int location
int maxBack
int maxFront
int minBack
int minFront
int priority
int source

V.5.187.3Fields

direction
public static final int direction

direction = 0

intensity
public static final int intensity

intensity = 1

location
public static final int location

location = 2

maxBack
public static final int maxBack

maxBack = 3

maxFront
public static final int maxFront

maxFront = 4

minBack
public static final int minBack

minBack = 5

minFront
public static final int minFront

minFront = 6

priority
public static final int priority

priority = 7

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 573

source
public static final int source

source = 8

V.5.188 org.iso.mpeg.mpegj.scene.EventOut.Sound2D

V.5.188.1Syntax

public static interface EventOut.Sound2D

V.5.188.2Description

Member Summary
Fields

int intensity
int location
int source

V.5.188.3Fields

intensity
public static final int intensity

intensity = 0

location
public static final int location

location = 1

source
public static final int source

source = 2

V.5.189 org.iso.mpeg.mpegj.scene.EventOut.Sphere

V.5.189.1Syntax

public static interface EventOut.Sphere

V.5.189.2Description

V.5.190 org.iso.mpeg.mpegj.scene.EventOut.SphereSensor

V.5.190.1Syntax

public static interface EventOut.SphereSensor

V.5.190.2Description

Member Summary
Fields

int autoOffset
int enabled
int offset
int isActive
int rotation_changed
int trackPoint_changed

V.5.190.3Fields

autoOffset
public static final int autoOffset

autoOffset = 0

enabled

ISO/IEC 14496-1:2001(E)

574 © ISO/IEC 2001 – All rights reserved

public static final int enabled

enabled = 1

isActive
public static final int isActive

isActive = 3

offset
public static final int offset

offset = 2

rotation_changed
public static final int rotation_changed

rotation_changed = 4

trackPoint_changed
public static final int trackPoint_changed

trackPoint_changed = 5

V.5.191 org.iso.mpeg.mpegj.scene.EventOut.SpotLight

V.5.191.1Syntax

public static interface EventOut.SpotLight

V.5.191.2Description

Member Summary
Fields

int ambientIntensity
int attenuation
int beamWidth
int color
int cutOffAngle
int direction
int intensity
int location
int on
int radius

V.5.191.3Fields

ambientIntensity
public static final int ambientIntensity

ambientIntensity = 0

attenuation
public static final int attenuation

attenuation = 1

beamWidth
public static final int beamWidth

beamWidth = 2

color
public static final int color

color = 3

cutOffAngle
public static final int cutOffAngle

cutOffAngle = 4

direction
public static final int direction

direction = 5

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 575

intensity
public static final int intensity

intensity = 6

location
public static final int location

location = 7

on
public static final int on

on = 8

radius
public static final int radius

radius = 9

V.5.192 org.iso.mpeg.mpegj.scene.EventOut.Switch

V.5.192.1Syntax

public static interface EventOut.Switch

V.5.192.2Description

Member Summary
Fields

int choice
int whichChoice

V.5.192.3Fields

choice
public static final int choice

choice = 0

whichChoice
public static final int whichChoice

whichChoice = 1

V.5.193 org.iso.mpeg.mpegj.scene.EventOut.TermCap

V.5.193.1Syntax

public static interface EventOut.TermCap

V.5.193.2Description

Member Summary
Fields

int capability
int value

V.5.193.3Fields

capability
public static final int capability

capability = 0

value
public static final int value

value = 1

ISO/IEC 14496-1:2001(E)

576 © ISO/IEC 2001 – All rights reserved

V.5.194 org.iso.mpeg.mpegj.scene.EventOut.Text

V.5.194.1Syntax

public static interface EventOut.Text

V.5.194.2Description

Member Summary
Fields

int string
int length
int fontStyle
int maxExtent

V.5.194.3Fields

fontStyle
public static final int fontStyle

fontStyle = 2

length
public static final int length

length = 1

maxExtent
public static final int maxExtent

maxExtent = 3

string
public static final int string

string = 0

V.5.195 org.iso.mpeg.mpegj.scene.EventOut.TextureCoordinate

V.5.195.1Syntax

public static interface EventOut.TextureCoordinate

V.5.195.2Description

Member Summary
Fields

int point

V.5.195.3Fields

point
public static final int point

point = 0

V.5.196 org.iso.mpeg.mpegj.scene.EventOut.TextureTransform

V.5.196.1Syntax

public static interface EventOut.TextureTransform

V.5.196.2Description

Member Summary
Fields

int center
int rotation
int scale

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 577

int translation

V.5.196.3Fields

center
public static final int center

center = 0

rotation
public static final int rotation

rotation = 1

scale
public static final int scale

scale = 2

translation
public static final int translation

translation = 3

V.5.197 org.iso.mpeg.mpegj.scene.EventOut.TimeSensor

V.5.197.1Syntax

public static interface EventOut.TimeSensor

V.5.197.2Description

Member Summary
Fields

int cycleInterval
int enabled
int loop
int startTime
int stopTime
int cycleTime
int fraction_changed
int isActive
int time

V.5.197.3Fields

cycleInterval
public static final int cycleInterval

cycleInterval = 0

cycleTime
public static final int cycleTime

cycleTime = 5

enabled
public static final int enabled

enabled = 1

fraction_changed
public static final int fraction_changed

fraction_changed = 6

isActive
public static final int isActive

isActive = 7

loop
public static final int loop

loop = 2

ISO/IEC 14496-1:2001(E)

578 © ISO/IEC 2001 – All rights reserved

startTime
public static final int startTime

startTime = 3

stopTime
public static final int stopTime

stopTime = 4

time
public static final int time

time = 8

V.5.198 org.iso.mpeg.mpegj.scene.EventOut.TouchSensor

V.5.198.1Syntax

public static interface EventOut.TouchSensor

V.5.198.2Description

Member Summary
Fields

int enabled
int hitNormal_changed
int hitPoint_changed
int hitTexCoord_changed
int isActive
int isOver
int touchTime

V.5.198.3Fields

enabled
public static final int enabled

enabled = 0

hitNormal_changed
public static final int hitNormal_changed

hitNormal_changed = 1

hitPoint_changed
public static final int hitPoint_changed

hitPoint_changed = 2

hitTexCoord_changed
public static final int hitTexCoord_changed

hitTexCoord_changed = 3

isActive
public static final int isActive

isActive = 4

isOver
public static final int isOver

isOver = 5

touchTime
public static final int touchTime

touchTime = 6

V.5.199 org.iso.mpeg.mpegj.scene.EventOut.Transform

V.5.199.1Syntax

public static interface EventOut.Transform

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 579

V.5.199.2Description

Member Summary
Fields

int center
int children
int rotation
int scale
int scaleOrientation
int translation

V.5.199.3Fields

center
public static final int center

center = 0

children
public static final int children

children = 1

rotation
public static final int rotation

rotation = 2

scale
public static final int scale

scale = 3

scaleOrientation
public static final int scaleOrientation

scaleOrientation = 4

translation
public static final int translation

translation = 5

V.5.200 org.iso.mpeg.mpegj.scene.EventOut.Transform2D

V.5.200.1Syntax

public static interface EventOut.Transform2D

V.5.200.2Description

Member Summary
Fields

int children
int center
int rotationAngle
int scale
int scaleOrientation
int translation

V.5.200.3Fields

center
public static final int center

center = 1

children
public static final int children

children = 0

rotationAngle

ISO/IEC 14496-1:2001(E)

580 © ISO/IEC 2001 – All rights reserved

public static final int rotationAngle

rotationAngle = 2

scale
public static final int scale

scale = 3

scaleOrientation
public static final int scaleOrientation

scaleOrientation = 4

translation
public static final int translation

translation = 5

V.5.201 org.iso.mpeg.mpegj.scene.EventOut.Valuator

V.5.201.1Syntax

public static interface EventOut.Valuator

V.5.201.2Description

Member Summary
Fields

int outSFBool
int outSFColor
int outMFColor
int outSFFloat
int outMFFloat
int outSFInt32
int outMFInt32
int outSFRotation
int outMFRotation
int outSFString
int outMFString
int outSFTime
int outSFVec2f
int outMFVec2f
int outSFVec3f
int outMFVec3f
int Factor1
int Factor2
int Factor3
int Factor4
int Offset1
int Offset2
int Offset3
int Offset4
int Sum

V.5.201.3Fields

Factor1
public static final int Factor1

Factor1 = 16

Factor2
public static final int Factor2

Factor2 = 17

Factor3
public static final int Factor3

Factor3 = 18

Factor4
public static final int Factor4

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 581

Factor4 = 19

Offset1
public static final int Offset1

Offset1 = 20

Offset2
public static final int Offset2

Offset2 = 21

Offset3
public static final int Offset3

Offset3 = 22

Offset4
public static final int Offset4

Offset4 = 23

outMFColor
public static final int outMFColor

outMFColor = 2

outMFFloat
public static final int outMFFloat

outMFFloat = 4

outMFInt32
public static final int outMFInt32

outMFInt32 = 6

outMFRotation
public static final int outMFRotation

outMFRotation = 8

outMFString
public static final int outMFString

outMFString = 10

outMFVec2f
public static final int outMFVec2f

outMFVec2f = 13

outMFVec3f
public static final int outMFVec3f

outMFVec3f = 15

outSFBool
public static final int outSFBool

outSFBool = 0

outSFColor
public static final int outSFColor

outSFColor = 1

outSFFloat
public static final int outSFFloat

outSFFloat = 3

outSFInt32
public static final int outSFInt32

outSFInt32 = 5

outSFRotation
public static final int outSFRotation

outSFRotation = 7

outSFString
public static final int outSFString

ISO/IEC 14496-1:2001(E)

582 © ISO/IEC 2001 – All rights reserved

outSFString = 9

outSFTime
public static final int outSFTime

outSFTime = 11

outSFVec2f
public static final int outSFVec2f

outSFVec2f = 12

outSFVec3f
public static final int outSFVec3f

outSFVec3f = 14

Sum
public static final int Sum

Sum = 24

V.5.202 org.iso.mpeg.mpegj.scene.EventOut.Viewpoint

V.5.202.1Syntax

public static interface EventOut.Viewpoint

V.5.202.2Description

Member Summary
Fields

int fieldOfView
int jump
int orientation
int position
int bindTime
int isBound

V.5.202.3Fields

bindTime
public static final int bindTime

bindTime = 4

fieldOfView
public static final int fieldOfView

fieldOfView = 0

isBound
public static final int isBound

isBound = 5

jump
public static final int jump

jump = 1

orientation
public static final int orientation

orientation = 2

position
public static final int position

position = 3

V.5.203 org.iso.mpeg.mpegj.scene.EventOut.Viseme

V.5.203.1Syntax

public static interface EventOut.Viseme

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 583

V.5.203.2Description

Member Summary
Fields

int viseme_select1
int viseme_select2
int viseme_blend
int viseme_def

V.5.203.3Fields

viseme_blend
public static final int viseme_blend

viseme_blend = 2

viseme_def
public static final int viseme_def

viseme_def = 3

viseme_select1
public static final int viseme_select1

viseme_select1 = 0

viseme_select2
public static final int viseme_select2

viseme_select2 = 1

V.5.204 org.iso.mpeg.mpegj.scene.EventOut.VisibilitySensor

V.5.204.1Syntax

public static interface EventOut.VisibilitySensor

V.5.204.2Description

Member Summary
Fields

int center
int enabled
int size
int enterTime
int exitTime
int isActive

V.5.204.3Fields

center
public static final int center

center = 0

enabled
public static final int enabled

enabled = 1

enterTime
public static final int enterTime

enterTime = 3

exitTime
public static final int exitTime

exitTime = 4

isActive
public static final int isActive

isActive = 5

ISO/IEC 14496-1:2001(E)

584 © ISO/IEC 2001 – All rights reserved

size
public static final int size

size = 2

V.5.205 org.iso.mpeg.mpegj.scene.EventOut.WorldInfo

V.5.205.1Syntax

public static interface EventOut.WorldInfo

V.5.205.2Description

V.5.206 org.iso.mpeg.mpegj.scene.EventOutListener

V.5.206.1Syntax

public interface EventOutListener

V.5.206.2Description

An interface to be implemented by objects that wish to receive eventOut notification from fields in the scene.

Member Summary
Methods

void notify(int, FieldValue)

V.5.206.3Methods

notify(int, FieldValue)
public void notify(int, org.iso.mpeg.mpegj.scene.FieldValue)

Called by the scene graph manager when a new event out is triggered.

Parameters:
outID - contains the outID of the changed field.

newValue - contains the new value of the field.

See Also:
org.iso.mpeg.mpegj.scene.EventOut

V.5.207 org.iso.mpeg.mpegj.scene.Field

V.5.207.1Syntax

public interface Field

V.5.207.2Description

An interface with inner classes defining the constants for the field defIDs of each node.

Member Summary
Inner Classes

static interface Field.Anchor
static interface Field.AnimationStream
static interface Field.Appearance
static interface Field.AudioBuffer
static interface Field.AudioClip
static interface Field.AudioDelay
static interface Field.AudioFX
static interface Field.AudioMix
static interface Field.AudioSource
static interface Field.AudioSwitch
static interface Field.Background
static interface Field.Background2D
static interface Field.Billboard
static interface Field.Bitmap

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 585

static interface Field.Box
static interface Field.Circle
static interface Field.Collision
static interface Field.Color
static interface Field.ColorInterpolator
static interface Field.CompositeTexture2D
static interface Field.CompositeTexture3D
static interface Field.Conditional
static interface Field.Cone
static interface Field.Coordinate
static interface Field.Coordinate2D
static interface Field.CoordinateInterpolator
static interface Field.CoordinateInterpolator2D
static interface Field.Curve2D
static interface Field.Cylinder
static interface Field.CylinderSensor
static interface Field.DirectionalLight
static interface Field.DiscSensor
static interface Field.ElevationGrid
static interface Field.Expression
static interface Field.Extrusion
static interface Field.Face
static interface Field.FaceDefMesh
static interface Field.FaceDefTables
static interface Field.FaceDefTransform
static interface Field.FAP
static interface Field.FDP
static interface Field.FIT
static interface Field.Fog
static interface Field.FontStyle
static interface Field.Form
static interface Field.Group
static interface Field.ImageTexture
static interface Field.IndexedFaceSet
static interface Field.IndexedFaceSet2D
static interface Field.IndexedLineSet
static interface Field.IndexedLineSet2D
static interface Field.Inline
static interface Field.LOD
static interface Field.Layer2D
static interface Field.Layer3D
static interface Field.Layout
static interface Field.LineProperties
static interface Field.ListeningPoint
static interface Field.Material
static interface Field.Material2D
static interface Field.MovieTexture
static interface Field.NavigationInfo
static interface Field.Normal
static interface Field.NormalInterpolator
static interface Field.OrderedGroup
static interface Field.OrientationInterpolator
static interface Field.PixelTexture
static interface Field.PlaneSensor
static interface Field.PlaneSensor2D
static interface Field.PointLight
static interface Field.PointSet
static interface Field.PointSet2D
static interface Field.PositionInterpolator
static interface Field.PositionInterpolator2D
static interface Field.ProximitySensor2D
static interface Field.ProximitySensor
static interface Field.QuantizationParameter
static interface Field.Rectangle
static interface Field.ScalarInterpolator
static interface Field.Script
static interface Field.Shape
static interface Field.Sound
static interface Field.Sound2D
static interface Field.Sphere
static interface Field.SphereSensor

ISO/IEC 14496-1:2001(E)

586 © ISO/IEC 2001 – All rights reserved

static interface Field.SpotLight
static interface Field.Switch
static interface Field.TermCap
static interface Field.Text
static interface Field.TextureCoordinate
static interface Field.TextureTransform
static interface Field.TimeSensor
static interface Field.TouchSensor
static interface Field.Transform
static interface Field.Transform2D
static interface Field.Valuator
static interface Field.WorldInfo

V.5.208 org.iso.mpeg.mpegj.scene.Field.Anchor

V.5.208.1Syntax

public static interface Field.Anchor

V.5.208.2Description

An interface defining constants for the field defIDs of the Anchor node.

Member Summary
Fields

int children
int description
int parameter
int url

V.5.208.3Fields

children
public static final int children

The defID for the children field = 2.

description
public static final int description

The defID for the description field = 3.

parameter
public static final int parameter

The defID for the parameter field = 4.

url
public static final int url

The defID for the url field = 5.

V.5.209 org.iso.mpeg.mpegj.scene.Field.AnimationStream

V.5.209.1Syntax

public static interface Field.AnimationStream

V.5.209.2Description

An interface defining constants for the field defIDs of the AnimationStream node.

Member Summary
Fields

int loop
int speed
int startTime
int stopTime
int url

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 587

V.5.209.3Fields

loop
public static final int loop

The defID for the loop field = 0.

speed
public static final int speed

The defID for the speed field = 1.

startTime
public static final int startTime

The defID for the startTime field = 2.

stopTime
public static final int stopTime

The defID for the stopTime field = 3.

url
public static final int url

The defID for the url field = 4.

V.5.210 org.iso.mpeg.mpegj.scene.Field.Appearance

V.5.210.1Syntax

public static interface Field.Appearance

V.5.210.2Description

An interface defining constants for the field defIDs of the Appearance node.

Member Summary
Fields

int material
int texture
int textureTransform

V.5.210.3Fields

material
public static final int material

The defID for the material field = 0.

texture
public static final int texture

The defID for the texture field = 1.

textureTransform
public static final int textureTransform

The defID for the textureTransform field = 2.

V.5.211 org.iso.mpeg.mpegj.scene.Field.AudioBuffer

V.5.211.1Syntax

public static interface Field.AudioBuffer

V.5.211.2Description

An interface defining constants for the field defIDs of the AudioBuffer node.

Member Summary
Fields

int loop
int pitch

ISO/IEC 14496-1:2001(E)

588 © ISO/IEC 2001 – All rights reserved

int startTime
int stopTime
int children
int numChan
int phaseGroup
int length

V.5.211.3Fields

children
public static final int children

The defID for the children field = 4.

length
public static final int length

The defID for the length field = 7.

loop
public static final int loop

The defID for the loop field = 0.

numChan
public static final int numChan

The defID for the numChan field = 5.

phaseGroup
public static final int phaseGroup

The defID for the phaseGroup field = 6.

pitch
public static final int pitch

The defID for the pitch field = 1.

startTime
public static final int startTime

The defID for the startTime field = 2.

stopTime
public static final int stopTime

The defID for the stopTime field = 3.

V.5.212 org.iso.mpeg.mpegj.scene.Field.AudioClip

V.5.212.1Syntax

public static interface Field.AudioClip

V.5.212.2Description

An interface defining constants for the field defIDs of the AudioClip node.

Member Summary
Fields

int description
int loop
int pitch
int startTime
int stopTime
int url

V.5.212.3Fields

description
public static final int description

The defID for the description field = 0.

loop

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 589

public static final int loop

The defID for the loop field = 1.

pitch
public static final int pitch

The defID for the pitch field = 2.

startTime
public static final int startTime

The defID for the startTime field = 3.

stopTime
public static final int stopTime

The defID for the stopTime field = 4.

url
public static final int url

The defID for the url field = 5.

V.5.213 org.iso.mpeg.mpegj.scene.Field.AudioDelay

V.5.213.1Syntax

public static interface Field.AudioDelay

V.5.213.2Description

An interface defining constants for the field defIDs of the AudioDelay node.

Member Summary
Fields

int children
int delay
int numChan
int phaseGroup

V.5.213.3Fields

children
public static final int children

The defID for the children field = 2.

delay
public static final int delay

The defID for the delay field = 3.

numChan
public static final int numChan

The defID for the numChan field = 4.

phaseGroup
public static final int phaseGroup

The defID for the phaseGroup field = 5.

V.5.214 org.iso.mpeg.mpegj.scene.Field.AudioFX

V.5.214.1Syntax

public static interface Field.AudioFX

V.5.214.2Description

An interface defining constants for the field defIDs of the AudioFX node.

Member Summary

ISO/IEC 14496-1:2001(E)

590 © ISO/IEC 2001 – All rights reserved

Fields
int children
int orch
int score
int params
int numChan
int phaseGroup

V.5.214.3Fields

children
public static final int children

The defID for the children field = 2.

numChan
public static final int numChan

The defID for the numChan field = 6.

orch
public static final int orch

The defID for the orch field = 3.

params
public static final int params

The defID for the params field = 5.

phaseGroup
public static final int phaseGroup

The defID for the phaseGroup field = 7.

score
public static final int score

The defID for the score field = 4.

V.5.215 org.iso.mpeg.mpegj.scene.Field.AudioMix

V.5.215.1Syntax

public static interface Field.AudioMix

V.5.215.2Description

An interface defining constants for the field defIDs of the AudioMix node.

Member Summary
Fields

int children
int numInputs
int matrix
int numChan
int phaseGroup

V.5.215.3Fields

children
public static final int children

The defID for the children field = 2.

matrix
public static final int matrix

The defID for the matrix field = 4.

numChan
public static final int numChan

The defID for the numChan field = 5.

numInputs

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 591

public static final int numInputs

The defID for the numInputs field = 3.

phaseGroup
public static final int phaseGroup

The defID for the phaseGroup field = 6.

V.5.216 org.iso.mpeg.mpegj.scene.Field.AudioSource

V.5.216.1Syntax

public static interface Field.AudioSource

V.5.216.2Description

An interface defining constants for the field defIDs of the AudioSource node.

Member Summary
Fields

int children
int url
int pitch
int speed
int startTime
int stopTime
int numChan
int phaseGroup

V.5.216.3Fields

children
public static final int children

The defID for the children field = 2.

numChan
public static final int numChan

The defID for the numChan field = 8.

phaseGroup
public static final int phaseGroup

The defID for the phaseGroup field = 9.

pitch
public static final int pitch

The defID for the pitch field = 4.

speed
public static final int speed

The defID for the speed field = 5.

startTime
public static final int startTime

The defID for the startTime field = 6.

stopTime
public static final int stopTime

The defID for the stopTime field = 7.

url
public static final int url

The defID for the url field = 3.

ISO/IEC 14496-1:2001(E)

592 © ISO/IEC 2001 – All rights reserved

V.5.217 org.iso.mpeg.mpegj.scene.Field.AudioSwitch

V.5.217.1Syntax

public static interface Field.AudioSwitch

V.5.217.2Description

An interface defining constants for the field defIDs of the AudioSwitch node.

Member Summary
Fields

int children
int whichChoice
int numChan
int phaseGroup

V.5.217.3Fields

children
public static final int children

The defID for the children field = 2.

numChan
public static final int numChan

The defID for the numChan field = 4.

phaseGroup
public static final int phaseGroup

The defID for the phaseGroup field = 5.

whichChoice
public static final int whichChoice

The defID for the whichChoice field = 3.

V.5.218 org.iso.mpeg.mpegj.scene.Field.Background

V.5.218.1Syntax

public static interface Field.Background

V.5.218.2Description

An interface defining constants for the field defIDs of the Background node.

Member Summary
Fields

int groundAngle
int groundColor
int backUrl
int bottomUrl
int frontUrl
int leftUrl
int rightUrl
int topUrl
int skyAngle
int skyColor

V.5.218.3Fields

backUrl
public static final int backUrl

The defID for the backUrl field = 3.

bottomUrl
public static final int bottomUrl

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 593

The defID for the bottomUrl field = 4.

frontUrl
public static final int frontUrl

The defID for the frontUrl field = 5.

groundAngle
public static final int groundAngle

The defID for the groundAngle field = 1.

groundColor
public static final int groundColor

The defID for the groundColor field = 2.

leftUrl
public static final int leftUrl

The defID for the leftUrl field = 6.

rightUrl
public static final int rightUrl

The defID for the rightUrl field = 7.

skyAngle
public static final int skyAngle

The defID for the skyAngle field = 9.

skyColor
public static final int skyColor

The defID for the skyColor field = 10.

topUrl
public static final int topUrl

The defID for the topUrl field = 8.

V.5.219 org.iso.mpeg.mpegj.scene.Field.Background2D

V.5.219.1Syntax

public static interface Field.Background2D

V.5.219.2Description

An interface defining constants for the field defIDs of the Background2D node.

Member Summary
Fields

int backColor
int url

V.5.219.3Fields

backColor
public static final int backColor

The defID for the backColor field = 1.

url
public static final int url

The defID for the url field = 2.

V.5.220 org.iso.mpeg.mpegj.scene.Field.Billboard

V.5.220.1Syntax

public static interface Field.Billboard

ISO/IEC 14496-1:2001(E)

594 © ISO/IEC 2001 – All rights reserved

V.5.220.2Description

An interface defining constants for the field defIDs of the Billboard node.

Member Summary
Fields

int children
int axisOfRotation

V.5.220.3Fields

axisOfRotation
public static final int axisOfRotation

The defID for the axisOfRotation field = 3.

children
public static final int children

The defID for the children field = 2.

V.5.221 org.iso.mpeg.mpegj.scene.Field.Bitmap

V.5.221.1Syntax

public static interface Field.Bitmap

V.5.221.2Description

An interface defining constants for the field defIDs of the Bitmap node.

Member Summary
Fields

int scale

V.5.221.3Fields

scale
public static final int scale

The defID for the scale field = 0.

V.5.222 org.iso.mpeg.mpegj.scene.Field.Box

V.5.222.1Syntax

public static interface Field.Box

V.5.222.2Description

An interface defining constants for the field defIDs of the Box node.

Member Summary
Fields

int size

V.5.222.3Fields

size
public static final int size

The defID for the size field = 0.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 595

V.5.223 org.iso.mpeg.mpegj.scene.Field.Circle

V.5.223.1Syntax

public static interface Field.Circle

V.5.223.2Description

An interface defining constants for the field defIDs of the Circle node.

Member Summary
Fields

int radius

V.5.223.3Fields

radius
public static final int radius

The defID for the radius field = 0.

V.5.224 org.iso.mpeg.mpegj.scene.Field.Collision

V.5.224.1Syntax

public static interface Field.Collision

V.5.224.2Description

An interface defining constants for the field defIDs of the Collision node.

Member Summary
Fields

int children
int collide
int proxy

V.5.224.3Fields

children
public static final int children

The defID for the children field = 2.

collide
public static final int collide

The defID for the collide field = 3.

proxy
public static final int proxy

The defID for the proxy field = 4.

V.5.225 org.iso.mpeg.mpegj.scene.Field.Color

V.5.225.1Syntax

public static interface Field.Color

V.5.225.2Description

An interface defining constants for the field defIDs of the Color node.

Member Summary
Fields

int color

ISO/IEC 14496-1:2001(E)

596 © ISO/IEC 2001 – All rights reserved

V.5.225.3Fields

color
public static final int color

The defID for the color field = 0.

V.5.226 org.iso.mpeg.mpegj.scene.Field.ColorInterpolator

V.5.226.1Syntax

public static interface Field.ColorInterpolator

V.5.226.2Description

An interface defining constants for the field defIDs of the ColorInterpolator node.

Member Summary
Fields

int key
int keyValue

V.5.226.3Fields

key
public static final int key

The defID for the key field = 1.

keyValue
public static final int keyValue

The defID for the keyValue field = 2.

V.5.227 org.iso.mpeg.mpegj.scene.Field.CompositeTexture2D

V.5.227.1Syntax

public static interface Field.CompositeTexture2D

V.5.227.2Description

An interface defining constants for the field defIDs of the CompositeTexture2D node.

Member Summary
Fields

int children
int pixelWidth
int pixelHeight
int background
int viewport

V.5.227.3Fields

background
public static final int background

The defID for the background field = 5.

children
public static final int children

The defID for the children field = 2.

pixelHeight
public static final int pixelHeight

The defID for the pixelHeight field = 4.

pixelWidth

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 597

public static final int pixelWidth

The defID for the pixelWidth field = 3.

viewport
public static final int viewport

The defID for the viewport field = 6.

V.5.228 org.iso.mpeg.mpegj.scene.Field.CompositeTexture3D

V.5.228.1Syntax

public static interface Field.CompositeTexture3D

V.5.228.2Description

An interface defining constants for the field defIDs of the CompositeTexture3D node.

Member Summary
Fields

int children
int pixelWidth
int pixelHeight
int background
int fog
int navigationInfo
int viewpoint

V.5.228.3Fields

background
public static final int background

The defID for the background field = 5.

children
public static final int children

The defID for the children field = 2.

fog
public static final int fog

The defID for the fog field = 6.

navigationInfo
public static final int navigationInfo

The defID for the navigationInfo field = 7.

pixelHeight
public static final int pixelHeight

The defID for the pixelHeight field = 4.

pixelWidth
public static final int pixelWidth

The defID for the pixelWidth field = 3.

viewpoint
public static final int viewpoint

The defID for the viewpoint field = 8.

V.5.229 org.iso.mpeg.mpegj.scene.Field.Conditional

V.5.229.1Syntax

public static interface Field.Conditional

ISO/IEC 14496-1:2001(E)

598 © ISO/IEC 2001 – All rights reserved

V.5.229.2Description

An interface defining constants for the field defIDs of the Conditional node.

Member Summary
Fields

int buffer

V.5.229.3Fields

buffer
public static final int buffer

The defID for the buffer field = 2.

V.5.230 org.iso.mpeg.mpegj.scene.Field.Cone

V.5.230.1Syntax

public static interface Field.Cone

V.5.230.2Description

An interface defining constants for the field defIDs of the Cone node.

Member Summary
Fields

int bottomRadius
int height
int side
int bottom

V.5.230.3Fields

bottom
public static final int bottom

The defID for the bottom field = 3.

bottomRadius
public static final int bottomRadius

The defID for the bottomRadius field = 0.

height
public static final int height

The defID for the height field = 1.

side
public static final int side

The defID for the side field = 2.

V.5.231 org.iso.mpeg.mpegj.scene.Field.Coordinate

V.5.231.1Syntax

public static interface Field.Coordinate

V.5.231.2Description

An interface defining constants for the field defIDs of the Coordinate node.

Member Summary
Fields

int point

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 599

V.5.231.3Fields

point
public static final int point

The defID for the point field = 0.

V.5.232 org.iso.mpeg.mpegj.scene.Field.Coordinate2D

V.5.232.1Syntax

public static interface Field.Coordinate2D

V.5.232.2Description

An interface defining constants for the field defIDs of the Coordinate2D node.

Member Summary
Fields

int point

V.5.232.3Fields

point
public static final int point

The defID for the point field = 0.

V.5.233 org.iso.mpeg.mpegj.scene.Field.CoordinateInterpolator

V.5.233.1Syntax

public static interface Field.CoordinateInterpolator

V.5.233.2Description

An interface defining constants for the field defIDs of the CoordinateInterpolator node.

Member Summary
Fields

int key
int keyValue

V.5.233.3Fields

key
public static final int key

The defID for the key field = 1.

keyValue
public static final int keyValue

The defID for the keyValue field = 2.

V.5.234 org.iso.mpeg.mpegj.scene.Field.CoordinateInterpolator2D

V.5.234.1Syntax

public static interface Field.CoordinateInterpolator2D

V.5.234.2Description

An interface defining constants for the field defIDs of the CoordinateInterpolator2D node.

Member Summary
Fields

ISO/IEC 14496-1:2001(E)

600 © ISO/IEC 2001 – All rights reserved

int key
int keyValue

V.5.234.3Fields

key
public static final int key

The defID for the key field = 1.

keyValue
public static final int keyValue

The defID for the keyValue field = 2.

V.5.235 org.iso.mpeg.mpegj.scene.Field.Curve2D

V.5.235.1Syntax

public static interface Field.Curve2D

V.5.235.2Description

An interface defining constants for the field defIDs of the Curve2D node.

Member Summary
Fields

int point
int fineness
int type

V.5.235.3Fields

fineness
public static final int fineness

The defID for the fineness field = 1.

point
public static final int point

The defID for the point field = 0.

type
public static final int type

The defID for the type field = 2.

V.5.236 org.iso.mpeg.mpegj.scene.Field.Cylinder

V.5.236.1Syntax

public static interface Field.Cylinder

V.5.236.2Description

An interface defining constants for the field defIDs of the Cylinder node.

Member Summary
Fields

int bottom
int height
int radius
int side
int top

V.5.236.3Fields

bottom

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 601

public static final int bottom

The defID for the bottom field = 0.

height
public static final int height

The defID for the height field = 1.

radius
public static final int radius

The defID for the radius field = 2.

side
public static final int side

The defID for the side field = 3.

top
public static final int top

The defID for the top field = 4.

V.5.237 org.iso.mpeg.mpegj.scene.Field.CylinderSensor

V.5.237.1Syntax

public static interface Field.CylinderSensor

V.5.237.2Description

An interface defining constants for the field defIDs of the CylinderSensor node.

Member Summary
Fields

int autoOffset
int diskAngle
int enabled
int maxAngle
int minAngle
int offset

V.5.237.3Fields

autoOffset
public static final int autoOffset

The defID for the autoOffset field = 0.

diskAngle
public static final int diskAngle

The defID for the diskAngle field = 1.

enabled
public static final int enabled

The defID for the enabled field = 2.

maxAngle
public static final int maxAngle

The defID for the maxAngle field = 3.

minAngle
public static final int minAngle

The defID for the minAngle field = 4.

offset
public static final int offset

The defID for the offset field = 5.

ISO/IEC 14496-1:2001(E)

602 © ISO/IEC 2001 – All rights reserved

V.5.238 org.iso.mpeg.mpegj.scene.Field.DirectionalLight

V.5.238.1Syntax

public static interface Field.DirectionalLight

V.5.238.2Description

An interface defining constants for the field defIDs of the DirectionalLight node.

Member Summary
Fields

int ambientIntensity
int color
int direction
int intensity
int on

V.5.238.3Fields

ambientIntensity
public static final int ambientIntensity

The defID for the ambientIntensity field = 0.

color
public static final int color

The defID for the color field = 1.

direction
public static final int direction

The defID for the direction field = 2.

intensity
public static final int intensity

The defID for the intensity field = 3.

on
public static final int on

The defID for the on field = 4.

V.5.239 org.iso.mpeg.mpegj.scene.Field.DiscSensor

V.5.239.1Syntax

public static interface Field.DiscSensor

V.5.239.2Description

An interface defining constants for the field defIDs of the DiscSensor node.

Member Summary
Fields

int autoOffset
int enabled
int maxAngle
int minAngle
int offset

V.5.239.3Fields

autoOffset
public static final int autoOffset

The defID for the autoOffset field = 0.

enabled
public static final int enabled

The defID for the enabled field = 1.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 603

maxAngle
public static final int maxAngle

The defID for the maxAngle field = 2.

minAngle
public static final int minAngle

The defID for the minAngle field = 3.

offset
public static final int offset

The defID for the offset field = 4.

V.5.240 org.iso.mpeg.mpegj.scene.Field.ElevationGrid

V.5.240.1Syntax

public static interface Field.ElevationGrid

V.5.240.2Description

An interface defining constants for the field defIDs of the ElevationGrid node.

Member Summary
Fields

int color
int normal
int texCoord
int height
int ccw
int colorPerVertex
int creaseAngle
int normalPerVertex
int solid
int xDimension
int xSpacing
int zDimension
int zSpacing

V.5.240.3Fields

ccw
public static final int ccw

The defID for the ccw field = 5.

color
public static final int color

The defID for the color field = 1.

colorPerVertex
public static final int colorPerVertex

The defID for the colorPerVertex field = 6.

creaseAngle
public static final int creaseAngle

The defID for the creaseAngle field = 7.

height
public static final int height

The defID for the height field = 4.

normal
public static final int normal

The defID for the normal field = 2.

normalPerVertex
public static final int normalPerVertex

ISO/IEC 14496-1:2001(E)

604 © ISO/IEC 2001 – All rights reserved

The defID for the normalPerVertex field = 8.

solid
public static final int solid

The defID for the solid field = 9.

texCoord
public static final int texCoord

The defID for the texCoord field = 3.

xDimension
public static final int xDimension

The defID for the xDimension field = 10.

xSpacing
public static final int xSpacing

The defID for the xSpacing field = 11.

zDimension
public static final int zDimension

The defID for the zDimension field = 12.

zSpacing
public static final int zSpacing

The defID for the zSpacing field = 13.

V.5.241 org.iso.mpeg.mpegj.scene.Field.Expression

V.5.241.1Syntax

public static interface Field.Expression

V.5.241.2Description

An interface defining constants for the field defIDs of the Expression node.

Member Summary
Fields

int expression_select1
int expression_intensity1
int expression_select2
int expression_intensity2
int init_face
int expression_def

V.5.241.3Fields

expression_def
public static final int expression_def

The defID for the expression_def field = 5.

expression_intensity1
public static final int expression_intensity1

The defID for the expression_intensity1 field = 1.

expression_intensity2
public static final int expression_intensity2

The defID for the expression_intensity2 field = 3.

expression_select1
public static final int expression_select1

The defID for the expression_select1 field = 0.

expression_select2
public static final int expression_select2

The defID for the expression_select2 field = 2.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 605

init_face
public static final int init_face

The defID for the init_face field = 4.

V.5.242 org.iso.mpeg.mpegj.scene.Field.Extrusion

V.5.242.1Syntax

public static interface Field.Extrusion

V.5.242.2Description

An interface defining constants for the field defIDs of the Extrusion node.

Member Summary
Fields

int beginCap
int ccw
int convex
int creaseAngle
int crossSection
int endCap
int orientation
int scale
int solid
int spine

V.5.242.3Fields

beginCap
public static final int beginCap

The defID for the beginCap field = 4.

ccw
public static final int ccw

The defID for the ccw field = 5.

convex
public static final int convex

The defID for the convex field = 6.

creaseAngle
public static final int creaseAngle

The defID for the creaseAngle field = 7.

crossSection
public static final int crossSection

The defID for the crossSection field = 8.

endCap
public static final int endCap

The defID for the endCap field = 9.

orientation
public static final int orientation

The defID for the orientation field = 10.

scale
public static final int scale

The defID for the scale field = 11.

solid
public static final int solid

The defID for the solid field = 12.

spine

ISO/IEC 14496-1:2001(E)

606 © ISO/IEC 2001 – All rights reserved

public static final int spine

The defID for the spine field = 13.

V.5.243 org.iso.mpeg.mpegj.scene.Field.Face

V.5.243.1Syntax

public static interface Field.Face

V.5.243.2Description

An interface defining constants for the field defIDs of the Face node.

Member Summary
Fields

int fap
int fdp
int fit
int ttsSource
int renderedFace

V.5.243.3Fields

fap
public static final int fap

The defID for the fap field = 0.

fdp
public static final int fdp

The defID for the fdp field = 1.

fit
public static final int fit

The defID for the fit field = 2.

renderedFace
public static final int renderedFace

The defID for the renderedFace field = 4.

ttsSource
public static final int ttsSource

The defID for the ttsSource field = 3.

V.5.244 org.iso.mpeg.mpegj.scene.Field.FaceDefMesh

V.5.244.1Syntax

public static interface Field.FaceDefMesh

V.5.244.2Description

An interface defining constants for the field defIDs of the FaceDefMesh node.

Member Summary
Fields

int faceSceneGraphNode
int intervalBorders
int coordIndex
int displacements

V.5.244.3Fields

coordIndex
public static final int coordIndex

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 607

The defID for the coordIndex field = 2.

displacements
public static final int displacements

The defID for the displacements field = 3.

faceSceneGraphNode
public static final int faceSceneGraphNode

The defID for the faceSceneGraphNode field = 0.

intervalBorders
public static final int intervalBorders

The defID for the intervalBorders field = 1.

V.5.245 org.iso.mpeg.mpegj.scene.Field.FaceDefTables

V.5.245.1Syntax

public static interface Field.FaceDefTables

V.5.245.2Description

An interface defining constants for the field defIDs of the FaceDefTables node.

Member Summary
Fields

int fapID
int highLevelSelect
int faceDefMesh
int faceDefTransform

V.5.245.3Fields

faceDefMesh
public static final int faceDefMesh

The defID for the faceDefMesh field = 2.

faceDefTransform
public static final int faceDefTransform

The defID for the faceDefTransform field = 3.

fapID
public static final int fapID

The defID for the fapID field = 0.

highLevelSelect
public static final int highLevelSelect

The defID for the highLevelSelect field = 1.

V.5.246 org.iso.mpeg.mpegj.scene.Field.FaceDefTransform

V.5.246.1Syntax

public static interface Field.FaceDefTransform

V.5.246.2Description

An interface defining constants for the field defIDs of the FaceDefTransform node.

Member Summary
Fields

int faceSceneGraphNode
int fieldId
int rotationDef
int scaleDef
int translationDef

ISO/IEC 14496-1:2001(E)

608 © ISO/IEC 2001 – All rights reserved

V.5.246.3Fields

faceSceneGraphNode
public static final int faceSceneGraphNode

The defID for the faceSceneGraphNode field = 0.

fieldId
public static final int fieldId

The defID for the fieldId field = 1.

rotationDef
public static final int rotationDef

The defID for the rotationDef field = 2.

scaleDef
public static final int scaleDef

The defID for the scaleDef field = 3.

translationDef
public static final int translationDef

The defID for the translationDef field = 4.

V.5.247 org.iso.mpeg.mpegj.scene.Field.FAP

V.5.247.1Syntax

public static interface Field.FAP

V.5.247.2Description

An interface defining constants for the field defIDs of the FAP node.

Member Summary
Fields

int viseme
int expression
int open_jaw
int lower_t_midlip
int raise_b_midlip
int stretch_l_corner
int stretch_r_corner
int lower_t_lip_lm
int lower_t_lip_rm
int lower_b_lip_lm
int lower_b_lip_rm
int raise_l_cornerlip
int raise_r_cornerlip
int thrust_jaw
int shift_jaw
int push_b_lip
int push_t_lip
int depress_chin
int close_t_l_eyelid
int close_t_r_eyelid
int close_b_l_eyelid
int close_b_r_eyelid
int yaw_l_eyeball
int yaw_r_eyeball
int pitch_l_eyeball
int pitch_r_eyeball
int thrust_l_eyeball
int thrust_r_eyeball
int dilate_l_pupil
int dilate_r_pupil
int raise_l_i_eyebrow
int raise_r_i_eyebrow
int raise_l_m_eyebrow

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 609

int raise_r_m_eyebrow
int raise_l_o_eyebrow
int raise_r_o_eyebrow
int squeeze_l_eyebrow
int squeeze_r_eyebrow
int puff_l_cheek
int puff_r_cheek
int lift_l_cheek
int lift_r_cheek
int shift_tongue_tip
int raise_tongue_tip
int thrust_tongue_tip
int raise_tongue
int tongue_roll
int head_pitch
int head_yaw
int head_roll
int lower_t_midlip_o
int raise_b_midlip_o
int stretch_l_cornerlip
int stretch_r_cornerlip
int lower_t_lip_lm_o
int lower_t_lip_rm_o
int raise_b_lip_lm_o
int raise_b_lip_rm_o
int raise_l_cornerlip_o
int raise_r_cornerlip_o
int stretch_l_nose
int stretch_r_nose
int raise_nose
int bend_nose
int raise_l_ear
int raise_r_ear
int pull_l_ear
int pull_r_ear

V.5.247.3Fields

bend_nose
public static final int bend_nose

The defID for the bend_nose field = 63.

close_b_l_eyelid
public static final int close_b_l_eyelid

The defID for the close_b_l_eyelid field = 20.

close_b_r_eyelid
public static final int close_b_r_eyelid

The defID for the close_b_r_eyelid field = 21.

close_t_l_eyelid
public static final int close_t_l_eyelid

The defID for the close_t_l_eyelid field = 18.

close_t_r_eyelid
public static final int close_t_r_eyelid

The defID for the close_t_r_eyelid field = 19.

depress_chin
public static final int depress_chin

The defID for the depress_chin field = 17.

dilate_l_pupil
public static final int dilate_l_pupil

The defID for the dilate_l_pupil field = 28.

dilate_r_pupil
public static final int dilate_r_pupil

ISO/IEC 14496-1:2001(E)

610 © ISO/IEC 2001 – All rights reserved

The defID for the dilate_r_pupil field = 29.

expression
public static final int expression

The defID for the expression field = 1.

head_pitch
public static final int head_pitch

The defID for the head_pitch field = 47.

head_roll
public static final int head_roll

The defID for the head_roll field = 49.

head_yaw
public static final int head_yaw

The defID for the head_yaw field = 48.

lift_l_cheek
public static final int lift_l_cheek

The defID for the lift_l_cheek field = 40.

lift_r_cheek
public static final int lift_r_cheek

The defID for the lift_r_cheek field = 41.

lower_b_lip_lm
public static final int lower_b_lip_lm

The defID for the lower_b_lip_lm field = 9.

lower_b_lip_rm
public static final int lower_b_lip_rm

The defID for the lower_b_lip_rm field = 10.

lower_t_lip_lm
public static final int lower_t_lip_lm

The defID for the lower_t_lip_lm field = 7.

lower_t_lip_lm_o
public static final int lower_t_lip_lm_o

The defID for the lower_t_lip_lm_o field = 54.

lower_t_lip_rm
public static final int lower_t_lip_rm

The defID for the lower_t_lip_rm field = 8.

lower_t_lip_rm_o
public static final int lower_t_lip_rm_o

The defID for the lower_t_lip_rm_o field = 55.

lower_t_midlip
public static final int lower_t_midlip

The defID for the lower_t_midlip field = 3.

lower_t_midlip_o
public static final int lower_t_midlip_o

The defID for the lower_t_midlip_o field = 50.

open_jaw
public static final int open_jaw

The defID for the open_jaw field = 2.

pitch_l_eyeball
public static final int pitch_l_eyeball

The defID for the pitch_l_eyeball field = 24.

pitch_r_eyeball
public static final int pitch_r_eyeball

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 611

The defID for the pitch_r_eyeball field = 25.

puff_l_cheek
public static final int puff_l_cheek

The defID for the puff_l_cheek field = 38.

puff_r_cheek
public static final int puff_r_cheek

The defID for the puff_r_cheek field = 39.

pull_l_ear
public static final int pull_l_ear

The defID for the pull_l_ear field = 66.

pull_r_ear
public static final int pull_r_ear

The defID for the pull_r_ear field = 67.

push_b_lip
public static final int push_b_lip

The defID for the push_b_lip field = 15.

push_t_lip
public static final int push_t_lip

The defID for the push_t_lip field = 16.

raise_b_lip_lm_o
public static final int raise_b_lip_lm_o

The defID for the raise_b_lip_lm_o field = 56.

raise_b_lip_rm_o
public static final int raise_b_lip_rm_o

The defID for the raise_b_lip_rm_o field = 57.

raise_b_midlip
public static final int raise_b_midlip

The defID for the raise_b_midlip field = 4.

raise_b_midlip_o
public static final int raise_b_midlip_o

The defID for the raise_b_midlip_o field = 51.

raise_l_cornerlip
public static final int raise_l_cornerlip

The defID for the raise_l_cornerlip field = 11.

raise_l_cornerlip_o
public static final int raise_l_cornerlip_o

The defID for the raise_l_cornerlip_o field = 58.

raise_l_ear
public static final int raise_l_ear

The defID for the raise_l_ear field = 64.

raise_l_i_eyebrow
public static final int raise_l_i_eyebrow

The defID for the raise_l_i_eyebrow field = 30.

raise_l_m_eyebrow
public static final int raise_l_m_eyebrow

The defID for the raise_l_m_eyebrow field = 32.

raise_l_o_eyebrow
public static final int raise_l_o_eyebrow

The defID for the raise_l_o_eyebrow field = 34.

raise_nose
public static final int raise_nose

ISO/IEC 14496-1:2001(E)

612 © ISO/IEC 2001 – All rights reserved

The defID for the raise_nose field = 62.

raise_r_cornerlip
public static final int raise_r_cornerlip

The defID for the raise_r_cornerlip field = 12.

raise_r_cornerlip_o
public static final int raise_r_cornerlip_o

The defID for the raise_r_cornerlip_o field = 59.

raise_r_ear
public static final int raise_r_ear

The defID for the raise_r_ear field = 65.

raise_r_i_eyebrow
public static final int raise_r_i_eyebrow

The defID for the raise_r_i_eyebrow field = 31.

raise_r_m_eyebrow
public static final int raise_r_m_eyebrow

The defID for the raise_r_m_eyebrow field = 33.

raise_r_o_eyebrow
public static final int raise_r_o_eyebrow

The defID for the raise_r_o_eyebrow field = 35.

raise_tongue
public static final int raise_tongue

The defID for the raise_tongue field = 45.

raise_tongue_tip
public static final int raise_tongue_tip

The defID for the raise_tongue_tip field = 43.

shift_jaw
public static final int shift_jaw

The defID for the shift_jaw field = 14.

shift_tongue_tip
public static final int shift_tongue_tip

The defID for the shift_tongue_tip field = 42.

squeeze_l_eyebrow
public static final int squeeze_l_eyebrow

The defID for the squeeze_l_eyebrow field = 36.

squeeze_r_eyebrow
public static final int squeeze_r_eyebrow

The defID for the squeeze_r_eyebrow field = 37.

stretch_l_corner
public static final int stretch_l_corner

The defID for the stretch_l_corner field = 5.

stretch_l_cornerlip
public static final int stretch_l_cornerlip

The defID for the stretch_l_cornerlip field = 52.

stretch_l_nose
public static final int stretch_l_nose

The defID for the stretch_l_nose field = 60.

stretch_r_corner
public static final int stretch_r_corner

The defID for the stretch_r_corner field = 6.

stretch_r_cornerlip
public static final int stretch_r_cornerlip

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 613

The defID for the stretch_r_cornerlip field = 53.

stretch_r_nose
public static final int stretch_r_nose

The defID for the stretch_r_nose field = 61.

thrust_jaw
public static final int thrust_jaw

The defID for the thrust_jaw field = 13.

thrust_l_eyeball
public static final int thrust_l_eyeball

The defID for the thrust_l_eyeball field = 26.

thrust_r_eyeball
public static final int thrust_r_eyeball

The defID for the thrust_r_eyeball field = 27.

thrust_tongue_tip
public static final int thrust_tongue_tip

The defID for the thrust_tongue_tip field = 44.

tongue_roll
public static final int tongue_roll

The defID for the tongue_roll field = 46.

viseme
public static final int viseme

The defID for the viseme field = 0.

yaw_l_eyeball
public static final int yaw_l_eyeball

The defID for the yaw_l_eyeball field = 22.

yaw_r_eyeball
public static final int yaw_r_eyeball

The defID for the yaw_r_eyeball field = 23.

V.5.248 org.iso.mpeg.mpegj.scene.Field.FDP

V.5.248.1Syntax

public static interface Field.FDP

V.5.248.2Description

An interface defining constants for the field defIDs of the FDP node.

Member Summary
Fields

int featurePointsCoord
int textureCoord
int faceDefTables
int faceSceneGraph
int useOrthoTexture

V.5.248.3Fields

faceDefTables
public static final int faceDefTables

The defID for the faceDefTables field = 2.

faceSceneGraph
public static final int faceSceneGraph

The defID for the faceSceneGraph field = 3.

featurePointsCoord

ISO/IEC 14496-1:2001(E)

614 © ISO/IEC 2001 – All rights reserved

public static final int featurePointsCoord

The defID for the featurePointsCoord field = 0.

textureCoord
public static final int textureCoord

The defID for the textureCoord field = 1.

useOrthoTexture
public static final int useOrthoTexture

The defID for the useOrthoTexture field = 4.

V.5.249 org.iso.mpeg.mpegj.scene.Field.FIT

V.5.249.1Syntax

public static interface Field.FIT

V.5.249.2Description

An interface defining constants for the field defIDs of the FIT node.

Member Summary
Fields

int FAPs
int Graph
int numeratorExp
int denominatorExp
int numeratorImpulse
int numeratorTerms
int denominatorTerms
int numeratorCoefs
int denominatorCoefs

V.5.249.3Fields

denominatorCoefs
public static final int denominatorCoefs

The defID for the denominatorCoefs field = 8.

denominatorExp
public static final int denominatorExp

The defID for the denominatorExp field = 3.

denominatorTerms
public static final int denominatorTerms

The defID for the denominatorTerms field = 6.

FAPs
public static final int FAPs

The defID for the FAPs field = 0.

Graph
public static final int Graph

The defID for the Graph field = 1.

numeratorCoefs
public static final int numeratorCoefs

The defID for the numeratorCoefs field = 7.

numeratorExp
public static final int numeratorExp

The defID for the numeratorExp field = 2.

numeratorImpulse
public static final int numeratorImpulse

The defID for the numeratorImpulse field = 4.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 615

numeratorTerms
public static final int numeratorTerms

The defID for the numeratorTerms field = 5.

V.5.250 org.iso.mpeg.mpegj.scene.Field.Fog

V.5.250.1Syntax

public static interface Field.Fog

V.5.250.2Description

An interface defining constants for the field defIDs of the Fog node.

Member Summary
Fields

int color
int fogType
int visibilityRange

V.5.250.3Fields

color
public static final int color

The defID for the color field = 0.

fogType
public static final int fogType

The defID for the fogType field = 1.

visibilityRange
public static final int visibilityRange

The defID for the visibilityRange field = 2.

V.5.251 org.iso.mpeg.mpegj.scene.Field.FontStyle

V.5.251.1Syntax

public static interface Field.FontStyle

V.5.251.2Description

An interface defining constants for the field defIDs of the FontStyle node.

Member Summary
Fields

int family
int horizontal
int justify
int language
int leftToRight
int size
int spacing
int style
int topToBottom

V.5.251.3Fields

family
public static final int family

The defID for the family field = 0.

horizontal
public static final int horizontal

ISO/IEC 14496-1:2001(E)

616 © ISO/IEC 2001 – All rights reserved

The defID for the horizontal field = 1.

justify
public static final int justify

The defID for the justify field = 2.

language
public static final int language

The defID for the language field = 3.

leftToRight
public static final int leftToRight

The defID for the leftToRight field = 4.

size
public static final int size

The defID for the size field = 5.

spacing
public static final int spacing

The defID for the spacing field = 6.

style
public static final int style

The defID for the style field = 7.

topToBottom
public static final int topToBottom

The defID for the topToBottom field = 8.

V.5.252 org.iso.mpeg.mpegj.scene.Field.Form

V.5.252.1Syntax

public static interface Field.Form

V.5.252.2Description

An interface defining constants for the field defIDs of the Form node.

Member Summary
Fields

int children
int size
int groups
int constraints
int groupsIndex

V.5.252.3Fields

children
public static final int children

The defID for the children field = 2.

constraints
public static final int constraints

The defID for the constraints field = 5.

groups
public static final int groups

The defID for the groups field = 4.

groupsIndex
public static final int groupsIndex

The defID for the groupsIndex field = 6.

size

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 617

public static final int size

The defID for the size field = 3.

V.5.253 org.iso.mpeg.mpegj.scene.Field.Group

V.5.253.1Syntax

public static interface Field.Group

V.5.253.2Description

An interface defining constants for the field defIDs of the Group node.

Member Summary
Fields

int children

V.5.253.3Fields

children
public static final int children

The defID for the children field = 2.

V.5.254 org.iso.mpeg.mpegj.scene.Field.ImageTexture

V.5.254.1Syntax

public static interface Field.ImageTexture

V.5.254.2Description

An interface defining constants for the field defIDs of the ImageTexture node.

Member Summary
Fields

int url
int repeatS
int repeatT

V.5.254.3Fields

repeatS
public static final int repeatS

The defID for the repeatS field = 1.

repeatT
public static final int repeatT

The defID for the repeatT field = 2.

url
public static final int url

The defID for the url field = 0.

V.5.255 org.iso.mpeg.mpegj.scene.Field.IndexedFaceSet

V.5.255.1Syntax

public static interface Field.IndexedFaceSet

V.5.255.2Description

An interface defining constants for the field defIDs of the IndexedFaceSet node.

ISO/IEC 14496-1:2001(E)

618 © ISO/IEC 2001 – All rights reserved

Member Summary
Fields

int color
int coord
int normal
int texCoord
int ccw
int colorIndex
int colorPerVertex
int convex
int coordIndex
int creaseAngle
int normalIndex
int normalPerVertex
int solid
int texCoordIndex

V.5.255.3Fields

ccw
public static final int ccw

The defID for the ccw field = 8.

color
public static final int color

The defID for the color field = 4.

colorIndex
public static final int colorIndex

The defID for the colorIndex field = 9.

colorPerVertex
public static final int colorPerVertex

The defID for the colorPerVertex field = 10.

convex
public static final int convex

The defID for the convex field = 11.

coord
public static final int coord

The defID for the coord field = 5.

coordIndex
public static final int coordIndex

The defID for the coordIndex field = 12.

creaseAngle
public static final int creaseAngle

The defID for the creaseAngle field = 13.

normal
public static final int normal

The defID for the normal field = 6.

normalIndex
public static final int normalIndex

The defID for the normalIndex field = 14.

normalPerVertex
public static final int normalPerVertex

The defID for the normalPerVertex field = 15.

solid
public static final int solid

The defID for the solid field = 16.

texCoord

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 619

public static final int texCoord

The defID for the texCoord field = 7.

texCoordIndex
public static final int texCoordIndex

The defID for the texCoordIndex field = 17.

V.5.256 org.iso.mpeg.mpegj.scene.Field.IndexedFaceSet2D

V.5.256.1Syntax

public static interface Field.IndexedFaceSet2D

V.5.256.2Description

An interface defining constants for the field defIDs of the IndexedFaceSet2D node.

Member Summary
Fields

int color
int coord
int texCoord
int colorIndex
int colorPerVertex
int convex
int coordIndex
int texCoordIndex

V.5.256.3Fields

color
public static final int color

The defID for the color field = 3.

colorIndex
public static final int colorIndex

The defID for the colorIndex field = 6.

colorPerVertex
public static final int colorPerVertex

The defID for the colorPerVertex field = 7.

convex
public static final int convex

The defID for the convex field = 8.

coord
public static final int coord

The defID for the coord field = 4.

coordIndex
public static final int coordIndex

The defID for the coordIndex field = 9.

texCoord
public static final int texCoord

The defID for the texCoord field = 5.

texCoordIndex
public static final int texCoordIndex

The defID for the texCoordIndex field = 10.

ISO/IEC 14496-1:2001(E)

620 © ISO/IEC 2001 – All rights reserved

V.5.257 org.iso.mpeg.mpegj.scene.Field.IndexedLineSet

V.5.257.1Syntax

public static interface Field.IndexedLineSet

V.5.257.2Description

An interface defining constants for the field defIDs of the IndexedLineSet node.

Member Summary
Fields

int color
int coord
int colorIndex
int colorPerVertex
int coordIndex

V.5.257.3Fields

color
public static final int color

The defID for the color field = 2.

colorIndex
public static final int colorIndex

The defID for the colorIndex field = 4.

colorPerVertex
public static final int colorPerVertex

The defID for the colorPerVertex field = 5.

coord
public static final int coord

The defID for the coord field = 3.

coordIndex
public static final int coordIndex

The defID for the coordIndex field = 6.

V.5.258 org.iso.mpeg.mpegj.scene.Field.IndexedLineSet2D

V.5.258.1Syntax

public static interface Field.IndexedLineSet2D

V.5.258.2Description

An interface defining constants for the field defIDs of the IndexedLineSet2D node.

Member Summary
Fields

int color
int coord
int colorIndex
int colorPerVertex
int coordIndex

V.5.258.3Fields

color
public static final int color

The defID for the color field = 2.

colorIndex

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 621

public static final int colorIndex

The defID for the colorIndex field = 4.

colorPerVertex
public static final int colorPerVertex

The defID for the colorPerVertex field = 5.

coord
public static final int coord

The defID for the coord field = 3.

coordIndex
public static final int coordIndex

The defID for the coordIndex field = 6.

V.5.259 org.iso.mpeg.mpegj.scene.Field.Inline

V.5.259.1Syntax

public static interface Field.Inline

V.5.259.2Description

An interface defining constants for the field defIDs of the Inline node.

Member Summary
Fields

int url

V.5.259.3Fields

url
public static final int url

The defID for the url field = 0.

V.5.260 org.iso.mpeg.mpegj.scene.Field.Layer2D

V.5.260.1Syntax

public static interface Field.Layer2D

V.5.260.2Description

An interface defining constants for the field defIDs of the Layer2D node.

Member Summary
Fields

int children
int size
int background
int viewport

V.5.260.3Fields

background
public static final int background

The defID for the background field = 4.

children
public static final int children

The defID for the children field = 2.

size
public static final int size

ISO/IEC 14496-1:2001(E)

622 © ISO/IEC 2001 – All rights reserved

The defID for the size field = 3.

viewport
public static final int viewport

The defID for the viewport field = 5.

V.5.261 org.iso.mpeg.mpegj.scene.Field.Layer3D

V.5.261.1Syntax

public static interface Field.Layer3D

V.5.261.2Description

An interface defining constants for the field defIDs of the Layer3D node.

Member Summary
Fields

int children
int size
int background
int fog
int navigationInfo
int viewpoint

V.5.261.3Fields

background
public static final int background

The defID for the background field = 4.

children
public static final int children

The defID for the children field = 2.

fog
public static final int fog

The defID for the fog field = 5.

navigationInfo
public static final int navigationInfo

The defID for the navigationInfo field = 6.

size
public static final int size

The defID for the size field = 3.

viewpoint
public static final int viewpoint

The defID for the viewpoint field = 7.

V.5.262 org.iso.mpeg.mpegj.scene.Field.Layout

V.5.262.1Syntax

public static interface Field.Layout

V.5.262.2Description

An interface defining constants for the field defIDs of the Layout node.

Member Summary
Fields

int children
int wrap
int size

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 623

int horizontal
int justify
int leftToRight
int topToBottom
int spacing
int smoothScroll
int loop
int scrollVertical
int scrollRate

V.5.262.3Fields

children
public static final int children

The defID for the children field = 2.

horizontal
public static final int horizontal

The defID for the horizontal field = 5.

justify
public static final int justify

The defID for the justify field = 6.

leftToRight
public static final int leftToRight

The defID for the leftToRight field = 7.

loop
public static final int loop

The defID for the loop field = 11.

scrollRate
public static final int scrollRate

The defID for the scrollRate field = 13.

scrollVertical
public static final int scrollVertical

The defID for the scrollVertical field = 12.

size
public static final int size

The defID for the size field = 4.

smoothScroll
public static final int smoothScroll

The defID for the smoothScroll field = 10.

spacing
public static final int spacing

The defID for the spacing field = 9.

topToBottom
public static final int topToBottom

The defID for the topToBottom field = 8.

wrap
public static final int wrap

The defID for the wrap field = 3.

V.5.263 org.iso.mpeg.mpegj.scene.Field.LineProperties

V.5.263.1Syntax

public static interface Field.LineProperties

ISO/IEC 14496-1:2001(E)

624 © ISO/IEC 2001 – All rights reserved

V.5.263.2Description

An interface defining constants for the field defIDs of the LineProperties node.

Member Summary
Fields

int lineColor
int lineStyle
int width

V.5.263.3Fields

lineColor
public static final int lineColor

The defID for the lineColor field = 0.

lineStyle
public static final int lineStyle

The defID for the lineStyle field = 1.

width
public static final int width

The defID for the width field = 2.

V.5.264 org.iso.mpeg.mpegj.scene.Field.ListeningPoint

V.5.264.1Syntax

public static interface Field.ListeningPoint

V.5.264.2Description

An interface defining constants for the field defIDs of the ListeningPoint node.

Member Summary
Fields

int jump
int orientation
int position
int description

V.5.264.3Fields

description
public static final int description

The defID for the description field = 4.

jump
public static final int jump

The defID for the jump field = 1.

orientation
public static final int orientation

The defID for the orientation field = 2.

position
public static final int position

The defID for the position field = 3.

V.5.265 org.iso.mpeg.mpegj.scene.Field.LOD

V.5.265.1Syntax

public static interface Field.LOD

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 625

V.5.265.2Description

An interface defining constants for the field defIDs of the LOD node.

Member Summary
Fields

int level
int center
int range

V.5.265.3Fields

center
public static final int center

The defID for the center field = 1.

level
public static final int level

The defID for the level field = 0.

range
public static final int range

The defID for the range field = 2.

V.5.266 org.iso.mpeg.mpegj.scene.Field.Material

V.5.266.1Syntax

public static interface Field.Material

V.5.266.2Description

An interface defining constants for the field defIDs of the Material node.

Member Summary
Fields

int ambientIntensity
int diffuseColor
int emissiveColor
int shininess
int specularColor
int transparency

V.5.266.3Fields

ambientIntensity
public static final int ambientIntensity

The defID for the ambientIntensity field = 0.

diffuseColor
public static final int diffuseColor

The defID for the diffuseColor field = 1.

emissiveColor
public static final int emissiveColor

The defID for the emissiveColor field = 2.

shininess
public static final int shininess

The defID for the shininess field = 3.

specularColor
public static final int specularColor

The defID for the specularColor field = 4.

ISO/IEC 14496-1:2001(E)

626 © ISO/IEC 2001 – All rights reserved

transparency
public static final int transparency

The defID for the transparency field = 5.

V.5.267 org.iso.mpeg.mpegj.scene.Field.Material2D

V.5.267.1Syntax

public static interface Field.Material2D

V.5.267.2Description

An interface defining constants for the field defIDs of the Material2D node.

Member Summary
Fields

int emissiveColor
int filled
int lineProps
int transparency

V.5.267.3Fields

emissiveColor
public static final int emissiveColor

The defID for the emissiveColor field = 0.

filled
public static final int filled

The defID for the filled field = 1.

lineProps
public static final int lineProps

The defID for the lineProps field = 2.

transparency
public static final int transparency

The defID for the transparency field = 3.

V.5.268 org.iso.mpeg.mpegj.scene.Field.MovieTexture

V.5.268.1Syntax

public static interface Field.MovieTexture

V.5.268.2Description

An interface defining constants for the field defIDs of the MovieTexture node.

Member Summary
Fields

int loop
int speed
int startTime
int stopTime
int url
int repeatS
int repeatT

V.5.268.3Fields

loop
public static final int loop

The defID for the loop field = 0.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 627

repeatS
public static final int repeatS

The defID for the repeatS field = 5.

repeatT
public static final int repeatT

The defID for the repeatT field = 6.

speed
public static final int speed

The defID for the speed field = 1.

startTime
public static final int startTime

The defID for the startTime field = 2.

stopTime
public static final int stopTime

The defID for the stopTime field = 3.

url
public static final int url

The defID for the url field = 4.

V.5.269 org.iso.mpeg.mpegj.scene.Field.NavigationInfo

V.5.269.1Syntax

public static interface Field.NavigationInfo

V.5.269.2Description

An interface defining constants for the field defIDs of the NavigationInfo node.

Member Summary
Fields

int avatarSize
int headlight
int speed
int type
int visibilityLimit

V.5.269.3Fields

avatarSize
public static final int avatarSize

The defID for the avatarSize field = 1.

headlight
public static final int headlight

The defID for the headlight field = 2.

speed
public static final int speed

The defID for the speed field = 3.

type
public static final int type

The defID for the type field = 4.

visibilityLimit
public static final int visibilityLimit

The defID for the visibilityLimit field = 5.

ISO/IEC 14496-1:2001(E)

628 © ISO/IEC 2001 – All rights reserved

V.5.270 org.iso.mpeg.mpegj.scene.Field.Normal

V.5.270.1Syntax

public static interface Field.Normal

V.5.270.2Description

An interface defining constants for the field defIDs of the Normal node.

Member Summary
Fields

int vector

V.5.270.3Fields

vector
public static final int vector

The defID for the vector field = 0.

V.5.271 org.iso.mpeg.mpegj.scene.Field.NormalInterpolator

V.5.271.1Syntax

public static interface Field.NormalInterpolator

V.5.271.2Description

An interface defining constants for the field defIDs of the NormalInterpolator node.

Member Summary
Fields

int key
int keyValue

V.5.271.3Fields

key
public static final int key

The defID for the key field = 1.

keyValue
public static final int keyValue

The defID for the keyValue field = 2.

V.5.272 org.iso.mpeg.mpegj.scene.Field.OrderedGroup

V.5.272.1Syntax

public static interface Field.OrderedGroup

V.5.272.2Description

An interface defining constants for the field defIDs of the OrderedGroup node.

Member Summary
Fields

int children
int order

V.5.272.3Fields

children
public static final int children

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 629

The defID for the children field = 2.

order
public static final int order

The defID for the order field = 3.

V.5.273 org.iso.mpeg.mpegj.scene.Field.OrientationInterpolator

V.5.273.1Syntax

public static interface Field.OrientationInterpolator

V.5.273.2Description

An interface defining constants for the field defIDs of the OrientationInterpolator node.

Member Summary
Fields

int key
int keyValue

V.5.273.3Fields

key
public static final int key

The defID for the key field = 1.

keyValue
public static final int keyValue

The defID for the keyValue field = 2.

V.5.274 org.iso.mpeg.mpegj.scene.Field.PixelTexture

V.5.274.1Syntax

public static interface Field.PixelTexture

V.5.274.2Description

An interface defining constants for the field defIDs of the PixelTexture node.

Member Summary
Fields

int image
int repeatS
int repeatT

V.5.274.3Fields

image
public static final int image

The defID for the image field = 0.

repeatS
public static final int repeatS

The defID for the repeatS field = 1.

repeatT
public static final int repeatT

The defID for the repeatT field = 2.

ISO/IEC 14496-1:2001(E)

630 © ISO/IEC 2001 – All rights reserved

V.5.275 org.iso.mpeg.mpegj.scene.Field.PlaneSensor

V.5.275.1Syntax

public static interface Field.PlaneSensor

V.5.275.2Description

An interface defining constants for the field defIDs of the PlaneSensor node.

Member Summary
Fields

int autoOffset
int enabled
int maxPosition
int minPosition
int offset

V.5.275.3Fields

autoOffset
public static final int autoOffset

The defID for the autoOffset field = 0.

enabled
public static final int enabled

The defID for the enabled field = 1.

maxPosition
public static final int maxPosition

The defID for the maxPosition field = 2.

minPosition
public static final int minPosition

The defID for the minPosition field = 3.

offset
public static final int offset

The defID for the offset field = 4.

V.5.276 org.iso.mpeg.mpegj.scene.Field.PlaneSensor2D

V.5.276.1Syntax

public static interface Field.PlaneSensor2D

V.5.276.2Description

An interface defining constants for the field defIDs of the PlaneSensor2D node.

Member Summary
Fields

int autoOffset
int enabled
int maxPosition
int minPosition
int offset

V.5.276.3Fields

autoOffset
public static final int autoOffset

The defID for the autoOffset field = 0.

enabled

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 631

public static final int enabled

The defID for the enabled field = 1.

maxPosition
public static final int maxPosition

The defID for the maxPosition field = 2.

minPosition
public static final int minPosition

The defID for the minPosition field = 3.

offset
public static final int offset

The defID for the offset field = 4.

V.5.277 org.iso.mpeg.mpegj.scene.Field.PointLight

V.5.277.1Syntax

public static interface Field.PointLight

V.5.277.2Description

An interface defining constants for the field defIDs of the PointLight node.

Member Summary
Fields

int ambientIntensity
int attenuation
int color
int intensity
int location
int on
int radius

V.5.277.3Fields

ambientIntensity
public static final int ambientIntensity

The defID for the ambientIntensity field = 0.

attenuation
public static final int attenuation

The defID for the attenuation field = 1.

color
public static final int color

The defID for the color field = 2.

intensity
public static final int intensity

The defID for the intensity field = 3.

location
public static final int location

The defID for the location field = 4.

on
public static final int on

The defID for the on field = 5.

radius
public static final int radius

The defID for the radius field = 6.

ISO/IEC 14496-1:2001(E)

632 © ISO/IEC 2001 – All rights reserved

V.5.278 org.iso.mpeg.mpegj.scene.Field.PointSet

V.5.278.1Syntax

public static interface Field.PointSet

V.5.278.2Description

An interface defining constants for the field defIDs of the PointSet node.

Member Summary
Fields

int color
int coord

V.5.278.3Fields

color
public static final int color

The defID for the color field = 0.

coord
public static final int coord

The defID for the coord field = 1.

V.5.279 org.iso.mpeg.mpegj.scene.Field.PointSet2D

V.5.279.1Syntax

public static interface Field.PointSet2D

V.5.279.2Description

An interface defining constants for the field defIDs of the PointSet2D node.

Member Summary
Fields

int color
int coord

V.5.279.3Fields

color
public static final int color

The defID for the color field = 0.

coord
public static final int coord

The defID for the coord field = 1.

V.5.280 org.iso.mpeg.mpegj.scene.Field.PositionInterpolator

V.5.280.1Syntax

public static interface Field.PositionInterpolator

V.5.280.2Description

An interface defining constants for the field defIDs of the PositionInterpolator node.

Member Summary
Fields

int key
int keyValue

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 633

V.5.280.3Fields

key
public static final int key

The defID for the key field = 1.

keyValue
public static final int keyValue

The defID for the keyValue field = 2.

V.5.281 org.iso.mpeg.mpegj.scene.Field.PositionInterpolator2D

V.5.281.1Syntax

public static interface Field.PositionInterpolator2D

V.5.281.2Description

An interface defining constants for the field defIDs of the PositionInterpolator2D node.

Member Summary
Fields

int key
int keyValue

V.5.281.3Fields

key
public static final int key

The defID for the key field = 1.

keyValue
public static final int keyValue

The defID for the keyValue field = 2.

V.5.282 org.iso.mpeg.mpegj.scene.Field.ProximitySensor

V.5.282.1Syntax

public static interface Field.ProximitySensor

V.5.282.2Description

An interface defining constants for the field defIDs of the ProximitySensor node.

Member Summary
Fields

int center
int size
int enabled

V.5.282.3Fields

center
public static final int center

The defID for the center field = 0.

enabled
public static final int enabled

The defID for the enabled field = 2.

size
public static final int size

ISO/IEC 14496-1:2001(E)

634 © ISO/IEC 2001 – All rights reserved

The defID for the size field = 1.

V.5.283 org.iso.mpeg.mpegj.scene.Field.ProximitySensor2D

V.5.283.1Syntax

public static interface Field.ProximitySensor2D

V.5.283.2Description

An interface defining constants for the field defIDs of the ProximitySensor2D node.
Member Summary
Fields

int center
int size
int enabled

V.5.283.3Fields

center
public static final int center

The defID for the center field = 0.

enabled
public static final int enabled

The defID for the enabled field = 2.

size
public static final int size

The defID for the size field = 1.

V.5.284 org.iso.mpeg.mpegj.scene.Field.QuantizationParameter

V.5.284.1Syntax

public static interface Field.QuantizationParameter

V.5.284.2Description

An interface defining constants for the field defIDs of the QuantizationParameter node.

Member Summary
Fields

int isLocal
int position3DQuant
int position3DMin
int position3DMax
int position3DNbBits
int position2DQuant
int position2DMin
int position2DMax
int position2DNbBits
int drawOrderQuant
int drawOrderMin
int drawOrderMax
int drawOrderNbBits
int colorQuant
int colorMin
int colorMax
int colorNbBits
int textureCoordinateQuant
int textureCoordinateMin
int textureCoordinateMax
int textureCoordinateNbBits
int angleQuant
int angleMin
int angleMax

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 635

int angleNbBits
int scaleQuant
int scaleMin
int scaleMax
int scaleNbBits
int keyQuant
int keyMin
int keyMax
int keyNbBits
int normalQuant
int normalNbBits
int sizeQuant
int sizeMin
int sizeMax
int sizeNbBits
int useEfficientCoding

V.5.284.3Fields

angleMax
public static final int angleMax

The defID for the angleMax field = 23.

angleMin
public static final int angleMin

The defID for the angleMin field = 22.

angleNbBits
public static final int angleNbBits

The defID for the angleNbBits field = 24.

angleQuant
public static final int angleQuant

The defID for the angleQuant field = 21.

colorMax
public static final int colorMax

The defID for the colorMax field = 15.

colorMin
public static final int colorMin

The defID for the colorMin field = 14.

colorNbBits
public static final int colorNbBits

The defID for the colorNbBits field = 16.

colorQuant
public static final int colorQuant

The defID for the colorQuant field = 13.

drawOrderMax
public static final int drawOrderMax

The defID for the drawOrderMax field = 11.

drawOrderMin
public static final int drawOrderMin

The defID for the drawOrderMin field = 10.

drawOrderNbBits
public static final int drawOrderNbBits

The defID for the drawOrderNbBits field = 12.

drawOrderQuant
public static final int drawOrderQuant

The defID for the drawOrderQuant field = 9.

isLocal

ISO/IEC 14496-1:2001(E)

636 © ISO/IEC 2001 – All rights reserved

public static final int isLocal

The defID for the isLocal field = 0.

keyMax
public static final int keyMax

The defID for the keyMax field = 31.

keyMin
public static final int keyMin

The defID for the keyMin field = 30.

keyNbBits
public static final int keyNbBits

The defID for the keyNbBits field = 32.

keyQuant
public static final int keyQuant

The defID for the keyQuant field = 29.

normalNbBits
public static final int normalNbBits

The defID for the normalNbBits field = 34.

normalQuant
public static final int normalQuant

The defID for the normalQuant field = 33.

position2DMax
public static final int position2DMax

The defID for the position2DMax field = 7.

position2DMin
public static final int position2DMin

The defID for the position2DMin field = 6.

position2DNbBits
public static final int position2DNbBits

The defID for the position2DNbBits field = 8.

position2DQuant
public static final int position2DQuant

The defID for the position2DQuant field = 5.

position3DMax
public static final int position3DMax

The defID for the position3DMax field = 3.

position3DMin
public static final int position3DMin

The defID for the position3DMin field = 2.

position3DNbBits
public static final int position3DNbBits

The defID for the position3DNbBits field = 4.

position3DQuant
public static final int position3DQuant

The defID for the position3DQuant field = 1.

scaleMax
public static final int scaleMax

The defID for the scaleMax field = 27.

scaleMin
public static final int scaleMin

The defID for the scaleMin field = 26.

scaleNbBits

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 637

public static final int scaleNbBits

The defID for the scaleNbBits field = 28.

scaleQuant
public static final int scaleQuant

The defID for the scaleQuant field = 25.

sizeMax
public static final int sizeMax

The defID for the sizeMax field = 37.

sizeMin
public static final int sizeMin

The defID for the sizeMin field = 36.

sizeNbBits
public static final int sizeNbBits

The defID for the sizeNbBits field = 38.

sizeQuant
public static final int sizeQuant

The defID for the sizeQuant field = 35.

textureCoordinateMax
public static final int textureCoordinateMax

The defID for the textureCoordinateMax field = 19.

textureCoordinateMin
public static final int textureCoordinateMin

The defID for the textureCoordinateMin field = 18.

textureCoordinateNbBits
public static final int textureCoordinateNbBits

The defID for the textureCoordinateNbBits field = 20.

textureCoordinateQuant
public static final int textureCoordinateQuant

The defID for the textureCoordinateQuant field = 17.

useEfficientCoding
public static final int useEfficientCoding

The defID for the useEfficientCoding field = 39.

V.5.285 org.iso.mpeg.mpegj.scene.Field.Rectangle

V.5.285.1Syntax

public static interface Field.Rectangle

V.5.285.2Description

An interface defining constants for the field defIDs of the Rectangle node.

Member Summary
Fields

int size

V.5.285.3Fields

size
public static final int size

The defID for the size field = 0.

ISO/IEC 14496-1:2001(E)

638 © ISO/IEC 2001 – All rights reserved

V.5.286 org.iso.mpeg.mpegj.scene.Field.ScalarInterpolator

V.5.286.1Syntax

public static interface Field.ScalarInterpolator

V.5.286.2Description

An interface defining constants for the field defIDs of the ScalarInterpolator node.

Member Summary
Fields

int key
int keyValue

V.5.286.3Fields

key
public static final int key

The defID for the key field = 1.

keyValue
public static final int keyValue

The defID for the keyValue field = 2.

V.5.287 org.iso.mpeg.mpegj.scene.Field.Script

V.5.287.1Syntax

public static interface Field.Script

V.5.287.2Description

An interface defining constants for the field defIDs of the Script node.

Member Summary
Fields

int url
int directOutput
int mustEvaluate

V.5.287.3Fields

directOutput
public static final int directOutput

The defID for the directOutput field = 1.

mustEvaluate
public static final int mustEvaluate

The defID for the mustEvaluate field = 2.

url
public static final int url

The defID for the url field = 0.

V.5.288 org.iso.mpeg.mpegj.scene.Field.Shape

V.5.288.1Syntax

public static interface Field.Shape

V.5.288.2Description

An interface defining constants for the field defIDs of the Shape node.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 639

Member Summary
Fields

int appearance
int geometry

V.5.288.3Fields

appearance
public static final int appearance

The defID for the appearance field = 0.

geometry
public static final int geometry

The defID for the geometry field = 1.

V.5.289 org.iso.mpeg.mpegj.scene.Field.Sound

V.5.289.1Syntax

public static interface Field.Sound

V.5.289.2Description

An interface defining constants for the field defIDs of the Sound node.

Member Summary
Fields

int direction
int intensity
int location
int maxBack
int maxFront
int minBack
int minFront
int priority
int source
int spatialize

V.5.289.3Fields

direction
public static final int direction

The defID for the direction field = 0.

intensity
public static final int intensity

The defID for the intensity field = 1.

location
public static final int location

The defID for the location field = 2.

maxBack
public static final int maxBack

The defID for the maxBack field = 3.

maxFront
public static final int maxFront

The defID for the maxFront field = 4.

minBack
public static final int minBack

The defID for the minBack field = 5.

minFront
public static final int minFront

ISO/IEC 14496-1:2001(E)

640 © ISO/IEC 2001 – All rights reserved

The defID for the minFront field = 6.

priority
public static final int priority

The defID for the priority field = 7.

source
public static final int source

The defID for the source field = 8.

spatialize
public static final int spatialize

The defID for the spatialize field = 9.

V.5.290 org.iso.mpeg.mpegj.scene.Field.Sound2D

V.5.290.1Syntax

public static interface Field.Sound2D

V.5.290.2Description

An interface defining constants for the field defIDs of the Sound2D node.

Member Summary
Fields

int intensity
int location
int source
int spatialize

V.5.290.3Fields

intensity
public static final int intensity

The defID for the intensity field = 0.

location
public static final int location

The defID for the location field = 1.

source
public static final int source

The defID for the source field = 2.

spatialize
public static final int spatialize

The defID for the spatialize field = 3.

V.5.291 org.iso.mpeg.mpegj.scene.Field.Sphere

V.5.291.1Syntax

public static interface Field.Sphere

V.5.291.2Description

An interface defining constants for the field defIDs of the Sphere node.

Member Summary
Fields

int radius

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 641

V.5.291.3Fields

radius
public static final int radius

The defID for the radius field = 0.

V.5.292 org.iso.mpeg.mpegj.scene.Field.SphereSensor

V.5.292.1Syntax

public static interface Field.SphereSensor

V.5.292.2Description

An interface defining constants for the field defIDs of the SphereSensor node.
Member Summary
Fields

int autoOffset
int enabled
int offset

V.5.292.3Fields

autoOffset
public static final int autoOffset

The defID for the autoOffset field = 0.

enabled
public static final int enabled

The defID for the enabled field = 1.

offset
public static final int offset

The defID for the offset field = 2.

V.5.293 org.iso.mpeg.mpegj.scene.Field.SpotLight

V.5.293.1Syntax

public static interface Field.SpotLight

V.5.293.2Description

An interface defining constants for the field defIDs of the SpotLight node.

Member Summary
Fields

int ambientIntensity
int attenuation
int beamWidth
int color
int cutOffAngle
int direction
int intensity
int location
int on
int radius

V.5.293.3Fields

ambientIntensity
public static final int ambientIntensity

The defID for the ambientIntensity field = 0.

attenuation

ISO/IEC 14496-1:2001(E)

642 © ISO/IEC 2001 – All rights reserved

public static final int attenuation

The defID for the attenuation field = 1.

beamWidth
public static final int beamWidth

The defID for the beamWidth field = 2.

color
public static final int color

The defID for the color field = 3.

cutOffAngle
public static final int cutOffAngle

The defID for the cutOffAngle field = 4.

direction
public static final int direction

The defID for the direction field = 5.

intensity
public static final int intensity

The defID for the intensity field = 6.

location
public static final int location

The defID for the location field = 7.

on
public static final int on

The defID for the on field = 8.

radius
public static final int radius

The defID for the radius field = 9.

V.5.294 org.iso.mpeg.mpegj.scene.Field.Switch

V.5.294.1Syntax

public static interface Field.Switch

V.5.294.2Description

An interface defining constants for the field defIDs of the Switch node.

Member Summary
Fields

int choice
int whichChoice

V.5.294.3Fields

choice
public static final int choice

The defID for the choice field = 0.

whichChoice
public static final int whichChoice

The defID for the whichChoice field = 1.

V.5.295 org.iso.mpeg.mpegj.scene.Field.TermCap

V.5.295.1Syntax

public static interface Field.TermCap

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 643

V.5.295.2Description

An interface defining constants for the field defIDs of the TermCap node.

Member Summary
Fields

int capability

V.5.295.3Fields

capability
public static final int capability

The defID for the capability field = 1.

V.5.296 org.iso.mpeg.mpegj.scene.Field.Text

V.5.296.1Syntax

public static interface Field.Text

V.5.296.2Description

An interface defining constants for the field defIDs of the Text node.

Member Summary
Fields

int string
int length
int fontStyle
int maxExtent

V.5.296.3Fields

fontStyle
public static final int fontStyle

The defID for the fontStyle field = 2.

length
public static final int length

The defID for the length field = 1.

maxExtent
public static final int maxExtent

The defID for the maxExtent field = 3.

string
public static final int string

The defID for the string field = 0.

V.5.297 org.iso.mpeg.mpegj.scene.Field.TextureCoordinate

V.5.297.1Syntax

public static interface Field.TextureCoordinate

V.5.297.2Description

An interface defining constants for the field defIDs of the TextureCoordinate node.

Member Summary
Fields

int point

ISO/IEC 14496-1:2001(E)

644 © ISO/IEC 2001 – All rights reserved

V.5.297.3Fields

point
public static final int point

The defID for the point field = 0.

V.5.298 org.iso.mpeg.mpegj.scene.Field.TextureTransform

V.5.298.1Syntax

public static interface Field.TextureTransform

V.5.298.2Description

An interface defining constants for the field defIDs of the TextureTransform node.
Member Summary
Fields

int center
int rotation
int scale
int translation

V.5.298.3Fields

center
public static final int center

The defID for the center field = 0.

rotation
public static final int rotation

The defID for the rotation field = 1.

scale
public static final int scale

The defID for the scale field = 2.

translation
public static final int translation

The defID for the translation field = 3.

V.5.299 org.iso.mpeg.mpegj.scene.Field.TimeSensor

V.5.299.1Syntax

public static interface Field.TimeSensor

V.5.299.2Description

An interface defining constants for the field defIDs of the TimeSensor node.

Member Summary
Fields

int cycleInterval
int enabled
int loop
int startTime
int stopTime

V.5.299.3Fields

cycleInterval
public static final int cycleInterval

The defID for the cycleInterval field = 0.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 645

enabled
public static final int enabled

The defID for the enabled field = 1.

loop
public static final int loop

The defID for the loop field = 2.

startTime
public static final int startTime

The defID for the startTime field = 3.

stopTime
public static final int stopTime

The defID for the stopTime field = 4.

V.5.300 org.iso.mpeg.mpegj.scene.Field.TouchSensor

V.5.300.1Syntax

public static interface Field.TouchSensor

V.5.300.2Description

An interface defining constants for the field defIDs of the TouchSensor node.

Member Summary
Fields

int enabled

V.5.300.3Fields

enabled
public static final int enabled

The defID for the enabled field = 0.

V.5.301 org.iso.mpeg.mpegj.scene.Field.Transform

V.5.301.1Syntax

public static interface Field.Transform

V.5.301.2Description

An interface defining constants for the field defIDs of the Transform node.

Member Summary
Fields

int center
int children
int rotation
int scale
int scaleOrientation
int translation

V.5.301.3Fields

center
public static final int center

The defID for the center field = 2.

children
public static final int children

The defID for the children field = 3.

ISO/IEC 14496-1:2001(E)

646 © ISO/IEC 2001 – All rights reserved

rotation
public static final int rotation

The defID for the rotation field = 4.

scale
public static final int scale

The defID for the scale field = 5.

scaleOrientation
public static final int scaleOrientation

The defID for the scaleOrientation field = 6.

translation
public static final int translation

The defID for the translation field = 7.

V.5.302 org.iso.mpeg.mpegj.scene.Field.Transform2D

V.5.302.1Syntax

public static interface Field.Transform2D

V.5.302.2Description

An interface defining constants for the field defIDs of the Transform2D node.

Member Summary
Fields

int children
int center
int rotationAngle
int scale
int scaleOrientation
int translation

V.5.302.3Fields

center
public static final int center

The defID for the center field = 3.

children
public static final int children

The defID for the children field = 2.

rotationAngle
public static final int rotationAngle

The defID for the rotationAngle field = 4.

scale
public static final int scale

The defID for the scale field = 5.

scaleOrientation
public static final int scaleOrientation

The defID for the scaleOrientation field = 6.

translation
public static final int translation

The defID for the translation field = 7.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 647

V.5.303 org.iso.mpeg.mpegj.scene.Field.Valuator

V.5.303.1Syntax

public static interface Field.Valuator

V.5.303.2Description

An interface defining constants for the field defIDs of the Valuator node.

Member Summary
Fields

int Factor1
int Factor2
int Factor3
int Factor4
int Offset1
int Offset2
int Offset3
int viseme_def

V.5.303.3Fields

Factor1
public static final int Factor1

The defID for the Factor1 field = 32.

Factor2
public static final int Factor2

The defID for the Factor2 field = 33.

Factor3
public static final int Factor3

The defID for the Factor3 field = 34.

Factor4
public static final int Factor4

The defID for the Factor4 field = 35.

Offset1
public static final int Offset1

The defID for the Offset1 field = 36.

Offset2
public static final int Offset2

The defID for the Offset2 field = 37.

Offset3
public static final int Offset3

The defID for the Offset3 field = 38.

viseme_def
public static final int viseme_def

The defID for the viseme_def field = 3.

V.5.304 org.iso.mpeg.mpegj.scene.Field.WorldInfo

V.5.304.1Syntax

public static interface Field.WorldInfo

V.5.304.2Description

An interface defining constants for the field defIDs of the WorldInfo node.

Member Summary

ISO/IEC 14496-1:2001(E)

648 © ISO/IEC 2001 – All rights reserved

Fields
int info
int title

V.5.304.3Fields

info
public static final int info

The defID for the info field = 0.

title
public static final int title

The defID for the title field = 1.

V.5.305 org.iso.mpeg.mpegj.scene.FieldValue

V.5.305.1Syntax

public interface FieldValue

All Known Subinterfaces:
org.iso.mpeg.mpegj.scene.MFColorFieldValue, org.iso.mpeg.mpegj.scene.MFFieldValue,
org.iso.mpeg.mpegj.scene.MFFloatFieldValue,
org.iso.mpeg.mpegj.scene.MFInt32FieldValue, org.iso.mpeg.mpegj.scene.MFNodeFieldValue,
org.iso.mpeg.mpegj.scene.MFRotationFieldValue,
org.iso.mpeg.mpegj.scene.MFStringFieldValue,
org.iso.mpeg.mpegj.scene.MFTimeFieldValue, org.iso.mpeg.mpegj.scene.MFVec2fFieldValue,
org.iso.mpeg.mpegj.scene.MFVec3fFieldValue, org.iso.mpeg.mpegj.scene.SFBoolFieldValue,
org.iso.mpeg.mpegj.scene.SFColorFieldValue,
org.iso.mpeg.mpegj.scene.SFFloatFieldValue,
org.iso.mpeg.mpegj.scene.SFInt32FieldValue, org.iso.mpeg.mpegj.scene.SFNodeFieldValue,
org.iso.mpeg.mpegj.scene.SFRotationFieldValue,
org.iso.mpeg.mpegj.scene.SFStringFieldValue,
org.iso.mpeg.mpegj.scene.SFTimeFieldValue, org.iso.mpeg.mpegj.scene.SFVec2fFieldValue,
org.iso.mpeg.mpegj.scene.SFVec3fFieldValue

V.5.305.2Description

A tagging interface used to identify objects that can return field values.

V.5.306 org.iso.mpeg.mpegj.scene.InvalidNodeException

V.5.306.1Syntax

public class InvalidNodeException extends org.iso.mpeg.mpegj.MPEGJException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--org.iso.mpeg.mpegj.MPEGJException

|
+--org.iso.mpeg.mpegj.scene.InvalidNodeException

All Implemented Interfaces:
java.io.Serializable

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 649

V.5.306.2Description

An exception used to indicate that an operation was attempted on a node that is no longer valid.

Member Summary
Constructors

InvalidNodeException()
InvalidNodeException(String)

V.5.306.3Constructors

InvalidNodeException()
public InvalidNodeException()

Constructs an InvalidNodeException with no specified detail message.

InvalidNodeException(String)
public InvalidNodeException(java.lang.String)

Constructs an InvalidNodeException with a detailed message.

Parameters:
message - the detail message.

V.5.307 org.iso.mpeg.mpegj.scene.InvalidSceneException

V.5.307.1Syntax

public class InvalidSceneException extends org.iso.mpeg.mpegj.MPEGJException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--org.iso.mpeg.mpegj.MPEGJException

|
+--org.iso.mpeg.mpegj.scene.InvalidSceneException

All Implemented Interfaces:
java.io.Serializable

V.5.307.2Description

An exception used by this package to indicate that an operation was attempted on a Scene that is no longer valid.

V.5.308 org.iso.mpeg.mpegj.scene.MFColorFieldValue

V.5.308.1Syntax

public interface MFColorFieldValue extends org.iso.mpeg.mpegj.scene.MFFieldValue

All Superinterfaces:
org.iso.mpeg.mpegj.scene.FieldValue, org.iso.mpeg.mpegj.scene.MFFieldValue

V.5.308.2Description

An interface used for obtaining MFColor values.

Member Summary
Methods

SFColorFieldValue[] getMFColorValue()

ISO/IEC 14496-1:2001(E)

650 © ISO/IEC 2001 – All rights reserved

V.5.308.3Methods

getMFColorValue()
public org.iso.mpeg.mpegj.scene.SFColorFieldValue getMFColorValue()

Obtain the MFColor value.

Returns:
an array of SFColorFieldValue objects.

V.5.309 org.iso.mpeg.mpegj.scene.MFFieldValue

V.5.309.1Syntax

public interface MFFieldValue extends org.iso.mpeg.mpegj.scene.FieldValue

All Known Subinterfaces:
org.iso.mpeg.mpegj.scene.MFColorFieldValue,
org.iso.mpeg.mpegj.scene.MFFloatFieldValue,
org.iso.mpeg.mpegj.scene.MFInt32FieldValue, org.iso.mpeg.mpegj.scene.MFNodeFieldValue,
org.iso.mpeg.mpegj.scene.MFRotationFieldValue,
org.iso.mpeg.mpegj.scene.MFStringFieldValue,
org.iso.mpeg.mpegj.scene.MFTimeFieldValue, org.iso.mpeg.mpegj.scene.MFVec2fFieldValue,
org.iso.mpeg.mpegj.scene.MFVec3fFieldValue

All Superinterfaces:
org.iso.mpeg.mpegj.scene.FieldValue

V.5.309.2Description

A tagging interface used to classify FieldValue objects that return compound values.

V.5.310 org.iso.mpeg.mpegj.scene.MFFloatFieldValue

V.5.310.1Syntax

public interface MFFloatFieldValue extends org.iso.mpeg.mpegj.scene.MFFieldValue

All Superinterfaces:
org.iso.mpeg.mpegj.scene.FieldValue, org.iso.mpeg.mpegj.scene.MFFieldValue

V.5.310.2Description

An interface used for obtaining MFFloat values.

Member Summary
Methods

SFFloatFieldValue[] getMFFloatValue()

V.5.310.3Methods

getMFFloatValue()
public org.iso.mpeg.mpegj.scene.SFFloatFieldValue getMFFloatValue()

Obtain the MFFloat value.

Returns:
an array of MFFloatFieldValue objects.

V.5.311 org.iso.mpeg.mpegj.scene.MFInt32FieldValue

V.5.311.1Syntax

public interface MFInt32FieldValue extends org.iso.mpeg.mpegj.scene.MFFieldValue

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 651

All Superinterfaces:
org.iso.mpeg.mpegj.scene.FieldValue, org.iso.mpeg.mpegj.scene.MFFieldValue

V.5.311.2Description

An interface used for obtaining MFInt32 values.

Member Summary
Methods

SFInt32FieldValue[] getMFInt32Value()

V.5.311.3Methods

getMFInt32Value()
public org.iso.mpeg.mpegj.scene.SFInt32FieldValue getMFInt32Value()

Obtain the SFInt32 value.

Returns:
an array of SFInt32Value objects.

V.5.312 org.iso.mpeg.mpegj.scene.MFNodeFieldValue

V.5.312.1Syntax

public interface MFNodeFieldValue extends org.iso.mpeg.mpegj.scene.MFFieldValue

All Superinterfaces:
org.iso.mpeg.mpegj.scene.FieldValue, org.iso.mpeg.mpegj.scene.MFFieldValue

V.5.312.2Description

An interface used for obtaining MFNode values.

Member Summary
Methods

SFNodeFieldValue[] getMFNodeValue()

V.5.312.3Methods

getMFNodeValue()
public org.iso.mpeg.mpegj.scene.SFNodeFieldValue getMFNodeValue()

Obtain the MFNode value.

Returns:
an array of SFNodeFieldValue objects.

V.5.313 org.iso.mpeg.mpegj.scene.MFRotationFieldValue

V.5.313.1Syntax

public interface MFRotationFieldValue extends org.iso.mpeg.mpegj.scene.MFFieldValue

All Superinterfaces:
org.iso.mpeg.mpegj.scene.FieldValue, org.iso.mpeg.mpegj.scene.MFFieldValue

V.5.313.2Description

An interface used for obtaining MFRotation values.

Member Summary
Methods
SFRotationFieldValue[] getMFRotationValue()

ISO/IEC 14496-1:2001(E)

652 © ISO/IEC 2001 – All rights reserved

V.5.313.3Methods

getMFRotationValue()
public org.iso.mpeg.mpegj.scene.SFRotationFieldValue getMFRotationValue()

Obtain the MFRotation value.

Returns:
an array of MFRotationFieldValue objects.

V.5.314 org.iso.mpeg.mpegj.scene.MFStringFieldValue

V.5.314.1Syntax

public interface MFStringFieldValue extends org.iso.mpeg.mpegj.scene.MFFieldValue

All Superinterfaces:
org.iso.mpeg.mpegj.scene.FieldValue, org.iso.mpeg.mpegj.scene.MFFieldValue

V.5.314.2Description

An interface used for obtaining MFString values.

Member Summary
Methods
SFStringFieldValue[] getMFStringValue()

V.5.314.3Methods

getMFStringValue()
public org.iso.mpeg.mpegj.scene.SFStringFieldValue getMFStringValue()

Obtain the MFString value.

Returns:
an array of SFStringFieldValue objects.

V.5.315 org.iso.mpeg.mpegj.scene.MFTimeFieldValue

V.5.315.1Syntax

public interface MFTimeFieldValue extends org.iso.mpeg.mpegj.scene.MFFieldValue

All Superinterfaces:
org.iso.mpeg.mpegj.scene.FieldValue, org.iso.mpeg.mpegj.scene.MFFieldValue

V.5.315.2Description

An interface used for obtaining MFTime values.

Member Summary
Methods

SFTimeFieldValue[] getMFTimeValue()

V.5.315.3Methods

getMFTimeValue()
public org.iso.mpeg.mpegj.scene.SFTimeFieldValue getMFTimeValue()

Obtain the MFTime value.

Returns:
an array of SFTimeFieldValue objects.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 653

V.5.316 org.iso.mpeg.mpegj.scene.MFVec2fFieldValue

V.5.316.1Syntax

public interface MFVec2fFieldValue extends org.iso.mpeg.mpegj.scene.MFFieldValue

All Superinterfaces:
org.iso.mpeg.mpegj.scene.FieldValue, org.iso.mpeg.mpegj.scene.MFFieldValue

V.5.316.2Description

An interface used for obtaining MFVec2f values.

Member Summary
Methods

SFVec2fFieldValue[] getMFVec2fValue()

V.5.316.3Methods

getMFVec2fValue()
public org.iso.mpeg.mpegj.scene.SFVec2fFieldValue getMFVec2fValue()

Obtain the MFVec2f value.

Returns:
an array of SFVec2fFieldValue objects.

V.5.317 org.iso.mpeg.mpegj.scene.MFVec3fFieldValue

V.5.317.1Syntax

public interface MFVec3fFieldValue extends org.iso.mpeg.mpegj.scene.MFFieldValue

All Superinterfaces:
org.iso.mpeg.mpegj.scene.FieldValue, org.iso.mpeg.mpegj.scene.MFFieldValue

V.5.317.2Description

An interface used for obtaining MFVec3f values.

Member Summary
Methods

SFVec3fFieldValue[] getMFVec3fValue()

V.5.317.3Methods

getMFVec3fValue()
public org.iso.mpeg.mpegj.scene.SFVec3fFieldValue getMFVec3fValue()

Obtain the MFVec3f value.

Returns:
an array of SFVec3fFieldValue objects.

V.5.318 org.iso.mpeg.mpegj.scene.NewNode

V.5.318.1Syntax

public interface NewNode extends org.iso.mpeg.mpegj.scene.NodeValue

All Superinterfaces:
org.iso.mpeg.mpegj.scene.NodeValue

ISO/IEC 14496-1:2001(E)

654 © ISO/IEC 2001 – All rights reserved

V.5.318.2Description

An interface used to specify the creation of a new node.

Member Summary
Methods

int getNodeType()
int getNodeID()

FieldValue getField(int)

V.5.318.3Methods

getField(int)
public org.iso.mpeg.mpegj.scene.FieldValue getField(int)

Obtain the value of a field in the new node identified by the given defID, or null if the field has the default value. For
example, the defID argument may be Field.Transform.translation, in which case the object returned shall implement
the SFVec3fFieldValue interface.

Parameters:
defID - the field defID.

Returns:
the field value, or null for the default value.

Throws:
org.iso.mpeg.mpegj.scene.BadParameterException - if the defID is not a valid field defID.

See Also:
org.iso.mpeg.mpegj.scene.Field

getNodeID()
public int getNodeID()

Obtain the DEF identifier of the new node, or zero if the node does not have a DEF identifier.

Returns:
the DEF identifier, or zero if none.

getNodeType()
public int getNodeType()

Obtain the node type of the new node. For example, this method may return NodeType.Transform.

Returns:
the integer node type.

See Also:
org.iso.mpeg.mpegj.scene.NodeType

V.5.319 org.iso.mpeg.mpegj.scene.Node

V.5.319.1Syntax

public interface Node

V.5.319.2Description

An interface that acts as a proxy for a BIFS node in the scene graph. Only nodes in the scene that have been
instanced with DEF may have a Node proxy.

Member Summary
Methods

void sendEventIn(int, FieldValue)
FieldValue getEventOut(int)

void addEventOutListener(int, EventOutListener)
void removeEventOutListener(int, EventOutListener)
int getNodeType()

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 655

V.5.319.3Methods

addEventOutListener(int, EventOutListener)
public void addEventOutListener(int, org.iso.mpeg.mpegj.scene.EventOutListener)

Install a listener for an eventOut or exposedField in this node of the scene graph.

Parameters:
outID - The outID of the field to be monitored.

listener - The listener to notify of changes.

Throws:
org.iso.mpeg.mpegj.scene.BadParameterException - Thrown if the selected field ID is not valid for this
node.

org.iso.mpeg.mpegj.scene.InvalidNodeException - Thrown if the node is no longer valid (due to
removal or replacement).

See Also:
org.iso.mpeg.mpegj.scene.EventOut, org.iso.mpeg.mpegj.scene.EventOutListener

getEventOut(int)
public org.iso.mpeg.mpegj.scene.FieldValue getEventOut(int)

Reads the current value of an eventOut or exposedField in this node of the scene graph.

Parameters:
outID - The outID of the field to be read.

Returns:
a FieldValue containing the value read from the desired field.

Throws:
org.iso.mpeg.mpegj.scene.BadParameterException - Thrown if the selected field ID is not valid for this
node.

org.iso.mpeg.mpegj.scene.InvalidNodeException - Thrown if the node is no longer valid (due to
removal or replacement).

See Also:
org.iso.mpeg.mpegj.scene.EventOut

getNodeType()
public int getNodeType()

Obtain the node type of the node.

Returns:
an int indicating the node type.

Throws:
org.iso.mpeg.mpegj.scene.InvalidNodeException - Thrown if the node is no longer valid.

See Also:
org.iso.mpeg.mpegj.scene.NodeType

removeEventOutListener(int, EventOutListener)
public void removeEventOutListener(int, org.iso.mpeg.mpegj.scene.EventOutListener)

Remove a listener previously added for an eventOut or exposedField in this node of the scene graph.

Parameters:
outID - The outID of the field no longer to be monitored.

listener - The listener that is to be removed.

Throws:
org.iso.mpeg.mpegj.scene.BadParameterException - Thrown if the selected field ID is not valid for this
node.

org.iso.mpeg.mpegj.scene.InvalidNodeException - Thrown if the node is no longer valid (due to
removal or replacement).

See Also:
org.iso.mpeg.mpegj.scene.EventOut, org.iso.mpeg.mpegj.scene.EventOutListener

sendEventIn(int, FieldValue)
public void sendEventIn(int, org.iso.mpeg.mpegj.scene.FieldValue)

ISO/IEC 14496-1:2001(E)

656 © ISO/IEC 2001 – All rights reserved

Updates the value of an eventIn or exposedField in this node of the scene graph. This is a synchronous call that
will not return until the field is updated in the scene.

Parameters:
inID - The inID of the field to be updated.

newValue - The desired new value for the field.

Throws:
org.iso.mpeg.mpegj.scene.BadParameterException - Thrown if the selected field ID is not valid for this
node, or if the value is not an appropriate type for the field.

org.iso.mpeg.mpegj.scene.InvalidNodeException - Thrown if the node is no longer valid (due to
removal or replacement).

See Also:
org.iso.mpeg.mpegj.scene.EventIn

V.5.320 org.iso.mpeg.mpegj.scene.NodeType

V.5.320.1Syntax

public interface NodeType

V.5.320.2Description

An interface defining constants for node types.

Member Summary
Fields

int Anchor
int AnimationStream
int Appearance
int AudioBuffer
int AudioClip
int AudioDelay
int AudioFX
int AudioMix
int AudioSource
int AudioSwitch
int Background
int Background2D
int Billboard
int Bitmap
int Box
int Circle
int Collision
int Color
int ColorInterpolator
int CompositeTexture2D
int CompositeTexture3D
int Conditional
int Cone
int Coordinate
int Coordinate2D
int CoordinateInterpolator
int CoordinateInterpolator2D
int Curve2D
int Cylinder
int CylinderSensor
int DirectionalLight
int DiscSensor
int ElevationGrid
int Expression
int Extrusion
int Face
int FaceDefMesh
int FaceDefTables
int FaceDefTransform
int FAP
int FDP

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 657

int FIT
int Fog
int FontStyle
int Form
int Group
int ImageTexture
int IndexedFaceSet
int IndexedFaceSet2D
int IndexedLineSet
int IndexedLineSet2D
int Inline
int LOD
int Layer2D
int Layer3D
int Layout
int LineProperties
int ListeningPoint
int Material
int Material2D
int MovieTexture
int NavigationInfo
int Normal
int NormalInterpolator
int OrderedGroup
int OrientationInterpolator
int PixelTexture
int PlaneSensor
int PlaneSensor2D
int PointLight
int PointSet
int PointSet2D
int PositionInterpolator
int PositionInterpolator2D
int ProximitySensor2D
int ProximitySensor
int QuantizationParameter
int Rectangle
int ScalarInterpolator
int Script
int Shape
int Sound
int Sound2D
int Sphere
int SphereSensor
int SpotLight
int Switch
int TermCap
int Text
int TextureCoordinate
int TextureTransform
int TimeSensor
int TouchSensor
int Transform
int Transform2D
int Valuator
int Viewpoint
int VisibilitySensor
int Viseme
int WorldInfo

V.5.320.3Fields

Anchor
public static final int Anchor

Anchor node = 1.

AnimationStream
public static final int AnimationStream

AnimationStream node = 2.

ISO/IEC 14496-1:2001(E)

658 © ISO/IEC 2001 – All rights reserved

Appearance
public static final int Appearance

Appearance node = 3.

AudioBuffer
public static final int AudioBuffer

AudioBuffer node = 4.

AudioClip
public static final int AudioClip

AudioClip node = 5.

AudioDelay
public static final int AudioDelay

AudioDelay node = 6.

AudioFX
public static final int AudioFX

AudioFX node = 7.

AudioMix
public static final int AudioMix

AudioMix node = 8 .

AudioSource
public static final int AudioSource

AudioSource node = 9 .

AudioSwitch
public static final int AudioSwitch

AudioSwitch node = 10.

Background
public static final int Background

Background node = 11.

Background2D
public static final int Background2D

Background2D node = 12.

Billboard
public static final int Billboard

Billboard node = 13.

Bitmap
public static final int Bitmap

Bitmap node = 14.

Box
public static final int Box

Box node = 15.

Circle
public static final int Circle

Circle node = 16.

Collision
public static final int Collision

Collision node = 17.

Color
public static final int Color

Color node = 18.

ColorInterpolator
public static final int ColorInterpolator

ColorInterpolator node = 19.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 659

CompositeTexture2D
public static final int CompositeTexture2D

CompositeTexture2D node = 20.

CompositeTexture3D
public static final int CompositeTexture3D

CompositeTexture3D node = 21.

Conditional
public static final int Conditional

Conditional node = 22.

Cone
public static final int Cone

Cone node = 23.

Coordinate
public static final int Coordinate

Coordinate node = 24.

Coordinate2D
public static final int Coordinate2D

Coordinate2D node = 25.

CoordinateInterpolator
public static final int CoordinateInterpolator

CoordinateInterpolator node = 26.

CoordinateInterpolator2D
public static final int CoordinateInterpolator2D

CoordinateInterpolator2D node = 27.

Curve2D
public static final int Curve2D

Curve2D node = 28.

Cylinder
public static final int Cylinder

Cylinder node = 29.

CylinderSensor
public static final int CylinderSensor

CylinderSensor node = 30.

DirectionalLight
public static final int DirectionalLight

DirectionalLight node = 31.

DiscSensor
public static final int DiscSensor

DiscSensor node = 32.

ElevationGrid
public static final int ElevationGrid

ElevationGrid node = 33.

Expression
public static final int Expression

Expression node = 34.

Extrusion
public static final int Extrusion

Extrusion node = 35.

Face
public static final int Face

Face node = 36.

ISO/IEC 14496-1:2001(E)

660 © ISO/IEC 2001 – All rights reserved

FaceDefMesh
public static final int FaceDefMesh

FaceDefMesh node = 37.

FaceDefTables
public static final int FaceDefTables

FaceDefTables node = 38.

FaceDefTransform
public static final int FaceDefTransform

FaceDefTransform node = 39.

FAP
public static final int FAP

FAP node = 40.

FDP
public static final int FDP

FDP node = 41.

FIT
public static final int FIT

FIT node = 42.

Fog
public static final int Fog

Fog node = 43.

FontStyle
public static final int FontStyle

FontStyle node = 44.

Form
public static final int Form

Form node = 45.

Group
public static final int Group

Group node = 46.

ImageTexture
public static final int ImageTexture

ImageTexture node = 47.

IndexedFaceSet
public static final int IndexedFaceSet

IndexedFaceSet node = 48.

IndexedFaceSet2D
public static final int IndexedFaceSet2D

IndexedFaceSet2D node = 49.

IndexedLineSet
public static final int IndexedLineSet

IndexedLineSet node = 50.

IndexedLineSet2D
public static final int IndexedLineSet2D

IndexedLineSet2D node = 51.

Inline
public static final int Inline

Inline node = 52.

Layer2D
public static final int Layer2D

Layer2D node = 54.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 661

Layer3D
public static final int Layer3D

Layer3D node = 55.

Layout
public static final int Layout

Layout node = 56.

LineProperties
public static final int LineProperties

LineProperties node = 57.

ListeningPoint
public static final int ListeningPoint

ListeningPoint node = 58.

LOD
public static final int LOD

LOD node = 53.

Material
public static final int Material

Material node = 59.

Material2D
public static final int Material2D

Material2D node = 60.

MovieTexture
public static final int MovieTexture

MovieTexture node = 61.

NavigationInfo
public static final int NavigationInfo

NavigationInfo node = 62.

Normal
public static final int Normal

Normal node = 63.

NormalInterpolator
public static final int NormalInterpolator

NormalInterpolator node = 64.

OrderedGroup
public static final int OrderedGroup

OrderedGroup node = 65.

OrientationInterpolator
public static final int OrientationInterpolator

OrientationInterpolator node = 66.

PixelTexture
public static final int PixelTexture

PixelTexture node = 67.

PlaneSensor
public static final int PlaneSensor

PlaneSensor node = 68.

PlaneSensor2D
public static final int PlaneSensor2D

PlaneSensor2D node = 69.

PointLight
public static final int PointLight

PointLight node = 70.

ISO/IEC 14496-1:2001(E)

662 © ISO/IEC 2001 – All rights reserved

PointSet
public static final int PointSet

PointSet node = 71.

PointSet2D
public static final int PointSet2D

PointSet2D node = 72.

PositionInterpolator
public static final int PositionInterpolator

PositionInterpolator node = 73.

PositionInterpolator2D
public static final int PositionInterpolator2D

PositionInterpolator2D node = 74.

ProximitySensor
public static final int ProximitySensor

ProximitySensor node = 76.

ProximitySensor2D
public static final int ProximitySensor2D

ProximitySensor2D node = 75.

QuantizationParameter
public static final int QuantizationParameter

QuantizationParameter node = 77.

Rectangle
public static final int Rectangle

Rectangle node = 78.

ScalarInterpolator
public static final int ScalarInterpolator

ScalarInterpolator node = 79.

Script
public static final int Script

Script node = 80.

Shape
public static final int Shape

Shape node = 81.

Sound
public static final int Sound

Sound node = 82.

Sound2D
public static final int Sound2D

Sound2D node = 83.

Sphere
public static final int Sphere

Sphere node = 84.

SphereSensor
public static final int SphereSensor

SphereSensor node = 85.

SpotLight
public static final int SpotLight

SpotLight node = 86.

Switch
public static final int Switch

Switch node = 87.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 663

TermCap
public static final int TermCap

TermCap node = 88.

Text
public static final int Text

Text node = 89.

TextureCoordinate
public static final int TextureCoordinate

TextureCoordinate node = 90.

TextureTransform
public static final int TextureTransform

TextureTransform node = 91.

TimeSensor
public static final int TimeSensor

TimeSensor node = 92.

TouchSensor
public static final int TouchSensor

TouchSensor node = 93.

Transform
public static final int Transform

Transform node = 94.

Transform2D
public static final int Transform2D

Transform2D node = 95.

Valuator
public static final int Valuator

Valuator node = 96.

Viewpoint
public static final int Viewpoint

Viewpoint node = 97.

Viseme
public static final int Viseme

Viseme node = 99.

VisibilitySensor
public static final int VisibilitySensor

VisibilitySensor node = 98.

WorldInfo
public static final int WorldInfo

WorldInfo node = 100.

V.5.321 org.iso.mpeg.mpegj.scene.NodeValue

V.5.321.1Syntax

public interface NodeValue

All Known Subinterfaces:
org.iso.mpeg.mpegj.scene.NewNode

V.5.321.2Description

An interface for node values that either act as a proxy for a node in the BIFS scene, or specify the creation of a new
node.

ISO/IEC 14496-1:2001(E)

664 © ISO/IEC 2001 – All rights reserved

V.5.322 org.iso.mpeg.mpegj.scene.Scene

V.5.322.1Syntax

public interface Scene

V.5.322.2Description

An interface that acts as a proxy for a BIFS scene.

Member Summary
Methods

Node getNode(int)

V.5.322.3Methods

getNode(int)
public org.iso.mpeg.mpegj.scene.Node getNode(int)

Returns an instance of a Node proxy for an instanced node in the scene.

Parameters:
defID - The id of the desired node. This node must have been instanced using DEF.

Returns:
a Node proxy for the desired node in the scene.

Throws:
org.iso.mpeg.mpegj.scene.BadParameterException - Thrown if no node exists with the specified id.

org.iso.mpeg.mpegj.scene.InvalidSceneException - Thrown if the Scene is no longer valid (due to
removal or replacement).

V.5.323 org.iso.mpeg.mpegj.scene.SceneListener

V.5.323.1Syntax

public interface SceneListener

V.5.323.2Description

An interface that allows monitoring of changes to a BIFS scene graph.

Member Summary
Inner Classes

static interface SceneListener.Message
Methods

void notify(int, Scene)

V.5.323.3Methods

notify(int, Scene)
public void notify(int, org.iso.mpeg.mpegj.scene.Scene)

Called by the scene manager when the BIFS scene has been changed.

Parameters:
whatHappened - contains the message number that indicates the change.

newScene - contains the new Scene object when appropriate.

V.5.324 org.iso.mpeg.mpegj.scene.SceneListener.Message

V.5.324.1Syntax

public static interface SceneListener.Message

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 665

V.5.324.2Description

The message numbers used in the notify method.

Member Summary
Fields

int SCENE_READY
int SCENE_REPLACED
int SCENE_REMOVED

V.5.324.3Fields

SCENE_READY
public static final int SCENE_READY

When the listener is first added this message is sent with the current valid Scene instance. SCENE_READY = 1;

SCENE_REMOVED
public static final int SCENE_REMOVED

Indicates that the scene has been removed. SCENE_REMOVED = 3;

SCENE_REPLACED
public static final int SCENE_REPLACED

Indicates that the scene has been replaced. SCENE_REPLACED = 2;

V.5.325 org.iso.mpeg.mpegj.scene.SceneManager

V.5.325.1Syntax

public interface SceneManager

V.5.325.2Description

An interface that allows access to the MPEG-4 terminal's native scene. An instance is obtained using
getSceneManager() in the MPEGJTerminal class.

Note that scene graph access requires first obtaining a Scene instance. The only normative way to get a Scene
instance is through a notification on a SceneListener instance.

See Also:
org.iso.mpeg.mpegj.MpegjTerminal, org.iso.mpeg.mpegj.scene.SceneListener,
org.iso.mpeg.mpegj.scene.Scene

Member Summary
Methods

void addSceneListener(SceneListener)
void removeSceneListener(SceneListener)

V.5.325.3Methods

addSceneListener(SceneListener)
public void addSceneListener(org.iso.mpeg.mpegj.scene.SceneListener)

Add a SceneListener to this scene manager. The listener will be informed of important changes to the scene, and
will be given the appropriate Scene instance that will allow modification to nodes and fields of the scene. The base
specification does not limit the number of SceneListeners that may be registered.

Parameters:
listener - the SceneListener instance to add.

removeSceneListener(SceneListener)
public void removeSceneListener(org.iso.mpeg.mpegj.scene.SceneListener)

Remove a SceneListener from the scene manager.

Parameters:
listener - the SceneListener instance to remove.

ISO/IEC 14496-1:2001(E)

666 © ISO/IEC 2001 – All rights reserved

Throws:
org.iso.mpeg.mpegj.scene.BadParameterException - Thrown if the specified listener was not found on
the scene manager's list of listeners.

V.5.326 org.iso.mpeg.mpegj.scene.SFBoolFieldValue

V.5.326.1Syntax

public interface SFBoolFieldValue extends org.iso.mpeg.mpegj.scene.FieldValue

All Superinterfaces:
org.iso.mpeg.mpegj.scene.FieldValue

V.5.326.2Description

An interface used for obtaining SFBool values.
Member Summary
Methods

boolean getSFBoolValue()

V.5.326.3Methods

getSFBoolValue()
public boolean getSFBoolValue()

Obtain the SFBool value.

Returns:
a boolean that contains the SFBool value.

V.5.327 org.iso.mpeg.mpegj.scene.SFColorFieldValue

V.5.327.1Syntax

public interface SFColorFieldValue extends org.iso.mpeg.mpegj.scene.FieldValue

All Superinterfaces:
org.iso.mpeg.mpegj.scene.FieldValue

V.5.327.2Description

An interface used for obtaining SFColor values.

Member Summary
Methods

float[] getSFColorValue()

V.5.327.3Methods

getSFColorValue()
public float[] getSFColorValue()

Obtain the SFColor value.

Returns:
an array of three floats ordered as red, green, blue.

V.5.328 org.iso.mpeg.mpegj.scene.SFFloatFieldValue

V.5.328.1Syntax

public interface SFFloatFieldValue extends org.iso.mpeg.mpegj.scene.FieldValue

All Superinterfaces:
org.iso.mpeg.mpegj.scene.FieldValue

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 667

V.5.328.2Description

An interface used for obtaining SFFloat values.

Member Summary
Methods

float getSFFloatValue()

V.5.328.3Methods

getSFFloatValue()
public float getSFFloatValue()

Obtain the SFFloat value.

Returns:
a float value of the SFFloat field.

V.5.329 org.iso.mpeg.mpegj.scene.SFInt32FieldValue

V.5.329.1Syntax

public interface SFInt32FieldValue extends org.iso.mpeg.mpegj.scene.FieldValue

All Superinterfaces:
org.iso.mpeg.mpegj.scene.FieldValue

V.5.329.2Description

An interface used for obtaining SFInt32 values.

Member Summary
Methods

int getSFInt32Value()

V.5.329.3Methods

getSFInt32Value()
public int getSFInt32Value()

Obtain the SFInt32 value.

Returns:
a int value of the SFInt32 field.

V.5.330 org.iso.mpeg.mpegj.scene.SFNodeFieldValue

V.5.330.1Syntax

public interface SFNodeFieldValue extends org.iso.mpeg.mpegj.scene.FieldValue

All Superinterfaces:
org.iso.mpeg.mpegj.scene.FieldValue

V.5.330.2Description

An interface used for obtaining SFNode values.

Member Summary
Methods

NodeValue getSFNodeValue()

V.5.330.3Methods

getSFNodeValue()
public org.iso.mpeg.mpegj.scene.NodeValue getSFNodeValue()

ISO/IEC 14496-1:2001(E)

668 © ISO/IEC 2001 – All rights reserved

Obtain the SFNode value. If this object was obtained by the getEventOut method of the Node interface, then the
return value shall contain a proxy for a node in the BIFS scene. If this object has been passed to the sendEventIn
method of the Node interface, then the return value shall contain either a proxy or an object implementing the
NewNode interface to specify how to create a new node.

Returns:
a NodeValue object either acting as a proxy for a node in the BIFS scene or specifying how to create a new node.

V.5.331 org.iso.mpeg.mpegj.scene.SFRotationFieldValue

V.5.331.1Syntax

public interface SFRotationFieldValue extends org.iso.mpeg.mpegj.scene.FieldValue

All Superinterfaces:
org.iso.mpeg.mpegj.scene.FieldValue

V.5.331.2Description

An interface used for obtaining SFRotation values.

Member Summary
Methods

float[] getSFRotationValue()

V.5.331.3Methods

getSFRotationValue()
public float[] getSFRotationValue()

Obtain the SFRotation value.

Returns:
a float array ordered as (x,y,z,angle) with VRML-97 semantics.

V.5.332 org.iso.mpeg.mpegj.scene.SFStringFieldValue

V.5.332.1Syntax

public interface SFStringFieldValue extends org.iso.mpeg.mpegj.scene.FieldValue

All Superinterfaces:
org.iso.mpeg.mpegj.scene.FieldValue

V.5.332.2Description

An interface used for obtaining SFString values.

Member Summary
Methods

String getSFStringValue()

V.5.332.3Methods

getSFStringValue()
public java.lang.String getSFStringValue()

Obtain the SFString value.

Returns:
a String value of the SFString field.

ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001 – All rights reserved 669

V.5.333 org.iso.mpeg.mpegj.scene.SFTimeFieldValue

V.5.333.1Syntax

public interface SFTimeFieldValue extends org.iso.mpeg.mpegj.scene.FieldValue

All Superinterfaces:
org.iso.mpeg.mpegj.scene.FieldValue

V.5.333.2Description

An interface used for obtaining SFTime values.

Member Summary
Methods

double getSFTimeValue()

V.5.333.3Methods

getSFTimeValue()
public double getSFTimeValue()

Obtain the SFTime value.

Returns:
a double value of the SFTime field.

V.5.334 org.iso.mpeg.mpegj.scene.SFVec2fFieldValue

V.5.334.1Syntax

public interface SFVec2fFieldValue extends org.iso.mpeg.mpegj.scene.FieldValue

All Superinterfaces:
org.iso.mpeg.mpegj.scene.FieldValue

V.5.334.2Description

An interface used for obtaining SFVec2f values.

Member Summary
Methods

float[] getSFVec2fValue()

V.5.334.3Methods

getSFVec2fValue()
public float[] getSFVec2fValue()

Obtain the SFVec2f value.

Returns:
a float array containing the value of the SFVec2f field.

V.5.335 org.iso.mpeg.mpegj.scene.SFVec3fFieldValue

V.5.335.1Syntax

public interface SFVec3fFieldValue extends org.iso.mpeg.mpegj.scene.FieldValue

All Superinterfaces:
org.iso.mpeg.mpegj.scene.FieldValue

ISO/IEC 14496-1:2001(E)

670 © ISO/IEC 2001 – All rights reserved

V.5.335.2Description

An interface used for obtaining SFVec3f values.

Member Summary
Methods

float[] getSFVec3fValue()

V.5.335.3Methods

getSFVec3fValue()

V.5.336 public float[] getSFVec3fValue()

Obtain the SFVec3f value.

Returns:
a float array containing the value of the SFVec3f field.

ISO/IEC 14496-1:2001(E)

ICS 35.040
Price based on 691 pages

© ISO/IEC 2001 – All rights reserved

