INTERNATIONAL ISO/IEC
STANDARD 14496-1

Second edition
2001-10-01

Information technology — Coding of
audio-visual objects —

Part 1:
Systems

Technologies de l'information — Codage des objets audiovisuels —

Partie 1: Systemes

Reference number
ISO/IEC 14496-1:2001(E)

© ISO/IEC 2001

ISO/IEC 14496-1:2001(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2001

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20
Tel. +412274901 11

Fax + 4122 749 09 47

E-mail copyright@iso.ch

Web www.iso.ch

Printed in Switzerland

ii © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

Contents Page
0 Tl A goTe LU To3 A Lo o RN PP PP PUPPRPPOTPRN viii
0.1 OVEBIVIBW .ttt ettt ettt a e okttt 4 kbt o4k ke £+ 4k b e e e+ 4R b bt e o4k b bt e e 4R bt e e e s b bt e e e e st e e e e ennbeeeeenreas viii
0.2 F N o] VL= T o (U T P PO PP PPPPPPPPPPPTTN viii
0.3 Terminal Model: Systems DeCcoder MOUEN X
0.4 Multiplexing of Streams: The DeliVErY LAYcoiuiiii ittt X
0.5 Synchronization of Streams: The SYNC LAY @Iuuuuiiiiiiiiiiiiiiiiiiiiiiiieieieieieiererereeerererererererereere.. X
0.6 The COMPIESSION LAYET ..ottt ettt e e st e e et e e e et e e e e anb e e e e nbeas Xi
0.7 APPHICALION ENGINE .ttt e b e e e ekt e e ek bt e e ek bt e e e anbe e e e e aabeeeeeaneee Xii
1 ST o 0] o L 2SSOSR 1
2 NOFMALIVE TEFEIENCES ..ottt ettt e e e et e e e et e e e et bt e e e anba e e e e anbneeeeneee 1
3 AdItIONA] TEFEIEINCE ..o s et e s e e e s e e e e nre e e e enes 2
4 Terms and defiNITIONSeii ettt et e e aanne s 2
5 Abbreviations and SYMDOIS........ooo i 7
6 CONVENTIONS oottt et e et et e e e et et e e e et et e e e aaE et e e e aan et e e e sanee e e e s ree e e e snreeeesnneeeennrneeeenan 8
7 SYStEMS DECOAET MOTEL.... ..ot e st e et e e e s b e e e e s ssbe e e e e abneeeeaas 8
7.1 Tl A geTo LU To3 A Yo o RN PP PP 8
7.2 Concepts of the systems decoder MOlooi i 9
7.3 TiMIiNG Mol SPECITICALION e e e e e e e e e aeaaae e 10
7.4 Buffer Model SPECITICALION . ..ottt e e bb e e e sbne e e 12
8 Object DeSCriptioN FramMEWOTKcoiiiiieiiiiiie ittt e e e e e e seneeees 14
8.1 Tl A geTo LU To3 A To] o HE TP 14
8.2 COMMON ALA STTUCTUIESeeiiiiitiie ettt ettt ettt e e s bt e e e s bt et e e s bt et e e s bbe e e e sebneeesanneeeas 15
8.3 Intellectual Property Management and Protection (IPMP).........cccciiiiieeeee, 17
8.4 Object Content INFOrmMation (OCI)........ooi i 19
8.5 (O] oY =Toa al B IoTT o]] o] o] g == o 21
8.6 (O] oJ =T al DIt o]] o] o] g ©0T 1 gF o To g 1= o1 £ 24
8.7 Rules for Usage of the Object Description FrameWOrKcccccooiuiiiiiiiiiie e 46
8.8 Usage Of the IPMP Sy Stem INTEITACEuuiiiiieiiiiiiiiiiieieieieie et ee e e eereeeeeeerereeereesreeerersrsrsrsrernnnnes 55
9 1o oL BT of g1 o] A o] ¢ IO POUPPPUPI 58
9.1 Tl A geTe LU To3 A To] o RO TP PT PO 58
9.2 1070] 1 o7 =T o] £ PP PP PP PUPPPPRTPR 60
9.3 BIFS SYNTAX ...eiitiiiiiie ittt e e e et e e e e e o e e e s e e et e e e e et e e e e e n e 74
9.4 N [o T LI ST=T 0 0= L] A (o SOOI 133
10 Synchronization of Elementary StreamsS ... 226
10.1 el A geTo LU Tox A To] o RO PU PR PUPRR PRI 226
10.2 Yo | T TP P TP PP PUPTPPRPPR 227
© ISO/IEC 2001 — All rights reserved iii

ISO/IEC 14496-1:2001(E)

10.3 1AV 1 AN o o] F o= 1a Lo o I 1 =T o = U = 236
11 L = T PP PPPTPRPR 236
111 el 8 geTo [V Y o3 1T o] o PP OO 236
11.2 E N (o] gL E=Tod U PP PPPPRPPP 237
11.3 Yo = C R AT =11 ~] [0 o PO PP PT PRSP 239
114 DeliVery Of MPEG-J DAAeeiiiiiiiieiiieie ettt e ek e et e s aabbe e s anbb e e e e e eees 240
11.5 YL T N I 1 PSPPI 243
12 Multiplexing of EI€MENTary StrEAIMSuuuuuuuuriiiieiiiiieieiniutereiererererererererereeee————————————————————. 249
12.1 el d geTo [U T o3 (1o] o H P PP P PP TPPPRON 249
12.2 FIEXIMUX TOOI ...ttt e oottt e e e e e e s bbb e e et e e e e e e san b b e b et e e e e sanbnbneeeeeeaeannes 249
13 FIIE FOTMAL ...ttt et e et e e o a bt e e e ab b et e e e b et e s e nbe e e e e e e e e e nees 255
13.1 T el d geTo [UT o3 1T o] o H O TP U P PP PPPPPON 255
13.2 L LI] o =TT 4 Y o PSS 260
13.3 EXEENSTDIIITY ettt ettt s b e et e e e e 284
14 Syntactic DeSCription LANQUAGE ..cccoeeeie ittt 285
14.1 el d geTo [U Y o3 1T o] o H PP T PP PT P PP PPPPPON 285
14.2 LT N T YA I == Y L= 285
14.3 COMPOSITE DaAtA TY P OS i iiiiiiieeeaeaeeeaeaeaaas 288
14.4 Arithmetic and LOGIiCal EXPIreSSIONS ...ccuuiiiiiiiiiieiiiiie ettt ettt e s e e e e es 292
14.5 NON-Parsable Variablescooiiiii e 292
14.6 SYNTACTIC FIOW CONTIOL ..eiiiiiiiiiii ettt e et e e et e e e e 292
14.7 oW E L T o X< = 1o 1 P 294
14.8 SCOPING RUIES ettt e e et e e e st bt e e e et bt e e e aabe e e e e anbe e e e anees 294
15 PO T S et e e e e e e 294
151 e L8 geTo [V Y o3 1T o] o PO 294
15.2 OD Profile DEfiNITIONS .ottt et e et e e st b e e e e abn e e e e sbneeeeans 295
15.3 Scene Graph Profile DefiNitioONS ...ttt 295
15.4 Graphics Profile DefinitioNScooiiiiiiiiiie ettt e e e snr e e 299
155 MPEG-J Profile DefiMitiONSocoiiiiiiiiiiie et 301
15.6 MPEG-J Profil@S TOOISciiieiiiiiieiie ittt s e e 301
15.7 MPEG-J PrOfIlES ...ttt ettt e s ettt e s e e et e s e ab e e e nbe e e e e nnes 301
15.8 MPEG-J Profil@S@LEVEIS.......ooiiiiieiieieic ettt 302
Annex A (informative) BibliOGIraphyoooi i 303
Annex B (informative) Time BasSe RECONSIIUCTIONuuuiiiiiiiiiiiiiieiieiiteieeererererererererererrrerererererererea 304
B.1 Time BasSe RECONSIIUCTION ..coiuiiiiiiiiiiie ettt ettt e s bbbt e s bbb e e e s enbn e e e s ananeees 304
B.2 Temporal aliasing and audio reSamMPliNGc..eeiiiiiii e 305
B.3 Reconstruction of a Synchronised Audio-visual Scene: A Walkthroughcooovvviviiiiininninnnns 305
Annex C (normative) View Dependent Object SCalability ..o 307
C1 a8 o To VT o3 1T o] o PP PP PP 307
C.2 BItSTIEAIM SYNTAX 1..tiiiiiiiiiie ittt e st e e et et e e s bt et e e e bt et e e e ab e e e e enbeeeeanees 307

iv © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

C3 BitStream SEMANTICS .. .uii ittt e st e e st e e s e e e s e e e e s e e s e s 308
Annex D (informative) RegiStration ProCEAUIEuii ittt e e e e e aeee 310
D.1 Procedure for the request of a Registration ID (RID)coovvviiiiiiiiiiiiiiiieieieeeeeveveve e eneeeeees 310
D.2 Responsibilities of the Registration AULNOTIITYcooiiiiiiiii e 310
D.3 Contact information for the Registration AULNOFITYoovvviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e eeeeeeenees 310
D.4 Responsibilities of Parties Requesting @ RIDoooiiiiiiiiiiiiie e 310
D.5 Appeal Procedure for Denied APPlICAtIONSiuiiiiiiiiiie e 311
D.6 R o TRy (= Lo T o AN o o] o= 11 o T o o o PP 311
Annex E (informative) The QoS Management Model for ISO/IEC 14496 CONENTcvvveeiiiiiieiiiiiie e 313
Annex F (informative) Conversion Between Time and Date CONVENtIONSccvevvvvviivieeeeeeeieieieieieieininininnnennns 314
Annex G (normative) Adaptive Arithmetic Decoder for BIFS-ANIMoooiiiiiiiiii e 316
Annex H (normative) NOde COAING TADIESueiiiiieiee et 318
H.1 N [oTo =T =T o] 1= PO PP PR 318
H.2 Node Definition TYPE TabIES ... e 341
H.3 Node Tables for EXtENded NOUES........coiiiiiiiiiiie ettt e 348
H.4 Node Definition Type Tables for extended NOAe tYPEScuuviiiiiiiiiii i 355
Annex | (informative) MPEG-4 Audio TTS application with Facial Animation.........ccccceevvvvveivieiiiiieeeieiiiiiiieieienns 357
Annex J (informative) Graphical representation of object descriptor and sync layer syntax........cccccevvvveeene. 358
J.1 Length encoding of descriptors and COMMANASoccuuiiiiiiiiiiiiii e 358
J.2 Object Descriptor Stream and OD COMMANUSuuuuuiireeeieiiieieeeereeeeareeerrreeerrrrr——————————————. 358
J.3 IPMP STr@AIM ... 359
J.4 (O 1O] 4 =T 1o [P P PP 359
J.5 Object descriptor and itS COMPONENTSoiiiiiiiiiiiiiiie ettt aebe e e 359
J.6 O[O I B ToT Yot g1 o] (o] &= ST PP PP PP PUPPPN 362
J.7 Sync layer configuration and SYNTAXuuuueueeeiirriiiiiriiierieeeiereeeeereee———————————————————————— 365
Annex K (informative) Patent STAtEIMENTSoc.uiiiiiiiii ittt e e e b e e anens 366
K.1 Patent Statements fOr VEISION L......c.oovi it 366
K.2 Patent Statements fOr VEISION 2. ...ttt e e sanee s 367
Annex L (informative) Elementary Stream INtErfaCe........uuuiiiiiiiiiiiiiiiiiieiiieiiieieieieisieierersrerererereeer———.. 369
Annex M (Informative) Definition of bodySceneGraph NOAeSoooviiiiiiiiiiiiiiieeeeeeeeeeeeeeeee s 371
M.1 e A geTe [0 Toa A Te] o IR TP PP PPPPPPPPPPP 371
M.2 Detailed SEMANTICSoeiiiiiiiiie it e s e e s et e s s e e e s e e e e e e 371
M.3 OVEBIVIBW .ttt ettt ettt ettt oo a bttt o4 h bt a4k kbt o4 s kbt e e 4R b bt e oo R ket e e e s b bt e e e n b b e e e e e anbe e e e ennbeeeeennres 371
M.4 THE NOUES ... ettt e e ookt e e e e et e e e et e e e et e e e e n e e e e e n e e e e e e e e e e e 371
Annex N (Informative) Implementation of MaterialKey NOAe.........coooiiiiiiiiiiiie e 380
Annex O (Informative) Example implementation of spatial audio processing (perceptual approach).......... 382
0.1 Example algorithm implementationoovviiiiiiiiiiiiiiieieeeeeee e rrerreansaaennnnannnne 382
0.2 Elementary SPECIIAl COMTECTON ...uuiiiiiiiiie ittt ettt e e e e e e saneeeas 383
0.3 T LU = PPt 384
04 (D1 £=To] A o = 11 o T PP P PP PTPPPTRIN 384

© ISO/IEC 2001 — All rights reserved \

ISO/IEC 14496-1:2001(E)

0.5 Directional arly refl@CTIONSuuuiiiiiiiiiiiiiiii bbb e e areae e reeeesbsssseesssessnessnsnrnrnrnrnnes 385
0.6 Diffuse [ate FEVEIDEIALIONeiiiiiiiiie e e s e e e e 385
O.7 Setting the elAYS....cooo i 386
0.8 Yo 1= Lo 11 11 YOO PP PP PP OPPPRPUPPPRT 387
Annex P (informative) Upstream WalKtNrOUGheeeeiiiiie e ee s eeseeeenrerernrnnnenne 388
P.1 el d geTo [V T o3 (1o] o RO T SO P PP PP PPPPPON 388
P.2 (0o] o) 1To U1 E= 14T o] o H T PO PP P PP TUPPPN 388
P.3 Content access Procedure With DAL ... 389
P.4 S E= 1001 o] [T S P U PP P PP PP PUPPPON 389
Annex Q (Informative) Layout Of Media Data............uuuuuuiuiiiiiiiiiiiiiiiiiiieieeieeererereeererererererereree——. 393
Annex R (INformative) RANUOM ACCESS .. .uiiiiiiiiiie ittt et a e e e et et e e abb e e e e e nbe e e e enenes 394
Annex S (Informative) Starting the Java Virtual Machine ..o 395
Annex T (Informative) Examples of MPEG-J APl USAQEuuuuuuiuiuiuiuiuiuiuiuiniernieierernnnrnrnrernrererere—.. 396
T.1 SN AP IS it e e e e e e e et e e e e 396
T.2 ReSoUrce and DECOAEN APISuviiiiiieiie ittt s e e e 400
T.3 N L] N o PP PSP PPPPPRT P 402
T.4 SECHION FIlLEIING APIS oo 403
Annex U (Normative) MPEG-J APIS LiStING (HTML) ...uuuuuiiiiiiiiiiiiiiieieeeeieeeseserererereresereeereseserereeeseseeeseme... 405
Annex V (Normative) MPEG-J APIS LiSTING ...coiuiiiiiiiiiiaiiiie ettt et s 406
V.1 o F=Tod S Yo T I N o U ESTo 0 0 a1 o T=T o [4] 1= o 406
V.2 package 0rg.iSO.MpPeg.MPEGJ.FESOUICE . .ocuuuiiiiiiiiee ettt ettt ettt e et e s e e e e e aabe e e e e anbeeeeeaeee 413
V.3 package 0rg.iSO.MpPeg.MpPeQj.AECOURTuuu e 442
V.4 package 0rg.iSO.MPEQ.MPEGJ.NEL ...ccoiuiiiiiiieie et e s e e sbe e e e 454
V.5 package 0rg.iSO.MpPEQg.MPEGJ.SCENEoiiiiiiiie ettt ettt e et e e e e e e anbee e e e aaeee 461

vi © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in
liaison with ISO and IEC, also take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.
Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this part of ISO/IEC 14496 may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

International Standard ISO/IEC 14496-1 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information
technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

This second edition cancels and replaces the first edition (ISO/IEC 14496-1:1999), which has been technically
revised.

ISO/IEC 14496 consists of the following parts, under the general title Information technology — Coding of audio-
visual objects:

— Part 1: Systems

— Part 2: Visual

— Part 3: Audio

— Part 4: Conformance testing

— Part 5: Reference software

— Part 6: Delivery Multimedia Integration Framework (DMIF)
— Part 7: Optimized software for MPEG-4 visual tools

Annexes C, G, H, U and V form a normative part of this part of ISO/IEC 14496. Annexes A, B,D, E,Fand Ito T are
for information only.

© ISO/IEC 2001 — All rights reserved Vi

ISO/IEC 14496-1:2001(E)

0 Introduction
0.1 Overview

ISO/IEC 14496 specifies a system for the communication of interactive audio-visual scenes. This specification
includes the following elements:

1. the coded representation of natural or synthetic, two-dimensional (2D) or three-dimensional (3D) objects that
can be manifested audibly and/or visually (audio-visual objects) (specified in part 1,2 and 3 of ISO/IEC 14496);

2. the coded representation of the spatio-temporal positioning of audio-visual objects as well as their behavior in
response to interaction (scene description, specified in this part of ISO/IEC 14496);

3. the coded representation of information related to the management of data streams (synchronization,
identification, description and association of stream content, specified in this part of ISO/IEC 14496); and

4. ageneric interface to the data stream delivery layer functionality (specified in part 6 of ISO/IEC 14496).

5. an application engine for programmatic control of the player: format, delivery of downloadable Java byte code as
well as its execution lifecycle and behavior through APIs (specified in this part of ISO/IEC 14496); and

6. afile format to contain the media information of an ISO/IEC 14496 presentation in a flexible, extensible format to
facilitate interchange, management, editing, and presentation of the media.

The overal operation of a system communicating audio-visual scenes can be paraphrased as follows:

At the sending terminal, the audio-visual scene information is compressed, supplemented with synchronization
information and passed to a delivery layer that multiplexes it into one or more coded binary streams that are
transmitted or stored. At the receiving terminal, these streams are demultiplexed and decompressed. The audio-
visual objects are composed according to the scene description and synchronization information and presented to
the end user. The end user may have the option to interact with this presentation. Interaction information can be
processed locally or transmitted back to the sending terminal. ISO/IEC 14496 defines the syntax and semantics of
the bitstreams that convey such scene information, as well as the details of their decoding processes.

This part of ISO/IEC 14496 specifies the following tools:

e aterminal model for time and buffer management;

e a coded representation of interactive audio-visual scene description information (Binary Format for Scenes —
BIFS);

e a coded representation of metadata for the identification, description and logical dependencies of the
elementary streams (object descriptors and other descriptors);

e acoded representation of descriptive audio-visual content information (object content information — OCI);
e an interface to intellectual property management and protection (IPMP) systems;

e acoded representation of synchronization information (sync layer — SL); and

e a multiplexed representation of individual elementary streams in a single stream (FlexMux).

e an application engine (MPEG-Java - MPEG-J).

These various elements are described functionally in this subclause and specified in the normative clauses that
follow.

0.2 Architecture

The information representation specified in ISO/IEC 14496-1 describes the means to create an interactive audio-
visual scene in terms of coded audio-visual information and associated scene description information. The entity

viii © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

that composes and sends, or receives and presents such a coded representation of an interactive audio-visual
scene is generically referred to as an "audio-visual terminal” or just "terminal”. This terminal may correspond to a
standalone application or be part of an application system.

Display and
User
Interaction
Interactive Audiovisual d
-“Scene o
il
Composition and Rendering
{ I { |
I
8 4 « I r
o 3 9] Upstream | Compression
- 9 Information L
Object Scene - v
Desariptor Description AV Object
P Information data
4 4 A A AAAA
Elementary Streams Elementary Stream Interface
[st][stf{st] [stf[st] [s]... | Sync
A A A A A A
|_SLJ Layer
SL-Packetized Streams
~ - ~ - ~ - DMIF Application Interface
| | | [f vy
FlexMux | FlexMux | FlexMux
))
N " Bl Y YO Ddivery
I\/I(EE(SB)- 2 (5-3;) AAL2 H223 DAB Layer
TS P ATM PSTN Mux

A A

Y

Multiplexed Streams

Transmission/Storage Medium

Figure 1 - The ISO/IEC 14496 terminal architecture

The basic operations performed by such a receiver terminal are as follows. Information that allows access to
content complying with ISO/IEC 14496 is provided as initial session set up information to the terminal. Part 6 of
ISO/IEC 14496 defines the procedures for establishing such session contexts as well as the interface to the
delivery layer that generically abstracts the storage or transport medium. The initial set up information allows, in a
recursive manner, to locate one or more elementary streams that are part of the coded content representation.
Some of these elementary streams may be grouped together using the multiplexing tool described in ISO/IEC

14496-1.

© ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

Elementary streams contain the coded representation of either audio or visual data or scene description
information. Elementary streams may as well themselves convey information to identify streams, to describe logical
dependencies between streams, or to describe information related to the content of the streams. Each elementary
stream contains only one type of data.

Elementary streams are decoded using their respective stream-specific decoders. The audio-visual objects are
composed according to the scene description information and presented by the terminal’'s presentation device(s).
All these processes are synchronized according to the systems decoder model (SDM) using the synchronization
information provided at the synchronization layer.

These basic operations are depicted in Figure 1, and are described in more detail below.
0.3 Terminal Model: Systems Decoder Model

The systems decoder model provides an abstract view of the behavior of a terminal complying with
ISO/IEC 14496-1. Its purpose is to enable a sending terminal to predict how the receiving terminal will behave in
terms of buffer management and synchronization when reconstructing the audio-visual information that comprises
the presentation. The systems decoder model includes a systems timing model and a systems buffer model which
are described briefly in the following subclauses.

0.3.1 Timing Model

The timing model defines the mechanisms through which a receiving terminal establishes a notion of time that
enables it to process time-dependent events. This model also allows the receiving terminal to establish
mechanisms to maintain synchronization both across and within particular audio-visual objects as well as with user
interaction events. In order to facilitate these functions at the receiving terminal, the timing model requires that the
transmitted data streams contain implicit or explicit timing information. Two sets of timing information are defined in
ISO/IEC 14496-1: clock references and time stamps. The former convey the sending terminal’'s time base to the
receiving terminal, while the latter convey a notion of relative time for specific events such as the desired decoding
or composition time for portions of the encoded audio-visual information.

0.3.2 Buffer Model

The buffer model enables the sending terminal to monitor and control the buffer resources that are needed to
decode each elementary stream in a presentation. The required buffer resources are conveyed to the receiving
terminal by means of descriptors at the beginning of the presentation. The terminal can then decide whether or not
it is capable of handling this particular presentation. The buffer model allows the sending terminal to specify when
information may be removed from these buffers and enables it to schedule data transmission so that the
appropriate buffers at the receiving terminal do not overflow or underflow.

0.4 Multiplexing of Streams: The Delivery Layer

The term delivery layer is used as a generic abstraction of any existing transport protocol stack that may be used to
transmit and/or store content complying with ISO/IEC 14496. The functionality of this layer is not within the scope of
ISO/IEC 14496-1, and only the interface to this layer is considered. This interface is the DMIF Application Interface
(DAI) specified in ISO/IEC 14496-6. The DAI defines not only an interface for the delivery of streaming data, but
also for signaling information required for session and channel set up as well as tear down. A wide variety of
delivery mechanisms exist below this interface, with some of them indicated in Figure 1. These mechanisms serve
for transmission as well as storage of streaming data, i.e., a file is considered to be a particular instance of a
delivery layer. For applications where the desired transport facility does not fully address the needs of a service
according to the specifications in ISO/IEC 14496, a simple multiplexing tool (FlexMux) with low delay and low
overhead is defined in ISO/IEC 14496-1.

0.5 Synchronization of Streams: The Sync Layer

Elementary streams are the basic abstraction for any streaming data source. Elementary streams are conveyed as
sync layer-packetized (SL-packetized) streams at the DMIF Application Interface. This packetized representation
additionally provides timing and synchronization information, as well as fragmentation and random access
information. The sync layer (SL) extracts this timing information to enable synchronized decoding and,
subsequently, composition of the elementary stream data.

X © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
0.6 The Compression Layer

The compression layer receives data in its encoded format and performs the necessary operations to decode this
data. The decoded information is then used by the terminal’'s composition, rendering and presentation subsystems.

0.6.1 Object Description Framework

The purpose of the object description framework is to identify and describe elementary streams and to associate
them appropriately to an audio-visual scene description. Object descriptors serve to gain access to ISO/IEC 14496
content. Object content information and the interface to intellectual property management and protection systems
are also part of this framework.

An object descriptor is a collection of one or more elementary stream descriptors that provide the configuration and
other information for the streams that relate to either an audio-visual object or a scene description. Object
descriptors are themselves conveyed in elementary streams. Each object descriptor is assigned an identifier
(object descriptor ID), which is unique within a defined name scope. This identifier is used to associate audio-visual
objects in the scene description with a particular object descriptor, and thus the elementary streams related to that
particular object.

Elementary stream descriptors include information about the source of the stream data, in form of a unique numeric
identifier (the elementary stream ID) or a URL pointing to a remote source for the stream. Elementary stream
descriptors also include information about the encoding format, configuration information for the decoding process
and the sync layer packetization, as well as quality of service requirements for the transmission of the stream and
intellectual property identification. Dependencies between streams can also be signaled within the elementary
stream descriptors. This functionality may be used, for example, in scalable audio or visual object representations
to indicate the logical dependency of a stream containing enhancement information, to a stream containing the
base information. It can also be used to describe alternative representations for the same content (e.g. the same
speech content in various languages).

0.6.1.1 Intellectual Property Management and Protection

The intellectual property management and protection (IPMP) framework for ISO/IEC 14496 content consists of a
normative interface that permits an ISO/IEC 14496 terminal to host one or more IPMP Systems. The IPMP
interface consists of IPMP elementary streams and IPMP descriptors. IPMP descriptors are carried as part of an
object descriptor stream. IPMP elementary streams carry time variant IPMP information that can be associated to
multiple object descriptors.

The IPMP System itself is a non-normative component that provides intellectual property management and
protection functions for the terminal. The IPMP System uses the information carried by the IPMP elementary
streams and descriptors to make protected ISO/IEC 14496 content available to the terminal. An application may
choose not to use an IPMP System, thereby offering no management and protection features.

0.6.1.2 Object Content Information

Object content information (OCI) descriptors convey descriptive information about audio-visual objects. The main
content descriptors are: content classification descriptors, keyword descriptors, rating descriptors, language
descriptors, textual descriptors, and descriptors about the creation of the content. OCI descriptors can be included
directly in the related object descriptor or elementary stream descriptor or, if it is time variant, it may be carried in
an elementary stream by itself. An OCI stream is organized in a sequence of small, synchronized entities called
events that contain a set of OCI descriptors. OCI streams can be associated to multiple object descriptors.

0.6.2 Scene Description Streams

Scene description addresses the organization of audio-visual objects in a scene, in terms of both spatial and
temporal attributes. This information allows the composition and rendering of individual audio-visual objects after
the respective decoders have reconstructed the streaming data for them. For visual data, ISO/IEC 14496-1 does
not mandate particular composition algorithms. Hence, visual composition is implementation dependent. For audio
data, the composition process is defined in a normative manner in 9.2.2.13 and ISO/IEC 14496-3.

The scene description is represented using a parametric approach (BIFS - Binary Format for Scenes). The
description consists of an encoded hierarchy (tree) of nodes with attributes and other information (including event
sources and targets). Leaf nodes in this tree correspond to elementary audio-visual data, whereas intermediate
nodes group this material to form audio-visual objects, and perform grouping, transformation, and other such

© ISO/IEC 2001 — All rights reserved xi

ISO/IEC 14496-1:2001(E)

operations on audio-visual objects (scene description nodes). The scene description can evolve over time by using
scene description updates.

In order to facilitate active user involvement with the presented audio-visual information, ISO/IEC 14496-1 provides
support for user and object interactions. Interactivity mechanisms are integrated with the scene description
information, in the form of linked event sources and targets (routes) as well as sensors (special nodes that can
trigger events based on specific conditions). These event sources and targets are part of scene description nodes,
and thus allow close coupling of dynamic and interactive behavior with the specific scene at hand. ISO/IEC 14496-
1, however, does not specify a particular user interface or a mechanism that maps user actions (e.g., keyboard key
presses or mouse movements) to such events.

Such an interactive environment may not need an upstream channel, but ISO/IEC 14496 also provides means for
client-server interactive sessions with the ability to set up upstream elementary streams and associate them to
specific downstream elementary streams.

0.6.3 Audio-visual Streams

The coded representations of audio and visual information are described in ISO/IEC 14496-3 and ISO/IEC 14496-
2, respectively. The reconstructed audio-visual data are made available to the composition process for potential
use during the scene rendering.

0.6.4 Upchannel Streams

Downchannel elementary streams may require upchannel information to be transmitted from the receiving terminal
to the sending terminal (e.g., to allow for client-server interactivity). Figure 1 indicates the flowpath for an
elementary stream from the receiving terminal to the sending terminal. The content of upchannel streams is
specified in the same part of the specification that defines the content of the downstream data. For example,
upchannel control streams for video downchannel elementary streams are defined in ISO/IEC 14496-2.

0.7 Application Engine

The MPEG-J is a programmatic system (as opposed to a conventional parametric system) which specifies API for
interoperation of MPEG-4 media players with Java code. By combining MPEG-4 media and safe executable code,
content creators may embed complex control and data processing mechanisms with their media data to intelligently
manage the operation of the audio-visual session. The parametric MPEG-4 System forms the Presentation Engine
while the MPEG-J subsystem controlling the Presentation Engine forms the Application Engine.

The Java application is delivered as a separate elementary stream to the MPEG-4 terminal. There it will be directed
to the MPEG-J run time environment, from where the MPEG-J program will have access to the various components
and required data of the MPEG-4 player to control it.

In addition to the basic packages of the language (java.lang, java.io, java.util) a few categories of APIs have been
defined for different scopes. For Scene graph API the objective is to provide access to the scene graph: to inspect
the graph, to alter nodes and their fields, and to add and remove nodes within the graph. The Resource API is used
for regulation of performance: it provides a centralized facility for managing resources. This is used when the
program execution is contingent upon the terminal configuration and its capabilities, both static (that do not change
during execution) and dynamic. Decoder API allows the control of the decoders that are present in the terminal.
The Net API provides a way to interact with the network, being compliant to the MPEG-4 DMIF Application
Interface. Complex applications and enhanced interactivity are possible with these basic packages. The
architecture of MPEG-J will be presented in more detail in clause 11.

Xii © ISO/IEC 2001 — All rights reserved

INTERNATIONAL STANDARD ISO/IEC 14496-1:2001(E)

Information technology — Coding of audio-visual objects —

Part 1:
Systems

1 Scope

This part of ISO/IEC 14496 specifies system level functionalities for the communication of interactive audio-visual
scenes. More specifically:

1. system level description of the coded representation of natural or synthetic, two-dimensional (2D) or three-
dimensional (3D) objects that can be manifested audibly and/or visually (audio-visual objects);

2. the coded representation of the spatio-temporal positioning of audio-visual objects as well as their behavior in
response to interaction (scene description); and

3. the coded representation of information related to the management of data streams (synchronization,
identification, description and association of stream content).

4. a system level description of an application engine (format, delivery, lifecycle, and behavior of downloadable
Java byte code applications); and

5. asystem level interchange and storage format of interactive audio-visual scenes.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of
this part of ISO/IEC 14496. For dated references, subsequent amendments to, or revisions of, any of these
publications do not apply. However, parties to agreements based on this part of ISO/IEC 14496 are encouraged to
investigate the possibility of applying the most recent editions of the normative documents indicated below. For
undated references, the latest edition of the normative document referred to applies. Members of 1ISO and IEC
maintain registers of currently valid International Standards.

ISO 639-2:1998, Codes for the representation of names of languages — Part 2: Alpha-3 code

ISO 3166-1:1997, Codes for the representation of names of countries and their subdivisions — Part 1: Country
codes

ISO 9613-1:1993, Acoustics — Attenuation of sound during propagation outdoors — Part 1: Calculation of the
absorption of sound by the atmosphere

ISO/IEC 10646-1:2000, Information technology — Universal Multiple-Octet Coded Character Set (UCS) — Part 1:
Architecture and Basic Multilingual Plane

ISO/IEC 11172-2:1993, Information technology — Coding of moving pictures and associated audio for digital
storage media at up to about 1,5 Mbit/s — Part 2: Video

ISO/IEC 11172-3:1993, Information technology — Coding of moving pictures and associated audio for digital
storage media at up to about 1,5 Mbit/s — Part 3: Audio

ISO/IEC 13818-3:1998, Information technology — Generic coding of moving pictures and associated audio
information — Part 3: Audio

© ISO/IEC 2001 — All rights reserved 1

ISO/IEC 14496-1:2001(E)

ISO/IEC 13818-7:1997, Information technology — Generic coding of moving pictures and associated audio
information — Part 7: Advanced Audio Coding (AAC)

ISO/IEC 14496-2:1999, Information technology — Coding of audio-visual objects — Part 2: Visual

ISO/IEC 14772-1:1998, Information technology — Computer graphics and image processing — The Virtual Reality
Modeling Language — Part 1: Functional specification and UTF-8 encoding

ISO/IEC 14772-1:1998/Amd.1, Information technology — Computer graphics and image processing — The Virtual
Reality Modeling Language — Part 1: Functional specification and UTF-8 encoding, Amendment 1: Enhanced
interoperability

ISO/IEC 16262:—", Information technology — ECMAScript language specification

ITU-T Rec. H.262 (2000) | ISO/IEC 13818-2:2000, Information technology — Generic coding of moving pictures
and associated audio information: Video

ITU-T Rec. T.81 (1992) | ISO/IEC 10918-1:1994, Information technology — Digital compression and coding of
continuous-tone still images: Requirements and guidelines

IEEE Std 754-1985, Standard for Binary Floating-Point Arithmetic

Addison-Wesley:September 1996, The Java Language Specification, by James Gosling, Bill Joy and Guy Steele,
ISBN 0-201-63451-1

Addison-Wesley:September 1996, The Java Virtual Machine Specification, by T. Lindholm and F. Yellin, ISBN 0-
201-63452-X

Addison-Wesley:July 1998, Java Class Libraries Vol. 1 The Java Class Libraries, Second Edition Volume 1, by
Patrick Chan, Rosanna Lee and Douglas Kramer, ISBN 0-201-31002-3

Addison-Wesley:July 1998, Java Class Libraries Vol. 2 The Java Class Libraries, Second Edition Volume 2, by
Patrick Chan and Rosanna Lee, ISBN 0-201-31003-1

Addison-Wesley, May 1996, Java API, The Java Application Programming Interface, Volumel: Core Packages, by
J. Gosling, F. Yellin and the Java Team, ISBN 0-201-63453-8

DAVIC 1.4.1 specification Part 9: Information Representation
ANSI/SMPTE 291M-1996, Television — Ancillary Data Packet and Space Formatting

SMPTE 315M -1999, Television — Camera Positioning Information Conveyed by Ancillary Data Packets

3 Additional reference

ISO/IEC 13522-6:1998, Information technology — Coding of multimedia and hypermedia information — Part 6:
Support for enhanced interactive applications. This reference contains the full normative references to Java APIs
and the Java Virtual Machine as described in the normative references above.

4 Terms and definitions

For the purposes of this part of ISO/IEC 14496, the following terms and definitions apply.

Y To be published. (Revision of ISO/IEC 16262:1998)

2 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

4.1 Access Unit (AU)
An individually accessible portion of data within an elementary stream. An access unit is the smallest data entity to
which timing information can be attributed

4.2 Alpha Map
The representation of the transparency parameters associated with a texture map.

4.3 Atom
An object-oriented building block defined by a unique type identifier and length

4.4 Audio-visual Object

A representation of a natural or synthetic object that has an audio and/or visual manifestation. The representation
corresponds to a node or a group of nodes in the BIFS scene description. Each audio-visual object is associated
with zero or more elementary streams using one or more object descriptors.

4.5 Audio-visual Scene (AV Scene)
A set of audio-visual objects together with scene description information that defines their spatial and temporal
attributes including behaviors resulting from object and user interactions.

4.6 Binary Format for Scene (BIFS)
A coded representation of a parametric scene description format.

4.7 Buffer Model
A model that defines how a terminal complying with ISO/IEC 14496 manages the buffer resources that are needed
to decode a presentation.

4.8 Byte Aligned
A position in a coded bit stream with a distance of a multiple of 8-bits from the first bit in the stream.

4.9 Chunk
A contiguous set of samples stored for one stream.

4.10 Clock Reference
A special time stamp that conveys a reading of a time base.

4.11 Composition
The process of applying scene description information in order to identify the spatio-temporal attributes and
hierarchies of audio-visual objects..

4.12 Composition Memory (CM)
A random access memory that contains compaosition units.

4.13 Composition Time Stamp (CTS)
An indication of the nominal composition time of a composition unit.

4.14 Composition Unit (CU)
An individually accessible portion of the output that a decoder produces from access units.

4.15 Compression Layer
The layer of a system according to the specifications in ISO/IEC 14496 that translates between the coded
representation of an elementary stream and its decoded representation. It incorporates the decoders.

4.16 Container Atom
An atom whose sole purpose is to contain and group a set of related atoms.

4.17 Decoder
An entity that translates between the coded representation of an elementary stream and its decoded
representation.

4.18 Decoding buffer (DB)
A buffer at the input of a decoder that contains access units.

© ISO/IEC 2001 — All rights reserved 3

ISO/IEC 14496-1:2001(E)

4.19 Decoder configuration
The configuration of a decoder for processing its elementary stream data by using information contained in its
elementary stream descriptor.

4.20 Decoding Time Stamp (DTS)
An indication of the nominal decoding time of an access unit.

4.21 Delivery Layer
A generic abstraction for delivery mechanisms (computer networks, etc.) able to store or transmit a number of
multiplexed elementary streams or FlexMux streams.

4.22 Descriptor
A data structure that is used to describe particular aspects of an elementary stream or a coded audio-visual object.

4.23 DMIF Application Interface (DAI)
An interface specified in ISO/IEC 14496-6. It is used here to model the exchange of SL-packetized stream data and
associated control information between the sync layer and the delivery layer.

4.24 Elementary Stream (ES)
A consecutive flow of mono-media data from a single source entity to a single destination entity on the compression
layer.

4.25 Elementary Stream Descriptor
A structure contained in object descriptors that describes the encoding format, initialization information, sync layer
configuration, and other descriptive information about the content carried in an elementary stream.

4.26 Elementary Stream Interface (ESI)
A conceptual interface modeling the exchange of elementary stream data and associated control information
between the compression layer and the sync layer.

4.27 FlexMux Channel (FMC)

A label to differentiate between data belonging to different constituent streams within one FlexMux Stream. A
sequence of data in one FlexMux channel within a FlexMux stream corresponds to one single SL-packetized
stream.

4.28 FlexMux Packet
The smallest data entity managed by the FlexMux tool. It consists of a header and a payload.

4.29 FlexMux Stream
A sequence of FlexMux Packets with data from one or more SL-packetized streams that are each identified by their
own FlexMux channel.

4.30 FlexMux tool
A tool that allows the interleaving of data from multiple data streams.

4.31 Graphics Profile
A profile that specifies the permissible set of graphical elements of the BIFS tool that may be used in a scene
description stream. Note that BIFS comprises both graphical and scene description elements.

4.32 Hint Track
A special track which contains instructions for packaging one or more tracks into a TransMux. It does not contain
media data (an elementary stream).

4.33 Hinter
A tool that is run on a completed file to add one or more hint tracks to the file to facilitate streaming.

4.34 Inter
A mode for coding parameters that uses previously coded parameters to construct a prediction.

4.35 Intra
A mode for coding parameters that does not make reference to previously coded parameters to perform the
encoding.

4 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

4.36 Initial Object Descriptor
A special object descriptor that allows the receiving terminal to gain initial access to portions of content encoded
according to ISO/IEC 14496. It conveys profile and level information to describe the complexity of the content.

4.37 Intellectual Property Identification (IPI)
A unique identification of one or more elementary streams corresponding to parts of one or more audio-visual
objects.

4.38 Intellectual Property Management and Protection (IPMP) System
A generic term for mechanisms and tools to manage and protect intellectual property. Only the interface to such
systems is normatively defined.

4.39 Movie Atom
A container atom whose sub-atoms define the meta-data for a presentation (‘moov’).

4.40 Movie Data Atom
A container atom which can hold the actual media data for a presentation (‘mdat’).

4.41 MP4 File
The name of the file format described in this specification.

4.42 Object Clock Reference (OCR)
A clock reference that is used by a decoder to recover the time base of the encoder of an elementary stream.

4.43 Object Content Information (OCI)
Additional information about content conveyed through one or more elementary streams. It is either aggregated to
individual elementary stream descriptors or is itself conveyed as an elementary stream.

4.44 Object Descriptor (OD)
A descriptor that aggregates one or more elementary streams by means of their elementary stream descriptors and
defines their logical dependencies.

4.45 Object Descriptor Command
A command that identifies the action to be taken on a list of object descriptors or object descriptor IDs, e.g., update
or remove.

4.46 Object Descriptor Profile
A profile that specifies the configurations of the object descriptor tool and the sync layer tool that are allowed.

4.47 Object Descriptor Stream
An elementary stream that conveys object descriptors encapsulated in object descriptor commands.

4.48 Object Time Base (OTB)
A time base valid for a given elementary stream, and hence for its decoder. The OTB is conveyed to the decoder
via object clock references. All time stamps relating to this object’s decoding process refer to this time base.

4.49 Parametric Audio Decoder
A set of tools for representing and decoding speech signals coded at bit rates between 6 Kbps and 16 Kbps,
according to the specifications in ISO/IEC 14496-3.

4.50 Quality of Service (QoS)
The performance that an elementary stream requests from the delivery channel through which it is transported.
QoS is characterized by a set of parameters (e.g., bit rate, delay jitter, bit error rate, etc.).

451 Random Access
The process of beginning to read and decode a coded representation at an arbitrary point within the elementary
stream.

452 Reference Point
A location in the data or control flow of a system that has some defined characteristics.

© ISO/IEC 2001 — All rights reserved 5

ISO/IEC 14496-1:2001(E)

4,53 Rendering
The action of transforming a scene description and its constituent audio-visual objects from a common
representation space to a specific presentation device (i.e., speakers and a viewing window).

4.54 Rendering Area
The portion of the display device’s screen into which the scene description and its constituent audio-visual objects
are to be rendered.

455 Sample
An access unit for an elementary stream. In hint tracks, a sample defines the formation of one or more TransMux
packets.

456 Sample Table
A packed directory for the timing and physical layout of the samples in a track.

4,57 Scene Description

Information that describes the spatio-temporal positioning of audio-visual objects as well as their behavior resulting
from object and user interactions. The scene description makes reference to elementary streams with audio-visual
data by means of pointers to object descriptors.

458 Scene Description Stream
An elementary stream that conveys scene description information.

459 Scene Graph Elements

The elements of the BIFS tool that relate only to the structure of the audio-visual scene (spatio-temporal positioning
of audio-visual objects as well as their behavior resulting from object and user interactions) excluding the audio,
visual and graphics nodes as specified in clause 15.

4.60 Scene Graph Profile
A profile that defines the permissible set of scene graph elements of the BIFS tool that may be used in a scene
description stream. Note that BIFS comprises both graphical and scene description elements.

4.61 SL-Packetized Stream (SPS)
A sequence of sync layer packets that encapsulate one elementary stream.

4.62 Structured Audio
A method of describing synthetic sound effects and music as defined by ISO/IEC 14496-3.

4.63 Sync Layer (SL)

A layer to adapt elementary stream data for communication across the DMIF Application Interface, providing timing
and synchronization information, as well as fragmentation and random access information. The sync layer syntax is
configurable and can be configured to be empty.

4.64 Sync Layer Configuration
A configuration of the sync layer syntax for a particular elementary stream using information contained in its
elementary stream descriptor.

4.65 Sync Layer Packet (SL-Packet)
The smallest data entity managed by the sync layer consisting of a configurable header and a payload. The
payload may consist of one complete access unit or a partial access unit.

4.66 Syntactic Description Language (SDL)
A language defined by ISO/IEC 14496-1 that allows the description of a bitstream’s syntax.

4.67 Systems Decoder Model (SDM)
A model that provides an abstract view of the behavior of a terminal compliant to ISO/IEC 14496. It consists of the
buffer model and the timing model.

4.68 System Time Base (STB)
The time base of the terminal. Its resolution is implementation-dependent. All operations in the terminal are
performed according to this time base.

6 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

4.69 Terminal
A system that sends, or receives and presents the coded representation of an interactive audio-visual scene as
defined by ISO/IEC 14496-1. It can be a standalone system, or part of an application system complying with
ISO/IEC 14496.

4.70 Time Base
The notion of a clock; it is equivalent to a counter that is periodically incremented.

4.71 Timing Model
A model that specifies the semantic meaning of timing information, how it is incorporated (explicitly or implicitly) in
the coded representation of information, and how it can be recovered at the receiving terminal.

4.72 Time Stamp
An indication of a particular time instant relative to a time base.

4.73 Track
A collection of related samples in an MP4 file. For media data, a track corresponds to an elementary stream. For
hint tracks, a track corresponds to a TransMuxchannel

5 Abbreviations and Symbols

AU Access Unit

AV Audio-visual

BIFS Binary Format for Scene

CM Composition Memory

CTS Composition Time Stamp

Cu Composition Unit

DAI DMIF Application Interface (see ISO/IEC 14496-6)

DB Decoding Buffer

DTS Decoding Time Stamp

ES Elementary Stream

ESI Elementary Stream Interface

ESID Elementary Stream Identifier

FAP Facial Animation Parameters

FAPU FAP Units

FDP Facial Definition Parameters

FIG FAP Interpolation Graph

FIT FAP Interpolation Table

FMC FlexMux Channel

FMOD The floating point modulo (remainder) operator which returns the remainder of x/y such that:
Fmod(x/y) = x — k*y, where k is an integer,
sgn(fmod(x/y)) = sgn(x), and
abs(fmod(x/y)) < abs(y)

IP Intellectual Property

IPI Intellectual Property Identification

IPMP Intellectual Property Management and Protection

NCT Node Coding Tables

NDT Node Data Type

NINT Nearest INTeger value

OocCl Object Content Information

OCR Object Clock Reference

oD Object Descriptor

ODID Object Descriptor Identifier

OoTB Object Time Base

PLL Phase Locked Loop

QoS Quality of Service

SAOL Structured Audio Orchestra Language

SASL Structured Audio Score Language

SDL Syntactic Description Language

SDM Systems Decoder Model

SL Synchronization Layer

© ISO/IEC 2001 — All rights reserved 7

ISO/IEC 14496-1:2001(E)

SL-Packet Synchronization Layer Packet

SPS SL-Packetized Stream

STB System Time Base

TTS Text-To-Speech

URL Universal Resource Locator

VOP Video Object Plane

VRML Virtual Reality Modeling Language

6 Conventions

For the purpose of unambiguously defining the syntax of the various bitstream components defined by the
normative parts of ISO/IEC 14496 a syntactic description language is used. This language allows the specification
of the mapping of the various parameters in a binary format as well as how they are placed in a serialized
bitstream. The definition of the language is provided in clause 14.

7 Systems Decoder Model

7.1 Introduction

The purpose of the systems decoder model (SDM) is to provide an abstract view of the behavior of a terminal
complying with ISO/IEC 14496. It may be used by the sender to predict how the receiving terminal will behave in
terms of buffer management and synchronization when decoding data received in the form of elementary streams.
The systems decoder model includes a timing model and a buffer model.

The systems decoder model specifies:

1. the interface for accessing demultiplexed data streams (DMIF Application Interface),

2. decoding buffers for coded data for each elementary stream,

3. the behavior of elementary stream decoders,

4. composition memory for decoded data from each decoder, and

5. the output behavior of composition memory towards the compositor.

These elements are depicted in Figure 2. Each elementary stream is attached to one single decoding buffer. More

than one elementary stream may be connected to a single decoder (e.g., in a decoder of a scaleable audio-visual
object).

A Decoding [| Composition
DM IF Appli Buffer DB | Decoder, ™ Memory
caion Interface 1
/ Decoding | |, |, | Compostion
o, L7 | Buffer DB, Decode Memory
pe ecoder , .
——-o/;'./ .| Decoding | [, Compoasitor
\ "| Buffer DB,
Decoding | |, || Composition
(encapsulates Buffer DB, Decoder Memory
Demultiplexer) [Elementary Stream Interface |

Figure 2 - Systems Decoder Model

8 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
7.2 Concepts of the systems decoder model

This subclause defines the concepts necessary for the specification of the timing and buffering model. The
sequence of definitions corresponds to a walk from the left to the right side of the SDM illustration in Figure 2.

7.2.1 DMIF Application Interface (DAI)

For the purposes of the systems decoder model, the DMIF Application Interface encapsulates the demultiplexer
and provides access to streaming data that is consumed by the decoding buffers. The streaming data received
through the DAI consists of SL-packetized streams. The required properties of the DAI are described in 10.3. The
DAl semantics are fully specified in ISO/IEC 14496-6.

7.2.2 SL-Packetized Stream (SPS)

An SL-packetized stream consists of a sequence of packets, according to the syntax and semantics specified in
10.2, that encapsulate a single elementary stream. The packets contain elementary stream data partitioned in
access units as well as side information, e.g., for timing and access unit labeling. SPS data payload enters the
decoding buffers, i.e., the side information is removed at the input to the decoding buffers.

7.2.3 Access Units (AU)

Elementary stream data is partitioned into access units. The delineation of an access unit is completely determined
by the entity that generates the elementary stream (e.g., the compression layer). An access unit is the smallest
data entity to which timing information can be attributed. Two access units from the same elementary stream shall
never refer to the same decoding or composition time. Any further partitioning of the data in an elementary stream
is not visible for the purposes of the systems decoder model. Access units are conveyed by SL-packetized streams
and are received by the decoding buffers. The decoders consume access units with the necessary side information
(e.g., time stamps) from the decoding buffers.

NOTE — An ISO/IEC 14496-1 compliant terminal implementation is not required to process each incoming access unit as a
whole. It is furthermore possible to split an access unit into several fragments for transmission as specified in clause 10. This
allows the sending terminal to dispatch partial AUs immediately as they are generated during the encoding process. Such partial
AUs may have significance for improved error resilience.

7.2.4 Decoding Buffer (DB)

The decoding buffer is a buffer at the input of an elementary stream decoder in the receiving terminal that receives
and stores access units. The systems buffer model enables the sending terminal to monitor the decoding buffer
resources that are used during a presentation.

7.2.5 Elementary Streams (ES)

Streaming data received at the output of a decoding buffer, independent of its content, is considered as an
elementary stream for the purpose of ISO/IEC 14496. The elementary streams are produced and consumed by the
compression layer entities (encoders and decoders, respectively). ISO/IEC 14496 assumes that the integrity of an
elementary stream is preserved from end to end.

7.2.6 Elementary Stream Interface (ESI)

The elementary stream interface is a concept that models the exchange of elementary stream data and associated
control information between the compression layer and the sync layer. It is explained further in Annex L.

7.2.7 Decoder

For the purposes of this model, the decoder extracts access units from the decoding buffer at precisely defined
points in time and places composition units, the results of the decoding processes, in the composition memory. A
decoder may be attached to several decoding buffers.

7.2.8 Composition Units (CU)

Decoders consume access units and produce composition units. An access unit corresponds to an integer number
of composition units. Composition units reside in composition memory.

© ISO/IEC 2001 — All rights reserved 9

ISO/IEC 14496-1:2001(E)
7.2.9 Composition Memory (CM)

The composition memory is a random access memory that contains composition units. The size of this memory is
not normatively specified.

7.2.10 Compositor

The compositor takes composition units out of the composition memory and either consumes them (e.g. composes
and presents them, in the case of audio-visual data) or skips them. The compositor is not specified in ISO/IEC
14496-1, as the details of this operation are not relevant within the context of the systems decoder model.
Subclause 7.3.5 defines which composition units are available to the compositor at any instant of time.

7.3 Timing Model Specification

The timing model relies on clock references and time stamps to synchronize audio-visual data conveyed by one or
more elementary streams. The concept of a clock with its associated clock references is used to convey the notion
of time to a receiving terminal. Time stamps are used to indicate the precise time instants at which the receiving
terminal consumes the access units in the decoding buffers or may access the composition units resident in the
composition memory. The time stamps are therefore associated with access units and composition units. The
semantics of the timing model are defined in the subsequent clauses. The syntax for conveying timing information
is specified in 10.2.

NOTE — This timing model is designed for rate-controlled (“push”) applications.
7.3.1 System Time Base (STB)

The system time base (STB) defines the terminal’s notion of time. The resolution of the STB is implementation
dependent. All actions of the terminal are scheduled according to this time base for the purpose of this timing
model.

NOTE — This does not imply that all terminals compliant with ISO/IEC 14496 operate on one single STB.
7.3.2 Object Time Base (OTB)

The object time base (OTB) defines the notion of time for a given data stream. The resolution of this OTB can be
selected as required by the application or as defined by a profile. All time stamps that the sending terminal inserts
in a coded data stream refer to this time base. The OTB of a data stream is known at the receiving terminal either
by means of object clock reference information inserted in the stream or by an indication that its time base is slaved
to a time base conveyed with another stream, as specified in 10.2.3.

NOTE 1 — Elementary streams may be created for the sole purpose of conveying time base information.
NOTE 2 — The receiving terminal’s system time base need not be locked to any of the available object time bases.
7.3.3 Object Clock Reference (OCR)

A special kind of time stamps, object clock references (OCR), are used to convey the OTB to the elementary
stream decoder. The value of the OCR corresponds to the value of the OTB at the time the sending terminal
generates the object clock reference time stamp. OCR time stamps are placed in the SL packet header as
described in 10.2.4. The receiving terminal shall evaluate the OCR when its last bit is extracted at the input of the
decoding buffer.

7.3.4 Decoding Time Stamp (DTS)

Each access unit has an associated nominal decoding time, the time at which it must be available in the decoding
buffer for decoding. The AU is not guaranteed to be available in the decoding buffer either before or after this time.
Decoding is assumed to occur instantaneously when the instant of time indicated by the DTS is reached.

This point in time can be implicitly specified if the (constant) temporal distance between successive access units is

indicated in the setup of the elementary stream (see 10.2.3). Otherwise a decoding time stamp (DTS) whose
syntax is defined in 10.2.4 conveys this point in time.

10 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

A decoding time stamp shall only be conveyed for an access unit that carries a composition time stamp as well,
and only if the DTS and CTS values are different. Presence of both time stamps in an AU may indicate a reversal
between coding order and composition order.

7.3.5 Composition Time Stamp (CTS)

Each composition unit has an associated nominal composition time, the time at which it must be available in the
composition memory for composition. The CU is not guaranteed to be available in the composition memory for
composition before this time. Since the SDM assumes an instantaneous decoding process, the CU is available to
the decoder, at that instant in time corresponding to the DTS of the corresponding AU, for further use (e.g. in
prediction processes).

This instant in time is implicitly known, if the (constant) temporal distance between successive composition units is
indicated in the setup of the elementary stream. Otherwise a composition time stamp (CTS) whose syntax is
defined in 10.2.4 conveys this instant in time.

The current CU is instantaneously accessible by the compositor anytime between its composition time and the
composition time of the subsequent CU. If a subsequent CU does not exist, the current CU becomes unavailable at
the end of the lifetime of its elementary stream (i.e., when its elementary stream descriptor is removed).

7.3.6 Occurrence and Precision of Timing Information in Elementary Streams

The frequency at which DTS, CTS and OCR values are to be inserted in the bitstream as well as the precision, jitter
and drift are application and profile dependent. Some usage considerations can be found in 10.2.7.

7.3.7 Time Stamps for Dependent Elementary Streams

An audio-visual object may refer to multiple elementary streams that constitute a scaleable content representation
(see 8.7.1.5). Such a set of elementary streams shall adhere to a single object time base. Temporally co-located
access units for such elementary streams are then identified by identical DTS or CTS values.

EXAMPLE

The example in Figure 3 illustrates the arrival of two access units at the Systems Decoder. Due to the constant delay
assumption of the model (see 7.4.2 below), the arrival times correspond to the instants in time when the sending terminal has
sent the respective AUs. The sending terminal must select this instant in time so that the Decoding Buffer at the receiving
terminal never overflows or underflows. At the receiving terminal, an AU is instantaneously decoded, at that instant in time
corresponding to its DTS, and the resulting CU(s) are placed in the composition memory and remain there until the subsequent
CU(s) arrive or the associated object descriptor is removed.

Arrival(AU,)

Arrival(AUy) @ DTS(AU
v | AU s auy
Da:0ding AUO " E EEEEEEEEEEEEEEEENTSR
Buffer AU,
ComDOStion CU A B BB EEEEEEEEEEEREEEEDR
Memory /\ Cy,
= available for
CTS(CUy) CTS(CUy) composition

Figure 3 - Composition unit availability

© ISO/IEC 2001 — All rights reserved 11

ISO/IEC 14496-1:2001(E)

7.4 Buffer Model Specification

7.4.1 Elementary Decoder Model

Figure 4 indicates one branch of the systems decoder model (Figure 2). This simplified model is used to specify the

buffer model. It treats each elementary stream separately and therefore, associates a composition memory with
only one decoder. The legend following Figure 4 elaborates on the symbols used in this figure.

Decoding AU CU Composition

Buffer DB — Decoder [—P®| MemoryCM [—P Compositor

Figure 4 - Flow diagram for the systems decoder model

Legend:

DB Decoding buffer for the elementary stream.

CM Composition memory for the elementary stream.

AU The current access unit input to the decoder.

CuU The current composition unit input to the composition memory. CU results from decoding AU. There

may be several composition units resulting from decoding one access unit.
7.4.2 Assumptions
7.4.2.1 Constant end-to-end delay

Data transmitted in real time have a timing model in which the end-to-end delay from the encoder input at the
sending terminal, to the decoder output at the receiving terminal, is constant. This delay is equal to the sum of the
delay due to the encoding process, subsequent buffering, multiplexing at the sending terminal, the delay due to the
delivery layers and the delay due to the demultiplexing, decoder buffering and decoding processes at the receiving
terminal.

Note that the receiving terminal is free to add a temporal offset (delay) to the absolute values of all time stamps if it
can cope with the additional buffering needed. However, the temporal difference between two time stamps (that
determines the temporal distance between the associated AUs or CUs) has to be preserved for real-time
performance.

NOTE — Two elementary streams that adhere to different time bases may be synchronized tightly in case of constant end-to-
end delay as assumed by this model. If an application cannot implement this model assumption, such tight synchronization may

not be achievable. Tolerances for the constant end-to-end delay assumption need to be defined through the profile and level
mechanism.

7.4.2.2 Demultiplexer

The end-to-end delay between multiplexer output, at the sending terminal, and demultiplexer input, at the receiving
terminal, is constant.

7.4.2.3 Decoding Buffer

The needed decoding buffer size is known by the sending terminal and conveyed to the receiving terminal as
specified in 8.6.6.

The size of the decoding buffer is measured in bytes.

12 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

The decoding buffer is filled at the rate given by the maximum bit rate for this elementary stream while data is
available and with a zero rate otherwise. The maximum bit rate is conveyed by the sending terminal as a part of the
decoder configuration information during the set up phase for each elementary stream (see 8.6.6).

Information is received from the DAI in the form of SL packets. The SL packet headers are removed at the input to
the decoding buffers.

7.4.2.4 Decoder
The decoding processes are assumed to be instantaneous for the purposes of the systems decoder model.
7.4.2.5 Composition Memory

The mapping of an AU to one or more CUs (by the decoder) is known implicitly at both the sending and the
receiving terminals.

7.4.2.6 Compositor
The composition processes are assumed to be instantaneous for the purposes of the systems decoder model.
7.4.3 Managing Buffers: A Walkthrough

In this example, we assume that the model is used in a “push” scenario. In applications where non-real time
content is to be delivered, flow control by suitable signaling may be established to request access units at the time
they are needed at the receiving terminal. The mechanisms for doing so are application-dependent, and are not
specified in ISO/IEC 14496.

The behaviors of the various elements in the SDM are modeled as follows:

e The sending terminal signals the required decoding buffer resources to the receiving terminal before starting
the delivery. This is done as specified in 8.6.6 either explicitly, by requesting the decoding buffer sizes for
individual elementary streams, or implicitly, by indicating a profile (see clause 15). The decoding buffer size is
measured in bytes.

e The sending terminal models the behavior of the decoding buffers by making the following assumptions :

e Each decoding buffer is filled at the maximum bitrate specified for its associated elementary stream as long as
data is available.

o At the instant of time corresponding to its DTS, an AU is instantaneously decoded and removed from the
decoding buffer.

e At the instant of time corresponding to its DTS, a known amount of CUs corresponding to the just decoded AU
are put in the composition memory.

The current CU is available to the compositor between instants of time corresponding to the CTS of the current CU
and the CTS of the subsequent CU. If a subsequent CU does not exist, the current CU becomes unavailable at the
end of lifetime of its data stream.

Using these assumptions on the buffer model, the sending terminal may freely use the space in the decoding
buffers. For example, it may deliver data for several AUs of a stream, for non real time usage, to the receiving
terminal, and pre-store them in the DB long before they have to be decoded (assuming sufficient space is
available). Subsequently, the full delivery bandwidth may be used to transfer data of a real time stream just in time.
The composition memory may be used, for example, as a reordering buffer. In the case of visual decoding, it may
contain the decoded P-frames needed by a video decoder for the decoding of intermediate B-frames, before the
arrival of the CTS of the latest P-frame.

© ISO/IEC 2001 — All rights reserved 13

ISO/IEC 14496-1:2001(E)
8 Object Description Framework
8.1 Introduction

The scene description (specified in clause 9) and the elementary streams that convey streaming data are the basic
building blocks of the architecture of ISO/IEC 14496-1. Elementary streams carry data for audio or visual objects as
well as for the scene description itself. The object description framework provides the link between elementary
streams and the scene description. The scene description declares the spatio-temporal relationship of audio-visual
objects, while the object description framework specifies the elementary stream resources that provide the time-
varying data for the scene. This indirection facilitates independent changes to the scene structure, the properties of
the elementary streams (e.qg. its encoding) and their delivery.

The object description framework consists of a set of descriptors that allows to identify, describe and properly
associate elementary streams to each other and to audio-visual objects used in the scene description. Numeric
identifiers, called ObjectDescriptorIDs, associate object descriptors to appropriate nodes in the scene description.
Object descriptors are themselves conveyed in elementary streams to allow time stamped changes to the available
set of object descriptors to be made.

Each object descriptor is itself a collection of descriptors that describe one or more elementary streams that are
associated to a single node and that usually relate to a single audio or visual object. This allows to indicate a
scaleable content representation as well as multiple alternative streams that convey the same content, e.g., in
multiple qualities or different languages.

An elementary stream descriptor within an object descriptor identifies a single elementary stream with a numeric
identifier, called ES_ID. Each elementary stream descriptor contains the information necessary to initiate and
configure the decoding process for the elementary stream, as well as intellectual property identification. Optionally,
additional information may be associated to a single elementary stream, most notably quality of service
requirements for its transmission or a language indication. Both, object descriptors and elementary stream
descriptors may use URLs to point to remote object descriptors or a remote elementary stream source,
respectively.

The object description framework provides the hooks to implement intellectual property management and
protection (IPMP) systems. IPMP information is conveyed both through IPMP descriptors as part of the object
descriptor stream and through IPMP streams that carry time variant IPMP information. The structure of IPMP
descriptors and IPMP streams is specified in this clause while their internal syntax and semantics and, hence, the
operation of the IPMP system is outside the scope of ISO/IEC 14496.

Object content information allows the association of metadata with a whole presentation or with individual object
descriptors or with elementary stream descriptors. A set of OCI descriptors is defined that either form an integral
part of an object descriptor or elementary stream descriptor or are conveyed by means of a proper OCI stream that
allows the conveyance of time variant object content information.

Access to ISO/IEC 14496 content is gained through an initial object descriptor that needs to be made available

through means not defined in ISO/IEC 14496. The initial object descriptor in the simplest case points to the scene
description stream and the corresponding object descriptor stream. The access scenario is outlined in 8.7.3.

14 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

initial
ObjectDescriptor

ES_Descriptor

ES_Descriptor

Scene Description. Strean

-~ ObjectDescriptorUpdate - -
. ObjectDescriptor

,,,,,,,, [object Object : §
Object Descriptor. Stream - | | Descriptor Descriptor ES_Descriptor 1
§ [ﬂ] ES D : §
: ES Descriptor :
=2 (sowe [N

Figure 5 - Object descriptors linking scene description to elementary streams
The remainder of this clause is structured in the following way:
e Subclause 8.2 specifies the data structures on which the object descriptor framework is based.
e Subclause 8.3 specifies the concepts of the IPMP elements in the object description framework.
e Subclause 8.4 specifies the object content information elements in the object description framework.

e Subclause 8.5 specifies the object descriptor stream and the syntax and semantics of the command set that
allows the update or removal of object descriptor components.

e Subclause 8.6 specifies the syntax and semantics of the object descriptor and its component descriptors.

e Subclause 8.7 specifies rules for object descriptor usage as well as the procedure to access content through
object descriptors.

e Subclause 8.8 specifies the usage of the IPMP system interface.
8.2 Common data structures
8.2.1 Overview

The commands and descriptors defined in this subclause constitute self-describing classes, identified by unique
class tags. Each class encodes explicitly its size in bytes. This facilitates future compatible extensions of the
commands and descriptors. A class may be expanded with additional syntax elements that are ignored by an OD
decoder that expects an earlier revision of a class. In addition, anywhere in a syntax where a set of tagged classes
is expected it is permissible to intersperse expandable classes with unknown class tag values. These classes shall
be skipped, using the encoded size information.

The remainder of this clause defines the syntax and semantics of the command and descriptor classes. Some

commands and descriptors contain themselves a set of component descriptors. They are said to aggregate a set of
component descriptors.

© ISO/IEC 2001 — All rights reserved 15

ISO/IEC 14496-1:2001(E)

Table 1 - List of Class Tags for Descriptors

Tag value | Tag hame

0x00 Forbidden

0x01 ObjectDescrTag

0x02 InitialObjectDescrTag

0x03 ES_DescrTag

0x04 DecoderConfigDescrTag

0x05 DecSpecificinfoTag

0x06 SLConfigDescrTag

0x07 ContentldentDescrTag

0x08 SupplContentldentDescrTag
0x09 IPI_DescrPointerTag

Ox0A IPMP_DescrPointerTag

0x0B IPMP_DescrTag

0x0C QoS_DescrTag

0x0D RegistrationDescrTag

OxOE ES _ID _IncTag

OxOF ES_ID_RefTag

0x10 MP4_10D_Tag

0x11 MP4_OD_Tag

0x12 IPL_DescrPointerRefTag

0x13 ExtendedProfileLevelDescrTag
0x14 profileLevellndicationindexDescrTag
0x15-0x3F | Reserved for ISO use

0x40 ContentClassificationDescrTag
0x41 KeyWordDescrTag

0x42 RatingDescrTag

0x43 LanguageDescrTag

0x44 ShortTextualDescrTag

0x45 ExpandedTextualDescrTag
0x46 ContentCreatorNameDescrTag
0x47 ContentCreationDateDescrTag
0x48 OClICreatorNameDescrTag
0x49 OClICreationDateDescrTag
Ox4A SmpteCameraPositionDescrTag
0x4B-0x5F | Reserved for ISO use (OCI extensions)
0x60-0xBF | Reserved for ISO use
0xCO-OxFE | User private

OxFF Forbidden

8.2.2 BaseDescriptor

8.2.2.1 Syntax

abstract aligned(8) expandabl e(2?-1) class BaseDescriptor : bit(8) tag=0 {
/'l enpty. To be filled by classes extending this class.

}

8.2.2.2 Semantics

This class is an abstract base class that is extended by the descriptor classes specified in 8.6. Each descriptor
constitutes a self-describing class, identified by a unique class tag. This abstract base class establishes a common
name space for the class tags of these descriptors. The values of the class tags are defined in Table 1. As an
expandable class the size of each class instance in bytes is encoded and accessible through the instance variable
sizeOfinstance (see 14.3.3).

16 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

A class that allows the aggregation of classes of type BaseDescriptor may actually aggregate any of the classes
that extend BaseDescriptor.

NOTE — User private descriptors may have an internal structure, for example to identify the country or manufacturer that uses a
specific descriptor. The tags and semantics for such user private descriptors may be managed by a registration authority if
required.

The following additional symbolic names are introduced:

ExtDescrTagStartRange = 0x80
ExtDescrTagEndRange = OXFE

OClIDescrTagStartRange = 0x40
OClIDescrTagEndRange = Ox5F

8.2.3 BaseCommand
8.2.3.1 Syntax

abstract aligned(8) expandabl e(2%®-1) class BaseConmand : bit(8) tag=0 {
/1 empty. To be filled by classes extending this class.
}

8.2.3.2 Semantics

This class is an abstract base class that is extended by the command classes specified in 8.5.5. Each command
constitutes a self-describing class, identified by a unique class tag. This abstract base class establishes a common
name space for the class tags of these commands. The values of the class tags are defined in Table 2. As an
expandable class the size of each class instance in bytes is encoded and accessible through the instance variable
sizeOflnstance (see 14.3.3).

Table 2 - List of Class Tags for Commands

Tag value | Tag name

0x00 forbidden

0x01 ObjectDescrUpdateTag
0x02 ObjectDescrRemoveTag
0x03 ES_DescrUpdateTag
0x04 ES_DescrRemoveTag
0x05 IPMP_DescrUpdateTag
0x06 IPMP_DescrRemoveTag
0x07 ES_DescrRemoveRefTag
0x08-0xBF | Reserved for ISO (command tags)
0xCO-OxFE | User private

OxFF forbidden

A class that allows the aggregation of classes of type BaseCommand may actually aggregate any of the classes
that extend BaseCommand.

NOTE — User private commands may have an internal structure, for example to identify the country or manufacturer that uses a
specific command. The tags and semantics for such user private command may be managed by a registration authority if
required.

8.3 Intellectual Property Management and Protection (IPMP)

8.3.1 Overview

The intellectual property management and protection (IPMP) framework for ISO/IEC 14496 content consists of a
normative interface that permits an ISO/IEC 14496 terminal to host one or more IPMP Systems. An IPMP System

is a non-normative component that provides intellectual property management and protection functions for the
terminal.

© ISO/IEC 2001 — All rights reserved 17

ISO/IEC 14496-1:2001(E)

The IPMP interface consists of IPMP elementary streams and IPMP descriptors. The normative structure of IPMP
elementary streams is specified in this subclause. IPMP descriptors are carried as part of an object descriptor
stream and are specified in 8.6.14. The IPMP interface allows applications (or derivative application standards) to
build specialized IPMP Systems. Alternatively, an application may choose not to use an IPMP System, thereby
offering no management and protection features. The IPMP System uses the information carried by the IPMP
elementary streams and descriptors to make protected ISO/IEC 14496 content available to the terminal. The
detailed semantics and decoding process of the IPMP System are not in the scope of ISO/IEC 14496. The usage of
the IPMP System Interface, however, is explained in 8.8.

8.3.2 IPMP Streams
8.3.2.1 Structure of the IPMP Stream

The IPMP stream is an elementary stream that passes time-varying information to one or more IPMP Systems.
This is accomplished by periodically sending a sequence of IPMP messages along with the content at a period
determined by the IPMP System(s).

8.3.2.2 Access Unit Definition

An IPMP access unit consists of one or more IPMP messages, as defined in 8.3.2.5. All IPMP messages that are to
be processed at the same instant in time shall constitute a single access unit. Access units in IPMP streams shall
be labeled and time-stamped by suitable means. This shall be done via the related flags and the composition time
stamps, respectively, in the SL packet header (see 10.2.4). The composition time indicates the point in time at
which an IPMP access unit becomes valid, i.e., when the embedded IPMP messages shall be evaluated. Decoding
and composition time for an IPMP access unit shall always have the same value.

An access unit does not necessarily convey or update the complete set of IPMP messages that are currently
required. In that case it just modifies the persistent state of the IPMP system. However, if an access unit conveys
the complete set of IPMP messages required at a given point in time it shall set the r andomAccessPoi nt Fl ag in
the SL packet header to ‘1’ for this access unit. Otherwise, the r andomAccessPoi nt FI ag shall be set to ‘0.

NOTE — An SL packet with r andomAccessPoi nt Fl ag=1 but with no IPMP messages in it indicates that at the current time
instant no IPMP messages are required for operation.

8.3.2.3 Time Base for IPMP Streams

The time base associated to an IPMP stream shall be indicated by suitable means. This shall be done by means of
object clock reference time stamps in the SL packet headers (see 10.2.4) for this stream or by indicating the
elementary stream from which this IPMP stream inherits the time base (see 10.2.3). All time stamps in the SL-
packetized IPMP stream refer to this time base.

An IPMP stream shall adhere to the same time base as the one or more content elementary streams to which it is
associated (see 8.8). Consequently, an IPMP stream may not be associated to multiple content elementary
streams that themselves adhere to different time bases.

8.3.2.4 IPMP Decoder Configuration

8.3.2.4.1 Syntax

cl ass | PMPDecoder Confi guration extends Decoder Specificlnfo : bit(8) tag=DecSpecificlnfoTag {
/'l 1PMP system specific configuration infornation
}

8.3.2.4.2 Semantics
An IPMP system may require information to initialize its operation. This information shall be conveyed by extending

the decoder Speci ficl nfo class as specified in 8.6.7. If utilized, | PMPDecoder Confi gurati on shall be
conveyed in the ES Descri pt or declaring the IPMP stream.

18 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
8.3.2.5 IPMP message syntax and semantics

8.3.25.1 Syntax
abstract aligned(8) expandabl e(2?®-1) class | PMP_Message

bit(16) | PMPS_Type;
if (IPWPS_Type == 0) {

bit(8) URLString[sizeO|nstance-2];
} else {

bit(8) | PMP_datalsizeO | nstance-2];

}
8.3.2.5.2 Semantics

The | PMP_Message conveys control information for an IPMP System.

| PMPS_Type - the type of the IPMP System. A zero value does not correspond to an IPMP System, but shall
indicate the presence of a URL. A non-zero value shall indicate a specific IPMP System Type. The values 0x0001-
0x2000 are reserved for future ISO use. A Registration Authority, as designated by ISO, shall assign a unique valid
value for this field for each specific IPMP System Type. The | PMPS_Type is used, for example, for distinguishing
between IPMP systems from different companies.

URLString[] - contains a UTF-8 (ISO/IEC 10646-1) encoded URL that shall point to the location of a remote
| PMP_Message. The | PMPS_Type of this | PMP_Message can be 0 or not. If O, another URL is referenced.
This process continues until an | PMP_Message with a non-zero | PMPS_Type is accessed.

| PMP_dat a - opaque data to control the IPMP System.
8.4 Object Content Information (OCI)
8.4.1 Overview

Audio-visual objects that are associated with elementary stream data through an object descriptor may have
additional object content information attached to them. For this purpose, a set of OCI descriptors is defined in
8.6.18. OCI descriptors may directly be included as part of an object descriptor or ES_Descri pt or as defined in
8.6.

In order to accommodate time variant OCI that is separable from the object descriptor stream, OCI descriptors may
as well be conveyed in an OCI stream. An OCI stream is referred to through an ES_Descriptor, with the
st reaniType field set to OCI_Stream. How OCI streams may be aggregated to object descriptors is defined in
8.7.1.3. The structure of the OCI stream is defined in this subclause.

8.4.2 OCI Streams
8.4.2.1 Structure of the OCI Stream

The OCI stream is an elementary stream that conveys time-varying object content information, termed OCI events.
Each OCI event consists of a number of OCI descriptors.

8.4.2.2 Access Unit Definition

An OCI access unit consists of one or more OCI_Events, as described in 8.4.2.5. Access units in OCI elementary
streams shall be labelled and time stamped by suitable means. This shall be done by means of the related flags
and the composition time stamp, respectively, in the SL packet header (see 10.2.4). The composition time indicates
the point in time when an OCI access unit becomes valid, i.e., when the embedded OCI events shall be added to
the list of events. Decoding and composition time for an OCI access unit shall always have the same value.

An access unit may or may not convey or update the complete set of OCI events that are currently valid. In the
latter case, it just modifies the persistent state of the OCI decoder. However, if an access unit conveys the
complete set of OCI events valid at a given point in time it shall set the randomAccessPoi nt Fl ag in the SL
packet header to ‘1’ for this access unit. Otherwise, the r andomAccessPoi nt Fl ag shall be setto ‘0’

© ISO/IEC 2001 — All rights reserved 19

ISO/IEC 14496-1:2001(E)

NOTE — An SL packet with r andomAccessPoi nt Fl ag=1 but with no OCI events in it indicates that at the current time instant
no valid OCI events exist.

8.4.2.3 Time Base for OCI Streams

The time base associated with an OCI stream shall be indicated by suitable means. This shall be done by the use
of object clock reference time stamps in the SL packet headers (see 10.2.4) for this stream or by indicating the
elementary stream from which this OCI stream inherits the time base (see 10.2.3). All time stamps in the SL-
packetized OCI stream refer to this time base.

8.4.2.4 OCI Decoder Configuration
8.4.2.41 Syntax
cl ass OCl Decoder Confi guration extends Decoder Specificlnfo : bit(8) tag=DecSpecificlnfoTag {

const bit(8) versionLabel = 0x01;
}

8.4.2.4.2 Semantics

This information is needed to initialize operation of the OCI decoder. It shall be conveyed by extending the
decoder Speci fi cl nfo class as specified in 8.6.7. OCl Decoder Confi gurati on shall be conveyed in the
ES Descri pt or declaring the OCI stream.

ver si onLabel - indicates the version of OCI specification used on the corresponding OCI data stream. Only the
value 0x01 is allowed; all the other values are reserved.

8.4.2.5 OCI_Events syntax and semantics

8.4.25.1 Syntax

abstract aligned(8) expandable(2?%-1) class OCl_Event {
bit(15) eventlD;
bit(1) absol uteTi meFl ag;
bit(32) startingTine;
bit(32) duration;
OCl _Descriptor OCl _Descr[1 .. 255];
}

8.4.2.5.2 Semantics

event | D — contains the identification number of the described event that is unique within the scope of this OCI
stream.

absol ut eTi neFl ag — indicates the time base for st arti ngTi me as described below.

startingTi me - indicates the starting time of the event in hours, minutes, seconds and hundredth of seconds.
The format is 8 digits, the first 6 digits expressing hours, minutes and seconds with 4 bits each in binary coded
decimal and the last two expressing hundredth of seconds in hexadecimal using 8 bits.

EXAMPLE — 02:36:45:89 is coded as “0x023645" concatenated with “0b0101.1001” (89 in binary), resulting to “0x02364559".

If absol ut eTi meFl ag is set to zero, starti ngTi me is relative to the object time base of the corresponding
object. In that case it is the responsibility of the application to ensure that this object time base is conveyed such
that startingTi me can be identified unambiguously (see 10.2.7). If absol ut eTi meFl ag is set to one,
startingTi me is expressed as an absolute value, refering to wall clock time.

duration - contains the duration of the corresponding object in hours, minutes, seconds and hundredth of
seconds. The format is 8 digits, the first 6 digits expressing hours, minutes and seconds with 4 bits each in binary
coded decimal and the last two expressing hundredth of seconds in hexadecimal using 8 bits.

OCl _Descr[] —an array of one up to 255 OCl _Descri pt or classes as specified in 8.6.18.2.

20 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
8.5 Object Descriptor Stream
8.5.1 Structure of the Object Descriptor Stream

Similar to the scene description, object descriptors are transported in a dedicated elementary stream, termed object
descriptor stream. Within such a stream, it is possible to dynamically convey, update and remove complete object
descriptors, or their component descriptors, the ES_Descriptors, and IPMP descriptors. The update mechanism
allows, for example, to advertise new elementary streams for an audio-visual object as they become available, or to
remove references to streams that are no longer available. Updates are time stamped to indicate the instant in time
they take effect.

This subclause specifies the structure of the object descriptor elementary stream including the syntax and
semantics of its constituent elements, the object descriptor commands (OD commands).

8.5.2 Access Unit Definition

An OD access unit consists of one or more OD commands, as described in 8.5.5. All OD commands that are to be
processed at the same instant in time shall constitute a single access unit. Access units in object descriptor
elementary streams shall be labelled and time stamped by suitable means. This shall be done by means of the
related flags and the composition time stamp, respectively, in the SL packet header (see 10.2.4). The composition
time indicates the point in time when an OD access unit becomes valid, i.e., when the embedded OD commands
shall be executed. Decoding and composition time for an OD access unit shall always have the same value.

An access unit may not convey or update the complete set of object descriptors that are currently required. In that
case it just modifies the persistent state of the object descriptor decoder. However, if an access unit conveys the
complete set of object descriptors required at a given point in time it shall set the randomAccessPoi nt Fl ag in
the SL packet header to ‘1’ for this access unit. Otherwise, the r andomAccessPoi nt Fl ag shall be set to ‘0.

NOTE — An SL packet with r andomAccessPoi nt Fl ag=1 but with no OD commands in it indicates that at the current time
instant no valid object descriptors exist.

8.5.3 Time Base for Object Descriptor Streams

The time base associated to an object descriptor stream shall be indicated by suitable means. This shall be done
by means of object clock reference time stamps in the SL packet headers (see 10.2.4) for this stream or by
indicating the elementary stream from which this object descriptor stream inherits the time base (see 10.2.3). All
time stamps in the SL-packetized object descriptor stream refer to this time base.

8.5.4 OD Decoder Configuration

The object descriptor decoder does not require additional configuration information.

8.5.5 OD Command Syntax and Semantics

8.5.5.1 Overview

Object descriptors and their components as defined in 8.6 shall always be conveyed as part of one of the OD
commands specified in this subclause. The commands describe the action to be taken on the components
conveyed with the command, specifically ‘update’ or ‘remove’. Each command affects one or more object
descriptors, ES_Descriptors or IPMP descriptors.

8.5.5.2 ObjectDescriptorUpdate

8.5.5.2.1 Syntax

cl ass Obj ect Descri pt or Updat e ext ends BaseConmand : bit(8) tag=0bjectDescrUpdateTag {
oj ect DescriptorBase O 1 .. 255];
}

© ISO/IEC 2001 — All rights reserved 21

ISO/IEC 14496-1:2001(E)
8.5.5.2.2 Semantics

The Obj ect Descri pt or Updat e class conveys a list of new or updated object descriptors. If an object descriptor
is updated, the streams refered to by the old object descriptor shall be closed and the streams refered to by the
new object descriptor may be accessed by the content access procedure (see 8.7.3.6.2).

NOTE - The ES_DescriptorUpdate or ES_DescriptorRemove commands may be used to add or remove individual
ES_Descriptors of an existing object descriptor.

QD[] — an array of object descriptors as defined in 8.6.3 and 8.6.4. The array shall have any number of one up to
255 elements.

8.5.5.3 ObjectDescriptorRemove
8.5.5.3.1 Syntax
cl ass Obj ectDescri pt or Renmove extends BaseCommand : bit(8) tag=CbjectDescrRenoveTag {

bit (10) objectDescriptorld[(sizeC | nstance*8)/10];

8.5.5.3.2 Semantics

The Obj ect Descri ptorRenpbve class renders unavailable a set of object descriptors. The BIFS nodes
associated to these object descriptors shall have no reference any more to the elementary streams that have been
listed in the removed object descriptors. An objectDescriptorID that does not refer to a valid object descriptor is
ignored.

NOTE — It is possible that a scene description node references an OD_ID which does not currently have an associated OD.

Cbj ect Descriptorld[] — an array of Obj ect Descri ptorl Ds that indicates the object descriptors that are
removed.

8.5.5.4 ES_DescriptorUpdate

8.5.5.4.1 Syntax

cl ass ES Descri ptorUpdat e extends BaseCommand : bit(8) tag=ES DescrUpdateTag {
bi t (10) objectDescriptorld;
ES Descriptor esDescr[1 .. 255];

}

8.5.5.4.2 Semantics

The ES Descri pt or Update class conveys a list of new ES_Descriptors for the object descriptor labeled
obj ect Descri ptorl| D. ES_Descriptors with ES_IDs that have already been received within the same name
scope shall be ignored.

To update the characterstics of an elementary stream, it is required that its original ES_Descriptor be removed and
the changed ES_Descriptor be conveyed.

When an IPMP stream is added, the affected elementary streams, as defined in 8.8.2, shall be processed under
the new IPMP conditions starting at the point in time that this ES_DescriptorUpdate command becomes valid (see
8.5.2).

ES Descri pt or Updat e shall not be applied on object descriptors that have set URL_Flag to '1' (see 8.6.3).

An elementary stream identified with a given ES_ID may be attached to more than one object descriptor. All
corresponding ES Descriptors refering to this ES ID that are conveyed through either
ES Descri pt or Updat e or Obj ect Descri pt or Updat e commands shall have identical content.

obj ect Descriptorl D - identifies the object descriptor for which ES Descriptors are updated. If the
objectDescriptorID does not refer to any valid object descriptor, then this command is ignored.

22 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

esDescr[] —an array of ES Descri pt ors as defined in 8.6.5. The array shall have any number of one up to
255 elements.

8.5.5.5 ES_DescriptorRemove

8.56.5.5.1 Syntax

cl ass ES DescriptorRenove extends BaseCommand : bit(8) tag=ES Descr RenoveTag {
bi t (10) obj ect Descriptorld;
aligned (8) bit(16) ES ID1..255];

8.5.5.5.2 Semantics

The ES Descri pt or Renove class removes the reference to an elementary stream from an object descriptor and
renders this stream unavailable for nodes referencing this object descriptor.

When an IPMP stream is removed, the affected elementary streams, as defined in 8.8.2, shall be processed under
the new IPMP conditions starting at the point in time that this ES_DescriptorRemove command becomes valid (see
8.5.2).

ES Descri pt or Renove shall not be applied on object descriptors that have set URL_Flag to '1' (see 8.6.3).

obj ect Descri ptor| D - identifies the object descriptor from which ES Descri ptors are removed. If the
objectDescriptorID does not refer to a valid object descriptor in the same scope, then this command is ignored.

ES I D[] —anarray of ES | Ds that labels the ES Descri pt ors to be removed from obj ect Descri pt or | D.
If any of the ES_IDs do not refer to an ES_Descri pt or currently referenced by the OD, then those ES_IDs are
ignored. The array shall have any number of one up to 255 elements.

8.5.5.6 IPMP_DescriptorUpdate
8.5.5.6.1 Syntax

class | PMP_Descri pt or Updat e extends BaseConmand : bit(8) tag=IPWMP_DescrUpdateTag {
| PMP_Descri ptor ipnpDescr[1..255];
}

8.5.5.6.2 Semantics

The |PMP_DescriptorUpdate class conveys a list of new or updated |PMP_Descriptors. An
| PMP_Descri pt or identified by an | PMP_Descri ptor| D that has already been received within the same
name scope shall be replaced by the new descriptor.

Updates to an | PMP_Descri pt or shall be propagated at the time this IPMP_DescriptorUpdate becomes valid
(see 8.5.2) to all IPMP Systems that refer to this | PMP_Descri pt or through an | PMP_Descri pt or Poi nt er
(see 8.6.13). The handling of the descriptors by the IPMP systems is not normative.

| PMP_Descri pt ors remain valid until they are replaced by another | PMP_Descri pt or Updat e command or
removed.

i pnpDescr[] —an array of | PMP_Descri pt or as specified in 8.6.14.
8.5.5.7 IPMP_DescriptorRemove

8.5.5.7.1 Syntax

class | PMP_Descri pt or Renove extends BaseComrand : bit(8) tag=lI PMP_Descr RenoveTag {
bit(8) | PMP_DescriptorlD1..255];

© ISO/IEC 2001 — All rights reserved 23

ISO/IEC 14496-1:2001(E)
8.5.5.7.2 Semantics

The | PMP_DescriptorRenove class conveys a list of | PMP_DescriptorslDs that identify the
| PMP_Descri pt ors that shall be removed.

The removal of IPMP_Descriptors shall be notified to all IPMP systems at the time this IPMP_DescriptorRemove
becomes valid (see 8.5.2). The handling of the descriptors by the IPMP systems is not normative.

| PMP_Descriptorl D[] - isalistof| PMP_Descri ptorlDs.
8.6 Object Descriptor Components
8.6.1 Overview

Object descriptors contain various additional descriptors as their components, in order to describe individual
elementary streams and their properties. They shall always be conveyed as part of one of the OD commands
specified in the previous subclause. This subclause defines the syntax and semantics of object descriptors and
their component descriptors.

8.6.2 ObjectDescriptorBase

8.6.2.1 Syntax

abstract class Obj ect Descri ptorBase extends BaseDescriptor : bit(8)
t ag=[Obj ect Descr Tag. . I niti al bj ect Descr Tag] {
/1 enpty. To be filled by classes extending this class.

}

8.6.2.2 Semantics

This is an abstract base class for the different types of object descriptor classes defined subsequently. The term
“object descriptor” is used to generically refer to any such derived object descriptor class or instance thereof.

8.6.3 ObjectDescriptor

8.6.3.1 Syntax

cl ass Obj ect Descri ptor extends ObjectDescriptorBase : bit(8) tag=CbjectDescrTag {
bit (10) ObjectDescriptorl D
bit(1) URL_FI ag;
const bit(5) reserved=0b1111.1;
if (URL_Fl ag) f{
bit(8) URLI engt h;
bit(8) URLstring[URLI ength];
} else {
ES Descriptor esDescr[1 .. 255];
OCl _Descriptor ociDescr[0 .. 255];
| PMP_Descri pt or Poi nter ipnmpDescrPtr[0 .. 255];

}
Ext ensi onDescri ptor extDescr[0 .. 255];

}

8.6.3.2 Semantics

The Obj ect Descri pt or consists of three different parts.

The first part uniquely labels the object descriptor within its name scope (see 8.7.2.4) by means of an
obj ect Descriptorld. Nodes in the scene description use obj ect Descri ptorl D to refer to the related
object descriptor. An optional URLst ri ng indicates that the actual object descriptor resides at a remote location.
The second part consists of a list of ES_Descri pt or s, each providing parameters for a single elementary as well

as an optional set of object content information descriptors and pointers to IPMP descriptors for the contents for
elementary stream content described in this object descriptor.

24 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

The third part is a set of optional descriptors that support the inclusion of future extensions as well as the transport
of private data in a backward compatible way.

obj ect Descri ptorl d — This syntax element uniquely identifies the Qbj ect Descr i pt or within its name scope.
The value 0 is forbidden and the value 1023 is reserved.

URL_FIl ag - aflag that indicates the presence of a URLst ri ng.
URLI engt h — the length of the subsequent URLst ri ng in bytes.

URLstring[] — A string with a UTF-8 (ISO/IEC 10646-1) encoded URL that shall point to another
hj ect Descri pt or. Only the content of this object descriptor shall be returned by the delivery entity upon access
to this URL. Within the current name scope, the new object descriptor shall be referenced by the
obj ect Descri pt or | d of the object descriptor carrying the URLstring. On name scopes see 8.7.2.4. Permissible
URLs may be constrained by profile and levels as well as by specific delivery layers.

esDescr[] —an array of ES Descri pt ors as defined in 8.6.5. The array shall have any number of one up to
255 elements.

oci Descr[] —an array of OCl _Descri pt ors, as defined in 8.6.18.2, that relates to the audio-visual object(s)
described by this object descriptor. The array shall have any number of zero up to 255 elements.

i prpDescrPtr[] - an array of | PMP_Descri ptorPointer, as defined in 8.6.13, that points to the
IPMP_Descriptors related to the elementary stream(s) described by this object descriptor. The array shall have any
number of zero up to 255 elements.

ext Descr[] - an array of Ext ensi onDescri ptors as defined in 8.6.16. The array shall have any number of
zero up to 255 elements.

8.6.4 InitialObjectDescriptor
8.6.4.1 Syntax

class Initial ObjectDescriptor extends CbjectDescriptorBase : bit(8) tag=lnitial ObjectDescrTag
{
bi t (10) Obj ect DescriptorlD;
bit(1) URL_FI ag;
bit (1) includelnlineProfilelLevel Fl ag;
const bit(4) reserved=0b1111;
if (URL_Flag) {
bi t (8) URLI engt h;
bi t(8) URLstring[URLI ength];
} else {
bit(8) ODProfil eLevel I ndication;
bit(8) sceneProfil eLevel I ndication;
bi t (8) audioProfil elLevel I ndication;
bit (8) visual ProfileLevel I ndication;
bi t (8) graphicsProfil eLevel I ndication;
ES Descriptor esDescr[1 .. 255];
OCl _Descriptor ociDescr[0 .. 255];
| PMP_Descri pt or Poi nter ipnmpDescrPtr[0 .. 255];
}
Ext ensi onDescriptor extDescr[0 .. 255];

}

8.6.4.2 Semantics

The I niti al Obj ect Descri pt or is a variation of the Cbj ect Descri pt or specified in the previous subclause
that allows to signal profile and level information for the content refered by it. It shall be used to gain initial access
to ISO/IEC 14496 content (see 8.7.3).

Profile and level information indicated in the I niti al Obj ect Descri ptor indicates the profile and level

supported by at least the first base layer stream (i.e. an elementary stream with a st r eanDependenceFl ag set
to 0) in each object descriptor depending on this initial object descriptor.

© ISO/IEC 2001 — All rights reserved 25

ISO/IEC 14496-1:2001(E)

obj ect Descri ptorld — This syntax element uniquely identifies the I ni ti al Obj ect Descri pt or within its
name scope (see 8.7.2.4). The value 0 is forbidden and the value 1023 is reserved.

URL_Fl ag — a flag that indicates the presence of a URLst ri ng.

i ncl udel nli neProfil eLevel Fl ag — a flag that, if set to one, indicates that the subsequent profile indications
take into account the resources needed to process any content that might be inlined.

URLI engt h — the length of the subsequent URLst ri ng in bytes.

URLstring[] — A string with a UTF-8 (ISO/IEC 10646-1) encoded URL that shall point to another
I nitial Obj ectDescriptor. Only the content of this object descriptor shall be returned by the delivery entity
upon access to this URL. Within the current name scope, the new object descriptor shall be referenced by the
obj ect Descri pt or | d of the object descriptor carrying the URLstring. On name scopes see 8.7.2.4. Permissible
URLs may be constrained by profile and levels as well as by specific delivery layers.

ODPr of i | eLevel I ndi cati on — an indication as defined in Table 3 of the object descriptor profile and level
required to process the content associated with this | ni t i al Obj ect Descri pt or.

Table 3 - ODProfileLevellndication Values

Value Profile Level
0x00 Forbidden -
0x01-0x7F reserved for ISO use -

0x80-0xFD user private -
OxFE no OD profile specified -
OxFF no OD capability required -

NOTE — Usage of the value OXFE indicates that the content described by this InitialObjectDescriptor
does not comply to any OD profile specified in ISO/IEC 14496-1. Usage of the value OxFF indicates that
none of the OD profile capabilities are required for this content.

sceneProfil eLevel I ndi cati on — an indication as defined in Table 4 of the scene graph profile and level
required to process the content associated with this | ni ti al Qbj ect Descri ptor.

Table 4 - sceneProfileLevellndication Values

Value Profile Level
0x00 Reserved for ISO use -
0x01 Simple2D profile L1
0x02-0x7F reserved for ISO use -
0x80-0xFD user private -
OxFE no scene graph profile specified -
OxFF no scene graph capability required -

NOTE — Usage of the value OXFE indicates that the content described by this InitialObjectDescriptor
does not comply to any scene graph profile specified in ISO/IEC 14496-1. Usage of the value OxFF
indicates that none of the scene graph profile capabilities are required for this content.

audi oProfil eLevel I ndi cati on — an indication as defined in Table 5 of the audio profile and level required to
process the content associated with this | ni ti al Obj ect Descri ptor.

Table 5 - audioProfileLevellndication Values

Value Profile Level
0x00 Reserved for ISO use -
0x01 Main Profile L1
0x02 Main Profile L2
0x03 Main Profile L3

26

© ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

0x04 Main Profile L4

0x05 Scalable Profile L1

0x06 Scalable Profile L2

0x07 Scalable Profile L3

0x08 Scalable Profile L4

0x09 Speech Profile L1

Ox0A Speech Profile L2

0x0B Synthesis Profile L1

0x0C Synthesis Profile L2

0x0D Synthesis Profile L3

OXOE-Ox7F reserved for ISO use -

0x80-0xFD user private -

OxFE no audio profile specified -

OxFF no audio capability required -

NOTE — Usage of the value OxFE indicates that the content described by this InitialObjectDescriptor
does not comply to any audio profile specified in ISO/IEC 14496-3. Usage of the value OxFF indicates
that none of the audio profile capabilities are required for this content.

vi sual Profil eLevel I ndi cati on — an indication as defined in Table 6 of the visual profile and level required
to process the content associated with this | ni ti al Obj ect Descri pt or.

Table 6 - visualProfileLevellndication Values

Value Profile Level
0x00 Reserved for ISO use -
0x01 Simple L3
0x02 Simple L2
0x03 Simple L1
0x04 Simple Scalable L2
0x05 Simple Scalable L1
0x06 Core L2
0x07 Core L1
0x08 Main L4
0x09 Main L3
0x0A Main L2
0x0B N-Bit L2
0x0C Hybrid L2
0x0D Hybrid L1
OxOE Basic Animated Texture L2
OxOF Basic Animated Texture L1
0x10 Scalable Texture L3
0x11 Scalable Texture L2
0x12 Scalable Texture L1
0x13 Simple Face Animation L2
0x14 Simple Face Animation L1
0x15-0x7F reserved for ISO use -
0x80-0xFD user private -
OxFE no visual profile specified -
OxFF no visual capability required -
NOTE — Usage of the value OXFE indicates that the content described by this InitialObjectDescriptor
does not comply to any visual profile specified in ISO/IEC 14496-2. Usage of the value OxFF indicates
that none of the visual profile capabilities are required for this content.

© ISO/IEC 2001 — All rights reserved

27

ISO/IEC 14496-1:2001(E)

graphi csProfil eLevel I ndi cati on — an indication as defined in Table 7 of the graphics profile and level
required to process the content associated with this | ni t i al Obj ect Descri pt or.

Table 7 - graphicsProfileLevellndication Values

Value Profile Level
0x00 Reserved for ISO use
0x01 Simple2D profile L1

0x02-0x7F reserved for ISO use
0x80-0xFD user private

OxFE no graphics profile specified
OxFF no graphics capability required
NOTE — Usage of the value OXFE may indicate that the content described by this InitialObjectDescriptor

does not comply to any conformance point specified in ISO/IEC 14496-1. Usage of the value OxFF
indicates that none of the graphics profile capabilities are required for this content.

esDescr[] - an array of ES_Descri ptors as defined in 8.6.5. The array shall have any number of one up to
255 elements.

oci Descr[] - an array of OCI_Descriptors as defined in 8.6.18.2 that relates to the set of audio-visual objects
that are described by this initial object descriptor. The array shall have any number of zero up to 255 elements.

i pmrpDescrPtr[] - an array of | PMP_Descri ptorPointer, as defined in 8.6.13, that points to the
IPMP_Descriptors related to the elementary stream(s) described by this object descriptor. The array shall have any
number of zero up to 255 elements.

ext Descr[] - an array of Ext ensi onDescri pt ors as defined in 8.6.16. The array shall have any number of
zero up to 255 elements.

8.6.5 ES_Descriptor
8.6.5.1 Syntax

cl ass ES Descriptor extends BaseDescriptor : bit(8) tag=ES DescrTag {
bit(16) ES_ID;
bit(1) streanmDependenceFl ag;
bit(1l) URL_FI ag;
bit(1) OCRstreantl ag;
bit(5) streanPriority;
i f (streamDependenceFl ag)
bit (16) dependsOn_ES | D
if (URL_Flag) f{
bit(8) URLI ength;
bit(8) URLstring[URLI ength];

}
i f (OCRstreanfl ag)
bit(16) OCR_ES Id;

Decoder Confi gDescri pt or decConfi gDescr;
SLConfi gbDescri ptor sl ConfigDescr;
| Pl _DescrPointer ipiPtr[0 .. 1];
| P_IdentificationDataSet iplDS[0 .. 255];
| PMP_Descri ptorPointer ipnpDescrPtr[0 .. 255];
LanguageDescri ptor |angDescr[0 .. 255];
QoS Descriptor qosbDescr[0 .. 1];
Regi strationDescriptor regbescr[0 .. 1];
Ext ensi onDescri ptor extDescr[0 .. 255];

}

8.6.5.2 Semantics

The ES_Descri pt or conveys all information related to a particular elementary stream and has three major parts.

28 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
The first part consists of the ES_| D which is a unique reference to the elementary stream within its name scope
(see 8.7.2.4), a mechanism to describe dependencies of elementary streams within the scope of the parent object
descriptor and an optional URL string. Dependencies and usage of URLSs are specified in 8.7.

The second part consists of the component descriptors which convey the parameters and requirements of the
elementary stream.

The third part is a set of optional extension descriptors that support the inclusion of future extensions as well as the
transport of private data in a backward compatible way.

ES | D - This syntax element provides a unique label for each elementary stream within its name scope. The
values 0 and OxFFFF are reserved.

st reamDependenceFl ag - If set to one indicates that a dependsOn_ES | D will follow.
URL_Fl ag —if setto 1 indicates that a URLst ri ng will follow.
OCRst r eanf| ag — indicates that an OCR_ES | D syntax element will follow.

streanPriority — indicates a relative measure for the priority of this elementary stream. An elementary stream
with a higher streanPri ority is more important than one with a lower st r eanPri ori ty. The absolute values
of streanPri ority are not normatively defined.

dependsOn_ES | D —isthe ES_| D of another elementary stream on which this elementary stream depends. The
stream with dependsOn_ES | D shall also be associated to the same object descriptor as the current
ES Descri ptor.

URLI engt h — the length of the subsequent URLst ri ng in bytes.

URLstring[] - contains a UTF-8 (ISO/IEC 10646-1) encoded URL that shall point to the location of an SL-
packetized stream by name. The parameters of the SL-packetized stream that is retrieved from the URL are fully
specified in this ES_Descri pt or. See also 8.7.3.3. Permissible URLs may be constrained by profile and levels as
well as by specific delivery layers.

OCR_ES_| D — indicates the ES_ID of the elementary stream within the name scope (see 8.7.2.4) from which the
time base for this elementary stream is derived. Circular references between elementary streams are not permitted.

decConfi gDescr —is a Decoder Confi gDescri pt or as specified in 8.6.6.

sl Confi gDescr —is an SLConf i gDescri pt or as specified in 8.6.8.

i pi Ptr[] —an array of zero or one | PI _Descr Poi nt er as specified in 8.6.12.

i pl DS[] —an array of zero or more | P_I denti fi cati onDat aSet as specified in 8.6.9.

Each ES Descriptor shall have either one | Pl _Descr Pointer or zero up to 255
| P_ldentificationDataSet elements. This allows to unambiguously associate an IP Identification to each
elementary stream.

i prpDescrPtr[] — an array of | PMP_Descri ptorPointer, as defined in 8.6.13, that points to the
IPMP_Descriptors related to the elementary stream described by this ES_Descri pt or. The array shall have any
number of zero up to 255 elements.

| angDescr[] - an array of zero or one LanguageDescri pt or structures as specified in 8.6.18.6. It indicates
the language attributed to this elementary stream.

NOTE — Multichannel audio streams may be treated as one elementary stream with one ES_Descriptor by ISO/IEC 14496. In
that case different languages present in different channels of the multichannel stream are not identifyable with a
LanguageDescriptor.

gosDescr[] —an array of zero or one QS _Descri pt or as specified in 8.6.15.

© ISO/IEC 2001 — All rights reserved 29

ISO/IEC 14496-1:2001(E)
ext Descr[] —an array of Ext ensi onDescri pt or structures as specified in 8.6.16.
8.6.6 DecoderConfigDescriptor

8.6.6.1 Syntax

cl ass Decoder Confi gDescri ptor extends BaseDescriptor : bit(8) tag=Decoder ConfigDescrTag {
bi t (8) object Typel ndi cati on;
bit(6) streanfype;
bit(1l) upStream
const bit(1l) reserved=1;
bit (24) bufferSizeDB;
bit(32) nmaxBitrate;
bit(32) avgBitrate;
Decoder Speci ficlnfo decSpecificlnfo[O .. 1];
profil eLevel I ndi cati onl ndexDescriptor profileLevel I ndicationlndexDescr [O0..255];

}

8.6.6.2 Semantics

The Decoder Confi gDescri ptor provides information about the decoder type and the required decoder
resources needed for the associated elementary stream. This is needed at the receiving terminal to determine
whether it is able to decode the elementary stream. A stream type identifies the category of the stream while the
optional decoder specific information descriptor contains stream specific information for the set up of the decoder in
a stream specific format that is opaque to this layer.

Obj ect Typel ndi cati on — an indication of the object or scene description type that needs to be supported by
the decoder for this elementary stream as per Table 8. For streaniType values other than audioStream and
visualStream, the obj ect Typel ndi cati on shall be set to OxFF, indicating that no object type is specified.

Table 8 - objectTypelndication Values

Value bj ect Typel ndi cati on Description
0x00 Forbidden

0x01 Systems ISO/IEC 14496-1 °

0x02 Systems ISO/IEC 14496-1 °

0x03-0x1F reserved for ISO use

0x20 Visual ISO/IEC 14496-2 ©

0x21-0x3F reserved for ISO use

0x40 Audio ISO/IEC 14496-3 °

0x41-0x5F reserved for ISO use

0x60 Visual ISO/IEC 13818-2 Simple Profile
0x61 Visual ISO/IEC 13818-2 Main Profile
0x62 Visual ISO/IEC 13818-2 SNR Profile
0x63 Visual ISO/IEC 13818-2 Spatial Profile
0x64 Visual ISO/IEC 13818-2 High Profile
0x65 Visual ISO/IEC 13818-2 422 Profile
0x66 Audio ISO/IEC 13818-7 Main Profile
0x67 Audio ISO/IEC 13818-7 LowComplexity Profile
0x68 Audio ISO/IEC 13818-7 Scaleable Sampling Rate Profile
0x69 Audio ISO/IEC 13818-3

Ox6A Visual ISO/IEC 11172-2

0x6B Audio ISO/IEC 11172-3

0x6C Visual ISO/IEC 10918-1

0x6D - OxBF reserved for ISO use

0xCO - OxFE user private

OxFF no object type specified

30 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

a

This object type shall be used for all streamTypes defined in ISO/IEC 14496-1 except
IPMP streams.

® Includes associated Amendment(s) and Corrigendum(a).

¢ Includes associated Amendment(s) and Corrigendum(a). The actual object types are

defined in ISO/IEC 14496-2 and are conveyed in the DecoderSpecificinfo as specified in
ISO/IEC 14496-2, Annex K.

4 Includes associated Amendment(s) and Corrigendum(a). The actual object types are

defined in ISO/IEC 14496-3 and are conveyed in the DecoderSpecificinfo as specified in
ISO/IEC 14496-3 subpart 1 subclause 6.2.1.

st reaniType - conveys the type of this elementary stream as per Table 9.

Table 9 - streamType Values

st reaniType value Stream type description

0x00 Forbidden

0x01 ObjectDescriptorStream (see 8.5)
0x02 ClockReferenceStream (see 10.2.5)
0x03 SceneDescriptionStream (see 9.2.1)
0x04 VisualStream

0x05 AudioStream

0x06 MPEG7Stream

0x07 IPMPStream (see 8.3.2)

0x08 ObjectContentinfoStream (see 8.4.2)
0x09 MPEGJStream

OxOA - Ox1F reserved for ISO use

0x20 - Ox3F user private

upSt r eam — indicates that this stream is used for upstream information.
buf f er Si zeDB — is the size of the decoding buffer for this elementary stream in byte.

maxBi trate — is the maximum bitrate in bits per second of this elementary stream in any time window of one
second duration.

avgBitrate - is the average bitrate in bits per second of this elementary stream. For streams with variable
bitrate this value shall be set to zero.

decSpeci ficlnfo[] —an array of zero or one decoder specific information classes as specified in 8.6.7.

Profil eLevel I ndi cati onl ndexDescr [0..255] —an array of unique identifiers for a set of profile and level
indications as carried in the Ext ensi onPr of i | eLevel Descr defined in clause 8.6.19.

8.6.7 DecoderSpecificinfo
8.6.7.1 Syntax

abstract class Decoder Specificlnfo extends BaseDescriptor : bit(8) tag=DecSpecificlnfoTag

/1 enpty. To be filled by classes extending this class.

8.6.7.2 Semantics
The decoder specific information constitutes an opaque container with information for a specific media decoder.

The existence and semantics of decoder specific information depends on the values of
Decoder Confi gDescri ptor. streanmlype and Decoder Confi gDescri ptor. obj ect Typel ndi cati on.

© ISO/IEC 2001 — All rights reserved 31

ISO/IEC 14496-1:2001(E)

For values of Decoder Confi gDescri pt or. obj ect Typel ndi cati on that refer to streams complying with
ISO/IEC 14496-2 the syntax and semantics of decoder specific information are defined in Annex K of that part.

For values of Decoder Confi gDescri pt or. obj ect Typel ndi cati on that refer to streams complying with
ISO/IEC 14496-3 the syntax and semantics of decoder specific information are defined in section 1, clause 1.6 of
that part.

For values of Decoder Confi gDescri pt or. obj ect Typel ndi cati on that refer to scene description streams
the semantics of decoder specific information is defined in 9.2.1.2.

For values of Decoder Confi gDescri pt or. obj ect Typel ndi cati on that refer to streams complying with
ISO/IEC 13818-7 the decoder specific information consists of the ADIF -header if it is present (or none if it is not
present) and an access unit is a ,raw_data_block()" as defined in ISO/IEC 13818-7.

For values of Decoder Confi gDescri pt or. obj ect Typel ndi cati on that refer to streams complying with
ISO/IEC 13818-3 the decoder specific information is empty since all necessary data is in the bitstream frames itself.
The access units in this case are the ,frame()“ bitstream element as is defined in ISO/IEC 11172-3.

For values of Decoder Confi gDescri ptor. obj ect Typel ndi cati on that refer to streams complying with
ISO/IEC 10918-1, the decoder specific information is:
cl ass JPEG Decoder Confi g extends Decoder Specificlnfo : bit(8) tag=DecSpecificlnfoTag {
int(16) headerLength;
int(16) Xdensity;
int(16) Ydensity;
i nt (8) nunConponents;
}
with

header Lengt h —indicates the number of bytes to skip from the beginning of the stream to find the first pixel of the
image.

Xdensi ty and Ydensi t y — specify the pixel aspect ratio.
numConponent s — indicates whether the image has Y component only or is Y, Cr, Cb. It shall be equal to 1 or 3.
8.6.8 SLConfigDescriptor

This descriptor defines the configuration of the sync layer header for this elementary stream. The specification of
this descriptor is provided together with the specification of the sync layer in 10.2.3.

8.6.9 IP_IldentificationDataSet
8.6.9.1 Syntax

abstract class IP_IdentificationDataSet extends BaseDescri ptor
bit(8) tag=ContentldentDescrTag. . Suppl Cont ent | dent Descr Tag

/1 enpty. To be filled by classes extending this class.

8.6.9.2 Semantics

This class is an abstract base class that is extended by the descriptor classes that implement IP identification. A
descriptor that allows to aggregate classes of type IP_ldentificationDataSet may actually aggregate any of the
classes that extend IP_IdentificationDataSet.

8.6.10 ContentldentificationDescriptor

8.6.10.1 Syntax

class Contentldentificati onDescriptor extends |P_ldentificationDataSet
bit(8) tag=ContentldentDescrTag

32 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

{
const bit(2) conpatibility=0;
bit(1) cont ent TypeFl ag;
bit(1) contentldentifierFl ag;
bit(1) pr ot ect edCont ent ;
bit(3) reserved = 0b11l1;
i f (contentTypeFl ag)
bit(8) contentType;
if (contentldentifierFlag) {
bit(8) contentldentifierType;
bit(8) contentldentifier[sizeOInstance-2-contentTypeFl ag];
}
}

8.6.10.2 Semantics

The content identification descriptor is used to identify content. All types of elementary streams carrying content
can be identified using this mechanism. The content types include audio, visual and scene description data.
Multiple content identification descriptors may be associated to one elementary stream. These descriptors shall
never be detached from the ES_Descriptor.

conpati bility —mustbe settoO.

cont ent TypeFl| ag — flag to indicate if a definition of the type of content is available.

contentldentifierFl ag —flag to indicate presence of creation ID.

protectedContent - if set to one indicates that the elementary streams that refer to this
IP_IdentificationDataSet are protected by a method outside the scope of ISO/IEC 14496. The behavior of the

terminal compliant with the ISO/IEC 14496 specifications when processing such streams is undefined.

cont ent Type — defines the type of content using one of the values specified in Table 10.

Table 10 - contentType Values

Audio-visual

Book

Serial

Text

Item or Contribution (e.g. article in book or serial)
Sheet music

Sound recording or music video
Still Picture

Musical Work

Reserved for ISO use

255 Others

O IN[O|OIAR|W[IN|FL|O

©
N
(&)
a

contentldentifierType — defines atype of content identifier using one of the values specified in Table 11.

Table 11 - contentldentifierType Values

0 ISAN International Standard Audio-Visual Number
1 ISBN International Standard Book Number

2 ISSN International Standard Serial Number

3 SICI Serial Item and Contribution Identifier

4 BICI Book Item and Component Identifier

5 ISMN International Standard Music Number

6 ISRC International Standard Recording Code

7 ISWC-T International Standard Work Code (Tunes)

8 ISWC-L International Standard Work Code (Literature)

© ISO/IEC 2001 — All rights reserved 33

ISO/IEC 14496-1:2001(E)

9 SPIFF Still Picture ID
10 DOl Digital Object Identifier
11-255 | Reserved for ISO use

contentldentifier — international code identifying the content according to the preceding
contentldentifierType.

8.6.11 SupplementaryContentldentificationDescriptor

8.6.11.1 Syntax

cl ass Suppl enentaryCont entldentificati onDescriptor extends
| P_IdentificationDataSet : bit(8) tag= Suppl Contentl dent Descr Tag

{
bi t (24) | anguageCode;
bit(8) suppl ContentldentifierTitlelLength;
bit(8) supplContentldentifierTitle[supplContentldentifierTitlelLength];
bit(8) suppl ContentldentifierVal ueLength;
bit(8) suppl ContentldentifierValue[suppl ContentldentifierValuelLength];
}

8.6.11.2 Semantics

The supplementary content identification descriptor is used to provide extensible identifiers for content that are
qualified by a language code. Multiple supplementary content identification descriptors may be associated to one
elementary stream. These descriptors shall never be detached from the ES_Descriptor.

| anguage code — This 24 bits field contains the 1ISO 639-2:1998 bibliographic three character language code of
the language of the following text fields.

suppl ementaryContentldentifierTitleLength — indicates the length of the subsequent
suppl ement aryContentl dentifierTitleinbytes.

suppl enentaryCont ent | denti fi erTi tl e — identifies the title of a supplementary content identifier that may
be used when a numeric content identifier (see 8.6.10) is not available.

suppl enent aryCont ent I denti fi er Val ueLength — indicates the length of the subsequent
suppl enment aryCont ent | denti fi er Val ue in bytes.

suppl enentaryCont ent | denti fi er Val ue — identifies the value of a supplementary content identifer
associated to the preceding suppl enentaryContent I dentifierTitle.

8.6.12 IPI_DescrPointer

8.6.12.1 Syntax

class | Pl _DescrPoi nter extends BaseDescriptor : bit(8) tag=lPl_DescrPointerTag {
bit(16) I Pl _ES Id;

}

8.6.12.2 Semantics

The | PlI_DescrPointer class contains a reference to the elementary stream that includes the
I P_ldentificationDataSets that are valid for this stream. This indirect reference mechanism allows to
convey such descriptors only in one elementary stream while making references to it from any ES Descri pt or
that shares the same information.

ES Descri pt ors for elementary streams that are intended to be accessible regardless of the availability of a
referred stream shall explicitly include their |P_ldentificati onDataSets instead of using an
| PI _Descr Poi nter.

34 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

I PI_ES Id —the ES | D of the elementary stream whose ES_Descriptor contains the IP Information valid for this
elementary stream. If the ES Descriptor for I Pl _ES Id is not available, the IPI status of this elementary
stream is undefined.

8.6.13 IPMP_DescriptorPointer

8.6.13.1 Syntax

class | PMP_Descri pt or Poi nt er extends BaseDescriptor : bit(8) tag=IPMP_DescrPointerTag {
bit(8) | PMP_DescriptorlD;

8.6.13.2 Semantics
| PMP_Descri ptorl D - ID of the referenced IPMP_Descriptor (see 8.6.14).

Presence of this descriptor in an object descriptor indicates that all streams referred to by embedded
ES Descri ptors are subject to protection and management by the IPMP System specified in the referenced
| PMP_Descri ptor.

Presence of this descriptor in an ES_Descri pt or indicates that the stream associated with this descriptor is
subject to intellectual property management and protection by the IPMP System specified in the referenced
| PMP_Descri ptor.

8.6.14 IPMP Descriptor

8.6.14.1 Syntax

class | PMP_Descriptor() extends BaseDescriptor : bit(8) |PMP_DescrTag {
bit(8) | PMP_DescriptorlD;
unsi gned int(16) | PMPS_Type;
if (IPWPS_Type == 0) {
bit(8) URLString[sizeO|nstance-3];
} else {
bit(8) | PMP_datalsizeO|nstance-3];

}
8.6.14.2 Semantics

The | PMP_Descri pt or conveys IPMP information to an IPMP System. | PMP_Descri pt ors are conveyed in
object descriptor streams via | PMP_Descr i pt or Updat es as specified in 8.5.5.6. They are not directly included
in object descriptors or ES Descriptors. | PMP_Descriptors are referenced by object descriptors or
ES Descriptors using | PMP_DescriptorPointers (see 8.6.13). An | PMP_Descriptor may be
referenced by multiple object descriptors or ES_Descri pt ors.

| PMP_Descri pt or I D - aunique ID for this IPMP descriptor within its name scope (see 8.7.2.4).

| PMPS_Type - the type of the IPMP System. A zero value does not correspond to an IPMP System but is used to
indicate the presence of a URL. A Registration Authority designated by ISO shall assign valid values for this field.

URLString[] - contains a UTF-8 (ISO/IEC 10646-1) encoded URL that shall point to the location of a remote
| PMP_Descriptor. The | PVPS Type of this | PMP_Descri ptor can be 0 or not. If 0, another URL is
referenced. This process continues until an | PMP_Descr i pt or with a non-zero | PMPS_Type is accessed.

| PMP_dat a - opaque data to control the IPMP System.
8.6.14.3 Implementation of a Registration Authority (RA)
ISO/IEC JTC 1/SC 29 shall issue a call for nominations from Member Bodies of ISO or National Committees of IEC

in order to identify suitable organizations that will serve as the Registration Authority for the IPMPS_Type as
defined in this clause. The selected organization shall serve as the Registration Authority. The so-named

© ISO/IEC 2001 — All rights reserved 35

ISO/IEC 14496-1:2001(E)

Registration Authority shall execute its duties in compliance with Annex H of the JTC 1 Directives. The registered
IPMPS_Type is hereafter referred to as the Registered Identifier (RID).

Upon selection of the Registration Authority, JTC 1 shall require the creation of a Registration Management Group
(RMG) that will review appeals filed by organizations whose request for an RID to be used in conjunction with
ISO/IEC 14496 has been denied by the Registration Authority.

Annex D provides information on the procedure for registering a unique IPMPS_Type value.
8.6.15 QoS _Descriptor
8.6.15.1 Syntax
cl ass QoS _Descriptor extends BaseDescriptor : bit(8) tag=QS _DescrTag {

bit (8) predefined;

i f (predefined==0) {

QS Qualifier qualifiers[];

}
}
8.6.15.2 Semantics

The QoS_descriptor conveys the requirements that the ES has on the transport channel and a description of the
traffic that this ES will generate. A set of predefined values is to be determined; customized values can be used by
setting the pr edef i ned field to O.

predefi ned — avalue different from zero indicates a predefined QoS profile according to Table 12.

Table 12 - Predefined QoS Profiles

predefined value description
0x00 Custom
0x01 - Oxff Reserved

qual i fi er —an array of one or more QoS _Qual i fi ers.
8.6.15.3 QoS_Qualifier

8.6.15.3.1 Syntax
abstract aligned(8) expandable(2?®-1) class QS Qualifier : bit(8) tag=0x01..0xff {
/1 enpty. To be filled by classes extending this class.

class QS Qualifier_MAX DELAY extends QoS Qualifier : bit(8) tag=0x01 {
unsi gned i nt (32) MAX_DELAY;
}

class QS Qualifier_PREF_MAX DELAY extends QoS Qualifier : bit(8) tag=0x02 {
unsi gned int(32) PREF_MAX DELAY;
}

class QS Qualifier_LOSS PROB extends QS Qualifier : bit(8) tag=0x03 {
doubl e(32) LOSS_PROB;
}

class QS _Qualifier_MAX GAP_LCSS extends QoS Qualifier : bit(8) tag=0x04 {
unsi gned int(32) MAX _GAP_LGCSS;
}

class QS _Qualifier_MAX_ AU SIZE extends QS Qualifier : bit(8) tag=0x41 {
unsi gned int(32) MAX AU SI ZE;
}

class QS Qualifier_AVG AU SI ZE extends QoS Qualifier : bit(8) tag=0x42 {

36 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

unsi gned int(32) AVG AU SI ZE;
}

class QoS_Qualifier_MAX_AU RATE extends QoS Qualifier : bit(8) tag=0x43 {
unsi gned int(32) MAX AU RATE;
}

8.6.15.3.2 Semantics

QoS qualifiers are defined as derived classes from the abstract QS _Qual i fi er class. They are identified by
means of their class tag. Unused tag values up to and including Ox7F are reserved for ISO use. Tag values from
0x80 up to and including OXFE are user private. Tag values 0x00 and OxFF are forbidden.

MAX_DELAY — Maximum end to end delay for the stream in microseconds.

PREF_MAX_DELAY — Preferred end to end delay for the stream in microseconds.

LOSS PROB — Allowable loss probability of any single AU as a fractional value between 0.0 and 1.0.
MAX_GAP_LOSS — Maximum allowable number of consecutively lost AUs.

MAX_AU_SI ZE — Maximum size of an AU in bytes.

AVG_AU_SI ZE — Average size of an AU in bytes.

MAX_AU_RATE — Maximum arrival rate of AUs in AUs/second.

8.6.16 ExtensionDescriptor

8.6.16.1 Syntax

abstract class ExtensionDescriptor extends BaseDescriptor
bit(8) tag = ExtDescrTagStartRange .. ExtDescrTagEndRange {
/'l empty. To be filled by classes extending this class.

}

8.6.16.2 Semantics

This class is an abstract base class that may be extended for defining additional descriptors in future. The available
range of class tag values allow 1SO defined extensions as well as private extensions. A descriptor that allows to
aggregate ExtensionDescriptor classes may actually aggregate any of the classes that extend ExtensionDescriptor.
Extension descriptors may be ignored by a terminal that conforms to ISO/IEC 14496-1.

8.6.17 RegistrationDescriptor

The registration descriptor provides a method to uniquely and unambiguously identify formats of private data
streams.

8.6.17.1 Syntax

cl ass RegistrationDescriptor extends BaseDescriptor : bit(8) tag=RegistrationDescrTag {
bit(32) formatldentifier;
bit(8) additionalldentificationlnfo[sizeOInstance-4];

}
8.6.17.2 Semantics

formatl dentifier — isavalue obtained from a Registration Authority as designated by 1SO.

addi tional I dentificationlnfo — The meaning of addi tional | dentificationlnfo, if any, is defined
by the assignee of that f or mat | dent i fi er, and once defined, shall not change.

The registration descriptor is provided in order to enable users of ISO/IEC 14496-1 to unambiguously carry
elementary streams with data whose format is not recognized by ISO/IEC 14496-1. This provision will permit

© ISO/IEC 2001 — All rights reserved 37

ISO/IEC 14496-1:2001(E)

ISO/IEC 14496-1 to carry all types of data streams while providing for a method of unambiguous identification of
the characteristics of the underlying private data streams.

In the following subclause and Annex D, the benefits and responsibilities of all parties to the registration of private
data format are outlined.

8.6.17.2.1 Implementation of a Registration Authority (RA)

ISO/IEC JTC 1/SC 29 shall issue a call for nominations from Member Bodies of ISO or National Committees of IEC
in order to identify suitable organizations that will serve as the Registration Authority for the formatldentifier as
defined in this subclause. The selected organization shall serve as the Registration Authority. The so-named
Registration Authority shall execute its duties in compliance with Annex H of the JTC 1 Directives. The registered
private data formatldentifier is hereafter referred to as the Registered Identifier (RID).

Upon selection of the Registration Authority, JTC 1 shall require the creation of a Registration Management Group
(RMG) which will review appeals filed by organizations whose request for an RID to be used in conjunction with
ISO/IEC 14496-1 has been denied by the Registration Authority.

Annex D provides information on the procedure for registering a unique format identifier.
8.6.18 Object Content Information Descriptors
8.6.18.1 Overview

This subclause defines the descriptors that constitute the object content information. These descriptors may either
be included in an OCl _Event in an OCI stream or be part of an object descriptor or ES_Descr i pt or as defined
in 8.6.

8.6.18.2 OCI_Descriptor Class

8.6.18.2.1 Syntax

abstract class OCl _Descriptor extends BaseDescri ptor
bit(8) tag= OCl Descr TagSt art Range .. OCl Descr TagEndRange

/1 enpty. To be filled by classes extending this class.

8.6.18.2.2 Semantics

This class is an abstract base class that is extended by the classes specified in the subsequent clauses. A
descriptor or an OCI_Event that allows to aggregate classes of type OCI_Descriptor may actually aggregate any of
the classes that extend OCI_Descriptor.

8.6.18.3 Content classification descriptor

8.6.18.3.1 Syntax

cl ass ContentC assificati onDescriptor extends OCl _Descri ptor
bit(8) tag= Contentd assificationDescrTag {
bit(32) classificationEntity;
bit(16) classificationTable;
bit(8) contentd assificationData[sizeO | nstance-6];

}
8.6.18.3.2 Semantics

The content classification descriptor provides one or more classifications of the event information. The
classificationEntity field indicates the organization that classifies the content. The possible values have to
be registered with a registration authority to be identified.

classificationEntity - indicates the content classification entity. The values of this field are to be defined by
a registration authority to be identified.

38 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

cl assificationTabl e — indicates which classification table is being used for the corresponding classification.
The classification is defined by the corresponding classification entity. 0x00 is a reserved value.

contentCl assificationData[]] - this array contains a classification data set using a non-default
classification table.

8.6.18.4 Key Word Descriptor
8.6.18.4.1 Syntax

cl ass KeyWrdDescriptor extends OCl_Descriptor : bit(8) tag=KeyWrdDescrTag {
int i;
bi t (24) | anguageCode;
bit(1) isUTF8_string;
al i gned(8) unsigned int(8) keyWrdCount;
for (i=0; i<keyWrdCount; i++) {
unsi gned int(8) keyWrdLength[[i]];
if (isUTF8_string) then {
bit(8) keyWord[[i]][keyWrdLength[i]];
} else {
bit(16) keyword[[i]][keyWrdLength[i]];
}

}
}

8.6.18.4.2 Semantics

The key word descriptor allows the OCI creator/provider to indicate a set of key words that characterize the
content. The choice of the key words is completely free but each time the key word descriptor appears, all the key
words given are for the language indicated in | anguageCode. This means that, for a certain event, the key word
descriptor must appear as many times as the number of languages for which key words are to be provided.

| anguageCode - contains the 1SO 639-2:1998 bibliographic three character language code of the language of
the following text fields.

i SUTF8_stri ng — indicates that the subsequent string is encoded with one byte per character (UTF-8). Else it is
two byte per character.

keyWdr dCount - indicates the number of key words to be provided.

keyWor dLengt h — specifies the length in characters of each key word.

keyWrd[] - a Unicode (ISO/IEC 10646-1) encoded string that specifies the key word.

8.6.18.5 Rating Descriptor

8.6.18.5.1 Syntax

class RatingDescriptor extends OCl _Descriptor : bit(8) tag=RatingDescrTag {
bit(32) ratingEntity;
bit(16) ratingCriteria;

bit(8) ratinglnfo[sizeOInstance-6];
}

8.6.18.5.2 Semantics

This descriptor gives one or more ratings, originating from corresponding rating entities, valid for a specified
country. The rati ngEnt ity field indicates the organization which is rating the content. The possible values have
to be registered with a registration authority to be identified. This registration authority shall make the semantics of
the rating descriptor publicly available.

rati ngEntity - indicates the rating entity. The values of this field are to be defined by a registration authority to
be identified.

© ISO/IEC 2001 — All rights reserved 39

ISO/IEC 14496-1:2001(E)

rati ngCriteria — indicates which rating criteria are being used for the corresponding rating entity. The value
0x00 is reserved.

rati ngl nfo[] - this array contains the rating information.
8.6.18.6 Language Descriptor

8.6.18.6.1 Syntax

cl ass LanguageDescri ptor extends OCl _Descriptor : bit(8) tag=LanguageDescrTag {
bi t (24) | anguageCode;

}

8.6.18.6.2 Semantics
This descriptor identifies the language of the corresponding audio/speech or text object that is being described.

| anguageCode - contains the ISO 639-2:1998 bibliographic three character language code of the corresponding
audio/speech or text object that is being described.

8.6.18.7 Short Textual Descriptor

8.6.18.7.1 Syntax

cl ass Short Text ual Descri ptor extends OCl _Descriptor : bit(8) tag=Short Textual DescrTag {
bi t (24) | anguageCode;
bit(1) isUTF8_string;
al i gned(8) unsigned int(8) nanelLength;
if (isUTF8_string) then {
bi t (8) event Nane[nameLengt h] ;
unsi gned int(8) textLength;
bit(8) eventText[textLength];
} else {
bit (16) event Nane[naneLengt h];
unsi gned int(8) textLength;
bit(16) eventText[textLength];

}
8.6.18.7.2 Semantics

The short textual descriptor provides the name of the event and a short description of the event in text form.

| anguageCode - contains the ISO 639-2:1998 bibliographic three character language code of the language of
the following text fields.

i SUTF8_st ri ng — indicates that the subsequent string is encoded with one byte per character (UTF-8). Else it is
two byte per character.

nanelLengt h — specifies the length in characters of the event name.

event Nane[] —a Unicode (ISO/IEC 10646-1) encoded string that specifies the event name.

t ext Lengt h — specifies the length in characters of the following text describing the event.

event Text[] - a Unicode (ISO/IEC 10646-1) encoded string that specifies the text description for the event.
8.6.18.8 Expanded Textual Descriptor

8.6.18.8.1 Syntax

cl ass ExpandedText ual Descri ptor extends OCl _Descriptor : bit(8) tag=ExpandedTextual DescrTag {
int i;
bi t (24) | anguageCode;
bit(1l) isUTF8_ string;

40 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

al i gned(8) unsigned int(8) itenCount;
for (i=0; i<itenCount; i++){
unsi gned int(8) itenDescriptionLength[[i]];
if (isUTF8_string) then {
bit(8) itenDescription[[i]][itenDescriptionLength[i];
} else {
bit(16) itenmDescription[[i]][itenDescriptionLength[i]];

unsigned int(8) itenLength[[i]];
if (isUTF8_string) then {

bit(8) itenText[[i]][itenlength[i]];
} else {

bit(16) itenmrlext[[i]][itenlength[i]];

}
unsi gned int(8) textLength;

i nt nonlt enfext Lengt h=0;
whil e(textLength == 255) {
nonl t enText Length += textLength;
bi t (8) textLength;
nonl t enText Lengt h += t ext Lengt h;
if (isUTF8_string) then {
bi t (8) nonltenText[nonlteniText Length];
} else {
bi t (16) nonl t enilfext [nonl t emlext Lengt h] ;

}

8.6.18.8.2 Semantics

The expanded textual descriptor provides a detailed description of an event, which may be used in addition to, or
independently from, the short event descriptor. In addition to direct text, structured information in terms of pairs of
description and text may be provided. An example application for this structure is to give a cast list, where for
example the item description field might be “Producer” and the item field would give the name of the producer.

| anguageCode - contains the ISO 639-2:1998 bibliographic three character language code of the language of the
following text fields.

i SUTF8_st ri ng — indicates that the subsequent string is encoded with one byte per character (UTF-8). Else it is
two byte per character.

i temCount - specifies the number of items to follow (itemised text).

i temDescri ptionLengt h — specifies the length in characters of the item description.

i temDescription[] —aUnicode (ISO/IEC 10646-1) encoded string that specifies the item description.
i temLengt h — specifies the length in characters of the item text.

i tenifext[] —a Unicode (ISO/IEC 10646-1) encoded string that specifies the item text.

t ext Lengt h — specifies the length in characters of the non itemised expanded text. The value 255 is used as an
escape code, and it is followed by another t ext Lengt h field that contains the length in bytes above 255. For
lengths greater than 511 a third field is used, and so on.

nonltemlext[] —a Unicode (ISO/IEC 10646-1) encoded string that specifies the non itemised expanded text.
8.6.18.9 Content Creator Name Descriptor

8.6.18.9.1 Syntax

cl ass Cont ent Creat or NaneDescri pt or extends OCl _Descri ptor
bit(8) tag= Content Creat or NaneDescr Tag {
int i;
unsi gned int(8) contentCreatorCount;

© ISO/IEC 2001 — All rights reserved 41

ISO/IEC 14496-1:2001(E)

for (i=0; i<contentCreatorCount; i++){
bit(24) | anguageCode[[i]];
bit(1) isUTF8_string[[i]];
aligned(8) unsigned int(8) contentCreatorLength[[i]];
if (isUTF8_string[[i]]) then {
bit(8) contentCreatorNanme[[i]][contentCreatorLength[i]];
} else {
bit(16) contentCreatorNanme[[i]][contentCreatorLength[i]];

}
}

8.6.18.9.2 Semantics

The content creator name descriptor indicates the name(s) of the content creator(s). Each content creator name
may be in a different language.

cont ent Cr eat or Count - indicates the number of content creator names to be provided.

| anguageCode - contains the ISO 639-2:1998 bibliographic three character language code of the language of
the following text fields. Note that for languages that only use Latin characters, just one byte per character is
needed in Unicode (ISO/IEC 10646-1).

i SUTF8_st ri ng — indicates that the subsequent string is encoded with one byte per character (UTF-8). Else it is
two byte per character.

content CreatorLength[[i]] - specifies the length in characters of each content creator name.

contentCreatorNanme[[i]][] - a Unicode (ISO/IEC 10646-1) encoded string that specifies the content
creator name.

8.6.18.10 Content Creation Date Descriptor
8.6.18.10.1 Syntax

cl ass Content Creati onDat eDescriptor extends OCl_Descriptor
: bit(8) tag= ContentCreationDateDescrTag {
bi t (40) content CreationDat e;

}
8.6.18.10.2 Semantics

This descriptor identifies the date of the content creation.

cont ent Creat i onDat e — contains the content creation date of the data corresponding to the event in question,
in Universal Time, Co-ordinated (UTC) and Modified Julian Date (MJD) (see Annex F). This field is coded as 16 bits
giving the 16 least significant bits of MJD followed by 24 bits coded as 6 digits in 4-bit Binary Coded Decimal
(BCD). If the content creation date is undefined all bits of the field are set to 1.

8.6.18.11 OCI Creator Name Descriptor
8.6.18.11.1 Syntax

cl ass OClI Creat or NaneDescri pt or extends OCl _Descri ptor
bit (8) tag=CCl Creat or NameDescr Tag {
int i;
unsi gned int(8) OCl CreatorCount;
for (i=0; i<OClCreatorCount; i++) {
bi t (24) | anguageCode[[i]];
bit(1) isUTF8_string;
aligned(8) unsigned int(8) OClCreatorLength[[i]];
if (isUTF8_string) then {
bit(8) OCICreatorNane[[i]][OCl CreatorLength];
} else {
bit(16) OCl CreatorNane[[i]][OCl CreatorLength];

42 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

}
}

8.6.18.11.2 Semantics

The name of OCI creators descriptor indicates the name(s) of the OCI description creator(s). Each OCI creator
name may be in a different language.

OCl Cr eat or Count - indicates the number of OCI creators.

| anguageCode[[i]] - contains the I1ISO 639-2:1998 bibliographic three character language code of the
language of the following text fields.

i SUTF8_st ri ng — indicates that the subsequent string is encoded with one byte per character (UTF-8). Else it is
two byte per character.

OCl CreatorLength[[i]] - specifiesthe length in characters of each OCI creator name.
OCl CreatorNane[[i]] —a Unicode (ISO/IEC 10646-1) encoded string that specifies the OCI creator name.
8.6.18.12 OCI Creation Date Descriptor
8.6.18.12.1 Syntax
cl ass OCl CreationDat eDescri ptor extends OCl _Descri ptor
bi t (8) tag=CCl CreationDat eDescrTag {

bi t (40) OCl Creati onDat e;

8.6.18.12.2 Semantics

This descriptor identifies the creation date of the OCI description.

OClI Creat i onDat e - This 40-bit field contains the OCI creation date for the OCI data corresponding to the event
in question, in Co-ordinated Universal Time (UTC) and Modified Julian Date (MJD) (see Annex F). This field is
coded as 16 bits giving the 16 least significant bits of MJD followed by 24 bits coded as 6 digits in 4-bit Binary
Coded Decimal (BCD). If the OCI creation date is undefined all bits of the field are set to 1.

8.6.18.13 SMPTE Camera Position Descriptor

8.6.18.13.1 Syntax

cl ass Snpt eCamer aPosi ti onDescriptor extends OCl _Descriptor : bit (8)
t ag=Snpt eCaner aPosi ti onDescr Tag {
unsi gned int (8) cameral D
unsi gned int (8) paraneterCount;
for (i=0; i<paraneterCount; i++) {
bit (8) paraneterlD;
bit (32) paraneter;

}
}

8.6.18.13.2 Semantics
The SMPTE metadata descriptor provides metadata defined by the Proposed SMPTE Standard 315M of “camera
positioning information conveyed by ancillary data packets.” The SMPTE 315M defines IDs and data formats for
the following parameters:

- camera relative position

- camera pan

- camera tilt

- camera roll

© ISO/IEC 2001 — All rights reserved 43

ISO/IEC 14496-1:2001(E)

- origin of world coordinate longitude

- origin of world coordinate latitude

- origin of world coordinate altitude

- vertical angle of view

- focus distance

- lens opening (iris or F-value)

- time address information

- object relative position

caner al D - contains the b(0-7) of C-ID of the UDW in Figure 6.

par anet er Count

- specifies the number of parameters and is equal to (the Data Count Word (DC) — 18) / 5.

par anet er | D- contains the b(0-7) of i-th IDn of the UDW.

par amet er - contains the i-th Parameter n of the UDW (b(0-7) of each word).

8.6.18.13.3 Packet structure defined by SMPTE 315M

Ancillary data packet and space format is defined by ANSI/SMPTE 291M.

The SMPTE 315M is one of the

registered formats for a specific application of user data space defined by the 291M. The structure of binary-type
camera positioning data packets described in the SMPTE 315M is illustrated in Figure 6.

AlA
D|D
FIF

A
D
=

D
I
D

D
B
N

F|C
LABEL ol - | | Parameter Parameter Parameter
(16 words) Rl1|D 1 2 n
Mlipll (4 words) (4 words) (4 words)

Ancillary data is defined as 10-bit words.
respectively except ADF.

ADF:

DID:

DBN:

DC:

UDW:

LABEL:

FORM:

C-ID:

IDn:

44

| ubw |

Figure 6 - Binary-type camera positioning data packets (SMPTE 315M)

B(0-7), b8 and b9 represent actual data, even parity for b(0-7) and not b8

Ancillary Data Flag (000 h, 3ff h, 3ff h)

Data Identification Word (2f0 h)

Data Block Number Word

Data Count Word

User Data Words (up to 255 words)

SMPTE label for metadata of class “camera positioning information” (16 words)
Data Type Identification Flag Word (1 word)

Camera Identification Word (1 word)

Parameter Identification Word (1 word for each parameter)

© ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
Parameter n: Parameter Data Words (4 words for each parameter)
CS: Checksum Word

The 4 words LABEL(8-11) of LABEL(0-15) shall be set to ‘C’, ‘A’, ‘P, ‘O’. The Data Type Identification Flag Word
(FORM) indicates the data type of the camera identification word (C-ID), parameter identification word (IDn) and
parameter data word (Parameter n) contained in the packet. In case of binary-type camera positioning data
FORM(0-1) shall be setto 0 h.

8.6.19 Extension Profile Level Descriptor
8.6.19.1 Syntax

cl ass ExtensionProfil eLevel Descriptor() extends BaseDescriptor : bit(8)
Ext ensi onProfi | eLevel Descr Tag {

bit(8) profilelLevel | ndicationl ndex;

bit(8) ODProfil eLevel I ndication;

bit(8) sceneProfil eLevel I ndication;

bi t (8) audi oProfil elLevel I ndication;

bit (8) visual ProfileLevel I ndication;

bi t (8) graphicsProfil eLevel I ndication;

bit(8) MPEGIProfil eLevel I ndi cati on;
}

8.6.19.2 Semantics

The Ext ensi onProfi | eLevel Descri pt or conveys profile and level extension information. This descriptor is
used to signal a profile and level indication set and its unique index and can be extended by ISO to signal any
future set of profiles and levels.

profil eLevel I ndi cati onl ndex - a unique identifier for the set of profile and level indications described in
this descriptor within the name scope defined by the 10D.

ODProfi | eLevel I ndi cati on — an indication of the profile and level required to process object descriptor
streams associated with the | ni ti al Cbj ect Descri pt or containing this Extension Profile and Level descriptor.

sceneProfil eLevel I ndi cati on — an indication of the profile and level required to process the scene graph
nodes within scene description streams associated with the I niti al Cbj ect Descri ptor containing this
Extension Profile and Level descriptor.

audi oProfil eLevel I ndi cati on — an indication of the profile and level required to process audio streams
associated with the | ni ti al Obj ect Descri pt or containing this Extension Profile and Level descriptor.

vi sual Profil eLevel I ndi cati on — an indication of the profile and level required to process visual streams
associated with the | ni ti al Obj ect Descri pt or containing this Extension Profile and Level descriptor.

graphi csProfil eLevel I ndi cati on —an indication of the profile and level required to process graphics nodes
within scene description streams associated with the | ni ti al Qbj ect Descri pt or containing this Extension
Profile and Level descriptor.

MPEGIPr of i | eLevel I ndi cati on — an indication as defined in Table 13 of the MPEG-J profile and level

required to process the content associated with the InitialObjectDescriptor containing this Extension Profile and
Level descriptor.

© ISO/IEC 2001 — All rights reserved 45

ISO/IEC 14496-1:2001(E)

Table 13 - MPEGJProfileLevellndication Values

Value Profile Level
0x00 Reserved for ISO use -
0x01 Personal profile L1
0x02 Main profile L1

0x03-0x7F reserved for ISO use -
0x80-0xFD user private -

OXFE no MPEG-J profile specified -
OxFF no MPEG-J capability required -
Note: Usage of the value OxFE may indicate that the content described by this

InitialObjectDescriptor does not comply to any conformance point specified in ISO/IEC 14496-1

8.6.20 Profile Level Indication Index Descriptor

8.6.20.1 Syntax
class ProfilelLevel | ndi cati onl ndexDescriptor () extends BaseDescri ptor

bit(8) ProfileLevel I ndicationlndexDescrTag {
bit(8) profilelLevellndicationlndex;

8.6.20.2 Semantics

profil elLevel I ndicationl ndex — a unique identifier for the set of profile and level indications described in
this descriptor within the name scope defined by the 10D.

8.7 Rules for Usage of the Object Description Framework

8.7.1 Aggregation of Elementary Stream Descriptors in a Single Object Descriptor
8.7.1.1 Overview

An object descriptor shall aggregate the descriptors for the set of elementary streams that is intended to be
associated to a single node of the scene description and that usually relate to a single audio-visual object. The set
of streams may convey a scaleable content representation as well as multiple alternative content representations,
e.g., multiple qualities or different languages. Additional streams with IPMP and object content information may be
attached.

These options are described by the ES_Descriptor syntax elements streanmDependenceF! ag,
dependsOn_ES I D, as well as streanilype. The semantic rules for the aggregation of elementary stream
descriptors within one object descriptor (OD) are specified in this subclause.

8.7.1.2 Aggregation of Elementary Streams with the same streamType

An OD may aggregate multiple ES_Descriptors with the same st r eamType of either visualStream, audioStream or
SceneDescriptionStream. However, descriptors for streams with two of these types shall not be mixed within one
OD.

8.7.1.3 Aggregation of Elementary Streams with Different streamTypes

In the following cases ESs with different st r eanilype may be aggregated:

e An OD may aggregate zero or one additional ES_Descriptor with st reanmType = ObjectContentinfoStream
(see 8.4.2). This ObjectContentinfoStream shall be valid for the content conveyed through the other visual,
audio or scene description streams whose descriptors are aggregated in this OD.

e An OD may aggregate zero or one additional ES_Descriptors with st r eaniType = ClockReferenceStream

(see 10.2.5). This ClockReferenceStream shall be valid for the ES within the name scope that refer to the
ES_ID of this ClockReferenceStream in their SLConfigDescriptor.

46 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

e An OD may aggregate zero or more additional ES_Descriptors with st r eaniType = IPMPStream (see 8.3.2).
This IPMPStream shall be valid for the content conveyed through the other visual, audio or scene description
streams whose descriptors are aggregated in this OD.

8.7.1.4 Aggregation of scene description streams and object descriptor streams

An object descriptor that aggregates one or more ES_Descriptors of st r eaniType = SceneDescriptionStream may
aggregate any number of additional ES_Descriptors with st r eaniType = ObjectDescriptorStream. ES_Descriptors
of streanifype = ObjectDescriptorStream shall not be aggregated in object descriptors that do not contain
ES_Descriptors of st r eamType = SceneDescriptionStream.

This means that scene description and object descriptor streams are always combined within one object descriptor.
The dependencies between these streams are defined in 8.7.1.5.2.

8.7.1.5 Elementary Stream Dependencies
8.7.1.5.1 Independent elementary streams

ES_Descriptors within one OD with the same streamlype of either audioStream, visualStream or
SceneDescriptionStream that have st r eanDependenceF| ag=0 refer to independent elementary streams. Such
independent elementary streams shall convey alternative representations of the same content. Only one of these
representations shall be selected for use in the scene.

NOTE — Independent ESs should be ordered within an OD according to the content creator’s preference. The ES that is first in
the list of ES aggregated to one object descriptor should be preferable over an ES that follows later. In case of audio streams,
however, the selection should for obvious reasons be done according to the prefered language of the receiving terminal.

8.7.1.5.2 Dependent elementary streams

ES_Descriptors within one OD with the same streanflype of either audioStream, visualStream,
SceneDescriptionStream or ObjectDescriptorStream that have st reanDependenceFl ag=1 refer to dependent
elementary streams. The ES_ID of the stream on which the dependent elementary stream depends is indicated by
dependsOn_ES | D. The ES_Descriptor with this ES_ID shall be aggregated to the same OD. One independent
elementary stream per object descriptor and all its dependent elementary streams may be selected for concurrent
use in the scene.

Stream dependencies are governed by the following rules:

e For dependent ES of st reanlype equal to either audioStream or visualStream the dependent ES shall have
the same streanType as the ES on which it depends. This implies that the dependent stream contains
enhancement information to the one it depends on. The precise semantic meaning of the dependencies is
opague at this layer.

e An ES with a streanilype of SceneDescriptionStream shall only depend on an ES with streanilype of
SceneDescriptionStream or ObjectDescriptorStream.

Dependency on an ObjectDescriptorStream implies that the ObjectDescriptorStream contains the object
descriptors that are refered to by this SceneDescriptionStream.

Dependency on a SceneDescriptionStream implies that the dependent stream contains enhancement
information to the one it depends on. The dependent SceneDescriptionStream shall depend on the same
ObjectDescriptorStream on which the other SceneDescriptionStream depends.

e An ES with a streaniType of ObjectDescriptorStream shall only depend on an ES with a streanType of
SceneDescriptionStream. This dependency does not have implications for the object descriptor stream.

Only if a second stream with streamlype of SceneDescriptionStream depends on this stream with
st reaniType = ObjectDescriptorStream, it implies that the second SceneDescriptionStream depends on the
first SceneDescriptionStream. The object descriptors in the ObjectDescriptorStream shall only be valid for the
second SceneDescriptionStream.

© ISO/IEC 2001 — All rights reserved 47

ISO/IEC 14496-1:2001(E)

e An ES that flows upstream, as indicated by Decoder Confi gDescri ptor.upStream = 1 shall always
depend upon another ES that has the upSt r eamflag set to zero. This implies that this upstream is associated
to the downstream it depends on. If the downstream is an ObjectDescriptorStream or SceneDescriptionStream,
the upstream shall be associated to all downstreams specified in that ObjectDescriptorStream or
SceneDescriptionStream.

¢ The availability of the dependent stream is undefined if an ES_Descriptor for the stream it depends upon is not
available.

8.7.2 Linking Scene Description and Object Descriptors
8.7.2.1 Associating Object Descriptors to BIFS Nodes

Some BIFS nodes contain an url field. Such nodes are associated to their elementary stream resources (if any) via
an object descriptor. The association is established by means of the obj ect Descri ptorl| D, as specified in
9.3.7.20.2. The name scope for this ID is specified in 8.7.2.4.

Each BIFS node requires a specific streamType (audio, visual, inlined scene description, etc.) for its associated
elementary streams. The associated object descriptor shall contain ES_Descriptors with this streamType. The
behavior of the terminal is undefined if an object descriptor contains ES_Descriptors with stream types that are
incompatible with the associated BIFS node.

Note that commands adding or removing object descriptors need not be co-incident in time with the addition or
removal of BIFS nodes in the scene description that refer to such an object descriptor. However, the behavior of
the terminal is undefined if a BIFS node in the scene description references an object descriptor that is no longer
valid.

The terminal shall gracefully handle references from the scene description to object descriptors that are not
currently available.

8.7.2.2 Multiple scene description and object description streams

An object descriptor that is associated to an Inline node of the scene description or that represents the primary
access to content compliant with the ISO/IEC 14496 specifications (initial object descriptor) aggregates as a
minimum, one scene description stream and the corresponding object descriptor stream (if additional elementary
streams need to be referenced).

However, it is permissible to split both the scene description and the object descriptors in multiple streams. This
allows a bandwidth-scaleable encoding of the scene description. Each stream shall contain a valid sequence of
access units as defined in 9.2.1.3 and 8.5.2, respectively. All resulting scene description streams and object
descriptor streams shall remain aggregated in a single object descriptor. The dependency mechanism shall be
used to indicate how the streams depend on each other.

All streams shall continue to be processed by a single scene description and object descriptor decoding process,
respectively. The time stamps of the access units in different streams shall be used to re-establish the original
order of access units.

NOTE — This form of partitioning of the scene description and the object descriptor streams in multiple streams is not visible in
the scene description itself.

8.7.2.3 Scene and Object Description in Case of Inline Nodes

The BIFS scene description allows to recursively partition a scene through the use of Inline nodes (see 9.4.2.62).
Each Inline node is associated to an object descriptor that points to at least one additional scene description
stream as well as another object descriptor stream (if additional elementary streams need to be referenced). An
example for such a hierarchical scene description can be found in 8.7.3.8.2.

8.7.2.4 Name Scope of Identifiers

The scope of the obj ect Descriptorl D, ES ID and | PMP_Descri ptorl D identifiers that label the object
descriptors, elementary stream descriptors and IPMP descriptors, respectively, is defined as follows. This definition

48 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

is based on the restriction that associated scene description and object descriptor streams shall always be
aggregated in a single object descriptor, as specified in 8.7.1.4. The following rule defines the name scope:

e Two obj ectDescriptorlD, ES I Dor | PVMP_DescriptorlD as well as nodel D and ROUTEI D identifiers
belong to the same name scope if and only if these identifiers occur in elementary streams with a st r eanType
of either ObjectDescriptorStream or SceneDescriptionStream that are aggregated in a single initial object
descriptor or a single object descriptor associated to an Inline node.

NOTE 1 — Hence, the difference between the two methods specified in 8.7.2.2 and 8.7.2.3 above to partition a scene
description in multiple streams is that the first method allows multiple scene description streams that refer to the same name

scope while an Inline node opens a new name scope.

NOTE 2 — This implies that a URL in an object descriptor opens a new name scope since it points to an object descriptor that is
not carried in the same ObjectDescriptorStream.

NOTE 3 — It is recommendable to extend the name scope for the stream related identifiers, namely, ES_ID and
IPMP_DescriptorID, to the underlying communication session that is established as described in 8.7.3.6. This implies that those
identifiers will be unique within such a communication session.

8.7.2.5 Reuse of identifiers
Within a single name scope an ES_ID identifier shall always refer to a single instance of an elementary stream.

Note: If two ES_Descriptors within two object descriptors reference a given ES_ID, this means that the second reference may
not receive the stream content from the beginning if the first reference has already started the stream.

For reasons of error resilience, it is recommended not to reuse obj ect Descri ptorl D and ES | D identifiers to
identify more than one object or elementary stream, respectively, within one presentation. That means, if an object
descriptor or elementary stream descriptor is removed by means of an OD command and later on reinstalled with
another OD command, then it shall still point to the same content item as before.

8.7.3 ISO/IEC 14496 Content Access
8.7.3.1 Introduction

In order to access ISO/IEC 14496 compliant content it is a pre-condition that an initial object descriptor to such
content is known through means outside the scope of ISO/IEC 14496. The subsequent content access procedure
is specified conceptually, using a number of walk throughs. Its precise definition depends on the chosen delivery
layer.

For applications that implement the DMIF Application Interface (DAI) specified in ISO/IEC 14496-6 which abstracts
the delivery layer, a mapping of the conceptual content access procedure to calls of the DAI is specified in 8.7.3.9.

The content access procedure determines the set of required elementary streams, requests their delivery and
associates them to the scene description. The selection of a subset of elementary streams suitable for a specific
ISO/IEC 14496 terminal is possible, either based on profiles or on inspection of the set of object descriptors.

8.7.3.2 The Initial Object Descriptor

Initial object descriptors convey information about the profiles required by the terminal compliant with ISO/IEC
14496 specifications to be able to process the described content. This profile information summarizes the
complexity of the content referenced directly or indirectly through this initial object descriptor, i.e., it indicates the
overall terminal capabilities required to decode and present this content. Therefore initial object descriptors
constitute self-contained access points to content compliant with ISO/IEC 14496 specifications.

There are two constraints to this general statement:

e If the includelnlineProfilelLevel Fl ag of the initial object descriptor is not set, the complexity of any
inlined content is not included in the profile indications.

e In addition to the elementary streams that are decodable by the terminal conforming to the indicated profiles,
alternate content representations might be available. This is further explained in 8.7.3.4.

© ISO/IEC 2001 — All rights reserved 49

ISO/IEC 14496-1:2001(E)

An initial object descriptor may be conveyed by means not defined in ISO/IEC 14496. The content may be
accessed starting from the elementary streams that are described by this initial object descriptor, usually one or
more scene description streams and zero or more object descriptor streams.

Content refered to by an initial object descriptor may itself be referenced from another piece of ISO/IEC 14496
content. In this case, the initial object descriptor will be conveyed in an object descriptor stream and the OD_| Ds of
both initial object descriptors and ordinary object descriptors belong to the same name scope.

Ordinary object descriptors may be used as well to describe scene description and object descriptor streams.
However, since they do not carry profile information, they can only be used to access content if that information is
either not required by the terminal or is obtained by other means.

8.7.3.3 Usage of URLs in the Object Descriptor Framework

URLSs in the object description framework serve to locate either inlined ISO/IEC 14496 content or the elementary
stream data associated to individual audio-visual objects.

URLs in ES_Descriptors locate elementary stream data that shall be delivered as SL-packetized stream by the
delivery entity associated to the current name scope. The complete description of the stream (its ES_Descriptor) is
available locally.

URLs in object descriptors locate an object descriptor at a remote location. Only the content of this object
descriptor shall be returned by the delivery entity upon access to this URL. This implies that the description of the
resources for the associated BIFS node or the inlined content is only available at the remote location. Note,
however, that depending on the value of i ncl udel nl i neProfil eLevel Fl ag in the initial object descriptor, the
global resources needed may already be known (i.e., including remote, inlined portions).

8.7.3.4 Selection of Elementary Streams for an Audio-Visual Object

Elementary streams are attached through their object descriptor to appropriate BIFS nodes which, in most cases,
constitute the representation of a single audio-visual object in the scene. The selection of one or more ESs for each
BIFS node may be governed by the profile indications that are conveyed in the initial object descriptor. All object
descriptors shall at least include one elementary stream with suitable object type to satisfy the initially signaled
profiles.

Additionally, object descriptors may aggregate ES_Descriptors for elementary streams that require more computing
or bandwidth resources. Those elementary streams may be used by the receiving terminal if it is capable of
processing them.

In case initial object descriptors do not indicate any profile and level or if profile and level indications are
disregarded, an alternative to the profile driven selection of streams exists. The receiving terminal may evaluate the
ES_Descriptors of all available elementary streams for each BIFS node and choose by some non-standardized
way for which subset it has sufficient resources to decode them while observing the constraints specified in this
subclause.

NOTE — Some restrictions on the selection of and access to elementary streams might exist if a set of elementary streams
shares a single object time base (see 10.2.6).

8.7.3.5 Content access in “push” and “pull” scenarios

In an interactive, or “pull” scenario, the receiving terminal actively requests the establishment of sessions and the
delivery of content, i.e., streams. This usually involves a session and channel set up protocol between sender and
receiver. This protocol is not specified here. However, the conceptual steps to be performed are the same in all
cases and are specified in the subsequent clauses.

In a broadcast, or “push” scenario, the receiving terminal passively processes what it receives. Instead of issuing
requests for session or channel set up the receiving terminal shall evaluate the relevant descriptive information that
associates ES_IDs to their transport channel. The syntax and semantics of this information is outside the scope of
ISO/IEC 14496, however, it needs to be present in any delivery layer implementation. This allows the terminal to
gain access to the elementary streams forming part of the content.

50 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

8.7.3.6 Content access through a known Object Descriptor

8.7.3.6.1 Pre-conditions

An object descriptor has been acquired. This may be an initial object descriptor.

The object descriptor contains ES_Descriptors pointing to object descriptor stream(s) and scene description
stream(s) using ES_IDs.

A communication session to the source of these streams is established.

A mechanism exists to open a channel that takes user data as input and provides some returned data as
output.

8.7.3.6.2 Content Access Procedure

The content access procedure shall be equivalent to the following:

1.

2.

6.

7.

The object descriptor is evaluated and the ES_ID for the streams that are to be opened are determined.

Requests for opening the selected ESs are made, using a suitable channel set up mechanism with the ES_IDs
as parameter.

The channel set up mechanism shall return handles to the streams that correspond to the requested list of ESs.
Requests for delivery of the selected ESs are made.

Interactive scenarios: Delivery of streams starts. All scenarios: The streams now become accessible.

Scene description and object descriptor stream are evaluated.

Further streams are opened as needed with the same procedure, starting at step 1.

8.7.3.7 Content access through a URL in an Object Desciptor

8.7.3.7.1 Pre-conditions

A URL to an object descriptor or an initial object descriptor has been acquired.

A mechanism exists to open a communication session that takes a URL as input and provides some returned
data as output.

8.7.3.7.2 Content access procedure

The content access procedure shall be equivalent to the following:

1.

2.

3.

A connection to the source of the URL is made, using a suitable service set up call.
The service set up call shall return data consisting of a single object descriptor.

Continue at step 1 in 8.7.3.6.2.

8.7.3.8 Content access through a URL in an elementary stream descriptor

8.7.3.8.1 Pre-conditions

An ES_Descriptor pointing to a stream through a URL has been aquired. (Note that the ES_Descriptor fully
specifies the configuration of the stream.)

A mechanism exists to open a communication session that takes a URL as input and provides some returned
data as output.

© ISO/IEC 2001 — All rights reserved 51

ISO/IEC 14496-1:2001(E)

e A mechanism exists to open a channel that takes user data as input and provides some returned data as
output.

8.7.3.8.2 Content access procedure
The content access procedure shall be equivalent to the following:

1. Arequest to open the communication session is made, using a suitable session set up mechanism with the URL
as parameter.

2. The session set up mechanism shall return a handle to the session that corresponds to the requested URL.
3. Request to open the stream is made, using a suitable channel set up mechanism.

4. The channel set up mechanism shall return a handle to the stream that corresponds to the originally requested
URL.

5. Requests for delivery of the selected stream are made.
6. Interactive scenarios: Delivery of stream starts. All scenarios: The stream now becomes accessible.
EXAMPLE — Access to Complex Content

The example in Figure 7 shows a complex piece of ISO/IEC 14496 content, consisting of three parts. The upper part is a scene
accessed through its initial object descriptor. It contains, among others a visual and an audio stream. A second part of the scene
is inlined and accessed through its initial object descriptor that is pointed to (via URL) in the object descriptor stream of the first
scene. Utilization of the initial object descriptor allows the signaling of profile information for the second scene. Therefore this
scene may also be used without the first scene. The second scene contains, among others, a scaleably encoded visual object
and an audio object. A third scene is inlined and accessed via the ES_IDs of its object descriptor and scene description
streams. These ES_IDs are known from an object descriptor conveyed in the object descriptor stream of the second scene.
Note that this third scene is not accessed through an initial object descriptor. Therefore the profile information for this scene
need to be included in the profile information for the second scene.

52 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

\ Qb]':ectDescri ptorlD

ObjectDescriptor

ES_Descriptor

ES ID

* . Audlo Stréam /

BIFS Command (Rep'&‘éce Scene)

Sceng Description Stream

ES ID

ObjectDescriptorUpdate ObjectDescriptor

_.Ob]ect Descriptor Sream Deecnptor

ES_Descriptor

ES ID

Figure 7 - Complex content example

© ISO/IEC 2001 — All rights reserved

53

ISO/IEC 14496-1:2001(E)
8.7.3.9 Mapping of Content Access Procedure to DAI calls

The following two DAI primitives, quoted from ISO/IEC 14496-6, subclause 10.4, are required to implement the
content access procedure described in 8.7.3.6 to 8.7.3.8:

DA_ServiceAttach (IN: URL, uuDatalnBuffer, uuDatalnLen;
OUT: response, serviceSessionld, uuDataOutBuffer, uuDataOutLen)

DA_ChannelAdd (IN: serviceSessionld, loop(qosDescriptor, direction, uuDatalnBuffer, uuDatalnLen);
OUT: loop(response, channelHandle, uuDataOutBuffer, uuDataOutLen))

DA_ServiceAttach is used to implement steps 1 and 2 of 8.7.3.7.2. The URL shall be passed to the IN: URL
parameter. UuDatalnBuffer shall remain empty. The returned serviceSessionld shall be kept for future reference to
this URL. UuDataOutBuffer shall contain a single object descriptor.

DA_ChannelAdd is used to implement steps 2 and 3 of 8.7.3.6.2. serviceSessionld shall be the identifier for the
service session that has supplied the object descriptor that includes the ES_Descriptor that is currently processed.
QosDescriptor shall be the QoS_Descriptor of this ES_Descriptor, direction shall indicate upstream or downstream
channels according to the Decoder Confi gDescri pt or. upst r eamflag. UuDatalnBuffer shall contain the ES_ID
of this ES_Descriptor. On successful return, channelHandle shall contain a valid, however, not normative handle to
the accessible stream.

DA_ChannelAdd is used to implement steps 1 and 2 of 8.7.3.8.2. serviceSessionld shall be the identifier for the
service session that has supplied the object descriptor that includes the ES_Descriptor that is currently processed.
QosDescriptor shall be the QoS_Descriptor of this ES_Descriptor, direction shall indicate upstream or downstream
channels according to the Decoder Confi gDescri pt or. upst r eamflag. UuDatalnBuffer shall contain the URL
of this ES_Descriptor. On successful return, channelHandle shall contain a valid, however, not normative handle to
the accessible stream.

NOTE 1 — It is a duty of the service to discriminate between the two cases with either ES_ID or URL as parameters to
uuDatalnBuffer in DA_ChannelAdd.

NOTE 2 — Step 4 in 8.7.3.6.2 and step 3 in 8.7.3.8.2 are currently not mapped to a DAI call in a normative way. It may be
implemented using the DA_UserCommand() primitive.

The set up example in the following figure conveys an initial object descriptor that points to one
SceneDescriptionStream, an optional ObjectDescriptorStream and additional optional SceneDescriptionStreams or
ObjectDescriptorStreams. The first request to the DAI will be a DA_ServiceAttach() with the content address as a
parameter. This call will return an initial object descriptor. The ES_IDs in the contained ES_Descriptors will be used
as parameters to a DA_ChannelAdd() that will return handles to the corresponding channels.

Additional streams (if any) that are identified when processing the content of the object descriptor stream(s) are

subsequently opened using the same procedure. The object descriptor stream is not required to be present if no
further audio- or visual streams or inlined scene description streams form part of the content.

54 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

Initial ES descriptor (optional)
Object for ObjectDescriptor Stream

N

Descriptor ES descriptor
for SceneDescriptionStream

D L4 .

o °
A ESID a ES descriptor (optional)
for SceneDescriptionStream
or ObjectDescriptor Stream

ESID b

} handle for

/ ObjectDescriptor Stream
} handle for

SceneDescriptionStream

AN

ES ID_x handle for

P SceneDescriptionStream or
ObjectDescriptor Stream

N

Figure 8 - Requesting stream delivery through the DAI
8.8 Usage of the IPMP System interface
8.8.1 Overview

IPMP elementary streams and descriptors may be used in a variety of ways. For instance, IPMP elementary
streams may convey time-variant IPMP information such as keys that change periodically. An IPMP elementary
stream may be associated with a given elementary stream or set of elementary streams. Similarly, IPMP
descriptors may be used to convey time-invariant or slowly changing IPMP information associated with a given
elementary stream or set of elementary streams. This subclause specifies methods how to associate an IPMP
system to an elementary stream or a set of elementary streams.

8.8.2 Association of an IPMP System with ISO/IEC 14496 content
8.8.2.1 Association in the initial object descriptor

An IPMP System may be associated with ISO/IEC 14496 content in the initial object descriptor. In that case the
initial object descriptor shall aggregate in addition to the ES_Descriptors for scene description and object descriptor
streams one or more ES_Descriptors that reference one or more IPMP elementary streams. This implies that all
the elementary streams that are described through this initial object descriptor are governed by the one or more
IPMP Systems that are identified within the one or more IPMP streams.

8.8.2.2 Association in other object descriptors

An IPMP System may be associated with ISO/IEC 14496 content in an object descriptor in three ways:

In the first case, the object descriptor aggregates in addition to the ES_Descriptors for the content elementary
streams one or more ES_Descriptors that reference one or more IPMP elementary streams. This implies that all
the content elementary streams described through this object descriptor are governed by the one or more IPMP

Systems that are identified within the one or more IPMP streams. Note that an ES_Descriptor that describes an
IPMP stream may contain references to IPMP_Descriptors.

© ISO/IEC 2001 — All rights reserved 55

ISO/IEC 14496-1:2001(E)

The second method is to include one or more IPMP_DescriptorPointers in the object descriptor. This implies that all
content elementary streams described by this object descriptor are governed by the IPMP System(s) that is/are
identified within the referenced IPMP descriptor(s).

The third method is to include IPMP_DescriptorPointers in the ES_Descriptors embedded in this object descriptor.
This implies that the elementary stream referenced by such an ES_Descriptor is controlled by an IPMP System.

8.8.3 IPMP of Object Descriptor streams

Object Descriptor streams shall not be affected by IPMP Systems, i.e., they shall always be available without
protection.

An IPMP_Descriptor associated with an object descriptor stream through an IPMP_DescriptorPointer implies that
an IPMP System controls all elementary streams that are referred to by this object descriptor stream.

8.8.4 IPMP of Scene Description streams
Scene description streams are treated like any media stream, i.e. they may be managed by an IPMP System.

An IPMP_Descriptor associated with a scene description stream implies that the IPMP System controls this scene
description stream.

There are two ways to protect part of a scene description (or to apply different IPMP Systems to different
components of a given scene):

The first method exploits the fact that it is permissible to have more than one scene description stream associated
with one object descriptor (see 8.7.2.2). Such a split of the scene description can be freely designed by a content
author, for example, putting a basic scene description into the first stream and adding one or more additional scene
description streams that enhance this basic scene using BIFS updates.

The second method is to structure the scene using one or more Inline nodes (see 9.4.2.62). Each Inline node
refers to one or more additional scene description streams, each of which might use a different IPMP System.

8.8.5 Usage of URLs in managed and protected content
8.8.5.1 URLs inthe BIFS Scene Description

ISO/IEC 14496 does not specify compliance points for content that uses BIFS URLs that do not point to an object
descriptor. Equally, no normative way to apply an IPMP System to such links exists. The behavior of an IPMP-
enabled terminal that encounters such links is undefined.

8.8.5.2 URLs in Object Descriptors

URLs in object descriptors point to other remote object descriptors. This merely constitutes an indirection and
should not adversely affect the behavior of the IPMP System that might be invoked through this remote object
descriptor.

NOTE — The only difference is that while the original site might be trusted, the referred one might not. Further corrective actions
to guard against this condition are not in the scope of ISO/IEC 14496.

8.8.5.3 URLs in ES_Descriptors

URLs in ES descriptors are used to access elementary streams remotely. This merely constitutes an indirection
and therefore does not adversely affect the behavior of the IPMP System that might be invoked through this remote
object descriptor.

NOTE — The only difference is that while the original site might be trusted, the referred one might not. Further corrective actions
to guard against this condition are not in the scope of ISO/IEC 14496.

56 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

8.8.6 IPMP Decoding Process

Elementary Str.eam Interface

DMIF

Audio :
»Audio DB[—[@" pocoge P Audio CB—@—
Q)
Video 5 C;E
Video DB|—@* Decode —@* Video CB—@)— § > %
o) -
oD
—> Ob DB Decode ["

»
»

BIFS Decoded
BIFS DB |—@)~» Decode O BIES —O— BIFS Tree

| !

IPMP-Ds .
IPMP DB IPMP-ES |PMP System(s) Possible IPMP

Control Points

o
Figure 9 - IPMP system in the ISO/IEC 14496 terminal architecture

Figure 9 depicts the injection of an IPMP System with respect to the MPEG-4 terminal. IPMP System specific data
is supplied to the IPMP System via IPMP streams and/or IPMP descriptors, and the IPMP system releases
protected content after the sync layer.

Each elementary stream under the control of an IPMP System has the conceptual element of a stream flow
controller. Stream flow control can take place between the the SyncLayer decoder and the decoder buffer. As the
figure indicates, elements of IPMP control may take place at other points in the terminal including, after decoding
(as with some watermarking systems) or in the decoded BIFS stream, or after the composition buffers have been
written, or in the BIFS scene tree. Stream flow controllers either enable or disable processing of an elementary
stream in a non-normative way that depends on the status information provided by the IPMP System.

Finally, the IPMP System must at a minimum:
1. Process the IPMP stream and descriptor

2. Appropriately manage (e.g. decrypt and release) protected elementary streams.

The initialization process of the IPMP System is not specified except that it shall not unduly delay the content
access process as specified in 8.7.3.

© ISO/IEC 2001 — All rights reserved 57

ISO/IEC 14496-1:2001(E)
9 Scene Description

9.1 Introduction
9.1.1 Scope

ISO/IEC 14496 addresses the coding of audio-visual objects of various types: natural video and audio objects as
well as textures, text, 2- and 3-dimensional graphics, and also synthetic music and sound effects. To reconstruct a
multimedia scene at the terminal, it is hence not sufficient to transmit the raw audio-visual data to a receiving
terminal. Additional information is needed in order to combine this audio-visual data at the terminal and construct
and present to the end user a meaningful multimedia scene. This information, called scene description, determines
the placement of audio-visual objects in space and time and is transmitted together with the coded objects as
illustrated in Figure 10. Note that the scene description only describes the structure of the scene. The action of
assembling these objects in the same representation space is called composition. The action of transforming these
audio-visual objects from a common representation space to a specific presentation device (i.e., speakers and a
viewing window) is called rendering.

audiovisual

o

presentation

multiplexed
downstream control / data

multiplexed
upstream control / dat.
- y _
3D objects
user events” \E, .
video audio
compositor compositol
projection |) P
plane ; P e
f b -{-b 'g |
hypotheti /.I i © © ©
ypothetical viewer Ola
splay O
speake user inp

Figure 10 - An example of an object-based multimedia scene

Independent coding of different objects may achieve higher compression, and also brings the ability to manipulate
content at the terminal. The behaviors of objects and their response to user inputs can thus also be represented in
the scene description.

The scene description framework used in ISO/IEC 14496-1 is based largely on ISO/IEC 14772-1:1998 (Virtual
Reality Modeling Language — VRML).

9.1.2 Composition and Rendering
ISO/IEC 14496-1 defines the syntax and semantics of bitstreams that describe the spatio-temporal relationships of

audio-visual objects. For visual data, particular composition algorithms are not mandated since they are
implementation-dependent; for audio data, subclause 9.2.2.13 and the semantics of the AudioBIFS nodes

58 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
normatively define the composition process. The manner in which the composed scene is presented to the user is
not specified for audio or visual data. The scene description representation is termed “Blnary Format for Scenes”
(BIFS).

9.1.3 Scene Description

In order to facilitate the development of authoring, editing and interaction tools, scene descriptions are coded
independently from the audio-visual media that form part of the scene. This permits modification of the scene
without having to decode or process in any way the audio-visual media. The following clauses detail the scene
description capabilities that are provided by ISO/IEC 14496-1.

9.1.3.1 Grouping of audio-visual objects

A scene description follows a hierarchical structure that can be represented as a graph. Nodes of the graph form
audio-visual objects, as illustrated in Figure 11. The structure is not necessarily static; nodes may be added,

deleted or be modified.
scene

person 2D background furniture audiovisual
/ \ / presentation
voice i

Figure 11 - Logical structure of example scene

9.1.3.2 Spatio-Temporal positioning of objects

Audio-visual objects have both a spatial and a temporal extent. Complex audio-visual objects are constructed by
combining appropriate scene description nodes to build up the scene graph. Audio-visual objects may be located in
2D or 3D space. Each audio-visual object has a local co-ordinate system. A local co-ordinate system is one in
which the audio-visual object has a pre-defined (but possibly varying) spatio-temporal location and scale (size and
orientation). Audio-visual objects are positioned in a scene by specifying a co-ordinate transformation from the
object’s local co-ordinate system into another co-ordinate system defined by a parent node in the scene graph.

9.1.3.3 Attributes of audio-visual objects

Scene description nodes expose a set of parameters through which aspects of their appearance and behavior can
be controlled.

EXAMPLE — the volume of a sound; the color of a synthetic visual object; the source of a streaming video.

9.1.3.4 Behavior of audio-visual objects

ISO/IEC 14496-1 provides tools for enabling dynamic scene behavior and user interaction with the presented
content. User interaction can be separated into two major categories: client-side and server-side. Client-side

interaction is an integral part of the scene description described herein. Server-side interaction is not dealt with.

Client-side interaction involves content manipulation that is handled locally at the end-user’s terminal. It consists of
the modification of attributes of scene objects according to specified user actions.

© ISO/IEC 2001 — All rights reserved 59

ISO/IEC 14496-1:2001(E)

EXAMPLE — A user can click on a scene to start an animation or video sequence. The facilities for describing such interactive
behavior are part of the scene description, thus ensuring the same behavior in all terminals conforming to ISO/IEC 14496-1.

9.2 Concepts

9.2.1 BIFS Elementary Streams
9.2.1.1 Overview

BIFS is a compact binary format representing a pre-defined set of audio-visual objects, their behaviors, and their
spatio-temporal relationships. The BIFS scene description may, in general, be time-varying. Consequently, BIFS
data is carried in a dedicated elementary stream and is subject to the provisions of the systems decoder model
(see clause 7). Portions of BIFS data that become valid at a given point in time are contained in BIFS
CommandFr anmes or Ani mat i onFr anes and are delivered within time-stamped access units. Note that the initial
BIFS scene is sent as a BIFS-Command, although it is not required, in general, that a BIFS ConmandFr ane
contains a complete BIFS scene description.

9.2.1.2 BIFS Decoder Configuration

BIFS configuration information is contained in a Bl FSConf i g (see 9.3.5.2) syntax structure, which is transmitted
as Decoder Speci fi cl nf o for the BIFS elementary stream in the corresponding object descriptor (see 8.6.7).
This gives basic information that must be known by the terminal in order to parse the BIFS elementary stream. In
particular, it indicates whether the stream consists of BIFS-Command or BIFS-Anim entities.

9.2.1.3 BIFS Access Units

A BIFS data access unit consists of one BIFS CommandFr ane or Ani mat i onFr ame, as defined in 9.3.6.2 and
9.3.8.2, respectively. The BIFS ConmandFr ane or Ani mati onFrame shall convey all the data that is to be
processed at any given instant in time. Access units in BIFS streams shall be labelled and time-stamped by
suitable means. This shall be done via the related flags and the composition time stamps (CTS), respectively, in the
SL packet header (see 10.2.4). The composition time indicates the point in time at which the CommandFr ane or
Ani mat i onFr ame embedded in a BIFS access unit shall become valid. This means that any changes to audio-
visual objects that are described in the BIFS access unit will become visible or audible at precisely this time in an
ideal compositor, unless a different behavior is specified by the fields of their nodes. Decoding and composition
time for a BIFS access unit shall always have the same value.

An access unit does not necessarily convey a complete scene. In that case it just modifies the persistent state of
the scene description. However, if an access unit conveys a complete scene as required at a given point in time it
shall set the randomAccessPoi nt Fl ag in the SL packet header to ‘1’ for this access unit. Otherwise, the
randomAccessPoi nt Fl ag shall be setto ‘0'.

9.2.1.4 Time base for BIFS streams

The time base associated to a BIFS stream shall be indicated by suitable means. This shall be done by means of
object clock reference time stamps in the SL packet headers (see 10.2.4) for this stream or by indicating the
elementary stream from which this BIFS stream inherits the time base (see 10.2.3). All time stamps in the SL-
packetized BIFS stream refer to this time base.

9.2.1.5 Multiple BIFS streams

Scene description data may be conveyed in more than one BIFS elementary streams. Two distinct mechanisms
exist to associate a set of BIFS elementary streams to a single scene.

The first method uses Inline nodes (see 9.4.2.62) in a BIFS scene description. Each such node refers to further
BIFS elementary streams. In this case, multiple BIFS streams have a hierarchical dependency. Each Inline node
opens a new name scope for the identifiers used to label BIFS elements (nodel D, ROUTEI D,
obj ect Descri pt or I D). Therefore, it is not possible to pass events between parts of a scene that reside below
different Inline nodes.

EXAMPLE 1 — An application of hierarchical BIFS streams is a multi-user virtual conferencing scene, where sub-scenes
originate from different sources. Usually, it is neither possible nor useful to specify interaction between two such disjoint parts of
the scene.

60 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

The second method to associate multiple BIFS elementary streams to a single scene is to group their elementary
stream descriptors in a single object descriptor (see 8.7.2.2). In this case, these BIFS streams share the same
scope for the identifiers they use (nodel D, ROUTEI D, obj ect Descri pt or | D). This allows a single scene to be
partitioned into multiple streams.

EXAMPLE 2 — An application may offer a presentation with different levels of detail, corresponding to different data rates and
different computational complexity. By sharing the same name scope, the more detailed scene description can build on the
simple one, rather than sending the entire scene again.

9.2.1.6 Time
9.2.1.6.1 Time-dependent nodes

The semantics of the loop, startTime and stopTime exposedFields and the isActive eventOut in time-
dependent nodes are as described in ISO/IEC 14772-1:1998, subclause 4.6.9. startTime, stopTime and loop
apply only to the local start, pause and restart of media and do not affect the delivery of the stream attached to the
time dependent node. ISO/IEC 14496-1 has the following time-dependent nodes: AnimationStream,
AudioBuffer, AudioClip, AudioSource, MovieTexture and TimeSensor.

9.2.1.6.2 Time fields in BIFS nodes

Several BIFS nodes have fields of type SFTime that identify a point in time at which an event occurs (change of a
parameter value, start of a media stream, etc). Depending on the individual field semantics, these fields may
contain time values that refer either to an absolute position on the time line of the BIFS stream or that define a time
duration.

As defined in 9.2.1.4, the speed of the flow of time for events in a BIFS stream is determined by the time base of
the BIFS stream. This determines unambiguously durations expressed by relative SFTime values like the
cycleTime field of the TimeSensor node.

The semantics of some SFTime fields is such that the time values shall represent an absolute position on the time
line of the BIFS stream (e.g. startTime in MovieTexture). This absolute position is defined as follows:

Each node in the scene description has an associated point in time at which it is inserted in the scene graph or at
which an SFTime field in such a node is updated through a CommandFr ane in a BIFS access unit (see 9.2.1.3).
The value in the SFTime field as coded in the delivered BIFS command is the positive offset from this point in time
in seconds. The absolute position on the time line shall therefore be calculated as the sum of the composition time
of the BIFS access unit and the value of the SFTime field.

NOTE 1 — Absolute time in ISO/IEC 14772-1:1998 is defined slightly differently. Due to the non-streamed nature of the scene
description in that case, absolute time corresponds to wallclock time in ISO/IEC 14772-1.

NOTE 2 — The SFTime fields that define the start or stop of a media stream are relative to the BIFS time base. If the time base
of the media stream is a different one, it is not generally possible to set a startTime that corresponds exactly to the
composition time of a composition unit of this media stream.

EXAMPLE — The example in Figure 12 shows a BIFS access unit that is to become valid at CTS. It conveys a node that has an
associated media elementary stream. The startTime of this node is set to a positive value At. Hence, startTime will occur At
seconds after the CTS of the BIFS access unit that has incorporated this node (or the value of the startTime field) in the scene
graph.

© ISO/IEC 2001 — All rights reserved 61

ISO/IEC 14496-1:2001(E)

[locr] focr| focr| focr| ocr|

OCRstream

BIFS time line | I I I I I 1 I I I | | I I]]] I

CTS CTS+at

BIFS stream | |B'FSM |B'FSAU|

: 0
Media time line —+—F—F+—t+—"+—+—t+—+—+—+—+t—+—+—+—+—+—t—1

Media stream LIcu]lcul[ev][ev[[eu[feu [l [cu[]cufeu[[eu][eu[]eu[cu][eu][cu]

Figure 12 - Media start times and CTS

9.2.2 BIFS Scene Graph

9.2.2.1 Structure of the BIFS scene graph

Conceptually, BIFS scenes represent (as in ISO/IEC 14772-1:1998) a set of visual and audio primitives distributed
in a directed acyclic graph, in a 3D space. However, BIFS scenes may fall into several sub-categories representing
particular cases of this conceptual model. In particular, BIFS scene descriptions support scenes composed of:

e 2D primitives (only)

e 3D primitives (only)

e A combination of 2D and 3D primitives

e Audio primitives (only)

In scenes combining 2D and 3D primitives, the following possibilities exist:

o Complete 2D and 3D scenes layered in a 2D space with depth

e 2D and 3D scenes used as texture maps for 2D or 3D primitives

e 2D scenes drawn in the local X-Y plane of the local co-ordinate system in a 3D scene

Figure 13 describes a typical BIFS scene structure.

A BIFS scene shall start with a one of the following nodes: OrderedGroup, Group, Layer2D, Layer3D. When the
profile used enables visual elements to be composed, the first node indicates the co-ordinate system and context
(2D or 3D) to be used for the children of that node. The following rules apply:

e Scene starts with a Layer2D or OrderedGroup node: A 2D co-ordinate system and context is assumed.

e Scene starts with a Layer3D or Group node : A 3D co-ordinate system and context is assumed.

62 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

root
2DL ayer

i omame | o

Layers 3D 2D
—— Scenegraph - Scenegraph Scene graph

Figure 13 - Scene graph example.

The hierarchy of three different scene graphs is shown: a 2D graphics scene graph and two 3D graphics scene
graphs combined with the 2D scene via layer nodes. As shown in the picture, the 3D Layer-2 is the same scene as
3D Layer-1, but the viewpoint may be different. The 3D Obj-3 is an Appearance node that uses the 2D Scene-1 as
a texture node.

9.2.2.2 2D Co-ordinate System

The origin of the 2D co-ordinate system is positioned in the center of the rendering area, the x-axis is positive to the
right, and the y-axis is positive upwards.

The width of the rendering area represents -1.0 to +1.0 (meters) on the x-axis (see Figure 14). The extent of the y-
axis in the positive and negative directions is determined by the aspect ratio of the rendering area so that the unit of
distance is equal in both directions. The rendering area is either the entire screen, or window on a computer
screen, when viewing a single 2D scene, or the rectangular area defined by the texture used in a
CompositeTexture2D node, or a Layer2D node that contains a subordinate 2D scene description.

© ISO/IEC 2001 — All rights reserved 63

ISO/IEC 14496-1:2001(E)

Figure 14 - 2D co-ordinate system (AR = Aspect Ratio)
9.2.2.3 3D Co-ordinate System

The 3D co-ordinate system is as described in ISO/IEC 14772-1:1998, subclause 4.4.5. When 2D objects are
described in a 3D space, they are drawn in the local (x,y) plane (z=0), and the units used are those of the 3D co-
ordinate system for the x and y directions.

9.2.2.4 Mixing 2D and 3D scenes
A single BIFS scene may contain both 2D and 3D elements. The following methods exist:

e 2D primitives may be placed in a 3D scene graph. In this cased, the 2D primitives are drawn in the local (x,y)
plane, and use the local coordinate system, restricted to this (x,y) plane.

e 2D and 3D scenes may be composed and overlapped on the screen using Layer2D and Layer3D nodes.
This is useful, for instance, when it is desirable to have 2D interfaces to 3D worlds ("head up" display), or a 3D
insert in a 2D scene.

e 2D and 3D scenes may be mapped onto any given geometry using the CompositeTexture2D and
CompositeTexture3D nodes. For instance, 2D scenes may be mapped onto animated 3D geometry to
perform special effects.

9.2.2.5 Drawing Order

It is possible to specify the drawing order of elements of the scene, using the OrderedGroup node. This feature
may be used for 2D or 3D scenes. 2D scenes are considered to have zero depth. Nonetheless, it is important to be
able to specify the order in which 2D objects are composed, in order to describe their apparent depths. 3D scenes
may use the drawing order facility to solve conflicts of coplanar polygons or other rendering optimizations.

The following rules determine the drawing order, including conflict resolution for objects having the same drawing
order:

1. The object having the lowest drawing order shall be drawn first (taking into account negative values).

2. Objects having the same drawing order shall be drawn in the order in which they appear in the scene
description.

64 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
9.2.2.6 Pixel and Meter metrics

In addition to meter-based metrics, it is also possible to use pixel-based metrics. In this case, 1 meter is set to be
equal to the distance between two pixels. This applies to both the horizontal (x-axis) and vertical (y-axis) directions.

The selection of the appropriate metrics is performed by the content creator. In particular, it is controlled by the
Bl FSConf i g syntax (see 9.3.5.2).

When pi xel Metri c is set to 1, pixel metrics shall be used for the entire scene. This implies that rendered node
sizes (such as for a Rectangle) and rendered node positions are integers. If non-integer values appear due to for
example scaling, rounding shall be implied towards -infinity.

9.2.2.7 Nodes and fields
9.2.2.7.1 Nodes

The BIFS scene description consists of a collection of nodes that describe the scene structure. An audio-visual
object in the scene is described by one or more nodes, which may be grouped together (using a grouping node).
Nodes are grouped into node data types (NDTs) and the exact type of the node is specified using a nodeType
field.

An audio-visual object may be completely described within the BIFS information, e.g. Box with Appearance, or
may also require elementary stream data from one or more audio-visual objects, e.g. MovieTexture or
AudioSource. In the latter case, the node includes a reference to an object descriptor that indicates which
elementary stream(s) is (are) associated with the node, or directly to a URL description (see ISO/IEC 14772-
1:1998, subclause 4.5.2). With the exception of the Anchor and Script nodes, a url field may only refer to
content that conforms to a valid profile and level for the terminal.

9.2.2.7.2 Fields and Events
See ISO/IEC 14772-1:1998, subclause 5.1.
9.2.2.8 Internal, ASCIl and Binary Representation of Scenes

ISO/IEC 14496-1 describes the attributes of audio-visual objects using node structures and fields. These fields can
be one of several types (see 9.2.2.7.2). To facilitate animation of the content and modification of the objects’
attributes in time, within the terminal, it is necessary to use an internal representation of nodes and fields as
described in the node specifications (see 9.4). This is essential to ensure deterministic behaviour in the terminal’'s
compositor, for instance when applying ROUTEs or differentially coded BIFS-Anim frames. The observable
behaviour of compliant terminals shall not be affected by the way in which they internally represent and transform
data; that is, they shall behave as if their internal representation is as defined herein.

However, when encoding the BIFS scene description, different attributes may need to be quantized or compressed
appropriately. Thus, the binary representation of fields may differ according to the types of fields, or according to
the precision needed to represent a given audio-visual object's attributes. The semantics of nodes are described in
9.4. The binary syntax which represents the binary format as transported in streams conforming to ISO/IEC 14496-
1is provided in 9.3 and uses the node coding parameters provided in Annex H.

9.2.2.8.1 Binary Syntax Overview

9.2.2.8.1.1 Scene Description

The entire scene is represented by a binary encoding of the scene graph. This encoding restricts the VRML
grammar as defined in ISO/IEC 14772-1:1997, Annex A, but still enables the representation of any scene that can

be generated by this grammar.

EXAMPLE — One example of the grammatical differences is the fact that all ROUTEs are represented at the end of a BIFS
scene, and that a global grouping node is required at the top level of the scene.

© ISO/IEC 2001 — All rights reserved 65

ISO/IEC 14496-1:2001(E)
9.2.2.8.1.2 Node Description

Node types are encoded according to the context of the node. This improves efficiency by exploiting the fact that
not all nodes are valid at all places in the scene graph. In many instances, only one of a subset of all BIFS nodes is
valid at a particular place in the scene graph, and hence in the bitstream.

9.2.2.8.1.3 Fields description

Fields may be quantized to improve compression efficiency. Several aspects of the inverse quantization process
can be controlled by adjusting the parameters of the QuantizationParameter node.

9.2.2.8.1.4 ROUTE description

All ROUTESs are described at the end of the scene. This improves bit efficiency by grouping these elements in a
single location in the bitstream and removes the need for switches in the syntax to allow ROUTEs and nodes to be
described in a mixed format.

9.2.2.9 Basic Data Types

There are two general classes of fields and events: fields/events that contain a single value (e.g. a single number
or a vector), and fields/events that contain multiple values. Multiple-valued fields/events have names that begin with
MF, whereas single valued begin with SF.

9.2.2.9.1 Numerical data and string data types
9.2.2.9.1.1 Introduction

For each basic data type, single field and multiple field data types are defined in ISO/IEC 14772-1:1998, subclause
5.2. Some further restrictions are described herein.

9.2.29.1.2 SFInt32/MFInt32

When routing values between two SFInt32s note shall be taken of the valid range of the destination. If the value
being conveyed is outside the valid range, it shall be clipped to be equal to either the maximum or minimum value
of the valid range, as follows:

if X > max, X := max
if X < min, X := min
9.2.2.9.1.3 SFTime

The SFTime field and event specifies a single time value. Time values shall consist of 64-bit floating point numbers
indicating a duration in seconds or the number of seconds elapsed since the origin of time as defined in the
semantics for each SFTime field.

9.2.2.9.2 Node data types

Nodes in the scene are also represented by a data type, namely SFNode and MFNode types. ISO/IEC 14496-1
also defines a set of sub-types, such as SFColorNode, SFMaterialNode. These node data types (NDTs) allow
efficient binary representation of BIFS scenes, taking into account the usage context to achieve better
compression. However, the generic SFNode and MFNode types are sufficient for internal representations of BIFS
scenes.

9.2.2.10 Attaching nodelDs to nodes

Each node in a BIFS scene graph may have a nodel D associated with it, to be used for referencing. ISO/IEC
14772-1:1998, subclause 4.6.2, describes the DEF statement which is used to attach names to nodes. In BIFS
scenes, an integer value is used for the same purpose for nodel Ds. The number of bits used to represent these
integer values is specified in the Bl FSConf i g syntax (see 9.3.5.2).

The following restrictions apply:

66 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
a) Nodes are identified by the use of nodel Ds, which are binary numbers conveyed in the BIFS bitstream.
b) The scope of nodel Ds is given in 9.2.1.5.
c) No two nodes in the scene graph may have the same nodel D at any point in time.
Nodes that have been assigned a nodel D may be re-used, as described in ISO/IEC 14772-1:1998, subclause
4.6.3. Note that this mechanism results in a scene description that is a directed acyclic graph, rather than a simple
tree.
The mechanisms that allow modifications to the BIFS scene also depend on the use of nodel Ds (see 9.2.2.10).

9.2.2.11 Standard Units

As described in ISO/IEC 14772-1:1998, subclause 4.4.5, the standard units used in the scene description are the
following:

Table 14 - Standard units

Category Unit

Distance Meter

Color Space RGB [0,1] [0,1] [0,1]
Time Seconds

Angle Radians

9.2.2.12 Mapping of Scenes to Screens

BIFS scenes may contain still images and videos that are to be pixel-copied to the rendering device using their
native dimensions as produced at the output of their terminals. The Bitmap node (see 9.4.2.19) provides a
screen-aligned geometry that has the pixel dimensions of the texture that is mapped onto it.

NOTE — When Bitmap is used, the same scene will appear differently on screens with different resolutions. BIFS scenes
that do not use the Bitmap node are independent from the screen on which they are viewed.

9.2.2.12.1 Transparency of visual objects

Content complying with ISO/IEC 14496-1 may include still images or video sequences with representations that
include alpha values. These values provide transparency information and are to be treated as specified in ISO/IEC
14772-1:1998, subclause 4.14. For video sequences represented according to ISO/IEC 14496-2, transparency is
handled as specified in ISO/IEC 14496-2.

9.2.2.13 Special considerations for audio
9.2.2.13.1 Audio sub-graphs

Audio nodes are used to build audio scenes in the terminal from audio sources coded with tools specified in
ISO/IEC 14496-3. The audio scene description capabilities provide two functionalities:

e “Physical modelling” composition for virtual-reality applications, where the goal is to recreate the acoustic
space of a real or virtual environment.

e “Post-production” composition for traditional content applications, where the goal is to apply high-quality signal
processing transformations.

Audio may be included in either 2D or 3D scene graphs. In a 3D scene, the audio may be spatially presented to
sound as though it originates from a particular 3D direction, according to the positions of the object and the listener.

The Sound and DirectiveSound nodes are used to attach audio to 3D scene graphs and the Sound2D node
is used to attach audio to 2D scene graphs. As with visual objects, an audio object represented by one of these
nodes has a position in space and time, and is transformed by the spatial and grouping transforms of nodes
hierarchically above it in the scene.

© ISO/IEC 2001 — All rights reserved 67

ISO/IEC 14496-1:2001(E)

The nodes below the Sound/DirectiveSound/Sound2D nodes, however, constitute an audio sub-
graph.This sub-graph is used to describe a particular audio object through the mixing and processing of several
audio streams. Rather than representing a hierarchy of spatio-temporal transformations, the nodes within the audio
sub-graph represent a signal flow graph that describes how to create the audio object from the audio coded in the
AudioSource streams. That is, each audio sub-graph node (AudioSource, AudioMix, AudioSwitch,
AudioFX, AudioClip, AudioBuffer, AudioDelay) accepts one or several channels of input audio, and
describes how to turn these channels of input audio into one or more channels of output. The only sounds
presented in the audio-visual scene are those which are the output of audio nodes that are children of a Sound/
DirectiveSound/Sound2D node (that is, the “highest” outputs in the audio sub-graph). The remaining nodes
represent “intermediate results” in the sound computation process and the sound represented therein is not
presented to the user.

The normative semantics of each of the audio sub-graph nodes describe the exact manner in which to compute the
output audio the input audio for each node based on its parameters.

9.2.2.13.2 Overview of sound node semantics

This subclause describes the concepts for normative calculation of the audio objects in the scene in detail, and
describes the normative procedure for calculating the audio signal which is the output of a
Sound/DirectiveSound/Sound?2D node given the audio signals which are its input.

Recall that the audio nodes present in an audio sub-graph do not each represent a sound to be presented in the
scene. Rather, the audio sub-graph represents a signal-flow graph which computes a single (possibly multi-
channel) audio object based on a set of audio inputs (in AudioSource nodes) and parametric transformations.
The only sounds which are presented to the listener are those which are the “output” of these audio sub-graphs, as
connected to a Sound/DirectiveSound/Sound2D node. This subclause describes the proper computation of
this signal-flow graph and resulting audio object.

As each audio source is decoded, it produces data that is stored in composition memory (CM). At a particular time
instant in the scene, the compositor shall receive from each audio decoder a CM such that the decoded time of the
first audio sample of the CM for each audio source is the same (that is, the first sample is synchronized at this time
instant). Each CM will have a certain length, depending on the sampling rate of the audio source and the clock rate
of the system. In addition, each CM has a certain number of channels, depending on the audio source.

Each node in the audio sub-graph has an associated input buffer and output buffer, except for the AudioSource
node which has no input buffer. The CM for the audio source acts as the input buffer of audio for the
AudioSource with which the decoder is associated. As with CM, each input and output buffer for each node has
a certain length, and a certain number of channels.

As the signal-flow graph computation proceeds, the output buffer of each node is placed in the input buffer of its
parent node, as follows:

If an audio node, N, has n children, and each of the children produces k(i) channels of output, for 1 <=i <= n, then
the node, N, shall have k(1) + k(2) + ... + k(n) channels of input, where the first k(1) channels [number 1 through
k(1)] shall be the channels of the first child, the next k(2) channels [number k(1)+1 through k(1)+k(2)] shall be the
channels of the second child, and so forth.

Then, the output buffer of the node is calculated from the input buffer based on the particular rules for that node.

9.2.2.13.2.1 Sample-rate conversion

If the various children of a Sound/ DirectiveSound/Sound2D node do not produce output at the same
sampling rate, then the lengths of the output buffers of the children do not match, and the sampling rates of the
children’s’ output must be brought into alignment in order to place their output buffers in the input buffer of the
parent node. The sampling rate of the input buffer for the node shall be the fastest of the sampling rates of the
children. The output buffers of the children shall be resampled to be at this sampling rate. The particular method of
resampling is non-normative, but the quality shall be close in accuracy to the DAC that the signal is targeted for, i.e.
according to the rule dB SNR = 6 * (nbits —1), where nbits is the number of bits corresponding to the
maximum bit depth of any of the signals being so converted and/or composited. Aliasing artifacts may be at this
level of signal-to-noise ratio. The noise level due to arithmetic accuracy and other uncorrelated noise sources
should be below the rule dB SNR = 6* nbits.

68 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

The output sampling rate of a node shall be the output sampling rate of the input buffers after this resampling
procedure is applied.

Content authors are advised that content which contains audio sources operating at many different sampling rates,
especially sampling rates which are not related by simple rational values, may produce scenes with a high
computational complexity.

EXAMPLE — Suppose that node N has children M1 and M2, all three audio nodes, and that M1 and M2 produce output at S1
and S2 sampling rates respectively, where S1 > S2. Then if the decoding frame rate is F frames per second, then M1's output
buffer will contain S1/F samples of data, and M2's output buffer will contain S2/F samples of data. Then, since M1 is the faster
of the children, its output buffer values are placed in the input buffer of N. The output buffer of M2 is resampled by the factor
S1/S2 to be S1/F samples long, and these values are placed in the input buffer of N. The output sampling rate of N is S1.

9.2.2.13.2.2 Number of output channels

If the numChan field of an audio node, which indicates the number of output channels, differs from the number of
channels produced according to the calculation procedure in the node description, or if the numChan field of an

AudioSource node differs in value from the number of channels of an input audio stream, then the numChan
field shall take precedence when including the source in the audio sub-graph calculation, as follows:

a) If the value of the numChan field is strictly less than the number of channels produced, then only the first
numChan channels shall be used in the output buffer.

b) If the value of the numChan field is strictly greater than the number of channels produced, then the “extra”
channels shall be set to all 0’s in the output buffer.

9.2.2.13.3 Audio-specific BIFS Nodes

In the following table, nodes that are related to audio scene description are listed.

Table 15 - Audio-Specific BIFS Nodes

Node Purpose Subclause
AudioBuffer Interactively trigger snippets of sound 9.4.2.6
AudioClip Insert an audio clip into a scene 9.4.2.8
AudioDelay Add delay to sound 9.4.2.9
AudioMix Mix sounds 9.4.2.11
AudioSource Define audio source input to a scene 9.4.2.12
AudioFX Apply post-production effects to sound 9.4.2.10
AudioSwitch Switching of audio sources in a scene 9.4.2.13
ListeningPoint |Define listening point in a scene 9.4.2.67
Sound, Define properties of sound 9.4.2.94,
Sound2D, 9.4.2.95,
DirectiveSound 9.4.2.39

9.2.2.13.4. Spatialization of sound sources according to the acoustic environment

This specification contains a set of nodes of extended node types, that can be used to include positional and
directive sound sources to 3-D BIFS scenes, and process them in a way that the acoustics of the environment is
taken into account. These nodes enable parametrization and rendering of the acoustic properties of a virtual
environment according to the current relative positions of the sound source, the listening point, and the acoustically
relevant objects in the BIFS scene. Such properties are, e.g., room reverberation time (and other statistical room
acoustic parameters), speed of sound, acoustic properties of surfaces, and sound source directivity. Functionalities
that are made possible with these parameters include immersive audiovisual rendering, room acoustic modeling,
and enhanced 3-D sound presentation.

Two distinct approaches of acoustic environment rendering are incorporated in the 3-D sound processing. One is
based on physical, or geometrical modeling of the acoustic scene while the second is based on the perceptual
description of room acoustic effects. These two schemes of virtual acoustics rendering are referred to as the
physical and the perceptual approach.

© ISO/IEC 2001 — All rights reserved 69

ISO/IEC 14496-1:2001(E)
The nodes that are involved in the sound environment modeling are AcousticScene, AcousticMaterial,

DirectiveSound, and PerceptualParameters, and their main functionalities are presented in the table below, and
the rendering scheme where they are used is listed in the rightmost column:

Table 16 - Nodes for environmental spatialization of sound

Node Purpose Approach | Subclause

AcousticScene Restrict each audio rendering process to a defined 3- | physical 9.4.2.2
D region in the BIFS scene, and specify a
reverberation time that is applied to the sound sources
currently within that region.

AcousticMaterial Define sound reflectivity and transmission properties | physical 9.4.2.1
(along with the visual properties) for each acoustically
relevant (flat, polygonal) surface.

DirectiveSound Define a directive sound source that also enables | physical 9.4.2.39
natural distance dependent attenuation and air|and
absorption modeling, as well as rendering of the |perceptual
propagation delay between the source and the
listener.

PerceptualParameters |Node for attaching perceptual properties to a directive | perceptual |9.4.2.78
sound source (DirectiveSound) in order to simulate
virtual room effects that do not need to relate to the
geometrical and/or visual BIFS scene.

In the following, overviews of the physical and perceptual audio rendering schemes are presented.
9.2.2.13.4.1 Physical approach

In this approach the acoustics rendering is defined as creating a virtual auditory environment that models an
existent or non-existent space. This rendering is called auralization, the relation of which to graphics (visualization)
is understood as the creation of audiovisual scenes that are perceptually (visually and aurally) relevant. An
example of this could be a virtual concert performance, where the acoustical behavior of the space as well as the
graphical outlook is modeled. Another example could be a scene, where the listener moves from a very small room
to a larger hall, and the changes in the acoustic and graphical rendering is immediately perceived. Also sound
sources without a room acoustic response but with effects such as source directivity, Doppler effect, and echoes
(distinctive sound reflections) can be modeled. The acoustical behaviors and properties are:

e Acoustic properties of surface materials (walls), that enable modeling of sound reflections of surfaces, as well
as transmission of sound through them. This way sound reflections are tracked and rendered according to the
geometry of the walls and positions of the sound sources and the listener. Obstruction effects are automatically
rendered when walls or obstacles are present between the source and the listener.

o Reverberation time of a specified region in the scene. This enables modeling of reverberating spaces by a
simple parameter, and without the necessary need to describe the physical walls of a room.

e Acoustic properties of the sound transmitting medium. These include the speed of sound, distance dependent
attenuation and lowpass filtering effect caused by air absorption (see 1SO 9613-1:1993). Speed of sound is
used to control the sound propagation delay between source and the listener, and therefore also the strength of
the Doppler effect which depends on the relative motion between the source and the listener.

o Directivity characteristics of sound sources. This enables flexible modeling of different sound sources (e.g.,
human speaker, or a musical instrument). The directivity patterns can be frequency dependent, or it can be
defined by a direction dependent coefficient, or in the simplest case the source can be omnidirectional.

In the physical approach, the geometrical and physical sound propagation operator is used in real time during
playback in order to derive the auralization signal processing parameters to be applied to each sound source
signal. This propagation operator exploits the knowledge of the positions of the sound sources and the listener
relative to the walls to compute the arrival time, amplitude (and spectrum) and direction of arrival for each early

70 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

reflection. This computation is performed in real time for a limited number of reflections per sound source, with
dynamic refresh of reflection parameters according to movements of the sound sources or the listener.

9.2.2.13.4.2 Perceptual approach

In this model, the sound transformation associated with room reflections and reverberation is described by a set of
perceptual attributes (such as source presence and brilliance, room reverberance, envelopment). These attributes
may be manipulated directly and individually for each sound source in the scene.

This approach provides simple and intuitive parameters to the content provider, allowing:

e Manipulation of environmental effects for each sound event directly (without requiring that the source or the
point of view be moved).

e Sound design adjustments beyond the physical constraints implied by the graphic representation, for example:
o Distorted or exaggerated distance sensation and room-related effects

e Unconstrained spatial sound effects for audio-only scene nodes (no visual correspondence) or when
the point of view is out of the room

In this approach, an absolute (exocentric) representation of the sound scene containing several sources and the
listener can be manipulated as follows:

e The environment (room) is described by setting the values of the perceptual attributes for a reference source-
listener distance. These attributes and their values make up a "preset”, which specifies, at that reference
distance and for an omnidirectional sound source, the delay and intensity of the early reflection, as well as the
delay, decay time and spectrum of the late reverberation.

e The sound transformation to be applied to each sound event is derived from the above preset by use of a
perceptual sound propagation operator which takes into account the relative positions and orientations of the
sources and the listener, and a model of the directivity of sound sources.

In this model, only the relative positions and orientations of the sound sources with respect to the listener are taken
into account. The model does not exploit any knowledge of wall positions in order to compute the parameters of the
early reflections. The temporal pattern of the early reflections is determined by the definition of the environment
“preset”. The perceptual sound propagation operator adjusts one perceptual attribute (called "source presence")
according to source-listener distance. Adjusting this single parameter produces a convincing sensation of proximity
or remoteness of the sound source. Additionally, the operator takes into account the orientation of the source and
its directivity pattern.

9.2.3 Sources of modification to the scene

9.2.3.1 Interactivity and behaviors

To describe interactivity and behavior of scene objects, the event architecture defined in ISO/IEC 14772-1:1998,
subclause 4.10, is used. Sensors and routes describe interactivity and behaviors. Sensor nodes generate events
based on user interaction or a change in the scene. These events are routed to interpolator or other nodes to
change the attributes of these nodes. If routed to an interpolator, a new parameter is interpolated according to the
input value, and is finally routed to the node which must process the event.

9.2.3.1.1 Attaching ROUTEIDs to routes

ROUTEI Ds may be attached to routes using the DEF mechanism, described in ISO/IEC 14772-1:1998, subclause
4.6.2. This allows routes to be subsequently referenced in BIFS-Command structures. ROUTEI Ds are integer
values and the namespace for routes is distinct from that of nodel Ds. The number of bits used to represent these
integer values is specified in the BIFS Decoder Conf i gDescri pt or.

The scope of ROUTEI Ds is defined in see 9.2.1.5. The following restrictions apply:

a) Routes are identified by the use of ROUTEI Ds, which are binary numbers conveyed in the BIFS bitstream.

© ISO/IEC 2001 — All rights reserved 71

ISO/IEC 14496-1:2001(E)
b) The scope of ROUTEI Ds is given in 9.2.1.5.
¢) No two routes in the scene graph may have the same ROUTEI D at any point in time.

The mechanisms that allow modifications to the BIFS scene also depend on the use of nodel Ds (see 9.2.2.10).
The USE mechanism shall not be used with routes.

9.2.3.1.2 Conditional node

The Conditional node (see 9.4.2.30) allows BIFS-Commands to be described in the scene which shall only be
applied to the scene graph when an event is received on one of the Conditional node's inputs.

9.2.3.2 External modification of the scene: BIFS-Commands
The BIFS-Command mechanism enables the change of properties of the scene graph, its nodes and behaviors.

EXAMPLE — Transform nodes can be modified to move objects in space; Material nodes can be changed to modify an
object’s appearance, and fields of geometric nodes can be totally or partially changed to modify the geometry of objects.

9.2.3.2.1 Overview

BIFS-Commands are used to modify a set of properties of the scene at a given time instant in time. Commands are
grouped into ConmmandFr anes (see 9.3.6.2) in order to be able to send several commands in a single access unit.
The following four basic commands are defined:

1. Replacement of an entire scene
2. Insertion

3. Deletion

4. Replacement

The first of these commands allows the replacement of the entire BIFS scene. The replacement of the entire scene
requires a scene graph representing a valid BIFS scene to be transmitted. The SceneRepl ace command is the
only random access point in the BIFS stream.

The other three commands can be used to update the following structures:
1. Anode

2. An eventin, exposedField or an indexed value in an MFField

3. AROUTE

In order to modify the scene the sender must transmit a BIFS ComandFr ane that contains one or more update
commands. A single source of BIFS-Commands is assumed. The identification of a node in the scene is provided
by a nodel D. Note that it is the sender’s responsibility to provide this nodel D, which must be unique (see 9.2.1.5).
The identification of a node's fields is provided by sending the | Ni d of the field (see Annex H).

72 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

Index
Node: nodelD <E Beg|n > NodeValue
Index
Insert IdxValue: nodelD— FieldNb <E Beg|n > Value

ROUTE: nodelD1— Fieldl — nodelD2 — Field2

Node: nodelD
Index
Delete IdxValue: nodelD — FieldNb <E Beg|n > Value
ROUT E: routelD
BIFS

Update Node:nodelD — NodeValue

Field: nodelD — FeldNb — FeldValue

Replace Index
IdxValue: nodelD—> FieldNb <E Begm > Value
ROUTE: routelD — nodelD1 — Field1—» nodelD2 —» Field2
Replace

— Scene: SceneValue
Scene

Figure 15 - BIFS-Command Types

9.2.3.2.2 Modification of indexed values

Insertion of an indexed value in a field implies that all later values in the field have their indices incremented and
the length of the field increases accordingly. Appending a value to an indexed value field also increases the length
of the field but the indices of existing values in the field do not change.

Deletion of an indexed value in a field implies that all later values in the field have their indices decremented and
the length of the field decreases accordingly.

9.2.3.2.3 Timing of BIFS-Commands

The time at which a BIFS-Command is applied shall be the composition time stamp of the access unit in which the
command is contained, as defined in the sync layer (see 10.2).

9.2.3.3 External animation of the scene: BIFS-Anim

BIFS-Anim provides for the continuous update of the certain fields of nodes in the scene graph. BIFS-Anim is used
to integrate different kinds of animation, including the ability to animate face models as well as meshes, 2D and 3D
positions, rotations, scale factors, and color attributes. Although BIFS-Anim and BIFS-Command have the same
elementary stream type (see Table 9) they may not occupy the same elementary stream. BIFS-Anim information is
conveyed in a separate elementary stream from that which carries BIFS-Command elements.

9.2.3.3.1 Overview

BIFS-Anim elementary streams consist of a sequence of Ani mati onFr ames. The Ani mat i onMask, which is
required to interpret these Ani mat i onFr anes, is transmitted in the Decoder Speci fi cl nf o for the BIFS-Anim
elementary stream in the corresponding object descriptor (see 8.6.7).

9.2.3.3.2 BIFS-Anim configuration

The Ani mati onMask contains one El enent aryMask for each node that is to be animated. These
El ement ar yMasks specify the fields that are contained in the Ani mat i onFr anes for a given animated node, and
their associated quantization parameters. Only eventln or exposedField fields that have an animation method (see
Annex H and 9.2.3.3.3) can be modified using BIFS-Anim. Such fields are called dynamic fields. In addition, the

© ISO/IEC 2001 — All rights reserved 73

ISO/IEC 14496-1:2001(E)

animated field must be part of an updateable node; that is, a node that has been assigned a nodel D. The
Ani mat i onMask is composed of several elementary masks defining these parameters.

9.2.3.3.3 BIFS-Anim animation parameters

Animation parameters are transmitted as a sequence of Ani mati onFrames. Ani mati onFr ames specify the
values of the dynamic fields of updateable nodes that are being animated in BIFS-Anim streams. An
Ani mat i onFr ane contains the new values of all animated parameters at a specified time, unless if it is specified
that, for some frames, these parameters are not sent. The parameters can be sent in Intra (the absolute value is
sent) and Predictive modes (the difference between the current and previous values is sent).

Animation parameters can be applied to any eventin or exposedField of any updateable node of a scene which has
an assigned animation method (see Annex H).

NOTE — Some node tables in Annex H contain an eventln or exposedField that has an animation method but for which there is
no associated dynl D. This is the case when only one exposedField or eventln in a node has an animation method. In such
cases, it is not necessary for the field to have a dynl D since the terminal can assume that BIFS-Anim animations for this type of
node refer to the only dynamic field of the node.

The types of dynamic fields are:

e SFInt32/MFInt32

e SFFloat/MFFloat

e SFRotation/MFRotation

e SFColor/MFColor

e SFVec2f/IMFVec2f

e SFVec3f/IMFVec3f

9.2.3.4 Order of application of modifications to the scene

Where modifications to the scene graph, resulting from the use of more than one of the permitted methods, must
be applied simultaneously, the following order of application shall be observed:

1. BIFS-Anim
2. Conditional node

3. BIFS-Command

9.3 BIFS Syntax
9.3.1 Introduction

BIFS data consists of two distinct elements in the multiplexed bitstream. Terminal configuration information is first
sent in the object descriptor. The remaining BIFS information is sent in a separate elementary stream.

The syntax and semantics of the terminal configuration is described in 9.3.5.2 and 9.3.5.3. Two different kinds of
session can take place: a BIFS-Command session or a BIFS-Anim session.

If the session is a BIFS-Command session, a sequence of commands to modify the scene is sent. The syntax and
semantics of these commands are described in 9.3.6.

If the session is a BIFS-Anim session, a sequence of animation data to change the values of specific fields in the
scene is sent. The syntax and semantics of this session is described in 0.

74 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
9.3.2 Decoding tables, data structures and associated functions
9.3.2.1 Function of decoding tables, data structures and functions

This subclause describes tables and data structures used to contain necessary data, along with the associated
functions, for decoding the BIFS elementary streams. These are not syntax elements but are descriptions, often in
code or pseudo-code, of data and functions that are required to decode the bitstream. The tables and data
structures may be known a priori at the terminal or may be constructed from data parsed from the bitstream. They
are referenced throughout the syntax.

NOTE — The code or pseudo-code for the non-syntax data elements is purely notational and does not imply a normative
requirement to use these code fragments in implementations.

Coding of individual nodes and field values is very regular, and follows a depth-first order (children or sub-nodes of
a node are present in the bitstream before its siblings).

9.3.2.2 Node Data Type Tables

Identification of nodes and fields within a BIFS scene graph is context-dependent. Each field of a BIFS node that
accepts nodes as fields can only accept a specific set of nodes. Each of these sets of nodes is stored in a node
data type table and is referenced by a node data type (NDT).

A field of type SFNode is fully described by its NDT. Each node belongs to one or more NDT tables. These tables
are provided in Annex H and identify the various nodes and node types they contain.

Identification of a particular node depends on the context of the NDT specified for its parent field. The node data
types are listed in tables in H.2., and extended node data types in Annex H.4. For each node, the value zero
(encoded with as many bits as required to encode the total number of nodes in that NDT table in Annex H.2.) is
used before the actual node type to indicate that the node is of an extended node type. The value O in each
extended NDT table is reserved for future extensions. Value one in each extended NDT table is reserved for
encoding of PROTOs (see 9.3.7.2).

EXAMPLE 1 — Anchor is identified by the 5-bit code 0b0000.1 when the context of its parent’s field is SF2DNode, whereas
the 7-bit code 0b0000.001 is used when the context of its parent’s field is SFWorldNode.

EXAMPLE 2 — AcousticScene is identified by a 3-bit code 0b010, when the context of its parent field is SF3DNode in
the extended node data types in Annex H.4. Since that NDT exists in tables in Annex H.2. (where the nodes of that data type
are encoded with six bits), this node is completely encoded with 9 bits as: 0b000000010.

9.3.2.3 Node Coding Tables and field indexing

The syntactic description of fields is context-dependent. For a given node, its fields are indexed using a code called
afieldl D This fiel dl Dis not unique for each field of a node but varies according to the “mode” in which the
field is referenced. There are five modes in which a field may be referenced and, thus, five types of fi el dI D. For
each field of each node, the binary values of the f i el dI Ds for each mode are defined in the node coding tables.

defI D
The def | Ds refer to the fi el dl Ds for those fields that may have a value when nodes are declared. They refer to
fields of type exposedField and field. This indexing scheme is further referred to as the “def” mode.

inlD
The i nl Ds refer to the fi el dl Ds for those events and fields that can be modified from outside the node. They
refer to fields of type exposedField and eventin types. This indexing scheme is further referred to as the “in” mode.

outl D
The out | Ds refer to the fi el dIl Ds for those events and fields that can be output from the node. They refer to
fields of type exposedField and eventOut types. This indexing scheme is further referred to as the “out” mode.

dynl D
The dynl Ds refer to the fi el dl Ds for those fields that can be animated using the BIFS-Anim scheme. They refer
to a subset of the fields designated by i nl Ds. This indexing scheme is further referred to as the “dyn” mode.

© ISO/IEC 2001 — All rights reserved 75

ISO/IEC 14496-1:2001(E)

alllD
The al | | Ds refer to all events and fields of the node. That is, there is an al | | D for each field of a node. This
indexing scheme is further referred to as the “all” mode.

The length of each of the fi el dl D types for each node depends on the number of fields of that type for the given
node.

EXAMPLE — The AnimationStream node has four fields of type deflD. Therefore, three bits are required to code the

defIDs for this node. The Appearance node, however, has just three fields of type defID. Therefore, two bits are sufficient
to code the deflDs for this node.

9.3.2.4 BIFSConfig

This data structure is a global data structure referred to in every BIFS access unit. The data contained in the
Bl FSConfi gur ati on data structure is transmitted in either BIFSConfig or BIFSv2Config (see 9.3.5.2 and
9.3.5.3).

Cl ass Bl FSConfi gurati on{

int nodel Dbi ts; The number of bits used to encode the nodel Ds.

int routel Dbit; The number of bits used to encode the r out el Ds.

int PROTO Dbi ts; The number of bits used to encode the PROTO. This value is in used only
if the data for the structure was transmitted by BIFSv2Config

bool ean randonAccess; The randomAccess boolean is set in the Bl FSConfi g to distinguish

between BIFS-Anim elementary streams in which support random access
at any intra frame, and those where random access may not be possible
at all intra frames. In the latter case, greater compression efficiency may
be achieved because a given intra frame may re-use quantization settings
and statistics from the previous intra frame.
Ani mat i onMask ani mvask; The Ani mat i onMask used for BIFS-Anim
}

9.3.2.5 AnimationMask

The Ani mati onMask structure contains all the relevant information to describe a BIFS-Anim session. It is
constructed, upon receipt of the Bl FSConfi g or Bl FSv2Confi g syntax element, during the configuration of the
BIFS decoder, and updated for every received Ani mat i onFr ane.

Cl ass Ani mationMask {

i nt nunmNodes; The number of nodes to be animated

NodeDat a ani mNode[nurNodes] ; The array of animated nodes.

bool ean islntra;, The status of the current frame: intra if i sl nt r a is true,
predictive otherwise.

bool ean i sActi ve[nunmNodes] ; The mask of active animated node for the current frame.

If the node is not animated in the current frame, the

boolean shall be false.
}

9.3.2.6 NodeData

This data structure is built to decode the relevant information for one node. It is created from the node coding tables
in Annex H. The following functions support relevant operations on this data structure:

NodeDat a MakeNode(i nt nodeType)

This function creates a NodeDat a structure from the node coding table matching the given nodeType.

NodeDat a Get NodeFroml D (i nt nodel D)

This function returns the NodeDat a structure matching the given nodel D.

cl ass NodeData {
int nodeType; The nodeType of the node.

76 © ISO/IEC 2001 — All rights reserved

Fieldbata field[]:

bool ean isAninField[];

int nDEFbits;
int nlNbits;
int nOUThits;

int nunDEFfi el ds;
int nunDYNfi el ds;

int in2all[];
int def2all[];
int dyn2all[];

bool ean useQuant;

bool ean useAni m

NodeDat a pr ot 0;

9.3.2.7 FieldData

ISO/IEC 14496-1:2001(E)

The fields of this node whose construction is described below. This
array is indexed in “all” mode.

The mask of animated fields for the entire BIFS-Anim session,
indexed in “dyn” mode. This array is only used in BIFS-Anim.
The following data describes the indexing of the fields in “in”, “
“def”, “dyn” and “all” modes

out”,

The number of bits used for “def” field codes (the width of the
codewords in the 2™ column of the node coding tables).

The number of bits used for “in” field codes (the width of the
codewords in the 3" column of the node coding tables).

The number of bits used for “out” field codes (the width of the
codewords in the 4™ column of the node coding tables).

The number of “def” fields available for this node

The number of “dyn” fields available for this node.

The ids of eventins and exposedFields in “all” mode, indexed with
the ids in “in” mode.

The ids of fields and exposedFields in “all” mode, indexed with the
ids in “def” mode.

The ids of dynamic fields in “all” mode, indexed with the ids in “dyn”
mode.

When the NodeData is used for storing a prototype, the useQuant
states whether the quantization is applied on the PROTO or not.

When the NodeData is used for storing a prototype, the useQuant
states whether the BIFS-Anim is applied on the PROTO or not.

In case that a node is contained in a PROTO, its NodeData
structure points to the PROTO NodeData structure in the proto field.

This data structure is built to decode the relevant information for one field. It is created from the field's entry in the

relevant node coding table (see Annex H).

Class FieldData {
int fieldType;

i nt quant Type;

i nt ani nlype;

bool ean useEf fi ci ent Codi ng;

Fi el dCodi ngTabl e fct;
Ani nFi el dQP aqp;

Quanti zati onParaneter |qgp;

© ISO/IEC 2001 — All rights reserved

The type of the field (e.g., SFI nt 32Type). This is given by
the “Field Type” column of the node coding table for the
node to which it belongs.

The type of quantization used for the field. This is given by
the “Q” column of the node coding table of the node to
which it belongs. Types refer to Table 19 in 9.3.3.1.1.

The animation method for the field. This is given by the “A”
column of the node coding table. Types refer to animation
type in Table 25 in 9.3.3.2.1.

Set to true if the efficient coding is to be used. This value is
FALSE by default. If there is a local
QuantizationParameter node this value is the same
as its useEfficientCoding field.

The following data structures are used in the quantization
process:

This field is determined from the node coding table as
described in 9.3.2.9.

This field is only used in BIFS-Anim. It references an
Ani nFi el dQP stucture described in 9.3.2.10.

This field points to the local QuantizationParameter

77

ISO/IEC 14496-1:2001(E)

node.
bool ean i sQuanti zed; Set to true if the corresponding field is quantized, false
otherwise.
int nbBits; The number of bits used for the quantization of the field.
float floatMn[]; The minimum bounds for the quantization of vector fields.

These values are obtained from the Fi el dCodi ngTabl e
(described in 9.3.2.9) and the current
QuantizationParameter node (for BIFS-Scene) or the
ani nFi el d (for BIFS-Anim).

float floatMax[]; The maximum bounds for the quantization of vector fields.
These values are obtained from the Fi el dCodi ngTabl e
(described in 9.3.2.9) and the current
QuantizationParameter node (for BIFS-Scene) or the
ani nFi el d (for BIFS-Anim).

int intMn[]; The minimum bounds for integers (SFInt32 and MFInt32).
These values are obtained from the Fi el dCodi ngTabl e
(described in 9.3.2.9) and the current
QuantizationParameter node (for BIFS-Scene) or the
ani nFi el d (for BIFS-Anim).

}

It is assumed that the following functions are available:

int i sSF(FieldData field)
Returns 1 if the field’s f i el dType corresponds to a single field and 0 otherwise.

int get NoConp(Fi el dData fi el d)
Returns the number of quantized components for the field as given below:

Table 17 - Return values of get NoConp

fieldType guantType | animType value returned
SFFI oat any 6,7,8 1

SFI nt 32 13

SFVec2f any 2,12 2

SFVec 3f 9 9

SFVec 3f 1 =9 1,4,11 3

SFRot ati on any 10

The number of quantized components is the same as the natural number of components (three for SFVec3f, two
for SFVec2f, and so on) except for normals (2) and rotations (3) because of the quantization process (see 9.3.3.3).

9.3.2.8 Node Data Type Table Parameters

The following functions provide access to the node data type tables (described in Annex H):

int Get NodeType(i nt nodeDataType, int |ocal NodeType)
Returns the nodeType of the node indexed by | ocal NodeType in the node data type table. The nodeType of a
node is its index in the SF\Wor | dNode NDT Table.

int Get NDTnbBits(int nodeDataType)
Returns the number of bits used to index the nodes of the matching node data type table (this number is indicated
in the last column of the first row of the node data type table).

int Get NDTFrom D(int id)

Returns the nodeDat aType for the children field of the node identified by the nodel D, i d. Nodes having a
children field may have restrictions on the types of node that may occupy the field. These node types are
indicated in the node semantics (see 9.4 and ISO/IEC 14772-1:1998 , Table 4.3).

78 © ISO/IEC 2001 — All rights reserved

9.3.2.9 Field Coding Table

ISO/IEC 14496-1:2001(E)

This data structure contains parameters relating to the quantization of the field. It is created from the field’s entry in
the relevant node coding table (Annex H).

Cl ass Fi el dCodi ngTabl e {

}

float floatMn[];

float floatMax[];

float intMn[];
float intMax[];

int defaul tNbBits;

9.3.2.10 AnimFieldQP

The minimum default bounds for fields of type SFFloat, SFVec2f and
SFVec3f. These values are obtained from the “[m, M]” column of the
node coding table.

The minimum default bounds for fields of type SFFloat, SFVec2f and
SFVec3f. These values are obtained from the “[m, M]" column of the
node coding table.

The minimum default bounds for fields of type SFInt32. These values
are obtained from the “[m, M]” column of the node coding table.

The minimum default bounds for fields of type SFInt32. These values
are obtained from the “[m, M]” column of the node coding table.

The number of bits used by default for each field. Only used when the
guantization category of the field is 13. For quantization category 13,
the number of bits used for coding is also specified in the node coding
(e.g “13 16” in the node coding table means category 13 with 16 bits).

This data structure contains the necessary quantization parameters and information for the animation of a field. It is
updated throughout the BIFS-Anim session.

class AninFiel dQP {

i nt ani nlype;

bool ean useDefaul t;

bool ean isTotal;
int nunEl enent;

int indexList[];

float[] Imn;

float[] I nmax;

int[] Imnlnt;

int[] Pmin;

int INbBits;

int PNbBits;

© ISO/IEC 2001 — All rights reserved

The animation method for the field. This is given by the “A” column of
the node coding table for each node. Types refer to animation type in
Table 25in 9.3.3.2.1.

If this bit is set to TRUE, then the bounds used in intra mode are those
specified in the “Im, M]” column of the node coding table. The default
value is FALSE.

If the field is a multiple field and if this boolean is set to TRUE, all the
components of the multiple field are animated.

The number of elements being animated in the field. This is 1 for all
single fields, and equal to or greater than 1 for multiple fields.

If the field is a multiple field and if i sTot al is false, this is the list of
the indices of the animated SFFi el ds. For instance, if the field is an
MFFi el d with elements 3,4 and 7 being animated, the valuse of
i ndexLi st will be {3,4,7}.

The minimum values for bounds of the field in intra mode. This value is
obtained from the “[m, M]” column of the node coding table (if
useDefault is TRUE), the Initial Ani nQP (if useDefault is
FALSE and the last intra did not hold any new Ani nQP), or the
Ani mQP.

The maximum values for bounds of the field in intra mode. This value
is obtained from the “[m, M]” column of the semantics table (if
useDefault is TRUE), the Initial Ani nQP (if useDefault is
FALSE and if the last intra did not hold any new Ani mQP), or the
Ani mQP.

The minimum value for bounds of variations of integer fields in intra
mode. This value is obtained from the | ni ti al Ani mQP (if the last
intra did not hold any new Ani mQP) or Ani nQP structure.

The minimum value for bounds of variations of the field in predictive
mode. This value is obtained from the | ni ti al Ani mQP (if the last
intra did not hold any new Ani nQP) or Ani nQP.

The number of bits used in intra mode for the field. This value is
obtained from the I ni ti al Ani mQP or Ani mQP.

The number of bits used in predictive mode for the field. This value is

79

ISO/IEC 14496-1:2001(E)

obtained from the I ni ti al Ani nQP (if the last intra did not hold any
new Ani mQP) or Ani mQP structure.
}

It is assumed that the following function is available :

i nt get NbBounds(Ani nFi el dQP aqp)
Returns the number of set of bounds matching the animation type (see 9.3.2.3), as follows :

Table 18 - Return values of getNbBounds

agp.animType [value
returned

4,6,7,8 1

9,10

11,12, 13

2 2

1 3

Note that only Posi ti on2D and Posi ti on3D have specific sets of bounds for each of their components. The
number of bounds is also the number of independent models used in predictive mode during the BIFS-Anim
session.

9.3.3 Quantization

In BIFS scenes, the values of the fields may be quantized. BIFS-Anim data is always quantized. This subclause
describes this quantization process. A number of parameters control the quantization of a field. Here, these
parameters are used to construct a notational data structure called Fi el dDat a. In this subclause, the semantics of
how to determine these parameters for BIFS scenes and BIFS-Anim are first described, followed by a description of
the actual quantization process.

9.3.3.1 Quantization of BIFS scenes

9.3.3.1.1 Quantization categories

Single fields are coded according to the type of the field. The fields have a default syntax that specifies a non-
guantized encoding. When quantization is used, the quantization parameters are obtained from a special node

called QuantizationParameter. The following quantization categories are specified, providing suitable
guantization procedures for the various types of quantities represented by the various fields of the BIFS nodes.

80 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

Table 19 - Quantization Categories

Category | Description

None

3D position

2D positions
Drawing order
SFColor

Texture Coordinate
Angle

Scale

Interpolator keys
Normals

Rotations

Object Size 3D (1)
Object Size 2D (2)
Linear Scalar Quantization
CoordIndex
Reserved

OQIO(N|O|(G|R[WIN|[FL]|O

=
o

=
=

[EnY
N

=
w

'—\
S

=
(6}

Each field that may be quantized is assigned to one of the quantization categories (see Annex H). Along with
guantization parameters, minimum and maximum values are specified for each field of each node.

9.3.3.1.2 Determining the quantization parameters for a given field

The scope of quantization is constrained to a single BIFS access unit. A field is quantized when:

e The field is of type SFInt32, SFFloat, SFRotation, SFVec2f or SFVec3f.

e The quantization category of the field is not 0.

e The node to which the field belongs has a QuantizationParameter (see 9.4.2.89) node in its context

e The quantization for this type of field is activated (by setting the corresponding boolean to TRUE in the
QuantizationParameter node.

TheisQuantized,nbBits, floatMn, floatMax and intM n fields of the Fi el dDat a structure pertain to

the quantization of the field. The values of these fields are determined from the local QuantizationParameter
(I gp) and the Fi el dCodi ngTabl e (f ct) stored in the Fi el dDat a. This is done in the following way:

i sQuanti zed

i sQuanti zed is set to true when the three following conditions are met :

e | gp! =0 (there is a QuantizationParameter node in the scope of the field)
e quant Type ! =0 (the field value is of a type that may be quantized), and

o the following condition is met for the relevant quantization type:

© ISO/IEC 2001 — All rights reserved 81

ISO/IEC 14496-1:2001(E)

Table 20 - Condition for setting i sQuanti zed to true

guant Type Condi tion

1 | gp. posi ti on3DQuant == TRUE
2 | gp. posi ti on2DQuant == TRUE
3 I gp. dr awOr der Quant == TRUE
4 I gp. col or Quant == TRUE
5 I gp. t ext ur eCoor di nat eQuant == TRUE
6 I gp. angl eQuant == TRUE
7 | gp. scal eQuant == TRUE
8 I gp. keyQuant == TRUE
9 I gp. nor mal Quant == TRUE
10 I gp. nor mal Quant == TRUE
11 | gp. si zeQuant == TRUE
12 I gp. si zeQuant == TRUE
13 Al ways TRUE

14 Al ways TRUE

15 Al ways TRUE

nbBi ts

In the BIFS scene gquantization process, nbBi t s is set in the following way :

Table 21 - Value of nbBi t s depending on quant Type

guant Type nbBits

1 | gp. positi on3DN\bBi ts

2 | gp. positi on2DNbBi t's

3 [gp. drawOr der NbBi t s

4 | gp. col orNbBi t s

5 | gp. t ext ur eCoor di nat eNbBi t s

6 | gp. angl eNbBi t s

7 | gp. scal eNbBi ts

8 | gp. keyNbBi t s

9,10 | gp. normal NbBi ts

11, 12 l gp. si zeNbBi ts

13 fct.defaul t NbBits

14 This value is set according to the number
of points received in the last received
coord field of the node. Let N that number,
then:
nbBits = Ceil(log, (N))
where the function Ceil returns the
smallest integer greater than its argument

15 0

floatM n[]

In the BIFS scene quantization process, f | oat M n is set in the following way:

82 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

Table 22 - Value of f| oat M n, depending on quant Type and fi el dType

quant Type |fiel dType floatMn
1 SFVec3f Type | gp. position3Dmin
2 SFVec2f Type | gp. posi ti on2Dmi n
3 SFFI oat Type max(fct.mn[O], | gp.drawOr der M n)
4 SFFl oat Type I gp. colorMn
SFCol or Type I gp.colorMn, Iqgp.colorMn, Igp.colorMn
5 SFVec2f Type | gp. t ext ur eCoordi nateM n
6 SFFI oat Type Max(fct.m n[0], I gp.angl eM n)
7 SFFl oat Type | gp. scal eM n
SFVec2f Type I gp. scal eM n, | gp.scaleMn
SFVec3f Type | gp. scaleM n, | qgp.scaleMn, |qgp.scaleMn
8 SFFI oat Type Max(fct.m n[0O], I gp. keyM n)
9 SFVec3f Type 0.0
10 SFRot ati onTyp |[0.0
e
11,12 SFFI oat Type I gp. si zeM n
SFVec2f Type | gp. sizeM n, |gp.sizeMn
SFVec3f Type | gp. sizeMn, lqgp.sizeMn, |qgp.sizeMn
13, 14, 15 NULL

f | oat Max|]

In the BIFS scene quantization process, f | oat Max is set in the following way:

Table 23 - Value of f | oat Max, depending on quant Type and fi el dType

guant Type fieldType f | oat Max
1 SFVec3f Type | gp. posi ti on3Dmax
2 SFVec2f Type | gp. posi ti on2Dmax
3 SFFl oat Type m n(fct.max[0], | gp. dranwOr der Max)
4 SFFI oat Type | gp. col or Max
SFCol or Type | gp. col or Max, | qgp. col orMax, | gp.col or Max
5 SFVec2f Type I gp. t ext ur eCoor di nat eMax
6 SFFI oat Type m n(fct.max[0], | gp. angl eMax)
7 SFFl oat Type I gp. scal eMax
SFVec2f Type | gp. scal eMax, | gp. scal eMax
SFVec3f Type | gp. scal eMax, |qgp.scal eMax, | gp.scal eMax
8 SFFI oat Type m n(fct.max[0], | gp. keyMax)
9 SFVec3f Type 1.0
10 SFRot ati onType | 1.0
11,12 SFFI oat Type I gp. si zeMax
SFVec2f Type | gp. si zeMax, | gp. si zeMax
SFVec3f Type | gp. si zeMax, |qgp.sizeMax, |qgp.sizeMax
13, 14, 15 NULL
intMn[]

In the BIFS scene quantization process, i nt M n is set in the following way:

© ISO/IEC 2001 — All rights reserved

83

ISO/IEC 14496-1:2001(E)

quant Type intMn
1,2,3,4,5,6,7,8 NULL

9,10, 11, 12

13,14 fct.intMn[O0]
15 NULL

9.3.3.2 Quantization of BIFS-Anim

9.3.3.2.1 Animation Categories

The fields are grouped in the following categories for animation:

Table 25 - Animation Categories

Category

Description

None

Position 3D

Positions 2D

Reserved

Color

Reserved

Angle

Float

BoundFloat

Olo(N[o|O|B|W|IN|F|O

Normals

=
o

Rotation

[N
[N

Size 3D

=
N

Size 2D

[N
w

Integer

'_\
'

Reserved

=
a1

Reserved

9.3.3.2.2 Determining the quantization parameters for a given field

TheisQuanti zed,nbBits,

i sQuanti zed

Table 24 - Value of i nt M n, depending on quant Type

floatMn, floatMax and i nt M n fields of the Fi el dDat a structure pertain to
the quantization of the field. The values of these fields are determined from the local Ani nFi el dQP (aqp) and the
Fi el dCodi ngTabl e (f ct) stored in the Fi el dDat a. This is done in the following way :

In the BIFS-Anim quantization process, i sQuant i zed is always TRUE.

nbBi ts

In the BIFS-Anim quantization process, nbBi t s is set in the following way :

floatM n[]

Table 26 - Value of nbBi t s, depending on ani nType

ani nifype nbBits
1,2,4,6,7,8,9 ani mrype. | NbBits
10, 11, 12,13

In the BIFS-Anim quantization process, f | oat M n is set in the following way :

84

© ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

Table 27 - Value of f| oat M n, depending on ani nifype

ani mrype aqp. useDefau | floatMn
It

4 Col or true fct.mn[0], fct.mn[O], fct.mn[O]
fal se aqp. I M n[0], aqgp. I M n[0],

agp. | M n[0]

8 BoundFl oat |true fct.mn[O]
fal se agp. | M n[0]

1 Position fal se agp. I Mn

3D
2 Posi tion fal se agp. I Mn
2D
11 Size 3D fal se agp. IMn[0], aqp.IMn[O]
12 Si ze 2D fal se agp. I M n[0], aqgp. I M n[0],
agp. | M n[0]

7 Fl oat fal se aqp. | M n[0]

6 Angl e fal se 0.0

9 Nor mal

10 Rot ati on

13 I nt eger fal se NULL

14,1 Reseved NULL

5

f1 oat Max[]

In the BIFS-Anim quantization process, f | oat Max is set in the following way:

Table 28 - Value of f | oat Max, depending on ani nlType

ani nifype aqgp. usebDef au | fl oat Max
It

4 Col or true fct.max[0], fct.max[0], fct. max[O]
fal se agp. | Max[0], aqp. | Max[0], aqgp. ! Max[0]

8 BoundFl oat | true fct. max[0]
fal se aqgp. | Max[0]

1 Posi ti on fal se agp. | Max

3D
2 Position fal se aqgp. | Max
2D

11 Size 3D fal se agp. | Max[0], aqp. | Max[0]

12 Si ze 2D fal se agp. | Max[0], aqp. | Max[0], aqgp. ! Max[0]

7 Fl oat fal se aqp. | Max[0]

6 Angl e fal se 2* Pi

9 Nor mal fal se 1.0

10 Rot ati on

13 I nt eger fal se NULL

14,1 Reseved NULL

5

intMn[]

In the BIFS-Anim quantization process, i nt Max is set in the following way:

© ISO/IEC 2001 — All rights reserved

85

ISO/IEC 14496-1:2001(E)

Table 29 - Value of i nt M n, depending on ani nilype

ani mrype intMn
1,2,4,6,7,8 NULL

9,10, 11,12

13 agp. | mi nlnt[0]
14, 15 NULL

9.3.3.3 Quantization process

Let v, (t) be the value decoded from the bitstream at an instant t. Then, the inverse-quantized value at time t is:

v(t) = Ianuant(vq (t))

The linear quantization and inverse quantization are:

int quantize (float Vm n,

which returns

V-V,

float Vmax, float v, int Nb)

(2 1)

max min

float invQuantize (float Vmin,float Vmax,int vqg, int Nb)

which returns

-V,

V .
o max min
V=V, +V,

a oma(Nbl) _q

If i sQuanti zed is true, the quantization/inverse quantization process is the following :

Table 30 - Quantization and inverse quantization process

Quant Type | ani niType | Quantization/Inverse Quantization Process
1,2,3,4,5 1,24 For each component of the vector, the float quantization is applied:
6,7,8
11,12 6,7,8 Vqli] = quantize(floatMin(i], floatMax{i], v[i], nbBits)
11,12 For the inverse quantization:
vi]=invQ uantize(floatMin(i], floatMax{i], v4[i], nbBits)
9,10 9,10 For normals and rotations, the quantization method is as follows.
Normals are first renormalized :
Ny ny n,
S ey =, M= M= s
NS +n,+n, NS +n,”+n, VN +n, S +n,
Rotations (axis N, angle «) are first written as quaternions :
V{0] = cos(%) vl = ” ” sn(Z) V2] = ” ” sin(Z) 3| = ” ” sin(Z)
The number of reduced components is defined to be N: 2 for normals, and 3 for
rotations. Note that V is then of dimension N+1. The compression and
guantization process is the same for both :
86 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

Quant Type | ani nifype

Quantization/Inverse Quantization Process

The orientation K of the unit vector V is determined by the largest component in
absolute value: k =argM aX(|V[|]|) . This is an integer between 0 and N that is
encoded using two bits.

The direction of the unit vector V is 1 or —1 and is determined by the sign of the
component k] .Note that this value is not written for rotations (because of the

properties of quaternions).
The N components of the compressed vector are computed by mapping the

Mil
vik

square on the unit sphere {V

< 1} into a N dimensional square :

%mzﬂww{m“*+agmm+ngizqmw
VA

If nbBits=0, the process is complete. Otherwise, each component of V_ (which
lies between —1 and 1) is quantized as a signed integer as follows :
vglil = 2™ + quantize(floatMin[0], floatMax[0], v, [i], nbBits—1)
The value is encoded in the bitstream as
V]
The decoding process is the following :

The value decoded from the stream is converted to a signed value

Vq [|] — Vdecoded _ 2.ani'[Sfl

The inverse quantization is performed

v[i] = invQ uantize(floatMin[0], floatMin[0], v, [i], nbBits 1)

After extracting the orientation (k) and direction (dir) , the inverse mapping can
be performed :

1

&, o V]
\/1+Ztan .

i=0

K] = dir.

© ISO/IEC 2001 — All rights reserved

87

ISO/IEC 14496-1:2001(E)

Quant Type

ani nifype

Quantization/Inverse Quantization Process

Z[i]

V[+k +1) mod(N +1)] = tan(Tj.O[k] i=0,..,N

If the object is a rotation, Vcan be either used directly or converted back from a
guaternion to a SFRotation :

a =2.cos*(V[0]) n, :L n,=—— o V2] n, =— V3
sin(a/2) sin(a/ 2) sin(a/2)

The entire compression process therefore consists in projecting a vector of the
unit sphere onto the face of a cube inscribed inside the sphere, and transmitting
separately the face’s index (orientation: x, y or z — and direction : + or -) and the
coordinates on the face.

EXAMPLE — How two different normals are encoded in the case nbBits=3. The
compensation process (described in 9.3.4) is also illustrated.

y (ori=1)

x (ori=0)

Ny,
L

_—— P e

e

v=+1, delta=[+1,+2] \

=135

NP

/ori:O, dir=+1vq=[-2,+2] |
s °

z (ori=2) ‘ori:Z, dir=+1,vg=[+2,-1] ‘

Note that two quaternions that lie in opposite directions on the unit sphere
actually represent the same rotation. This is the reason why the direction is not
coded for rotations.

88

© ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

Quant Type | ani niType | Quantization/Inverse Quantization Process

13,14 13 For integers, the quantized value is the integer shifted to fit the interval [0, 25" -
1].
Vv, =Vv-intMin
The inverse quantization process in then :
V=intMin+v,
fieldType For SFIimage types, the width and height of the image are sent.
numComponents defines the image type. The following four types are

SFImage enabled:

If the value is ‘00’, then a grey scale image is defined.

If the value is ‘01’, a grey scale with alpha channel is used.
If the value is ‘10’, then an RGB image is used.

If the value is ‘11’, then an RGB image with alpha channel is used.

9.3.4 Compensation process

This subclause describes the mechanism used to compensate a quantized value for a given Fi el dDat a structure.
In other words, how to add a delta to a quantized value to yield the result of addition, which is another quantized
value. For vectorial types, this is simply an addition component by component, but for normals and rotations special

care has to be taken when performing this addition. This process is used in predictive mode in BIFS-Anim
sessions.

Let V; be the initial quantized value, v’ be the delta value and Vs be the quantized value resulting from the
addition. The general inverse compensation process is :

2 1 .,8
v, = AddDdlta(v,,v")
V; and V° are interpreted as follows:

A quantized value 2 contains an array of integers vq[]. Additionally, for normals and rotations, Vé contains an
orientation and, for normals only, a direction (see 9.3.3.3).

A delta value V° contains an array of integers vDelta[]. Additionnally, for normals, it contains an integer inverse
whose value is -1 or 1.

The size of these arrays is that returned by the function get NoConp(fi el d), as described in 0.

The result Vs is then computed in the following way :

© ISO/IEC 2001 — All rights reserved 89

ISO/IEC 14496-1:2001(E)

Table 31 - Compensation process

ani nrype Compensation Process
1,2,4,6,7,8

The components of Vs are:
11,12,13 | vd2[i] = vql[i] + vDelta[i]

9,10 The addition is first performed component by component and stored in a temporary array:
vqTenp[i] = vql[i] + vDeltali].

Letscal e = 2max(0,anitsfl) _1

Let N the number of reduced components (2 for normals, 3 for rotations)
There are then three cases are to be considered:

For every index
I!

Vé is defined by,

[vaTempli]| < scale vazfi] = vaTenp[i]

orientation2= orientationl

direction2 = directionl * inverse

There is one | 2
and only one| ¢

index k such _)
that Leti nv =1if vqTenp[k] >=0 and -1 else

is rescaled as if gliding on the faces of the mapping cube.

[vaTemp[k]| > scale LetdOri =k+1

The components of vq2 are computed as follows

0<i<N-dori |Vvqg2[i] = inv*vqTenp[(i+dOi) nmod N

i =N -dOri vg2[i] i nv*2*scal e-vqTenp[dOri —1]

N-dOri<i<N | vq2[i] = inv*vqTenp[(i +dOri-1) nod N

orientation2 = (orientationl + dOri) nod (N+1)

direction2 = directionl * inverse * inv
There are | The result is undefined
several indices
k such that

[vaTemp[k]| > scale

9.3.5 BIFS Configuration
9.3.5.1 Overview

This subclause describes the terminal configuration for the BIFS elementary stream. It is encapsulated within the
speci ficl nfo fields of the general Decoder Speci fi cl nf o structure (see 8.6.7), which is contained in the
Decoder Conf i gDescri pt or that is carried in ES Descri pt ors. If the session is a BIFS-Anim session, the
BIFS configuration contains some specific information to describe the animation mask, which specifies the
elements of the scene to be animated.

The terminal configuration is defined differently for elementary streams compliant only with this part of ISO/IEC
14496-1 and those compliant with this specification, and it is presented in 9.3.5.2 and 9.3.5.3, respectively. The

90 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

BIFS version of a specific scene description stream is determined by the objectTypelndication field of the
DecoderConfigDescriptor contained in the ES_Descriptor that describes this stream.

9.3.5.2 BIFSConfig
9.3.5.2.1 Syntax

cl ass BI FSConfi g extends Decoder Specificlnfo : bit(8) tag=DecSpecificlnfoTag {
unsi gned int(5) nodel Dbits;
unsigned int(5) routel Dbits;
bit (1) isComuandStream
i f (i sCommandStream {
bit(1) pixelMetric;
bit (1) hasSi ze;
i f(hasSi ze) {
unsi gned int(16) pixel Wdth;
unsi gned int(16) pixel Hei ght;

}

el se {
bit(1) randomAccess;
Ani mati onMask ani mvask() ;

}
}

9.3.5.2.2 Semantics

Bl FSConfi g is the terminal configuration for the BIFS elementary stream. It is encapsulated within the
speci ficl nfo fields of the general Decoder Speci fi cl nf o structure (see 8.6.7), which is contained in the
Decoder Conf i gDescri pt or thatis carried in ES_Descri pt ors.

The parameter nodel Dbi t s sets the number of bits used to represent nodel Ds. Similarly, rout el Dbi t s sets
the number of bits used to represent ROUTEI Ds.

The boolean i sCormandSt r eamidentifies whether the BIFS stream is a BIFS-Command stream or a BIFS-Anim
stream. If the BIFS-Command stream is selected (i sCommandSt r eamset to TRUE), the following parameters are
contained in Bl FSConf i g:

e The booleani sPi xel Met ri ¢ indicates whether pixel metrics or meter metrics are used.

e The boolean hasSi ze indicates whether a desired scene size (in pixels) is specified. If hasSi ze is set to true,
pi xel Wdth and pi xel Hei ght provide to the receiving terminal the desired horizontal and vertical
dimensions (in pixels) of the scene.

If isCommandStream is false, the following information is contained in Bl FSConf i g:

e TherandomAccess boolean signals the mode of the BIFS-Anim stream. If the bit is set to TRUE, it is possible
to perform random access in the BIFS-Anim stream at any intra frame. At each intra frame, the statistics of the
arithmetic decoder shall be reset. New quantization parameters shall be coded in the bistream or the default
parameters sent in the BIFS-Anim mask are used. If the r andomAccess bit is set to FALSE, compression may
be more efficient, but random access may not be possible at each intra frame. See 0 for detailed semantics.

e The Ani mat i onMask specifies the animation parameters of the BIFS-Anim elementary stream.
9.3.5.3. BIFSv2Config

9.35.3.1. Syntax

class Bl FSv2Config {
bit (1) use3DMeshCodi ng;
bit(1) reserved,
bi t (5) nodel Dbits;
bit(5) routelDbits;
bi t (5) PROTO Dbits;

© ISO/IEC 2001 — All rights reserved 91

ISO/IEC 14496-1:2001(E)

bit(1) isCommandStream
i f(isConmandStrean) {
bit(1) pixel Metric;
bit(1) hasSi ze;
i f(hasSi ze) {
int(16) pixel Wdth;
int(16) pixel Height;

}
}
el se {
bit(1) randomAccess;
Ani mati onMask ani mvask();
}

}
9.3.5.3.2. Semantics

Bl FSv2Confi g is the terminal configuration for elementary streams compliant with this specifcation but not with
this part of ISO/IEC 14496. It is not compatible with Bl FSConf i g defined in 9.3.5.2. It is encapsulated within the
speci ficl nfo fields of the general Decoder Speci fi cl nf o structure (see 8.6.6), which is contained in the
Decoder Confi gDescri pt or thatis carried in ES_Descri pt ors.

The use3DmreshCodi ng flag is used to signal that the syntax of 3D Mesh as sepecified by ISO/IEC 14496-2:1999
is used to encode IndexedFaceSet nodes.

Parameters nodel Dbi t s and r out el Dbi t s are used similarly as in Bl FSConf i g.

Boolean variables i sCommandSt ream i sPi xel Metric, hasSi ze, pixel Wdth, and pixel Hei ght are
used similarly as in Bl FSConfi g. If the BIFS-Command stream is selected (i sCormandSt r eamset to TRUE), a
PROTO Dbits field is additionally contained in BlIFSv2Config to determ ne the nunber
of bits necessary to encode the PROTOs.

If isCommandStream is false, r andomAccess, and Ani mat i onMask are contained and used in Bl FSv2Confi g
simlarly as in BlIFSConfig.

9.3.5.4 AnimationMask

9.3.5.4.1 Syntax

cl ass Ani mationMask() {
i nt numNodes = O;
do {
El enent aryMask el envask();
nunmNodes++;
bit(1) noreMasks;
} while (noreMasks);
}

9.3.5.4.2 Semantics

The Ani mat i onMask describes the nodes and fields to be animated, along with the quantization parameters to
help decode their values. It consists of a list of El ement ar yMasks.

If the boolean nor eMasks is TRUE, another El enrent ar yMask shall be present.
9.3.5.5 Elementary mask
9.3.5.5.1 Syntax
Cl ass El ement aryMask() {
bi t (Bl FSConfi gur ati on. nodel Dbi ts) nodel D
NodeUpdat eFi el d node = Get NodeFr om D(nodel D) ;
switch (node. nodeType) {

case FaceType:
br eak;

92 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

case BodyType:

br eak;

case | ndexedFaceSet 2DType:

br eak;

defaul t:

Initial Fi el dsMask initMask(node);

}
}

9.3.5.5.2 Semantics
The El enent ar yMask describes how to animate the elements of a node.

The integer nodel D identifies the animated node.

If the node’s nodeType is FDP, BDP or IndexedFaceSet2D, no further information is expected.
If any other case, an | ni ti al Fi el dsMask shall be present.
9.3.5.6 InitialFieldsMask

9.3.5.6.1 Syntax

class Initial Fi el dsMask(NodeUpdat eFi el d node) {
for(i=0; i<node.nunDYNfields; i++)
bit(1) node.isAninField[i];
int i;
for(i=0; i<node.nunDYNfields; i++) {
if (node.isAninField[i]) {
Fiel dData field = node.field[node.dyn2all[i]];
Ani nFi el dQP agp = field. aqp;
if (lisSF(field) {
bit(1) agp.isTotal;
if (lagp.isTotal) {
unsi gned int(5) nbBits;
do {
int (nbBits) aqp.indexList[aqgp. nunEl enent ++] ;
bit (1) norelndices;
} while (norelndices);

}
Initial Ani mQP QP[i](field.agp);
}

}
}

9.3.5.6.2 Semantics
The Il nitial Fi el dsMask specifies which fields of a given node are animated.
The array of booleans i sAni nFi el d describes whether the fields (indexed with dynl Ds) are animated.

If a multiple field is animated and if the boolean i sTot al is TRUE, all the of the field’s individual elements are
animated.

If a multiple field is animated and if the boolean i sTot al is FALSE, the indices of the animated individual field are
sent and stored in agp. i ndexLi st[]. The number of bits used to encode them is specified by nbBi t s. If the
boolean nor el ndi ces is TRUE, another index shall be present.

An | ni ti al Ani mQP shall then be expected.
9.3.5.7 InitialAnimQP

9.3.5.7.1 Syntax

I nitial Ani mQP(ani nFi el dQP aqp) {

© ISO/IEC 2001 — All rights reserved 93

ISO/IEC 14496-1:2001(E)

aqgp. useDef aul t =FALSE;
uint(4) type;

agp. ani nifype = type;
swi t ch(agp. ani nirype) {

case 4: /1 Col or

case 8: /! BoundFl oat s
bit(1) aqp. usebDef aul t

case 1: /! Position 3D

case 2: /]l Position 2D

case 11: /! Size 3D

case 12: /1l Size 2D

case 7 /! Floats

if (laqp.useDefault) {
for (i=0;i<getNbBounds(aqgp);i++) {
bit(1) useEf fi ci ent Codi ng
GenericFloat aqgp.Inmn[i](useEfficientCoding);

}
for (i=0;i<getNbBounds(aqgp);i++) {
bit(1) useEf fi ci ent Codi ng
Generi cFl oat aqp. I max[i](useEfficient Coding);

}
}
br eak;
case 13: /1 Integers
int(32) agp. Imnlnt[0];
br eak;
}
unsi gned int(5) aqp. | NbBi ts;

for (i=0;i<getNbBounds(aqgp);i++) {
int(INbBits+l) vq
aqp. Pmin[i] = vg-2*agp. | NoBi ts;
}

unsi gned int(4) agqp. PNbBi t s;
}
9.3.5.7.2 Semantics

The I ni ti al Ani nQP specifies the field’s default quantization parameters.

The quantization bounds are first coded. For ani mlypes that have default finite bounds (Col or s, BoundFl oat s),
the default bounds of the field coding tables data structures can optionally be used by setting aqp. useDef aul t to
TRUE. For all other ani niTypes, this boolean is set to FALSE. For all vectorial ani nilfypes (Positi on3D,
Posi tion2D, Si ze3D, Si ze2D, Fl oat , BoundFl oat , Col or), if agp. useDef aul t is FALSE, the quantization
bounds agp. I m n[] and aqgp. | max[] are coded. Depending on the value of useEf fi ci ent Codi ng, these
bounds are coded using CGeneri cFl oat as floats of 32 bits or less. For the ani mMTypes Angl e, Nor mal and
Rot at i on, no quantization bounds are coded.

The number of bits used in the quantization process, agp. | NbBi t s, is then coded. The quantization process (see
9.3.3.3) is used in intra mode only.

The minimal bounds used to offset the values obtained from the compensatiation process in predictive mode,
Pmin[], are then coded. Pmi ns may have values in the range —2""*" to 2™°®"*.1. The value is coded as an
unsigned integer using | NbBi t s+1 bits and has the value PM n+2""®",

The number of bits used for the predictive values, agp. PNbBi t s, is then coded. The compensation process (see
9.3.4) is used in predictive mode only.

94 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
9.3.6 BIFS Command Syntax
9.3.6.1 Overview

This subclause describes the commands that can be sent to act on the scene. They allow insertion, modification,
and deletion of elements of the scene (new scenes, nodes, fields). All BIFS information is encapsulated in BIFS
command frames. Each frame may contain commands that perform a number of operations, such as insertion,
deletion, or modification of scene nodes, their fields, or routes.

9.3.6.2 Command Frame
9.3.6.2.1 Syntax
cl ass CommandFrane() {
do {
Command conmand() ;

bit (1) continue;
} while (continue);

9.3.6.2.2 Semantics

A ConmandFr ane is a collection of BIFS-Commands, and corresponds to one access unit. A sequence of
commands may be sent. The boolean value cont i nue, when TRUE, indicates that another command follows the
current one.

9.3.6.3 Command
9.3.6.3.1 Syntax

class Comand() ({

bit (2) code;
switch (code) {
case O:
I nsertionComrand insert();
br eak;
case 1:
Del eti onConmand del ete();
br eak;
case 2:
Repl acenent Command repl ace();
br eak;
case 3:
SceneRepl aceCommand sceneRepl ace();
br eak;

}
9.3.6.3.2 Semantics

For each Command, the 2-bit flag, code, signals one of the four basic commands: insertion, deletion, replacement,
and scene replacement.

9.3.6.4 Insertion Command
9.3.6.4.1 Syntax

class InsertionCommand() {

bit(2) paraneterType ;

swi tch paraneter Type {

case O:
Nodel nsertion nodel nsert();
br eak;

case 2:
I ndexedVal uel nsertion idxlnsert();
br eak;

case 3:
ROUTEI nserti on ROUTEl nsert();

© ISO/IEC 2001 — All rights reserved 95

ISO/IEC 14496-1:2001(E)

break ;

}
}

9.3.6.4.2 Semantics
There are four basic insertion commands, signaled by the 2-bit flag par amet er Type.
If par anmet er Type is 0, a Nodel nserti on is expected.
If par amet er Type is 2, an | ndexedVal uel nserti on is expected.
If par anmet er Type is 3, a ROUTEI nserti on is expected.
9.3.6.5 Node Insertion
9.3.6.5.1 Syntax
cl ass Nodel nsertion() {

bi t (Bl FSConfi gur ati on. nodel Dbits) nodel D ;

i nt ndt =Get NDTFr om D(nodel D) ;

bit(2) insertionPosition;

switch (insertionPosition) {

case O: /1 insertion at a specified position

bit (8) position;
SFNode node(ndt);

br eak;
case 2: /'l insertion at the beginning of the field
SFNode node(ndt);
br eak;
case 3: /1 insertion at the end of the field
SFNode node(ndt);
br eak;

}
}

9.3.6.5.2 Semantics

The insertion of a node may be performed on a node that has an MFNode children field. Inserting a node adds the
node at the desired position in the children multiple field. The command is thus valid only if the node referred to by
nodel D contains a children field of type MFNode.

A node may be inserted in the children field of a grouping node. The nodel D of this grouping node is first coded.
The NDT of the inserted node can be determined from the NDT of the children field in which the node is inserted.
The position in the children field where the node shall be inserted, insertionPosition is then coded on two bits :

e IftheinsertionPositionis O, the node is inserted at a specified position coded on 8 bits.

e Ifthei nsertionPositionis 2, the node is inserted at the beginning of the field.

e IftheinsertionPositionis 3, the node is inserted at the end of the field.

The node is then coded.

9.3.6.6 IndexedValue Insertion

9.3.6.6.1 Syntax

cl ass | ndexedVal uel nsertion() {
bi t (Bl FSConfi gur ati on. nodel Dbi ts) nodel D
NodeUpdat eFi el d node=Get NodeFr oml D(nodel D) ;

96 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

i nt(node.nINbits) inlD;

bit(2) insertionPosition;

switch (insertionPosition) {

case 0: // insertion at a specified position
bit (16) position;
SFFi el d val ue(node. field[node.in2all[inlD1]);

br eak;
case 2: /'l insertion at the beginning of the field
SFFi el d val ue(node. field[node.in2all[inID]);
br eak;
case 3: /'l insertion at the end of the field
SFFi el d val ue(node. field[node.in2all[inlD1]);
br eak;

}
}

9.3.6.6.2 Semantics

The | ndexedVal uel nserti on syntax allows the insertion of a new value in a multiple field at the desired
position.

The nodel D of the node in whose field the value is to be inserted is first coded.

The field in which the value is inserted must be a multiple field type. The field is signaled with an i nl D. The i nl D
is parsed using the table for the node type of the node in which the value is inserted. The node type may be
determined from the nodel D.

The position in the children field where the node shall be inserted, i nserti onPosi ti on, is then coded:
o Iftheinserti onPositionis 0, the node is inserted at a specified position coded using 16 bits.
o Iftheinserti onPositionis 2, the node is inserted at the beginning of the field.
e IftheinsertionPositionis 3,the node is inserted at the end of the field.
The node is then coded.
9.3.6.7 ROUTE Insertion
9.3.6.7.1 Syntax
cl ass ROUTEI nsertion() {
bit (1) isUpdatable;

i f (isUpdatable)
bi t (Bl FSConfi guration.routel Dbits) routel D
bi t (Bl FSConfi gur ati on. nodel Dbits) departureNodel D
NodeDat a nodeOUT=Get NodeFr om D(depart ur eNodel D) ;
i nt (nodeQUT. nOUTbi ts) departurel D
bi t (Bl FSConfi gurati on. nodel Dbits) arrival Nodel D

NodeDat a nodel N=Get NodeFr ol D(arri val Nodel D) ;
i nt (nodel N.nl Nbits) arrivallD,

}
9.3.6.7.2 Semantics

The ROUTE insertion syntax permits the addition of a new ROUTE in the list of ROUTEs for the current scene.
A ROUTE is inserted in the list of ROUTES by specifying a new ROUTE.
If the boolean i sUpdat abl e is TRUE, ar out el Dis coded to allow the ROUTE to be referenced.

The nodel D of the route’s departure, depar t ur eNodel D, is first coded.

© ISO/IEC 2001 — All rights reserved 97

ISO/IEC 14496-1:2001(E)
The out | D of the departure field in the departure node, depar t ur el D,is then coded.
The nodel D of the route’s arrival, ar ri val Nodel D, is then coded.
The i nl D of the arrival field in the arrival node, arri val | D, is then coded.
9.3.6.8 Deletion Command
9.3.6.8.1 Syntax
cl ass Del eti onCommand() {
bit(2) parameterType ;
switch (paraneterType) {
case O:
NodeDel eti on nodeDel ete();
break ;
case 2.
| ndexedVal ueDel etion i dxDel ete();
break ;
case 3:
ROUTEDel eti on ROUTEDel ete();

break ;

}
}

9.3.6.8.2 Semantics

There are three types of deletion commands, signalled by the 2-bit flag par anet er Type.
If par anmet er Type is 0, a NodeDel et i on is expected.

If par amet er Type is 2, an | ndexedVal ueDel et i on is expected.

If par anmet er Type is 3, a ROUTEDel et i on is expected.

9.3.6.9 Node Deletion

9.3.6.9.1 Syntax

cl ass NodeDel etion() {
bi t (Bl FSConfi gur ati on. nodel Dbits) nodel D
}

9.3.6.9.2 Semantics

The NodeDel et i on syntax permits the deletion of a node with a specific nodel D. The node deletion deletes the
node and all its instances, if it was referenced elsewhere in the scene with a USE statement.

The node deletion is signalled by the nodel D of the node to be deleted. When deleting a node, all fields shall also
deleted, as well as all ROUTEs related to the node or its fields.

9.3.6.10 IndexedValue Deletion

9.3.6.10.1 Syntax

cl ass | ndexedVal ueDel etion() {

bi t (Bl FSConfi gur ati on. nodel Dbi ts) nodel D;
NodeDat a node=Get NodeFr onl D(nodel D) ;

i nt(node. nl Nbits) inlD,

bit(2) deletionPosition;

switch (del etionPosition) {

case 0: // deletion at a specified position
bit(16) position;
br eak;

98 © ISO/IEC 2001 — All rights reserved

}

case 2: /1 deletion at the beginning of the field
br eak;

case 3: /]l deletion at the end of the field
br eak;

}

9.3.6.10.2 Semantics

ISO/IEC 14496-1:2001(E)

The | ndexedVal ueDel et i on syntax permits the deletion of an element of a multiple value field.

The nodel D of the node to be deleted is first coded.

The i nl D of the field to be deleted is then coded.

The position in the children field from where the value shall be deleted, del eti onPosi ti on, is then coded:

If the i nserti onPosi ti onis 0, the value at specified position, coded using 16 bits, shall be deleted.

If thei nsertionPositionis 2, the value at the beginning of the field shall be deleted.

If thei nserti onPosi ti onis 3, the value at the end of the field shall be deleted.

9.3.6.11 ROUTE Deletion

9.3.6.11.1 Syntax

cl ass ROUTEDel etion() {

}

bi t (Bl FSConfi guration. routel Dbits) routel D

9.3.6.11.2 Semantics

The ROUTEDel eti on syntax permits the deletion of a ROUTE with a given rout el D from the list of active
ROUTEs.

Deleting a ROUTE is performed by specifying its r out el D. This is similar to the deletion of a node.

9.3.6.12 Replacement Command

9.3.6.12.1 Syntax

cl ass Repl acenment Command() ({

}

bit(2) paraneterType ;

switch (paraneterType) {

case O:
NodeRepl acenent nodeRepl ace();
br eak;

case 1:
Fi el dRepl acenment fi el dRepl ace();
br eak;

case 2:
I ndexedVal ueRepl acement i dxRepl ace();
break ;

case 3:
ROUTERepl acenment ROUTERepl ace();
br eak;

}

9.3.6.12.2 Semantics

There are 4 replacement commands, signalled by the 2-bit flag par anet er Type.

© ISO/IEC 2001 — All rights reserved

99

ISO/IEC 14496-1:2001(E)

If par anmet er Type is 0, a NodeRepl acemnent is expected.

If par amet er Type is 1, a Fi el dRepl acenent is expected.

If par anet er Type is 2, a | ndexedVal ueRepl acenent is expected.
If par anmet er Type is 3, a ROUTERepl acenent is expected.

9.3.6.13 Node Replacement

9.3.6.13.1 Syntax

cl ass NodeRepl acenent () {
bi t (Bl FSConfi gur ati on. nodel Dbits) nodel D;
SFNode node(SFWor | dNode) ;

}
9.3.6.13.2 Semantics

The NodeRepl acenent syntax permits the deletion of an existing node and its replacement with a new node. All
ROUTEs pointing to the deleted node as well as any instances of the node created through the USE mechanism
shall be deleted.

The node to be replaced is signalled by its nodel D. The new node is encoded with the SFWor | dNode node data
type, which is valid for all BIFS nodes, in order to avoid necessitating the NDT of the replaced node to be
established.

9.3.6.14 Field Replacement
9.3.6.14.1 Syntax

cl ass Fi el dRepl acenent () {
bi t (Bl FSConfi gur ati on. nodel Dbits) nodel D ;
NodeDat a node = Get NodeFr om D(nodel D) ;
i nt (node. nl Nbits) inlD,
Fi el d val ue(node.field[node.in2all[inlD]);

}
9.3.6.14.2 Semantics

This Fi el dRepl acenent syntax permits the modification of the value of a field of an existing node. The existing
value shall be deleted and replaced with the new value.

The nodel D of the node whose field is to be modified is first coded
The i nl D of the field to be modified is then coded

The new field is then coded

9.3.6.15 IndexedValueReplacement

9.3.6.15.1 Syntax

cl ass | ndexedVal ueRepl acenent () {

bi t (Bl FSConfi gur ati on. nodel Dbits) nodel D;
NodeDat a node = Get NodeFr om D(nodel D) ;

i nt(node. nl Nbits) inlD,

bit(2) replacenentPosition;

switch (repl acerment Posi tion) {

case 0: // replacenent at a specified position
bit (16) position;
SFFi el d val ue(node.field[node.in2all[inlD]);
br eak;

case 2: // replacenent at the beginning of the field

100 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

SFFi el d val ue(node. field[node.in2all[inID]);
br eak;

case 3: // replacenent at the end of the field
SFFi el d val ue(node. field[node.in2all[inID]);
br eak;

}
}

9.3.6.15.2 Semantics

The | ndexedVal ueRepl acenment syntax permits the modification of the value of an element of a multiple field.
As for any multiple field access, it is possible to replace at the beginning, the end or at a specified position in the
multiple field.

The nodel D of the node whose field is to be modified is first coded.

The i nl D of the field whose value is to be modified is then coded.

The position in the children field where value has to be modified, r epl acerment Posi ti on, is then coded:

e Iftheinserti onPositionis 0, the value at specified position, coded using 16 bits, is modified.

e Iftheinserti onPositionis 2, the value at the beginning of the field is modified.

e IftheinsertionPositionis 3,the value at the end of the field is modified.

The new value is then coded as a SFField.

9.3.6.16 ROUTE Replacement

9.3.6.16.1 Syntax
cl ass ROUTERepl acenent () {
bi t (Bl FSConfi gurati on.routel Dbits) routel D
bi t (Bl FSConfi gurati on. nodel Dbits) departureNodel D
NodeDat a nodeQUT = Get NodeFr oml D(nodel D) ;
i nt (nodeQUT. nOUThi ts) departurel D
bi t (Bl FSConfi gurati on. nodel Dbits) arrival Nodel D;

NodeDat a nodel N = Get NodeFr om D(nodel D) ;
int(nodel N.nl Nbits) arrivallD;

}
9.3.6.16.2 Semantics

Replacing a ROUTE deletes the replaced ROUTE and replaces it with the new ROUTE.
The r out el D of the ROUTE to be replaced is first coded.

The nodel D of the new route’s departure, depart ur eNodel D, is then coded.

The out | D of the departure field in the departure node, depart ur el D, is then coded.
The nodel D of the route’s arrival, ar ri val Nodel D, is then coded.

The i nl D of the arrival field in the arrival node, ar ri val I D, is then coded.

9.3.6.17 Scene ReplaceCommand

9.3.6.17.1 Syntax

cl ass SceneRepl aceCommand() {
Bl FSScene scene();
}

© ISO/IEC 2001 — All rights reserved 101

ISO/IEC 14496-1:2001(E)
9.3.6.17.2 Semantics

Replacing a scene results in the entire BIFS scene being replaced with a new Bl FSScene scene. When used in
the context of an Inline node, this corresponds to replacement of the sub-scene (previously assumed to be
empty). In a BIFS elementary stream, the SceneRepl acenent commands are the only random access points.

9.3.7 BIFS Scene
9.3.7.1 BIFSScene

9.3.7.1.1 Syntax

cl ass Bl FSScene() {
bit(6) reserved;
bit (1) USENANES;
PROTA i st protos;
SFNode nodes(SFTopNode) ;
bit (1) hasROUTEs;
i f (hasROUTEs) ({
ROUTEs routes();
}

}
9.3.7.1.2 Semantics

The integer r eser ved may be used in future extensions. It shall be set to O.

The Bl FSScene structure represents the global scene. A Bl FSScene is always associated to a Repl aceScene
BIFS-Command message. The Bl FSScene is structured in the following way:

The nodes of the scene are described first as an SFNode. The first node in the scene shall be of type SFTopNode
(see Annex H).

A boolean value, USENAMES, sets a global flag that indicates whether PROTOs, SFNodes, and ROUTEs store their
field names and IDs as strings, as well as integer values. (This is needed for MPEG-J and Scripts, which refer to
fields, by their explicit string name).

A list of PROTOs associated with the scene is stored in pr ot 0s.
ROUTEs are described after all nodes

All BIFS scenes shall begn with a node of type SFTopNode. This implies that the top node may be one of
Layer2D, OrderedGroup, Group or Layer3D.

9.3.7.2. Encoding of PROTOs

This subclause describes how PROTOs, a mechanism that allow scene components to be reused, are encoded.
The encoding of PROTOs allows specification of quantization and animation categories for the PROTO
parameters, so that PROTOs can take advantage of BIFS compression capabilities just like any other (predefined)
node in the node coding tables. A PROTA i st is stored in a Bl FSScene and contains a list of PROTOs that are
associated with that scene.

9.3.7.2.1 PROTOlist

9.3.7.2.1.1 Syntax

class PROTA ist() {
bit(1) norePROTGCs;
whil e (nmorePROTGs) {

PROTCQdecl aration() proto;
bit (1) norePROTCs;

102 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

9.3.7.2.1.2 Semantics

The PROTOlist stores a list of PROTOs. A one-bit flag nor ePROTGs signals the fact that more PROTOs are being
declared.

9.3.7.2.2 PROTOdeclaration

9.3.7.2.2.1 Syntax

PROTQdecl aration() {

PROTO nt er f aceDefintion interface;
NodeDat a protoData = MakePROTCdat a(i nterface);
PROTCcode code(prot oDat a);
PROTCcodi ngTabl e tabl e(protobData);

}

9.3.7.2.2.2 Semantics

The PROTO declaration is made of the PROTG nt er f ace defintion, the PROTO implementation in terms of
nodes, and the PROTO coding table. The PROTO coding table codes the equivalent of the Node Coding table for
the PROTO. This makes it possible to animate, quantize and update the PROTO instantiations using the identical
mechanisms used for the pre-defined nodes.

9.3.7.2.3 PROTOinterfaceDefinition

9.3.7.2.3.1 Syntax

class PROTG nterfaceDefinition {
bit(idBits) id;
i f (USENAMES) ({
String PROTOnane;

}
bit (1) noreFields;
whil e (noreFields) {
bit(2) event Type;
bit(6) fieldType;
i f (USENAMES) ({
String fiel dName;

}

if ((eventType == 0b00) || (eventType == 0b01l)) {
fieldData = nakeFi el dDat a(fi el dType, event Type, i SSF) ;
Fiel d(fiel dData) defaultVal ue;

}
bit (1) noreFields;
}
}

9.3.7.2.3.2 Semantics

An id is given to the PROTO in order to be able to refer to it. The protol Dbits is obtained from the
Bl FSConf i gur ati on and encodes the ID of the PROTO in the PROTO table. The PROTO interface contains a
one bit nor eFi el ds field that specifies if more PROTO fields are encoded. Then for each field, the event type
(exposedField, field, eventln, eventOut) and the fieldType is given (SFBool, SFFloat, et). The event Type is coded
using 2 bits according to Table 32. The fi el dType is coded using 6 bits according to Table 32. When the field
type is a node, it is coded as an SFWbr | dNode or MFWor | dNode. The USENAMES is a static constant set at the
Bl FSScene level, which selects the fact that node and field names are encoded as Strings as well as IDs.

© ISO/IEC 2001 — All rights reserved 103

ISO/IEC 14496-1:2001(E)

Table 32 - Field and EventTypes.

Field 0b00
exposedField 0b01
eventin Ob10
eventOut Ob11

9.3.7.2.4 PROTOcode
9.3.7.2.4.1 Syntax

cl ass PROTCcode(NodeDat a protoData) {

bit(1l) reserved,;

PROTA i st subPr ot os;

do {
SFNode node(SFWor| dNodeType, pr ot oDat a) ;
bit(1) noreNodes;

} while (noreNodes);

bit(1) hasROUTEs;

i f (hasROUTEs) {
ROUTEs routes();

}

}

9.3.7.2.4.2 Semantics
The bitr eser ved is reserved for future extension. The bit shall be set to 0.

First a flag signals whether the prototype is a PROTO, which then has its code included in the proto. The
PROTCcode contains a (possibly empty) list of the sub-PROTOs of this PROTO in subPr ot os, followed by the
code to execute the PROTO. The code is specified as a set of SFNodes, using a standard SFNode definition with
the additional possibility to declare an IS field. Moreover, the PROTO body may contain ROUTESs if the hasROUTE
flag is set to 1.

9.3.7.25 PROTOCodingTable
9.3.7.2.5.1 Syntax
PROTQCodi ngTabl e(NodeDat a protoData) {

I nt er f aceCodi ngMask mask(pr ot oDat a) ;
I nt er f aceCodi ngPar aneters i cp(protoData);

}
9.3.7.2.5.2 Semantics

The PROTO coding table defines the Quant and Anim parameters and the parameters necessary to reconstruct a
NCT table for the PROTO definition.

9.3.7.2.6 InterfaceCodingMask
9.3.7.2.6.1 Syntax

I nt er f aceCodi ngMask(NodeDat a protoData) {
bit (1) protoData.useQuant;
bit(1) protoData.useAnim

104 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

9.3.7.2.6.2 Semantics

The mask encodes two Boolean values to store whether the PROTO can further be animated (using BIFS-Anim),
or quantized.

9.3.7.2.7 InterfaceCodingParameters
9.3.7.2.7.1 Syntax

I nt er f aceCodi ngPar anet er s(| nt er f aceCodi ngMask nmask, NodeData protoData) {
for (int i =0; i < protoData.numALLfields ; i++) {
if (protoData.useQuant) {
if (protoData.field[i].isDEF()) {
bi t (4) quant Cat egory;
i f (quant Category == 13)
bit(5) nbBits;
bit(1) hasM nMax;
i f (hasM nMax) {
Cast ToSF(Fi el d) mi nFi el dvVal ue(protoData.field[i]));
Cast ToSF(Fi el d) maxFi el dVal ue(protoData.field[i]]));
}
}

}
if (protoData.useAninm {
if (protoData.field[i].isIN()) {
bit(1) isDyn;
if (isbyn) {
i nt (4) aninCategory;
}

}
}
}
}

9.3.7.2.7.2 Semantics

The I nterfaceCodi ngParanet ers includes all the necessary parameters to further update, quantize and
animate the PROTO instantiation.

If the useQuant information is TRUE, and the field is of « DEF » type, the quantization category will be encoded. If
the category is 13, the number of bits for this category is further needed. To quantize, it is further necessary to
encode the min and max values for the field. When the field is an SFField, the functions CastToSF(field) parses an
SFField, but when the field is an MFField, the function CastToSF() parses the SFType corresponding the MFType.

If the useAni mis TRUE and the field type is IN, then the anim category will be encoded.
9.3.7.3 SFNode
9.3.7.3.1 Syntax

cl ass SFNode(i nt nodeDat aType) {
bit(1) isReused,;
if (isReused) {
bi t (Bl FSConfi gur ati on. nodel Dbi ts) nodel D

el se {
bi t (Get NDTnbBi t s(nodeDat aType)) | ocal NodeType;
nodeType = Get NodeType(nodeDat aType, | ocal NodeType) ;
if ((nodeType == I ndexedFaceSet Type) &&
(Bl FSConfi gurati on. use3DmeshCodi ng == 1)) {
bit (1) isUpdateable;
i f (isUpdateable) {
bi t (Bl FSConfi gur ati on. nodel Dbi ts) nodel D
i f (USENAMES) ({
String nane;
}
}

© ISO/IEC 2001 — All rights reserved 105

ISO/IEC 14496-1:2001(E)
Mesh3D mmode;

el se {
if (local NodeType == 0) {
bi t (Get NDTnbBi t sExt (nodeDat aType) ext Local NodeType;
i f (extLocal NodeType == 1) {
bi t (Bl FSConfi gurati on. PROTO Dbits) PROTOnodeType;
nodeType = Get PROTONodeType(PROTODat aType, PROTOnodeType)

i f (extLocal NodeType > 1) {
nodeType = Get Ext NodeType(NodeDat aType, ext Local NodeType)
}

}
bit (1) isUpdateabl e;
if (isUpdateable) {
bi t (Bl FSConfi gur ati on. nodel Dbi ts) nodel D
i f (USENAMES) ({
String nane;
}

}
bit (1) MaskAccess;
if (MaskAccess) {
MaskNodeDescri pti on nmmode(MakeNode(nodeDat aType, nodeType));

el se {
Li st NodeDescri pti on | node(MakeNode(nodeDat aType, nodeType));
}

}
}
}

9.3.7.3.2 Semantics

The SFNode syntax represents a generic node. The encoding depends on the context of the parent field of the
node. This context is described by the parent field’s node data type (NDT).

If i sReused is TRUE then this node is a reference to another node, identified by its nodel D. This is equivalent to
the use of the USE statement in ISO/IEC 14772-1:1998.

If i sReused is FALSE, then a complete node is provided in the bitstream. This requires that the nodeType be
inferred from the node data type. The node is referenced by its | ocal NodeType in the node data type table. Then,
this information is converted into the node’s nodeType (e.g. its | ocal NodeType in the SFWr | dNode NDT table).

If a node is detected as an IndexedFaceSet node and the Mesh3D syntax is used (see 9.4.2.56), then the
IndexedFaceSet node is coded as a specific visual object (see ISO/IEC 14496-2:1999).

If the node is not an IndexedFaceSet, the | ocal NodeType is checked. If it is 0, then an extra
ext Local NodeType is resolved, corresponding to the list of extended node types for this Node Data Type.

If this ext Local NodeType is equal to 1, this indicates that the NodeType is a PROTO. Then, the global node
type is constructed according to the list of PROTOs declared and their ID.

When a PROTO is declared, a new node type is created and added to the global node type table of supported
nodes. The function Get PROTONodeType(PROTONodeType) returns the ID for the extended global node type of
a given PROTO given its PROTO type.

The function, Get Ext NodeType(NodeDat aType, ext Local NodeType) is used when a node is of extended
node type, in which case the NodeDataType and extended local node type allow reconstruction of the extended
global node type, i.e. the position of the node in the SFWorldNode extended table.

If the ext Local Type is greater than 1 (O is reserved), then the global node type is resolved using the Node Type
for extended nodes.

The i sUpdat abl e flag enables the assignment of a nodel D to the node. This is equivalent to the DEF statement
of ISO/IEC 14772-1:1998.

106 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
The node definition follows using either a MaskNodeDescri pti on, or aLi st NodeDescri pti on.

The nodeType is a number that represents the type of the node. This nodeType is coded using a variable number
of bits for efficiency reasons. The exact type of node may be determined from the nodeType as follows:

1. The data type of the field parsed indicates the node data type. The root node is always of type SFTopNode.

2. From the node data type expected and the total number of nodes type in the category, the number of bits
representing the nodeType is obtained (this number is given in the node data type tables in Annex H).

3. The nodeType gives the nature of the node to be parsed.

EXAMPLE — The Shape node has 2 fields defined as:

exposedFi el d SFAppear anceNode Appear ance NULL
exposedFi el d SFGeonet r y3DNode geonetry NULL

When decoding a Shape node, if the first field is transmitted, a node of type SFAppear anceNode is expected.
The only node with SFAppear anceNode type is the Appearance node, and hence the nodeType can be coded
using 0 bits. When decoding the Appearance node, the following fields can be found:

exposedFi el d SFivat eri al Node Mat eri al NULL
exposedFi el d SFText ur eNode texture NULL
exposedFi el d SFText ureTransfornmNode TextureTransform NULL

9.3.7.4 MaskNodeDescription

9.3.7.4.1 Syntax

cl ass MaskNodeDescri pti on(NodeDat a node) ({
if (node.protoData != null) {
for (i=0; i<node.numALLfields; i++) {
bit(1) Mask;
if (Mask) {
bit(1) isedField;
if (isedField) {
unsi gned i nt (node. proto. nALLbits) protoFi el d;
} else {
Fi el d val ue(node.field[i]]);
}
}

}
} else { //regular list of fields — not froma PROTO
for (i=0; i<node.nunDEFfields; i++) {

bit(1l) Mask;
if (Mask) {

Fi el d val ue(node. field[node.def2all[i]]);
}

}
}
}

9.3.7.4.2 Semantics

If the encoded node is a PROTO then all the fields are scanned. Those that have a Mask value of 1 either have a
value read in or are ISed fields indicated by i sedFi el d. The 1Sed fields read a reference to the PROTO interface
field to which they refer.

If the encoded node is not a PROTO, then in the MaskNodeDescr i pti on, a mask indicates, for each “def” mode
field (those having a def | D) of this node type, if the field value is specified. Fields are sent in the order indicated in
Annex H. The field types are thus known and permit the field’s value to be decoded.

© ISO/IEC 2001 — All rights reserved 107

ISO/IEC 14496-1:2001(E)
9.3.7.5 ListNodeDescription

9.3.7.5.1 Syntax

cl ass Li st NodeDescription (NodeData node) ({
bit(1) endFl ag;
whi l e (!EndFl ag) {
if (node.protobData !'= null) {
bit (1) isedField;
if (isedField){
bi t (node. nALLbits) fiel dRef;
bi t (node. proto. nALLbi ts) protoField;
} else {
bi t (node. nDEFbi ts) fiel dRef;
Fi el d val ue(node. fiel d[node. def2all[fieldRef]]);
}

el se {
bi t (node. nDEFbi ts) fi el dRef;
Fi el d val ue(node. fiel d[node. def2all[fieldRef]]);

}
bit(1) endFl ag;
}
}

9.3.7.5.2 Semantics

In the Li st NodeDescri pti on, fields are directly addressed by their field reference, fi el dRef . The reference is
sent as a def | D and its parsing depends on the node type (see 9.3.2.3). When the fields belong to a PROTO, they
may be ISed fields, indicated by i sedFi el d. In this case, a reference to the PROTO interface in coded in
pr ot oFi el d. Since all fields may be ISed, PROTO field references are encoded using node. nALLbi ts, where
as normal node field references are encoded using only node. nDEFbi t s. PROTO fields that are not Ised may
have a default value assigned to them.

Non-PROTO fields always have a default value coded.
9.3.7.6 Field
9.3.7.6.1 Syntax

class Field(FieldData field) {
if (isSF(field))
SFFi el d sval ue(field);
el se
MFFi el d nval ue(field);
}

9.3.7.6.2 Semantics

A field is encoded according to its type: single (SFField) or multiple (MFField). A multiple field is a collection of
single fields.

9.3.7.7 MFField
9.3.7.7.1 Syntax

class MFField(FieldData field) {
bit(1) reserved,
if (!reserved) {
bit(1l) isListDescription;
i f (isListDescription)
MFLi st Description Ifield(field);
el se
MFVect or Descri ption vfield(field);

108 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
9.3.7.7.2 Semantics
The bit r eser ved is reserved for future extension. The bit shall be set to 0.

MFField types can be encoded with a list (MFLi st Description) or vector (M~Vector Descri ption)
description.

9.3.7.8 MFListDescription
9.3.7.8.1 Syntax

cl ass MrLi st Description(FieldData field) {
bit (1) endFl ag;
whil e (!endFlag) {
SFField field(field);
bit (1) endFl ag;
}
}

9.3.7.8.2 Semantics
The MFField type is encoded as a list of single fields.
9.3.7.9 MFVectorDescription

9.3.7.9.1 Syntax

cl ass M~VectorDescription(FieldData field) {
int(5) NbBits;
int(NbBits) nunberOFields;
SFField field[nunmberOf Fields](field);

}

9.3.7.9.2 Semantics
The MFField type is encoded as a vector of fields whose dimension is specified.

The number of bits, NbBi t s, used to specify the dimension of the vector is first coded. The actual dimension is
then coded as an unsigned integer using NbBi t s. The fields are then coded in order.

9.3.7.10 SFField

9.3.7.10.1 Syntax

class SFField(FieldData field) {
switch (field.fieldType) {

case SFNodeType:
SFNode nVal ue(field.fiel dType);
br eak;

case SFBool Type:
SFBool bVal ue;
br eak;

case SFCol or Type:
SFCol or cVal ue(field);
br eak;

case SFFl oat Type:
SFFl oat fVal ue(field);
br eak;

case SFI nt 32Type:

SFInt32 i Val ue(field);
br eak;

© ISO/IEC 2001 — All rights reserved 109

ISO/IEC 14496-1:2001(E)

case SFRot ationType:
SFRot ati on rVal ue(field);
br eak;

case SFStringType:
SFString sVal ue;
br eak;

case SFTi neType:
SFTi ne t Val ue;
br eak;

case SFUrl Type:
SFUr |l uVal ue;
br eak;

case SFVec?2f Type:
SFVec2f v2Val ue(field);
br eak;

case SFVec3f Type:
SFVec3f v3Val ue(field);
br eak;

case SFl mageType:
SFI mage i mageVal ue(fiel d);
br eak;

case SFCommrandBuf f er Type:
SFConmmandBuf f er conmmandVal ue(fi el d);
br eak;

case SFScri pt Type:
SFScri pt scriptVal ue();
br eak;

}
}

9.3.7.10.2 Semantics
Each field is encoded according to its f i el dType.
9.3.7.11 GenericFloat

9.3.7.11.1 Syntax

cl ass Generi cFl oat (bool ean useEffici ent Codi ng) {
if (luseEfficient Coding)
float (32) val ue;
el se {
Efficient Fl oat val ue;

}
9.3.7.11.2 Semantics

If the parameter useEffi ci ent Codi ng is true, the float is coded using the Effici ent Fl oat scheme.
Otherwise, the IEEE 32 bit format for float coding is used.

9.3.7.12 EfficientFloat

9.3.7.12.1 Syntax

class EfficientFloat {
unsi gned int(4) manti ssalLength;
if (mantissaLength !'= 0) {
int(3) exponentLength;
int(1) mantissaSign;
i nt (manti ssaLength-1) manti ssa;

110 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

if (exponentLength !'= 0) {
int(1l) exponentSign;
i nt (exponent Lengt h-1) exponent;
}
}
}

9.3.7.12.2 Semantics

For floating point values it is possible to use a more economical representation than the standard 32-bit format, as
specified in the Ef fi ci ent Fl oat structure. This representation separately encodes the size of the exponent
(base 2) and mantissa of the number.

If the mant i ssalLengt h is 0, the decoded value is 0 and further parameters are not coded.

If the manti ssaLength is not 0, the exponent Length, manti ssaSi gn and manti ssa are coded. The
mantissa sign is 1 when the mantissa is negative, otherwise it is 0.

The manti ssa syntax element contains the actual mantissa with the leading 1 removed, hence only
(mant i ssalLengt h-1) bits are needed to encode it.

If the exponent Lengt h is 0 then exponent is not parsed, and the decoded exponent is set, by default, to O.
Otherwise, the sign is read, with exponent Si gn=1 used to denote a negative exponent. The leading 1 of the
exponent is not coded, so that exponent can be encoded using exponent Lengt h-1 bits.

mantissaLength-1

The actual mantissa and exponent are, respectively, (2 + manti ssa) and

(2 &wonentengihl 4 oy ponent), thus in all other cases the decoded value shall be:

(1- 2.mantissaSign).(2 mentissal ength-1 mantiSsa)_2(1—2.exponent8ign).(2exp°”e'“"mg‘h’1+exponent)

9.3.7.13 SFBool

9.3.7.13.1 Syntax

cl ass SFBool {
bit(1) val ue;
}

9.3.7.13.2 Semantics
If val ue is 1 the decoded boolean is set to TRUE. If val ue is 0, the decoded boolean is set to FALSE.
9.3.7.14 SFColor

9.3.7.14.1 Syntax

class SFCol or (Fiel dData field) {
if (field.isQuantized)
Quanti zedFi el d gval ue(field);
el se {
Generi cFl oat rVal ue(field.useEfficientCoding);
Generi cFl oat gVal ue(field.useEfficientCoding);
Generi cFl oat bVal ue(fiel d.useEfficient Codi ng);
}
}

9.3.7.14.2 Semantics

If the field's i sQuant i zed bit is TRUE, the Quant i zedFi el d scheme shall be used. Otherwise each component
of the SFCol or is coded using the Gener i cFl oat scheme.

© ISO/IEC 2001 — All rights reserved 111

ISO/IEC 14496-1:2001(E)
9.3.7.15 SFFloat

9.3.7.15.1 Syntax

cl ass SFFl oat (FieldData field) {
if (field.isQuantized)
Quanti zedFi el d gqval ue(field);
el se
Generi cFl oat val ue(field.useEfficientCoding);
}

9.3.7.15.2 Semantics

If the field’s i sQuant i zed bit is TRUE, the Quant i zedFi el d scheme shall be used. Otherwise the SFFloat is
coded using the Generi cFl oat scheme.

9.3.7.16 SFInt32

9.3.7.16.1 Syntax

class SFInt32(FieldData field) {
if (field.isQuantized)
Quanti zedFi el d gval ue(field);
el se
i nt(32) val ue;
}

9.3.7.16.2 Semantics

If the field’s i sQuant i zed bit is TRUE, the Quant i zedFi el d scheme shall be used. Otherwise the SFInt32 is
coded as a signed value using 32 bits.

9.3.7.17 SFRotation

9.3.7.17.1 Syntax

cl ass SFRotation(FieldbData field) {

if (field.isQuantized)
Quanti zedFi el d gqval ue(field);

el se {
Generi cFl oat xAxis(field.useEfficientCoding);
Generi cFl oat yAxis(field.useEfficientCoding);
Generi cFl oat zAxis(field.useEfficientCoding);
Generi cFl oat angl e(field.useEfficientCoding);

}
}

9.3.7.17.2 Semantics

If the field’'s i sQuant i zed bit is TRUE, the Quant i zedFi el d scheme shall be used. Otherwise each component
of the SFRotation is coded indepedently using the Gener i cFl oat scheme.

9.3.7.18 SFString

9.3.7.18.1 Syntax

class SFString {
unsi gned int(5) lengthBits;
unsigned int(lengthBits) |ength;
char (8) val ue[length];

}
9.3.7.18.2 Semantics

The SFSt ri ng is coded as an array of characters whose length is first specified.

112 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
| engt hBi t s is the number of bits used to encode the string length.
| engt h is the length of the string coded using | engt hBi t s.
All characters are coded using the UTF-8 character encoding (ISO/IEC 10646-1).
9.3.7.19 SFTime
9.3.7.19.1 Syntax
class SFTinme {

doubl e(64) val ue;
}

9.3.7.19.2 Semantics

The SFTime value is coded as a 64-bit double.
9.3.7.20 SFUTrl

9.3.7.20.1 Syntax

class SFU Il {
bit(1) isOD;
if (isOD)
bit(10) ODid;
el se
SFString url Val ue;

}
9.3.7.20.2 Semantics

The “od:” URL scheme is used in an url field of a BIFS node to refer to an object descriptor. The integer
immediately following the “od:” prefix identifies the Obj ect Descri pt or | D. For example, “od:12” refers to object
descriptor number 12.

If the SFUr | refers to an object descriptor, the Qbj ect Descri pt or | Dis coded as a 10-bit integer. Otherwise the
URL is sentas an SFSt ri ng.

9.3.7.21 SFVec?2f

9.3.7.21.1 Syntax

class SFVec2f (FieldData field) {
if (field.isQuantized)
Quanti zedFi el d gval ue(field);
el se {
Ceneri cFl oat val uel;
Ceneri cFl oat val ue2;
}
}

9.3.7.21.2 Semantics

If the field's i sQuant i zed bit is TRUE, the Quant i zedFi el d scheme shall be used. Otherwise each component
of the SFVec?2f is coded using the Generi cFl oat scheme.

9.3.7.22 SFVec3f

9.3.7.22.1 Syntax

class SFVec3f (Fiel dData field) {
if (field.isQuantized)
Quanti zedFi el d gval ue(field);
el se {
Generi cFl oat val uel(field.useEfficientCoding);

© ISO/IEC 2001 — All rights reserved 113

ISO/IEC 14496-1:2001(E)
Generi cFl oat val ue2(fiel d.useEfficientCoding);

Generi cFl oat val ue3(field.useEfficientCoding);

}
}

9.3.7.22.2 Semantics

If the field’'s i sQuant i zed bit is TRUE, the Quant i zedFi el d scheme shall be used. Otherwise each component
of the SFVec3f is coded using the Gener i cFl oat scheme.

9.3.7.23 SFImage

9.3.7.23.1 Syntax

cl ass SFl nage {
unsigned int(12) wdth;
unsi gned int(12) height;
bit(2) nunConponents;

bit(8) pixels[(numConponent s+1)*wi dt h*hei ght];
}

9.3.7.23.2 Semantics

The wi dt h and hei ght in pixels of the image are coded as 12-bit unsigned integers.
numConponent s defines the image type. The following types are permitted:

e |Ifthe value is ‘00, then a grey scale image shall be decoded.

o If the value is ‘01’, then a grey scale with alpha channel shall be decoded.

e |Ifthe value is ‘10’, then an RGB image shall be decoded.

e If the value is '11’, then an RGB image with alpha channel shall be decoded.
Pixels shall be decoded as unsigned char, 8-bit encoded pixel values.

9.3.7.24 SFCommandBuffer

9.3.7.24.1 Syntax

cl ass SFCommandBuf fer {
unsi gned int(5) lengthBits;
unsigned int(lengthBits) |ength;
bit(8) value[length];

}

9.3.7.24.2 Semantics

The SFComandBuf f er synt ax el enent is coded as an array of bytes whose length is first specified.
| engt hBi t s is the number of bits used to encode the buffer length.

| engt h is the length of the buffer coded using | engt hBi t s.

val ue is an array of bytes of length | engt h. It shall contain a CommandFr ane, padded if necessary to complete
the last byte.

9.3.7.25 QuantizedField
9.3.7.25.1 Syntax

class QuantizedFiel d(FieldData field) {
switch (field. quantType) {

114 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

case 9:
int(1) direction
case 10:
int(2) orientation
defaul t:
br eak;
}

for (i=0;i<getNbComp(field);i++)
int(field.nbBits) vq[i]
}

9.3.7.25.2 Semantics
The value is quantized using the quantization process described in 9.3.3.

For normals, the direction and orientation values specified in the quantization process are first coded. For rotations,
only the orientation value is coded.

The compressed components, vq[i], of the field’s value are then coded in sequence as unsigned integers using
the number of bits specified in the field data structure.

9.3.7.26 SFScript
9.3.7.26.1 Syntax

class SFScript() {

bit (1) isListDescription;
if (isListDescription)

Scri pt Fi el dsLi st Descri pi on();
el se

Scri pt Fi el dsVect or Descri pi on();
const bit(1) reserved=1;
EncodedScri pt () ;

}
9.3.7.26.2 Semantics

The Scri pt class is used to represent a Script node. This can be done as a list description or as a vector
description, depending on the value in i sLi st Descri pti on. The script is encoded using the bitstream syntax for
EncodedScri pt, given below. This bitstream is a tree representation of the BNF grammar for ECMAScript
(ISO/IEC 16262). Each node determines the parse decision selected in parsing the script, and thus the resulting
bitstream can be used to interpret the script directly.

9.3.7.27 ScriptFieldsListDescription
9.3.7.27.1 Syntax
class ScriptFiel dsListDescription() {
bit(1) endFlag; // List description of the fields
whil e (!EndFl ag) {
ScriptField();
bit (1) endFl ag;
}
}

9.3.7.27.2 Semantics

Scri pt Fi el dsLi st Descri pti on reads a list description of the fields in the Script node. When endFl ag has
value 1, the list has ended and no more values are read.

9.3.7.28 ScriptFieldsVectorDescription

9.3.7.28.1 Syntax

class ScriptFi el dsVectorDescription() {
bit(4) fieldBits; // Nunber of bits for nunber of fields

© ISO/IEC 2001 — All rights reserved 115

ISO/IEC 14496-1:2001(E)

bit(fieldBits) nunFields; // Nunber of fields in the script
for (i=0; i<nunFields; ++i) {

ScriptField();
}

}
9.3.7.28.2 Semantics

Scri pt Fi el dsVect or Descri ption reads a value nunti el ds, to determine how many fields are in the
Script node, and these are read sequentially. The number of bits used to give the number of fields is first read as
4bitsinfiel dBits.

9.3.7.29 ScriptField

9.3.7.29.1 Syntax

class ScriptField() {
bit(2) eventType;
bit(6) fieldType;
String fiel dName;
if (eventType == FIELD) {
bit(1) haslnitial Val ue;
if (haslnitial Val ue){
NodeDat a node = nakeNode(Scri pt NodeType) ;
Fi el d(node.field[fieldType]) val ue;
}
}
}

9.3.7.29.2 Semantics

The Scri pt Fi el d contains one field for the Script node. The event Type specifies the type of field, with values
0, 1, and 2 representing fields, eventins and eventOuts, respectively. The fi el dType is given in Table 33. This
determines the type of the field. The fieldName gives the name of this field; the name is used to refer to this field
from within the script.

When the event is a field, it may have a default value. This presence of this value is indicated by
hasl ni ti al Val ue being 1. In this case, the field value is read using the Fi el d class. In order to be able to use
the Fi el d class, a node of type NodeDat a is created that then has the appropriate field value for each
fiel dType (thefi el dType index can be used to reference field structures of the appropriate type).

116 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

Table 33 - Field Types for Script fields and PROTO fields.

9.3.7.30 EncodedScript
9.3.7.30.1 Syntax

cl ass EncodedScript {
bit (1) hasFunction

whi | e (hasFunction) {

Function function;
bit (1) hasFunction
}
}

9.3.7.30.2 Semantics

A script is a collection of functions, listed sequantially while hasFunct i on is TRUE.

9.3.7.31 Function

9.3.7.31.1 Syntax

class Function {

ldentifier identifier;

Argunents argunents;

fiel dType value Field type
0bx000000 SFBool
0bx000001 SFFloat
0bx000010 SFTime
0bx000011 SFInt32
0bx000100 SFEString
0bx000101 SFVec3f
0bx000110 FVec?2f
0bx000111 SFColor
0bx001000 SFRotation
0bx001001 SFImage
0bx001010 SFNode
0bx100000 MFBool
0bx100001 MFFloat
0bx100010 MFTime
0bx100011 MFInt32
0bx100100 MFString
0bx100101 MFVec3f
0bx100110 MFVec2f
0bx100111 MFColor
0bx101000 MFRotation
0bx101001 MFImage
0bx101010 MFNode

St at enent Bl ock st at enent Bl ock;

}
9.3.7.31.2 Semantics

Each function consists of an i dentifier, a list of argunent s, and a st at enent Bl ock which contains the

script statements executed when the function is called.

9.3.7.32 Arguments

9.3.7.32.1 Syntax

class Argunments {
bi t (1) hasArgunent

© ISO/IEC 2001 — All rights reserved

117

ISO/IEC 14496-1:2001(E)

whi |l e (hasArgunent) {
Identifier identifier;
bit (1) hasArgunent
}
}

9.3.7.32.2 Semantics

The argument list is of arbitrary length, and terminates when hasAr gunent is 0. Each argument consists of one
identifier.

9.3.7.33 StatementBlock

9.3.7.33.1 Syntax

cl ass StatenentBl ock {
bit(1) isConmpoundStatenment
if (isConmpoundStatenent) {
bit(1l) hasStatenent
while (hasStatenent) {
St at enment st at enent ;
bit (1) hasStatenent

}
el se {

St at enment st at enent ;
}

}
}

9.3.7.33.2 Semantics

A st at enent Bl ock consists of either a compoundSt at enent , which holds several script statements, or a single
statement, indicated by the value of i sCompoundSt at enent . When the st at enent Bl ock consists of several
statements, the hasSt at enent bit is used to signal either the end of the list or the existance of another statement.

9.3.7.34 Statement

9.3.7.34.1 Syntax

class Statenent {
bit(3) statenentType
swi tch statenent Type {
case if Statenent Type:
| FSt at enent i f St at enent ;
br eak;
case for Statenment Type:
FORSt at enent f or St at enent ;
br eak;
case whil eSt at ement Type:
WHI LESt at enent whi | eSt at enent ;
br eak;
case returnStatenent Type:
RETURNSt at erent r et urnSt at erent ;
br eak;
case conpoundExpressionType:
ConpoundExpr essi on conpoundExpr essi on;
br eak;
case breakSt at ement Type:
case continueSt at enent Type:
br eak;
case switchsStat ement Type:
SW TCHSt at enent swi t chSt at enent ;
br eak;

118 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
9.3.7.34.2 Semantics

A St at enment may consist of one of the following specific statement types:
e fStatenent
e forStatenent
e whil eStat ement
e returnStatenent
e conmpoundExpressi on
e breakSt at ement
e continueStatenent.
e switchStatenent.
These statement types are indicated by a value from 0-7, respectively, called st at ement Type.
9.3.7.35 IFStatement
9.3.7.35.1 Syntax
class | FStatenment {
ConpoundExpr essi on conpoundExpr essi on;
St at enent Bl ock st at enent Bl ock;
bit (1) hasELSESt at ement

if (hasELSEStatenent) {
St at enent Bl ock st at enent Bl ock;
}

}
9.3.7.35.2 Semantics

An | FStatenment is wused for conditional execution of a statenentBlock. It consists of a
CompoundExpr essi on followed by a statenent Bl ock. The statenent Bl ock is interpreted when the
CompoundExpr essi on evaluates to a non-zero or non-empty value. The | FSt at enent has an optional
additional st at ement Bl ockwhi ch is included when hasEl seStatenment is 1. This second, optional
conpoundSt at enment is interpreted when the ConpoundExpr essi on evaluates to a zero or empty value.

9.3.7.36 FORStatement

9.3.7.36.1 Syntax

cl ass FORStat ement {
Opt i onal Expressi on opti onal Expressi on;
Opt i onal Expressi on opti onal Expressi on;
Opt i onal Expressi on opti onal Expressi on;
St at enent Bl ock st at enent Bl ock;

}
9.3.7.36.2 Semantics

A FORSt at enent is used to iterate over values, stopping when a conditional expression fails. The first
opti onal Expression shall be executed when the statement is interpretted. The second
opti onal Expressi on shall then be evaluated, and if it returns a non-zero or non-empty value, the
st at emrent Bl ock shall be executed. The third opt i onal Expr essi on shall then be executed. After this process
shall repeat starting with the execution of the second opt i onal Expr essi on again, the st at enrent Bl ock, and
the third opt i onal Expr essi on.

© ISO/IEC 2001 — All rights reserved 119

ISO/IEC 14496-1:2001(E)
9.3.7.37 WHILEStatement

9.3.7.37.1 Syntax

cl ass WHI LESt at emrent {
ConmpoundExpr essi on conpoundExpr essi on;
St at erent Bl ock st at enent Bl ock;

}
9.3.7.37.2 Semantics

The WH LEStatenment is used to conditionally execute a statenentBl ock for so long as the
conpoundExpr essi on evaluates to a non-zero or non-empty value.

9.3.7.38 RETURNStatement

9.3.7.38.1 Syntax

cl ass RETURNSt at ement {
bit(1) returnVal ue
if (returnValue) {
ConpoundExpr essi on conpoundExpr essi on;
}
}

9.3.7.38.2 Semantics

The RETURNSt at enent is used to return a value from a function. When a function has no return value,
returnVal ue shall be 0. Otherwise, the returned value shall be the last value evaluated for
conmpoundExpr essi on.

9.3.7.39 CompoundExpression

9.3.7.39.1 Syntax

cl ass ConpoundExpression {
do {
Expr essi on expressi on;
bit (1) hasExpression
} while (hasExpression);
}

9.3.7.39.2 Semantics

A ConmpoundExpr essi on is a list of expr essi ons, terminated when hasExpr essi on has value 0. The value of
the compound expression shall be the value of the last evaluated expression.

9.3.7.40 SWITCHStatement

9.3.7.40.1 Syntax

cl ass SW TCHSt at ement {
do {
ConpoundExpr essi on conmpoundExpression; // the switched val ue
bit(5) numbits // nunber of bits for the case val ue
bi t (nunbits) caseVal ue conpoundExpression; #a case val ue
St at emrent Bl ock statenentBl ock; // statenents in case
bit(1) hasMoreCases
} while (hasMreCases);
bit(1) hasDefault;
if (hasDefault) {
St at enent Bl ock statenentBl ock; // default statements in case
}
}

120 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
9.3.7.40.2 Semantics

A SWI'l CHSt at enent is an expression that must evaluate to an integer value. It is followed by pairs of integer
values in val ue stored with nunbi t s bits and St at ement Bl ocks. The values represent the value of a case
statement, which are encoded repeatedly until hasMor eCases is 0. An optinal default St at enent Bl ock is then
encoded.

9.3.7.41 optionalExpression
9.3.7.41.1 Syntax
cl ass optional Expression {
bi t (1) hasConpoundExpr essi on
i f (hasConpoundExpressi on) {
ConpoundExpr essi on conpoundExpr essi on;
}

}
9.3.7.41.2 Semantics

An optional Expression may be an empty expression, containing no executable statements, or a
compoundExpr essi on. This is indicated by the value of hasConpoundExpr essi on.

9.3.7.42 Expression
9.3.7.42.1 Syntax
cl ass Expression {

bit (6) expressionType
switch expressionType {

case curvedExpressionType: /'l (conmpoundExpr essi on)
ConpoundExpr essi on conpoundExpr essi on;
br eak;
case negati veExpressi onType: /'l -expression
case not Expressi onType: /] 1expression
case onesconpExpressi onType: /'l ~expression
case increnent Expressi onType: /| ++expression
case decrenent Expressi onType: /'l --expression
case post I ncrenent Expressi onType: /'l expression++
case post Decr erment Expr essi onType: /1 expression--
Expr essi on expressi on;
br eak;

case conditi onExpressi onType: /1 expression ? expression : expression
Expressi on expressi on;
Expr essi on expressi on;
Expressi on expressi on;
br eak;
case stringExpressonType:
String string;
br eak;
case nunber Expr essi onType:
Number numnber ;
br eak;
case vari abl eExpressi onType:
Identifier identifier;
br eak;
case functionCal | Expressi onType:
case obj ect Construct Expressi onType:
Identifier identifier;
Par ans par ans;
br eak;
case obj ect Menber AccessExpressi onType:
Expressi on expressi on;
Identifier identifier;
br eak;
case obj ect Met hodCal | Expr essi onType:
Expressi on expressi on;
Identifier identifier;

© ISO/IEC 2001 — All rights reserved 121

ISO/IEC 14496-1:2001(E)

Par ans par ans;
br eak;
case arrayDeref erenceExpressi onType:
Expr essi on expression;
ConpoundExpr essi on conpoundExpr essi on;

br eak;
default: // = +=, -= *= [= U, &, |=, "=, <<=, >>=, >>>=
Io== 1= < <= > > + -, * [/, % & ||, & |,

[n, <<, >> >>>

)

Expr essi on expression;
Expr essi on expression;
br eak;

}
}

9.3.7.42.2 Semantics

An expression may contain one of a number of possible executed statements, specified by the value in
expressi onType. These are listed below, according the value of expr essi onType.

curvedExpr essi onType=0:
The expression consists of a conpoundExpr essi on.

Negat i veExpr essi onType=1:
An expr essi on shall be evaluated and the value returned shall be negated.

Not Expr essi onType=2:
An expr essi on shall be evaluated and its returned value shall be logically negated (empty values return non-
empty, zero values return non-zero, and vice-versa).

OnesconpExpr essi onType=3:
An expr essi on shall be evaluated numerically (string values will yield an undefined result) and the value returned
shall be bitwise negated.

I ncr ement Expr essi onType=4:
An expr essi on shall be evaluated numerically (string values will yield an undefined result) and the value returned
shall incremented by 1.

Decr ement Expr essi onType=5:
An expr essi on shall be evaluated numerically (string values will yield an undefined result) and the value returned
shall be decremented by 1.

Post | ncr ement Expr essi onType=6:

An expr essi on shall be evaluated numerically (string values will yield an undefined result) and its returned value
shall be incremented by 1. The returned value of this expr essi on shall be the value prior to the increment being
applied.

Post Decr ement Expr essi onType=7:

An expr essi on shall be evaluated numerically (string values will yield an undefined result) and its returned value
shall be decremented by 1. The returned value of this expr essi on shall be the value prior to the decrement being
applied.

Condi ti onExpr essi onType=8:

Three expr essi ons shall be evaluated. If the first expression returns a non-zero or non-empty value, then the
returned value of this expr essi on shall be the value of the second expr essi on. Otherwise, the returned value of
this expr essi on shall be the value of the third expr essi on.

Stri ngExpressonType=9:
The expr essi on contains a string.

Nunmber Expr essi onType=10:
The expr essi on is a number.

Var i abl eExpressi onType=11:

122 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

The expr essi on is a variable and shall return the value held by the variable determined by i denti fi er.

Functi onCal | Expressi onType=12:

Anidentifier determines which f uncti on shall be evaluated. The par ans shall be passed to the f uncti on
by value. The returned value of the expression shall be the value returned by the function in its
returnStatenent.

Obj ect Const ruct Expressi onType=13:
A new object shall be created (using a ‘new’ statement in the script) and the object shall be held in the variable
determined by i denti fi er. A list of par ans shall be passed to any constructors that exist for the object.

Obj ect Menmber AccessExpr essi onType=14:

A member variable of an object shall be accessed and the returned value of the expr essi on shall be the value in
this member variable. Normally, the first expr essi on will evaluate to a node in the scene graph (which is
accessed through a script variable). This means that the first expressi on will normally evaluate to an
i denti fi er reference. The following i denti fi er will then refer to a field of the node.

Obj ect Met hodCal | Expr essi onType=15:

A method of an object shall be evaluated. The first expressi on shall evaluate to an object. The following
i denti fi er shall specify a method of this object. The following par ans shall be passed to the method. The value
of this expression shall be the value returned by the method.

Ar rayDer ef er enceExpr essi onType=16:

The expr essi on shall be an array element reference. The first expr essi on shall evaluate to an array reference.
The following compoundExpr essi on shall evaluate to a number that shall then be used to index the array. The
returned value of this expr essi on shall be the value held in the referenced array element.

The following binary operands evaluate two expressions and return a value based on a binary operation of these
two expressions. The binary operation and value of expr essi onType is listed below for each binary operation.
Unless explicitely stated, a string value for either of the expressions will yield an undefined result.

Bi naryQperand(=) = 17:
The first expressi on shall evaluate to an i dentifier which shall be assigned the value of the second
expressi on.

Bi naryOper and(+=) = 18:
The first expr essi on shall evaluate to ani denti fi er. If the value held by the variable is numerical, the variable
value shall be incremented by the value of the second expr essi on, which shall also evaluate to a numerical
value. If the variable is a string, then its new value shall be its original value with the second expression (which
shall be a string) appended.

Bi naryQOperand(-=) = 19:
The first expr essi on shall evaluate to an i denti fi er whose value shall be decremented by the value of the
second expr essi on.

Bi naryOQperand(*=) = 20:
The first expr essi on shall evaluate to an i denti fi er whose value shall be set to its current value multiplied by
the value of the second expr essi on.

Bi naryQOperand(/=) = 21:
The first expr essi on shall evaluate to an i denti fi er whose value shall be set to its current value divided by
the value of the second expr essi on.

Bi naryQperand(%) = 22:
The first expr essi on shall evaluate to an i denti f i er whose value shall be set to its current value modulo the
value of the second expr essi on. The expressions shall both evaluate to integer values.

Bi naryOper and(&) = 23:
The first expr essi on shall evaluate to an i denti fi er whose value shall be set to its current value logically
bitwise ANDed with the value of the second expr essi on.

Bi naryQperand(| =) = 24:

© ISO/IEC 2001 — All rights reserved 123

ISO/IEC 14496-1:2001(E)

The first expr essi on shall evaluate to an i denti fi er whose value shall be set to its current value logically
bitwise ORed with the value of the second expr essi on.

Bi nar yOper and(”=) = 25:
The first expr essi on shall evaluate to an i denti fi er whose value shall be set to its current value logically
bitwise EXCLUSIVE-ORed with the value of the second expr essi on.

Bi nar yOper and(<<=) = 26:
The first expr essi on shall evaluate to an i denti fi er whose value shall be set to its current value bitwise
shifted to the left a number of bits specified by the second expr essi on.

Bi naryOper and(>>=) = 27:
The first expr essi on shall evaluate to an i denti fi er whose value shall be set to its current value bitwise
shifted to the right a number of bits specified by the second expr essi on.

Bi nar yOper and(>>>=) = 28:
The first expr essi on shall evaluate to an i denti fi er whose value shall be set to its current value bitwise
shifted to the right (with the least significant bits looped) a number of bits specified by the second expr essi on.

Bi nar yOper and(==) = 29:
This expression shall return a non-zero value when the first and second expr essi on are identical. Otherwise, the
result of this expression shall be zero.

Bi nar yOperand(!=) = 30:
This expression shall return a non-zero value when the first and second expr essi on are not identical. Otherwise,
the result of this expression shall be zero.

Bi nar yOper and(<) = 31:
This expression shall return a non-zero value when the first expr essi on is numerically or lexicographically less
than the second. Otherwise, the result of this expression shall be zero.

Bi nar yOper and(<=) = 32:
This expression shall return a non-zero value when the first expr essi on is numerically or lexicographically less
than or equal to the second. Otherwise, the result of this expression shall be zero.

Bi nar yOperand(>) = 33:
This expression shall return a non-zero value when the first expr essi on is numerically or lexicographically greater
than the second. Otherwise, the result of this expression shall be zero.

Bi naryOperan(>=) = 34:
This expression shall return a non-zero value when the first expr essi on is numerically or lexicographically greater
than or equal to the second. Otherwise, the result of this expression shall be zero.

Bi nar yOper and(+) = 35:
This expression shall return the sum of the first and second expr essi ons. If both expr essi ons are strings, then
the result shall be the first st r i ng concatenated with the second.

Bi naryOperand(-) = 36:
This expression shall return the difference of the first and second expr essi ons.

Bi naryOperand(*) = 37:
This expression shall return the product of the first and second expr essi ons.

Bi naryOperand(/) = 38:
This expression shall returns the quotient of the first and second expr essi ons.

Bi naryOperand(% = 39:
This expression shall return the value of the first expr essi on modulo the second expr essi on.

Bi nar yOper and(&&) = 40:
This expression shall return the logical AND of the first and second expr essi ons.

Bi naryOperand(|]|) = 41:

124 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

This expression shall return the logical OR of the first and second expr essi ons.

Bi naryQperand(&) = 42:
This expression shall return the logical bitwise AND of the first and second expr essi ons.

Bi naryQperand(|) = 43:
This expression shall return the logical bitwise OR of the first and second expr essi ons.

Bi naryQper and(”) = 44:
This expression shall return the logical bitwise XOR of the first and second expr essi ons.

Bi naryOper and(<<) = 45:
This expression shall return the value of the first expr essi on shifted to the left by the number of bits specified as
the value of the second expr essi on.

Bi nar yOper and(>>) = 46:
Returns the value of the first expr essi on shifted to the right by the number of bits specified as the value of the
second expr essi on.

Bi naryQper and(>>>) = 47:
This expression shall return the value of the first expr essi on shifted to the right (with the least significant bit
looped to the most significant bit) by the number of bits specified as the value of the second expr essi on.

9.3.7.43 Params
9.3.7.43.1 Syntax

cl ass Parans {
bit (1) hasParam
whi | e(hasParam {
Expr essi on expression;
bit (1) hasParam

}
}

9.3.7.43.2 Semantics

The Par ans class consists of a (possibly empty) list of expr essi ons. The hasPar ambit indicates either the end
of the list, or the existance of another expr essi on.

9.3.7.44 Identifier

9.3.7.44.1 Syntax

class ldentifier {
bit(1) received
if (received) {
bit(nun) identifierCode // numis cal culated by counting
/'l nunber of distinguished identifiers
/'l received so far

el se {
String string;
}
}

9.3.7.44.2 Semantics

Anidentifier is used to identify a variable. If the i denti fi er has occurred before in the script (or as a field
name in the Script node), then an i denti fi er Code value is sent using num bits. This is indicated by the
recei ved bit. If the i dent i fi er has occured before in the script (or as a field name in the Script node), then an
i denti fi er Code value is sent using numbits. The value of num that is, the number of bits needed to send the
index of the identifier in a list of all previousy occuring identifiers, is variable and is determined by the minimum
number of bits needed to specify the length of the list of all previously occuring identifiers.

© ISO/IEC 2001 — All rights reserved 125

ISO/IEC 14496-1:2001(E)
9.3.7.45 String

9.3.7.45.1 Syntax

class String {

bit(8) char

while (char!=0) {
bit(8) char

}

}
9.3.7.45.2 Semantics

A St ri ng type consist of a null-terminated list of 8 bit characters.
9.3.7.46 Number

9.3.7.46.1 Syntax

cl ass Number {
bit(1) islnteger
if (islnteger) {
bit(5) nunmbits // nunber of bits the integer is represented
bit (nunbits) value // integer value

el se {
bit(4) floatChar // 0-9, ., E -, END SYMBOL

whil e (fl oat Char!=END_SYMBQL) {
bit(4) floatChar

}
}

9.3.7.46.2 Semantics

A number shall be represented as an integer, indicated by i sl nteger, or as a list of 4 bit characters,
represending (in order) the characters0,1,2,3,4,5,6,7,8.,9, ., E,-, END-SYMBOL. The END-SYMBOL value is
used to signal the end of the float value list. The list of characters shall result in a human readable float value in
scientific notation.

9.3.7.47 Boolean
9.3.7.47.1 Syntax
cl ass Bool ean {
bit(1) value
9.3.7.47.2 Semantics
A Boolean value is represented by a one-bit value.
9.3.7.48 ROUTEs
9.3.7.48.1 Syntax
class ROUTEs() {
bit(1l) ListDescription;
i f (ListDescription)
Li st ROUTEs | routes();

el se
Vect or ROUTEs vroutes();
}

9.3.7.48.2 Semantics

ROUTEs may be encoded with a list (Li st ROUTES) or vector (Vect or ROUTES) description.

126 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
9.3.7.49 ListROUTEs
9.3.7.49.1 Syntax

class Li st ROUTEs() {
do {
ROUTE route();
bit (1) nor eROUTEs;

}
whi | e (nor eROUTES) ;
}

9.3.7.49.2 Semantics
The ROUTESs are coded as a list, with the nor eROUTESs flag used to indicate the end of the list (when set to false).
9.3.7.50 VectorROUTEs

9.3.7.50.1 Syntax

cl ass Vector ROUTES() {
int(5) nBits;
int(nBits) I|ength;
ROUTE route[l ength] ();
}

9.3.7.50.2 Semantics
The ROUTES are coded as a vector whose dimension, | engt h, is first specified.
9.3.7.51 ROUTE

9.3.7.51.1 Syntax

class ROUTE() {
bit (1) isUpdateabl e;
if (isUpdateable) {
bi t (Bl FSConfi guration.routel Dbits) routel D
i f (USENAMES) ({
String routeNane;
}

}

bi t (Bl FSConfi gur ati on. nodel Dbi ts) out Nodel D
NodeData nodeQUT = Get NodeFr onl D(out Nodel D) ;

i nt (nodeQUT. nOUThi ts) out Fi el dRef;

bi t (Bl FSConfi gur ati on. nodel Dbi ts) i nNodel D
NodeDat a nodel N = Get NodeFr om D(i nNodel D) ;

i nt(nodel N. nl Nbits) inFiel dRef;

}

9.3.7.51.2 Semantics

This is the basic syntax element used to represent a ROUTE. If i sUpdat eabl e is TRUE (‘1) then aroutel Dis
sent to enable further reference to this route. Further, if the global value of USENAMES is set, a string name, used
by MPEG-J to reference the ROUTE, is also sent.

The ROUTE description is then sent. The nodel D of the target node is coded, followed by the target field’s out | D.
The nodel D of the source node is then coded, followed by the source field’s i nl D.

9.3.8 BIFS-Anim
9.3.8.1 Overview

The BIFS-Anim session has two parts: the Ani mat i onMask and the Ani mat i onFr anes. The Ani mat i onMask
specifies the nodes and fields to be animated. It is sent in BIFS configuration, in the object descriptor for the BIFS

© ISO/IEC 2001 — All rights reserved 127

ISO/IEC 14496-1:2001(E)

elementary stream. The animation frames are sent in a separate BIFS stream. When parsing the BIFS-Anim
stream, the node structure and related functions as described in Annex H are known at the receiving terminal. The
decoding data structure Ani mat i onMask (see 9.3.2.5) is constructed when the Ani mat i onMask syntax is read,
and further used in the decoding process of the BIFS-Anim frames.

Ani mat i onFranes contain update information for thevalues of the animated fields described in the
Ani mat i onMask. They are the access units of the BIFS-Anim stream. An Ani mat i onFr ane can send information
in intra or in predictive mode. In intra mode, the values are quantized and coded directly. In predictive mode, the
difference between the quantized value of the current and the last transmitted value of the field are coded. The
encoding is performed using an adaptative arithmetic coder described in Annex G.

The use of the adaptive arithmetic coder is as follows:

At the beginning of each predictive frame, the adaptive arithmetic coder is reset. At the end of each frame, it is
flushed.

Each animated field has its own set of models. At each intra frame, if the stream has been declared in random
access mode (see 9.3.5.2), the models are reset to the uniform statistics. If the stream is not in random access
mode, the models are not reset unless the decoding structures (Ani nQP) are modified.

9.3.8.2 AnimationFrame

9.3.8.2.1 Syntax

class AnimationFrane() {
Ani mat i onFr aneHeader header (Bl FSConfi gur ati on. ani mvask) ;
Ani mat i onFr aneDat a dat a(Bl FSConfi gur ati on. ani mvask) ;

}
9.3.8.2.2 Semantics

The Ani mati onFrame is the access unit of the BIFS-Anim stream. It contains the Ani mat i onFr aneHeader ,
which specifies timing, and specifies which nodes are animated in the list of animated nodes, and the
Ani mat i onFr ameDat a, which contains the data for all nodes being animated.

9.3.8.3 AnimationFrameHeader

9.3.8.3.1 Syntax

cl ass Ani mati onFr aneHeader (Ani mati onMask nask) {
bit(23)* next;
i f (next==0)
bit(32) AnimationStart Code;

bit(1) nmask.islntra;
bit(1) mask.isActive[mask. nunNodes];
if (islntra) {
bit(1) isFrameRate;
if (isFraneRate)
FraneRat e rate;
bit(1) isTinmeCode;
if (isTinmeCode)
unsi gned int(18) timeCode;
}

bit (1) hasSki pFranes;

i f (hasSki pFranes)
Ski pFranes ski p;

}
9.3.8.3.2 Semantics

In the Ani mati onFranmeHeader, a start code may be sent at each intra or prdictive frame to enable
resynchronization. The first 23 bits are read ahead, and stored as the integer next .

128 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

If next is O (in other words, the first 23 bits if the Ani nati onFranme are 0), the first 32 bits of the
Ani mat i onFr ane shall be read and interpreted as a start code that precedes the Ani mat i onFr ame.

If the boolean i sl ntra is TRUE, the current animation frame contains intra-coded values, otherwise it is a
predictive frame.

The array of booleans i sAct i ve specifies which nodes shall be animated for this frame. i sAct i ve shall contain
one boolean for each node in the Ani mat i onMask. The boolean is set to TRUE if the node is to be animated;
FALSE otherwise.

In intra mode, some additional timing information is also specified. The timing information obeys the syntax of the
Facial Animation specification in ISO/IEC 14496-2. Finally, it is possible to skip a number of Ani mat i onFr anmes by
using the Fr aneSki p syntax specified in ISO/IEC 14496-2.

9.3.8.4 FrameRate
9.3.8.4.1 Syntax
cl ass FraneRate {
unsi gned int(8) franeRate;

unsi gned int(4) seconds;
bit(1) frequencyOfset;

9.3.8.4.2 Semantics
f ranme_r at e is an 8-bit unsigned integer indicating the reference frame rate of the sequence.

seconds is a 4-bit unsigned integer indicating the fractional reference frame rate. The frame rate is computed as
follows:

frame rate = (frane_rat e + seconds/16).

frequency_of f set is a 1-bit flag which when set to ‘1’ indicates that the frame rate uses the NTSC frequency
offset of 1000/1001. This bit would typically be set when f r ame_r at e = 24, 30 or 60, in which case the resulting
frame rate would be 23.97, 29.94 or 59.97 respectively. When set to ‘0’ no frequency offset is present, i.e. if
(frequency_of f set ==1), frame rate = (1000/1001) * (f rame_r at e + seconds/16).

9.3.8.5 SkipFrame

9.3.85.1 Syntax

cl ass Ski pFranme {
int nFrame = 0;
do {
bit (4) nunber_of _franes_to_ski p;
nFrame = nunber_of _franmes_to_skip + nFraneg;
} while (nunber_of _frames_to_skip == 0bl1111);
}

9.3.8.5.2 Semantics

nunber _of franmes_to_skip is a 4-bit unsigned integer indicating the number of frames skipped. If the
nunber _of franes_t o_ski p is equal to 15 (pattern “1111") then another 4-bit word follows allowing a skip of
up to 29 frames (pattern “11111110") to be specified. If the 8-bits pattern equals “11111111", then another 4-bits
word shall follow and so on, and the number of frames skipped is incremented by 30. Each 4-bit pattern of ‘1111’
increments the total number of frames to skip with 15.

9.3.8.6 AnimationFrameData
9.3.8.6.1 Syntax

cl ass Ani mationFraneData (Ani mati onMask nask) {

© ISO/IEC 2001 — All rights reserved 129

ISO/IEC 14496-1:2001(E)

int i;
for (i=0; i<mask.numNodes; i++) {
if (mask.isActive[i]) {
NodeDat a node = mask. ani mNode[i]
swi tch (node. nodeType) {
case FaceType:
FaceFr aneDat a f dat a;
br eak;
case BodyType:
BodyFr aneDat a bdat a;
br eak;
case | ndexedFaceSet 2DType:
Mesh2Df r aneDat a ndat a;
br eak;
defaul t
int j;
for(j=0; j<node.nunDYNfields; j++) {
if (node.isAninField[j])
Ani mati onFi el d AFi el d(node. fi el d[node.dyn2all[j]], mask.islntra);

}
}
}
}

9.3.8.6.2 Semantics

The Ani mati onFrameDat a corresponds to the field data for the nodes being animated. In the case of an
IndexedFaceSet2D, a Face, or a Body node pointed to by the AnimationMask, the syntax used is that
defined ISO/IEC 14496-2 for animation frames and not the generic BIFS-Anim syntax as defined in 9.3.8.7. In other
cases, for each field declared as an animated field is the Ani mat i onMask, the Ani mat i onFi el d is sent.

In predictive mode, at the beginning of the Ani mati onFraneDat a, an adaptive arithmetic coder session is
initiated by resetting the adaptive arithmetic coder in the way defined by the procedure decoder _reset() in
Annex G. Then, the animated values are sent using this adaptive arithmetic coder, using and updating their own
models.

9.3.8.7 AnimationField
9.3.8.7.1 Syntax

class AninationField(FieldData field, boolean isintra) {
Ani nFi el dQP agp = fiel d. agp;
if (islntra) {
bit(1) hasQp;
i f(has@) {
} Ani mQP QP(agp) ;
int i;
for (i=0; i<aqgp.nunElenents; i++)
Ani m Val ue ival ue(field);
} else {
int i;
for (i=0; i<agp.nunElenents; i++)
Ani nPVal ue pval ue(field);
}
}

9.3.8.7.2 Semantics

In an Ani mat i onFi el d, if in intra mode, a new animation quantization parameter value may be sent. The intra or
predictive frame follows.

In intra mode, if Bl FSConf i gur ati on. randomAccess is TRUE , the field’s predictive models shall then be reset
to be uniform models as defined by the procedure nodel _reset(PNoBits) in Annex G. If
Bl FSConfi gurati on. randomAccess is FALSE, the field’s models are reset only if a new Ani nTP is received.

130 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
e IfrandomAccess is setto TRUE, then the | ni ti al Ani nQP shall be used until the next intra frame.

e IfrandomAccess is set to FALSE, then the Ani QP that was valid at the previous intra frame shall be used. In
this case, no random access is possible ato this particular frame.

In intra mode, if Bl FSConfi g. randomAccess is TRUE , the field’s predictive models shall then be reset to be
uniform models as defined by the procedure nodel reset (PNbBits) in Annex G. If
Bl FSConf i g. randomAccess is FALSE, the field’s models are reset only if a new Ani n(QP is received.

The value is then sent: in intra mode, an Ani il Val ue is expected, in predictive mode an Ani nPVal ue is
expected.

9.3.8.8 AnimQP
9.3.8.8.1 Syntax
class Ani mQP(Ani nFi el dQP agp) {

bit (1) I MnMx ;
if (IMnMax) {

aqp. useDef aul t =FALSE;
swi t ch(aqgp. ani nifype) {

case 4: /1 Col or
case 8: /] BoundFl oat s
bit(1) agp.useDefault
case 1: /1 Position 3D
case 2: /1 Position 2D
case 11: /1l Size 3D
case 12: /1 Size 2D
case 7: /]l Floats
if (lagp.useDefault) ({
for (i=0;i<getNbBounds(aqgp);i++) {
bit(1) useEf fi ci ent Codi ng
GenericFloat agp.Imn[i](useEfficientCoding);
}
for (i=0;i<getNbBounds(aqgp);i++)
bit(1) useEf fi ci ent Codi ng
Generi cFloat agp. I max[i] (useEfficient Coding);
}

br eak;

case 13: /'l Integers
int(32) agp. Imnlnt[0];
br eak;

}

bit (1) hasl NbBits;
if (haslNbBits)
unsi gned int(5) agp. | NbBi t's;

bit (1) PMnMax ;
if (PMnMax) {
for (i=0;i<getNbBounds(aqp);i++) {
int (I NbBi ts+1) vq
agp. Pmin[i] = vg-2*agp. I NbBits;

}
bit (1)hasPNbBits;

if (hasPNbBits)
unsi gned int(4) agp. PNbBi t s;

© ISO/IEC 2001 — All rights reserved 131

ISO/IEC 14496-1:2001(E)
9.3.8.8.2 Semantics

The Ani mQP specifies the quantization parameters that shall be used until the next intra frame is received. Ani mQP
is identical to I ni ti al Ani mQP (subclause 9.3.5.7) with the exception that each quantization parameter may or
may not be sent.

If Bl FSConf i gur ati on. randomAccess is TRUE and if the parameter is not coded, then the parameter defined
inthe I ni tial Ani nQP in the Ani mat i onMask is used by default.

If Bl FSConfi gur ati on. randomAccess is FALSE and if the parameter is not coded, then the parameter defined
in the latest Ani mQP (or | ni ti al Ani mQP if this parameter was never modified) is used.

9.3.8.9 AnimlValue
9.3.8.9.1 Syntax

class Anim Val ue(FieldData field) {
switch (field.aninType) {
case 9: /1 Nor mal

int(1) direction
case 10: /! Rotation
int(2) orientation
br eak;
defaul t:
br eak;

}
for (j=0;j<getNoConp(field);j++)
int(field nbBits) vq[j];
}

9.3.8.9.2 Semantics

The Ani m Val ue represents the quantized intra value of a field. The value is coded according to the quantization
process described in 9.3.3.3.

For normals the direction and orientation values specified in the quantization process are first coded. For rotations
only the orientation value is coded. If the bit representing the direction is 0, the normal’s direction is set to 1, if the
bit is 1, the normal’s direction is set to —1. The value of the orientation is coded as an unsigned integer using 2 bits.

The compressed components vq[i] of the field’s value are then coded as a sequence of unsigned integers using
the number of bits specified in the field data structure.

The decoding process in intra mode computes the animation values by applying the inverse quantization process.
9.3.8.10 AnimPValue
9.3.8.10.1 Syntax
cl ass Ani nPVal ue(Fiel dData field) {
switch (field.aninType) {
case 9: /1 Nor mal
int(1) i nverse
br eak;
defaul t:
br eak;
}
for (j=0;j<getNoConp(field);j++)
int(aacNbBits) vgDeltalj];
}

9.3.8.10.2 Semantics

The Ani nPVal ue represents the difference between the previously received quantized value and the current
quantized value of a field. The value is coded using the compensation process AddDel t a described in 9.3.4.

132 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

The values are decoded from the adaptive arithmetic coder bitstream with the procedure
Vo —@a_decode(nodel) defined in Annex G. The model is updated with the procedure

nodel _updat e(nodel , Vaac) .

For normals the inverse value is decoded through the adaptive arithmetic coder with a uniform, non-updated model.
If the bitis 0, theni nver se is setto 1, the bititis 1, i nver se is set to —1.

The compensation values vgDel t a[i] are then decoded in sequence. Let Vq (t—1) be the quantized value

decoded at the previous frame and V. (t) be the value decoded by the frame’s adaptive arithmetic decoder at
instant t with the field’s models. The value a time t is obtained from the previous value as follows:

Vv, (t) = v (t) + PMin
v, (t) = AddDelta(v, (t - 1), v, (1))
v(t) = Ianuant(vq (t))

The field’'s models are updated each time a value is decoded through the adaptive arithmetic coder.

If the ani niType is 1 (Position3D) or 2 (Posi ti on2D), each component of the field’s value is using its own
model and offset PM n[i] . In all other cases the same model and offset PM n[0] is used for all the components.

aacNbBi t s is the variable number of bits needed for the adaptive arithemtic coder to decode the symbol (see
Annex G).

9.4 Node Semantics
9.4.1 Overview

The BIFS nodes include nodes that have been defined in ISO/IEC 14772-1:1998. For these nodes, the semantic
information is given by normative reference with any restrictions defined herein.

9.4.2 Node specifications
9.4.2.1. AcousticMaterial

9.4.2.1.1. Node interface

AcousticMaterial {

field SFFloat reffunc 0

field SFFloat transfunc 1

field MFFloat refFrequency 0

field MFFloat transFrequency 0
exposedField SFFloat ambientintensity 0.2
exposedField SFColor diffuseColor 0.8,0.8,0.8
exposedField SFColor emissiveColor 0,0,0
exposedField SFFloat shininess 0.2
exposedField SFColor specularColor 0,0,0
exposedField SFFloat transparency 0

}
NOTE - For the binary encoding of this node see Annex H.3.1.
9.4.2.1.2. Functionality and semantics

The AcousticMaterial node is used for attaching acoustic and visual properties to surfaces (planar polygons)
defined by an IndexedFaceSet node that is a sibling or exist in a sub-graph of a sibling of an AcousticScene
node. The fields of this node define the visual appearance properties, as well as sound reflection and transmission
properties of the IndexedFaceSet surfaces it is attached to. It is used in the material field of an Appearance node
that is attached to a Shape node under which the IndexedFaceSet is defined. Each polygon in an

© ISO/IEC 2001 — All rights reserved 133

ISO/IEC 14496-1:2001(E)

IndexedFaceSet that AcousticMaterial is associated with can produce a single specular reflection to sound
whenever a corresponding sound image source is visible to the listening point (Viewpoint or ListeningPoint), or
obstruct sound transmission when it appears between the sound source and the listener. Note that these reflectivity
and sound transmission properties of a surface are only applied to sounds that are attached to a 3-D scene with a
DirectiveSound node. The delay of a reflection (a predelay that is added to sound) is computed from the relative
distance between the image source corresponding to the reflection, and the speed of sound which is given as a
field in the DirectiveSound node (see 9.4.2.39).

There are two different ways of defining the reflectivity and transmission properties of AcousticMaterial:

The reffunc and refFrequency fields specify the sound reflectivity of the material. If refFrequency is an empty
vector, reffunc is a system function representation of a linear, time-invariant system, the reflectivity transfer
function of a digital filter for that material. Generally, a system function H(z) is represented in the z-domain as a
division of the z-transform of the output sequence Y(z) with the z-transform of the input sequence X(z):

HZ =2 _ o .
X(2) 1+ZN:akz‘k

The reflection function is given as digital filter coefficients in the following order:
[b,bb,...a,a,..]

Thus, a simple scalar value bo can be given to a material for frequency-independent reflectivity of a surface. On

the other hand, complex reflection functions can also be represented using this formulation. For example, if the
reffunc field is 1, the amplitude of the reflection of sound off a surface will be the same as that of the incident
sound, and if the field is set to 0, no sound will reflect off that surface. The default value of this field is 0, implying no
reflectivity.

If refFrequency is different from an empty vector, the semantics of the reffunc is different than described above. In
this case refFrequency specifies a set of frequencies (in Hz) at which the gains in reffunc field are valid; The filter
applied to sound when it is reflected off this surface implements a frequency magnitude response where at the
given frequencies (in refFrequency field) the gains in reffunc field are valid. An example of refFrequency field is:

[250 1000 2000 4000],

and an example of reffunc in this approach is:

[0.750.90.90.2]

The transfunc and transFrequency fields specify the transmission properties of the material, e.g., the filtering that
is applied to sound when it passes through an IndexedFaceSet surface this AcousticMaterial is attached to, when
the IndexedFaceSet surface appears on the direct path between the sound source and the listener. The

transmission function is given similarly as in the reflectivity in reffunc and refFrequency fields with two different
ways of expressing the filtering.

The fields ambientintensity, diffuseColor, emissiveColor, and shininess are used for the visual appearance
rendering similarly as in the Material node.

134 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
9.4.2.2. AcousticScene
9.4.2.2.1. Node interface

AcousticScene {

field SFVec3f center 000
field SFVec3f size -1-1-1
field MFTime reverbTime 0

field MFFloat reverbFreq 1000
exposedField SFFloat reverbLevel 0.4
exposedField SFTime reverbDelay 0.5

}
NOTE - For the binary encoding of this node see Annex H.3.2.
9.4.2.2.2. Functionality and semantics

AcousticScene is a node the parameters of which are used for rendering of the acoustic response of the
environment, together with the acoustic reflectivity or transmission defined in the siblings or their sub-graphs of this
AcousticScene. AcousticScene also defines three fields (reverbTime, reverbFreq, reverbLevel, and
reverbDelay) which can be used to add reverberation to sounds that are affected by this node. Only audio that has
been attached to the scene through a DirectiveSound node performing the physical rendering scheme is
spatialized according to these definitions.

Only those IndexedFaceSet nodes that AcousticMaterial node is associated with, and that are defined in the
siblings of AcousticScene (or in the sub-graph of the siblings) have effect on the room acoustic response that is
applied to sound sources. Only DirectiveSound nodes that are currently positioned in a 3-D rectangular region
defined by center and size fields, are affected by these acoustic surfaces. size field defines the size of a
rectangular 3-D region where the parameters of AcousticScene and the acoustic surfaces in the siblings or sibling
sub-graphs of the AcousticScene are taken into account in the auralization process (sound processing according
to the acoustics of the environment). The default value of this field is -1, -1, -1.

center specifies the center of the above described region in the local coordinate system of the scene. Only when at
the decoder a DirectiveSound and the Viewpoint (or ListeningPoint) are located within the same
AcousticScene region defined by its center and size the sound attached to the DirectiveSound is heard. The
default value (-1, -1, —1) of size equals to an infinite rectangular region (i.e., the sound is heard everywhere in the
scene). DirectiveSound is rendered at one time only according to one AcousticScene, i.e., if the source and the
viewpoint are in an overlapping area of several AcousticScenes, the one which is the first in the rendering order
has effect on the DirectiveSound.

The reverbTime field specifies the reverberation time (time of 60 dB attenuation in the late reverberation response)
at frequencies given in reverbFreq field to be applied to each DirectiveSound node that is within the 3-D region
specified by the AcousticScene. This information is used for producing late reverberation at the maximum quality
possible. With the default value 0, late reverberation is not added to the room response. It should be noted,
however, that this field is useful for enabling simple room response modeling whenever there is not enough
computational power to render several room reflections, or when the reflective properties of the surfaces are not
specified. l.e., it is possible to specify a reverberant room with the boundaries defined by the size and center fields,
even without specifying the reflectivity of individual surfaces. If only one value of reverbTime is given, it is taken as
the reverberation time at the 1kHz frequency, and the decision about the frequency dependence of the
reverberation time would be decided at the terminal (in natural environments the reverberation time decreases as a
function of frequency). An example of reverbTime field is:

[2.0 0.5],

and example of reverbFreq is:

[0 16000],

yielding a late reverberation with a reverberation time of 2.0 s at 0 Hz frequency, and 0.5 s at 16000 Hz frequency.

reverbDelay specifies the time delay between the direct sound and the start of the reverberation in seconds.
reverbLevel defines the level of the first output from the reverberator with respect to the direct sound.

© ISO/IEC 2001 — All rights reserved 135

ISO/IEC 14496-1:2001(E)

In order to define which AcoustcScene is applied to DirectiveSound in the case that it is positioned in an
overlapping area of more than one AcousticScene, an OrderedGroup can be used above the various
AcousticScenes.

9.4.2.3 Anchor

9.4.2.3.1 Node interface

Anchor {
eventin MFNode addChildren
eventin MFNode removeChildren
exposedField MFNode children 1
exposedField SFString description
exposedField MFString parameter 1
exposedField MFString url 1
}

NOTE — For the binary encoding of this node see Annex H.1.1.

9.4.2.3.2 Functionality and semantics

The semantics of the Anchor node are specified in ISO/IEC 14772-1:1998, subclause 6.2. ISO/IEC 14496-1 does
not support the bounding box parameters (bboxCenter and bboxSize). Constraints on URLs are defined by
profiles and levels.

9.4.2.4 AnimationStream
9.4.2.4.1 Node interface

AnimationStream {

exposedField SFBool loop FALSE
exposedField SFFloat speed 1.0
exposedField SFTime startTime 0
exposedField SFTime stopTime 0
exposedField MFString url ™1
eventOut SFBool isActive

}

NOTE — For the binary encoding of this node see Annex H.1.2.
9.4.2.4.2 Functionality and semantics
The AnimationStream node is designed to implement control parameters for a scene description stream.

The loop, startTime, and stopTime exposedFields and the isActive eventOut, and their effects on the
AnimationStream node are described in 9.2.1.6.1.

The semantics of the speed exposedField are identical to those for the MovieTexture node (see 9.4.2.72).

The url field specifies the data source to be used. The data source referred to shall be a BIFS-Anim stream (see
also 9.2.3.3) or a BIFS-Command stream. In both cases, the stream shall operate within the same name scope as
the scene containing the AnimationStream node.

9.4.25 Appearance

9.4.2.5.1 Node interface

Appearance {

136 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

exposedField SFNode material NULL
exposedField SFNode texture NULL
exposedField SFNode textureTransform NULL

}
NOTE — For the binary encoding of this node see Annex H.1.3.

9.4.2.5.2 Functionality and semantics
The semantics of the Appearance node are specified in ISO/IEC 14772-1:1998, subclause 6.3.

The material field, if non-NULL, shall contain either a Material node or a Material2D node depending on the
type of geometry node used in the geometry field of the Shape node that contains the Appearance node. The
list below shows the geometry nodes that require a Material node, those that require a Material2D node and
those where either may apply:

e Material2D only: Circle, Curve2D, IndexedFaceSet2D, IndexedLineSet2D, PointSet2D,
Rectangle;

e Material only: Box, Cone, Cylinder, ElevationGrid, Extrusion, IndexedFaceSet,
IndexedLineSet, PointSet, Sphere;

e Material2D or Material: Bitmap, Text.

Inside a Layer2D node, if no Appearance and therefore no Material2D are defined, the default values and
behavior of the Material2D node shall be used.

9.4.2.6. ApplicationWindow
9.4.2.6.1. Node interface

ApplicationWindow {

exposedField SFBool isActive FALSE
exposedField SFTime startTime 0
exposedField SFTime stopTime 0
exposedField SFString description
exposedField MFString parameter 1
exposedField MFString url 1
exposedField SFVec2f size 0,0

}

NOTE - For the binary encoding of this node see Annex H.3.3.
9.4.2.6.2. Functionality and semantics

ApplicationWindow is an SF2DNode that allows an external application such as a web browser to exist within the
MPEG-4 scene graph. Unlike a texture node, the windowed region is controlled and rendered by the external
application, allowing natural user interaction with the application. The particular application to be opened is
signaled in the url field, and any required parameters for starting the application may be placed in the parameter
field.

The position of the application, its dimension and whether the application is active or not, is specified through BIFS
scene authoring.

The startTime exposed field indicates when the application is to be started. The application is given control of the
rendering window defined by the size field.

The stopTime exposedField indicates that the application is finished and should be shut down. The rendering
window defined by the size field is returned to the MPEG-4 player.

The isActive exposedField signals the application to relinquish its rendering window to the MPEG-4 player, but to
continue to run.

© ISO/IEC 2001 — All rights reserved 137

ISO/IEC 14496-1:2001(E)

The description exposedField allows a prompt to be displayed as an alternative to the url in the url field. This
choice should be user selectable.

The parameter exposedField carries parameters to be interpreted by the application decoder when the application
window is instantiated.

The url exposedField carries the location of the windowed application.

The size exposedField provides the dimension (width and height) of the application window.
9.4.2.7 AudioBuffer

9.4.2.7.1 Node interface

AudioBuffer {

exposedField SFBool loop FALSE
exposedField SFFloat length 0.0
exposedField SFFloat pitch 1.0
exposedField SFTime startTime 0
exposedField SFTime stopTime 0
exposedField MFNode children 1
exposedField SFint numChan 1
exposedField MFInt phaseGroup [1]
eventOut SFTime duration_changed

eventOut SFBool isActive

}

NOTE — For the binary encoding of this node see Annex H.1.4.

9.4.2.7.2 Functionality and semantics

The AudioBuffer node provides an interface to short snippets of sound to be used in an interactive scene.
EXAMPLE — Sounds triggered as “auditory icons” upon mouse clicks.

It buffers the audio generated by its children to support random restart capability upon interaction events. It differs
from the AudioClip node in the following ways:

e AudioBuffer can be used in broadcast and other one-way applications in which URLs from remote locations
cannot be retrieved interactively

e AudioBuffer can be used to trigger sounds made from processed sound (ie, with the other sound nodes)
rather than only raw sound data as transmitted in the elementary stream

The loop, startTime, and stopTime exposedFields and the isActive eventOut, and their effects on the
AnimationStream node are described in 9.2.1.6.1.

The semantics of the speed exposedField are identical to those for the MovieTexture node (see 9.4.2.72).

The length field specifies the length in seconds of the audio buffer. Audio shall be buffered at the instantiation of
the node, and whenever the length field changes.

The pitch field specifies a pitch-shift to apply to the output sound. The pitch-shift is calculated by simple
resampling; that is, a pitch-shift of 2 corresponds to playing the sound twice as fast and an octave higher. If pitch
is negative, the buffer is played backwards at the indicated speed, beginning at the last sample in the buffer and
proceeding to the first, then returning to the last sample if loop is TRUE.

The children field specifies the child nodes that provide the sound for this node. Each child shall be an AudioBIFS
node; that is, one of the following: AudioSource, AudioDelay, AudioMix, AudioSwitch, AudioFX,
AudioClip or AudioBuffer.

138 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

An event shall be generated via the duration_changed field whenever a change is made to the startTime or
stopTime fields. An event shall also be triggered if these fields are changed simultaneously, even if the duration
does not actually change.

The numChan field specifies the number of output channels of this node. If there are more output channels than
input channels, the “extra” channels shall contain all Os; if there are more input channels than output channels, the
“extra” channels shall be ignored.

The phaseGroup field specifies phase relationships in the output of the node, see 9.2.2.13 and 9.4.2.12.

The output of this node is not calculated based on the current input values, but according to the startTime event,
the pitch field and the contents of the clip buffer. When the startTime is reached (that is, the current scene time
is greater than or equal to startTime), the sound output shall begin at the beginning of the clip buffer and
isActive shall be set to TRUE. At each time step thereafter, the value of the output buffer shall be the value of the
next portion of the clip buffer, upsampled or downsampled as necessary according to pitch. When the end of the
clip buffer according to the value of length is reached, if loop is TRUE, the audio shall begin again from the
beginning of the clip buffer; if loop is FALSE, the playback shall cease. This playback shall be continued until
stopTime is reached. When the current scene time is greater than or equal to stopTime, the node shall cease to
produce sound.

The clip buffer shall be calculated as follows. When the node is instantiated, or whenever the length field is
changed, the first length seconds of the audio input to the AudioBuffer node shall be copied to the clip buffer.
That is, after t seconds, where t < length, audio sample number t * S of channel i (where 0 <=i <numChan) in the
buffer is set to contain the audio sample corresponding to time t of channel i of the input, where S is the sampling
rate of this node. After the first length seconds, the input to this node has no effect. Changes to the length field
that are received when isActive is TRUE shall be ignored.

When the playback is not active, the audio output of the node is all 0s.
9.4.2.8 AudioClip

9.4.2.8.1 Node interface

AudioClip {
exposedField SFString description
exposedField SFBool loop FALSE
exposedField SFFloat pitch 1.0
exposedField SFTime startTime 0
exposedField SFTime stopTime 0
exposedField MFString url 1
eventOut SFTime duration_changed
eventOut SFBool isActive

}

NOTE — For the binary encoding of this node see Annex H.1.5.
9.4.2.8.2 Functionality and semantics
The semantics of the Audioclip node are specified in ISO/IEC 14772-1:1998, subclause 6.4.

The loop, startTime, and stopTime exposedFields and the isActive eventOut, and their effects on the
AudioClip node are described in 9.2.1.6.1.

The url field specifies the data source to be used (see 9.2.2.7.1).
9.4.2.9 AudioDelay
9.4.2.9.1 Node interface

AudioDelay {

© ISO/IEC 2001 — All rights reserved 139

ISO/IEC 14496-1:2001(E)

eventin MFNode addChildren

eventin MFNode removeChildren

exposedField MFNode children 1
exposedField SFTime delay 0
field SFInt32 numChan 1
field MFInt32 phaseGroup 1

}

NOTE — For the binary encoding of this node see Annex H.1.6.

9.4.2.9.2 Functionality and semantics

The AudioDelay node allows sounds to be started and stopped under temporal control. The start time and stop
time of the child sounds are delayed or advanced accordingly.

The addChildren eventln specifies a list of nodes that shall be added to the children field.
The removeChildren eventin specifies a list of nodes that shall be removed from the children field.

The children array specifies the nodes affected by the delay. Each child shall be an AudioBIFS node; that is, one
of the following: AudioSource, AudioDelay, AudioMix, AudioSwitch, AudioFX, AudioClip or
AudioBuffer.

The delay field specifies the delay to apply to each child node.
The numChan field specifies the number of channels of audio output by this node.
The phaseGroup field specifies the phase relationships among the various output channels; see 9.2.1.6.1.

Implementation of the AudioDelay node requires the use of a buffer of size d * S * n, where d is the length of the
delay in seconds, S is the sampling rate of the node, and n is the number of output channels from this node. At
scene startup, a multichannel delay line of length d and width n is initialized to reside in this buffer.

At each time step, the k * S audio samples in each channel of the input buffer, where k is the length of the system
time step in seconds, are inserted into this delay line. If the number of input channels is strictly greater than the
number of output channels, the extra input channels are ignored; if the number of input channels is strictly less than
the number of output channels, the extra channels of the delay line shall be taken as all 0’s.

The output buffer of the node is the k * S audio samples which fall off the end of the delay line in this process. Note
that this definition holds regardless of the relationship between k and d.

If the delay field is updated during playback, discontinuties (audible artefacts or “clicks”) in the output sound may
result. If the delay field is updated to a greater value than the current value, the delay line is immediately extended
to the new length, and zero values inserted at the beginning, so that d * S seconds later there will be a short gap in
the output of the node. If the delay field is updated to a lesser value than the current value, the delay line is
immediately shortened to the new length, truncating the values at the end of of the line, so that there is an
immediate discontinuity in sound output. Manipulation of the delay field in this manner is not recommended
unless the audio is muted within the terminal or by appropriate use of an AudioMiX node at the same time, since
it gives rise to impaired sound quality.

9.4.2.10 AudioFX
9.4.2.10.1 Node interface

AudioFX {

140 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

eventin MFNode addChildren

eventin MFNode removeChildren

exposedField MFNode children 1
exposedField SFString orch
exposedField SFString score
exposedField MFFloat params 1]
field SFInt32 numChan 1
field MFInt32 phaseGroup 0

}

NOTE — For the binary encoding of this node see Annex H.1.7.
9.4.2.10.2 Functionality and semantics

The AudioFX node is used to allow arbitrary signal-processing functions defined using structured audio tools to
be included and applied to its children (see ISO/IEC 14496-3, subpart 5, clause 5.15).

The addChildren eventln specifies a list of nodes that shall be added to the children field.
The removeChildren eventln specifies a list of nodes that shall be removed from the children field.

The children array contains the nodes operated upon by this effect. Each child shall be an AudioBIFS node; that
is, one of the following: AudioSource, AudioDelay, AudioMix, AudioSwitch, AudioFX, AudioClip
or AudioBuffer. If this array is empty, the node has no function (the node may not be used to create new
synthetic audio in the middle of a scene graph).

The orch string contains a tokenised block of signal-processing code written in SAOL (Structured Audio Orchestra
Language). This code block shall contain an orchestra header and some instrument definitions, and conform to the
bitstream syntax of the orchestra class as defined in ISO/IEC 14496-3, subpart 5, subclause 5.5.2.2 and clause
5.8.

The score string may contain a tokenized score for the given orchestra written in SASL (Structured Audio Score
Language). This score may contain control operators to adjust the parameters of the orchestra, or even new

instrument instantiations. A score is not required. If present it shall conform to the bitstream syntax of the
score_fil e class as defined in ISO/IEC 14496-3, subpart 5, subclause 5.5.2 and clause 5.11.

The params field allows BIFS commands and events to affect the sound-generation process in the orchestra. The
values of params are available to the FX orchestra as the global array gl obal ksig parans[128]; see
ISO/IEC 14496-3, subpart 5, clause 5.15.

The numchan field specifies the number of channels of audio output by this node.

The phaseGroup field specifies the phase relationships among the various output channels; see 9.2.1.6.1.

The node is evaluated according to the semantics of the orchestra code contained in the orch field. See ISO/IEC
14496-3, subpart 5, for the normative description of this process. Within the orchestra code, the multiple channels
of input sound are placed on the global bus, input_bus; first, all channels of the first child, then all the channels of
the second child, and so on. The orchestra header shall ‘send’ this bus to an instrument for processing. The
phaseGroup arrays of the children are made available as the inGroup variable within the instrument(s) to which
the input_bus is sent.

The orchestra code block shall not contain the spati al i ze statement.

The output buffer of this node is the sound produced as the final output of the orchestra applied to the input
sounds, as described in ISO/IEC 14496-3, subpart 5, subclauses 5.7.3.

9.4.2.11 AudioMix
9.4.2.11.1 Node interface

AudioMix {

© ISO/IEC 2001 — All rights reserved 141

ISO/IEC 14496-1:2001(E)

eventin MFNode addChildren

eventin MFNode removeChildren

exposedField MFNode children 1
exposedField SFInt32 numinputs 1
exposedField MFFloat matrix 0
field SFInt32 numChan 1
field MFInt32 phaseGroup 1

}

NOTE — For the binary encoding of this node see Annex H.1.8.
9.4.2.11.2 Functionality and semantics

This node is used to mix together several audio signals in a simple, multiplicative way. Any relationship that may be
specified in terms of a mixing matrix may be described using this node.

The addChildren eventln specifies a list of nodes that shall be added to the children field.
The removeChildren eventin specifies a list of nodes that shall be removed from the children field.

The children field specifies which nodes’ outputs to mix together. Each child shall be an AudioBIFS node; that is,
one of the following: AudioSource, AudioDelay, AudioMix, AudioSwitch, AudioFX, AudioClip or
AudioBuffer.

The numlinputs field specifies the number of input channels. It shall be the sum of the number of channels of the
children.

The matrix array specifies the mixing matrix which relates the inputs to the outputs. matrix is an unrolled
numlinputs x numChan matrix which describes the relationship between numlinputs input channels and
numChan output channels. The numlnputs * numChan values are in row-major order. That is, the first

numlnputs values are the scaling factors applied to each of the inputs to produce the first output channel; the
next numlinputs values produce the second output channel, and so forth.

a b c
That is, if the desired mixing matrix is [d f} , specifying a “2 into 3" mix, the value of the matrix field shall be
e

[abcdef].
The numchan field specifies the number of channels of audio output by this node.
The phaseGroup field specifies the phase relationships among the various output channels; see 9.2.1.6.1.

The value of the output buffer for an AudioMix node is calculated as follows. For each sample number x of
output channel i, 1 <=i<=numChan, the value of that sample is

matrix[(0) * numChan +i] * input[1][x] +
matrix[(1) * numChan +i]*input[2][x] + ...
matrix[(numlinputs — 1) * numChan +i] * inputinumIinputs][x],

where input[i][j] represents the jth sample of the ith channel of the input buffer, and the matrix elements are
indexed starting from 1.

9.4.2.12 AudioSource
9.4.2.12.1 Node interface

AudioSource {

142 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

eventin MFNode addChildren

eventin MFNode removeChildren

exposedField MFNode children 1
exposedField MFString url 1
exposedField SFFloat pitch 1.0
exposedField SFFloat speed 1.0
exposedField SFTime startTime 0
exposedField SFTime stopTime 0
field SFInt32 numChan 1
field MFInt32 phaseGroup 0

}

NOTE — For the binary encoding of this node see Annex H.1.9.
9.4.2.12.2 Functionality and semantics

This node is used to add sound to a BIFS scene. See ISO/IEC 14496-3 for information on the various audio tools
available for coding sound.

The addChildren eventin specifies a list of nodes that shall be added to the children field.
The removeChildren eventln specifies a list of nodes that shall be removed from the children field.

The children field allows buffered AudioBuffer data to be used as sound samples within a structured audio
decoding process. Only AudioBuffer nodes shall be children to an AudioSource node, and only in the case
where url indicates a structured audio bitstream.

The pitch field controls the playback pitch for the structured audio and the parametric speech (HVXC) decoder. It
is specified as a ratio, where 1 indicates the original bitstream pitch, values other than 1 indicate pitch-shifting by
the given ratio. This field is available through the getttune() core opcode in the structured audio decoder (see
ISO/IEC 14496-3, subpart 5). The structured audio is the only decoder that may be controlled in this manner; to
adjust the pitch of other decoder types, use the AudioFX node with an appropriate effects orchestra.

The speed field controls the playback speed for the structured audio decoder (see ISO/IEC 14496-3, subpart 5). It
is specified as a ratio, where 1 indicates the original speed; values other than 1 indicate multiplicative time-scaling
by the given ratio (i.e. 0.5 specifies twice as fast). The value of this field shall be made available to the structured
audio decoder indicated by the url field. ISO/IEC 14496-3, subpart 5, subclause 5.7.3.3.6, list item 8, describe the
use of this field to control the structured audio decoder. The structured audio decoder is the only decoder that may
be controlled in this manner; to adjust the speed of other decoder types, use the AudioFX node with an
appropriate orchestra.

The startTime and stopTime exposedFields and their effects on the AudioSource node are described in
9.2.1.6.1.

The numChan field describes how many channels of audio are in the decoded bitstream.

The phaseGroup array specifies whether or not there are important phase relationships between the multiple
channels of audio. If there are such relationships — for example, if the sound is a multichannel spatialized set or a
“stereo pair’ — it is in general dangerous to do anything more complex than scaling to the sound. Further filtering or
repeated “spatialization” will destroy these relationships. The values in the array divide the channels of audio into
groups; if phaseGroup]i] = phaseGroup]j] then channel i and channel j are phase-related. Channels for which
the phaseGroup value is 0 are not related to any other channel.

The url field specifies the data source to be used (see 9.2.2.7.1).
The audio output from the decoder according to the bitstream(s), referenced in the specified URL, at the current
scene time is placed in the output buffer for this node, unless the current scene time is earlier than the current

value of startTime or later than the current value of stopTime, in which case 0 values are placed in the output
buffer for this node for the current scene time.

© ISO/IEC 2001 — All rights reserved 143

ISO/IEC 14496-1:2001(E)

For audio sources decoded using the main object of the structured audio decoder (ISO/IEC 14496-3, subpart 5),
several variables from the scene description must be mapped into standard names in the orchestra. See ISO/IEC
14496-3, subpart 5, clause 5.15 and subclause 5.8.6.8.

If AudioBuffer children are provided for a structured audio decoder, the audio data buffered in the
AudioBuffer(s) must be made available to the decoding process. See Subclause ISO/IEC 14496-3, subpart 5,
subclause 5.10.2.

9.4.2.13 AudioSwitch
9.4.2.13.1 Node interface

AudioSwitch {

eventin MFNode addChildren

eventin MFNode removeChildren

exposedField MFNode children 1
exposedField MFInt32 whichChoice 1
field SFInt32 numChan 1
field MFInt32 phaseGroup 1

}

NOTE — For the binary encoding of this node see Annex H.1.10.

9.4.2.13.2 Functionality and semantics

The AudioSwitch node is used to select a subset of audio channels from the child nodes specified.
The addChildren eventln specifies a list of nodes that shall be added to the children field.

The removeChildren eventin specifies a list of nodes that shall be removed from the children field.

The children field specifies a list of child options. Each child shall be an AudioBIFS node; that is, one of the
following: AudioSource, AudioDelay, AudioMix, AudioSwitch, AudioFX, AudioClip or
AudioBuffer.

The whichChoice field specifies which channels shall be passed through. If whichChoiceli] is 1, then the i-th
child channel shall be passed through.

The numchan field specifies the number of channels of audio output by this node; ie, the number of channels in
the passed child.

The phaseGroup field specifies the phase relationships among the various output channels; see 9.2.1.6.1.

The values for the output buffer are calculated as follows:

For each sample number x of channel number i of the output buffer, 1 <=i <= numChan, the value in the buffer is
the same as the value of sample number x in the jth channel of the input, where j is the least value such that
whichChoice[0] + whichChoice[l] + ... + whichChoicel[j] =1i.

9.4.2.14 Background

9.4.2.14.1 Node interface

Background {

eventin SFBool set_bind

exposedField MFFloat groundAngle 1
exposedField MFColor groundColor 1
exposedField MFString backURL 1
exposedField MFString bottomURL 1
exposedField MFString frontURL 1
exposedField MFString leftURL 1
exposedField MFString rightURL 1

144 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

exposedField MFString topURL I
exposedField MFFloat skyAngle 1
exposedField MFColor skyColor 0,0,0
eventOut SFBool isBound

}

NOTE — For the binary encoding of this node see Annex H.1.11.
9.4.2.14.2 Functionality and semantics
The semantics of the Background node are specified in ISO/IEC 14772-1:1998, subclause 6.5.

The backUrl, bottomURL, frontUrl, leftUrl, rightUrl, topUrl fields specify the data sources to be used (see
9.2.2.7.1).

9.4.2.15 Background2D

9.4.2.15.1 Node interface

Background2D {
eventin SFBool set_bind
exposedField SFColor backColor 000
exposedField MFString url 1
eventOut SFBool isBound

}

NOTE — For the binary encoding of this node see Annex H.1.12.

9.4.2.15.2 Functionality and semantics

There exists a Background2D stack, in which the top-most background is the current active background one.

The Background2D node allows a background to be displayed behind a 2D scene. The functionality of this
node can also be accomplished using other nodes, but use of this node may be more efficient in some
implementations.

If set_bind is set to TRUE the Background?2D is moved to the top of the stack.If set_bind is set to FALSE,
the Background2D is removed from the stack so the previous background which is contained in the stack is on
top again.

The isBound event is sent as soon as the backdrop is put at the top of the stack, so becoming the current
backdrop.

The url field specifies the data source to be used (see 9.2.2.7.1).
The backColor field specifies a colour to be used as the background.

This is not a geometry node. The top-left corner of the image is mapped to the top-left corner of the Layer2D and
the right-bottom corner of the image is stretched to the right-bottom corner of the Layer2D, regardless of the
current transformation. Scaling and/or rotation do not have any effect on this node. The background image will
always exactly fill the entire Layer2D, regardless of Layer2D size, without tiling or cropping.

EXAMPLE — Changing the background for 5 seconds.

G oup {
children [

ISEF TI'S Ti meSensor {
startTine 5.0
stopTine 10.0

}

DEF BGL Background2D {

}

© ISO/IEC 2001 — All rights reserved 145

ISO/IEC 14496-1:2001(E)

]

}
ROUTE TI S. i sActive TO BGL. set _bind

9.4.2.16 BAP

9.4.2.16.1 Node interface

BAP {

146

exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField

SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32

sacroiliac_tilt
sacroiliac_torsion
sacroiliac_roll
|_hip_flexion
r_hip_flexion
|_hip_abduct
r_hip_abduct
I_hip_twisting
r_hip_twisting
|_knee_flexion
r_knee_flexion
|_knee_twisting
r_knee_twisting
|_ankle_flexion
r_ankle_flexion
|_ankle_twisting
r_ankle_twisting
|_subtalar_flexion
r_subtalar_flexion
|_midtarsal_flexion
r_midtarsal_flexion
I_metatarsal_flexion
r_metatarsal_flexion
|_sternoclavicular_abduct
r_sternoclavicular_abduct
|_sternoclavicular_rotate
r_sternoclavicular_rotate
|_acromioclavicular_abduct
r_acromioclavicular_abduct
|_acromioclavicular_rotate
r_acromioclavicular_rotate
|_shoulder_flexion
r_shoulder_flexion
|_shoulder_abduct
r_shoulder_abduct
I_shoulder_twisting
r_shoulder_twisting
|_elbow_flexion
r_elbow_flexion
|_elbow_twisting
r_elbow_twisting
|_wrist_flexion
r_wrist_flexion
|_wrist_pivot
r_wrist_pivot
|_wrist_twisting
r_wrist_twisting
skullbase_roll
skullbase_torsion
skullbase_tilt

vclroll

vcltorsion

vcltilt

vc2roll

+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|

© ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

exposedField SFInt32 vc2torsion +
exposedField SFInt32 vc2tilt +
exposedField SFInt32 vc3roll +
exposedField SFInt32 vc3torsion +
exposedField SFInt32 vc3tilt +
exposedField SFInt32 vcaroll +|
exposedField SFInt32 vc4dtorsion +l
exposedField SFInt32 vcatilt +
exposedField SFInt32 vchroll +l
exposedField SFInt32 vchtorsion +l
exposedField SFInt32 vchtilt +
exposedField SFInt32 vcéroll +
exposedField SFInt32 vcétorsion +
exposedField SFInt32 vCotilt +
exposedField SFInt32 vc7roll +
exposedField SFInt32 vc7torsion +
exposedField SFInt32 vCTtilt +
exposedField SFInt32 vtiroll +|
exposedField SFInt32 vtitorsion +|
exposedField SFInt32 vtltilt +|
exposedField SFInt32 vt2roll +|
exposedField SFInt32 vt2torsion +|
exposedField SFInt32 vit2tilt +
exposedField SFInt32 vt3roll +
exposedField SFInt32 vt3torsion +
exposedField SFInt32 vi3tilt +
exposedField SFInt32 vt4roll +
exposedField SFInt32 vt4torsion +
exposedField SFInt32 vtatilt +|
exposedField SFInt32 vt5roll +l
exposedField SFInt32 vt5torsion +|
exposedField SFInt32 vi5tilt +l
exposedField SFInt32 vt6roll +l
exposedField SFInt32 vt6torsion +|
exposedField SFInt32 Vt6tilt +
exposedField SFInt32 vt7roll +
exposedField SFInt32 vt7torsion +
exposedField SFInt32 vt7tilt +
exposedField SFInt32 vt8roll +
exposedField SFInt32 vt8torsion +|
exposedField SFInt32 vi8tilt +
exposedField SFInt32 vtoroll +
exposedField SFInt32 vtotorsion +|
exposedField SFInt32 vtotilt +
exposedField SFInt32 vt10roll +|
exposedField SFInt32 vtl0torsion +
exposedField SFInt32 vt10tilt +
exposedField SFInt32 vtliroll +
exposedField SFInt32 vtlitorsion +
exposedField SFInt32 vilitilt +
exposedField SFInt32 vtl2roll +
exposedField SFInt32 vtl2torsion +|
exposedField SFInt32 vt12tilt +|
exposedField SFInt32 vilroll +|
exposedField SFInt32 vlltorsion +|
exposedField SFInt32 vI1tilt +|
exposedField SFInt32 vi2roll +|
exposedField SFInt32 vl2torsion +
exposedField SFInt32 vI2tilt +
exposedField SFInt32 vi3roll +
exposedField SFInt32 vi3torsion +
exposedField SFInt32 vI3tilt +

© ISO/IEC 2001 — All rights reserved 147

ISO/IEC 14496-1:2001(E)

148

exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField

SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32

vidroll

vl4torsion

vi4tilt

vi5roll

vi5torsion

vI5tilt
|_pinkyO_flexion
r_pinkyO_flexion
I_pinkyl_flexion
r_pinkyl_flexion
I_pinkyl_pivot
r_pinkyl pivot
|_pinkyl_ twisting
r_pinkyl twisting
|_pinky2_flexion
r_pinky2_ flexion
|_pinky3_flexion
r_pinky3_flexion
|_ring0_flexion
r_ring0_flexion
|_ringl_flexion
r_ringl_flexion
|_ringl_pivot
r_ringl_pivot
|_ringl_twisting
r_ringl_twisting
|_ring2_flexion
r_ring2_flexion
|_ring3_flexion
r_ring3_flexion
I_middle0_flexion
r_middle0O_flexion
I_middlel_flexion
r_middlel_flexion
|_middlel_pivot
r_middlel _pivot
|_middlel_twisting
r_middlel_twisting
I_middle2_flexion
r_middle2_flexion
I_middle3_flexion
r_middle3_flexion
|_index0_flexion
r_index0_flexion
|_index1_flexion
r_indexl_flexion

| index1_pivot
r_indexl pivot

| _index1_twisting
r_indexl_twisting
| _index2_flexion
r_index2_flexion
|_index3_flexion
r_index3_flexion

| _thumb1_flexion
r_thumbl_flexion
| _thumb1l_pivot
r_thumbl_pivot

| thumb1l twisting
r_thumbl_twisting
| thumb2_flexion
r_thumb2_ flexion

+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|

© ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

exposedField SFInt32 |_thumb3_flexion +
exposedField SFInt32 r_thumb3_flexion +
exposedField SFInt32 humanoidRoot_tr_vertical +
exposedField SFInt32 humanoidRoot_tr_lateral +
exposedField SFInt32 humanoidRoot_tr_frontal +
exposedField SFInt32 humanoidRoot_rt_body_turn +l
exposedField SFInt32 humanoidRoot_rt_body_roll +|
exposedField SFInt32 humanoidRoot_rt_body_tilt +l

exposedField SFInt32 extensionBap187 +l
exposedField SFInt32 extensionBap188 +l
exposedField SFInt32 extensionBap189 +l
exposedField SFInt32 extensionBap190 +
exposedField SFInt32 extensionBap191 +
exposedField SFInt32 extensionBap192 +
exposedField SFInt32 extensionBap193 +
exposedField SFInt32 extensionBap194 +
exposedField SFInt32 extensionBap195 +
exposedField SFInt32 extensionBap196 +l
exposedField SFInt32 extensionBap197 +l
exposedField SFInt32 extensionBap198 +l
exposedField SFInt32 extensionBap199 +l
exposedField SFInt32 extensionBap200 +l
exposedField SFInt32 extensionBap201 +
exposedField SFInt32 extensionBap202 +
exposedField SFInt32 extensionBap203 +
exposedField SFInt32 extensionBap204 +
exposedField SFInt32 extensionBap205 +
exposedField SFInt32 extensionBap206 +
exposedField SFInt32 extensionBap207 +l
exposedField SFInt32 extensionBap208 +l
exposedField SFInt32 extensionBap209 +l
exposedField SFInt32 extensionBap210 +l
exposedField SFInt32 extensionBap211 +
exposedField SFInt32 extensionBap212 +
exposedField SFInt32 extensionBap213 +
exposedField SFInt32 extensionBap214 +
exposedField SFInt32 extensionBap215 +
exposedField SFInt32 extensionBap216 +
exposedField SFInt32 extensionBap217 +
exposedField SFInt32 extensionBap218 +
exposedField SFInt32 extensionBap219 +
exposedField SFInt32 extensionBap220 +
exposedField SFInt32 extensionBap221 +
exposedField SFInt32 extensionBap222 +
exposedField SFInt32 extensionBap223 +
exposedField SFInt32 extensionBap224 +
exposedField SFInt32 extensionBap225 +
exposedField SFInt32 extensionBap226 +
exposedField SFInt32 extensionBap227 +
exposedField SFInt32 extensionBap228 +
exposedField SFInt32 extensionBap229 +
exposedField SFInt32 extensionBap230 +
exposedField SFInt32 extensionBap231 +
exposedField SFInt32 extensionBap232 +
exposedField SFInt32 extensionBap233 +l
exposedField SFInt32 extensionBap234 +
exposedField SFInt32 extensionBap235 +
exposedField SFInt32 extensionBap236 +
exposedField SFInt32 extensionBap237 +
exposedField SFInt32 extensionBap238 +
exposedField SFInt32 extensionBap239 +
exposedField SFInt32 extensionBap240 +

© ISO/IEC 2001 — All rights reserved

149

ISO/IEC 14496-1:2001(E)

}

exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField

SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32
SFInt32

extensionBap241
extensionBap242
extensionBap243
extensionBap244
extensionBap245
extensionBap246
extensionBap247
extensionBap248
extensionBap249
extensionBap250
extensionBap251
extensionBap252
extensionBap253
extensionBap254
extensionBap255
extensionBap256
extensionBap257
extensionBap258
extensionBap259
extensionBap260
extensionBap261
extensionBap262
extensionBap263
extensionBap264
extensionBap265
extensionBap266
extensionBap267
extensionBap268
extensionBap269
extensionBap270
extensionBap271
extensionBap272
extensionBap273
extensionBap274
extensionBap275
extensionBap276
extensionBap277
extensionBap278
extensionBap279
extensionBap280
extensionBap281
extensionBap282
extensionBap283
extensionBap284
extensionBap285
extensionBap286
extensionBap287
extensionBap288
extensionBap289
extensionBap290
extensionBap291
extensionBap292
extensionBap293
extensionBap294
extensionBap295
extensionBap296

NOTE - For the binary encoding of this node see Annex H.3.4.

150

+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|
+|

© ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
9.4.2.16.2 Functionality and semantics

BAP defines the current look of the body by means of body animation parameters. The semantics of the fields of
BAP is described in Annex C of ISO/IEC 14496-2: 1999.

9.4.2.17 BDP

9.4.2.17.1 Semantic Table

BDP {
exposedField MFNode bodySceneGraph 1
exposedField MFNode bodyDefTables 1
exposedField MFNode bodySegmentConnectionHint 1
}

NOTE - For the binary encoding of this node see Annex H.3.5
9.4.2.17.2 Funcionality and semantics

The BDP node is used to customize the proprietary body model of the decoder to a particular body, or to download
a body model along with the information of how to animate it. The Body Definition Parameters (BDPs) are normally
transmitted once per session, followed by a stream of coded Body Animation Parameters (BAPS). It is also possible
to transmit BDPs more than once per session. If the decoder does not receive the BDPs, the use of a default model
ensures that it can still interpret the FBA stream containing BAPs. This insures minimal operation in broadcast or
teleconferencing applications.

BDPs specify the following properties:
1. Body surface geometry (with texture coordinates if texture is used)

e The body surface geometry is downloaded using the BIFS stream. The body geometry surfaces are specified
using the BIFS Segment PROTO definitions as defined In Annex M.2.

2. Joint center locations.

e The positions of the joints are specified using the BIFS Joint PROTO definitions.

e Texture images as part of the BIFS Segment definitions.

3. Deformation tables, that describe how to deform the body surfaces using the received BAPSs.

The scene graph or a body definition is strongly based on ISO/IEC 14772-1 Amendment 1. The texture images can
be defined for each surface. Note that the texture images are part of the PROTO SEGMENT geometry, defined in
Annex M.

The following are the basic assumptions about BDP:

1. Default posture to initialize a human body model.

e Standing posture: This posture is defined as follows: the feet should point to the front direction, the two arms
should be placed on the side of the body with the palm of the hands facing inward. This posture also implies
that all BAPs have value zero (see ISO/IEC 14496-2:1999).

2. Establishing the coordinate system.

The origin of the body coordinate system is located at ground (y=0) level, between the humanoid's feet, with the
lateral and frontal position the same as spine origin (I5tilt). The orientation of the coordinate is x points to the left, y
points up, and z points to the front of the humanoid. The BDP node defines the body model to be used at the
receiver. Two options are supported:

e The bodyDefTables is [], the body scene graph is downloaded, in which case the proprietary body of the
decoder has to be replaced by the downloaded graph. The bodySceneGraph field has to be in the syntax
described in Annex M.

© ISO/IEC 2001 — All rights reserved 151

ISO/IEC 14496-1:2001(E)

e The bodyDefTables is different from [], in which case the decoder has to replace its local model by the
downloaded graph. The bodySceneGraph field has to be in the format, as described below. The
bodyDefTables field defines how the IndexedFaceSet child of bodySceneGraph Segment Node is modified
based on sets of BAPs. By means of bodyDefTables, the skin or clothes surface geometry of the model can
be deformed. The bodyDefTables field is defined below.

bodyDefTables defines the behavior of the deformation of the body based on BAP values. See 9.4.2.21.

bodySceneGraph defines the joint center, default geometry, and texture of the body. See Annex M.

bodySegmentConnectionHint contains a BodySegmentConnectionHint node (see 9.4.2.22).

9.4.2.18 Billboard

9.4.2.18.1 Node interface

Billboard {
eventin MFNode addChildren
eventin MFNode removeChildren
exposedField SFVec3f axisOfRotation 0,10
exposedField MFNode children 1
}

NOTE — For the binary encoding of this node see Annex H.1.13.

9.4.2.18.2 Functionality and semantics

The semantics of the Billboard node are specified in ISO/IEC 14772-1:1998, subclause 6.6. ISO/IEC 14496-1
does not support the bounding box parameters (bboxCenter and bboxSize).

9.4.2.19 Bitmap
9.4.2.19.1 Node interface

Bitmap {
exposedField SFVec2f scale -1, -1
}

NOTE — For the binary encoding of this node see Annex H.1.14.

9.4.2.19.2 Functionality and semantics

Bitmap is a geometry node centered at (0,0) in the local coordinate system, to be placed in the geometry field of
a Shape node. It is a screen-aligned rectangle, which means that the surface normal of this rectangle will always
be in the same direction as the screen surface normal, namely straight out to the viewer. It is for example not
possible to view the Bitmap under an angle from the side. Bitmap has the dimensions of the texture that is
mapped onto it, as specified in the Appearance node of its parent Shape node. However, the effective
geometry of Bitmap is defined by the non-transparent pixels of the image or video that is mapped onto it. When
no scaling is specified, a trivial texture-mapping (pixel copying) is performed.

The scale field specifies a scaling of the geometry in the x and y dimensions, respectively. The scale values shall
be strictly positive or equal to -1. A scale value of -1 indicates that no scaling shall be applied in the relevant

dimension. The special case where both scale dimensions are -1 indicates that the natural dimensions of the
texture that is mapped onto the Bitmap shall be used.

Bitmap shall not be rotated but may be subject to translation.

Geometry sensors shall respond to the effective geometry of the Bitmap, which is defined by the non-transparent
pixels of the texture that is mapped onto it.

Example — To specify semi-transparent video:

152 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
Shape {

appear ance Appearance {
texture MovieTexture { // Visual object

material Material 2D {
transparency 0.5 // sem -transparent
}
}
geonetry Bitmap {}
}

9.4.2.20 Body

9.4.2.20.1 Node interface

Body {
exposedField SFNode bdp NULL
exposedField SFNode bap NULL
exposedField MFNode renderedBody 1

}

NOTE - For the binary encoding of this node see Annex H.3.6.

9.4.2.20.2 Functionality and semantics

The Body node organizes definition and animation of a body. The bap field shall be always specified. Defining the
particular look of a body by means of downloading the position of joint centers or an entire model is optional. If the
bdp field is NULL, i.e., the BDP node is not specified, the default body model of the decoder is used.

bdp contains a BDP node.

bap contains a BAP node.

renderedBody is the scene graph of the body after it is rendered (all BAP parameters are applied).

If the bdp field of the Body node is [] and the Body node is a child of a Group node that only has one Face and
one Body node, then the Body node is associated to that Face node.

9.4.2.21 BodyDefTable
9.4.2.21.1 Node interface

BodyDefTable {

exposedField SFString bodySceneGraphNodeName NULL
exposedField MFInt32 baplDs 0
exposedField MFInt32 vertexlds 1
exposedField MFInt32 bapCombinations 1
exposedField MFVec3f displacements 1
exposedField SFInt32 numinterpolateKeys 2

}

NOTE - For the binary encoding of this node see Annex H.3.7.

9.4.2.21.2 Functionality and semantics

Defines the behavior of body animation parameters (BAPs) on a downloaded bodySceneGraph by specifying
displacement vectors of moved vertices inside IndexedFaceSet objects as a function of a combination of BAPs.

The listed vertices typically represent the deformable body skin surface, or clothe animation for the body.

The BodyDefTable node is transmitted directly after the BIFS bitstream of the BDP node. There is no limit on the
number of BodyDefTable nodes transmitted for one body. A vertex can be listed on more than one BodyDefTable
nodes. A BAP can be listed on more than one BodyDefTable nodes. In this case, the displacements of the same
vertex from various BodyDefTable nodes are added to obtain resulting displacement.

© ISO/IEC 2001 — All rights reserved 153

ISO/IEC 14496-1:2001(E)

Each BodyDefTable node contains a list of BAPs, and a list of vertices in the bodySceneGraph that are normally
affected by these BAPs (for example, the upper and lower arm skin vertices are affected by the elbow joints).

Detailed semantics:

Contains a BodySegmentConnectionHint node contains the name of the segment containing an IndexedFaceSet
node for which the deformation is defined. This node shall be part of the bodySceneGraph as defined in the BDP
node. This node will be contained in the children field of the Segment node.

baplIDs contains the BAP indices, for which the deformation behavior is defined in the bodySceneGraphNodeName
field. (Any number of BAPs can be listed in this field). The BAP Ids are defined in the Visual FPDAM1. The values
between [1-186] denote the standard BAPs, the values [187-296] denote the user-defined. Other values are
undefined.

vertexIDs contains a list of indices into the Coordinate node of the IndexedFaceSet node specified by the child of
node with name bodySceneGraphNodeName.

bapCombinations contains a list of interval borders for BAP values, i.e. a list of possible BAP combinations, for
the BAPs listed in the bapIDs field. The number of values in this field shall be an integer multiple of BAP indices as
given in the baplDs field. The entries shall be ordered as follows: first, the BAP combinations with the first listed
BAP having lowest values are listed. If there are more than one entry with the same value for the first BAP, the
entries are sorted considering the second listed BAP, etc.

displacements is a list of vectors; for each vertex indexed in the vertexIDs field, the displacement vectors are
given for the BAP combinations defined in the bapCombinations field. There must be exactly
(num(VertexIDs)*num(bapCombinations)/num(baplDs)) vValues in this field.

numinterpolateKeys is the number of BAP keys for interpolation, as defined below. The allowed values are 1-5.

In most cases, the list of BAPs in the baplDs field will be the related BAPs (for example, the shoulder BAPs will
typically be listed in the same BodyDefTable node). During animation, when the decoder receives a list of BAPS,
which affects one or more IndexedFaceSets of the body model, it finds the associated BAP combination entries in
the BodyDefTable nodes, and displaces the vertices from the original surface, with the vector specified by the
displacement field.

Example:

BodyDef Tabl e {
bodySceneG aphNodeNane “l _forearnt
bapl Ds [38, 40]
vertexlds [50, 51, 52]

bapConbi nations [0, 0, 0, 100, 0, 200,
100, O, 100, 100, 100, 200,
200, 0, 200, 100, 200, 200]

di spl acenment s 0,5.0 0.1 0.1,

}

This BodyDefTable node defines the deformation of the forearm based on the combination of |_elbow_flexion and
|_elbow_twisting BAPs. The vertices with indices 50,51,52 on surface |_forearm are deformed. The displacements
for vertex 50 are: (1 0 0), (0 0.3 0.3) and (0.5 0.6 0) for the BAP I_elbow_flexion and |_elbow_twisting combinations
(0 0) (0 100) (0 200), respectively.

The number of entries in the displacements field is calculated as:

Ndisplacements = NbapCombinations * Nvertexlds

where Nm represents the number of entries in node m.

NbapCombinations = O(NbapIDs , Nkey_postures)

Any number of BAPs can be listed in one table, and a number of BodyDefTable nodes can be used for the same
bodySceneGraphNodeName.

154 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
Interpolation
When the current BAP set for one frame does not contain the bapCombinations as listed in the BodyDefTable
node, the entries in this node need to be interpolated to obtain the deformations. (For example, let the deformation
of the right forearm be defined by BAPs 39 and 41 (right_elbow_flexion and right_elbow_twisting). Let the
bapCombination entries in the table be (0,0), (0,10000), (10000,0). Then, when a BAP39-BAP41 combination of
(5000,5000) is received, the displacements for the frame should be interpolated from the listed BAP values.)

Given several BAP keys Pq, Py, Pg3,...,Py computing linear interpolation at BAP point P. n represents the
numinterpolateKeys field in the BodyDefTable node.

Let dl’ d2, d3...dn be respective distances from P to keys.
Let Vi Vo VgouVy) be tabular displacement values of a vertex at the keys.

For any key Pi' the deformation contributed by Pi should be inversely proportional to distance di from point P. Let
this proportionality factor be fi'

Thus DEFi (deformation due to Pi) = fi*vi

1 —_ * * *
DEF (Total deformation at P) = f1 vy + f2 vV, + ..t fn Vi

2

With the condition that f, +f_ +...+f =1.0
1 2 n
computing fi is obtained in the following way:

Let total distance D=d, +d, +...+d
1 2 n

f.= (- d/D)(n-1)

calculation:

First compute DIRECT proportionality factors ti
t1 = dllD, t2 = d2/D,...,tn = dn/D

Now tl + t2 + .+ tn =1.0

If we take deformation contribution by Pi as DEFi = tivi

then keys closest to point p contribute least. To have the opposite effect we get inverse proportionality by replacing
t.s
i

ti <-(1- ti) <--(1- di/D)

<-1-d,D,t,<-1-d,D, ..t <-1-d /D
1 2 n n

Y 2
But now

t1+t2+ ...+tn =n-1
To make right hand side 1.0, we divide by n-1. Thus the final factor fi

f. = t/A(n-1) = (1-d./D)/(n-1)

© ISO/IEC 2001 — All rights reserved 155

ISO/IEC 14496-1:2001(E)
Note that the default body posture is defined where all BAPs are 0 and the displacements are 0. This default

posture shall not be used as a BAP combinations entry for interpolation, unless it is defined explicitly as BAP
combinations in the BodyDefTable.

9.4.2.22 BodySegmentConnectionHint
9.4.2.22.1 Node Interface

BodySegmentConnectionHint {

exposedField SFString firstSegmentNodeName NULL
exposedField SFString secondSegmentNodeName NULL
exposedField MFInt32 firstVertexldList 0
exposedField MFInt32 secondVertexldList 1

}

NOTE - For the binary encoding of this node see Annex H.3.8.

9.4.2.22.2 Functionality and semantics

Defines the connection information of segments as a hint for maintaining connected surfaces. Typically, two
segments connected by a joint might require listing corresponding vertices in both segments, as a hint to the
BodyDefTable interpreter to remove holes.

The BodySegmentConnectionHint node is transmitted after the BIFS bitstream of BDP and BodyDefTable
nodes. There is no limit on the number of BodySegmentConnectionHint nodes transmitted for one body. This
node is a hint to the BDP interpreter; it is not required to use this node.

Each BodySegmentConnectionHint node contains two segments, a list of vertex ids in the two segments that
need to be connected to each other for smooth rendering (for example, vertices near the elbow joint can be listed).

Detailed Semantics:

firstSegmentNodeName is the name of the segment containing the first IndexedFaceSet node. This node shall
be part of the bodySceneGraph as defined in the BDP node. This node will be contained in the children field of the
Segment node.

secondSegmentNodeName is the name of the segment containing the second IndexedFaceSet node. This node
shall be part of the bodySceneGraph as defined in the BDP node. This node will be contained in the children field
of Segment node.

firstVertexldList is a list of indices into the Coordinate node of the first IndexedFaceSet node specified by
firstSegmentNodeName.

secondVertexldList is a list of indices into the Coordinate node of the second IndexedFaceSet node specified by
secondSegmentNodeName.

The number of entries in firstVertexldList and secondVertexldList fields has to be the same. The corresponding
vertex ids should be in the same sequence in both fields.

During animation, when the decoder displaces vertices from the original surfaces based on the vectors specified by
BodyDefTable nodes, it can use the BodySegmentConnectionHint node to connect the two surfaces. If two
corresponding vertices are not displaced with the same amount due to different BodyDefTable displacement
values or due to numerical error, then the decoder can take the average displacement of two corresponding
vertices.

156 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

9.4.2.23 Box
9.4.2.23.1 Node interface
Box {

field SFVec3f size 2,2,2
}
NOTE — For the binary encoding of this node see Annex H.1.15.
9.4.2.23.2 Functionality and semantics
The semantics of the BoX node are specified in ISO/IEC 14772-1:1998, subclause 6.7.
9.4.2.24 Circle
9.4.2.24.1 Node interface
Circle {

exposedField SFFloat radius 1.0
}
NOTE — For the binary encoding of this node see Annex H.1.16.
9.4.2.24.2 Functionality and semantics

This node specifies a circle centred at (0,0) in the local coordinate system. The radius field specifies the radius of
the circle and shall be greater than 0.

9.4.2.25 Collision

9.4.2.25.1 Node interface

Collision {
eventin MFNode addChildren
eventin MFNode removeChildren
exposedField MFNode children 1
exposedField SFBool collide TRUE
field SFNode proxy NULL
eventOut SFTime collideTime

}

NOTE — For the binary encoding of this node see Annex H.1.17.
9.4.2.25.2 Functionality and semantics

The semantics of the Collision node are specified in ISO/IEC 14772-1:1998, subclause 6.8. ISO/IEC 14496-1 does
not support the bounding box parameters (bboxCenter and bboxSize).

9.4.2.26 Color
9.4.2.26.1 Node interface
Color{
exposedField MFColor color 1
}
NOTE — For the binary encoding of this node see Annex H.1.18.

9.4.2.26.2 Functionality and semantics

The semantics of the Color node are specified in ISO/IEC 14772-1:1998, subclause 6.9.

© ISO/IEC 2001 — All rights reserved 157

ISO/IEC 14496-1:2001(E)
9.4.2.27 ColorInterpolator
9.4.2.27.1 Node interface

Colorinterpolator {

eventin SFFloat set fraction

exposedField MFFloat key 0
exposedField MFColor keyValue 1
eventOut SFColor value_changed

}

NOTE — For the binary encoding of this node see Annex H.1.19.

9.4.2.27.2 Functionality and semantics

The semantics of the Colorinterpolator node are specified in ISO/IEC 14772-1:1998, subclause 6.10.
9.4.2.28 CompositeTexture2D

9.4.2.28.1 Node interface

CompositeTexture2D {

eventin MFNode addChildren

eventin MFNode removeChildren

exposedField MFNode children 0
exposedField SFInt32 pixelWidth -1
exposedField SFInt32 pixelHeight -1
exposedField SFNode background NULL
exposedField SFNode viewport NULL

}

NOTE — For the binary encoding of this node see Annex H.1.20.

9.4.2.28.2 Functionality and semantics

The CompositeTexture2D node represents a texture that is composed of a 2D scene, which may be mapped
onto another object.

This node may only be used as the texture field of an Appearance node. All behaviors and user interaction are
enabled when using a CompositeTexture2D.

The addChildren eventln specifies a list of nodes that shall be added to the children field.
The removeChildren eventin specifies a list of nodes that shall be removed from the children field.
The children field contains a list of 2D children nodes that define the 2D scene that is to form the texture map.

The pixelWidth and pixelHeight fields specify the ideal size in pixels of this map. The default values result in an
undefined size being used. This is a hint for the content creator to define the quality of the texture mapping.

The semantics of the background and viewport fields are identical to the semantics of the Layer2D (see
9.4.2.63) fields of the same name.

158 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

Figure 16 - A CompositeTexture2D example. The 2D scene is projcted onto the 3D cube.

Figure 17 - A CompositeTexture2D example.

Here the 2D scene as defined in Figure 16 composed of an image, a logo, and a text, is textured on a rectangle n
in the local X,Y plane of the back wall. A similar effect may be obtained by simply placing the 2D objects in the (3D)
Transform. However, CompositeTexture2D and CompositeTexture3D shall be used when maping
onto non-flat geometries.

9.4.2.29 CompositeTexture3D
9.4.2.29.1 Node interface

CompositeTexture3D {

eventln MFNode addChildren
eventin MFNode removeChildren
exposedField MFNode children 1

© ISO/IEC 2001 — All rights reserved 159

ISO/IEC 14496-1:2001(E)

exposedField SFInt32 pixelWidth -1
exposedField SFInt32 pixelHeight -1
exposedField SFNode background

exposedField SFNode fog

exposedField SFNode navigationinfo

exposedField SFNode viewpoint

}

NOTE — For the binary encoding of this node see Annex H.1.21.

9.4.2.29.2 Functionality and semantics

The CompositeTexture3D node represents a texture mapped onto a 3D object that is composed of a 3D
scene.

Behaviors and user interaction are enabled when using a CompositeTexture3D. However, the standard user
navigation on the textured scene is disabled. Instead, sensors contained in the scene which forms the
CompositeTexture3D may be used to define behaviours. This node may only be used as a texture field of
an Appearance node.

The addChildren eventln specifies a list of nodes that shall be added to the children field.
The removeChildren eventin specifies a list of nodes that shall be removed from the children field.
The children field is the list of 3D children nodes that define the 3D scene that forms the texture map.

The pixelWidth and pixelHeight fields specify the ideal size in pixels of this map. The default values result in an
undefined size being used. This is a hint for the content creator to define the quality of the texture mapping.

The background, fog, navigationinfo and viewpoint fields represent the current values of the bindable
children nodes used in the 3D scene. This node may only be used as the texture field of an Appearance node.
All behaviors and user interaction are enabled when using a CompositeTexture2D.

Figure 18 - CompositeTexture3D example. The 3D view of the earth is projected onto the 3D cube

160 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
9.4.2.30 Conditional
9.4.2.30.1 Node interface

Conditional {

eventin SFBool activate

eventln SFBool reverseActivate

exposedField SFString buffer
eventOut SFBool isActive

}

NOTE — For the binary encoding of this node see Annex H.1.22.

9.4.2.30.2 Functionality and semantics

The Conditional node interprets a buffered bit string of BIFS-Commands when it is activated. This allows events
to trigger node updates, deletions, and other modifications to the scene. The buffered bit string is interpreted as if it
had just been received.

Upon reception of either an SFBool event of value TRUE on the activate eventin, or an SFBool event of value
FALSE on the reverseActivate eventin, the contents of the buffer field shall be interpreted as a BIFS
ConmandFr ane (see 9.3.6.2). These updates are not time-stamped; they are executed at the time of the event,
assuming a zero-decoding time.

EXAMPLE — A typical use of this node is for the implementation of the action of a button. The button geometry is enclosed in a
grouping node which also contains a TouchSensor node. The isActive eventOut of the TouchSensor is routed to
the activate eventln of Conditional C1 and to the reverseActivate eventln of Conditional C2; C1 then implements

the “mouse-down” action and C2 implements the “mouse-up” action.
9.4.2.31 Cone

9.4.2.31.1 Node interface

Cone{
field SFFloat bottomRadius 1.0
field SFFloat height 2.0
field SFBool side TRUE
field SFBool bottom TRUE
}

NOTE — For the binary encoding of this node see Annex H.1.23.
9.4.2.31.2 Functionality and semantics
The semantics of the Cone node are specified in ISO/IEC 14772-1:1998, subclause 6.11.
9.4.2.32 Coordinate
9.4.2.32.1 Node interface
Coordinate {
exposedField MFVec3f point 1
}
NOTE — For the binary encoding of this node see Annex H.1.24.

9.4.2.32.2 Functionality and semantics

The semantics of the Coordinate node are specified in ISO/IEC 14772-1:1998, subclause 6.12.

© ISO/IEC 2001 — All rights reserved 161

ISO/IEC 14496-1:2001(E)
9.4.2.33 Coordinate2D
9.4.2.33.1 Node interface
Coordinate2D {
exposedField MFVec?2f point 1
}
NOTE — For the binary encoding of this node see Annex H.1.25.
9.4.2.33.2 Functionality and semantics
This node defines a set of 2D coordinates to be used in the coord field of geometry nodes.
The point field contains a list of points in the 2D coordinate space (see 9.2.2.2).
9.4.2.34 Coordinatelnterpolator
9.4.2.34.1 Node interface

Coordinatelnterpolator {

eventin SFFloat set fraction

exposedField MFFloat key 0
exposedField MFVec3f keyValue 1
eventOut MFVec3f value_changed

}

NOTE — For the binary encoding of this node see Annex H.1.26.

9.4.2.34.2 Functionality and semantics

The semantics of the Coordinatelnterpolator node are specified in ISO/IEC 14772-1:1998, subclause 6.13.
9.4.2.35 Coordinatelnterpolator2D

9.4.2.35.1 Node interface

Coordinatelnterpolator2D {

eventin SFFloat set fraction

exposedField MFFloat key 1
exposedField MFVec?2f keyValue 1
eventOut MFVec?2f value_changed

}

NOTE — For the binary encoding of this node see Annex H.1.27.

9.4.2.35.2 Functionality and semantics

Coordinatelnterpolator2D is the 2D equivalent of Coordinatelnterpolator (see 9.4.2.34).
9.4.2.36 Curve2D

9.4.2.36.1 Node interface

Curve2D {
exposedField SFNode point NULL
exposedField SFInt32 fineness 0
exposedField MFInt32 type [

}

NOTE — For the binary encoding of this node see Annex H.1.28.

162 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
9.4.2.36.2 Functionality and semantics

This node is used to describe the Bezier approximation of a polygon in the scene at an arbitrary level of precision. It
behaves as other “lines”, which means it is sensitive to modifications of line width and “dotted-ness”, and can be
filled or not.

The given parameters are a control polygon and a parameter setting the quality of approximation of the curve.
Internally, another polygon of fineness points is computed on the basis of the control polygon. The coordinates of
that internal polygon are given by the following formula:

i N \N=1—i
a i Xﬂx 1 x -+
H{ 1= xdi] if(n—1-1)! (fj (1 fj ,

i=0

where x[j] is the jth x coordinate of the internal polygon, n is the number of points in the control polygon, xcJi] is the
i x coordinate of the control polygon and f is short for the above fineness parameter which is also the number of
points in the internal polygon. A similar formula yields the y coordinates.

The point field shall list the vertices of the control polygon.

The fineness parameter is an SFFloat value that indicates how finely to tessellate the Bezier curves. A value of 1
means that the curve shall be fine enough that no edges are visible. A value of 0 indicates that a straight line shall
be drawn between the two points of the curve. The default value of 0.5 gives an intermediate level of smoothness.
The amount of tessellation may be adjusted according to scale of the shape, making it possible to avoid visible
edges appearing when the shape is zoomed. When the field type is specified, the above functionality is extended
as follows: the curve is now defined piecewise either with the above equation or as straight segments or as non-
segments, depending on the values in type. The point field is now taken to contain all key-points (points where
the curve passes) and control-points (points defining the aspect of the curve around them). The values in the type
field define the semantics of the elements of point.

The point field contains a Coordinate2D field with the list of points. If the type field is non-empty, then it shall
contain tokens indicating how the point list is to be interpreted, according to the following algorithm (expressed in
pseudo-code):

SFInt32 i = 0;

SFInt 32 j = 0;

SFVec2f cur = point[i++];
SFVec2f first = cur;

SFVec2f curctl;

while (i < point.l|ength)
SFInt32 t = 0;
if (typelength >]) t = type[].pq.]Y

switch(t) {
case 0: // nove, use 1 point
if (is_filled) draw_line(cur, point[i]);
cur = point[i];
i ++;
br eak;

case 1. // line, use 1 point
draw_|ine(cur, point[i]);
cur = point[i];
i ++;
br eak;

case 2: // bezier curve, use 3 points
draw_curve(cur, point[i], point[i+1l], point[i+2]);
cur = point[i+2];
curctl =point[i+1];
i += 3;
br eak;

case 3: // tangent curve, use 2 points

© ISO/IEC 2001 — All rights reserved 163

ISO/IEC 14496-1:2001(E)

SFVec?2f tanctl;

tanctl.x = 2*cur.x — curctl.x;

tanctl.y = 2*cur.y — curctl.y;

draw_curve(cur, tanctl, point[i], point[i+1]);
cur = point[i+1];

curctl = point[i];

i += 2;

br eak;

}

if (is_filled) draw_line(cur, first);

In the above pseudo-code, draw_| i ne(a, b) draws a line from a to b and draw_curve(a, b, ¢, d) draws a
Bezier curve from a to d, using b as the control point for a and ¢ as the control point for d. Note that, because of the
move command (t ype = 0) multiple disjoint segments are possible. In the case of a filled shape, each segment is
closed by drawing a straight line from the last point in the segment to the first. Shapes are filled using the odd-even
winding fill rule. If one segment is contained within another, the inside of the inner shape is not filled, allowing
shapes with holes.

The first coordinate pair in point is the starting point of the curve. The first value in type describes the treatment to
be applied to the subsequent coordinate pairs. At any time, a value in type describes the characteristics of the next
curve segment. If P is the starting point or the last point of the previous segment of the curve; N the ending point of
the current curve segment; C, the control point on the side of P and C, the control point on the side of N.

The permitted values of type are:

e 0 = MoveTo: One coordinate pair in the point list is consumed, defining N. P ends the curve. The curve shall
start again at N. Sequences of two or more MoveTos shall not occur. MoveTo shall not occur as the first
elementintype.

e 1 =LineTo: One coordinate pair in the point list is consumed, defining N. A straight line is drawn from P to N.

e 2 = CurveTo: Three coordinate pairs in the point list are consumed, defining C;, C, and N respectively. The
first coordinate pair specifies the control point the start of this curve segment (C,), the second specifies the
control point for end of the curve segment (C,) and the third specifies the ending point of the curve segment

(N).

e 3 = NextCurveto: Two coordinate pairs in the point list are consumed, defining C, and N in this order. The first
coordinate pair specifies the control point for the end of the curve segment (C,), and the second specifies the
ending point of the curve segment (N). The control point C, for the start of the curve segment is derived from
the previous control point. If the previous segment was formed with CurveTo or NextCurveTo, the start control
point C, is symmetrical to the end control point C, of the previous curve segment with respect to point P. This
control type shall not occur immediately following a MoveTo or LineTo.

The formula for obtaining the coordinates of C; in the case of a NextCurveTo is:

Cix=2P,—Cpand Cy =2.P,—Cy
The first point in point, as the first point in the curve, is implicitly a MoveTo.
For CurveTo and NextCurveTo, the piece of curve is constructed using the above formula as applied to a polygon
constructed from four points, that is the starting point P, the first control point C,, the second control point C, and
the end point N, which is the next point in the point list.
The curve shall be continuous except at points tagged with MoveTo. The tangent of the curve is only continuous at
points tagged with NextCurveTo, or at points where the previous second control point C,, the key point P and the

next first control point C, are aligned.

If there are more values in point than specified by type, then the unused points shall describe a curve as if no
type was defined.

164 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

EXAMPLE —

geonetry Curve2D {
poi nt Coor di nat e2D {
points [0 0 O 100 200 100 200 200 210 200 220 200]

}
type [2 0 1]
}

The first segment of curve starts at 0,0 goes to 200,200 and control points are 0,100 and 200,100. The Bezier curve drawn is
the one with the polygon [0 0 0 100 200 100 200 200] (represented in dotted gray) when types=null, with the same fineness.
When types is specified, the fineness parameter is applied to each curve segment. Then we have a "move to", from 200,200 to
210,200. Then we have a "line to", from 210,200 to 220,200 (small segment in upper right corner).

In Figure 19, the curve is drawn in wide black, and the control polygon is drawn in dotted gray. The curve has two connex
components.

Figure 19 - Curve node example
9.4.2.37 Cylinder

9.4.2.37.1 Node interface

Cylinder {
field SFBool bottom TRUE
field SFFloat height 2.0
field SFFloat radius 1.0
field SFBool side TRUE
field SFBool top TRUE
}

NOTE — For the binary encoding of this node see Annex H.1.29.

9.4.2.37.2 Functionality and semantics

The semantics of the Cylinder node are specified in ISO/IEC 14772-1:1998, subclause 6.14.
9.4.2.38 CylinderSensor

9.4.2.38.1 Node interface

CylinderSensor {

exposedField SFBool autoOffset TRUE
exposedField SFFloat diskAngle 0.262
exposedField SFBool enabled TRUE
exposedField SFFloat maxAngle -1.0
exposedField SFFloat minAngle 0.0
exposedField SFFloat offset 0.0
eventOut SFBool isActive

eventOut SFRotation rotation_changed

eventOut SFVec3f trackPoint_changed

}

NOTE — For the binary encoding of this node see Annex H.1.30.

© ISO/IEC 2001 — All rights reserved 165

ISO/IEC 14496-1:2001(E)

9.4.2.38.2 Functionality and semantics

The semantics of the CylinderSensor node are specified in ISO/IEC 14772-1:1998, subclause 6.15.
9.4.2.39 DirectiveSound

9.4.2.39.1 Node interface

DirectiveSound {

field MFFloat angles 0

field MFFloat directivity 1

field MFFloat frequency 1

field SFFloat speedOfSound 340
field SFFloat distance 100
field SFBool useAirabs FALSE
exposedField SFVec3f direction 0,0,1
exposedField SFFloat intensity 1
exposedField SFVec3f location 0,0,0
exposedField SFNode source NULL
exposedField SFNode perceptualParameters NULL
exposedField SFBool roomEffect FALSE
exposedField SFBool spatialize TRUE

}
NOTE - For the binary encoding of this node see Annex H.3.9.
9.4.2.39.2 Functionality and semantics

The purpose of the DirectiveSound node is to obtain sound source directivity which is characteristic to the sound
source present in a 3-D scene. It is also needed for rendering of the acoustic response of the virtual environment.
The modeling of sound propagation from the source to the listening point includes distance dependent attenuation,
propagation delay between the source and the listener, and modeling of sound reflections, transmission through
objects, and reverberation. Two different rendering schemes are applied to DirectiveSound depending on the
value of perceptualParameters field. If this field is NULL, the physical approach is applied, and if it contains a
PerceptualParameters node, the perceptual approach is applied (see 9.2.2.13.4).

DirectiveSound is rendered in a specified area in a 3-D scene. The distance field specifies the radius of a
spherical region around the source where the sound is audible to the user. Additionally, in the physical approach, a
3-D rectangular region specified in the AcousticScene nodes specify areas in the scene where the sound is
audible when the DirectiveSound and the Viewpoint or ListeningPoint are both inside that area.

The direction dependent sound radiation properties of the sound source is defined in the directivity field of the
node for an arbitrary number of angles given in the angles field with respect to the main direction axis (defined in
the direction field) to the back of the sound source.

The angles field specifies the angles between the direction vector of the source and the vector between the sound
source location and the listener (Viewpoint or ListeningPoint) in radians, at which the directivity parameters

apply.

The semantics of the directivity field is defined in two different ways depending on the value of the frequency
field, which in one case is an empty vector [], and in the other case is a MFField containing a set of frequencies at
which digital filter magnitude response gains are valid. Both ways are allowed in the physical approach, but in the
perceptual approach only one is allowed.

frequency field defines the frequencies at which the directivity gains are valid (similarly as refFrequency and
transFrequency for reffunc and transfunc in AcousticMaterial, see 9.4.2.1).

There are two different ways of defining directivity for a sound source. If the frequency field is [], the parameters in

the directivity field are considered as a set of digital filter coefficients, and if this field is different from [] its
semantics are as explained above.

166 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
In the physical approach both ways of defining directivity are possible. If frequency is equal to [], the directivity can

be defined as a single scale factor associated to each given azimuth angle, or as frequency modifying digital filter
parameters. In the latter case, the general form for the field is:

[Da0.0s Boo.1s Bao2s «+-y Dooms Buo,11 80025 8o Dot 00 Dt 1s Bt 2s oy Dot My Bat1s 8t 2000y Batvie-]

where a0 is the first specified angle in the angles field, a1 is the second angle etc., and M is the order of the digital
filter. If the directivity is specified as gains, the form of the field is:

[b(XOv b(xlv ey b(xKv]
where K is the number of specified angles.

These coefficients represent a digital filter, whose system function H(z) is represented in the z-domain as a division
of the z-transform of the output sequence Y(z) with the z-transform of the input sequence X(z):

The distinction between the coefficients of different filters is obtained by dividing the length of the directivity field by
the amount of specified angles (length of the angles field):

. length(directivity)

2-M+1=m +m,,,
length(angles)

where n is the number of coefficients in each filter, and M is the order of the filter, my is the number of b
coefficients, and m, is the number of a coefficients Thus, the number of a coefficients is

and the number of b coefficients is

n-1
=—+1.
™ 2

If the first angle a0 > 0, the directivity at angles 0 < o < a0 is the same as at a0, and if the last specified angle aM is
smaller than =, the directivity at angles oM < o < &t is the same as at aM.

The second way of defining directivity is to give a set of gains in directivity field at frequencies defined in
frequency field. This scheme can be used both in perceptual and in the physical approaches.

The source directivity is defined as gain factors at specified frequencies for a set of reference angles (specified in
the angles field). In this approach, the general form for the directivity field is then:

[gain%, gain®s,...gain’y.1,gain’o, gain'y,...gain" ..., gain "™, gain"™*;,...gain " 4],

Where, nf is the number of reference frequencies, and freq; is the jth reference frequency

gainij is the gain for the i™ reference angle and the jth reference frequency, and na is the length of the angles field.
The form of the frequency field is then:

[freqo, freqy, ...frequs.1]

© ISO/IEC 2001 — All rights reserved 167

ISO/IEC 14496-1:2001(E)

The number of reference angles is the same as the length of the angles field, and the number of reference
frequencies is the same as the length of frequency field. An example of directivity is given below:

[0.9,0.85,0.7,0.6,0.55,

0.85,0.75,0.6,0.5,0.4,

0.8,0.65,0.5,0.4,0.3,

0.5,0.45,0.3,0.2,0.1]

and an example of frequency in this case is:
[250, 500, 1000, 2000, 4000]

Axisymmetry is assumed, so only angles from 0 to = radians are needed to fully define frequency-dependent
directivity.

If not specified in the node, the default filtering at O rad is the same as for the first specified angle (o). If not
specified in the node, the default gain at = rad is gain "a'lj for the ji frequency.

If not specified in the node, the default gain at 0 Hz is gain ', for the iy, angle.

By default, the gain for frequencies above f.;is gain inf_l for the iy, angle.

The directivity filtering is defined by these gains at the specified frequencies.

In both physical and the perceptual approaches the output of directivity filtering between the specified angles
should perform an interpolated result of the magnitude responses of the specified directivities. This can be a result

of, e.g., crossfading between different filter outputs, or suitable interpolation of coefficients of the filters.

The direction field specifies the direction the DirectiveSound node is facing. This field is used in the directivity
computation of the sound source, i.e., it defines the direction of the angle of 0 (rad) in the directivity field.

The intensity field specifies the gain the original sound stream is multiplied with.

The speedOfSound field is used to enable control of the pre-delay added to the sound depending on the distance
between the source and the listener. With other values of speedOfSound than 0 the delay is computed as:

4 ds
speedOfSound

where dist is the current distance between the source and the listener in meters, and speedOfSound is the value of
speedOfSound field in meters.

speedOfSound field also defines the delay of the reflections off acoustic surfaces in the physical approach, since
they are computed according to the corresponding image source locations and the speed of sound. These acoustic
surfaces are polygons defined in IndexedFaceSet nodes that have AcousticMaterial associated to them as their
appearance (see 9.4.2.1). This field also controls the Doppler effect that is caused by the changing distance
between the listening point and the listener. Thus the smaller the value of speedOfSound is, the stronger the
Doppler effect is (pitch shift caused by the changing distance between the source and the listener). The changing
delay caused by a varying distance between the source (direct sound or image source corresponding to a
reflection) and the listener should always be interpolated to avoid artifacts such as clicks in the delayed sound.

The default value of speedOfSound is 0. With this value, and roomEffect = FALSE, no delay of sound
propagation between the direct sound and the listener is rendered (except when there are physically rendered early
reflections, see next paragraph). This enables a DirectiveSound node to be spatialized in a 3-D space so that the
direction and attenuation of the sound are perceived according to the sound source location relative to the listener,
but neither Doppler effect nor delay is implemented.

168 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

If the sound is rendered according to the physical approach, and the source and the listening point are located
within an AcousticScene audibility region, and there are IndexedFaceSet surfaces with acoustic reflectivity,
associated to that AcousticScene, and the value of roomEffect is TRUE, the Doppler effect and the delays of the
direct sound and physical early reflections are computed according to the speed of sound in the air (340 m/s), even
if this field is set to 0.

The distance field specifies the distance dependent attenuation of the sound. Within one meter from the source
the sound is multiplied by the value of the intensity field before any spatial processing (directivity filtering,
spatialization, or room effect). At a distance in meters given by the distance field, the sound has attenuated 60dB
from the value within the 1-meter distance. Outside this distance from the sound source the sound is not audible.
The gain function will be linearly attenuated on a dB scale between the source and the given cutoff distance. The
radiation pattern defined by the directivity field will thus give the overall directivity, which will be uniformly
attenuated as a function of distance. If, however, the distance field is set to 0, no distance dependent attenuation
is applied.

Field useAirabs specifies whether the distance dependent air absorption filtering is applied to the direct sound.
ISO 9613-1:1993 specifies equations for air absorption curves in different humidity and temperature conditions, and
the frequency modification of the distance dependent air absorption filtering should follow one of these curves at
maximum accuracy possible.

location field specifies the 3-D location of the sound source in the local coordinate system of the DirectiveSound.
source field allows the connection of an audio source containing the sound.

The spatialize field has the same semantics concerning the direct sound, as in the Sound node, i.e., if this flag is
set to TRUE, the sound stream attached to this node should be processed so that appears to come from the
direction of sound source with respect to the current direction of the viewpoint. In the case of DirectiveSound
(physical approach), this flag is also applied to the reflections caused by acoustic surfaces (specified by
IndexedFaceSets and AcousticMaterials). When spatialize = TRUE, also the directions of the reflections are
rendered. If the value of this flag is FALSE, the sound routed through DirectiveSound node, or its reflections are
not spatialized according to their 3-D direction of arrival at the listener.

Field roomEffect is used for enabling and disabling environmental spatialization of audio. This field specifies
whether the environmental response (physical case: reflections, reverberation, sound transmission filtering when
propagating through surfaces; perceptual case: reverberation according to the PerceptualParameters node) is
applied to this sound node. When this flag is TRUE the DirectiveSound source is spatialized according to the
reflections and reverberation in the virtual environment. If, like mentioned above, also the spatialize flag is TRUE,
the directions of the physical reflections are also rendered, and if spatialize is FALSE (but roomEffect is TRUE), a
monophonic room acoustic effect is produced.

9.4.2.40 DiscSensor
9.4.2.40.1 Node interface

DiscSensor {

exposedField SFBool autoOffset TRUE
exposedField SFBool enabled TRUE
exposedField SFFloat maxAngle -1.0
exposedField SFFloat minAngle -1.0
exposedField SFFloat offset 0.0
EventOut SFBool isActive

EventOut SFFloat rotation_changed

EventOut SFVec2f trackPoint_changed

}

NOTE — For the binary encoding of this node see Annex H.1.31.
9.4.2.40.2 Functionality and semantics

This sensor enables the rotation of an object in the 2D plane around an axis specified in the local coordinate
system. The semantics are as similar to those for CylinderSensor, but restricted to a 2D case.

© ISO/IEC 2001 — All rights reserved 169

ISO/IEC 14496-1:2001(E)

9.4.2.41 DirectionalLight

9.4.2.41.1 Node interface

DirectionalLight {
exposedField
exposedField
exposedField
exposedField
exposedField

}

SFFloat
SFColor
SFVec3f
SFFloat
SFBool

ambientintensity
color

direction
intensity

on

NOTE — For the binary encoding of this node see Annex H.1.32.

9.4.2.41.2 Functionality and semantics

0.0
1,1,1
0,0, -1
1.0
TRUE

The semantics of the DirectionalLight node are specified in ISO/IEC 14772-1:1998, subclause 6.16.

9.4.2.42 ElevationGrid

9.4.2.42.1 Node interface

ElevationGrid {
Eventin
exposedField
exposedField
exposedField
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field

}

MFFloat
SFNode
SFNode
SFNode
MFFloat
SFBool

SFBool

SFFloat
SFBool

SFBool

SFInt32
SFFloat
SFInt32
SFFloat

set_height
color

normal
texCoord
height

ccw
colorPerVertex
creaseAngle
normalPerVertex
solid
xDimension
xSpacing
zDimension
zSpacing

NOTE — For the binary encoding of this node see Annex H.1.33.

9.4.2.42.2 Functionality and semantics

NULL
NULL
NULL

TRUE
TRUE
0.0

TRUE
TRUE

1.0

1.0

The semantics of the ElevationGrid node are specified in ISO/IEC 14772-1:1998, subclause 6.17.

9.4.2.43 Expression

9.4.2.43.1 Node interface

Expression {
Field
Field
Field
Field
Field
Field
}

SFInt32
SFInt32
SFInt32
SFInt32
SFBool
SFBool

expression_selectl
expression_intensityl
expression_select2
expression_intensity2
init_face
expression_def

NOTE — For the binary encoding of this node see Annex H.1.34.

170

[oNeoNoNe]

FALSE
FALSE

© ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
9.4.2.43.2 Functionality and semantics

The Expression node is used to define the expression of the face as a combination of two expressions from the
standard set of expressions defined ISO/IEC 14496-2, Annex C, Table C-3.

The expression_selectl and expression_select2 fields specify the expression types. The
expression_intensityl and expression_intensity?2 fields specify the corresponding expression intensities.

Ifinit_face is set, a neutral face may be modified before applying FAPs 1 and 3-68.
If expression_def is set, current FAPs are used to define an expression and store it.
9.4.2.44 Extrusion

9.4.2.44.1 Node interface

Extrusion {

Eventin MFVec2f set_crossSection

Eventin MFRotation set_orientation

Eventin MFVec2f set_scale

Eventin MFVec3f set_spine

Field SFBool beginCap TRUE

Field SFBool ccw TRUE

Field SFBool convex TRUE

Field SFFloat creaseAngle 0.0

Field MFVec2f crossSection 1,1,1,-1,-1,-1,-1,1,1,1

Field SFBool endCap TRUE

Field MFRotation orientation 0,0,1,0

Field MFVec2f scale 1,1

Field SFBool solid TRUE

Field MFVec3f spine 0,0,0,0,1,0
}

NOTE — For the binary encoding of this node see Annex H.1.35.

9.4.2.44.2 Functionality and semantics

The semantics of the Extrusion node are specified in ISO/IEC 14772-1:1998, subclause 6.18.
9.4.2.45 Face

9.4.2.45.1 Node interface

Face {
exposedField SFNode fit NULL
exposedField SFNode fdp NULL
exposedField SFNode fap NULL
exposedField SFNode ttsSource NULL
exposedField MFNode renderedFace NULL
}

NOTE — For the binary encoding of this node see Annex H.1.36.

9.4.2.45.2 Functionality and semantics

The Face node is used to define and animate a face in the scene. In order to animate the face with a facial
animation stream, ut us necessary to link the Face node to a BIFS-Anim stream. The node shall be assigned a
nodel D, through the DEF mechanism. Then, as for any BIFS-Anim stream, an animation mask is sent in the
object descriptor of the BIFS-Anim stream (speci fi cl nf o field). The animation mask points to the Face node
using its nodel D. The terminal shall then connect the facial animation decoder to the appropriate Face node.

© ISO/IEC 2001 — All rights reserved 171

ISO/IEC 14496-1:2001(E)

The FAP field shall contain a FAP node, describing the facial animation parameters (FAPs). Each Face node
shall contain a non-NULL FAP field.

The FDP field, which defines the particular look of a face by means of downloading the position of face definition
points or an entire model, is optional. If the FDP field is not specified, the default face model of the terminal shall be
used.

The FIT field, when specified, allows a set of FAPs to be defined in terms of another set of FAPs. When this field is
non-NULL, the terminal shall use FIT to compute the maximal set of FAPs before using the FAPs to compute the
mesh.

The ttsSource field shall only be non-NULL if the facial animation is to determine the facial animation parameters
from an audio TTS source (see ISO/IEC 14496-3, subpart 6). In this case the ttsSource field shall contain an
AudioSource node and the face shall be animated using the phonemes and bookmarks received from the TTS.
See also Annex |.

renderedFace is the scene graph of the face after it is rendered (all FAP’s applied).
9.4.2.46 FaceDefMesh
9.4.2.46.1 Node interface

FaceDefMesh {

Field SFNode faceSceneGraphNode NULL
Field MFInt32 intervalBorders 1
Field MFInt32 coordindex 1
Field MFVec3f displacements 1

}
NOTE — For the binary encoding of this node see Annex H.1.37.

9.4.2.46.2 Functionality and semantics

The FaceDefMesh node allows for the deformation of an IndexedFaceSet as a function of the amplitude of
a FAP as specified in the related FaceDefTable node. The FaceDefMesh node defines the piece-wise linear
motion trajectories for vertices of the faceSceneGraphNode field, which shall contain an IndexedFaceSet
node. This IndexedFaceSet node belongs to the scenegraph of the faceSceneGraph field of the FDP node.

The intervalBorders field specifies interval borders for the piece-wise linear approximation in increasing order.
Exactly one interval border shall have the value 0.

The coordIndex field shall contain a list of indices into the Coordinate node of the IndexedFaceSet node
specified by the faceSceneGraphNode field.

For each vertex indexed in the coordIndex field, displacement vectors are given in the displacements field for
the intervals defined in the intervalBorders field. There must be exactly (num(intervalBorders)-
1)*num(coordindex) values in this field.

In most cases, the animation generated by a FAP cannot be specified by updating a Transform node. Thus, a
deformation of an IndexedFaceSet node needs to be performed. In this case, the FaceDefTables shall
define which IndexedFaceSets are affected by a given FAP and how the coord fields of these nodes are
updated. This is done by means of tables.

If a FAP affects an IndexedFaceSet, the FaceDefMesh shall specify a table of the following format for this
IndexedFaceSet:

172 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

Table 34 - Vertex displacements

Vertex no. 1st Interval [11, 12] 2nd Interval [12, I3]
Index 1 Displacement D11 Displacement D12
Index 2 Displacement D21 Displacement D22

Exactly one interval border I, must have the value O:

(1, I2], [12, 13], ... [he1, O, [0, lesals [heeas Tes2ds - [max-ts Tmax]

During animation, when the terminal receives a FAP, which affects one or more IndexedFaceSets of the face
model, it shall piece-wise linearly approximate the motion trajectory of each vertex of the affected
IndexedFaceSets by using the appropriate table.

Figure 20 - An arbitrary motion trajectory is approximated as a piece-wise linear one.

If P, is the position of the m™ vertex in the IndexedFaceSet in neutral state (FAP = 0), P’ the position of the
same vertex after animation with the given FAP and D, the 3D displacement in the k™ interval, the following
algorithm shall be applied to determine the new position P’y

Determine, in which of the intervals listed in the table the received FAP is lying.

If the received FAP is lying in the jth interval [lj, 1j+1] and O=Ik < Ij, the new vertex position P'm of the mth vertex of
the IndexedFaceSet is given by:

P'm = FAPU * ((li+1-0) * D + (Is2-lkt1) * D ksa + oo + (I = Ii.1) * D jr + (FAP-I) * Dy j) + Prn. (Eq. 1)
If FAP > |,y then P’ is calculated by using equation Eq. 1 and setting the index j = max.

If the received FAP is lying in the jth interval [l;, I;:1] and Ij;, < 1,=0, the new vertex position P’y is given by:
P’'m=FAPU * ((lys1 - FAP) * Dy j + (lis2 = lis1) * Dm,jea + . + (k2 = Ik2) * D k2 + (0 - Ic2) * D k1) + P (Eg. 2)
If FAP < I, then P’ is calculated by using equation Eq. 1 and setting the index j+1 = 1.

If for a given FAP and IndexedFaceSet the table contains only one interval, the motion is strictly linear:

P'm = FAPU * FAP * Dm1 + Pm.

EXAMPLE —

FaceDef Mesh {
obj ect Descri ptor| D UpperlLip
interval Borders [-1000, 0O, 500, 1000]
coordl ndex [50, 51]
di spl acenrents [1 00, 0.900, 1.504, 0800, 0700, 200]

}

This FaceDefMesh defines the animation of the mesh “UpperLip”. For the piecewise-linear motion function three intervals
are defined: [-1000, 0], [0, 500] and [500, 1000]. Displacements are given for the vertices with the indices 50 and 51. The
displacements for the vertex 50 are: (1 0 0), (0.9 0 0) and (1.5 0 4), the displacements for vertex 51 are (0.8 0 0), (0.7 0 0) and
(2 0 0). Given a FAPValue of 600, the resulting displacement for vertex 50 would be:

displacement(vertex 50) = 500%(0.9 0 0)" + 100 * (1.5 0 4)" = (600 0 400)".

If the FAPValue is outside the given intervals, the boundary intervals are extended to +I or -1, as appropriate.

© ISO/IEC 2001 — All rights reserved 173

ISO/IEC 14496-1:2001(E)
9.4.2.47 FaceDefTables
9.4.2.47.1 Node interface

FaceDefTables {

Field SFInt32 fapID 0
Field SFInt32 highLevelSelect 0
exposedField MFNode faceDefMesh 1
exposedField MFNode faceDefTransform]

}

NOTE — For the binary encoding of this node see Annex H.1.38.

9.4.2.47.2 Functionality and semantics

The FaceDefTables node defines the behavior of a facial animation parameter FAP on a downloaded face
model in faceSceneGraph by specifying the displacement vectors for moved vertices inside IndexedFaceSet
objects as a function of the FAP fapID and/or specifying the value of a field of a Transform node as a function
of FAP fapID.

The FaceDefTables node is transmitted directly after the BIFS bitstream of the FDP node. The
FaceDefTables lists all FAPs that animate the face model. The FAPs animate the downloaded face model by
updating the Transform or IndexedFaceSet nodes of the scene graph in faceSceneGraph. For each listed
FAP, the FaceDefTables node describes which nodes are animated by this FAP and how they are animated. All
FAPs that occur in the bitstream have to be specified in the FaceDefTables node. The animation generated by
a FAP can be specified either by updating a Transform node (using a FaceDefTransform), or as a
deformation of an IndexedFaceSet (using a FaceDefMesh).

The FAPUs shall be calculated by the terminal using the feature points that shall be specified in the FDP. The
FAPUs are needed in order to animate the downloaded face model.

9.4.2.47.3 Semantics

The faplID field specifies the FAP, for which the animation behavior is defined in the faceDefMesh and
faceDefTransform fields.

If fapID has value 1 or 2, the highLevelSelect field specifies the type of viseme or expression. In other cases
this field has no meaning and shall be ignored.

The faceDefMesh field shall contain a FaceDefMesh node.

The faceDefTransform field shall contain a FaceDefTransform node.
9.4.2.48 FaceDefTransform

9.4.2.48.1 Node interface

FaceDefTransform {

Field SFNode faceSceneGraphNode NULL
Field SFInt32 fieldld 1

Field SFRotation rotationDef 0,0,1,0
Field SFVec3f scaleDef 1,1,1
Field SFVec3f translationDef 0,0,0

}

NOTE — For the binary encoding of this node see Annex H.1.39.

9.4.2.48.2 Functionality and semantics

The FaceDefTransform node defines which field (rotation, scale or translation) of a Transform node
(faceSceneGraphNode) of faceSceneGraph (defined in an FDP node) is updated by a facial animation

174 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

parameter, and how the field is updated. If the face is in its neutral position, the faceSceneGraphNode has its
translation, scale, and rotation fields set to the neutral values (0,0,0) i (1,1,1)T, (0,0,1,0), respectively.

The faceSceneGraphNode field specifies the Transform node for which the animation is defined. The node
shall be part of faceScenegraph as defined in the FDP node.

The fieldld field specifies which field in the Transform node, specified by the faceSceneGraphNode field, is
updated by the FAP during animation. Possible fields are translation, rotation, scale.

o IffieldID==1, rotation shall be updated using rotationDef and FAPVal ue.
o |IffieldiID==2, scale shall be updated using scaleDef and FAPVal ue.
o IffieldID==3, translation shall be updated using translationDef and FAPVal ue.

The rotationDef field is of type SFRotation. With rotationDef=(r,,r,,r,,0), the new value of the rotation field of
the Transform node faceSceneGraphNode is:

rotation: =(ryry,r,,0*FAPVal ue*AU) [AU is defined in ISO/IEC FCD 14496-2]

The scaleDef field is of type SFVec3f. The new value of the scale field of the Transform node
faceSceneGraphNode is:

scale:= FAPVal ue*scaleDef

The translationDef field is of type SFVec3f. The new value of the translation field of the Transform node
faceSceneGraphNode is:

translation:= FAPVal ue*translationDef
9.4.2.49 FAP

9.4.2.49.1 Node interface

FAP {
exposedField SFNode viseme NULL
exposedField SFNode expression NULL
exposedField SFInt32 open_jaw +
exposedField SFInt32 lower_t_midlip +
exposedField SFInt32 raise_b_midlip +|
exposedField SFInt32 stretch_| corner +l
exposedField SFInt32 stretch_r_corner +|
exposedField SFInt32 lower_t_lip_Im +|
exposedField SFInt32 lower_t_lip_rm +|
exposedField SFInt32 lower_b_lip_Im +|
exposedField SFInt32 lower_b_lip_rm +
exposedField SFInt32 raise_|_cornerlip +
exposedField SFInt32 raise_r_cornerlip +
exposedField SFInt32 thrust_jaw +
exposedField SFInt32 shift_jaw +
exposedField SFInt32 push_b_lip +|
exposedField SFInt32 push_t_lip +|
exposedField SFInt32 depress_chin +l
exposedField SFInt32 close_t_|_eyelid +l
exposedField SFInt32 close_t_r_eyelid +l
exposedField SFInt32 close_b_I|_eyelid +l
exposedField SFInt32 close_b_r_eyelid +
exposedField SFInt32 yaw_|_eyeball +
exposedField SFInt32 yaw_r_eyeball +
exposedField SFInt32 pitch_|_eyeball +
exposedField SFInt32 pitch_r_eyeball +

© ISO/IEC 2001 — All rights reserved 175

ISO/IEC 14496-1:2001(E)

}

exposedField SFInt32 thrust_|_eyeball +|
exposedField SFInt32 thrust_r_eyeball +|
exposedField SFInt32 dilate_|_pupil +|
exposedField SFInt32 dilate_r_pupil +|
exposedField SFInt32 raise_|_i_eyebrow +|
exposedField SFInt32 raise_r_i_eyebrow +l
exposedField SFInt32 raise_|_m_eyebrow +l
exposedField SFInt32 raise_r_m_eyebrow +l
exposedField SFInt32 raise_|_o_eyebrow +l
exposedField SFInt32 raise_r_o_eyebrow +l
exposedField SFInt32 squeeze_|_eyebrow +l
exposedField SFInt32 squeeze_r_eyebrow +|
exposedField SFInt32 puff_|_cheek +|
exposedField SFInt32 puff_r_cheek +|
exposedField SFInt32 lift_|_cheek +|
exposedField SFInt32 lift_r_cheek +|
exposedField SFInt32 shift_tongue_tip +|
exposedField SFInt32 raise_tongue_tip +
exposedField SFInt32 thrust_tongue_tip +l
exposedField SFInt32 raise_tongue +l
exposedField SFInt32 tongue_roll +l
exposedField SFInt32 head_pitch +|
exposedField SFInt32 head_yaw +|
exposedField SFInt32 head_roll +|
exposedField SFInt32 lower_t_midlip_o +|
exposedField SFInt32 raise_b_midlip_o +|
exposedField SFInt32 stretch_I_cornerlip +|
exposedField SFInt32 stretch_r_cornerlip_o +
exposedField SFInt32 lower_t_lip_Im_o +|
exposedField SFInt32 lower_t_lip_rm_o +|
exposedField SFInt32 raise_b_lip_Im_o +|
exposedField SFInt32 raise_b_lip_rm_o +
exposedField SFInt32 raise_|_cornerlip_o +l
exposedField SFInt32 raise_r_cornerlip_o +l
exposedField SFInt32 stretch_I_nose +
exposedField SFInt32 stretch_r_nose +
exposedField SFInt32 raise_nose +
exposedField SFInt32 bend_nose +
exposedField SFInt32 raise_|_ear +
exposedField SFInt32 raise_r_ear +l
exposedField SFInt32 pull | _ear +l
exposedField SFInt32 pull_r_ear +l

NOTE — For the binary encoding of this node see Annex H.1.40.

9.4.2.49.2 Functionality and semantics

This node defines the current look of the face by means of expressions and FAPs and gives a hint to TTS
controlled systems on which viseme to use. For a definition of the facial animation parameters see ISO/IEC
14496-2, Annex C.

The viseme field shall contain a Viseme node.

The expression field shall contain an Expression node.

The semantics for the remaining fields are described in the ISO/IEC 14496-2, Annex C and in particular in Table
C-1.

A FAP of value +l shall be interpreted as indicating that the particular FAP is uninitialized.

176 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

9.4.2.50 FDP

9.4.2.50.1 Node interface

FDP {
exposedField SFNode featurePointsCoord NULL
exposedField SFNode textureCoords NULL
exposedField SFBool useOrthoTexture FALSE
exposedField MFNode faceDefTables 1
exposedField MFNode faceSceneGraph 1

}

NOTE — For the binary encoding of this node see Annex H.1.41.

9.4.2.50.2 Functionality and semantics

The FDP node defines the face model to be used at the terminal. Two options are supported:

1.

If faceDefTables is NULL, calibration information is downloaded, so that the proprietary face of the terminal
can be calibrated using facial feature points and, optionally, the texture information. In this case, the
featurePointsCoord field shall be set. featurePointsCoord contains the coordinates of facial feature
points, as defined in ISO/IEC 14496-2, Annex C, Figure C-1, corresponding to a neutral face. If a coordinate of
a feature point is set to +I, the coordinates of this feature point shall be ignored. The textureCoord field, if set,
is used to map a texture on the model calibrated by the feature points. The textureCoord points correspond to
the feature points. Tthat is, each defined feature point shall have corresponding texture coordinates. In this
case, the faceSceneGraph shall contain exactly one texture image, and any geometry it might contain shall
be ignored. The terminal shall interpret the feature points, texture coordinates, and the faceSceneGraph in
the following way:

o Feature points of the terminal’s face model shall be moved to the coordinates of the feature points supplied
in featurePointsCoord, unless a feature point is to be ignored, as explained above.

o If textureCoord is set, the texture supplied in the faceSceneGraph shall be mapped onto the terminal's
default face model. The texture coordinates are derived from the texture coordinates of the feature points
supplied in textureCoords. The useOrthoTexture field provides a hint to the decoding terminal that,
when FALSE, indicates that the texture image is best obtained by cylindrical projection of the face. If
useOrthoTexture is TRUE, the texture image is best obtained by orthographic projection of the face.

A face model as described in the faceSceneGraph is decoded. This face model replaces the terminal's
default face model in the terminal. The faceSceneGraph shall contain the face in its neutral position (all FAPs
= 0). If desired, the faceSceneGraph shall contain the texture maps of the face. The functions defining the
way in which the faceSceneGraph shall be modified, as a function of the FAPs, shall also be decoded. This
information is described by faceDefTables that define how the faceSceneGraph is to be modified as a
function of each FAP. By means of faceDefTables, IndexedFaceSets and Transform nodes of the
faceSceneGraph can be animated. Since the amplitude of FAPs is defined in units that are dependent on the
size of the face model, the featurePointsCoord field defines the position of facial features on the surface of
the face described by faceSceneGraph. From the location of these feature points, the terminal computes the
units of the FAPs. Generally, only two node types in the scene graph of a decoded face model are affected by
FAPs: IndexedFaceSet and Transform nodes. If a FAP causes a deformation of an object (e.g. lip
stretching), then the coordinate positions in the affected IndexedFaceSets shall be updated. If a FAP
causes a movement which can be described with a Transform node (e.g. FAP 23, yaw_|_eyeball), then the
appropriate fields in this Transform node shall be updated. It shall be assumed that this Transform node
has its rotation, scale, and translation fields set to neutral values if the face is in its neutral position. A
unigque nodel d shall be assigned via the DEF statement to all IndexedFaceSet and Transform nodes
which are affected by FAPs so that they can be accessed unambiguously during animation.

The featurePointsCoord field shall contain a Coordinate node that specifies feature points for the calibration
of the terminal's default face. The coordinates are specified in the point field of the Coordinate node in the
prescribed order, that a feature point with a lower label number is listed before a feature point with a higher label
naumber.

EXAMPLE — Feature point 3.14 before feature point 4.1

© ISO/IEC 2001 — All rights reserved 177

ISO/IEC 14496-1:2001(E)

The textureCoords field shall contain a Coordinate node that specifies texture coordinates for the feature
points. The coordinates are listed in the point field in the Coordinate node in the prescribed order, that a
feature point with a lower label is listed before a feature point with a higher label.

The useOrthoTexture field may contain a hint to the terminal as to the type of texture image, in order to allow
better interpolation of texture coordinates for the vertices that are not feature points. If useOrthoTexture is
FALSE, the terminal may assume that the texture image was obtained by cylindrical projection of the face. If
useOrthoTexture is 1, the terminal may assume that the texture image was obtained by orthographic projection
of the face.

The faceDefTables field shall contain FaceDefTables nodes. The behavior of FAPs is defined in this field for
the face in faceSceneGraph.

The faceSceneGraph field shall contain a Group node. In the case of option 1 (above), this may be used to
contain a texture image as described above. In the case of option 2, this shall be the grouping node for the face
model rendered in the compositor and shall contain the face model. In this case, the effect of facial animation
parameters is defined in the faceDefTables field.

9.4.251 FIT

9.4.2.51.1 Node interface

FIT {
exposedField MFInt32 FAPs 1
exposedField MFInt32 graph 1
exposedField MFInt32 numeratorTerms 0
exposedField MFInt32 denominatorTerms 1
exposedField MFInt32 numeratorExp 1
exposedField MFInt32 denominatorExp 1
exposedField MFInt32 numeratorimpulse 1
exposedField MFFloat numeratorCoefs 0
exposedField MFFloat denominatorCoefs 0

}

NOTE — For the binary encoding of this node see Annex H.1.42.

9.4.2.51.2 Functionality and semantics

The FIT node allows a smaller set of FAPs to be sent during a facial animation. This small set can then be used to
determine the values of other FAPs, using a rational polynomial mapping between parameters. In a FIT node,
rational polynomials are used to specify interpolation functions.

EXAMPLE — The top inner lip FAPs can be sent and then used to determine the top outer lip FAPs. Another example is that
only viseme and/or expression FAPs are sent to drive the face. In this case, low-level FAPs are interpolated from these two
high-level FAPs.

To make the scheme general, sets of FAPs are specified, along with a FAP interpolation graph (FIG) between the
sets that specifies which sets are used to determine which other sets. The FIG is a graph with directed links. Each
node contains a set of FAPs. Each link from a parent node to a child node indicates that the FAPs in the child node
can be interpolated from the parent node. Expression (FAP#1) or Viseme (FAP #2) and their fields shall not
be interpolated from other FAPs.

In a FIG, a FAP may appear in several nodes, and a hode may have multiple parents. For a node that has multiple
parent nodes, the parent nodes are ordered as 1st parent node, 2nd parent node, etc. During the interpolation
process, if this child node needs to be interpolated, it is first interpolated from 1st parent node if all FAPs in that
parent node are available. Otherwise, it is interpolated from 2nd parent node, and so on.

An example of FIG is shown in Figure 21. Each node has a nodel D. The numerical label on each incoming link
indicates the order of these links.

178 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

2 top_inner_lip FAPs

(4)
lower_t midlip 1 1
2 2
/ T top_outer_lip FAPs
5

expression
)
bottom_inner_lip FAPs
(6
2
2 .
bottom_outer_lip FAPs
7

Figure 21 - A FIG example

1
raise b_midlip
3

The interpolation process based on the FAP interpolation graph is described using pseudo-C code as follows:

do {
i nterpol ati on_count = 0;
for (all Node_ i) { /1 from Node_1 to Node_N
for (ordered Node_ i’'s parent Node_k) {
if (FAPs in Node_i need interpolation and
FAPs in Node_k have been interpolated or are available) {
interpol ate Node_i from Node_k; //using interpolation function
/1 table here
i nterpol ation_count ++;

br eak;
}
}
} while (interpolation_count != 0);
Each directed link in a FIG is a set of interpolation functions. Suppose F;, F», ..., F, are the FAPs in a parent set

and fy, f5, ..., f,are the FAPs in a child set.
Then, there are m interpolation functions denoted as:
f]_ = I]_(Fl, F2, . Fn)

f2 = |2(F1, Fz, . Fn)

fn = Im(F1, F2, ..., Fn)

Each interpolation function I, () is in a rational polynomial form if the parent node does not contain viseme FAP or
expression FAP.

| (Fp. oo F) = 0(c HF”)/ DY
i= =1 i= j

Otherwise, an impulse function is added to each numerator polynomial term to allow selection of expression or
viseme.

© ISO/IEC 2001 — All rights reserved 179

ISO/IEC 14496-1:2001(E)
K-1 n
((Fu P Fr) = 5 0(F; ~a)(6 T1F,1) / SOHTRS
|=]=

In both equations, K and P are the numbers of polynomial products, ¢ and b; are the coefficient of the ith product.
lj and m; are the power of F; in the ith product. An impulse function equals 1 when FS = @, otherwise, equals 0.

FS1 can only be viseme_selectl, viseme_select2, expression_selectl, and expression_select2. g; is an integer

that ranges from 0 to 6 when F_Q1 is expression_selectl or expression_select2, ranges 0 to 14 when FS1 is

viseme_selectl or viseme_select2. The encoder shall send an interpolation function table which contains
K,P,&,S,q,b,lj,m tothe terminal.

To aid in the explanation below, it is assumed that there are N different sets of FAPs with index 1 to N, and that
each set has n;, i=1,..,N parameters. It is also assumed that there are L directed links in the FIG and that each link
points from the FAP set with index P; to the FAP set with index C;, fori=1, .., L

The FAPs field shall contain a list of FAP-indices specifying which animation parameters form sets of FAPs. Each
set of FAP indices is terminated by —1. There shall be a total of N + n; + n, + ... + ny numbers in this field, with N of
them being —1. FAP#1 to FAP#68 are of indices 1 to 68. Fields of the Viseme FAP (FAP#1), namely,
viseme_selectl, viseme_select2, viseme_blend, are of indices from 69 to 71. Fields of the Expression
FAP (FAP#2), namely, expression_selectl, expression_select2, expression_intensityl,
expression_intensity2 are of indices from 72 to 75. When the parent node contains a Viseme FAP, three
indices, 69, 70, 71, shall be included in the node (but not index 1). When a parent node contains an Expression
FAP, four indices, 72,73,74,75, shall be included in the node (but not index 2).

The graph field shall contain a list of pairs of integers, specifying a directed links between sets of FAPs. The
integers refer to the indices of the sets specified in the FAPs field, and thus range from 1 to N. When more than
one direct link terminates at the same set, that is, when the second value in the pair is repeated, the links have
precedence determined by their order in this field. This field shall have a total of 2L numbers, corresponding to the
directed links between the parents and children in the FIG.

The numeratorTerms field shall be a list containing the number of terms in the polynomials of the numerators of
the rational functions used to interpolae parameter values. Each element in the list corresponds to K in equation 1
above). Each link i (that is, the ith integer pair) in the graph field must have n¢; values specified, one for each child
FAP. The order in the numeratorTerms list shall correspond to the order of the links in the graph field and the
order that the child FAP appears in the FAPs field. There shall be n¢; + Nz + ... + nce numbers in this field.

The denominatorTerms field shall contain a list of the number of terms in the polynomials of the denominator of
the rational functions controlling the parameter value. Each element in the list corresponds to P in equation 1. Each
link i (that is, the ith integer pair) in the graph field must have n¢; values specified, one for each child FAP. The
order in the denominatorTerms list corresponds to the order of the links in the graph field and the order that the
child FAP appears in the FAPs field. There shall be nc: + nc2 + ... + nco numbers in this field.

The numeratorimpulse field shall contain a list of impulse functions in the numerator of the rational function for
links with the Viseme or Expression FAP in parent node. This list corresponds to the 5(FS1 - ai) . Each entry

inthe listis (S, &).

The numeratorExp field shall contain a list of exponents of the polynomial terms in the numerator of the rational
function controlling the parameter value. This list corresponds to I;; . For each child FAP in each link i, np*K values

need to be specified. The order in the numeratorExp list shall correspond to the order of the links in the graph
field and the order that the child FAP appears in the FAPs field.

NOTE — K may be different for each child FAP.

The denominatorExp field shall contain a list of exponents of the polynomial terms of the denominator of the
rational function controlling the parameter value. This list corresponds to my; . For each child FAP in each link i,

180 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

npi*P values need to be specified. The order in the denominatorExp list shall correspond to the order of the links
in the graph field and the order that the child FAP appears in the FAPs field.

NOTE — P may be different for each child FAP.

The numeratorCoefs field shall contain a list of coefficients of the polynomial terms of the numerator of the
rational function controlling the parameter value. This list corresponds to ¢ . The list shall have K terms for each

child parameter that appears in a link in the FIG, with the order in numeratorCoefs corresponding to the order in
graph and FAPs.

NOTE — K is dependent on the polynomial, and is not a fixed constant.

The denominatorCoefs field shall contain a list of coefficients of the polynomial terms in the numerator of the
rational function controlling the parameter value. This list corresponds to b, . The list shall have P terms for each

child parameter that appears in a link in the FIG, with the order in denominatorCoefs corresponding to the order
ingraph and FAPs.

NOTE — P is dependent on the polynomial, and is not a fixed constant.

EXAMPLE — Suppose a FIG contains four nodes and 2 links. Node 1 contains FAP#3, FAP#3, FAP#5. Node 2 contains
FAP#6, FAP#7. Node 3 contains an expression FAP, which means contains FAP#72, FAP#73, FAP#74, and FAP#75. Node 4
contains FAP#12 and FAP#17. Two links are from node 1 to node 2, and from node 3 to node 4. For the first link, the
interpolation functions are

Fo = (F3 + 2F4 + 3F5 + 4F3F) /(5F5 + 6F3F, Fs)
Fr=Fa

For the second link, the interpolation functions are

Fi2 = 6(F72 —6)(0.6F74) + 6(F73 - 6)(0.6F75)

Fi7 = 6(F72 = 6)(=1.5F74) + 6(F73 - 6)(-1.5F75)

The second link simply says that when the expression is surprise (FAP#72=6 or FAP#73=6), for FAP#12, the value is 0.6 times
of expression intensity FAP#74 or FAP#75; for FAP#17, the value is —1.5 tims of FAP#74 or FAP#75.

After the FIT node given below, we explain each field separately.

FIT {
FAPs [345-167-1727374 75 -112 17 -1]
gr aph [1234
nuneratorTerns [4 1 2 2
denomi natorTerms [2 1 1 1]

1
]
]
1
numer at or Exp [L0O0 O
1
1
0

10 001 120 010
0010 0001 0010 0001]
denominatorExp [0 0 1 11 000
0000 000O0]
nuneratorlnpulse [726 73 6 726 73 6]

nuneratorCoefs [1 2 3 4 1 0.60.6 -1.5-1.5]
denom natorCoefs [5 6 1 1 1]

}

FAPs [345 -167 -172 73 7475 -1 12 17 -1]
Four sets of FAPs are defined, the first with FAPs number 3, 4, and 5, the second with FAPs number 6 and 7, the third with
FAPs number 72, 73, 74, 75, and the fourth with FAPs number 12, 17.

graph [1 2 3 4]

The first set is made to be the parent of the second set, so that FAPs number 6 and 7 will be determined by FAPs 3, 4, and 5.
Also, the third set is made to be the parent of the fourth set, so that FAPs number 12 and 17 will be determined by FAPs 72, 73,
74, and 75.

nunmeratorTerns [4 1 2 2]

© ISO/IEC 2001 — All rights reserved 181

ISO/IEC 14496-1:2001(E)

The rational functions that define F6 and F7 are selected to have 4 and 1 terms in their numerator, respectively. Also, the
rational functions that define F12 and F17 are selected to have 2 and 2 terms in their numerator, respectively.

denonminatorTerms [2 1 1 1]
The rational functions that define F6 and F7 are selected to have 2 and 1 terms in their denominator, respectively. Also, the
rational functions that define F12 and F17 are selected to both have 1 term in their denominator.

nuneratorexp [100 010 001 120 010 0010 0001 0010 0O0O01]
The numerator selected for the rational function defining F6 is F3 + 2F4 + 3 F5 + 4F3F42. There are 3 parent FAPs, and 4
terms, leading to 12 exponents for this rational function. For F7, the numerator is just F4, so there are three exponents only (one
for each FAP). Values for F12 and F17 are derived in the same way.

denominatorExp [001 111 00O 0000 00O O]

The denominator selected for the rational function defining F6 is 5F5+ 6F3F4F5 , so there are 3 parent FAPs and 2 terms and
hence, 6 exponents for this rational function. For F7, the denominator is just 1, so there are three exponents only (one for each
FAP). Values for F12 and F17 are derived in the same way.

nuneratorlnpulse [72 6 73 6 72 6 73 6]
6(F7,-6) 6(Fs3-6)

For the second link, all four numerator polynomial terms contain impulse function

numeratorCoefs [1 2 34 1 0.6 0.6 -1.5 -1.5]
There is one coefficient for each term in the numerator of each rational function.

denonmi natorCoefs [5 6 1 1 1]
There is one coefficient for each term in the denominator of each rational function.

9.4.2.52 Fog

9.4.2.52.1 Node interface

Fog {
exposedField SFColor color 111
exposedField SFString fogType "LINEAR"
exposedField SFFloat visibilityRange 0.0
eventin SFBool set_bind
eventOut SFBool isBound

}

NOTE — For the binary encoding of this node see Annex H.1.43.

9.4.2.52.2 Functionality and semantics

The semantics of the FOQ node are specified in ISO/IEC 14772-1:1998, subclause 6.19.
9.4.2.53 FontStyle

9.4.2.53.1 Node interface

FontStyle {
field MFString family ['SERIF"]
field SFBool horizontal TRUE
field MFString justify ['BEGIN"]
field SFString language
field SFBool leftToRight TRUE
field SFFloat size 1.0
field SFFloat spacing 1.0
field SFString style "PLAIN"
field SFBool topToBottom TRUE

}

NOTE — For the binary encoding of this node see Annex H.1.44.

182 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
9.4.2.53.2 Functionality and semantics
The semantics of the FontStyle node are specified in ISO/IEC 14772-1:1998, subclause 6.20. The distance
between adjacent text baselines is the sum of the size and the spacing. (Note, that this makes that the text size is
the sum of the ascent + descent + leading, the latter which is the interline spacing, the logical amount of space to
be reserved between the descent of one line of text and the ascent of the next line).

9.4.2.54 Form

9.4.2.54.1 Node interface

Form {
eventin MFNode addChildren
eventin MFNode removeChildren
exposedField MFNode children I
exposedField SFVec2f size -1,-1
exposedField MFInt32 groups 1
exposedField MFInt32 constraints I
exposedField MFInt32 groupsindex 1

}

NOTE — For the binary encoding of this node see Annex H.1.45.
9.4.2.54.2 Functionality and semantics

The Form node specifies the placement of its children according to relative alignment and distribution constraints.
Distribution spreads objects regularly, with an equal spacing between them.

The children field shall specify a list of nodes that are to be arranged. The children’s position is implicit and order
is important.

The size field specifies the width and height of the layout frame.

The groups field specifies the list of groups of objects on which the constraints can be applied. The children of the
Form node are numbered from 1 to n, 0 being reserved for a reference to the form itself. A group is a list of child
indices, terminated by a -1.

The constraints and the groupsindex fields specify the list of constraints. One constraint is constituted by a
constraint type from the constraints field, coupled with a set of group indices terminated by a —1 contained in the
groupsindex field. There shall be as many strings in constraints as there are —1-terminated sets in
groupslindex. The n-th constraint string shall be applied to the n-th set in the groupsindex field.

Constraints belong to two categories: alignment and distribution constraints.

Components referred to in the tables below are components whose indices appear in the list following the
constraint type. When rank is mentioned, it refers to the rank in that list.

The semantics of the <S>, when present in the name of a constraint, is the following. It shall be a number, integer

when the scene uses pixel metrics, and float otherwise, which specifies the space mentioned in the semantics of
the constraint.

Table 35 - Alignment Constraints

Alignment Constraints Type Effect
Index

AL: Align Left edges “AL” The xmin of constrained components becomes equal to the xmin
of the left-most component.

AH: Align centers “AH" The (xmin+xmax)/2 of constrained components becomes equal to

Horizontally the (xmin+xmax)/2 of the group of constrained components as
computed before this constraint is applied.

AR: Align Right edges “AR” The xmax of constrained components becomes equal to the xmax
of the right-most component.

© ISO/IEC 2001 — All rights reserved 183

ISO/IEC 14496-1:2001(E)

edges by specified space

Alignment Constraints Type Effect
Index

AT: Align Top edges “AT” The ymax of all constrained components becomes equal to the
ymax of the top-most component.

AV: Align centers Vertically | “AV” The (ymin+ymax)/2 of constrained components becomes equal to
the (ymin+ymax)/2 of the group of constrained components as
computed before this constraint is applied.

AB: Align Bottom edges “AB” The ymin of constrained components becomes equal to the ymin
of the bottom-most component.

ALspace: Align Left edges | “AL <s>" The xmin of the second and following components become equal

by specified space to the xmin of the first component plus the specified space.

ARspace: Align Right “AR <s>" | The xmax of the second and following components becomes equal

edges by specified space to the xmax of the first component minus the specified space.

ATspace: Align Top edges | “AT <s>” The ymax of the second and following components becomes equal

by specified space to the ymax of the first component minus the specified space.

ABspace: Align Bottom “AB <s>” The ymin of the second and following components become equal

to the ymin of the first component plus the specified space.

The purpose of distribution constraints is to specify the space between components, by making such pairwise gaps

equal either to a given value or to the effect of filling available space.

Table 36 - Distribution Constraints

Vertically by specified
space

Distribution Constraints | Type Effect
Index

SH: Spread Horizontally “SH” The differences between the xmin of each component and the
xmax of the previous one all become equal. The first and the last
component shall be constrained horizontally already.

SHin: Spread Horizontally | “SHin” The differences between the xmin of each component and the

in container xmax of the previous one all become equal.
References are the edges of the layout.

SHspace: Spread “SH <s>" | The difference between the xmin of each component and the xmax

Horizontally by specified of the previous one all become equal to the specified space. The

space first component is not moved.

SV: Spread Vertically “SV” The differences between the ymin of each component and the
ymax of the previous one all become equal. The first and the last
component shall be constrained vertically already.

SVin: Spread Vertically in “SVin” The differences between the ymin of each component and the

container ymax of the previous one all become equal.

References are the edges of the layout.
SVspace: Spread “SV <s>" | The difference between the ymin of each component and the ymax

of the previous one all become equal to the specified space. The
first component is not moved.

All objects start at the center of the Form. The constraints are then applied in sequence.

EXAMPLE — Laying out five 2D objects.

Shape {

Geonetry2D Rectangle { size 50 55} // draw the Forms frane.

Vi sual Props use VPSRect

}

Transf orm2D {
translation 10 10 {

children [
Form {
children [

Shape2D { use OBJ1 }
Shape2D { use OBJ2 }
Shape2D { use OBJ3 }

184

© ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

Shape2D { use OBJ4 }
Shape2D { use OBJ5 }

]
size 50 55
groups [1 -12-13-124-15-113-1]
constraints [“SH “SV' “AR’” “AB” “AB 6"
“AB 7" “AL 7" “AT -2" “AR -2"]
groupsindex [6-11-102-102-103-1
04-104-105-1065-1]
}
]
}
}

The above constraints specify the following operations:

spread group 6 (objects 1 and 3) horizontally in container (object 0)

e spread group 1 (object 1) vertically in container

o align the right edges of groups 0 (container) and 2 (object 2)

e align the bottom edges of the container and group 2 (object 2)

o align the bottom edges of the container and group 3 (object 3) with spacing of size 6
e align the bottom edges of the container and group 4 (object 4) with spacing of size 7
e align the left edges of the container and group 4 (object 4) with spacing of size 7

o align the top edges of the container and group 5 (object 5) with spacing size of -2

e align the right edges of the container and group 5 (object 5) with spacing size of -2

Figure 22 - Visual result of the Form node example
9.4.2.55 Group

9.4.2.55.1 Node interface

Group {

eventin MFNode addChildren

eventin MFNode removeChildren

exposedField MFNode children 1
}

NOTE — For the binary encoding of this node see Annex H.1.46.

9.4.2.55.2 Functionality and semantics

The semantics of the Group node are specified in ISO/IEC 14772-1:1998, subclause 6.21. ISO/IEC 14496-1 does
not support the bounding box parameters (bboxCenter and bboxSize).

Where multiple sub-graphs containing audio content (i.e. Sound nodes) occur as children of a Group node, the
sounds shall be combined as described in 9.4.2.94.

© ISO/IEC 2001 — All rights reserved 185

ISO/IEC 14496-1:2001(E)
9.4.2.56 Hierarchical3Dmesh
9.4.2.56.1 Node Interface

Hierarchical3DMesh {

eventin SFInt32 TriangleBudget

exposedField SFFloat level

field MFString url 0
eventOut SFBool doneLoading

}
NOTE - For the binary encoding of this node see Annex H.3.10.
9.4.2.56.2 Functionality and Semantics

The Hierarchical3DMesh is used to represent multi-resolution polygonal models with multiple levels of detail
(LOD), smooth transition (interpolation) between consecutive levels, and hierarchical transmission through an
independent elementary stream encoded with the 3D Mesh Coding tools (see ISO/IEC 14496-2:1999). The
implementation of the Hierarchical3DMesh requires two execution threads, the decoder thread, and the player
thread.

The decoder thread decodes the compressed 3D Mesh bitstream from the elementary stream specified in the url
field, and reconstructs the LOD hierarchy and the information necessary to implement the smooth transition
property in internal data structures. How the LOD hierarchy is stored in the internal data structures, and whether all
or a subset of the transmitted hierarchy is stored for player interaction is implementation-dependent.

The decoder thread is started immediately after instantiation. Once this thread finishes decoding the compressed
3D Mesh bitstream, it sends a done_loading eventOut with the value TRUE to the player, and dies.

The Hierarchical3DMesh is seen by the player as a read-only IndexedFaceSet node. That is, the player has
access to the following fields for rendering purposes, but they can neither be explicitly instantiated, nor modified by
routing events into them:

field SFNode color

field SFNode coord

field SFNode normal

field SFNode texCoord

field SFBool ccw

field MFInt32 colorindex
field SFBool colorPerVertex
field SFBool convex

field MFInt32 coordIndex
field SFFloat creaseAngle
field MFInt32 normallndex
field SFBool normalPerVertex
field SFBool solid

field MFInt32 texCoordIndex

The player thread is responsible for switching levels of detail responding to the set_level and triangleBudget
eventin events sent by the player. It does so by modifying the fields of the IndexedFaceSet seen by the player
from information stored in the internal data structures build by the decoder thread.

The level exposedField (between 0 and 1) is used to (1) set a particular fractional level, (2) query the current level,
(3) as an eventOut to notify the browser when a level was actually set and which level it is.

Optionally, the player can set the level of detail by sending a triangleBudget eventln to the node. The value of the

triangleBudget eventin represents the desired number of triangles that the player assigns to the node. The node
must select a level of detail that best matches the given budget.

186 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
9.4.2.57 ImageTexture
9.4.2.57.1 Node interface

ImageTexture {

exposedField MFString url I
field SFBool repeatS TRUE
field SFBool repeatT TRUE

}

NOTE — For the binary encoding of this node see Annex H.1.47.

9.4.2.57.2 Functionality and semantics

The semantics of the ImageTexture node are specified in ISO/IEC 14772-1:1998, subclause 6.22.
The url field specifies the data source to be used (see 9.2.2.7.1).

9.4.2.58 IndexedFaceSet

9.4.2.58.1 Node interface

IndexedFaceSet {

eventin MFInt32 set_colorindex

eventin MFInt32 set_coordindex

eventin MFInt32 set_normallndex

eventin MFInt32 set_texCoordIndex

exposedField SFNode color NULL
exposedField SFNode coord NULL
exposedField SFNode normal NULL
exposedField SFNode texCoord NULL
field SFBool ccw TRUE
field MFInt32 colorindex 1
field SFBool colorPerVertex TRUE
field SFBool convex TRUE
field MFInt32 coordindex 1
field SFFloat creaseAngle 0.0
field MFInt32 normallndex 1
field SFBool normalPerVertex TRUE
field SFBool solid TRUE
field MFInt32 texCoordIindex 1

}

NOTE — For the binary encoding of this node see Annex H.1.48.

9.4.2.58.2 Functionality and semantics

The semantics of the IndexedFaceSet node are specified in ISO/IEC 14772-1:1998, subclause 6.23. Some
restrictions on these semantics are described below.

The IndexedFaceSet node represents a 3D polygon mesh formed by constructing faces (polygons) from points
specified in the coord field. If the coordindex field is not NULL, IndexedFaceSet uses the indices in its
coordIndex field to specify the polygonal faces by connecting together points from the coord field. An index of -1
shall indicate that the current face has ended and the next one begins. The last face may be followed by a -1.
IndexedFaceSet shall be specified in the local coordinate system and shall be affected by parent
transformations.

The coord field specifies the vertices of the face set and is specified by Coordinate node.
If the coordindex field is not NULL, the indices of the coordindex field shall be used to specify the faces by

connecting together points from the coord field. An index of -1 shall indicate that the current face has ended and
the next one begins. The last face may be followed by a -1.

© ISO/IEC 2001 — All rights reserved 187

ISO/IEC 14496-1:2001(E)

If the coordIndex field is NULL, the vertices of the coord field are laid out in their respective order to specify one
face.

If the color field is NULL and there is a Material node defined for the Appearance affecting this
IndexedFaceSet, then the emissiveColor of the Material node shall be used to draw the faces.

9.4.2.59 IndexedFaceSet2D
9.4.2.59.1 Node interface

IndexedFaceSet2D {

eventin MFInt32 set_colorindex

eventin MFInt32 set_coordIndex

eventin MFInt32 set_texCoordIndex

exposedField SFNode color NULL
exposedField SFNode coord NULL
exposedField SFNode texCoord NULL
field MFInt32 colorindex 1

field SFBool colorPerVertex TRUE
field SFBool convex TRUE
field MFInt32 coordindex 0

field MFInt32 texCoordIndex 0

}

NOTE — For the binary encoding of this node see Annex H.1.49.

9.4.2.59.2 Functionality and semantics

The IndexedFaceSet2D node is the 2D equivalent of the IndexedFaceSet node as defined in 9.4.2.58. The
IndexedFaceSet2D node represents a 2D shape formed by constructing 2D faces (polygons) from 2D vertices
(points) specified in the coord field. The coord field contains a Coordinate2D node that defines the 2D
vertices, referenced by the coordIndex field. The faces of an IndexedFaceSet2D node shall not overlap each
other.

The detailed semantics are identical to those for the IndexedFaceSet node (see 9.4.2.58), restricted to the 2D
case, and with the additional differences described here.

If the texCoord field is NULL, a default texture coordinate mapping is calculated using the local 2D coordinate
system bounding box of the 2D shape, as follows. The X dimension of the bounding box defines the S coordinates,
and the Y dimension defines the T coordinates. The value of the S coordinate ranges from 0 to 1, from the left end
of the bounding box to the right end. The value of the T coordinate ranges from 0 to 1, from the lower end of the
bounding box to the top end. Figure 23 illustrates the default texture mapping coordinates for a simple
IndexedFaceSet2D shape consisting of a single polygonal face.

A
I'\ (xO+Xsize, yO+Ysize)
(s=1.0,t=1.0)
Ysize
s= (x-x0)/Xsize
v t = (y-y0)/Ysize
(x0, y0) < >
(s=0.0, t=0.0) Xsize

Figure 23 - IndexedFaceSet2D default texture mapping coordinates for a simple shape

188 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
9.4.2.60 IndexedLineSet
9.4.2.60.1 Node interface

IndexedLineSet {

eventin MFInt32 set_colorindex

eventin MFInt32 set_coordlndex

exposedField SFNode color NULL
exposedField SFNode coord NULL
field MFInt32 colorindex 1
field SFBool colorPerVertex TRUE
field MFInt32 coordindex 1

}

NOTE — For the binary encoding of this node see Annex H.1.50.

9.4.2.60.2 Functionality and semantics

The semantics of the IndexedLineSet node are specified in ISO/IEC 14772-1:1998, subclause 6.24.
9.4.2.61 IndexedLineSet2D

9.4.2.61.1 Node interface

IndexedLineSet2D {

eventin MFInt32 set_colorindex

eventin MFInt32 set_coordindex

exposedField SFNode color NULL
exposedField SFNode coord NULL
field MFInt32 colorindex 1
field SFBool colorPerVertex TRUE
field MFInt32 coordIindex 0

}

NOTE — For the binary encoding of this node see Annex H.1.51.

9.4.2.61.2 Functionality and semantics

The IndexedLineSet2D node specifies a collection of lines or polygons.

The coord field shall list the vertices of the lines. When coordindex is empty, the order of vertices shall be
assumed to be sequential in the coord field. Otherwise, the coordindex field determines the ordering of the

vertices, with an index of -1 representing an end to the current polyline.

If the color field is not NULL, it shall contain a Color node, and the colors are applied to the line(s) as with the
IndexedLineSet node (see 9.4.2.60).

9.4.2.62 Inline
9.4.2.62.1 Node interface
Inline {
exposedField MFString url 1
}
NOTE — For the binary encoding of this node see Annex H.1.52.
9.4.2.62.2 Functionality and semantics

The semantics of the Inline node are specified in ISO/IEC 14772-1:1998, subclause 6.25. ISO/IEC 14496-1 does
not support the bounding box parameters (bboxCenter and bboxSize).

© ISO/IEC 2001 — All rights reserved 189

ISO/IEC 14496-1:2001(E)

The url field specifies the data source to be used (see 9.2.2.7.1). The external source must contain a valid BIFS
scene, and may include BIFS-Commands and BIFS-Anim frames.

9.4.2.63 Layer2D

9.4.2.63.1 Node interface

Layer2D {
eventin MFNode addChildren
eventin MFNode removeChildren
exposedField MFNode children NULL
exposedField SFVec2f size -1,-1
exposedField SFNode background NULL
exposedField SFNode viewport NULL
}

NOTE — For the binary encoding of this node see Annex H.1.53.

9.4.2.63.2 Functionality and semantics

The Layer2D node is a transparent rendering rectangle region on the screen where a 2D scene is drawn. The
rectangle always faces the viewer of the scene. Layer2D and Layer3D nodes enable the composition of
multiple 2D and 3D scenes (see Figure 24).

EXAMPLE — This allows users to have 2D interfaces to a 2D scene, or 3D interfaces to a 2D scene, or to view a 3D scene from
different viewpoints in the same scene.

The addChildren eventln specifies a list of 2D nodes that shall be added to the Layer2D’s children field.

The removeChildren eventin specifies a list of 2D nodes that shall be removed from the Layer2D's children
field.

The children field may contain any 2D children nodes that define a 2D scene. Layer nodes are considered to be
2D objects within the scene. The layering of the 2D and 3D layers is specified by any relevant transformations in
the scene graph. The Layer2D node is composed with its center at the origin of the local coordinate system and
shall not be present in 3D contexts (see 9.2.2.1).

The size parameter shall be a floating point number that expresses the width and height of the layer in the units of
the local coordinate system. In case of a layer at the root of the hierarchy, the size is expressed in terms of the
default 2D coordinate system (see 9.2.2.2). A size of -1 in either direction, means that the Layer2D node is not
specified in size in that direction, and that the size is adjusted to the size of the parent layer, or the global rendering
area dimension if the layer is on the top of the hierarchy. In the case where a 2D scene or object is shared between
several Layer2D nodes, the behaviours are defined exactly as for objects that are multiply referenced using the
DEF/USE mechanism. A sensor triggers an event whenever the sensor is triggered in any of the Layer2D in
which it is contained. The behaviors triggered by the shared sensors as well as other behaviors that apply on
objects shared between several layers apply on all layers containing these objects.

A Layer2D stores the stack of bindable children nodes that can affect the children scene of the layer. All relevant
bindable children nodes have a corresponding exposedField in the Layer2D node. During presentation, these
fields take the value of the currently bound bindable children node for the scene that is a child of the Layer2D
node. Initially, the bound bindable children node is the corresponding field value of the Layer2D node if it is
defined. If the field is undefined, the first bindable children node defined in the child scene will be bound. When the
binding mechanism of the bindable children node is used (set_bind field set to TRUE), all the parent layers
containing this node set the corresponding field to the current bound node value. It is therefore possible to share
scenes across layers, and to have different bound nodes active, or to trigger a change of bindable children node for
all layers containing a given bindable children node. For 2D scenes, the background field specifies the bound
Background2D node. The viewport field is reserved for future extensions for 2D scenes.

All the 2D objects contained in a single Layer2D node form a single composed object. This composed object is
considered by other elements of the scene to be a single object. In other words, if a Layer2D node, A, is the
parent of two objects, B and C, layered one on top of the other, it will not be possible to insert a new object, D,
between B and C unless D is added as a child of A.

190 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

Layers are transparent to user input, which means that if two layers are overlapping at a given location on the
screen, a user input will affect both layers, regardless of which is drawn on top of the other. For instance, if two
buttons placed in two different layers are overlapping, the click of the user at the location of the topmost button will
also affect the button contained in the layer behind. Authors should carefully design behaviors in the overlapping

layers.

EXAMPLE — In the following example, the same scene is used in two different Layer2D nodes. However, one scene is
initially viewed with background b1, the other with background b2. When the user clicks on the buttonl object, all layers are set

with background b3.

O der edG oup{
children [

Transform2D { # A set of transforns to translate and scale the |ayer

ch| ldren [
Layer 2D {
background DEF bl Background2D {..}

It is possible to define the bindable children node directly in

the corresponding field
children [
DEF MYSCENE Tr ansf or n2D {
children [
DEF b3 Background2D {.} # A shared background
DEF TS TouchSensor{}
DEF buttonl Shape{..} # The button 1
The objects of ny scene

}
]
}
]

}
Transf orn2D {
Another set of transforns to translate and scale the |ayer
children [
Layer 2D {
children [
DEF b2 Background2D{.} # It is possible to define the bindable
children node in the children field
b2 is initially bound sicne it is the
first background 2D in the children
field OF the parent Layer2d
Transf or 2D USE MYSCENE

]
}
]
}
]
}

ROUTE TS. i sActive TO b3.set_bind

9.4.2.64 Layer3D

9.4.2.64.1 Node interface

Layer3D {

eventin MFNode addChildren

eventin MFNode removeChildren

exposedField MFNode children NULL
exposedField SFVec2f size -1,-1
exposedField SFNode background NULL
exposedField SFNode fog NULL
exposedField SFNode navigationinfo NULL
exposedField SFNode viewpoint NULL

© ISO/IEC 2001 — All rights reserved

191

ISO/IEC 14496-1:2001(E)

NOTE — For the binary encoding of this node see Annex H.1.54.

9.4.2.64.2 Functionality and semantics

The Layer3D node is a transparent, rectangular rendering region where a 3D scene is drawn. The Layer3D
node may be composed in the same manner as any other 2D node. It represents a rectangular region on the
screen facing the viewer. The basic Layer3D semantics are identical to those for Layer2D (see 9.4.2.63) but
with 3D (rather than 2D) children. In general, Layer3D nodes shall not be present in 3D co-ordinate systems. The
permitted exception to this in when a Layer3D node is the "top" node that begins a 3D scene or context (see
9.2.2.1).

The following fields specify bindable children nodes for Layer3D:

background for Background nodes

fog for Fog nodes

navigationinfo for NavigationInfo nodes

e viewpoint for Viewpoint nodes

The viewpoint field can be used to allow the viewing of the same scene with several viewpoints.

NOTE — The rule for transparency to behaviors is also true for navigation in Layer3D. Authors should carefully design the
various Layer3D nodes in a given scene to take account of navigation. Overlapping several Layer3D with navigation
turned on may trigger strange navigation effects which are difficult to control by the user. Unless it is a feature of the content,

navigation can be easily turned off using the NavigationInfo type field, or Layer3D’s can be designed not to be
superimposed.

@ e mnnn s

O
o*

(c

Figure 24 - Three Layer2D and Layer3D examples composed in a 2D space.

Layer2D’s are indicated by a continuous line; Layer3D’s by a dashed line. Image (a) shows a Layer3D
containing a 3D view of the earth on top of a Layer2D composed of a video, a logo and a text. Image (b) shows a
Layer3D of the earth with a Layer2D containing various icons on top. Image (c) shows 3 views of a 3D scene
with 3 non-overlapping Layer3D.

192 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
9.4.2.65 Layout

9.4.2.65.1 Node interface

Layout {
eventin MFNode addChildren
eventin MFNode removeChildren
exposedField MFNode children 1
exposedField SFBool wrap FALSE
exposedField SFVec2f size -1,-1
exposedField SFBool horizontal TRUE
exposedField MFString justify ['BEGIN"]
exposedField SFBool leftToRight TRUE
exposedField SFBool topToBottom TRUE
exposedField SFFloat spacing 1.0
exposedField SFBool smoothScroll FALSE
exposedField SFBool loop FALSE
exposedField SFBool scrollVertical TRUE
exposedField SFFloat scrollRate 0.0

}

NOTE — For the binary encoding of this node see Annex H.1.55.

9.4.2.65.2 Functionality and semantics

The Layout node specifies the placement (layout) of its children in various alignment modes as specified. For text
children, this is by their fontStyle fields, and for non-text children by the fields horizontal, justify, leftToRight,
topToBottom and spacing present in this node. It also provides the functionality of scrolling its children
horizontally or vertically.

The children field shall specify a list of nodes that are to be arranged. Note that the children’s position is implicit
and that order is important.

The wrap field specifies whether children are allowed to wrap to the next row (or column in vertical alignment
cases) after the edge of the layout frame is reached. If wrap is set to TRUE, children that would be positioned
across or past the frame boundary are wrapped (vertically or horizontally) to the next row or column. If wrap is set
to FALSE, children are placed in a single row or column that is clipped if it is larger than the layout.

When wrap is TRUE, if text objects larger than the layout frame need to be placed, these texts shall be broken
down into pieces that are smaller than the layout. The preferred places for breaking text are spaces, tabs, hyphens,
carriage returns and line feeds. When there is no such character in the texts to be broken, the texts shall be broken
at the last character that is entirely placed in the layout frame.

The size field specifies the width and height of the layout frame.

The horizontal, justify, leftToRight, topToBottom and spacing fields have the same meaning as in the
FontStyle node (see 9.4.2.53).

The scrollRate field specifies the scroll rate in meters per second. When scrollRate is zero, then there is no
scrolling and the remaining scroll-related fields are ignored.

The smoothScroll field selects between smooth and line-by-line/character-by-character scrolling of children.
When TRUE, smooth scroll is applied.

The loop field specifies continuous looping of children when set to TRUE. When loop is FALSE, child nodes that
have scrolled out of the scroll layout frame will be deleted. When loop is TRUE, then the set of children scrolls
continuously, wrapping around when they have scrolled out of the layout area. If the set of children is smaller than
the layout area, some empty space will be scrolled with the children. If the set of children is bigger than the layout
area, then only some of the children will be displayed at any point in time. When scrollVertical is TRUE and
loop is TRUE and scrollRate is negative (top-to-bottom scrolling), then the bottom-most object will reappear on
top of the layout frame as soon as the top-most object has scrolled entirely into the layout frame.

© ISO/IEC 2001 — All rights reserved 193

ISO/IEC 14496-1:2001(E)

The scrollVertical field specifies whether the scrolling is done vertically or horizontally. When set to TRUE, the
scrolling rate shall be interpreted as a vertical scrolling rate and a positive rate shall be interpreted as scrolling
towards the top. When set to FALSE, the scrolling rate shall be interpreted as a horizontal scrolling rate and a
positive rate shall mean scrolling to the right.

Objects are placed one by one, in the order they are given in the children list. Text objects are placed according to
the horizontal, justify, leftToRight, topToBottom and spacing fields of their FontStyle node. Other
objects are placed according to the same fields of the Layout node. The reference point for the placement of an
object is the reference point as left by the placement of the previous object in the list.

In the case of vertical alignment, objects may be placed with respect to their top, bottom, center or baseline. The
baseline of non-text objects is the same as their bottom.

Spacing shall be coherent only within sequences of objects with the same orientation (same value of horizontal
field). The notions of top edge, bottom edge, base line, vertical center, left edge, right edge, horizontal center, line
height and row width shall have a single meaning over coherent sequences of objects. This means that over a
sequence of objects where horizontal is TRUE, topToBottom is TRUE and spacing has the same value, then
the vertical size of the lines is computed as follows:

e maxAscent is the maximum of the ascent on all text objects.
e maxDescent is the maximum of the descent on all text objects.
¢ maxHeight is the maximum height of non-text objects.

If the minor mode in the justify field of the layout is FIRST (baseline alignment), then the non-text objects shall be
aligned on the baseline, which means the vertical size of the line is:

size = max(maxAscent, maxHeight) + maxDescent

If the minor mode in the justify field of the layout is any other value, then the non-text objects shall be aligned with
respect to the top, bottom or center, which means the size of the line is:

size = max(maxAscent+maxDescent, maxHeight)

The first line is placed with its top edge flush to the top edge of the layout; the base line is placed maxAscent units
lower, and the bottom edge is placed maxDescent units lower. The center line is in the middle, between the top and
bottom edges. The top edges of subsequent lines are placed at regular intervals of value spacing x size.

The other cases can be inferred from the above description. When the orientation is vertical, then the baseline,
ascent and descent are not useful for the computation of the width of the rows. All objects only have a width.
Column size is the maximum width over all objects.

EXAMPLE —

If wrap is FALSE:

a) If horizontal is TRUE, then objects are placed in a single line. The layout direction is given by the leftToRight field.
Horizontal alignment in the row is done according to the first argument in justify (major mode = flush left, flush right,
centered), and vertical alignment is done according to the second argument in justify (minor mode = flush top, flush
bottom, flush baseline, centered). The topToBottom field is meaningless in this configuration.

b) If horizontal is FALSE, then objects are placed in a single column. The layout direction is given by the topToBottom field.
Vertical alignment in the column is done according to the first argument in justify (major mode), and horizontal alignment is
done according to the second argument in justify (minor mode).

If wrap is TRUE:

a) |If horizontal is TRUE, then objects are placed in multiple lines. The layout direction is given by the leftToRight field. The

wrapping direction is given by the topToBottom field. Horizontal alignment in the lines is done according to the first
argument in justify (major mode), and vertical alignment is done according to the second argument in justify (minor mode).

194 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

b) If horizontal is FALSE, then objects are placed in multiple column. The layout direction is given by the topToBottom field.

The wrapping direction is given by the leftToRight field. Vertical alignment in the columns is done according to the first

argument in justify (major mode), and horizontal alignment is done according to the second argument in justify (minor
mode).

If scrollRate is zero, then the Layout is static and positions change only when children are modified.

If scrollRate is non-zero, then the position of the children is updated according to the values of scrollVertical, scrollRate,
smoothScroll and loop.

If scrollVertical is TRUE, then if scrollRate is positive, then the scrolling direction is left-to-right, and vice-versa.

If scrollVertical is FALSE, then if scrollRate is positive, then the scrolling direction is bottom-to-top, and vice-versa.

9.4.2.66 LineProperties
9.4.2.66.1 Node interface

LineProperties {

exposedField SFColor lineColor 0,0,0
exposedField SFInt32 lineStyle 0
exposedField SFFloat width 1.0

}

NOTE — For the binary encoding of this node see Annex H.1.56.

9.4.2.66.2 Functionality and semantics

The LineProperties node specifies line parameters used in 2D and 3D rendering.

The lineColor field specifies the color with which to draw the lines and outlines of 2D geometries.

The lineStyle field shall contain the line style type to apply to lines. The allowed values are:

Table 37 - lineStyle description

lineStyle Description
0 solid
1 dash
2 dot
3 dash-dot
4

5

dash-dash-dot
dash-dot-dot

The terminal shall draw each line style in a manner that is distiguishable from each other line style.

The width field determines the width, in the local coordinate system, of rendered lines. The apparent width
depends on the local transformation.

The cap and join style to be used are as follows. The wide lines should end with a square form flush with the end of
the lines. The join style is described in Figure 25.

© ISO/IEC 2001 — All rights reserved 195

ISO/IEC 14496-1:2001(E)

Figure 25 - Cap and join style for LineProperties
9.4.2.67 ListeningPoint
9.4.2.67.1 Node interface

ListeningPoint {

eventin SFBool set_bind

exposedField SFBool jump TRUE
exposedField SFRotation orientation 0,0,1,0
exposedField SFVec3f position 0,0, 10
field SFString description
eventOut SFTime bindTime

eventOut SFBool isBound

}

NOTE — For the binary encoding of this node see Annex H.1.57.

9.4.2.67.2 Functionality and semantics

The ListeningPoint node specifies the reference position and orientation for spatial audio presentation. If there
isno ListeningPoint given in a scene, the apparent listener position is slaved to the active ViewPoint.

The semantics are identical to those of the Viewpoint node (see 9.4.2.109).
9.4.2.68 LOD

9.4.2.68.1 Node interface

LOD {
exposedField MFNode level 1]
field SFVec3f center 0,0,0
field MFFloat range 1

}

NOTE — For the binary encoding of this node see Annex H.1.58.

9.4.2.68.2 Functionality and semantics

The semantics of the LOD node are specified in ISO/IEC 14772-1:1998, subclause 6.26.
9.4.2.69 Material

9.4.2.69.1 Node interface

Material {
exposedField SFFloat ambientintensity 0.2
exposedField SFColor diffuseColor 0.8,0.8,0.8
exposedField SFColor emissiveColor 0,0,0

196 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

exposedField SFFloat shininess 0.2
exposedField SFColor specularColor 0,0,0
exposedField SFFloat transparency 0.0

}

NOTE — For the binary encoding of this node see Annex H.1.59.

9.4.2.69.2 Functionality and semantics

The semantics of the Material node are specified in ISO/IEC 14772-1:1998, subclause 6.27.
9.4.2.70 Material2D

9.4.2.70.1 Node interface

Material2D {
exposedField SFColor emissiveColor 0.8,0.8,0.8
exposedField SFBool filled FALSE
exposedField SFNode lineProps NULL
exposedField SFFloat transparency 0.0

}

NOTE — For the binary encoding of this node see Annex H.1.60.

9.4.2.70.2 Functionality and semantics

The Material2D node specifies the characteristics of a rendered 2D Shape. Material2D shall be used as the
material field of an Appearance node in certain circumstances (see 9.4.2.5.2)

The emissiveColor field specifies the color of the 2D Shape. If the shape is not filled, the interior is not drawn.

The filled field specifies whether rendered nodes are filled or drawn using lines. This field affects
IndexedFaceSet2D, Circle and Rectangle nodes. If the rendered node is not filled the line shall be drawn
centered on the rendered node outline. That means that half the line will fall inside the rendered node, and the
other half outside.

The lineProps field contains information about line rendering in the form of a LineProperties node. If the field
is null the line properties take on a default behaviour identical to the default settings of the LineProperties
node. When filled is true, if lineProps is null, no outline is drawn; if lineProps is non null, an outline is drawn
using lineProps information. When filled is false and lineProps is null, an outline is drawn with default width
(1), default style (solid) and as line color the emissive color of the Material2D. When filled is false and lineProps
is defined, line color, width and style, whether explicitly specified or default values, are taken from the lineProps
node. See 9.4.2.66 for more information on LineProperties.

The transparency field specifies the transparency of the 2D Shape.
9.4.2.71 MaterialKey
9.4.2.71.1 Node interface

MaterialKey {

exposedField SFBool isKeyed TRUE
exposedField SFBool isRGB TRUE
exposedField SFColor keyColor 0,0,0
exposedField SFFloat lowThreshold 0
exposedField SFFloat highThreshold 0
exposedField SFFloat transparency 0

}

NOTE - For the binary encoding of this node see Annex H.3.11.

© ISO/IEC 2001 — All rights reserved 197

ISO/IEC 14496-1:2001(E)

9.4.2.71.2 Functionality and semantics

The MaterialKey node can be used in the material field of the Appearance node, which only appears in the
appearance field of a Shape node. It can be used when the texture of the Shape node is defined by either an
image (ImageTexture or PixelTexture) or a video sequence (MovieTexture). Its functionality is similar to the
Material2D node, but is specific to the BitMap geometry, so it does not include the line properties functionality. It
generates a shape mask, based on a color and the threshold values defined in the node. It also defines a
transparency value, which will behave identically to the transparency values in both Material and Material2D,
except that it applies only to the visible part of the shape.

The fields of the MaterialKey node are defined as follows:

o The isKeyed field specifies whether the keying functionality is enabled or disabled.

e The isRGB field allows the content author to choose which color space they wish to define the keying in, either
RGB or YUV.

e The keyColor field specifies the reference color used for keying of shape.

e The lowThreshold field defines the magnitude of the variance from the exact key value for which the pixel will
be considered completely transparent.

e The highThreshold field defines the magnitude of the variance from the exact key value for which the pixel will
be considered opaque (visable).

e The transparency field defines the level of transparency assigned to the opaque or visable region of the
shape.

e An example implementation of MaterialKey is given in Annex N.
9.4.2.72 MovieTexture
9.4.2.72.1 Node interface

MovieTexture {

exposedField SFBool loop FALSE
exposedField SFFloat speed 1.0
exposedField SFTime startTime 0
exposedField SFTime stopTime 0
exposedField MFString url [

field SFBool repeatS TRUE
field SFBool repeatT TRUE
eventOut SFTime duration_changed

eventOut SFBool isActive

}

NOTE — For the binary encoding of this node see Annex H.1.61.
9.4.2.72.2 Functionality and semantics

The loop, startTime, and stopTime exposedFields and the isActive eventOut, and their effects on the
MovieTexture node, are described in 9.2.1.6.1.

The speed exposedField controls playback speed. It does not affect the delivery of the stream attached to the
MovieTexture node. For streaming media, value of speed other than 1 shall be ignored.

A MovieTexture shall display frame or VOP 0 if speed is 0. For positive values of speed, the frame or VOP
that an active MovieTexture will display at time now corresponds to the frame or VOP at movie time (i.e., in the
movie’s local time base with frame or VOP 0 at time 0, at speed = 1):

fmod (now - startTime, duration/speed)

198 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

If speed is negative, then the frame or VOP to display is the frame or VOP at movie time:
duration + fmod(now - startTime, duration/speed).

A MovieTexture node is inactive before startTime is reached. If speed is non-negative, then the first VOP
shall be used as texture, if it is already available. If speed is negative, then the last VOP shall be used as texture,
if it is already available.
When a MovieTexture becomes inactive, the VOP corresponding to the time at which the MovieTexture
became inactive shall persist as the texture. The speed exposedField indicates how fast the movie shall be
played. A speed of 2 indicates the movie plays twice as fast. Note that the duration_changed eventOut is not
affected by the speed exposedField. set_speed events shall be ignored while the movie is playing.
The url field specifies the data source to be used (see 9.2.2.7.1).
9.4.2.73 Navigationinfo
9.4.2.73.1 Node interface

Navigationinfo {

eventin SFBool set_bind

exposedField MFFloat avatarSize [0.25, 1.6, 0.75]
exposedField SFBool headlight TRUE
exposedField SFFloat speed 1.0
exposedField MFString type ["WALK", "ANY"]
exposedField SFFloat visibilityLimit 0.0

eventOut SFBool isBound

}

NOTE — For the binary encoding of this node see Annex H.1.62.
9.4.2.73.2 Functionality and semantics
The semantics of NavigationInfo are specified in ISO/IEC 14772-1:1998, subclause 6.29.
9.4.2.74 Normal
9.4.2.74.1 Node interface
Normal {
exposedField MFVec3f vector 0
}
NOTE — For the binary encoding of this node see Annex H.1.63.
9.4.2.74.2 Functionality and semantics
The semantics of the Normal node are specified in ISO/IEC 14772-1:1998, subclause 6.30.
9.4.2.75 Normalinterpolator
9.4.2.75.1 Node interface

Normalinterpolator {

eventin SFFloat set_fraction

exposedField MFFloat key I
exposedField MFVec3f keyValue I
eventOut MFVec3f value_changed

}

NOTE — For the binary encoding of this node see Annex H.1.64.

© ISO/IEC 2001 — All rights reserved 199

ISO/IEC 14496-1:2001(E)

9.4.2.75.2 Functionality and semantics

The semantics of the Normallnterpolator node are specified in ISO/IEC 14772-1:1998, subclause 6.31.
9.4.2.76 OrderedGroup

9.4.2.76.1 Node interface

OrderedGroup {

eventin MFNode addChildren

eventin MFNode removeChildren

exposedField MFNode children 1
exposedField MFFloat order 1

}

NOTE — For the binary encoding of this node see Annex H.1.65.

9.4.2.76.2 Functionality and semantics

The OrderedGroup node controls the visual layering order of its children. When used as a child of a Layer2D
node, it allows the control of which shapes obscure others. When used as a child of a Layer3D node, it allows
content creators to specify the rendering order of elements of the scene that have identical z values. This allows
conflicts between coplanar or close polygons to be resolved.

The addChildren eventln specifies a list of objects that shall be added to the OrderedGroup node.
The removeChildren eventln specifies a list of objects that shall be removed from the OrderedGroup node.
The children field is the current list of objects contained in the OrderedGroup node.

When the order field is empty (the default) children are layered in order, first child to last child, with the last child
being rendered last. If the order field contains values, one value is assigned to each child. Entries in the order
field array match the child in the corresponding element of the children field array. The child with the lowest order
value is rendered before all others. The remaining children are rendered in increasing order. The child
corresponding to the highest order value is rendered last.

Since 2D shapes have no z value, this is the sole determinant of the visual ordering of the shapes. However, when
the OrderedGroup node is used with 3D shapes, its ordering mechanism shall be used in place of the natural z
order of the shapes themselves. The resultant image shall show the shape with the highest order value on top,
regardless of its z value. However, the resultant z-buffer contains a z value corresponding to the shape closest to
the viewer at that pixel. The order shall be used to specify which geometry should be drawn first, to avoid conflicts
between coplanar or close polygons.

NOTE — Content authors must use this functionality carefully since, depending on the Viewpoint, 3D shapes behind a
given object in the natural z order may appear in front of this object.

9.4.2.77 Orientationinterpolator
9.4.2.77.1 Node interface

OrientationInterpolator {

eventin SFFloat set_fraction

exposedField MFFloat key 0
exposedField MFRotation keyValue 1
eventOut SFRotation value_changed

}

NOTE — For the binary encoding of this node see Annex H.1.66.

9.4.2.77.2 Functionality and semantics

The semantics of the OrientationInterpolator node are specified in ISO/IEC 14772-1:1998, subclause 6.32.

200 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
9.4.2.78 PerceptualParameters
9.4.2.78.1 Node interface

PerceptualParameters {

exposedField Float sourcePresence 1.0
exposedField Float sourceWarmth 1.0
exposedField Float sourceBrilliance 1.0
exposedField Float roomPresence 1.0
exposedField SFTime runningReverberance 1.0
exposedField Float envelopment 0.0
exposedField SFTime lateReverberance 1.0
exposedField Float heavyness 1.0
exposedField Float liveness 1.0
exposedField MFFloat omniDirectivity 1.0
exposedField MFFloat directFilterGains 1.0,1.0,1.0
exposedField MFFloat inputFilterGains 1.0,1.0,1.0
exposedField SFFloat refDistance 1.0
exposedField SFFloat freqLow 250.0
exposedField SFFloat freqHigh 4000.0
exposedField SFTime timeLimitl 0.02
exposedField SFTime timeLimit2 0.04
exposedField SFTime timeLimit3 0.1
exposedField SFFloat modalDensity 0.8

}

NOTE - For the binary encoding of this node see Annex H.3.12.

9.4.2.78.2 Functionality and Semantics

PerceptualParameters is a node that contains information about the perceptual properties of DirectiveSound
objects to be processed in the same auralization process when the perceptual rendering is desired. It contains a
set of nine perceptual parameters that characterizes, for a given reference distance refDistance and for non-
directive sounds, the acoustic to be rendered in the virtual scene. In addition it allows for physical-like effects such
as transmission through a wall from another room (with inputFilterGains) or occlusion/diffraction of the direct path
by an obstacle (with directFilterGains). The directivity properties of the sound source is defined in the directivity
fields in the DirectiveSound node level and in omniDirectivity field of this node for an arbitrary amount of azimuth

angles from the front (defined in the direction field at the DirectiveSound node level) to the back of the sound
source.

Generic reverberation response model:

The perceptual model is based on a temporal division of the reverberation response into four sections (see Figure
26):

e direct sound (Ro)

o directional early reflections (R;)

o diffuse early reflections (Ry)

o diffuse late reverberation (R3)

These four sections are separated by temporal limits (denoted Iy, 14, |5, I3), and characterized by their energies in 3

frequency bands (low, mid, high). These frequency bands are separated by two cross-over frequencies denoted fio,
and fhigh-

© ISO/IEC 2001 — All rights reserved 201

ISO/IEC 14496-1:2001(E)

dB; Ro
Ry
R
2 Ry
time
loli 12 I3
1 1 1 1 ’
1 1 1 1 .
low P ! time
B e I S B
1 1 1 1
. 1 1 1 1
md | o
1 1 1 1
- -r-r-T--"~"-"r-T--T-~-=T=T==-=====—-=
. I 1
high Lo I
1 1 1 1
vfreq

Figure 26 - Generic reverberation response model. RO represents the direct sound, R1 the directional early
relfections, R2 the diffuse reflections, ad R3 the exponentially decaying, diffuse late reverberation.

Based on the above model, the reverberation response is completely characterized by the following set of
parameters:

energies Ro, R1, R, R3 (low, mid, high)
decay time Rt (low, mid, high)

temporal parameters lo, I1, 12, I3 + modal density
frequencies fiows Thigh

The modal density is defined as the number of modes per Hz. This parameter is useful for the design and control of
artificial reverberation algorithms based on recursive (lIR) digital filter structures.

High-level (perceptual) parameters:

In the perceptual acoustics rendering nine orthogonal perceptual parameters that directly relate to the audible
sensations, are used to define the acoustic response for each sound source. A measurable acoustical criterion is
defined for each perceptual factor. These objective criteria represent an attempt to provide an exhaustive
characterization of room acoustical quality in concert halls, opera houses and auditoria, by use of a minimal set of
independent parameters. They can be expressed from energetic measures derived from a decomposition of the
impulse response in three frequency bands and four temporal sections (see Figure 26), assuming time limits 1, l2,

I3 respectively equal to 20, 40, 100 ms relative to the time of arrival of the direct sound lp, and with a dependence
on the directional distribution of early reflections.

The nine perceptual factors that have been determined in the experiments are denominated as follows, and can be
divided in three groups:

Three perceptual factors describe effects which are characteristic of the room (the corresponding objective criteria
are indicated in parentheses):

o late reverberance (late decay time)

e heaviness and liveness (variation of decay time with frequency)

202 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

The six other factors describe effects that depend of the position, directivity and orientation of the source. The first
three are perceived as characteristics of the source, while the remaining three are perceptually associated with the
room:

source presence (energy of the direct sound and early room effect)
brilliance and warmth (variation of early energy with frequency)
room presence (energy of late room effect)

running reverberance (early decay time)

envelopment (energy of early room effect relative to direct sound)

A variation of the source presence creates a convincing effect of proximity or remoteness of the sound source. The
term "reverberance" refers to the sensation that sounds are prolonged by the room reverberation. Late
reverberance differs from running reverberance by the fact that it is essentially perceived during interruptions of the
sound radiated by the source, for example when the source falls silent. Running reverberance, on the contrary,
remains perceived during continuous music.

sourcePresence field indicates the total absolute energy of the R1 in the room acoustic response in Figure 26.

sourceWarmth and sourceBrilliance fields are used for calculation of energies of R1 at the frequency limits
freqLow, and freqHigh.

roomPresence is the total absolut energy of R3 in Figure 26.

runningReverberance is a relative early decay time (with respect to its minimum and maximum values). It is
used to compute the absolute value of the decay time in seconds from its variation boundaries as explained
below.

envelopment is the ratio between R1 and RO. This value is relative with respect to its variation boundaries.

heaviness and liveness define the decay time as a function of frequency. They are used in the computation of
the late reverberance at the different frequency bands defined by freqLow and freqHigh.

omniDirectivity is the diffuse-field spectrum for the source is required in the Room processor. This will be called
the omnidirectional directivity because it defines the directivity of an “equivalent omnidirectional source” (equivalent
with regards to the reverberation, but not the direct path). It could be derived from the directivity field as defined in
the DirectiveSound node by averaging the radiated power over all directions around the source. However, it is
simpler and more reliable to transmit it separately in the bitstream. The same approach as for directivity is
considered except that it doesn’t depend on the angles.

The general form for the omniDirectivity field is:

[nf, freqo,freqy,....freqn.1, gaing, gaing,....gain..q].

Where,

nf is the number of reference frequencies

freq; is the jth reference frequency

gain; is the linear gain for the jth reference frequency.

An example of omniDirectivity is given below:

[5, 250, 500, 1000, 2000, 4000,

0.9, 0.85, 0.7, 0.6, 0.55]

If not specified in the node, the default gains at 0 Hz is gain .

© ISO/IEC 2001 — All rights reserved 203

ISO/IEC 14496-1:2001(E)
By default, the gain for frequencies above f..,is gain ,y.1.

directFilterGains specifies a filter applied to the direct path only (power gains in the three frequency bands defined
by the crossover frequencies freqgLow, freqHigh).

inputFilterGains specifies a filter applied to the source signal similarly as directFilterGains for the direct path.

refDistance is a reference distance at which the above set of perceptual parameters is defined (in meters). If the
distance in the scene is different from this value, it is used for calculating a new value for the sourcePresence.

The generic room response that is modeled in the perceptual approach is characterized in the frequency domain by
two frequency limits, freqgLow and freqHigh (see Figure 26). This generic room response is also characterized in
the temporal domain by four time limits and by the modal density of the late reverb. The PerceptualParameters
node contains timeLimitl, timeLimit2, timeLimit3 which are the temporal limits I1, |2, 13 (relative to Ip) and

modalDensity (in seconds).
9.4.2.78.2.1 Mapping from high-level to low-level parameters

In order to use a reverberator to process the sound sources, it is necessary to convert from perceptual parameters
to energetic parameters.

When an acoustical or perceptual criterion is updated at the higher level, the necessary modifications in the low-
level energetic description of the room response can be readily computed via a nonlinear matrix inversion
procedure (this is explained below). When the signal processing model is scaled down in order to reduce the
computational cost, this is reflected in the behaviour of the perceptual control interface. For instance, if the reverb
block is shared between several sources, the late decay time settings are constrained to be identical for these
sources. If the cluster block is suppressed, the running reverberance and the room envelopment are no longer
independently controllable.

When computing the energetic parameters of the room response, the perceptual parameters are denoted as
follows :

Table 38 - Perceptual parameters

Perceptual parameter field Notation Min max
sourcePresence Es 0.0 1.0
sourceBrilliance Desl 0.1 10.0
sourceWarmth Desh 0.1 10.0
roomPresence Rev 0.0 1.0
runningReverberance Edt,q 0.0 0.1
envelopment Rdl,g 0.0 0.1
lateReverberance Rt (s) 0.1 100.0
heaviness Drtl 0.1 10.0
liveness Drth 0.1 1.0

Es and Rev are absolute energies, and Edt,, is a relative energy value. Desl, Desh, Drtl, Drth are multiplicative
factors. Rt (reverberation time) is expressed in seconds, and Edt is a relative early decay time value.

With the above notations, the energetic factors are calculated as follows:
C =pow(10, -1.2 / Rt)

if Rev/Es =< 2*(1+C)/(1-C)

204 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
R3=(-C + sqrt[C2+0.5*Rev/Es*(1-C)2 |) *4*Es/(1-C)2
else
R3= Rev + 2*Es
if (2*ES/R3 =< 30.622)
Edtmyin= 0.4 + Rt *[1 - 0.667*l0og10(1 + 2*ES/R3) |
else
Edtyin= 0.6 / log10(1 + 2*ES/R3)
if (Es/R3 =< 30.622)
Edtpax= 0.4 + Rt *[1 - 0.667*log10(1 + ES/R3) |
else

Edtyax= 0.6 / 10g10(1 + ES/R3))

The early decay time in seconds is calculated as:

If Edt> 0.4

R2 =-Es + R3 [pow(10, 1.5 * (1 + (0.4-Edt)/Rt)) -1]
else

R2 =-Es + R3 [pow(10, 0.6 / Edt) -1]

Rdlax = 0.27 + 0.05*R2 /Es

The absolute envelopment in seconds is computed as:
Rdl = Rdlpin + (Rdljax - Rdlmin)* Rdl

R1= (Es*Rdl - 0.05*R2) / 0.3

R1,,,= R1*Desl

R1ngn= R1*Desh

RO=Es-R1

RO,,w= RO*Desl

ROyign= RO*Desh

Rtiow =Drtl * Rt

Rtpgn =Drth * Rt

NOTE - All the values are energies expressed in the linear domain

© ISO/IEC 2001 — All rights reserved 205

ISO/IEC 14496-1:2001(E)
9.4.2.78.2.2 Mapping from positional to perceptual parameters

If the source is not placed at the reference distance d,¢ for which the perceptual “preset” is defined, the following
correction is applied (when useAttenuation is TRUE):

Es=Es*[d / d]'2 where d is the actual distance between the source and the viewpoint. For an example
implementation of percpetual approach, see Annex O.

9.4.2.79 PixelTexture
9.4.2.79.1 Node interface

PixelTexture {

exposedField SFImage image 000
field SFBool repeatS TRUE
field SFBool repeatT TRUE

}

NOTE — For the binary encoding of this node see Annex H.1.67.

9.4.2.79.2 Functionality and semantics

The semantics of the Pixel Texture node are specified in ISO/IEC 14772-1:1998, subclause 6.33.
9.4.2.80 PlaneSensor

9.4.2.80.1 Node interface

PlaneSensor {

exposedField SFBool autoOffset TRUE
exposedField SFBool enabled TRUE
exposedField SFVec2f maxPosition -1-1
exposedField SFVec2f minPosition 00
exposedField SFVecf3f offset 000
eventOut SFBool isActive

eventOut SFVec3f trackPoint_changed

eventOut SFVec3f translation_changed

}

9.4.2.80.2 Fnctionality and semantics

The semantics of the PlaneSensor node are specified in ISO/IEC 14772-1:1998, subclause 6.34.
9.4.2.81 PlaneSensor2D

9.4.2.81.1 Node interface

PlaneSensor2D {

exposedField SFBool autoOffset TRUE
exposedField SFBool enabled TRUE
exposedField SFVec2f maxPosition 0,0
exposedField SFVec2f minPosition 0,0
exposedField SFVec2f offset 0,0
eventOut SFBool isActive

eventOut SFVec2f trackPoint_changed

eventOut SFVec2f translation_changed

}

NOTE — For the binary encoding of this node see Annex H.1.68.

206 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
9.4.2.81.2 Functionality and semantics
This sensor detects pointer device dragging and enables the dragging of objects on the 2D rendering plane.

The semantics of PlaneSensor2D are a restricted case for 2D of the semantics for the PlaneSensor node
(see 9.4.2.80).

9.4.2.82 PointLight

9.4.2.82.1 Node interface

PointLight {
exposedField SFFloat ambientintensity 0.0
exposedField SFVec3f attenuation 1,0,0
exposedField SFColor color 1,1,1
exposedField SFFloat intensity 1.0
exposedField SFVec3f location 0,0,0
exposedField SFBool on TRUE
exposedField SFFloat radius 100.0

}

NOTE — For the binary encoding of this node see Annex H.1.69.

9.4.2.82.2 Functionality and semantics

The semantics of the PointLight node are specified in ISO/IEC 14772-1:1998, subclause 6.35.
9.4.2.83 PointSet

9.4.2.83.1 Node interface

PointSet {
exposedField SFNode color NULL
exposedField SFNode coord NULL
}

NOTE — For the binary encoding of this node see Annex H.1.70.

9.4.2.83.2 Functionality and semantics

The semantics of the PointSet node are specified in ISO/IEC 14772-1:1998, subclause 6.36.
9.4.2.84 PointSet2D

9.4.2.84.1 Node interface

PointSet2D {

exposedField SFNode color NULL
exposedField SFNode coord NULL

}

NOTE — For the binary encoding of this node see Annex H.1.71.

9.4.2.84.2 Functionality and semantics

This is a 2D equivalent of the PointSet node (see 9.4.2.83), with semantics that are the 2D restriction of that
node.

© ISO/IEC 2001 — All rights reserved 207

ISO/IEC 14496-1:2001(E)
9.4.2.85 Positioninterpolator
9.4.2.85.1 Node interface

PositionInterpolator {

eventin SFFloat set fraction

exposedField MFFloat key 0
exposedField MFVec3f keyValue 1
eventOut SFVec3f value_changed

}

NOTE — For the binary encoding of this node see Annex H.1.72.

9.4.2.85.2 Functionality and semantics

The semantics of the PositionInterpolator node are specified in ISO/IEC 14772-1:1998, subclause 6.37.
9.4.2.86 Positioninterpolator2D

9.4.2.86.1 Node interface

Positioninterpolator2D {

eventin SFFloat set fraction

exposedField MFFloat key 0
exposedField MFVec2f keyValue 1
eventOut SFVec2f value_changed

}

NOTE — For the binary encoding of this node see Annex H.1.73.
9.4.2.86.2 Functionality and semantics

This is a 2D equivalent of the Positioninterpolator node (see 9.4.2.85) with semantics that are the 2D
restriction of that node.

9.4.2.87 ProximitySensor
9.4.2.87.1 Node interface

ProximitySensor {

exposedField SFVec3f center 0,0,0
exposedField SFVec3f size 0,0,0
exposedField SFBool enabled TRUE
eventOut SFBool isActive

eventOut SFVec3f position_changed

eventOut SFRotation orientation_changed

eventOut SFTime enterTime

eventOut SFTime exitTime

}

NOTE — For the binary encoding of this node see Annex H.1.74.

9.4.2.87.2 Functionality and semantics

The semantics of the ProximitySensor node are specified in ISO/IEC 14772-1:1998, subclause 6.38.

9.4.2.88 ProximitySensor2D
9.4.2.88.1 Node interface

ProximitySensor2D {

exposedField SFVec2f center 0,0
exposedField SFVec2f size 0,0
exposedField SFBool enabled TRUE

208 © ISO/IEC 2001 — All rights reserved

eventOut SFBool
eventOut SFVec?2f
eventOut SFFloat
eventOut SFTime
eventOut SFTime

}

isActive
position_changed
orientation_changed
enterTime

exitTime

NOTE — For the binary encoding of this node see Annex H.1.75.

9.4.2.88.2 Functionality and semantics

ISO/IEC 14496-1:2001(E)

This is the 2D equivalent of the ProximitySensor node (see 9.4.2.87) with semantics that are the 2D restriction

of the that node.

9.4.2.89 QuantizationParameter
9.4.2.89.1 Node interface

QuantizationParameter {

field SFBool
field SFBool
field SFVec3f
field SFVec3f
field SFInt32
field SFBool
field SFVec2f
field SFVec2f
field SFInt32
field SFBool
field SFVec3f
field SFVec3f
field SFInt32
field SFBool
field SFFloat
field SFFloat
field SFInt32
field SFBool
field SFFloat
field SFFloat
field SFInt32
field SFBool
field SFFloat
field SFFloat
field SFInt32
field SFBool
field SFFloat
field SFFloat
field SFInt32
field SFBool
field SFFloat
field SFFloat
field SFInt32
field SFBool
field SFInt32
field SFBool
field SFFloat
field SFFloat
field SFInt32
field SFBool

}

isLocal
position3DQuant
position3DMin
position3DMax
position3DNbBits
position2DQuant
position2DMin
position2DMax
position2DNbBits
drawOrderQuant
drawOrderMin
drawOrderMax
drawOrderNbBits
colorQuant

colorMin

colorMax
colorNbBits
textureCoordinateQuant
textureCoordinateMin
textureCoordinateMax
textureCoordinateNbBits
angleQuant

angleMin

angleMax
angleNbBits
scaleQuant

scaleMin

scaleMax

scaleNbBits
keyQuant

keyMin

keyMax

keyNbBits
normalQuant
normalNbBits
sizeQuant

sizeMin

sizeMax

sizeNbBits
useEfficientCoding

NOTE — For the binary encoding of this node see Annex H.1.76.

© ISO/IEC 2001 — All rights reserved

FALSE
FALSE

-00, =00, =00
+00, +00, +0
16

FALSE

-00, =00

+00, +o0

16

TRUE

=00

TRUE
0.0
1.0

TRUE
0.0

1.0

16
TRUE
0.0

21

16
FALSE
0.0

+00
TRUE
0.0

1.0
TRUE
FALSE
0.0

FALSE

209

ISO/IEC 14496-1:2001(E)
9.4.2.89.2 Functionality and semantics

The QuantizationParameter node describes the quantization values to be applied on single fields of
numerical types. For each of identified categories of fields, a minimal and maximal value is given as well as a
number of bits to represent the given class of fields. Additionally, it is possible to set the isLocal field to apply the
guantization only to the node following the QuantizationParameter node. The use of a node structure for
declaring the quantization parameters allows the application of the DEF and USE mechanisms that enable reuse of
the QuantizationParameter node. Also, it enables the parsing of this node in the same manner as any other
scene information.

The QuantizationParameter node may only appear as a child of a grouping node. When a
QuantizationParameter node appears in the scene graph, the quantization is set to TRUE, and will apply to
subsequent nodes as follows:

If the isLocal boolean is set to FALSE, the quantization applies to all siblings following the
QuanitzationParameter node, and thus to all their children as well.

If the isLocal boolean is set to TRUE, the quantization only applies to the following sibling node in the children list
of the parent node. If no sibling is following the QuantizationParameter node declaration, the node has no
effect.

In all cases, the quantization is applied only in the scope of a single BIFS command. That is, if a command in the
same access unit, or in another access unit inserts a node in a context in which the quantization was active, no
guantization will be applied, except if a new QuantizationParameter node is defined in this new command.

The information contained in the QuantizationParameter node fields applies within the context of the node
scope as follows. For each category of fields, a boolean sets the quantization on or off, the minimal and maximal
values are set, as well as the number of bits for the quantization. This information, combined with the node coding
table, enables the relevant information to quantize the fields to be obtained. The quantization parameters are
applied as explained in 9.3.3.

If the useEfficientCoding boolean is set to FALSE, the encoding of floats shall be performed using 32 bits,
according to IEEE Std 754-1985.

If the useEfficientCoding boolean is set to TRUE, the encoding of floats shall use the syntax described in
9.3.7.12. The scope of the use of the efficient coding is the same as that of the QuantizationParameter node.
This means that the values of the fields of the current QuantizationParameter node are not sent in the
efficient coding mode unless the context is within the scope of a previously sent QuantizationParameter
whose useEfficientCoding bit was set to true.

9.4.2.90 Rectangle
9.4.2.90.1 Node interface
Rectangle {
exposedField SFVec2f size 2,2
}
NOTE — For the binary encoding of this node see Annex H.1.77.
9.4.2.90.2 Functionality and semantics

This node specifies a rectangle centered at (0,0) in the local coordinate system. The size field specifies the
horizontal and vertical size of the rendered rectangle.

9.4.2.91 Scalarinterpolator
9.4.2.91.1 Node interface
Scalarinterpolator {

eventin SFFloat set_fraction
exposedField MFFloat key 1

210 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

exposedField MFFloat keyValue I
eventOut SFFloat value_changed

}

NOTE — For the binary encoding of this node see Annex H.1.78.

9.4.2.91.2 Functionality and semantics

The semantics of the Scalarinterpolator node are specified in ISO/IEC 14772-1:1998, subclause 6.39.
9.4.2.92 Script

9.4.2.92.1 Node interface

Script {
exposedField MFString url I
field SFBool directOutput FALSE
field SFBool mustEvaluate FALSE
Any number of the following may then follow:
eventin eventType eventName
field fieldType fieldName initialValue
eventOut eventType eventName

}

NOTE — For the binary encoding of this node see Annex H.1.79.

9.4.2.92.2 Functionality and semantics

The Script node is used to describe behaviour in a programmtic way in a scene. Script nodes typically
e signify a change or user action

e receive events from other nodes

e contain a program module that performs some computation

o effect change somewhere else in the scene by sending events

Each Script node has associated programming language code, referenced by the url field, that is executed to
carry out the Script node's function. That code is referred to as the "script" in the rest of this description.

9.4.2.92.2.1 Detailed Semantics

The semantics of this node are as defined in ISO/IEC 14772-1:1998, subclause 6.40, with the following exception.
The interface functions Creat eVRMLFronttring() and CreateVRM_FromJRL() are not supported. The
terminal shall support JavaScript.

EXAMPLE — The following scene contains two spheres that exchange colors when they are clicked with the mouse. The script
is used to hold the current color state (in the variable num). The script variables col or 1 and col or 2 are used to hold the colors
that are flipped back and forth between the two spheres. The script variable col or is used to hold the last color state of the first
sphere, and this color is routed to the second sphere. The first sphere color is set directly in the script.

G oup {
children [
Vi ewpoi nt {
fiel dOFView 0. 785398
}
Di rectional Li ght {
color 111

}
Shape {
geonetry Sphere { radius 0.5} # first sphere...
appear ance Appearance {
material DEF COLOR Material {diffuseColor 1 0 0}

© ISO/IEC 2001 — All rights reserved 211

ISO/IEC 14496-1:2001(E)
}

Transform {
translation -2 0 0
children [
Shape {

geonetry Sphere { radius 1.0} #second sphere...
appear ance Appearance {
material DEF COLOR2 Material {diffuseColor 1 1 1}
}

DEF TS TouchSensor{} #clicking on the 2" sphere will activate the script
]

}
DEF SC Script {
event I n SFBool touch
field SFNode node USE COLOR
field SFColor colorl 0 1 O # constant color for sphere
field SFColor color2 0 0 1 # sane as above
field SFInt32 num1 # holds the current color state
event Qut SFCol or color # holds the last color in COLOR
url "javascript:
function touch (value, tp) {
col or = node. di ffuseCol or;

if (nume=1) {
node. di f fuseCol or = col or1;
num = 2;

} else {
node. di f fuseCol or = col or2;
num = 1;

}

o
}
]
ROUTE TS.isActive TO SC.touch # activates the script when sensor is touched

ROUTE SC. col or TO COLOR2. di ffuseColor # routes the |l ast color of COOR to COLOR2
9.4.2.93 Shape

9.4.2.93.1 Node interface

Shape {

exposedField SFNode appearance NULL
exposedField SFNode geometry NULL
}

NOTE — For the binary encoding of this node see Annex H.1.80.

9.4.2.93.2 Functionality and semantics

The semantics of the Shape node are specified in ISO/IEC 14772-1:1998, subclause 6.41.
9.4.2.94 Sound

9.4.2.94.1 Node interface

Sound {

exposedField SFVec3f direction 0,0,1
exposedField SFFloat intensity 1.0
exposedField SFVec3f location 0,0,0
exposedField SFFloat maxBack 10.0
exposedField SFFloat maxFront 10.0
exposedField SFFloat minBack 1.0
exposedField SFFloat minFront 1.0
exposedField SFFloat priority 0.0

212 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

exposedField SFNode source NULL
field SFBool spatialize TRUE

}

NOTE — For the binary encoding of this node see Annex H.1.81.

9.4.2.94.2 Functionality and semantics

The Sound node is used to attach sound to a scene, thereby giving it spatial qualities and relating it to the visual
content of the scene.

The Sound node relates an audio BIFS sub-graph to the rest of an audio-visual scene. By using this node, sound
may be attached to a group, and spatialized or moved around as appropriate for the spatial transforms above the
node. By using the functionality of the audio BIFS nodes, sounds in an audio scene dscribed using ISO/IEC 14496-
1 may be filtered and mixed before being spatially composited into the scene.

The semantics of this node are as defined in ISO/IEC 14472-1:1997, subclause 6.42, with the following exceptions
and additions.

The source field allows the connection of an audio sub-graph containing the sound.

The spatialize field determines whether the Sound shall be spatialized. If this flag is set, the sound shall be
presented spatially according to the local coordinate system and current listeningPoint, so that it apparently
comes from a source located at the location point, facing in the direction given by direction. The exact manner
of spatialization is implementation-dependant, but implementators are encouraged to provide the maximum
sophistication possible depending on terminal resources.

If there are multiple channels of sound output from the child sound, they may or may not be spatialized, according
to the phaseGroup properties of the child, as follows. Any individual channels, that is, channels not phase-related
to other channels, are summed linearly and then spatialized. Any phase-grouped channels are not spatialized, but
passed through this node unchanged. The sound presented in the scene is thus a single spatialized sound,
represented by the sum of the individual channels, plus an “ambient” sound represented by mapping all the
remaining channels into the presentation system as described in 9.2.2.13.2.2.

If the spatialize field is not set, the audio channels from the child are passed through unchanged, and the sound
presented in the scene due to this node is an “ambient” sound represented by mapping all the audio channels
output by the child into the presentation system as described in 9.2.2.13.2.2.

As with the visual objects in the scene, the Sound node may be included as a child or descendant of any of the
grouping or transform nodes. For each of these nodes, the sound semantics are as follows.

Affine transformations presented in the grouping and transform nodes affect the apparant spatialization position of
spatialized sound. They have no effect on “ambient” sounds.

If a particular grouping or transform node has multiple Sound nodes as descendants, then they are combined for
presentation as follows. Each of the Sound nodes may be producing a spatialized sound, a multichannel ambient
sound, or both. For all of the spatialized sounds in descendant nodes, the sounds are linearly combined through
simple summation from presentation. For multichannel ambient sounds, the sounds are linearly combined channel-
by-channel for presentation.

EXAMPLE — Sound node S1 generates a spatialized sound s1 and five channels of multichannel ambient sound a1[1-5].
Sound node S2 generates a spatialized sound s2 and two channels of multichannel ambient sound a2[1-2]. S1 and S2 are

grouped under a single Group node. The resulting sound is the superposition of the spatialized sound s1, the spatialized
sound s2, and the five-channel ambient multichannel sound represented by a3[1-5], where

a3[1] = al[1] + a2[1]

a3[2] = al[2] + a2[2]

a3[3] = al[3]
a3[4] = al[4]
a3[5] = al[5]

© ISO/IEC 2001 — All rights reserved 213

ISO/IEC 14496-1:2001(E)
9.4.2.95 Sound2D

9.4.2.95.1 Node interface

Sound2D {
exposedField SFFloat intensity 1.0
exposedField SFVec2f location 0,0
exposedField SFNode source NULL
field SFBool spatialize TRUE
}

NOTE — For the binary encoding of this node see Annex H.1.82.

9.4.2.95.2 Functionality and semantics

The Sound2D node relates an audio BIFS sub-graph to the other parts of a 2D audio-visual scene. It shall not be
used in 3D contexts (see 9.2.2.1). By using this node, sound may be attached to a group of visual nodes. By using
the functionality of the audio BIFS nodes, sounds in an audio scene may be filtered and mixed before being
spatially composed into the scene.

The intensity field adjusts the loudness of the sound. Its value ranges from 0.0 to 1.0, and this value specifies a
factor that is used during the playback of the sound.

The location field specifies the location of the sound in the 2D scene.

The source field connects the audio source to the Sound2D node.

The spatialize field specifies whether the sound shall be spatialized on the 2D screen. If this flag is set, the sound
shall be spatialized with the maximum sophistication possible. The 2D sound is spatialized assuming a distance of

one meter between the user and a 2D scene of size 2m x 1.5m, giving the minimum and maximum azimuth angles
of —45° and +45°, and the minimum and maximum elevation angles of -37° and +37°.

The same rules for multichannel audio spatialization apply to the Sound2D node as to the Sound (3D) node
(see 9.4.2.94). Using the phaseGroup flag in the AudioSource node it is possible to determine whether the
channels of the source sound contain important phase relations, and that spatialization at the terminal should not
be performed.

As with the visual objects in the scene (and for the Sound node), the Sound2D node may be included as a child
or descendant of any of the grouping or transform nodes. For each of these nodes, the sound semantics are as
follows.

Affine transformations presented in the grouping and transform nodes affect the apparent spatialization position of
spatialized sound.

If a transform node has multiple Sound2D nodes as descendants, then they are combined for presentation as
described in 9.4.2.94. If Sound and Sound2D nodes are both used in a scene, all shall be treated the same
way according to these semantics.

9.4.2.96 Sphere
9.4.2.96.1 Node interface
Sphere {
field SFFloat Radius 1.0
}
NOTE — For the binary encoding of this node see Annex H.1.83.
9.4.2.96.2 Functionality and semantics

The semantics of the Sphere node are specified in ISO/IEC 14772-1:1998, subclause 6.43.

214 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
9.4.2.97 SphereSensor
9.4.2.97.1 Node interface

SphereSensor {

exposedField SFBool autoOffset TRUE
exposedField SFBool enabled TRUE
exposedField SFRotation offset 0100
eventOut SFBool isActive

eventOut SFRotation rotation_changed

eventOut SFVec3f trackPoint_changed

}

NOTE — For the binary encoding of this node see Annex H.1.84.

9.4.2.97.2 Functionality and semantics

The semantics of the SphereSensor node are specified in ISO/IEC 14772-1:1998, subclause 6.44.

9.4.2.98 SpotLight

9.4.2.98.1 Node interface

SpotLight {
exposedField SFFloat ambientintensity 0.0
exposedField SFVec3f attenuation 1,0,0
exposedField SFFloat beamWidth 1.5708
exposedField SFColor color 1,11
exposedField SFFloat cutOffAngle 0.785398
exposedField SFVec3f direction 0,0-1
exposedField SFFloat intensity 1.0
exposedField SFVec3f location 0,0,0
exposedField SFBool on TRUE
exposedField SFFloat radius 100.0

}

NOTE — For the binary encoding of this node see Annex H.1.85.

9.4.2.98.2 Functionality and semantics

The semantics of the SpotLight node are specified in ISO/IEC 14772-1:1998, subclause 6.45.
9.4.2.99 Switch

9.4.2.99.1 Node interface

Switch {

exposedField MFNode choice I
exposedField SFInt32 whichChoice -1
}

NOTE — For the binary encoding of this node see Annex H.1.86.

9.4.2.99.2 Functionality and semantics

The semantics of the Switch node are specified in ISO/IEC 14772-1:1998, subclause 6.46, with the following
restrictions.

If some of the child sub-graphs contain audio content (i.e., the subgraphs contain Sound nodes), the child sounds

are switched on and off according to the value of the whichChoice field. That is, only sound that corresponds to
Sound nodes in the whichChoice’th subgraph of this node are played. The others are muted.

© ISO/IEC 2001 — All rights reserved 215

ISO/IEC 14496-1:2001(E)
9.4.2.100 TermCap

9.4.2.100.1Node interface

TermCap {
eventln SFTime evaluate
field SFInt32 capability 0
eventOut SFInt32 value

}

NOTE — For the binary encoding of this node see Annex H.1.87.

9.4.2.100.2Functionality and semantics

The TermCap node is used to query the resources of the terminal. By ROUTEIing the result to a Switch node,
simple adaptive content may be authored using BIFS.

When this node is instantiated, the value of the capability field shall be examined by the system and the value
eventOut generated to indicate the associated system capability. The value eventOut is updated and generated
whenever an evaluate eventln is received.

The capability field specifies a terminal resource to query. The semantics of the value field vary depending on
the value of this field. The capabilities which may be queried are:

Table 39 - Semantics of value, dependent on capability

capability | Semantics of value

0 frame rate

1 color depth

2 screen size

3 graphics hardware

32 audio output format

33 maximum audio sampling
rate

34 spatial audio capability

64 CPU load

65 memory load

The exact semantics differ depending on the value of the capability field, as follows.

capability: O (frame rate)

For this value of capability, the current rendering frame rate is measured. The exact method of measurement not
specified.

Table 40 - Semantics of value for capability=0

value | Semantics

0 unknown or can’t determine
1 less than 5 fps

2 5-10 fps

3 10-20 fps

4 20-40 fps

5

more than 40 fps

216 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
For the breakpoint between overlapping values between each range (i.e. 5, 10, 20, and 40), the higher value of

value shall be used (ie, 2, 3, 4, and 5 respectively). This applies to each of the subsequent capability-value
tables as well.

capability: 1 (color depth)

For this value of capability, the color depth of the rendering terminal is measured. At the time this node is
instantiated, the value field is set to indicate the color depth as follows:

Table 41 - Semantics of value for capability=1

value Semantics

unknown or can’t determine
1 bit/pixel

grayscale

color, 3-12 bit/pixel

color, 12-24 bit/pixel

color, more than 24 bit/pixel

Gh|WIN|F|O

capability: 2 (screen size)

For this value of capability, the window size (in horizontal lines) of the output window of the rendering terminal is
measured:

Table 42 - Semantics of value for capability=2

value | Semantics

unknown or can’t determine
less than 200 lines

200-400 lines

400-800 lines

800-1600 lines

1600 or more lines

Q| WIN|FL|O

capability: 3 (graphics hardware)

For this value of capability, the available of graphics acceleration hardware of the rendering terminal is
measured. At the time this node is instantiated, the value field is set to indicate the available graphics hardware:

Table 43 - Semantics of value for capability=3

value | Semantics

0 unknown or can’t determine
1 no acceleration
2 matrix multiplication
3 matrix multiplication +

texture mapping (less than 1M memory)
4 matrix multiplication +

texture mapping (less than 4M memory)
5 matrix multiplication +

texture mapping (more than 4M memory)

© ISO/IEC 2001 — All rights reserved 217

ISO/IEC 14496-1:2001(E)
capability: 32 (audio output format)

For this value of capability, the audio output format (speaker configuration) of the rendering terminal is measured.
At the time this node is instantiated, the value field is set to indicate the audio output format.

Table 44 - Semantics of value for capability=32

value | Semantics

unknown or can’t determine
mono

stereo speakers

stereo headphones
five-channel surround

more than five speakers

QB |WIN|FL|O

capability: 33 (maximum audio sampling rate)

For this value of capability, the maximum audio output sampling rate of the rendering terminal is measured. At
the time this node is instantiated, the value field is set to indicate the maximum audio output sampling rate.

Table 45 - Semantics of value for capability=33

value | Semantics

unknown or can’t determine
less than 16000 Hz
16000-32000 Hz
32000-44100 Hz
44100-48000 Hz

48000 Hz or more

Gh|WIN|F|O

capability: 34 (spatial audio capability)

For this value of capability, the spatial audio capability of the rendering terminal is measured. At the time this
node is instantiated, the value field is set to indicate the spatial audio capability.

Table 46 - Semantics of value for capability=34

value | Semantics

0 unknown or can’t determine
1 no spatial audio

2 panning only

3 azimuth only

4

full 3-D spatial audio

capability: 64 (CPU load)

For this value of capability, the CPU load of the rendering terminal is measured. The exact method of
measurement is not specified. The value of the value eventOut indicates the available CPU resources as a
percentage of the maximum available; that is, if all of the CPU cycles are being consumed, and no extra calculation
can be performed without compromising real-time performance, the indicated value is 100%; if twice as much
calculation as currently being done can be so performed, the indicated value is 50%.

218 © ISO/IEC 2001 — All rights reserved

capability: 65 (RAM available)

ISO/IEC 14496-1:2001(E)

Table 47 - Semantics of value for capability=64

value | Semantics

unknown or can’t determine
less than 20% loaded
20-40% loaded

40-60% loaded

60-80% loaded

80-100% loaded

Gh|WIN|FL|O

For this value of capability, the available memory of the rendering terminal is measured. The exact method of

measurement is not specified.

9.4.2.101 Text
9.4.2.101.1Node interface

Text {
exposedField MFString
exposedField MFFloat
exposedField SFNode
exposedField SFFloat

}

Table 48 - Semantics of value for capability=65

value | Semantics

0 unknown or can’'t determine

1 less than 100 KB free

2 100 KB — 500 KB free

3 500 KB — 2 MB free

4 2 MB — 8 MB free

5 8 MB — 32 MB free

6 32 MB — 200 MB free

7 more than 200 MB free
string 1
length 1
fontStyle NULL
maxExtent 0.0

NOTE — For the binary encoding of this node see Annex H.1.88.

9.4.2.101.2Functionality and semantics

The semantics of the Text node are specified in ISO/IEC 14772-1:1998, subclause 6.47.

9.4.2.102 TextureCoordinate

9.4.2.102.1Node interface

TextureCoordinate {
exposedField MFVec?2f
}

point I

NOTE — For the binary encoding of this node see Annex H.1.89.

© ISO/IEC 2001 — All rights reserved

219

ISO/IEC 14496-1:2001(E)
9.4.2.102.2Functionality and semantics

The semantics of the TextureCoordinate node are specified in ISO/IEC 14772-1:1998, subclause 6.48.

9.4.2.103 TextureTransform
9.4.2.103.1Node interface

TextureTransform {

exposedField SFVec2f center 0,0
exposedField SFFloat rotation 0.0
exposedField SFVec2f scale 1,1
exposedField SFVec2f translation 0,0

}

NOTE — For the binary encoding of this node see Annex H.1.90.

9.4.2.103.2Functionality and semantics

The semantics of the TextureTransform node are specified in ISO/IEC 14772-1:1998, subclause 6.49.

9.4.2.104 TimeSensor
9.4.2.104.1Node interface

TimeSensor {

exposedField SFTime cyclelnterval 1
exposedField SFBool enabled TRUE
exposedField SFBool loop FALSE
exposedField SFTime startTime 0
exposedField SFTime stopTime 0
eventOut SFTime cycleTime

eventOut SFFloat fraction_changed

eventOut SFBool isActive

eventOut SFTime time

}

NOTE — For the binary encoding of this node see Annex H.1.91.

9.4.2.104.2Functionality and semantics

The semantics of the TimeSensor node are specified in ISO/IEC 14772-1:1998, subclause 6.50.

9.4.2.105 TouchSensor
9.4.2.105.1Node interface

TouchSensor {

exposedField SFBool enabled TRUE
eventOut SFVec3f hitNormal_changed

eventOut SFVec3f hitPoint_changed

eventOut SFVec2f hitTexCoord_changed

eventOut SFBool isActive

eventOut SFBool isOver

eventOut SFTime touchTime

}

NOTE — For the binary encoding of this node see Annex H.1.92.

220 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
9.4.2.105.2Functionality and semantics

The semantics of the TouchSensor node are specified in ISO/IEC 14772-1:1998, subclause 6.51.

9.4.2.106 Transform

9.4.2.106.1Node interface

Transform {

eventin MFNode addChildren

eventin MFNode removeChildren

exposedField SFVec3f center 0,0,0
exposedField MFNode children 1
exposedField SFRotation rotation 0,0,1,0
exposedField SFVec3f scale 1,1,1
exposedField SFRotation scaleOrientation 0,0,1,0
exposedField SFVec3f translation 0,0,0

}

NOTE — For the binary encoding of this node see Annex H.1.93.

9.4.2.106.2Functionality and semantics

The semantics of the Transform node are specified in ISO/IEC 14772-1:1998, subclause 6.52. ISO/IEC 14496-1
does not support the bounding box parameters (bboxCenter and bboxSize).

If some of the child subgraphs contain audio content (i.e., the subgraphs contain Sound nodes), the child sounds
are transformed and mixed as follows.

If each of the child sounds is a spatially presented sound, the Transform node applies to the local coordinate
system of the Sound nodes to alter the apparent spatial location and direction. If the children are not spatially
presented but have equal numbers of channels, the Transform node has no effect on the childrens’ sounds.
After any such transformation, the combination of sounds is performed as described in 9.4.2.94.

If the children are not spatially presented but have equal numbers of channels, the Transform node has no
effect on the childrens’ sounds. The child sounds are summed equally to produce the audio output at this node.

If some children are spatially presented and some not, or all children do not have equal numbers of channels, the
semantics are not defined.

9.4.2.107 Transform2D
9.4.2.107.1Node interface

Transform2D {

eventin MFNode addChildren

eventin MFNode removeChildren

exposedField SFVec2f center 0,0
exposedField MFNode children 1
exposedField SFFloat rotationAngle 0.0
exposedField SFVec2f scale 1,1
exposedField SFFloat scaleOrientation 0.0
exposedField SFVec2f translation 0,0

}

NOTE — For the binary encoding of this node see Annex H.1.94.

© ISO/IEC 2001 — All rights reserved

221

ISO/IEC 14496-1:2001(E)
9.4.2.107.2Functionality and semantics
The Transform2D node allows the translation, rotation and scaling of its 2D children objects.

The rotation field specifies a rotation of the child objects, in radians, which occurs about the point specified by
center.

The scale field specifies a 2D scaling of the child objects. The scaling operation takes place following a rotation of
the 2D coordinate system that is specified, in radians, by the scaleOrientation field. The rotation of the co-
ordinate system is notional and purely for the purpose of applying the scaling and is undone before any further
actions are performed. No permanent rotation of the co-ordinate system is implied.

The translation field specifies a 2D vector which translates the child objects.

The scaling, rotation and translation are applied in the following order: scale, rotate, translate.

The children field contains a list of zero or more children nodes which are grouped by the Transform2D node.
The addChildren and removeChildren eventins are used to add or remove child nodes from the children field
of the node. Children are added to the end of the list of children and special note should be taken of the
implications of this for implicit drawing orders.

If some of the child subgraphs contain audio content (i.e., the subgraphs contain Sound nodes), the child sounds
are transformed and mixed as follows.

If each of the child sounds is a spatially presented sound, the Transform node applies to the local coordinate
system of the Sound nodes to alter the apparent spatial location and direction. If the children are not spatially
presented but have equal numbers of channels, the Transform node has no effect on the childrens’ sounds.
After any such transformation, the combination of sounds is performed as described in 9.4.2.94.

If the children are not spatially presented but have equal numbers of channels, the Transform node has no
effect on the children’s sounds. The child sounds are summed equally to produce the audio output at this node.

If some children are spatially presented and some not, or all children do not have equal numbers of channels, the
semantics are not defined.

9.4.2.108 Valuator

9.4.2.108.1Node interface

Valuator {
eventln SFBool inSFBool
eventln SFColor inSFColor
eventln MFColor inMFColor
eventin SFFloat inSFFloat
eventln MFFloat inMFFloat
eventin SFInt32 inSFInt32
eventln MFInt32 inMFInt32
eventin SFRotation inSFRotation
eventln MFRotation inMFRotation
eventin SFString inSFString
eventin MFString inMFString
eventln SFTime inSFTime
eventln SFVec2f inSFVec2f
eventin MFVec2f inMFVec2f
eventln SFVec3f inSFVec3f
eventin MFVec3f inMFVec3f
eventOut SFBool outSFBool
eventOut SFColor outSFColor

222 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

eventOut MFColor outMFColor

eventOut SFFloat outSFFloat

eventOut MFFloat outMFFloat

eventOut SFInt32 OutSFInt32

eventOut MFInt32 OUtMFInt32

eventOut SFRotation outSFRotation

eventOut MFRotation outMFRotation

eventOut SFString OutSFString

eventOut MEString OutMFString

eventOut SFTime OUtSFTime

eventOut SFVec2f outSFVec2f

eventOut MFVec2f outMFVec2f

eventOut SFVec3f outSFVec3f

eventOut MFVec3f outMFVec3f

exposedField SFFloat factorl 1.0
exposedField SFFloat factor2 1.0
exposedField SFFloat factor3 1.0
exposedField SFFloat factor4 1.0
exposedField SFFloat offsetl 0.0
exposedField SFFloat offset2 0.0
exposedField SFFloat offset3 0.0
exposedField SFFloat offset4 0.0
exposedField SFBool sum FALSE

}

NOTE — For the binary encoding of this node see Annex H.1.95.

9.4.2.108.2Functionality and semantics

A Valuator node can receive an event of any type, and on reception of such an event, will trigger eventOuts of
many different types. Upon reception of an event on any of its eventins, on each eventOut connected to a ROUTE
an event will be generated. The value of this event is governed by the equation below. This node serves as a
simple type casting method.

Each output value is dependent on the input value with the following relationship:

output value = factor * x + offset

In the above equation, factor is one of the exposedField values and offset is one of the eventOut values specified in
the node inteface. All values specified in the above equation are floating point values.

© ISO/IEC 2001 — All rights reserved 223

ISO/IEC 14496-1:2001(E)

Factor Offsetl Output
value
Type cast to »
output type
Output
Factor value
2
X Typecastto |
output type
Factor Output
3 value
Type cast to —
output type
Factor Output
4 value
Typecastto |y
o el | oUtPUL type
Summing
flag

Figure 27 - Valuator functionaliy
Referring to the above figure, there are input paths each catering to an input value. Depending on the data type,

there may be one to four input values. For example the SFRotation will require four input paths but the SFInt32 will
only require the first input path. Each input path will operate identically.

Table 49 - Simple typecasting conversion from other data types to float.

From Conversion to float
integer Direct conversion.
(1t0 1.0)
Boolean true — 1.0
false — 0.0
double Truncate to 32-bit precision

Table 50 - Simple typecasting conversion from float to other data types.

To Conversion from float
integer Truncate floating point.
eg(1.11to 1)
Boolean 0.0 to False
Any other values to true
double Direct conversion

Each input value is converted to a floating-point value using a simple typecasting rule as illustrated in Table 50.
After conversion, the values are multiplied by the corresponding factor value and added to the corresponding offset
value. Depending on whether the summer is enabled, either the summed value or the individual values are
presented at the output.

Depending on the output data type required, the corresponding number of output values are retrieved and
converted to the output types according to Table 49.

In the event that the input value is of a multi-valued type and the output is of a single value type, the first value of
the multi-valued input is used.

224 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

EXAMPLE — The Valuator node can be seen as an event type adapter. One use of this node is the modification of the
SFInt32 whichChoice field of a Switch node by an event. There is no interpolator or sensor node with a SFInt32
eventOut. Thus, if a two-state button is described with a Switch containing the description of each state in choices 0 and 1.
The triggering event of any type can be routed to a Valuator node whose SFInt32 field is routed to the whichChoice field
of the Switch.

9.4.2.109 Viewpoint

9.4.2.109.1Node interface

Viewpoint {
eventin SFBool set_bind
exposedField SFFloat fieldOfView 0.785398
exposedField SFBool jump TRUE
exposedField SFRotation orientation 0,0,1,0
exposedField SFVec3f position 0,0, 10
field SFString description
eventOut SFTime bindTime
eventOut SFBool isBound

}

NOTE — For the binary encoding of this node see Annex H.1.96.

9.4.2.109.2Functionality and semantics

The semantics of the Viewpoint node are specified in ISO/IEC 14772-1:1998, subclause 6.53.

9.4.2.110 Viseme

9.4.2.110.1Node interface

Viseme {

field SFInt32 viseme_selectl 0

field SFInt32 viseme_select2 0

field SFInt32 viseme_blend 0

field SFBool viseme_def FALSE
}

NOTE — For the binary encoding of this node see Annex H.1.97.
9.4.2.110.2Functionality and semantics

The Viseme node defines a blend of two visemes from a standard set of 14 visemes as defined in ISO/IEC
14496-2, Annex C, Table C-5.

The viseme_select1 field specifies viseme 1.
The viseme_select?2 field specifies viseme 2.
The viseme_blend field specifies the blend of the two visemes.

If viseme_def is TRUE, the current FAPs shall be used to define a viseme and store it.

© ISO/IEC 2001 — All rights reserved 225

ISO/IEC 14496-1:2001(E)
9.4.2.111 VisibilitySensor
9.4.2.111.1Node interface

VisibilitySensor {

exposedField SFVec3f center 000
exposedField SFBool enabled TRUE
exposedField SFVec3f size 000
eventOut SFTime enterTime

eventOut SFTime exitTime

eventOut SFBool isActive

}

NOTE — For the binary encoding of this node see Annex H.1.98.

9.4.2.111.2Functionality and semantics

The semantics of the VisibilitySensor node are specified in ISO/IEC 14772-1:1998, subclause 6.54.
9.4.2.112 WorldInfo

9.4.2.112.1Node interface

WorldInfo {
field MFString info 0
field SFString title
}

NOTE — For the binary encoding of this node see Annex H.1.99.
9.4.2.112.2Functionality and semantics

The semantics of the WorldInfo node are specified in ISO/IEC 14772-1:1998, subclause 6.55.

10 Synchronization of Elementary Streams
10.1 Introduction

This subclause defines the tools to maintain temporal synchronisation within and among elementary streams. The
conceptual elements that are required for this purpose, namely time stamps and clock reference information, have
already been introduced in clause 7. The syntax and semantics to convey these elements to a receiving terminal
are embodied in the sync layer, specified in 10.2. This syntax is configurable to adapt to the needs of different
types of elementary streams. The required configuration information is specified in 10.2.3.

On the sync layer, an elementary stream is mapped into a sequence of packets, called an SL-packetized stream
(SPS). Packetization information has to be exchanged between the entity that generates an elementary stream and
the sync layer. This relation may be described by a conceptual elementary stream interface (ESI) between both
layers (see Annex L). The ESI is a concept to explain the information flow between layers, however, need not be
accessible in an implementation.

SL-packetized streams are conveyed through a delivery mechanism that is outside the scope of ISO/IEC 14496-1.
This delivery mechanism is only described in terms of the DMIF Application Interface (DAI) whose semantics are
specified in ISO/IEC 14496-6. It specifies the information that needs to be exchanged between the sync layer and
the delivery mechanism. The basic data transport feature that this delivery mechanism shall provide is the framing
of the data packets generated by the sync layer. The DAI is a reference point that need not be accessible in an
implementation. The required properties of the DAI are described in 10.3.

The items specified in this clause are depicted in Figure 28 below.

226 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

Elementary Streams Elementary Stream Interface

............. Svnc Layer

Sl -Packetized Streams

DMIF Application Interface

Figure 28 - The sync layer

10.2 Sync Layer
10.2.1 Overview

The sync layer (SL) specifies a syntax for the packetization of elementary streams into access units or parts
thereof. Such a packet is called SL packet. The sequence of SL packets resulting from one elementary stream is
called an SL-packetized stream (SPS). Access units are the only semantic entities at this layer that need to be
preserved from end to end. Their content is opaque. Access units are used as the basic unit for synchronisation.

An SL packet consists of an SL packet header and an SL packet payload. The SL packet header provides means
for continuity checking in case of data loss and carries the coded representation of the time stamps and associated
information. The detailed semantics of the time stamps are specified in 7.3 that defines the timing aspects of the
systems decoder model. The SL packet header is configurable as specified in 10.2.3. The SL packet header itself
is specified in 10.2.4.

An SL packet does not contain an indication of its length. Therefore, SL packets must be framed by a suitable lower
layer protocol using, e.g., the FlexMux tool specified in 12. Consequently, an SL-packetized stream is not a self-
contained data stream that can be stored or decoded without such framing.

An SL-packetized stream does not provide identification of the ES_ID associated to the elementary stream (see
8.6.5) in the SL packet header. This association must be conveyed through a stream map table using the
appropriate signalling means of the delivery mechanism.

10.2.2 SL Packet Specification

10.2.2.1 Syntax

class SL_Packet (SLConfigDescriptor SL) {
al i gned(8) SL_Packet Header sl Packet Header (SL);
al i gned(8) SL_Packet Payl oad sl Packet Payl oad;

10.2.2.2 Semantics

In order to properly parse an SL_Packet , it is required that the SLConf i gDescri pt or for the elementary stream
to which the SL_Packet belongs is known, since the SLConf i gDescri pt or conveys the configuration of the
syntax of the SL packet header.

sl Packet Header — an SL_Packet Header element as specified in 10.2.4.
sl Packet Payl oad — an SL_Packet Payl oad that contains an opaque payload.
10.2.3 SL Packet Header Configuration

10.2.3.1 Syntax

cl ass SLConfigDescriptor extends BaseDescriptor : bit(8) tag=SLConfigDescrTag {
bi t (8) predefined;
if (predefined==0) {
bit (1) useAccessUnitStartFl ag;
bi t (1) useAccessUni t EndFl ag;

© ISO/IEC 2001 — All rights reserved 227

ISO/IEC 14496-1:2001(E)

bi t (1)
bi t (1)
bi t (1)
bi t (1)
bi t (1)
bi t (1)

useRandomAccessPoi nt Fl ag;
hasRandomAccessUni t sOnl yFl ag;

usePaddi ngFl ag;
useTi meSt anpsFl ag;
usel dl eFl ag;

dur ati onFl ag;

bit(32) tinmeStanpResol ution;
bi t (32) OCRResol uti on;

bi t (8)
bi t (8)
bi t (8)
bi t (8)
bi t (4)
bi t (5)
bi t (5)
bi t (2)

ti meStanpLength; // must be < 64
OCRLengt h; /1 must be < 64
AU _Lengt h; /1 must be < 32

i nstant Bi trat eLengt h;

degradati onPriorityLength;
AU _segNuniength; // nust be < 16
packet SeqNunLengt h; // nust be < 16

reserved=0b11;

if (durationFlag) {
bit(32) tineScale;
bit(16) accessUnitDuration;

bit(16) conpositionUnitDuration;

if (!useTi neStampsFlag) {
bit (ti neStanplLength) startDecodi ngTi neSt anp;
bit(timeStanplLength) start ConpositionTi meStanp;

10.2.3.2 Semantics

The SL packet header may be configured according to the needs of each individual elementary stream. Parameters
that can be selected include the presence, resolution and accuracy of time stamps and clock references. This
flexibility allows, for example, a low bitrate elementary stream to incur very little overhead on SL packet headers.

For each elementary stream the configuration is conveyed in an SLConfi gDescri pt or, which is part of the
associated ES_Descri pt or within an object descriptor.

The configurable parameters in the SL packet header can be divided in two classes: those that apply to each SL
packet (e.g. OCR, sequenceNumber) and those that are strictly related to access units (e.g. time stamps,
accessUnitLength, instantBitrate, degradationPriority).

predefi ned — allows to default the values from a set of predefined parameter sets as detailed below.

NOTE — This table will be updated by amendments to ISO/IEC 14496 to include predefined configurations as required by future

profiles.
Table 51 - Overview of predefined SLConf i gDescri pt or values
Predefined field value Description
0x00 Custom
0x01 null SL packet header
0x02 Reserved for use in MP4 files
0x03 — OxFF Reserved for ISO use
228

© ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

Table 52 — Detailed predefined SLConfigDescriptor values

Predefi ned field value 0x01 0x02

UseAccessUnit StartFl ag

UseAccessUni t EndFl ag

UseRandomAccessPoi nt Fl ag

UsePaddi ngFl ag

UseTi meSt anpsFl ag

Usel dl eFl ag

Dur ati onFl ag

Ti meSt anpResol uti on 1000 -

OCRResol ution - -

Ti meSt anpLengt h 32 0

OCRI engt h - 0

AU_| engt h 0 0

InstantBitratelLength - 0
0
0
0

o|o|o|o|o|o

o|o|r|Oo|ofo|o

Degradati onPrioritylLength 0
AU _segNuniengt h 0
Packet SeqNuniengt h 0
Ti neScal e - -
AccessUni t Duration - -
Conposi ti onUnit Duration - -
St ar t Decodi ngTi meSt anp - -
St art Conposi ti onTi meSt anp - -

useAccessUni t St art FlI ag — indicates that the accessUni t St art Fl ag is present in each SL packet header of
this elementary stream.

useAccessUni t EndFl ag — indicates that the accessUni t EndFl ag is present in each SL packet header of this
elementary stream.

If neither useAccessUnit Start Fl ag nor useAccessUni t EndFl ag are set this implies that each SL packet
corresponds to a complete access unit.

useRandomAccessPoi nt Fl ag — indicates that the RandomAccessPoi nt Fl ag is present in each SL packet
header of this elementary stream.

hasRandomAccessUni t sOnl yFl ag — indicates that each SL packet corresponds to a random access point. In
that case the randomAccessPoi nt Fl ag need not be used.

usePaddi ngFl ag — indicates that the paddi ngFl ag is present in each SL packet header of this elementary
stream.

useTi meSt anpsFl ag — indicates that time stamps are used for synchronisation of this elementary stream. They
are conveyed in the SL packet headers. Otherwise, the parameters accessUni t Rat e, conposi ti onUni t Rat e,
start Decodi ngTi neStanp and start ConpositionTi neStanp conveyed in this SL packet header
configuration shall be used for synchronisation.

NOTE — The use of start time stamps and durations (useTi meSt anpsFl ag=0) may only be feasible under some conditions,
including an error free environment. Random access is not easily possible.

usel dl eFl ag —indicates that i dl eFl ag is used in this elementary stream.

dur ati onFl ag - indicates that the constant duration of access units and composition units for this elementary
stream is subsequently signaled.

ti meSt anpResol uti on —is the resolution of the time stamps in clock ticks per second.

© ISO/IEC 2001 — All rights reserved 229

ISO/IEC 14496-1:2001(E)
OCRResol ut i on —is the resolution of the object time base in cycles per second.

ti meSt anpLengt h — is the length of the time stamp fields in SL packet headers. t i neSt anpLengt h shall take
values between zero and 64 bit.

OCRI engt h —is the length of the obj ect Cl ockRef er ence field in SL packet headers. A length of zero indicates
that no obj ect O ockRef erences are present in this elementary stream. If OCRstreantl ag is set,
OCRLengt h shall be zero. Else OCRl engt h shall take values between zero and 64 bit.

AU_Lengt h — is the length of the accessUni t Lengt h fields in SL packet headers for this elementary stream.
AU_Lengt h shall take values between zero and 32 bit.

i nstant Bi trat eLengt h —is the length of the i nst ant Bi t r at e field in SL packet headers for this elementary
stream.

degradationPrioritylLength — is the length of the degradati onPriority field in SL packet headers for
this elementary stream.

AU_segNuniengt h — is the length of the AU sequenceNunber field in SL packet headers for this elementary
stream.

packet SeqNunmLengt h — is the length of the packet SequenceNunber field in SL packet headers for this
elementary stream.

ti meScal e —used to express the duration of access units and composition units. One second is evenly divided in
ti meScal e parts.

accessUni t Dur at i on —the duration of an access unitis accessUni t Durati on * 1/t i neScal e seconds.

conpositionUnitDuration — the duration of a composition unit is conpositionUnitDuration *
1/ti meScal e seconds.

st art Decodi ngTi meSt anp — conveys the time at which the first access unit of this elementary stream shall be
decoded. It is conveyed in the resolution specified by t i meSt anpResol uti on.

start Conposi ti onTi neSt anp — conveys the time at which the composition unit corresponding to the first
access unit of this elementary stream shall be decoded. It is conveyed in the resolution specified by
ti meSt anpResol uti on.

10.2.4 SL Packet Header Specification

10.2.4.1 Syntax

al i gned(8) class SL_Packet Header (SLConfigDescriptor SL) {
if (SL.useAccessUnitStartFlag)
bit(1l) accessUnitStartFl ag;
i f (SL.useAccessUnitEndFl ag)
bit (1) accessUnitEndFl ag;
i f (SL.OCRLengt h>0)
bit(1) OCRflag;
if (SL.useldl eFlag)
bit(1) idleFlag;
i f (SL.usePaddi ngFl ag)
bit (1) paddi ngFl ag;
i f (paddi ngFl ag)
bit(3) paddingBits;

if (lidleFlag & (!paddi ngFlag || paddi ngBits!=0)) {
i f (SL.packet SegNunmLengt h>0)
bi t (SL. packet SegNuniengt h) packet SequenceNunber ;
i f (SL.degradationPrioritylLength>0)

230 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

bit(1) DegPrioflag;
i f (DegPrioflag)

bi t (SL. degradati onPrioritylLength) degradationPriority;
if (OCRflag)

bi t (SL. OCRLengt h) obj ect d ockRef er ence;

if (accessUnitStartFlag) {
i f (SL.useRandomAccessPoi nt Fl ag)
bi t (1) randomAccessPoi nt Fl ag;
i f (SL.AU_seqNuniength >0)
bi t (SL. AU _seqNuniengt h) AU_sequenceNunber;
i f (SL.useTi nmeStanpsFl ag) {
bi t (1) decodi ngTi neSt anpFl ag;
bit (1) conpositionTi neStanpFl ag;

i f (SL.instantBitratelLength>0)
bit(1) instantBitrateFlag;
i f (decodi ngTi neSt anpFl ag)
bi t (SL.ti nmeSt anpLengt h) decodi ngTi neSt anp;
i f (conpositionTi neStanpFl ag)
bi t (SL.ti nmeStanpLength) comnpositionTi neSt anp;
if (SL.AU Length > 0)
bi t (SL. AU_Lengt h) accessUni t Lengt h;
if (instantBitrateFl ag)
bi t (SL.i nstantBitratelLength) instantBitrate;
}

}
}

10.2.4.2 Semantics

accessUni t St art Fl ag — when set to one indicates that the first byte of the payload of this SL packet is the start
of an access unit. If this syntax element is omitted from the SL packet header configuration its default value is
known from the previous SL packet with the following rule:

accessUnit Start Fl ag = (previous-SL packet has accessUni t EndFl ag==1) ? 1: 0.
accessUni t EndFl ag — when set to one indicates that the last byte of the SL packet payload is the last byte of the
current access unit. If this syntax element is omitted from the SL packet header configuration its default value is
only known after reception of the subsequent SL packet with the following rule:

accessUni t EndFl ag = (subsequent-SL packet has accessUnit Start Fl ag==1)?1:0.

If neither AccessUnitStartFl ag nor AccessUnit EndFl ag are configured into the SL packet header this
implies that each SL packet corresponds to a single access unit, hence both accessUnitStartFlag =
accessUni t EndFl ag = 1.

NOTE — When the SL packet header is configured to use accessUni t St art Fl ag but neither accessUni t EndFl ag nore
accessUni t Lengt h, it is not guaranteed that the terminal can determine the end of an access unit before the subsequent one
is received.

OCRf | ag — when set to one indicates that an obj ect Cl ockRef er ence will follow. The default value for OCRf | ag
is zero.

i dl eFl ag - indicates that this elementary stream will be idle (i.e., not produce data) for an undetermined period
of time. This flag may be used by the decoder to discriminate between deliberate and erroneous absence of
subsequent SL packets.

paddi ngFl ag — indicates the presence of padding in this SL packet. The default value for paddi ngFl ag is zero.

paddi ngBi t s — indicate the mode of padding to be used in this SL packet. The default value for paddi ngBi t s is
Zero.

© ISO/IEC 2001 — All rights reserved 231

ISO/IEC 14496-1:2001(E)

If paddi ngFl ag is set and paddi ngBi t s is zero, this indicates that the subsequent payload of this SL packet
consists of padding bytes only. accessUni t Start Fl ag, randomAccessPoi nt Fl ag and OCRf | ag shall not
be set if paddi ngFl ag is set and paddingBits is zero.

If paddi ngFl ag is set and paddi ngBi t s is greater than zero, this indicates that the payload of this SL packet is
followed by paddi ngBi t s of zero stuffing bits for byte alignment of the payload.

packet SequenceNunber — if present, it shall be continuously incremented for each SL packet as a modulo
counter. A discontinuity at the decoder corresponds to one or more missing SL packets. In that case, an error shall
be signalled to the sync layer user. If this syntax element is omitted from the SL packet header configuration,
continuity checking by the sync layer cannot be performed for this elementary stream.

Duplication of SL packets: elementary streams that have a sequenceNunber field in their SL packet headers
may use duplication of SL packets for error resilience. The duplicated SL packet(s) shall immediately follow the
original. The packetSequenceNunber of duplicated SL packets shall have the same value and each byte of the
original SL packet shall be duplicated, with the exception of an obj ect Cl ockRef er ence field, if present, which
shall encode a valid value for the duplicated SL packet.

degPri oFl ag - when set to one indicates that degr adati onPri ority is presentin this packet.

degradationPriority — indicates the importance of the payload of this SL packet. The streanPriority
defines the base priority of an ES. degradati onPriority defines a decrease in priority for this SL packet
relative to the base priority. The priority for this SL packet is given by:

SL_PacketPriority = streanPri ority —degradati onPriority

degradationPriority remains at this value until its next occurrence. This indication may be for graceful
degradation by the decoder of this elementary stream as well as by the adaptor to a specific delivery layer instance.
The relative amount of complexity degradation among SL packets of different elementary streams increases as
SL_PacketPriority decreases.

obj ect d ockRef erence — contains an Object Clock Reference time stamp. The OTB time value t is
reconstructed from this OCR time stamp according to the following formula:

t = (obj ect Cl ockRef er ence/ SL. OCRResol ut i on)+ k*(25- ORength) g| - OCRResol ut i on)
where k is the number of times that the obj ect G ockRef er ence counter has wrapped around.

obj ect O ockRef er ence is only present in the SL packet header if OCRf | ag is set.
NOTE — It is possible to convey just an OCR value and no payload within an SL packet.

The following is the semantics of the syntax elements that are only present at the start of an access unit when
explicitly signaled by accessUni t St art Fl ag in the bitstream:

randomAccessPoi nt Fl ag — when set to one indicates that random access to the content of this elementary
stream is possible here. randomAccessPoi nt Fl ag shall only be set if accessUnit Start Fl ag is set. If this
syntax element is omitted from the SL packet header configuration, its default value is the value of
SLConfi gDescri pt or. hasRandomAccessUni t sOnl yFI ag for this elementary stream.

AU sequenceNumber — if present, it shall be continuously incremented for each access unit as a modulo
counter. A discontinuity at the decoder corresponds to one or more missing access units. In that case, an error
shall be signalled to the sync layer user. If this syntax element is omitted from the SL packet header configuration,
access unit continuity checking by the sync layer cannot be performed for this elementary stream.

Duplication of access units: elementary streams that have a AU_sequenceNunber field in their SL packet
headers may use duplication of access units. The duplicated access unit(s) shall immediately follow the original.
The AU_sequenceNumber of such access units shall have the same value and each byte of the original one or
more SL packets shall be duplicated, with the exception of an obj ect C ockRef er ence field, if present, which
shall encode a valid value for the duplicated access unit.

232 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
decodi ngTi meSt anpFl ag — indicates that a decoding time stamp is present in this packet.
conposi ti onTi meSt anpFl ag — indicates that a composition time stamp is present in this packet.
accessUni t Lengt hFl ag — indicates that the length of this access unit is present in this packet.
i nstant Bi tr at eFl ag — indicates that an i nst ant Bi t r at e is present in this packet.

decodi ngTi neSt anp — is a decoding time stamp as configured in the associated SLConfi gDescri ptor. The
decoding time td of this access unit is reconstructed from this decoding time stamp according to the formula:

- td= (decodi ngTi meSt anp/SL. ti neSt anpResol ution + k*
2Sk-timeStanplength/g) t i neSt anpResol uti on

where k is the number of times that the decodi ngTi meSt anp counter has wrapped around.

A decodi ngTi meSt anp shall only be present if the decoding time is different from the composition time for this
access unit.

conpositionTimeStanp — is a composition time stamp as configured in the associated
SLConfi gDescri ptor. The composition time tc of the first composition unit resulting from this access unit is
reconstructed from this composition time stamp according to the formula:

- td= (conpositionTi meStanp/SL. ti meSt anpResol ution + k*
28t timeStamplength/gl t i npSt anpResol uti on

where k is the number of times that the conposi ti onTi neSt anp counter has wrapped around.

accessUni t Lengt h — is the length of the access unit in bytes. If this syntax element is not present or has the
value zero, the length of the access unit is unknown.

i nstantBitrate — is the instantaneous bit rate in bits per second of this elementary stream until the next
i nst ant Bi tr at e field is found.

10.2.5 Clock Reference Stream

An elementary stream of streamlype = ClockReferenceStream may be declared by means of the object
descriptor. It is used for the sole purpose of conveying Object Clock Reference time stamps. Multiple elementary
streams in a hame scope may make reference to such a ClockReferenceStream by means of the OCR ES | D
syntax element in the SLConfi gDescri ptor to avoid redundant transmission of Clock Reference information.
Note, however, that circular references between elementary streams using OCR_ES | D are not permitted.

On the sync layer a ClockReferenceStream is realized by configuring the SL packet header syntax for this SL-
packetized stream such that only OCR values of the required OCRr esol uti on and OCRl engt h are present in
the SL packet header.

There shall not be any SL packet payload present in an SL-packetized stream of streanilype =
ClockReferenceStream.

In the Decoder Confi gDescri ptor for a clock reference stream Obj ect Typel ndi cati on shall be set to
'OxFF', hasRandomAccessUni t sOnl yFl ag to one and buf fer Si zeDBto '0'.

The following indicates recommended values for the SLConf i gDescri pt or of a Clock Reference Stream:

Table 53 — SLConfigDescriptor parameter values for a ClockReferenceStream

useAccessUnit Start Fl ag 0
useAccessUni t EndFl ag 0
useRandomAccessPoi nt Fl ag 0
usePaddi ngFl ag 0

© ISO/IEC 2001 — All rights reserved 233

ISO/IEC 14496-1:2001(E)

useTi meSt anpsFl ag
usel dl eFl ag

dur ati onFl ag

ti meSt anpResol uti on

ti meSt anpLengt h

AU | engt h

degradati onPrioritylLength
AU_segNuniengt h

O|O0|O|0O|O0|O0|O0|O

10.2.6 Restrictions for elementary streams sharing the same object time base

While it is possible to share an object time base between multiple elementary streams through OCR ES I D, a
number of restrictions for the access to and processing of these elementary streams exist as follows:

1. When several elementary streams share a single object time base, the elementary streams without embedded
object clock reference information shall not be used by the player, even if accessible, until the elementary
stream carrying the object clock reference information becomes accessible (see 8.7.3 for the stream access
procedure).

2. If an elementary stream without embedded object clock reference information is made available to the terminal
at a later point in time than the elementary stream carrying the object clock reference information, it shall be
delivered in synchronization with the other stream(s). Note that this implies that such a stream might not start
playing from its beginning, depending on the current value of the object time base.

3. When an elementary stream carrying object clock reference information becomes unavailable or is otherwise
manipulated in its delivery (e.g., paused), all other elementary streams which use the same object time base
shall follow this behavior, i.e., become unavailable or be manipulated in the same way.

4. When an elementary stream without embedded object clock reference information becomes unavailable this
has no influence on the other elementary streams that share the same object time base.

10.2.7 Usage of configuration options for object clock reference and time stamp values
10.2.7.1 Resolution of ambiguity in object time base recovery

Due to the limited length of obj ect Cl ockRef er ence values these time stamps may be ambiguous. The OTB
time value can be reconstructed each time an obj ect O ockRef er ence is transmitted in the headers of an SL
packet according to the following formula:

toTs_reconstructed=(0D] €Ct O ockRef er ence/ SL. OCRResol ut i on)+k*(25- 9Rendth/ §| OCRResol ut i on)

with k being an integer value denoting the number of wrap-arounds. The resulting time base tors reconstructed 1S
measured in seconds.

When the first obj ect Cl ockRef er ence for an elementary stream is acquired, the value k shall be set to one.
For each subsequent occurence of obj ect O ockRef er ence the value k is estimated as follows:

The terminal shall implement a mechanism to estimate the value of the object time base for any time instant.

Each time an obj ect O ockRef er ence is received, the current estimated value of the OTB torg_esimaea Shall be
sampled. Then, torg rec(K) is evaluated for different values of k. The value k that minimizes the term | tors_estimated -
tore_rec(K)| shall be assumed to yield the correct value of torg reconstructed- ThiS value may be used as new input to the
object time base estimation mechanism.

The application shall ensure that this procedure yields an unambiguous value of k by selecting an appropriate
length and resolution of the obj ect Cl ockRef er ence element and a sufficiently high frequency of insertion of
obj ect O ockRef er ence values in the elementary stream. The choices for these values depend on the delivery
jitter for SL packets as well as the anticipated maximum drift between the clocks of the transmitting and receiving
terminal.

234 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
10.2.7.2 Resolution of ambiguity in time stamp recovery

Due to the limited length of decodi ngTi neSt anp and conposi ti onTi meSt anp values these time stamps may
become ambiguous according to the following formula:

t(M)=(Ti meSt anp/ SL. t i meSt anpResol ut i on)+m*(25- timestanplengthy g 't i npSt anpResol ut i on)

with Ti meSt anp being either a decodi ngTi neSt anp or a conposi ti onTi meSt anp and m being an integer
value denoting the number of wrap-arounds.

The correct value timestamp Of the time stamp can be estimated as follows:

Each time a Ti meSt anp is received, the current estimated value of the OTB torg_estimated Shall be sampled. t(m) is
evaluated for different values of m. The value m that minimizes the term | torg_esimated — tis(mM)| shall be assumed to
yield the correct value of timestamp-

The application may choose, separately for every individual elementary stream, the length and resolution of time
stamps so as to match its requirements on unambiguous positioning of time events. This choice depends on the
maximum time that an SL packet with a Ti meSt anp may be sent prior to the point in time indicated by the
Ti meSt anp as well as the required precision of temporal positioning.

10.2.7.3 Usage considerations for object clock references and time stamps

The time line of an object time base allows to discriminate two time instants separated by more than
1/SL. OCRResol uti on. OCRResol uti on should be chosen sufficiently high to match the accuracy needed by
the application to synchronize a set of elementary streams.

The decoding and composition time stamp allow to discriminate two time instants separated by more than
1/SL. ti meSt anpResol uti on. tineStanpResol uti on should be chosen sufficiently high to match the
accuracy needed by the application in terms of positioning of access units for a given elementary stream.

A Ti meSt anpResol uti on higher than the OCRResol uti on will not achieve better discrimination between
events. If Ti meSt anpResol uti on is lower than the OCRResol uti on, events for this specific stream cannot be
positioned with the maximum precision possible with this given OCRResol ut i on.

The parameter OCRLengt h is signaled in the SL header configuration. 25t SRength/ g| OCRResol uti on is the
time interval covered by the obj ect Cl ockRef er ence counter before it wraps around. OCRLengt h should be
chosen sufficiently high to match the application needs for unambiguous positioning of time events from a set of
elementary streams.

When an application knows the value k defined in 10.2.7.1, the OTB time line is unambiguous for any time value.
When the application cannot reconstruct the k factor, as for example in any application that permits random access
without additional side information, the OTB time line is ambiguous modulo 25+ 9Rendth; g “OCRResol uti on.
Therefore, any time stamp refering to this OTB is ambiguous. Therefore, any time stamp refering to this OTB is
ambiguous. It may, however, be considered unambiguous within an application environment through knowledge
about the maximum expected delivery jitter and constraints on the time by which an access unit can be sent prior to
its decoding time.

Note that elementary streams that choose the time interval 25t timesStampelengthy q) 't i neSt anpResol ut i on higher
than 25t ORength) g1 - OCRResol ut i on can still only position time events unambiguously in the smaller of the two
intervals.

In cases, where k and m can not be estimated correctly, the buffer model may be violated, resulting in
unpredictable performance of the decoder.

EXAMPLE — Let's assume an application that wants to synchronize elementary streams with a precision of 1 ms.
OCRResol ut i on should be chosen equal to or higher than 1000 (the time between two successive ticks of the OCR is then
equal to 1ms). Let's assume OCRResol ut i on=2000.

The application assumes a drift between the STB and the OTB of 0.1% (i.e. 1ms every second). The clocks need therefore to be
adjusted at least every second (i.e. in the worst case, the clocks will have drifted 1ms which is the precision constraint). Let's
assume that obj ect Cl ockRef er ence are sent every 1s.

© ISO/IEC 2001 — All rights reserved 235

ISO/IEC 14496-1:2001(E)

The application wants to have an unambiguous OTB time line of 24h without need to reconstruct the k factor. The OCRLengt h
is therefore chosen accordingly such that 25+ Rendth) 5| OCRResol ut i on=24h.

Let’'s assume now that the application wants to synchronize events within a single elementary stream with a precision of 10 ms.
Ti neSt anpResol uti on should be chosen equal to or higher than 100 (the time between two successive ticks of the
Ti meSt anp is then equal to 10ms). Let’'s assume Ti meSt anpResol uti on=200.

The application wants to be able to send access units at maximum 1 minute ahead of their decoding or composition time. The
ti neSt anpLengt h is therefore chosen as

2SL-timeStanplength g tj npSt anpResol ution = 2 minutes.

10.3 DMIF Application Interface

The DMIF Application Interface is a conceptual interface that specifies which data need to be exchanged between
the sync layer and the delivery mechanism. Communication between the sync layer and the delivery mechanism
includes SL-packetized data as well as additional information to convey the length of each SL packet.

An implementation of ISO/IEC 14496-1 does not have to expose the DMIF Application Interface. A terminal
compliant with ISO/IEC 14496-1, however, shall have the functionality described by the DAI to be able to receive
the SL packets that constitute an SL-packetized stream. Specifically, the delivery mechanism below the sync layer
shall supply a method to frame or otherwise encode the length of the SL packets transported through it.

The DMIF Application Interface specified in ISO/IEC 14496-6 embodies a superset of the required data delivery
functionality. The DAI has data primitives to receive and send data, which include indication of the data size. With
this interface, each invocation of a DA_Data or a DA_DataCallback shall transfer one SL packet between the sync
layer and the delivery mechanism below.

11 MPEG-J
11.1 Introduction

MPEG-J is a flexible programmatic control system that represents an audio-visual session in a manner that allows
the session to adapt to the operating characteristics when presented at the terminal. Two important characteristics
are identified, first, the capability to allow graceful degradation under limited or time varying resources, and second,
the ability to respond to user interaction and provide enhanced multimedia functionality.

This part of the document specifies the format, delivery, interactions and behavior of Java byte code to the MPEG-4
player. More specifically:

e The format and delivery are normatively specified by specifying the MPEG-J stream format and the delivery
mechanism of such a stream (Java byte code and associated data).

¢ MPEG-J Session and the application lifecycle

e The interactions and behavior of byte code is normatively defined through the Java APIs.

11.1.1 Organization of this document

Subclause 0 gives an overall architecture of the MPEG-J system. MPEG-J Session start up is walked through in
subclause 11.3. The Delivery of MPEG-J data to the terminal is specified in subclause 11.4. Subclause 11.5
specifies the different categories of APIs that a program in the form of Java bytecode would use. Annex S is an
informative annex on starting the Java Virtual Machine. Annex V of this document gives normative javadoc listings

of the MPEG-J APIs in the word97 format, while Annex U gives the same in the HTML format. Annex T illustrates
the usage of MPEG-J APIs through a few examples.

236 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

11.2 Architecture
11.2.1 Parametric versus Programmatic System
11.2.1.1 Overview of a Parametric MPEG-4 System

Figure 29 shows an example of the basic MPEG-4 player, a parametric system. MPEG-4 coded data from
storage/network goes through a DMIF and a demultiplex layer. In the demultiplex layer, FlexMux-PDU’s pass
through the Sync Layer resulting in unformatted SL-PDUs of each media type (coded audio, video, speech or facial
animation streams) which are then buffered in the respective decoder buffers and are offered to the corresponding
media decoders. Also, the SL-PDUs corresponding to scene description representation are input to the BIFS
decoder, the output of which goes to the Scene Graph. The output of the media decoders as well as Scene Graph
feeds the Compositor and the Renderer, which may respond to (very basic) user interaction such as mouse clicks
etc. The output of Compositor and Renderer is the scene for presentation.

|DI\/IF | BIFS Dec |—' Scene Graph | g
Back : E

Channel i
L lDec Butfer 1—MediaDec 1 —"|Comp Buffer 1|—|_'
' Compositor
"|Dec Buffer 2 I—'lMedia‘DeCZ I—’|Comp Buffer 2|—’ and RIanerer —

—’lDec Buffer nl—'lM ediaDecn I;"'I(férrip Buffer nl—'

Channgl

X cCcZoU

Figure 29 - An MPEG-4 Player

11.2.2 The MPEG-J System

The MPEG-J is a programmatic system, which specifies interfaces for interoperation of an MPEG-4 media player
with Java code. By combining MPEG-4 media and safe executable code, content creators may embed complex
control mechanisms with their media data to intelligently manage the operation of the audio-visual session. Java
byte code is delivered to the MPEG-4 terminal as a separate elementary stream. There, it will be directed to the
MPEG-J run time environment, which includes a Java Virtual Machine, from where the MPEG-J program will have
access to the various components of the MPEG-4 player. Figure 30 shows an example of the components of the
MPEG-J operating environment.

© ISO/IEC 2001 — All rights reserved 237

ISO/IEC 14496-1:2001(E)

MPEG-J App
Application
Engine
: MPEG -J :
Java javaio.
; Machine
Presentation
Engine
Execution
Engine

Figure 30 - MPEG-J Software architecture

The software architecture of MPEG-J takes into consideration the resources available on the underlying platform.
The architecture involves the isolation of distinct components, the design of interface that reflects them, and the
characterization of interactions between components. Such components include:

Execution and Presentation Resources: It is assumed that the decoding and presenting resources are limited.
This component abstracts access to information on such static and dynamic resources in the player. It abstracts
notification during changes in such resources. Further, it provides for some minimal control of the same.

Decoders: This component abstracts the media decoders used to decode the received media streams. The
programmatic control and their manipulation to add extra functionality is also abstracted by this component.

Network Resources: Since the device receives media streams, this component abstracts the control of such
streams. It also abstracts the media pipeline, which transports and presents the stream.

Scene Graph: An MPEG-4 session has a Scene Graph which spatially and temporally represents audio visual
objects This component abstracts access and control of the scene graph.

The MPEG-J APIs specified in this document are the interfaces that reflect the above said components. A block
diagram of the MPEG-J player controlling an MPEG-4 player environment is shown in Figure 31. The lower half of
this drawing depicts the parametric MPEG-4 player of Figure 1 and is also referred to as the Presentation Engine.
The upper half of Figure 31 illustrates this the MPEG-J system controlling the Presentation Engine is also referred
to as the Application Engine.. The APIs shown in Figure 31 will be specified later in this document.

238 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

I/0
> - Class —p MPEG-J ;
Bufter Loader | ... Application Devices
. MDAP|
NWAP SGAPI . RMAPI
Network ScenelGraph R%oufce
Manager Manager Manager
Legend
INterface ...
Control
_________ b e e dmm—ie . Hata
Version v
player | DMIF BIFS |) SCENE |
Decoder Graph
Back D ||
Channel 4 II\E/I p o : :
Decoding Media Composition Compositor
Channd_’ u | Buffers 1..n [| Decoders 1..n [P Buffers1..n [®|and Renderer [
X

Figure 31 - Architecture of an MPEG-J enabled MPEG-4 System

11.3 MPEG-J Session

The MPEG-J session need not be started till it is clear that MPEG-J application programs will be received and are
to be executed. This can be recognized by the presence of one of more of MPEG-J Elementary streams.

11.3.1 Walkthrough of an MPEG-J Session Start-up

The MPEG-J session is initiated when the MPEG-4 player receives an MPEG-J Object Descriptor. The player takes
the following steps:

It opens the MPEG-J elementary stream via a DMIF channel. The MPEG-J Elementary stream is a SL packetized
stream, similar to all other MPEG-4 streams.

It delivers the Access Units to the class loader, which loads the classes.

The MPEG-J "decoder" receives the arriving Access Units (it "decodes" them). There can be more than one class
with an entry point within one MPEG-J stream. Each time such a class containing an entry-point is received (a "run”
method) execution will start there as a new thread.

11.3.2 Local and Remote MPEG-J Applications
MPEG-J application that uses the MPEG-J APIs to control the underlying MPEG-4 player can either be local or
remote. In the case of a remote application that is received in the MPEG-J Elementary Stream, it must implement

the MPEGlIet interface. The lifecycle and the security model of such an application (MPEGIet) are described in the
next two sections. However, this does not apply to local applications.

11.3.3 MPEG-J Elementary Stream, Object Descriptor, and the Name Scope
11.3.3.1 MPEG-J Elementary Stream

The MPEG-J data comprising of class files or object data is streamed to the MPEG-J terminal as an MPEG-J
Elementary Stream. The class files and all the associated data in such a stream can be optionally packaged

© ISO/IEC 2001 — All rights reserved 239

ISO/IEC 14496-1:2001(E)

together. Further, the class files in the stream (irrespective of whether it is packaged or not, can be compressed.
The stream type of such an elementary stream is uniquely defined in Table 9 of this document.

11.3.3.2 MPEG-J Object Descriptor

The MPEG-J elementary stream and the application programs (MPEGIets) derive their scope and properties from
its Object Descriptor, which in turn is scoped by the initOD or the updateOD of the scene.

11.3.3.3 The Name Scope of an MPEG-J Stream

The Name Scope of the MPEGIets in an MPEG-J Stream is derived from the Object Descriptor of that MPEG-J
Elementary Stream. Similar to the node identifiers in the scene graph, all the identifiers used by an MPEGlIet in an
Elementary Stream are interpreted within the name scope of that Elementary Stream and its Object Descriptor.
Therefore, all the rules that restrict the name scope of an inline scene apply to the MPEG-J session also.

The name scope of an MPEGIet is determined by the managers it receives from the MpegjTerminal. The MPEGIet
must pass a reference to itself in the constructor of the MpegjTerminal to identify the name scope used by the
managers. A local application may use the zero-argument constructor of the MpegjTerminal to imply that the
managers should use the root name scope.

11.3.4 Life Cycle of an MPEGIet

The life cycle of an MPEGIet is very similar to that of an applet. The MPEGIet interface has init(), run(), stop(), and
destroy() methods. When an MPEGIet is received in the bitstream, it is loaded after the Start-Loading Time Stamp
and before the Load-By Time Stamp as described in section 11.4.2. At the time instant specified by the Load-By
Time Stamp, the init() method of the MPEGIet is executed. This is where all the initializations for the MPEGlet are
typically done. After initializing the MPEGIet, the run method is called as a separate thread. Similar to a Java
applet, the stop() and destroy() methods are specified in the MPEGIet interface. If the MPEG-J player receives
another MPEGIet in the bitstream, it is initialized and started as a different thread.

11.3.5 Security Model of an MPEGIet

The security model of an MPEGIet is very similar to that of an applet. However, the security manager implemented
on the player can add or relax the security restrictions. By default all the security restrictions that apply to applets
apply to the MPEGIets too. These default security restrictions of an MPEGIet are:

e MPEGIets cannot load libraries or define native methods.

e MPEGlIets can use only their own Java code, MPEG-J APIs, and the Java APIs the underlying platform pro-
vides.

e An MPEGlIet cannot normally read or write files on the host that is executing it.
e An MPEGlet cannot start any program on the host that is executing it.

e An MPEGIet cannot read certain system properties except through the Terminal Capability APIs.

11.4 Delivery of MPEG-J Data

The MPEG-J application programs are delivered to the MPEG-4 player as MPEG-4 elementary streams defined in
this document. The MPEG-J data could be classes, serialized objects, or any associated data (in the case of
packaged form). Serialized objects and other auxiliary data are expected to accompany classes that have
knowledge about handling those objects.

11.4.1 Issues in Delivery of Byte Code

The MPEG-J data (classes or objects) must be delivered in a timely fashion to the player. A header is used along
with the class files or objects (serialized) to ensure this. This header, which is called the Java Stream Header, is
attached to each class file or object data before it is passed on to the Sync Layer. After packetization, any “time
aware” transport mechanism, like FlexMux, RTP, and even MPEG2 transport stream, can be used to transport the
data to the client side.

240 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
11.4.1.1 Packet Loss

Packet loss in the case of Java byte code streaming will be a problem for the execution of the programs. The
possible options for dealing with data loss are:

Retransmission of the entire class at regular intervals in the absence of a back channel. This would also help to
facilitate random access points in the case of media. However, this may not be possible when there are a large
number of clients or when the class (or object) is huge, making retransmission prohibitive.

When a back channel is present this loss can be signaled to the server and the lost packet can be retransmitted.
There are a number of error resilient schemes, with built-in redundancy, available to recover from a partial loss of
data. For e.g., schemes like forward error correction can be used. However, currently none of these schemes are
mandated in an MPEG-J stream.

Packet Loss is not handled at the MPEG-J layer. It is assumed that the underlying transport layer is reliable enough
to ensure that there is no packet loss.

11.4.1.2 Security

To ensure the safety of the client, the byte code needs to be authentic. There are a number of security schemes
that can be used to ensure the authenticity of the byte code. Any of these schemes can be accommodated in an
IPMP Descriptor or an IPMP stream.

11.4.1.3 Compression

The Java byte code can be optionally compressed for bandwidth efficiency using the Zip compression mechanism.
Files can be both compressed and uncompressed using the java.util.zip package. The underlying compression
technique in Zip is ZLIB.?

11.4.1.4 Class Dependency

If a given class depends on other classes, the classes that it depends on have to be loaded before the dependent
class can be loaded. Similarly before an object can be instantiated, the class of which it is an instance must be
loaded first. One way of doing this would be using a packaging scheme e.g. JAR to package all the interdependent
class files together. However, this may not always be the optimal solution, especially in lossy transport channels as
a single packet loss could result in a loss of the entire package. As an alternative a simple class-dependency
mechanism is provided in the Java Stream header below. In this mechanism all the dependent classes of a
particular class are listed in the header of that class file. It is required that those classes need to be loaded before
this class can be loaded.

Two time stamps will be used in the next subsection, one signaling a time after which a particular class can be
loaded (also called Start-Loading Time Stamp), and the second signaling the time by which the class is required to
be loaded (Load-By Time Stamp). The Start-Loading Time Stamp of a class that depends on a number of other
classes has to be later than the Load-By Time Stamps of all the classes it depends on. These two timestamps
together aid in ensuring that the dependencies between classes are met.

11.4.2 Semantics of Time Stamps in MPEG-J

The Decoding Time Stamp (DTS) and Composition Time Stamp (CTS) defined in the SL header in the Sync Layer
will be used for the timely delivery of the MPEG-J Elementary Stream. The semantics of these timestamps for the
MPEG-J Elementary Stream is defined in this section.

Start-Loading Time Stamp: This is used to signal the time instant at which the process of loading a class can be
started. This time stamp is essential to avoid name space and resource conflicts. This timestamp also ensures that
the resources for loading the class would be available at the terminal. In addition, this time stamp allows the
terminal to receive classes ahead of the time at which they need to be loaded. This is carried in the SL Header as
the Decoding Time stamp (DTS).

) More information about ZLIB can be found at the ZLIB Home Page http://www.gzip.org/zlib:. ZLIB is the underlying
compression mechanism used by both gzip and zip.

© ISO/IEC 2001 — All rights reserved 241

ISO/IEC 14496-1:2001(E)

Each class is loaded by calling the loadClass(className) method of the class loader, where className is the
name of the class. The name of class does not include the .class suffix.

Load-By Time Stamp: This time stamp is used to signal the time instant by which a class should be loaded at the
MPEG-J terminal. If the received class implements the MPEGlIet interface, it will also be initialized at this instant of
time (by executing the init() method). After initialization, the MPEGIet would be run (by executing the run() method)
as a separate thread at this time instant. This time stamp is carried in the SL Header as the Composition Time
Stamp (CTS).

The above two time stamps define a window in time between which a given class shall be loaded. As described in
the previous section this window helps in resolving the class dependencies between classes. When the window
between these two timestamps are made large enough the problems due to non-uniform loading times on different
client terminals can be avoided. Again, if the channel is lossy, this window can be made large enough to allow re-
transmissions, if possible. With this mechanism the order in which the classes need to be loaded can be different
from the order in which the classes arrive on the terminal.

11.4.3 Streaming Header

11.4.3.1 Description

Each class or a packaged set constitutes a separate Access Unit.

The payload can be classes (compressed or uncompressed) or instances as serialized objects.

Classes are identified by an ID (unique to the session). This ID can be used to identify classes when it is received
multiple times. The ID of a class is also used to identify all its instances in the case of serialized objects. Java class
names are used as IDs. Since these are variable length strings, the length of the string is also included in the
header. The combination of the Class ID and its length (16 bits) are padded till the next 32 bit boundary. When
multiple classes are packaged together, the name of the packaged file is used as the ID. There is a list of required
classes, whose Load-By time need to precede the Start-Loading time of a class that requires it. A 13-bit number is
used to specify the number of classes that are required before loading/instantiating the class/object data. Each
required class is specified by its Class IDs and its length. In the packaged case, the list of required classes specify
the classes in the archive that have to be loaded. Those files in the archive that are not listed as required classes
need not be loaded by the terminal by the DTS or Load-By time.

11.4.3.2 JavaStreamHeader

11.4.3.2.1 Syntax

al i gned(32) class JavaStreanHeader {
bit(2) version;
bit(1) isC assFl ag;
bit (13) nunReqd asses;
bit(1) isPackaged ;
bi t (3) conpressionSchene;
bit(12) reserved,
Javad ass| D cl assl D;

Javad assl D reqd assl O nunReqd asses] ;

}
11.4.3.2.2 Semantics

ver si on - Version number. This is currently 00.

i sCl assFl ag — If set to 1, the payload represents a class. If set to zero, the payload does not represent a class,
but instead represents content accessible to the MPEGIet as a ClassLoader resource. This content can be a java
object or any other data that is useful to the MPEGIlet. The MPEGIet may obtain a URL to access the content by
calling the get Resour ce() method of the ClassLoader with the JavaClassID as the parameter. In addition, if
isClassFlag is set to 1 but isPackaged indicates a package, the Zip archive may contain content that does not
represent class data. Such data shall be accessible by calling get Resour ce() of the ClassLoader with the
element name as the parameter.

242 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

nunmReqCl asses - Number of classes that are required before loading this class (or before instantiation, in case of
objects).

i sPackaged — If set to 0, this indicates a single class file and not a package. 1 indicates that multiple class files
are packaged together using Zip.

conpr essi onSchene - To specify the type of compression scheme used (000 for objects, when no compression
is used, 001 when the contents are compressed using Zip, 010-111 reserved for future use by ISO).

r eser ved — Bits reserved by I1SO for future use. These bits should be OxFFF.

cl assl D— Information to identify this class or package. The definition of its type JavaClassID is defined in the next
subsection.

reqd assl D[n] — Information to identify the n required classes.
11.4.3.3 JavaClassID

11.4.3.3.1 Syntax

al i gned(32) class Javad assl D {
bit(16) |ength;
bit(8 * length) ID;

}

11.4.3.3.2 Semantics
| engt h - Number of bytes for the ID.

| D - Variable length string that identifies the class. The string is padded, so that the length of the combination of ID
length field and the ID is multiple of 32 bits.

11.5 MPEG-J API List

11.5.1 Packages for MPEG-J from MPEG

Packages are a means to organize the implementation of APIs. The MPEG-J APIs are organized as the following
packages:

0rg.iso.mpeg.mpegj.mpegj
org.iso.mpeg.mpegj.scene
0rg.iso.mpeg.mpegj.resource
org.iso.mpeg.mpegj.network

org.iso.mpeg.mpegj.decoder

© ISO/IEC 2001 — All rights reserved 243

ISO/IEC 14496-1:2001(E)

Table 54 - Categories of APIs

No |API Category and main [Explanation
classeg/interfaces
Scene
1. |Scene Graph Means by which MPEG-J applications access and manipul ate the scene graph
Resource
2. ResourceM anager Centralized facility f . -
CapabilityManager entralized faci |.y or managi pg sy er'n' r.@ources .
IAccess to the static and dynamic capabilities of the terminal.
M edia Decoder s
3. [MPDecoder IAccess and control to the decoders used to decode the audio-visual objects.
Networ k
4, NetworkM anager IAccess and control of the network components of the MPEG-4 player.
5. Section Filtering and MPEG-2 Stream specific APIs defined in Part 9 of DAVIC 1.4.1 specification. This
Service | nfor mation covers Section Filtering, Service Information, Resource Notification, and MPEG
Component APIs.

11.5.2 MPEG-J API (org.iso.mpeg.mpegj)

The MPEG-J Terminal class provides the information about the managers that are implemented in the terminal.
Each MPEGlet or application instantiates a new MpegjTerminal once it is loaded. This has methods to gain access
to all the managers, viz., SceneManager, ResourceManager, and the NetworkManager.

Although an MPEG-J Terminal is instantiated by each MPEGlet, it should not be interpreted as creating a new
terminal for each MPEGIlet. A MPEG-J Terminal implementation gives the appropriate managers to the MPEGlet.
The terminal, along with the managers, controls the environment (for e.g. the name scope) of the MPEGIet.

The ObjectDescriptor, the ESDescriptor, and the DecoderConfigDescriptor interfaces are also part of the
org.iso.mpeg.mpeg.mpegj package. These interfaces provide access and abstraction to the above descriptors.
Information about nodes, elementary streams, their types, and the decoder information can be obtained used these
APIs.

11.5.3 Scene API

The SceneGraph API provides a mechanism by which MPEG-J applications access and manipulate the scene
used for composition by the BIFS player. It is a low-level interface, allowing the MPEG-J application to monitor
events in the scene, and modify the scene tree in a programmatic way. Nodes may also be created and
manipulated, but only the fields of nodes that have been instanced with DEF are accessible to the MPEG-J
application.

This API has been designed to serve as the lowest layer of the MPEG-J scene graph manager. A terminal designer
would only need to implement this package to have MPEG-J bindings to the native scene. Other class libraries
could be specified entirely in Java to allow higher-level access to and control of the scene. Those libraries could be
supplied as packages that run above this org.iso.mpeg.mpegj.scene package, allowing their selection to be
determined based on a profile or level or could sent to the terminal in the bit stream.

11.5.3.1 Events

Events in the BIFS scene graph are identified by the two interface classes Eventln and EventOut. The
EventOutListener class can monitor them.

11.5.3.1.1 Eventin

The Eventln interface class contains an interface class definition for each node type defined in MPEG-4 systems.
These definitions enumerate all of the exposedField and eventin field types in the node, in the order they are
defined in this document.

244 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

11.5.3.1.2 EventOut

Likewise, the EventOut interface class contains an interface class definition for each node type defined in MPEG-4
systems. These definitions enumerate all of the exposedField and eventOut field types in the node, in the order
they are defined in this document.

11.5.3.1.3 EventOutListener

The Scene Graph APIs also provide an EventOutListener interface, which can be used by the scene graph
manager to identify a field value change when an eventOut is triggered.

11.5.3.2 Field Values

The scene graph APIs provide an interface for tagging objects that can return a field value. Similar to VRML, two
general field types are supported. SFField is used for single value fields and MFField is used for multiple value
fields. The supported SFField types are extended directly from the FieldValue interface, while the Multiple field
types are extended through the MFFieldValue interface.

11.5.3.3 Scene Management

The following interfaces are used to facilitate programmatic control over the MPEG-4 terminal’s native scene.

11.5.3.3.1 SceneManager

The SceneManager interface is the interface that allows access to the native scene. It contains methods for adding
and removing a ScenelListener. In order to access the BIFS scene graph, the SceneManager requires an instance
of the scene, which it obtains through notification on a ScenelListener instance. This method is the only normative
way for an MPEG-J application to obtain a scene instance.

11.5.3.3.2 ScenelListener

The ScenelListener contains a notify method which can be called by the SceneManager when the BIFS scene has
changed. The not i f y() method contains arguments to indicate the nature of the change, and an updated Scene
instance. Currently three states can be passed through the scene listener. They indicate that the scene is ready, it
has been replaced, or it has been removed.

11.5.3.3.2.1 Scene

The Scene interface acts as a proxy for the BIFS scene. It contains a get Node() method, which returns a Node
proxy for the desired node in the scene. If the requested node does not exist it throws a BadParameterException,
and if the scene is no longer valid it throws an InvalidSceneException.

11.5.3.3.2.2 Node

The Node interface acts as a proxy for a BIFS node in the scene graph. As previously mentioned, only nodes that
have been instanced by a DEF identifier are available to the MPEG-J application. Three methods are available in
the Node proxy for monitoring output events. The get Event Qut () method reads the current value of an eventOut
or exposedField of this node. There are also methods for adding and removing an EventOutListener. All three of
these methods throw a BadParameterException if they fail. The fourth method contained in the Node interface is
the sendEventin method. This is the only method available to the application for modifying the BIFS scene. It
updates the value of the eventln or exposedField of the node. It is a synchronous call that will not return until the
field is updated in the scene. The fifth method contained in the Node interface is the get NodeType() method.
This method returns an integer identifying the type of the node (such as Transform). The node type constants are
defined in the NodeType interface. All of the methods contained in the Node interface throw an
InvalidNodeException if the node is no longer valid (if it has been replaced or deleted).

11.5.3.3.2.3 NodeValue

The NodeValue interface is used to represent the values of SFNode and MFNode fields. There are three types of
NodeValue references:

e The get Node() method of the Scene interface returns a Node that acts as a proxy for a node in the BIFS
scene. This object also implements the NodeValue interface.

© ISO/IEC 2001 — All rights reserved 245

ISO/IEC 14496-1:2001(E)

e The get Event Qut () method of the Node interface may return a SFNodeFieldValue. Its getSFNodeValue
method returns a NodeValue that acts as a proxy for a child node in the BIFS scene. However, unlike the proxy
returned by the Scene’s getNode method, this proxy does not provide any way to access or modify the child
node.

¢ The NewNode interface extends NodeValue to support creation of new nodes. This interface has methods that
describe the structure of the new node.

e Sending an eventin to a SFNode field (such as the geometry field of a Shape node) replaces a sub-graph of a
BIFS scene. The value sent to the eventin may be any one of the three types of NodeValue references
enumerated above. If the value is a proxy for a node or child node, then the SFNode field value becomes a
reference to the existing node (equivalent to making a USE reference to the node). If the object implements the
NewNode interface, then a new node is created. The node type and DEF identifier of the new node are
determined by calling the get NodeType() and get Nodel D() methods (the node is not given a DEF identifier
if the get Nodel D() method returns zero). If the DEF identifier is already in use within the scene, then a
BadParameterException shall be thrown. Each field and exposedField of the node shall be initialized to the
value returned by calling get Fi el d() with the appropriate field deflID (or the field’s default value if null is
returned). This algorithm is applied recursively in the case that the field or exposedField is a SFNode or
MFNode. The recursion may form a directed acyclic graph if the same object is returned more than once.

11.5.4 Resource API

Program execution may be contingent upon the terminal configuration and its capabilites. An MPEG-J program
may need to be aware of its environment, so that it is able to adapt its own execution and the execution of the
various components, as they may be configured and running in the MPEG-4 terminal. The APIs in the
org.iso.mpeg.mpegj.resource package can be used to monitor the system resources, to listen to exceptional
conditions through the event mechanism, and handle such eventualities. The resource package helps the MPEG-4
session to adapt itself to varying terminal resources. The main components of the resource package are the
Resource Manager and the event model, capability manager to monitor dynamic and static capabilities of the
terminal and the terminal profile manager.

11.5.4.1 Resource Manager

The resource manager API is used for regulation of performance. This provides a centralized facility for managing
resources. It is a collection of a number of classes and interfaces summarized as follows.

Interfaces Classes Interfaces

Renderer

ResourceManager
MPDecoderEventGenerator MPDecoderMediaEvents MPDecoderMediaListener
MPRendererEventGenerator MPRendererMediaEvents MPRendererMediaListener

11.5.4.1.1 Overview of the Event Model

For each decoder the Resource Manager would have an instantiation of a class that implements MPDecoder or a
sub-interface. These decoder instantiations generate the different defined events for different conditions in the
terminal. The resource manager implementation can handle events if necessary in addition to the event handlers in
the application (the order of which is left to the implementation). The MPEG-J application can receive the Event
handlers as byte code in the bit stream. The Renderer optionally provides notification of exceptional conditions
(during rendering) and notification of frame completion when an application registers with it for this.

Apart from implicitly specifying the above event model the Resource Manager interface also provides access to the
capability manager, decoders and their priorities. Given a node in the scene graph, this interface provides access
to the decoder associated with that node (through its OD and ESID). It also facilitates setting and getting decoder
priorities. It also enables changing a decoder associated with a node.

11.5.4.2 Capability Manager

The Terminal Capability API is responsible for providing access to dynamic and static terminal resources. The
separation between static and dynamic terminal capabilities has been reflected in the API (the StaticCapability and
the DynamicCapability interfaces). Because applications need to be notified when terminal capabilities change, an
additional interface named TerminalObserver has been defined. The CapabilityManager class implements all these
interfaces. This CapabilityManager handles the terminal capabilities. It is responsible to register/deregister and

246 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

get/set capabilities. This design solution allows developers to dynamically handle an unlimited number of
capabilities without the burden to manage them directly.

In order for the audio-visual session to respond gracefully to these situations, MPEG-J provides mechanisms for an
MPEG-J session object to catch dynamic changes to terminal information and modify its behavior. Upon
initialization, an MPEG-J session object may subscribe with the CapabilityManager object to receive notification of
changes to dynamic terminal information that is important to that particular audio-visual session. If such information
does change during an audio-visual session, the CapabilityManager will notify the MPEG-J session of the change
through standardized interfaces. Then the MPEG-J session may respond in the manner prescribed by the content
creator. For example, consider an MPEG-J scene representing an MPEG-4 video sequence of a newscaster and a
background news clip coded as separate video objects. The content creator might desire to freeze the news clip
whenever the actual display frame rate is too slow, rather than sacrificing the quality of the newscaster in the
foreground. The content creator can specify this behavior programmatically within the media by subscribing to
notifications of frame-rate changes from the terminal. Then, when frame rate drops significantly due, for example,
to limited CPU capacity, the media object can dynamically adapt and not continually decode the news clip and
further degrade the presentation performance.

On some platforms and scenarios, it may be impossible for the terminal to guarantee the constant availability of all
of its resources. For example:

e A wireless multimedia unit may encounter widely varying communication capacities, including intermittent
connections.

e A general-purpose computer may experience varying load factors as other processes run on the system.

e Audio-visual sessions with content generated at multiple sources may cause resource contention on the
terminal.

Due to the large and increasing number of terminal capabilities all the capability that a terminal support is not
defined. The Capability class is used to handle terminal capability in a generic way. Each terminal capability is
mapped to a subclass of Capability and then managed by the CapabilityManager class. In this way the
CapabilityManager class is able to handle a variable number/type of capabilities without the need to modify/extend
it hence to modify the applications that use the CapabilityManager class.

Capability values are not mapped to a specific type such as String but they are handled as generic Java Objects.
Through the Java Reflection API (java.lang.reflect) every type (possibly added at runtime and not at compile time)
can be handled. This facility allows developers to use real types instead of flat types while maintaining the
Capability class generic.

11.5.4.3 Terminal Profile Manager

The purpose of the Profile API is to provide a facility that allows applications to find out what is the profile/level
supported by the terminal where the application runs. Once an application knows the terminal profile/level it can
decide how to behave and what capabilities can operate in the terminal environment. The TerminalProfileManager
class allows applications to query the terminal profiles.

11.5.5 Decoder API

The Decoder API facilitate basic control of all the installed decoders in an MPEG session. The decoder associated
with a specific node can be queried through the Resource Manager interface. The MPDecoder is an interface that
abstracts the most generic decoder.

The MPDecoder APIs allow starting, stopping, pausing, and resuming a decoder. It also facilitates attaching and
detaching streams from a decoder using the ESDescriptor. The Descriptor of the currently attached stream can
also be obtained.

The decoder attached to a specific node and ESID can be changed with another decoder of the same type. The
Resource Manager facilitates getting a list of available decoders of a specific type and also changing one decoder
for another, provided they are of the same type.

© ISO/IEC 2001 — All rights reserved 247

ISO/IEC 14496-1:2001(E)

11.5.6 Net API

The Network APls intend to allow the control of the network component of the MPEG-4 player. Through these APIls
Java applications can interact with network entities. Due to level of abstraction provided by the MPEG-J Network
APIs (and, in turn provided by the DMIF interface), the applications can be unaware of the details of the network
connections being used (LAN, WAN, Broadcast, local disks, etc.,) to access to a service.

MPEG-J network APIs do not allow full arbitrary usage of the DMIF and Sync Layers to avoid architectural
inconsistencies and duplication of tools.

The functionality provided by the current APl can be split into two major groups:

Network query. The ability to perform requests to the network module in order to get statistical information about
the DMIF resources used by the MPEG-4 player has been recognised as an important feature.

Channels control. A simple channel control mechanism is also provided. Using this feature an MPEG-J
application can temporarily disable or enable existing Elementary Stream channels without any negative
influence on the rest of the player. This feature fits with one of the general requirements of MPEG-J: the
capability to allow graceful degradation under limited or time varying resources.

11.5.7 Section Filter and Service Information APIs

This subclause refers to APIs normatively in the DAVIC 1.4.1 Part 9, specification. These APIs are Section
Filtering, Service Information, Resource Notification, and MPEG Component APIs, which are further described in
this section. A compliant MPEG-J Terminal apart from implementing the APIs defined in this document shall also
implement the APIs referred normatively in this section.

11.5.7.1 The Service Information (SI) API

This API (org.davic.net.dvb.si) allows inter-operable applications to access service information data from MPEG-2
streams. One example of such applications would be electronic program guides. This APl is a relatively high level
API allowing applications to access information from the Sl tables in a clean and efficient way. The specification of
this API is defined by ETSI DI/ MTA-01074, entitled Application Programming Interface (API) for DAVIC Service
Information.

11.5.7.2 The MPEG-2 Section Filter API

The objective of this API (org.davic.mpeg.sections) is to provide a general mechanism allowing access to data held
in MPEG-2 private sections. This provides a mechanism for inter-operable access to data, which is too specialized
to be supported by the high level DVB-SI API or which is not actually related to service information. The definition
of the MPEG-2 section filter API is in Annex E of DAVIC 1.4 Part 9 specification. The API definition does not specify
the lengths of the section filtering patterns. For those methods which do not specify an offset, the length of the
section filtering pattern arrays shall be 8 with their mapping on to the section header as described in the last section
of Annex E. For those methods, which include an offset, the length of the section filtering pattern arrays shall be 7.
The API definition does not specify the efficiency or effectiveness of the section filtering process. If filtering is
happening with filters set beyond the 10th byte of the total section, filtering throughputs must be supported as in
DAVIC part 10, section 115.3 with the restriction that support for filtered throughputs of more than 2 Mbits/second is
not mandatory.

11.5.7.3 The Resource Notification API

The section filter APl uses a resource notification API in the org.davic.resources package. This API provides a
standard mechanism for applications to register interest in scarce resources and to be notified of changes in those
resources or removal of those resources by the environment. The description of this API is in Annex F of DAVIC
1.4 Part 9: 1998 Information Representation.

11.5.7.4 The MPEG Component API
Various MPEG related APIs use an MPEG component API in the org.davic.mpeg.sections package. This API

provides a standard way of referring to standard MPEG features. The definition of the MPEG component API is in
Annex G of DAVIC 1.4 Part 9 specification.

248 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
11.5.8 Detailed API Listing
The normative detailed API listing can be found in the Annexes to this document:

Annex U (normative): The HTML files (javadocs) of all the APIs defined in this document along with the necessary
images in gif format.

Annex V (normative): Integrated APl document (javadocs) of all the html files. This contains the API specification
of all the APIs defined in this document.

12 Multiplexing of Elementary Streams
12.1 Introduction

Elementary stream data encapsulated in SL-packetized streams are sent/received through the DMIF Application
Interface, as specified in clause 10. Multiplexing procedures and the architecture of the delivery protocol layers are
outside the scope of ISO/IEC 14496-1. However, care has been taken to define the sync layer syntax and
semantics such that SL-packetized streams can be easily embedded in various transport protocol stacks.

The analysis of existing transport protocol stacks has shown that, for stacks with fixed length packets (e.g.,
MPEG-2 Transport Stream) or with high multiplexing overhead (e.g., RTP/UDP/IP), it may be advantageous to
have a generic, low complexity multiplexing tool that allows interleaving of data with low overhead and low delay.
This is particularly important for low bit rate applications. Such a multiplex tool is specified in this clause. Its use is
optional.

12.2 FlexMux Tool
12.2.1 Overview

The FlexMux tool is a flexible multiplexer that accommodates interleaving of SL-packetized streams with varying
instantaneous bit rate. The basic data entity of the FlexMux is a FlexMux packet, which has a variable length. One
or more SL packets are embedded in a FlexMux packet as specified in detail in the remainder of this clause. The
FlexMux tool provides identification of SL packets originating from different elementary streams by means of
FlexMux Channel numbers. Each SL-packetized stream is mapped into one FlexMux Channel. FlexMux packets
with data from different SL-packetized streams can therefore be arbitrarily interleaved. The sequence of FlexMux
packets that are interleaved into one stream are called a FlexMux Stream.

A FlexMux Stream retrieved from storage or transmission may be parsed as a single data stream. However,
framing of FlexMux packets by the underlying layer is required for random access or error recovery. There is no
requirement to frame each individual FlexMux packet. The FlexMux also requires reliable error detection by the
underlying layer. This design has been chosen acknowledging the fact that framing and error detection
mechanisms are in many cases provided by the transport protocol stack below the FlexMux.

Two different modes of operation of the FlexMux providing different features and complexity are defined. They are
called Simple Mode and MuxCode Mode. A FlexMux Stream may contain an arbitrary mixture of FlexMux packets
using either Simple Mode or MuxCode Mode. The syntax and semantics of both modes are specified below.

The delivery timing of the FlexMux Stream can be conveyed by means of FlexMux clock reference time stamps.
This functionality may be used to establish a multiplex buffer model on the delivery layer. Both the time stamps and
the MuxCode Mode require out-of-band configuration prior to usage.

12.2.2 Simple Mode
In the simple mode one SL packet is encapsulated in one FlexMux packet and tagged by an i ndex which is equal

to the FlexMux Channel number as indicated in Figure 32. This mode does not require any configuration or
maintenance of state by the receiving terminal.

© ISO/IEC 2001 — All rights reserved 249

ISO/IEC 14496-1:2001(E)

FlexMux-PDU

index | length SL-PDU
Header Payload

Figure 32 - Structure of FlexMux packet in simple mode

12.2.3 MuxCode mode

In the MuxCode mode one or more SL packets are encapsulated in one FlexMux packet as indicated in Figure 33.
This mode requires configuration and maintenance of state by the receiving terminal. The configuration describes
how FlexMux packets are shared between multiple SL packets. In this mode the i ndex value is used to
dereference configuration information that defines the allocation of the FlexMux packet payload to different
FlexMux Channels.

FlexMux-PDU
index | length |version|SL-PDU| SL-PDU | | SL-PDU
|H \ Payld|H| Payload| |H| Payload|

Figure 33 - Structure of FlexMux packet in MuxCode mode

12.2.4 FlexMux packet specification
12.2.4.1 Syntax

cl ass Fl exMuxPacket (MixCodeTabl eEntry ntt[], Fl exMixTi mi ngDescriptor FM {
unsi gned int(8) index;
bit(8) Iength;
i f (index<238) ({
SL_Packet sPayl oad;
} else if (index == 238) {
bi t (FM FCR_Lengt h) fnxC ockRef erence;
bi t (FM f nxRat eLengt h) fnxRate;
} else if (index == 239) {
bit(8) stuffing[length];
} else {
bit(4) version;
const bit(4) reserved=0b1111;
mul ti pl e_SL_Packet mnPayl oad(ntt[index-240]);
}
}

12.2.4.2 Semantics

The two modes of the FlexMux, Simple Mode and MuxCode Mode as well as special time stamp and stuffing
packets are distinguished by the value of i ndex as specified below.

i ndex —ifi ndex is smaller than 238 then
FlexMux Channel =i ndex
This range of values corresponds to the Simple Mode.
Ani ndex value of 238 indicates a FlexMux packet with clock reference information.

Ani ndex value of 239 indicates a FlexMux packet with stuffing.

250 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

An i ndex value in the range of 240 to 255 (inclusive) indicates that the MuxCode Mode is used and a MuxCode is
referenced as

MuxCode =i ndex -240
MuxCode is used to associate the payl oad to FlexMux Channels as described in the Section 12.2.3.

NOTE — Although the number of FlexMux Channels is limited to 256, the use of multiple FlexMux streams allows virtually any
number of elementary streams to be provided to the terminal.

| engt h — the length of the FlexMux packet payl oad in bytes. This is equal to the length of the single
encapsulated SL packet in Simple Mode and to the total length of the multiple encapsulated SL packets in
MuxCode Mode.

ver si on —indicates the current version of the MuxCodeTabl eEnt ry referenced by MuxCode. Ver si on is used
for error resilience purposes. If this version does not match the version of the referenced MuxCodeTabl eEntry
that has most recently been received, the FlexMux packet cannot be parsed. The implementation is free to either
wait until the required version of MuxCodeTabl eEnt r y becomes available or to discard the FlexMux packet.

sPayl oad — a single SL packet (Simple Mode).

nPayl oad - one or more SL packets that are identified using the specification of the associated
MuxCodeTabl eEnt r y[i ndex-240] (MuxCode Mode).

f mxCl ockRef er ence - contains a Clock Reference time stamp for the FlexMux stream. The OTB time value t is
reconstructed from this Clock Reference time stamp according to the following formula:

t =(f /xCl ockRef er ence/FM FCRResol ut i on)+ k*(2™ FORength/en FCRResol ut i on)
where k is the number of times that the f mxCl ockRef er ence counter has wrapped around.

f mxRat e - is the instant rate at which data from this FlexMux stream is delivered to the associated FlexMux
buffers. The rate defined by fnxRate applies to all bytes in the FlexMix C ock Reference
channel packet and each followi ng FlexMix packet until the occurrence of the next
Fl exMux C ock Reference channel packet.

st uf fi ng —one or more stuffing bytes that shall be discarded by the demultiplexer.
12.2.5 Configuration and usage of MuxCode Mode

12.2.5.1 Syntax

al i gned(8) class MuxCodeTabl eEntry {
int i, k;
bit(8) |ength;
bi t (4) MixCode;
bi t (4) version;
bi t (8) substructureCount;
for (i=0; i<substructureCount; i++) {
bi t (5) sl ot Count;
bit(3) repetitionCount;
for (k=0; k<slotCount; k++){
bit(8) flexMuxChannel [[i
bit(8) number O Bytes[[i]

[E—y—

1[LK]T;
[[KIT:
}
}
}

12.2.5.2 Semantics

The configuration for MuxCode Mode is signaled by MuxCodeTabl eEntry messages. The transport of the
MuxCodeTabl eEnt ry shall be defined during the design of the transport protocol stack that makes use of the

© ISO/IEC 2001 — All rights reserved 251

ISO/IEC 14496-1:2001(E)

FlexMux tool. Part 6 of this Final Committee Draft of International Standard defines a method to convey this
information using the DN_TransmuxConfig primitive.

The basic requirement for the transport of the configuration information is that data arrives reliably in a timely
manner. However, no specific performance bounds are required for this control channel since version numbers
allow to detect FlexMux packets that cannot currently be decoded and, hence, trigger suitable action in the
receiving terminal.

| engt h —the length in bytes of the remainder of the MuxCodeTabl eEnt ry following the | engt h element.

Mux Code — the number through which this MuxCode table entry is referenced.

versi on — indicates the version of the MuxCodeTabl eEntry. Only the latest received version of a
MuxCodeTabl eEnt ry is valid.

substruct ureCount -the number of substructures of this MuxCodeTabl eEntry.

sl ot Count — the number of slots with data from different FlexMux Channels that are described by this
substructure.
repetitionCount - indicates how often this substructure is to be repeated. A repetiti onCount zero

indicates that this substructure is to be repeated infinitely. repeti ti onCount zero is only permitted in the last
substructure of a MuxCodeTableEntry.

fl exMuxChannel [i][k] - the FlexMux Channel to which the data in this slot belongs.

nunmber Of Byt es[i][k] - the number of data bytes in this slot associated to f | exMuxChannel [i][K] . This
number of bytes corresponds to one SL packet.

12.2.5.3 Usage

The MuxCodeTabl eEnt ry describes how a FlexMux packet is partitioned into slots that carry data from different
FlexMux Channels. This is used as a template for parsing FlexMux packets. If a FlexMux packet is longer than the
template, parsing shall resume from the beginning of the template. If a FlexMux packet is shorter than the template,
the remainder of the template is ignored.

Note that the usage of MuxCode mode may not be efficient if SL packets for a given elementary stream do not
have a constant length. Given the overhead for an update of the associated MuxCodeTableEntry, usage of simple
mode might be more efficient.

Note further that data for a single FlexMux channel may be conveyed through an arbitrary sequence of FlexMux
packets with both simple mode and MuxCode mode.

EXAMPLE —

In this example we assume the presence of three substructures. Each one has a different slot count as well as repetition count.
The exact parameters are as follows:

subst ruct ur eCount =3
sl ot Count [i] = 2, 3, 2 (for the corresponding substructure)
repetitionCount [i] =3, 2, 1 (for the corresponding substructure)

We further assume that each slot configures channel number FMCn (f | exMuxChannel) with a number of bytes Bytesn
(number O Byt es). This configuration would result in a splitting of the FlexMux packet payload to:

FMC1 (Bytesl), FMC2 (Bytes?2) repeated 3 times, then
FMC3 (Bytes3), FMC4 (Bytes4), FMC5 (Bytesb) repeated 2 times, then

FMC6 (Bytes6), FMC7 (Bytes7) repeated once

252 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

The layout of the corresponding FlexMux packet would be as shown in Figure 34.

FlexMux-PDU
| | e
'ole f F|F| F |F| F |F| F F |F| F F |F| F F
d [nls| M M| M [MIM|M|M M (M| M M (M| M M
e |9]li|l c |c| c|c|] c |c| cC cC |c| c c |c| c C
X ; ol 1 |2 1 |2 1 |2]| 3 4 |5 3 4 |5 6 7
n

Figure 34 - Example for a FlexMux packet in MuxCode mode

12.2.6 Configuration and usage of FlexMux clock references

12.2.6.1 Syntax

al i gned(8) class Fl exMuxTi mi ngDescriptor {
bit(16) FCR ES |ID;
bi t (32) FCRResol uti on;
bi t (8) FCRLengt h;
bi t (8) FmxRatelength;
}

12.2.6.2 Semantics

The sequence of f nkCl ockRef er ence time stamps in a FlexMux stream constitutes a clock reference stream,
albeit with a different syntax as specified in clause 10. Elementary streams may be associated to the time base
established by this clock reference by referencing the FCR ES ID as their OCR ES ID in the
SLConf i gDescri pt or. The transport of the FIl exMuxTi ni ngDescri pt or shall be defined during the design of
the transport protocol stack that makes use of the FlexMux tool.

FCR_ES | D —isthe ES_ID associated to this clock reference stream.
FCRResol uti on —is the resolution of the object time base in cycles per second.

FCRLengt h —is the length of the f nkCl ockRef er ence field in FlexMux packets with i ndex = 238. A length of
zero shall indicate that no FlexMux packets with i ndex = 238 are present in this FlexMux stream. FCRI engt h
shall take values between zero and 64.

FrmxRat eLengt h - is the length of the f nkRat e field in FlexMux packets with i ndex = 238. FnxRat eLengt h
shall take values between 1 and 32.

12.2.6.3 Usage

The FlexMux clock reference time stamps may be used to establish and verify a multiplex buffer model. The
f mxCl ockRef er ence information determines the arrival time t(i) of individual bytes i of the FlexMux stream in the
following way:

i) = FCR(™) . i-i"
FCRResolution fmxRate(i)
where:
i is the index of any byte in the FlexMux stream for i" <i <1

i" is the index of the byte containing the last bit of the most recent f mkCl ockRef er ence field in the
FlexMux stream

© ISO/IEC 2001 — All rights reserved 253

ISO/IEC 14496-1:2001(E)
FCR(i") is the time encoded in the f nkCl ockRef er ence in units of FCRResol uti on

fmxRate(i) indicates the rate specified by the fmxRate field for byte i

12.2.7 FlexMux buffer descriptor

12.2.7.1 Syntax

al i gned(8) cl ass Fl exMuxBuf f erDescri ptor {
bit(8) flexMixChannel;
bit(24) FB_BufferSize;

}

12.2.7.2 Semantics

The size of multiplex buffers for each FlexMux channel is signaled by FI exMuxBuf f er Descri ptors. One
descriptor per FlexMux channel is required unless the Def aul t Fl exMuxBuf f er Descri ptor is used. The
transport of the FI exMuxBuf f er Descri pt or s shall be defined during the design of the transport protocol stack
that makes use of the FlexMux tool.

f I exMuxChannel -the number of a FlexMux channel.
FB_Buf f er Si ze - the size of the FlexMux buffer for this FlexMux channel in bytes.
12.2.8 Default FlexMux buffer descriptor

12.2.8.1 Syntax

al i gned(8) cl ass Defaul t Fl exMuxBuf ferDescriptor {
bi t (24) FB_Def aul t Buf ferSi ze;

12.2.8.2 Semantics

The default size of multiplex buffers for each individual channel in a FlexMux stream is signaled by the
Def aul t FI exMuxBuf f er Descri pt or . FlexMux channels that use a different buffer size may signal this using
the FI exMuxBuf f er Descri pt or. The transport of the Def aul t FI exMuxBuf f er Descri pt or shall be defined
during the design of the transport protocol stack that makes use of the FlexMux tool.

FB_Def aul t Buf f er Si ze - the default size of FlexMux buffers for this FlexMux stream in bytes.

12.2.9 FlexMux buffer model

B
/ ~
/ N
/ \
I’ / O-\\—FB ,
|
\ o,'
\ J
Rbx \ /
\ /
N 2

IFB

FB, is the FlexMux buffer for the elementary stream in FlexMux channel n
Rbx s the rate at which data enters the FlexMux buffers.

254 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

The FlexMux buffer model applies to FlexMux streams that utilize FlexMux Clock reference channel packets to
define the delivery timing of the FlexMux stream. The FlexMux stream enters the FlexMux buffer model at the rate
and timing as defined by the fmxClockReference and fmxRate fields. There may be some periods of time during
which there are no bytes at the input of the FlexMux buffer model, but the bytes of all FlexMux packets that
preceed the next FlexMux Clock reference channel packet shall be delivered to the FlexMux buffer model prior to
the delivery of any byte of the next FlexMux Clock reference channel packet.

For each FlexMux channel i the FlexMux packet is stored in FlexMux Buffer FB;. The bytes in buffer FBi are
removed at a rate specified by the InstantRate field in the SL header of the contained SL-packetized stream. Upon
removal each byte enters the elementary stream buffer DB;. The FlexMux stream shall be constructed so that the
following condition is met :

o Buffer FBi shall not overflow.

13 File Format

13.1 Introduction

The MP4 file format is designed to contain the media information of an ISO/IEC 14496 presentation in a flexible,
extensible format that facilitates interchange, management, editing, and presentation of the media. This
presentation may be ‘local’ to the system containing the presentation, or may be via a network or other stream
delivery mechanism (a TransMux).

The file format is designed to be independent of any particular TransMux while enabling efficient support for
TransMuxes in general.

13.1.1 Usage

The file format is intended to serve as a basis for a number of operations. In these various roles, it may be used in
different ways, and different aspects of the overall design exercised.

13.1.1.1 Interchange

When used as an interchange format, the files would normally be self-contained (not referencing media in other
files), contain only the media data actually used in the presentation, and not contain any information related to
streaming over TransMuxes. This will result in a small, protocol-independent, self-contained file, which contains the
core media data and the information needed to operate on it.

The following diagram gives an example of a simple interchange file, containing three streams.

mp4 file RN
7 X

moov mdat
10D trak (BIFS)

Interleaved, time-ordered,
——,]| trak (OD) BIFS, OD, video, and audio
access units

... other atoms | trak (video)

trak (audio)

Figure 35 - Simple interchange file

© ISO/IEC 2001 — All rights reserved 255

ISO/IEC 14496-1:2001(E)
13.1.1.2 Content Creation
During content creation, a number of areas of the format can be exercised to useful effect, particularly:
o the ability to store each elementary stream separately (not interleaved), possibly in separate files.

o the ability to work in a single presentation which contains MPEG-4 data and other streams (e.g. editing the
audio track in the uncompressed format, to align with an already-prepared MPEG-4 video track).

These characteristics mean that presentations may be prepared, edits applied, and content developed and
integrated without either iteratively re-writing the presentation on disc - which would be necessary if interleave was
required and unused data had to be deleted; and also without iteratively decoding and re-encoding the data -
which would be necessary if the data must be stored in an encoded state.

In the following diagram, a set of files being used in the process of content creation is shown.

mp4 file N media file

7 X BIFS access units
moov op | | trak (BIFS)] possibly un-ordered
with other unused data

trak (OD)

*-other atoms | trak (video)

mp4 file \

mdat Y

~_|, Video and audio access units
possibly un-ordered

with other unused data
... other atoms (inc. moov)

trak (audio)

Figure 36 - Content Creation MP4 File

13.1.1.3 Preparation for streaming

When prepared for streaming, the file must contain information to direct the streaming server in the process of
sending the information. In addition, it is helpful if these instructions and the media data are interleaved so that
excessive seeking can be avoided when serving the presentation. It is also important that the original media data
be retained unscathed, so that the files may be verified, or re-edited or otherwise re-used. Finally, it is helpful if a
single file can be prepared for more than one protocol, so differing servers may use it over disparate protocols.

13.1.1.4 Local presentation

‘Locally’ viewing a presentation (i.e. directly from the file, not over a streamed interconnect) is an important
application; it is used when a presentation is distributed (e.g. on CD or DVD ROM), during the process of
development, and when verifying the content on streaming servers. Such local viewing must be supported, with full
random access. If the presentation is on CD or DVD ROM, interleave is important as seeking may be slow.

13.1.1.5 Streamed presentation

When a server operates from the file to make a stream, the resulting stream must be conformant with the
specifications for the protocol(s) used, and should contain no trace of the file-format information in the file itself. The
server needs to be able to random access the presentation. It can be useful to re-use server content (e.g. to make
excerpts) by referencing the same media data from multiple presentations; it can also assist streaming if the media
data can be on read-only media (e.g. CD) and not copied, merely augmented, when prepared for streaming.

256 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

The following diagram shows a presentation prepared for streaming over a multiplexing protocol, only one hint track
is required.

mp4 file N

/ X
moov
oD | |trak (BIFS)

mdat

\ Interleaved, time-ordered,
BIFS, OD, video, and audio

|
: \ access units, and hint
..other atoms | trak (V|deo)\ instructions

trak (OD)

—>

trak (audio)

hint

Figure 37 - Hinted Presentation for Streaming

13.1.2 Design principles

The file structure is object-oriented; a file can be decomposed into constituent objects very simply, and the
structure of the objects inferred directly from their type.

Media-data is not ‘framed’ by the file format; the file format declarations which give the size, type and position of
media data units is not physically contiguous with the media data. This makes it possible to subset the media-data,
and to use it in its natural state, without requiring it to be copied to make space for framing. The meta-data is used
to describe the media data by reference, not by inclusion.

Similarly the protocol information for a particular TransMux does not frame the media data; the protocol headers
are not physically contiguous with the media data. Instead, the media data is included by reference. This makes it
possible to represent media data in its natural state, not favoring any TransMux. It also makes it possible for the
same set of media data to serve for local presentation, and for multiple TransMuxes.

The protocol information is built in such a way that the streaming servers need to know only about the protocol and
the way it should be sent; the protocol information abstracts knowledge of the media so that the servers are, to a
large extent, media-type agnostic. Similarly the media-data, stored as it is in a protocol-unaware fashion, enables
the media tools to be protocol-agnostic.

The file format does not require that a single presentation be in a single file. This enables both sub-setting and re-
use of content. When combined with the non-framing approach, it also makes it possible to include media data in
files not formatted to this specification (e.g. ‘raw’ files containing only media data and no declarative information, or
file formats already in use in the media or computer industries).

The file format is based on a common set of designs and a rich set of possible structures and usage. The same
format serves all usages; translation is not required. However, when used in a particular way (e.g. for local

presentation), profiles may be used to define the optimal structures and use of options for that usage. However,
there is no provision for profiles or levels in the current specification.

13.1.3 Design overview
13.1.3.1 Storage of elementary streams
To maintain the goals of TransMux independence, the media data is stored in its most ‘natural’ format, and not

fragmented. This enables easy local manipulation of the media data. Therefore media-data is stored as access
units, a range of contiguous bytes for each access unit.

© ISO/IEC 2001 — All rights reserved 257

ISO/IEC 14496-1:2001(E)
13.1.3.2 Handling of elementary streams

The elementary streams in an MPEG-4 presentation are stored in the media tracks as access units (a single
access unit is the definition of a ‘sample’ for an MPEG-4 media stream). This is true for all stream types in this
draft, including such ‘meta-information’ streams as Object Descriptor and the Clock Reference. The consequences
of this are, on the positive side, that the file format treats all streams equally; on the negative side, this means that
there are ‘internal’ cross-links between the streams. This means that adding and removing streams from a
presentation will involve more than adding or deleting the track and its associated media-data. Not only must the
stream be placed in, or removed from, the scene, but also the object descriptor stream may need updating.

In a transmitted bit-stream, the access units in the SL Packets are transmitted on byte boundaries. This means
that hint tracks will construct SL Packet headers using the information in the media tracks, and the hint tracks will
reference the access units from the media track.

The SLConfigDescriptor for the media track shall be stored in the file using a default value (predefined = 2), except
when the Elementary Stream Descriptor refers to a stream through a URL, i.e. the referred stream is outside the
scope of the MP4 file. In that case the SLConfigDescriptor is not constrained to this predefined value.

13.1.3.3 Handling of FlexMux

An intermediate, optional, fragmentation and packetization step, called FlexMux, has been defined in this
document. Some TransMuxes may carry a FlexMux stream rather than packetized elementary streams. Flexmux
may be employed for a variety of purposes, including, but not limited to:

e reducing wasted network bandwidth caused by SL Packet header overhead when the payload is small;

e reducing required server resources when providing many streams, by reducing the number of disk reads or
network writes.

The process of building FlexMux PDUs is necessarily aware of the characteristics of the TransMux into which the
FlexMux must be placed. It is not therefore possible to design a TransMux-independent handling of FlexMux.
Instead, in those TransMuxes where FlexMux is used, the hint tracks for that TransMux will encapsulate and
include the formation of FlexMux packets. It is expected that the design of the hint tracks (as defined in Section
13.2.2.2) will, in this case, closely reflect the way that FlexMux is used. For example, a compact table resembling
the MuxCode (a method used to associate the payload to FlexMux Channels) mode may be needed if the
interleave offered by that mode is needed.

Note that in some cases, it may not be possible to create a static FlexMux multiplex via a hint track. Notably, if
stream selection is dynamic (for example, based on application feedback) or the choice of muxcode modes or other
aspects of Flexmux is dynamic, the FlexMux is therefore created dynamically. This is a necessary cost of run-time
multiplexing. It may be difficult for a server to create such a multiplex dynamically at runtime, but with this cost
comes added flexibility. A server that wished to provide such functionality could weigh the costs and benefits, and
choose to perform the multiplexing without the aid of hint tracks.

Several ISO/IEC 14496 structures are intrinsically linked to FlexMux, and therefore must be addressed in the
context of a FlexMux-aware hint track. For example, a stream map table must be supplied to the receiving terminal
which maps FlexMux channel IDs to elementary stream IDs. Similarly, if the MuxCode mode of FlexMux is used, a
MuxCode mode structure for each MuxCode index used must be defined and supplied to the terminal.

These mappings and definitions may change over time, and there is no normative way in ISO/IEC 14496 to supply
these to the terminals; instead, some mechanism, associated with the overall system design or TransMux used,
must be employed. The hinter must store the mappings and definitions. Because they are intimately associated

with a particular time-segment of a particular hint track, it is recommended that they be placed in the sample
description(s) for that hint track. This description would normally be in the form of:

e atable mapping FlexMux channels to elementary stream IDs.
o aset of MuxCode mode structure definitions.

It is recommended further that a format such as that in section 12.2.5, be used for the MuxCode mode definitions.

al i gned(8) class MuxCodeTabl eEntry {
i nt i, k;

258 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

bit(8) |ength;
bi t (4) MixCode;
bit(4) version;
bi t (8) substructureCount;
for (i=0; i<substructureCount; i++) {
bit (5) sl otCount;
bit(3) repetitionCount;
for (k=0; k<slotCount; k++){
bit(8) flexMuxChannel [[i
bit(8) numberOFBytes[[i]
}

[Em—p—

1[[K]T;
[LKTT:

}
}

Special attention must also be taken when pausing or seeking a stream that is being transported as part of a
FlexMux stream. Pausing or seeking any component stream of a FlexMux must necessarily pause or seek all the
streams. When seeking, care must be taken with random access points. These may not be aligned in time in the
streams which form the FlexMux, which means that any seek operation cannot start them all at a random access
point. Indeed, the random access points of the FlexMux itself are necessarily rather poorly defined under such
circumstances.

It may be necessary for the server to:

e examine the track references to determine the base media tracks (elementary streams) which are formed into
the FlexMux;

o find the latest time before the desired seek point such that there is a random access point for all the streams
between that time and the seek point, by examining each stream separately;

e transmit the FlexMux stream from that time.

This will ensure that the terminal has received a random access point for all streams at or prior to the desired seek
time. However, it may have to discard data for those streams which had data received before the random access
points.

13.1.3.4 Handling of TransMuxes

The file format supports streaming of media data over a network as well as local playback. The process of sending
protocol data units is time-based, just like the display of time-based data, and is therefore suitably described by a
time-based format. A file or ‘movie’ that supports streaming includes information about the data units to stream.
This information is included in additional tracks of the file called “hint” tracks.

Hint tracks contain instructions to assist a streaming server in the formation of packets for transmission. These
instructions may contain immediate data for the server to send (e.g. header information) or reference segments of
the media data. These instructions are encoded in the file in the same way that editing or presentation information
is encoded in a file for local playback. Instead of editing or presentation information, information is provided which
allows a server to packetize the media data in a manner suitable for streaming using a specific network transport or
TransMux.

The same media data is used in a file that contains hints, whether it is for local playback, or streaming over a
number of different TransMuxes. Separate ‘hint’ tracks for different TransMuxes may be included within the same
file and the media will play over all such TransMuxes without making any additional copies of the media itself. In
addition, existing media can be easily made streamable by the addition of appropriate hint tracks for specific
TransMuxes. The media data itself need not be recast or reformatted in any way.

This approach to streaming is more space efficient than an approach that requires that the media information be
partitioned into the actual data units which will be transmitted for a given transport and media format. Under such
an approach, local playback requires either re-assembling the media from the packets, or having two copies of the
media—one for local playback and one for streaming. Similarly, streaming such media over multiple TransMuxes
using this approach requires multiple copies of the media data for each transport. This is inefficient with space,
unless the media data has been heavily transformed for streaming (e.g., by the application of error-correcting
coding techniques, or by encryption).

© ISO/IEC 2001 — All rights reserved 259

ISO/IEC 14496-1:2001(E)
13.1.3.5 TransMux ‘hint’ tracks
Support for streaming is based upon the following three design parameters:

e The media data is represented as a set of network-independent standard tracks, which may be played, edited,
and so on, as normal;

e There is a common declaration and base structure for server hint tracks; this common format is protocol
independent, but contains the declarations of which protocol(s) are described in the server track(s);

e There is a specific design of the server hint tracks for each TransMux that may be transmitted; all these
designs use the same basic structure. For example, there may be designs for RTP (for the Internet) and
MPEG-2 transport (for broadcast), or for new standard or vendor-specific protocols.

The resulting streams, sent by the servers under the direction of the hint tracks, need contain no trace of file-
specific information. This design does not require that the file structures or declaration style, be used either in the
data on the wire or in the decoding station. For example, a file using H.261 video and DVI audio, streamed under
RTP, results in a packet stream which is fully compliant with the IETF specifications for packing those codings into
RTP.

The hint tracks are built and flagged so that when the presentation is viewed directly (not streamed), they may be
ignored.

The specific design of the media data (hint samples), and sample descriptions for a particular TransMux is not
defined by this part of ISO/IEC 14496. Instead, the designer of the system using that TransMux, or the body that
owns and defines the TransMux, would define these tracks. Clearly there is an advantage in having standard hint
track formats for standard TransMuxes, and their development and publication is encouraged.

13.2 File organization
13.2.1 Presentation structure
13.2.1.1 File Structure

A presentation may be contained in several files. One file contains the meta-data for the whole presentation, and is
formatted to this specification. This file may also contain all the media data, whereupon the presentation is self-
contained. The other files, if used, do not have to be formatted to this specification; they can contain used or
unused media data, or other information. This specification concerns the structure of the presentation file only. The
format of the media-data files is constrained by this specification only in that the media-data in the media files must
be able to be described by the meta-data defined here.

If a MP4 file contains hint tracks, the media tracks which reference the media data from which the hints were built
must remain in the file, even if the data within them is not directly referenced by the hint tracks.

13.2.1.2 Object Structure

The file is structured as a sequence of objects; some of these objects may contain other objects. The sequence of
objects in the file must contain exactly one presentation meta-data wrapper (the movie atom). It is usually at the
beginning or end of the file, to permit its easy location. The other objects that are found at this level may be free
space, or media data atoms.

The fields in the objects are stored in network byte order (big-endian format).

13.2.1.3 Meta Data and Media Data

The meta-data is contained within the meta-data wrapper (the movie atom); the media data is contained either in
the same file, within media-data atom(s), or in other files. The media data is composed of access units; the media
data objects, or media data files, may contain other unreferenced information.

13.2.1.4 Track Identifiers

The track identifiers used in an MP4 file are unique within that file; no two tracks may use the same identifier.

260 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

Each elementary stream in the file is stored as a media track. The lower two bytes are the elementary stream
identifier (ES_ID). The upper two bytes are zero. Hint tracks may use track identifier values in the same range, if
this number space is adequate (which it generally is). However, hint track identifiers may also use larger values of
track identifier, as their identifiers are not mapped to elementary stream identifiers. Thus very large presentations
can use the entire 16-bit number space for elementary stream identifiers.

The next track identifier value in the movie header generally contains a value one greater than the largest track
identifier value found in the file. This enables easy generation of a track identifier under most circumstances.
However, if this value is equal to or larger than 65535, and a new media track is to be added, then a search must
be made in the file for a free track identifier. If the value is all 1s (32-bit maxint) then this search is needed for all
additions.

If it is desired to add a track with a known track identifier (elementary stream identifier) then the file must be
searched to ensure that there is no conflict. Note that hint tracks can be re-numbered fairly easily while more care
should be taken with media tracks, as there may be references to their ES_ID (track ID) in other tracks.

Note that if it is desired to have hint tracks have track IDs outside the allowed range for elementary stream tracks,
then next track ID will document the next available hint track ID. Since this is larger than 65535, a search will then
always be needed to find a valid elementary stream track ID.

If two presentations are merged, then there may be conflict between their track IDs. In that case, one or more
tracks will have to be re-numbered. There are two actions to be taken here:

e Changing the ID of the track itself, which is easy (track ID in the track header).
e Changing pointers to it.

The pointers may only occur in the file format structure itself. The file format uses track IDs only through track
references, which are easily found and modified. Track IDs become ES_IDs in the MPEG-4 data, and ES_IDs
occur within the OD Stream. Since all pointers to ES _IDs in the OD stream are replaced by means of track
references there is no need to inspect the OD stream for cross-references within MPEG-4 streams.

Note that in ES_DescriptorRemove and IPI_DescrPointer it is a track reference index (using references of type
mpod and ipir respectively — see subclause 13.2.3.7.2) that is stored in the file, and the tag values are specific to
the file format (ES_DescrRemoveRefTag and IPI_DescrPointerRefTag). These reference indexes should be
replaced with the ES_ID when hinting or serving, and the tag values adjusted.

13.2.1.5 Synchronization of streams

In the absence of explicit declarations to the contrary, tracks (streams) coming from the same file should be
presented synchronized. This means that hinters and/or servers should either pick one of the streams to serve as
the OCR source for the others or add an OCR stream to associate all the streams with it. Track references of type
'sync' can be used in the file to defeat the default behavior. In MPEG-4 the OCRStreamFlag and OCR_ES ID
fields in the ESDescriptor govern the synchronization relationships. The mapping of MP4 structures into those
fields shall obey the following rules:

e The MPEG-4 ESDescriptor, as stored in the file, usually contains OCRStreamFlag set to FALSE, and no
OCR_ES_ID. If an OCR_ES _ID is set, it should be used as is without interpretation or inspection; this case is
normally used to synchronize to streams outside the file.

e If a track (stream) contains a track reference of type 'sync’ whose value is 0, then the hinter or server shall set
the OCRStreamFlag field in the MPEG-4 ESDescriptor to FALSE and shall not insert any OCR_ES_ID field.
This means that this stream is not synchronized to another, but other streams can be synchronized to it.

e If atrack (stream) contains a track reference of type 'sync' whose value is not 0, then the hinter or server shall
set the OCRStreamFlag field in the MPEG-4 ESDescriptor to TRUE and shall insert an OCR_ES_ID field with
the same value contained in the 'sync' track reference. This means that this stream is synchronized to the
stream indicated in the OCR_ES_ID. Note that other streams may also be synchronized to the same stream,
either explicitly or implicitly.

e If a track (stream) does not contain a track reference of type 'sync’, then the default behavior applies. The
hinter or server shall set the OCRStreamFlag field in the MPEG-4 ESDescriptor to TRUE and shall insert an

© ISO/IEC 2001 — All rights reserved 261

ISO/IEC 14496-1:2001(E)

OCR_ES_ID field with a value selected based on the rules below. This means that this stream is synchronized
to the stream indicated in the OCR_ES_ID. The rules for selecting the OCR_ES_ID are as follows:

e if no track (stream) in the file contains a track reference of type 'sync’, then the hinter picks one trackld
and uses that value for the OCR_ES_ID field of all ESDescriptors. There is one possible exception
where the ESDescriptor of the stream which corresponds to that trackld, for which the OCRStreamFlag
may be set to FALSE.

e if one or more tracks (streams) in the file contain a track reference of type 'sync', and all such track
references indicate consistently a single trackld, then the hinter uses that trackld. Note that in a track
reference of type 'sync' the value 0 is equivalent to the trackld of the track itself.

e if two or more tracks (streams) in the file contain a track reference of type 'sync’, and such track
references do not indicate a single trackld, then the hinter cannot make a deterministic selection and
the behavior is undefined. Note again that in a track reference of type 'sync' the value 0 is equivalent to
the trackld of the track itself.

13.2.2 Media Data Structure
13.2.2.1 Elementary Stream Tracks

In the file format, the media data is stored as access units; for each track the entire ES-descriptor is stored as the
sample description or descriptions. The SLConfigDescriptor is stored according to a default value (predefined = 2)
except when the ES-descriptor contains a URL to point to an elementary stream outside the scope of the MP4 file.

Note that the SL Packet header and payload are byte-aligned, so the placement of the header during hinting is
possible without bit shifting, as each SL Packet and corresponding contained access unit will both start on byte
boundaries.

Note also that an access unit must be stored as a contiguous set of bytes. This greatly facilitates the fragmentation
process used in hint tracks. The file format can describe and use media data stored in other files, however this
restriction still applies. Therefore if a file is to be used which contains ‘pre-fragmented’ media data (e.g. a FlexMux
stream on disc), the media data will need to be copied to re-form the access units, in order to import the data into
this file format.

The ESDescriptor for a stream within the scope of the MP4 file as described in this document is stored in the
sample description and the fields and included structures are restricted as follows:

e ES | D- setto 0 as stored; when built into a TransMux, the lower 16 bits of the trackID is used.

e streanDependenceFl ag — set to 0 as stored; instead, track references of type ‘dpnd’ are used.
e URLfIl ag — set to false, as the stream is in the file, not remote.

e SLConfigDescriptor -is predefined type 2.

e QOCRSt r eantl ag — set to false in the file.

Note that the QoSDescriptor also may need re-writing for transmission as it contains information about PDU sizes
etc.

13.2.2.1.1 Object Descriptors

The initial object descriptor and object descriptor streams are handled specially within the file format. Object
descriptors contain ES descriptors, which in turn contain TransMux specific information. In addition, to facilitate
editing, the information about a track is stored as an ESDescriptor in the sample description within that track. It
must be taken from there, re-written as appropriate, and transmitted as part of the OD stream when the
presentation is streamed.

As a consequence, ES descriptors are not stored within the OD track or initial object descriptor. Instead, the initial
object descriptor has a descriptor used only in the file, containing solely the track ID of the elementary stream.
When used, an appropriately re-written ESDescriptor from the referenced track replaces this descriptor. Likewise,
OD tracks are linked to ES tracks by track references. Where an ES descriptor would be used within the OD track,

262 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

another descriptor is used, which again occurs only in the file. It contains the index into the set of mpod track
references that this OD track owns. A suitably re-written ESDescriptor replaces it by the hinting of this track.

The ES_ID_Inc is used in the initial object descriptor atom:

class ES_ID Inc extends BaseDescriptor : bit(8) tag=ES IDl ncTag {
unsigned int(32) Track_ID; /1 IDof the track to use
}

ES I D_IncTag = OXOE is reserved for file format usage.
The ES_ID_Refis used in the OD stream:

class ES I D Ref extends BaseDescriptor : bit(8) tag=ES_ | DRef Tag {
bi t (16) ref_index; // track ref. index of the track to use
}

ES ID RefTag = OxOF is reserved for file format usage.

MP4_| OD_Tag = Ox10 is reserved for file format usage.

MP4_OD Tag = Ox11 is reserved for file format usage.

| PL_Descr Poi nterRef Tag = 0x12 is reserved for file format usage.

ES Descr RenobveRef Tag = 0x07 is reserved for file format usage (conmand tag).

NOTE - The above tag values are defined in subclause 8.2.2.2 Table 1 and subclause 8.2.3.2 Table 2, and the actual values
should be referenced from those tables.

A hinter may need to send more OD events than actually occur in the OD track: for example, if the ES_description
changes at a time when there is no event in the OD track. In general, any OD events explicitly authored into the OD
track should be sent along with those necessary to indicate other changes. The ES descriptor sent in the OD track
would be taken from the description of the temporally next sample in the ES track (in decoding time).

13.2.2.2 Hint Tracks

Hint tracks are used to describe to a server how to serve the elementary stream data in the file over TransMuxes.
Each TransMux has its own hint track format. The format of the hints is described by the sample description for the
hint track. Most TransMuxes will need only one sample description format for each track.

Servers find their hint tracks by first finding all hint tracks, and then looking within that set for hint tracks using their
protocol (sample description format). If there are choices at this point, then the server chooses on the basis of
preferred protocol or by comparing features in the hint track header or other protocol-specific information in the
sample descriptions.

Hint tracks construct TransMuxes by pulling data out of other tracks by reference. These other tracks may be hint
tracks or elementary stream tracks. The exact form of these pointers is defined by the sample format for the
protocol, but in general they consist of four pieces of information: a track reference index, a sample number, an
offset, and a length. Some of these may be implicit for a particular protocol. Note that these ‘pointers’ always point
to the actual source of the data. If a hint track is built ‘on top’ of another hint track, then the second hint track will
have direct references to the media track(s) used by the first where data from those media tracks is placed in the
TransMux.

All hint tracks use a common set of declarations and structures.

e Hint tracks are linked to the elementary stream tracks they carry, by track references of type ‘hint’
e They use a handler-type of ‘hint’ in the handler reference atom

e They use a hint media header atom

e They use a hint sample entry in the sample description, with a nhame and format unique to the protocol they
represent.

Hint tracks may be created by an authoring tool, or may be added to an existing presentation by a hinting tool.
Such a tool serves as a ‘bridge’ between MPEG-4 and the protocol, since it intimately understands both. This
permits authoring tools to understand MPEG-4, but not protocols, and for servers to understand protocols (and their
hint tracks) but not the details of MPEG-4 data.

© ISO/IEC 2001 — All rights reserved 263

ISO/IEC 14496-1:2001(E)
13.2.3 Meta-data Structure (Objects)

The following represents the subset of the QuickTime file specification that is required to define an MP4 file. An
object in QuickTime terminology is an Atom. Atoms not explicitly defined in this standard may be ignored.

Atoms start with a header that gives both size and type. The header permits compact or extended size (32 or 64
bits unsigned integer) giving the size of the object in bytes and compact or extended types (32 bits unsigned
integer or full UUIDs). The standard MPEG-4 atoms all use compact types (32-bit) normally interpreted and
presented as four printable characters, for ease of identification. Most atoms will use the compact (32-bit) size.
Typically only the media data atom(s) may need the 64-bit size.

Note that the size is the entire size of the atom, including the size and type header, fields, and all contained atoms.
This facilitates simplified parsing of the file. A zero size field, allowed only at the top-level atoms, indicates that the
last atom in the file which extends to the end of the file. This is normally only used for media data (mdat) atoms.
Note also that all indexes start with the value one rather than zero.

al i gned(8) class Atom (unsigned int(32) atontype,
optional unsigned int(8)[16] extended-type) {
unsi gned int(32) size;
unsi gned int(32) type = atontype;
if (size==1) {
unsi gned int(64) |argesize;

}
if (atontype=="uuid) {

unsigned int(8)[16] usertype = extended-type;
}

}

The semantics of these two fields are:

si ze - is an integer that specifies the number of bytes in this atom including all its fields and contained atoms;
if size is set to 1 then the actual size is given by the large size field.

type - identifies the atom type. Standard atoms use a compact type that is normally four printable characters
to permit ease of identification, and this is shown in the atoms below. User extensions use an extended
type. In this case the type field is set to ‘uuid’.

Type fields not defined here are reserved. Private extensions shall be achieved through the ‘uuid’ type. The
following types are reserved and will either not be used or will be used only in their existing sense in future versions
of this specification to avoid conflict with existing content using earlier pre-standard versions of this format:

clip, crgn, matt, kmat, pnot, ctab, |oad, inmap; track reference types tntd, chap,
scpt, ssrc.

Many objects also contain a version number and flags field:

aligned(8) class Full Atom(unsigned int(32) atonmtype, unsigned int(8) v, bit(24) f)
extends Aton{atontype) {
unsi gned int(8) version = v;
bi t (24) flags = f;

}

The semantics of these two fields are:

ver si on -is an integer that specifies the version of this format of the atom.
fl ags -isamap of flags.

In a number of atoms in this specification, there are two variant forms: version 0 using 32-bit fields, and version 1
using 64-bit sizes for those same fields. In general, if a version 0 atom (32-bit field sizes) can be used, it should be;
version 1 atoms should be used only when the 64-bit field sizes they permit, are required.

For convenience during content creation there are creation and modification times stored in the file. These can be

32-bit or 64-bit numbers, counting seconds since midnight, Jan. 1, 1904, which is a convenient date for leap-year
calculations. 32 bits are sufficient until approximately year 2040.

264 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

Fields shown as reserved in the atom descriptions should be initialized to the given value on atom creation, copied
un-inspected when atoms are copied, and ignored on reading.

An overall view of the normal encapsulation structure is provided in the following table.

The table shows atoms that may occur at the top-level in the left-most column; indentation is used to show possible
containment. Thus, for example, a track header (tkhd) is found in a track (trak), which is found in a movie (moov).
Not all atoms need be used in all files; the mandatory atoms are marked with an asterisk (*). See the description of
the individual atoms for a discussion of what must be assumed if the optional atoms are not present.

Note that user data objects may be found in moov or trak atoms, and objects using an extended type may be
placed in a wide variety of containers, not just the top level.

Table 55 - Overview of Atom Encapsulation Structure

Moov * 113.2.3.1 container for all the meta-data
mvhd * 113.2.3.3 movie header, overall declarations
iods * 113.2.34 object descriptor
trak * 113.2.3.4.2 |container for an individual track or stream
tkhd * 113.2.3.6 track header, overall information about the track
tref 13.2.3.7 track reference container
edts 13.2.3.25 |edit list container
elst 13.2.3.26 |an edit list
mdia *]13.2.3.8 container for the media information in a track
mdhd * 13.2.3.9 media header, overall information about the media
hdlr 13.2.3.10 |handler, at this level, the media (handler) type
minf * |13.2.3.11 |media information container
vmhd 13.2.3.12.1 |video media header, overall information (video track only)
smhd 13.2.3.12.2 |sound media header, overall information (sound track only)
hmhd 13.2.3.12.3 |hint media header, overall information (hint track only)
<mpeg> 13.2.3.12.4 |mpeg stream headers
dinf * 113.2.3.13 |data information atom, container
dref * 113.2.3.14 |data reference atom, declares source(s) of media in track
stbl * 113.2.3.15 |sample table atom, container for the time/space map
stts * 13.2.3.16.1 |(decoding) time-to-sample
ctts 13.2.3.16.2 |composition time-to-sample table
stss 13.2.3.21 |sync (key, I-frame) sample map
stsd * 113.2.3.17 |sample descriptions (codec types, initialization etc.)
stsz * 113.2.3.18 |sample sizes (framing)
stsc 13.2.3.19 |sample-to-chunk, partial data-offset information
stco 13.2.3.20 [chunk offset, partial data-offset information
stsh 13.2.3.22 |shadow sync
stdp 13.2.3.23 |degradation priority
mdat 13.2.3.2 Media data container
free 13.2.3.24 |free space
skip 13.2.3.24 |free space
udta 13.2.3.27 |user-data, copyright etc.

13.2.3.1 Movie Atom

Atom Type: ‘mooVv’
Container: File
Mandatory: Yes
Quantity: Exactly one

The meta-data for a presentation is stored in the single Movie Atom that occurs at the top-level of a file. Normally
this atom is the first or last in the sequence of atoms in a file, though this is not required.

13.2.3.1.1 Syntax

al i gned(8) class MvieAt om extends Aton(‘ noov’){

© ISO/IEC 2001 — All rights reserved 265

ISO/IEC 14496-1:2001(E)
13.2.3.2 Media Data Atom

Atom Type: ‘mdat’

Container: File
Mandatory: No
Quantity: Any number

This atom contains the media data. In elementary stream tracks, this atom will contain MPEG-4 data as access
units. A presentation may contain zero or more media data atoms. The actual media data follows the type field; its
structure is described by the meta-data (see particularly the sample table).

In large presentations, it may be desirable to have more data in this atom than a 32-bit size would permit. In this
case, the large variant of the size field, above, is used.

NOTE - there may be any number of these atoms in the file (including zero, if all the media data is in other files). The meta-data
refers to media data by its absolute offset within the file (see the chunk offset atom); so mdat headers and free space may easily
be skipped, and files without any atom structure may also be referenced and used.

13.2.3.2.1.1 Syntax

al i gned(8) class Medi aDat aAt om extends Aton(‘ ndat’) {
bit(8) data[];

13.2.3.2.1.2 Semantics
dat a - is the contained media data

13.2.3.3 Movie Header Atom

Atom Type: ‘mvhd’

Container: Movie Atom (‘mooV’)
Mandatory: Yes
Quantity: Exactly one

This atom defines overall information that is media-independent, and relevant to the entire presentation considered
as a whole.

13.2.3.3.1 Syntax

al i gned(8) cl ass Mvi eHeader At om (unsigned int(32) version) extends Full Atom(‘mvhd', version,
0) {
if (version==1) {
unsigned int(64) creation-ting;
unsi gned int(64) nodification-tine,;
unsigned int(32) tinmescale;
unsigned int(64) duration;
} else { // version==0
unsi gned int(32) creation-tinme;
unsigned int(32) nodification-tineg;
unsi gned int(32) tinmescale;
unsigned int(32) duration;
}
const bit(32)reserved
const bit(16)reserved
const bit(16)reserved 0;
const unsigned int(32)[2] reserved = 0;
const bit(32)[9] reserved =
{ Ox00010000, 0, O, 0, Ox00010000, O, O, 0O, 0x40000000 };
const bit(32)[6] reserved = 0;
unsigned int(32) next-track-ID,

0x00010000;
0x0100;

266 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
13.2.3.3.2 Semantics
ver si on -is an integer that specifies the version (0 or 1 in this draft).

creation-tine -is an integer which declares the creation time of the presentation (in seconds since midnight,
Jan. 1, 1904.

nodi fication-tinme - is an integer which declares the most recent time the presentation was modified (in
seconds since midnight, Jan. 1, 1904.

ti mescal e - is an integer which specifies the time-scale for the entire presentation; this is the number of time
units which pass in one second. A time coordinate system that measures time in sixtieths of a second, for example,
has a time scale of 60.

duration -is an integer which declares length of the presentation (in the scale of the timescale). Note that this
property is derived from the presentation’s tracks. The value of this field corresponds to the duration of the longest
track in the presentation.

next-track-1D - is an integer which indicates a value to use for the track ID of the next track to be added to
this presentation. Note that 0 is not a valid track ID value. This must be larger than the largest track-1D in use. If
this value is equal to or larger than 65535, and a new media track is to be added, then a search must be made in
the file for a free track identifier that will fit into 16 bits. If the value is all 1s (32-bit maxint) then this search is
needed for all additions.

13.2.3.4 Object Descriptor Atom

Atom Type: ‘iods’

Container: Movie Atom (‘moov’)
Mandatory: Yes

Quantity: Exactly one

This object contains an Object Descriptor or an Initial Object Descriptor.
There are a number of possible file types based on usage, depending on the descriptor:
e Presentation, contains I0OD which contains a BIFS stream (MP4 file)
e Sub-part of a presentation, contains an IOD without a BIFS stream (MP4 file)
e Sub-part of a presentation, contains an OD (MP4 file)
o Free-form file, Referenced by MP4 data references (free-format)
NOTE - The first three are MPA4 files, the last file is not necessarily an MP4 file, as it is free-format.
13.2.3.4.1 Syntax
al i gned(8) class ObjectDescriptorAtom
extends Full Aton{‘iods’, version = 0, 0) {
Obj ect Descri ptor OD;
}
The syntax for ObjectDescriptor and InitialObjectDescriptor is described in 8.6.2 through 8.6.4.
13.2.3.4.2 Semantics

The semantics for ObjectDescriptor and InitialObjectDescriptor are described in 8.6.2 through 8.6.4.. The contents
of this atom are formed by taking an object descriptor or initial object descriptor and:

e changing the tag to MP4_OD_Tag or MP4_IOD_Tag as appropriate for this object

e replacing the ES descriptors with ES_ID_Inc referencing the appropriate track.

© ISO/IEC 2001 — All rights reserved 267

ISO/IEC 14496-1:2001(E)
13.2.3.5 Track Atom

Atom Type: ‘trak’

Container: Movie Atom (‘mooV’)
Mandatory: Yes
Quantity: 1 or more

This is a container atom for a single track of a presentation. A presentation may consist of one or more tracks.
Each track is independent of the other tracks in the presentation and carries its own temporal and spatial
information. Each track will contain its associated media atom.

Tracks are used for two purposes: (a) to contain elementary media data (media tracks) and (b) to contain
packetization information for streaming protocols (hint tracks).

There must be at least one media track within a MP4 file; and all the media tracks that contributed to the hint tracks
present must remain in the file, even if the media data within them is not referenced by the hint tracks. After
deleting all hint tracks, the entire un-hinted presentation must remain.

13.2.3.5.1 Syntax

aligned(8) class TrackAtom extends Aton(‘trak’) {

13.2.3.6 Track Header Atom

Atom Type: ‘tkhd’

Container: Track Atom (‘trak’)
Mandatory: Yes
Quantity: Exactly one

The track header atom specifies the characteristics of a single track. Exactly one track header atom is contained in
a track.

In the absence of an edit list, the presentation of a track starts immediately. An empty edit is used to offset the start
time of a track.

13.2.3.6.1 Syntax

al i gned(8) cl ass TrackHeader At om

extends Ful | Aton(‘tkhd , version, flags){

if (version==1) {
unsigned int(64) creation-tineg;
unsi gned int(64) nodification-tineg,;
unsigned int(32) track-1D;
const unsigned int(32) reserved = O;
unsigned int(64) duration;

} else { // version==0
unsigned int(32) creation-tineg;
unsi gned int(32) nodification-tineg,;
unsigned int(32) track-1D;
const unsigned int(32) reserved = O;
unsigned int(32) duration;

}

const unsigned int(32)[3] reserved = 0;
const bit(16)reserved = { if track_is_audio 0x0100 el se 0};
const unsigned int(16) reserved = O;
const bit(32)[9] reserved =

{ oxo00010000, O, 0O, 0O, 0x00010000, O, O, O, 0x40000000 };
const bit(32)reserved = {

if track_is_visual 0x01400000 el se 0 };
const bit(32)reserved = {

if track_is_visual O0xO0F00000 el se 0};

268 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
13.2.3.6.2 Semantics
Ver si on - is an integer that specifies the version (0 or 1 in this draft).
fl ags -is a 24-bit integer with flags; the following values are defined.

Track enabl ed - Indicates that the track is enabled. Flag value is 0x000001. A disabled track (the low bit is
zero) is treated as if it were not present.

creation-tine -is an integer which declares the creation time of this track (in seconds since midnight, Jan. 1,
1904).

nmodi fication-tine -is an integer which declares the most recent time the track was modified (in seconds
since midnight, Jan. 1, 1904).

track-1D -is an integer which uniquely identifies this track over the entire lifetime of this presentation. Track Ids
are never re-used and cannot be zero.

duration -is an integer that indicates the duration of this track (in the movie’s time coordinate system). Note that
this property is derived from the track’s edits. The value of this field is equal to the sum of the durations of all of the

track’s edits. If there is no edit list, then the duration is the sum of the sample durations, converted into the movie
time-scale.

13.2.3.7 Track reference atom

Atom Type: “tref’

Container: Track Atom (‘trak’)
Mandatory: No
Quantity: Oor1l

The track reference atom provides a reference from the containing stream to another stream in the presentation.
These references are typed. In particular, a ‘hint’ reference links from the containing hint track to the media data
that it hints. Exactly one track reference atom can be contained within the track atom.

If this atom is not present, the track is not referencing any other track in any way. Note that the reference array is
sized to fill the reference type atom.

Track references with a reference index of 0 are permitted. This indicates no reference, which can be useful to
defeat the implied synchronization reference between tracks in the same file, when this implied behavior is not
desired.

13.2.3.7.1 Syntax

al i gned(8) class TrackReferenceAtom extends Aton(‘tref’) ({

al i gned(8) class TrackReferenceTypeAt om (unsi gned int(32) reference-type) extends

At on(ref erence-type) {
unsi gned int(32) track-1Ds[];
}

13.2.3.7.2 Semantics

The track reference atom contains track reference type atoms. These are structured as track reference type atoms.
The r ef erence-t ype must be set to one of the following values:

e hint - thereferenced track(s) contain the original media for this hint track

e dpnd - the referencing track has an MPEG-4 dependency on the referenced track

e ipir - thistrack contains IPI declarations for the referenced track

© ISO/IEC 2001 — All rights reserved 269

ISO/IEC 14496-1:2001(E)

e nmpod - the referencing track is an OD track which uses the referenced track as an included elementary
stream track

e sync - this track uses the referenced track as its synchronization source.
13.2.3.8 Media atom

Atom Type: ‘mdia’

Container: Track Atom (‘trak’)
Mandatory: Yes
Quantity: Exactly one

The media declaration container contains all the objects that declare information about the media data within a
stream.

13.2.3.8.1 Syntax

al i gned(8) class Medi aAt om extends Aton(‘ndia) {

13.2.3.9 Media header atom

Atom Type: ‘mdhd’

Container: Media Atom (‘mdia’)
Mandatory: Yes
Quantity: Exactly one

The media header declares the overall media-independent information relevant to the characteristics of the media
in a stream.

13.2.3.9.1 Syntax

al i gned(8) class Medi aHeader At om ext ends Ful | Aton(‘ mdhd’, version, 0) {
if (version==1) {
unsi gned int(64) creation-tinme;
unsigned int(64) nodification-tineg;
unsi gned int(32) tinmescale;
unsigned int(64) duration;
} else { // version==0
unsigned int(32) creation-tineg;
unsi gned int(32) nodification-tineg,;
unsigned int(32) tinmescale;
unsi gned int(32) duration;
}
bit(1) pad = 0;
unsi gned int(5)[3] | anguage; // packed | SO 639-2/T | anguage code
const unsigned int(16) reserved = 0;

}
13.2.3.9.2 Semantics

Ver si on -is an integer that specifies the version.

creation-tinme - isan integer which declares the creation time of the presentation (in seconds since midnight,
Jan. 1, 1904).

nodi fication-tine - is an integer which declares the most recent time the presentation was modified (in
seconds since midnight, Jan. 1, 1904).

ti mescal e - is an integer which specifies the time-scale for this media; this is the number of time units which
pass in one second. A time coordinate system that measures time in sixtieths of a second, for example, has a time
scale of 60.

durati on -is an integer which declares length of this media (in the scale of the timescale).

270 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

| anguage - declares the language code for this media. See ISO 639-2/T for the set of three character codes.
Each character is packed as the difference between its ASCII value and 0x60. The code is confined to being three
lower-case letters, so these values are strictly positive. If the language code is unknown, it should be marked as
“und’ for undetermined. The value 0 should be interpreted as undetermined.

13.2.3.10 Handler reference atom

Atom Type: ‘hdlr’

Container: Media Atom (‘mdia’) Atom
Mandatory: Yes
Quantity: 1 only

The handler atom within a Media Atom declares the process by which the media-data in the stream may be
presented, and thus, the nature of the media in a stream. For example, a video handler would handle a video track.

13.2.3.10.1 Syntax
al i gned(8) class Handl er Atom extends Full Aton(‘hdlr’, version = 0, 0) {
const unsigned int(32) reserved = O;
unsi gned int(32) handl er-type;
const unsigned int(8)[12] reserved = O;
string naneg;

}
13.2.3.10.2 Semantics

ver si on -is an integer that specifies the version.

handl er -t ype -is an integer containing one of the following values:

‘ odsmi ObjectDescriptorStream

‘crsm ClockReferenceStream

‘ sdsmi SceneDescriptionStream
‘vide’ VisualStream

‘soun’ AudioStream

‘' n7smi MPEG7Stream

‘ocsm ObjectContentinfoStream
“ipsm IPMP Stream

‘nmjsm MPEG-J Stream

“hint’ Hint track

nane -is a null-terminated string in UTF-8 characters which gives a human-readable name for the stream type (for
debugging and inspection purposes).

13.2.3.11 Mediainformation atom

Atom Type: ‘minf’

Container: Media Atom (‘mdia’)
Mandatory: Yes

Quantity: Exactly one

The media information atom contains all the objects that declare characteristic information of the media in the
stream.

13.2.3.11.1 Syntax

al i gned(8) class Medi al nformati onAtom extends Aton(‘minf’) {

13.2.3.12 Mediainformation header atoms

Atom Types: ‘vmhd’,'smhd’,’hmhd’
Container: Media Information Atom (‘minf’)

© ISO/IEC 2001 — All rights reserved 271

ISO/IEC 14496-1:2001(E)

Mandatory: exactly one media header must be present
Quantity: 1 only

There is a media information header for each track type (corresponding to the media handler type). This header is
used for all tracks containing visual streams.

13.2.3.12.1 Video Media Header Atom

The video media header contains general presentation information, independent of the coding, for visual media.

13.2.3.12.1.1 Syntax

al i gned(8) cl ass Vi deoMedi aHeader At om
extends Full Atom(‘vmhd', version = 0,
const unsigned int(64) reserved = 0;

}
13.2.3.12.1.2 Semantics

DA

ver si on -is an integer that specifies the version.
13.2.3.12.2Sound Media Header Atom

The sound media header contains general presentation information, independent of the coding, for audio media.
This header is used for all tracks containing audio streams.

13.2.3.12.2.1 Syntax
al i gned(8) cl ass SoundMedi aHeader At om

extends Full Atom(‘smhd’, version = 0,
const unsigned int(32) reserved = 0;

}
13.2.3.12.2.2 Semantics

0) {

ver si on -is an integer that specifies the version.
13.2.3.12.3 Hint Media Header Atom
The hint media header contains general information, independent of the protocol, for hint tracks.
13.2.3.12.3.1 Syntax
al i gned(8) cl ass Hi nt Medi aHeader At om
extends Ful | Atom(‘ hnhd’, version = 0, 0) {
unsi gned int(16) naxPDUsi ze;
unsigned int(16) avgPDUsi ze;
unsi gned int(32) naxbitrate;
unsigned int(32) avghitrate;

unsigned int(32) slidingavgbitrate;
}

13.2.3.12.3.2 Semantics

ver si on -is an integer that specifies the version.

maxPDUsi ze - gives the size in bytes of the largest PDU in this (hint) stream.
avgPDUsi ze - gives the average size of a PDU over the entire presentation.

mexbi trat e - gives the maximum rate in bits/second over any window of one second.

avgbi trat e - gives the average rate in bits/second over the entire presentation.

slidi ngavgbi trate - gives the maximum rate in bits/second over any one minute window (corresponding to
the avgBitrate field in the DecoderConfigDescriptor).

272 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
13.2.3.12.4 MPEG-4 Media Header Atoms

ISO/IEC 14496 streams other than visual and audio currently use an empty MPEG-4 media header atom, as
defined here. There is a set of reserved types for media headers specific to these ISO/IEC 14496 stream types.

13.2.3.12.4.1 Syntax
al i gned(8) class Mpeg4Medi aHeader At om

extends Ful l Atom(’' nmhd’, version = 0, flags) {
}

13.2.3.12.4.2 Semantics
ver si on -is an integer that specifies the version.
flags -is a 24-bit integer with flags (currently all zero).

The following types are reserved but currently unused:

oj ect Descri ptorStream * odhd’

Cl ockRef erenceSt r eam ‘crhd
SceneDescriptionStream ‘sdhd’
MPEG/ St r eam ‘m7hd’
oj ect Cont ent | nf oSt ream * ochd’
| PMP St ream ‘i phd’
MPEG J Stream ‘mj hd’

13.2.3.13 Data information atom

Atom Type: ‘dinf’

Container: Media Information Atom (‘minf’)
Mandatory: Yes
Quantity: Exactly one

The data information atom contains objects that declare the location of the media information in a stream.

13.2.3.13.1 Syntax

al i gned(8) class Datal nformati onAtom extends Aton(‘dinf’) {

13.2.3.14 Datareference atom

Atom Types: ‘url’, ‘urn , ‘dref’

Container: Data Information Atom (‘dinf’)
Mandatory: Yes
Quantity: Exactly one

The data reference object contains a table of data references (hormally URLS) which declare the location(s) of the
media data used within the presentation. The data reference index in the sample description ties entries in this
table to samples. A track may be split over several sources in this way.

If the flag is set indicating that the data is in the same file as this atom, then no string should be supplied in the
entry field, not even an empty one.

13.2.3.14.1 Syntax

al i gned(8) class DataEntryUrl Atom(unsigned int(32) version, bit(24) flags)
extends Full Atom(‘url ', version = 0, flags) {
string location;

}

al i gned(8) class DataEntryUr nAtonm(unsigned int(32) version, bit(24) flags)
extends Full Atom(‘urn ', version = 0, flags) {
string nane;
string location;

© ISO/IEC 2001 — All rights reserved 273

ISO/IEC 14496-1:2001(E)

al i gned(8) cl ass Dat aRef erenceAt om
extends Ful |l Atonm(‘dref’, version = 0, 0) {
unsi gned int(32) entry-count;
int i;
for (i=0; i < entry-count; i++) {
Dat aEntryAt om(entry-version, entry-flags) data-entry;

}
}

13.2.3.14.2 Semantics

ver si on -is an integer that specifies the version.
entry-count -isan integer that counts the actual entries.
entry-versi on -is an integer that specifies the version.

entry-flags -isa 24-bitinteger with flags; one flag is defined (x000001) which means that the media data is in
the same file as the movie atom.

data-entry -isa URL or URN entry. Name is a URN, and is required in a URN entry. Location is a URL, and is
required in a URL entry and optional in a URN entry, where it gives a default location to find the resource with the
given name. Each is a null-terminated string using UTF-8 characters. If the self-contained flag is set; the URL form
is used and no string is present; the atom terminates with the entry-flags field. The URL type should be of a service
that delivers a file (e.g. URLs of type file, http, ftp etc.), which ideally also permits random access. Relative URLs
are permissible and are relative to the file containing this data reference.

13.2.3.15 Sample Table atom

Atom Type: ‘stbl’

Container: Media Information Atom (‘minf’)
Mandatory: Yes
Quantity: Exactly one

The sample table contains all the time and data indexing of the media samples in a track. Using the tables here, it
is possible to locate samples in time, determine their type (e.g. I-frame or not), and determine their size, container,
and offset into that container.

If the track that contains the sample table atom references no data, then the sample table atom does not need to
contain any sub-atoms (this is not a very useful media track).

If the track that the sample table atom is contained in does reference data, then the following sub-atoms are
required: Sample Description, Sample Size, Sample to Chunk, and Chunk Offset. All of the sub-tables of the
sample table use the same total sample count. Further, the Sample Description Atom must contain at least one
entry. A Sample Description Atom is required because it contains the data reference index field that indicates
which Data Reference atom to use to retrieve the media samples. Without the Sample Description, it is not possible
to determine where the media samples are stored. The Sync Sample atom is optional. If the Sync Sample atom is
not present, all samples are sync samples.

13.2.3.15.1 Syntax

al i gned(8) cl ass Sanpl eTabl eAt om ext ends Atom(‘stbl’) {

13.2.3.16 Time to Sample Atoms

ISO/IEC 14496 composition time (CT) and decoding time (DT) are derived from the Time to Sample Atoms of
which there are two types. The decoding time is derived in the Decoding Time to Sample Atom decoding time
deltas between successive decoding times. The composition times are derived in the Composition Time to Sample
Atom as composition time offsets from decoding time. If the composition times and decoding times are identical for
every sample in the track, then only the Decoding Time to Sample Atom is required.

274 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

Note that the time to sample atoms must give durations for all samples including the last one. Durations in the ‘stts’
atom are strictly positive (non-zero). If the duration of the last sample is indeterminate, use an arbitrary small value
and a ‘dwell’ edit.

In the following example, there is a sequence of I, P, and B frames, each with a decoding time delta of 10. The
samples are stored as follows, with the indicated values for their decoding time deltas and composition time offsets
(the actual CT and DT are given for reference). The re-ordering occurs because the predicted P frames must be
decoded before the bi-directionally predicted B frames. The value of DT for a sample is always the sum of the
deltas of the preceding samples. Note that the total of the decoding deltas is the duration of the media in this track.

Table 56 - Closed GOP Example

GOP e e e R R e o W e e R e e e
11 P4 |B2 (B3 |P7 |B5 |B6 |[I8 P11 |B9 (B10 |P14 |B12 |B13
DT 0 10 |20 |30 (40 |50 |60 |70 |80 (90 |100 |110 {120 |130
CT 10 |40 |20 (30 |70 |50 |60 |80 (110 |90 |100 |[140 |120 (130
Decode 10 |10 |10 (10 |10 |10 |10 |10 (10 |10 |10 |10 |10 |10
delta
Compositio |10 (30 |0 0 30 |0 0 10 |30 |0 0 30 (O 0
n
Offset
Table 57 - Open GOP Example
GOP /-- -- -- -- -- --\ /- -- -- -- --\
13 B1 B2 P6 B4 |B5 19 B7 B8 P12 (B10 |(B11
DT 0 10 20 30 40 50 60 70 80 90 100 | 110
CT 30 10 20 60 40 50 90 70 80 120 |100 |110

Decode Delta | 10 10 10 10 10 10 10 10 10 10 10 10
Composition |30 0 0 30 0 0 30 0 0 30 0 0
offset

13.2.3.16.1 Decoding Time to Sample atom

Atom Type: ‘stts’

Container: Sample Table Atom (‘stbl’)
Mandatory: Yes
Quantity: Exactly one

This atom contains a compact version of a table that allows indexing from decoding time to sample number. Other
tables give sample sizes and pointers, from the sample number. Each entry in the table gives the number of
consecutive samples with the same time delta, and the delta of those samples. By adding the deltas a complete
time-to-sample map may be built.

The Decoding Time to Sample Atom contains decode time delta's: DT(n+1) = DT(n) + STTS(n) where STTS(n) is
the (uncompressed) table entry for sample n.

The sample entries are ordered by decoding time stamps; therefore the deltas are all non-negative.

The DT axis has a zero origin; DT(i) = SUM(for j=0 to i-1 of delta(j)), and the sum of all deltas gives the length of
the media in the track (not mapped to the overall timescale, and not considering any edit list).

The Edit List Atom provides the initial CT value if it is non-empty (non-zero).

© ISO/IEC 2001 — All rights reserved 275

ISO/IEC 14496-1:2001(E)

13.2.3.16.1.1 Syntax

al i gned(8) class TineToSanpl eAt om
ver si on
unsigned int(32) entry-count;

extends Full Aton(’stts’,

int i;

for (i=0; i < entry-count;

unsigned int(32) sanple-count;

int(32) sanpl e- del t a;

}
}

For example with table 1.2, the entry would be:

Sample count Sample-delta

14

13.2.3.16.1.2 Semantics

ver si on -is an integer that specifies the version.
ttype -is ‘stts’ (for decoding times).

entry-count -is an integer that gives the number of entries in the following table.

10

sanpl e- count - is an integer that counts the number of consecutive samples that have the given duration.

sanpl e- del t a - is an integer that gives the delta of these samples in the time-scale of the media.

13.2.3.16.2 Composition Time to Sample atom

Atom Type: ‘ctts’

Container: Sample Table Atom (‘stbl’)

Mandatory: No
Quantity: Exactly one

This atom provides the offset between decoding time and composition time. Since decoding time must be less than
the composition time, the offsets are expressed as unsigned numbers such that CT(n) = DT(n) + CTTS(n) where

CTTS(n) is the (uncompressed) table entry for sample n.

The composition time to sample table is optional and should only be present if DT and CT differ for any samples.

13.2.3.16.2.1 Syntax

al i gned(8) cl ass ConpositionOfset Atom
extends Full Aton(‘ctts’,
unsi gned int(32) entry-count;

int i;

version = 0, 0) {

for (i=0; i < entry-count;

unsi gned int(32) sanple-count;
unsigned int(32) sanple-offset;

}
}
For example in table 1.2

Sample count offset

1

NRPNRRPNRNPR

276

10
30
0
30
0
10
30
0
30
0

© ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
13.2.3.16.2.2 Semantics
ver si on -is an integer that specifies the version, 0 in this draft.
ttype -is ‘ctts’ (for composition times).
entry-count - is an integer that gives the number of entries in the following table.
sanpl e- count -is an integer that counts the number of consecutive samples that have the given offset.
sanpl e- of f set - is a non-negative integer that gives the offset between CT and DT, such that CT(n) = DT(n) +
CTTS(n).
13.2.3.17 Sample description atom

Atom Types: ‘mp4v’, ‘mp4a’, ‘mp4s’

Container: Sample Table Atom (‘stbl’)
Mandatory: Yes
Quantity: Exactly one

The sample description table gives detailed information about the coding type used, and any initialization
information needed for that coding.

The information stored in the data array is stream-type specific, and may have variants within a stream type (e.g.
different codings may use different specific information after some common fields, even within a visual stream).

For visual streams, a VisualSampleEntry is used; for audio streams, an AudioSampleEntry. For all other MPEG-4
streams, a MpegSampleEntry is used. Hint tracks use an entry format specific to their protocol, with an appropriate
name.

For all the MPEG-4 streams, the data field stores an ES_Descriptor with all its contents. Note that this provides an
SlConfigDescriptor which uses a pre-defined value solely for use within files.

For hint tracks, the sample description contains appropriate declarative data for the TransMux being used, and the
format of the hint track. The definition of the sample description is specific to the TransMux. However, note the
discussion of FlexMux above, and the need for a Stream Map table, and MuxCode mode format definitions.

Note that multiple descriptions may be used within a stream.

13.2.3.17.1 Syntax

al i gned(8) class ESDAt om
extends Ful |l Atonm(‘esds’, version = 0, 0) {
ES Descri ptor ES;

al i gned(8) abstract class SanpleEntry (unsigned int(32) fornat)
extends Aton{format){
const unsigned int(8)[6] reserved = 0;
unsi gned int(16) data-reference-index;

}
class Hint Sanpl eEntry() extends Sanpl eEntry (protocol) {
unsigned int(8) data [];

/1 Visual Streans

cl ass Visual Sanpl eEntry() extends Sanpl eEntry (' npdv'){const unsigned int(32)[4] reserved = O;

const unsigned int(32) reserved = 0x014000F0;
const unsigned int(32) reserved = 0x00480000;
const unsigned int(32) reserved = 0x00480000;
const unsigned int(32) reserved = O;

const unsigned
const unsi gned
const unsigned

nt(16) reserved = 1;
nt(8)[32] reserved = 0;
nt(16) reserved = 24;

© ISO/IEC 2001 — All rights reserved 277

ISO/IEC 14496-1:2001(E)

const int(16)reserved = -1;
ESDAt om ES;

/1 Audio Streans

cl ass Audi oSanpl eEntry() extends Sampl eEntry (' nmp4a'){
const unsigned int(32)[2] reserved = 0;
const unsigned int(16) reserved =
const unsigned int(16) reserved = 6;
const unsigned int(32) reserved
unsigned int(16) tine-scale ; // copled fromtrack
const unsigned int(16) reserved = 0
ESDAt om ES

/1 all other Mpeg streamtypes
ass MoegSanpl eEntry() extends SanpleEntry (' np4s'){
ESDAt om ES;

c

}
i gned(8) class Sanpl eDescri pti onAt om (unsi gned int(32) handl er-type)

al
extends Full Atom('stsd', 0, 0){
int i ;
unsi gned int(32) entry-count;
for (i =0 ; i <entry-count ; i++){

swi tch (handl er-type){

case ‘soun’: // Audi oStream
Audi oSanpl eEntry();
br eak;

case ‘vide': // Visual Stream
Vi sual Sanpl eEntry();
br eak;

case ‘hint’: // Hnt track
Hi nt Sanpl eEntbry();
br eak;

def aul t

NpegSaﬁpI eEntry();
br eak;

}
}

13.2.3.17.2 Semantics

ver si on -is an integer that specifies the version.

entry-count -is an integer that gives the number of entries in the following table.

Sanpl eEntry - is the appropriate sample entry.

dat a-ref erence-i ndex - is integer that contains the index of the data reference to use to retrieve data
associated with samples that use this sample description. Data references are stored in data reference atoms. The
index ranges from 1 to the number of data references.

dat a - is information specific to the protocol.

ES - is the ES Descriptor for this stream.

13.2.3.18 Sample size atom

Atom Type: ‘'stsz’

Container: Sample Table Atom (‘stbl’)
Mandatory: Yes
Quantity: Exactly one

The sample size atom contains the sample count and a table giving the size of each sample. This allows the media
data itself to be unframed. The total number of samples in the media is always indicated in the sample count. If the
default size is indicated, then no table follows.

278 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
13.2.3.18.1 Syntax

al i gned(8) class Sanpl eSi zeAt om extends Ful | Aton{‘stsz’, version = 0, 0) {

unsi gned int(32) sanple-size;
unsi gned int(32) sanple-count;
if (sanple-size==0) {

int i;

for (i=0; i < sanple-count; i++) {

unsigned int(32) entry-size;
}

}
}

13.2.3.18.2 Semantics

ver si on -is an integer that specifies the version.

sanmpl e-si ze - is integer specifying the default sample size. If all the samples are the same size, this field
contains that size value. If this field is set to 0, then the samples have different sizes, and those sizes are stored in
the sample size table.

sanpl e- count -is an integer that gives the number of entries in the following table.

entry-si ze -isinteger specifying the size of a sample, indexed by its number.

13.2.3.19 Sample to chunk atom

Atom Type: ‘stsc’

Container: Sample Table Atom (‘stbl’)
Mandatory: Yes

Quantity: Exactly one

Samples within the media data are grouped into chunks. Chunks may be of different sizes, and the samples within
a chunk may have different sizes. By using this table, you can find the chunk that contains a sample, its position,
and the associated sample description.

The table is compactly coded. Each entry gives the index of the first chunk of a run of chunks with the same
characteristics; by subtracting one entry here from the previous one, you can compute how many chunks are in this
run. You can convert this to a sample count by multiplying by the appropriate samples-per-chunk.

13.2.3.19.1 Syntax

al i gned(8) class Sanpl eToChunkAt om
extends Full Aton{‘stsc’, version = 0, 0) {
unsigned int(32) entry-count;
int i;
for (i=0; i < entry-count; i++) {
unsi gned int(32) first-chunk;
unsi gned int(32) sanpl es-per-chunk;
unsi gned int(32) sanpl e-description-index;
}
}

13.2.3.19.2 Semantics
ver si on -is an integer that specifies the version.
ent ry- count - is an integer that gives the number of entries in the following table.

first-chunk - is an integer that gives the index of the first chunk in this run of chunks that share the same
samples-per-chunk and sample-description-index.

sanpl es- per - chunk - is an integer that gives the number of samples in each of these chunks.

sanpl e-descri ption-index - is an integer that gives the index of the sample entry that describes the samples
in this chunk. The index ranges from 1 to the number of sample entries in the sample description atom.

© ISO/IEC 2001 — All rights reserved 279

ISO/IEC 14496-1:2001(E)

13.2.3.20 Chunk offset atom

Atom Type: ‘stco’

Container: Sample Table Atom (‘stbl’)
Mandatory: Yes
Quantity: Exactly one

The chunk-offset table gives the index of each chunk into the containing file. There are two variants, permitting the
use of 32-bit or 64-bit offsets. The latter is useful when managing very large presentations. At most one of these
variants will occur in any single instance of a sample table.

Note that offsets are file offsets not the offset into any atom within the file (e.g. a mdat atom). This permits referring
to media data in files without any atom structure. It does also mean that care must be taken when constructing a
self-contained mp4 file with its meta-data (movie atom) at the front, as the size of the movie atom will affect the
chunk offsets to the media data.

13.2.3.20.1 Syntax

al i gned(8) class ChunkCf f set At om
extends Ful | Aton(‘stco’, version = 0, 0) {
unsi gned int(32) entry-count;
int i;
for (i=0; i < entry-count; i++) {
unsigned int(32) chunk-offset;
}
}

al i gned(8) class ChunkLargeCO fset At om
extends Ful | Aton(‘co64’, version = 0, 0) {
unsi gned int(32) entry-count;
int i;
for (i=0; i < entry-count; i++) {
unsigned int(64) chunk-offset;

}
}

13.2.3.20.2 Semantics
versi on - is an integer that specifies the version.
ent ry- count - is an integer that gives the number of entries in the following table.

chunk-of f set - is a 32 or 64 bit integer that gives the offset of the start of a chunk into its containing media
stream (file).

13.2.3.21 Sync Sample Atom

Atom Type: ‘stss’

Container: Sample Table Atom (‘stbl’)
Mandatory: No

Quantity: Exactly one

The sync sample atom provides a compact marking of the random access points within the stream. Precisely the
samples named here would have the RandomAccessPoint flag set in their SL Packet headers. The table is
arranged in strictly increasing order of sample number.

If this table is not present, every sample is a random access point.

13.2.3.21.1 Syntax

al i gned(8) cl ass SyncSanpl eAt om
extends Ful | Aton(‘stss’, version = 0, 0) {
unsi gned int(32) entry-count;
int i;
for (i=0; i < entry-count; i++) {
unsi gned int(32) sanpl e- nunber;
}
}

280 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
13.2.3.21.2 Semantics
ver si on -is an integer that specifies the version.
entry-count - is an integer that gives the number of entries in the following table.

sanpl e- nunber - gives the numbers of the samples that are random access points in the stream.

13.2.3.22 Shadow Sync Sample Atom

Atom Type: ‘stsh’

Container: Sample Table Atom (‘stbl’)
Mandatory: No
Quantity: Exactly one

The shadow sync table provides an optional set of sync samples that can be used when seeking or for similar
purposes. In normal forward play they are ignored.

Each entry in the ShadowSyncTable consists of a pair of sample numbers. The first entry (shadowed-sample-
number) indicates the number of the sample that a shadow sync will be defined for. This should always be a non-
sync sample (e.g. a frame difference). The second sample number (sync-sample-number) indicates the sample
number of the sync sample (i.e. key frame) that can be used when there is a random access at, or before, the
shadowed-sample-number.

The entries in the ShadowSyncAtom must be sorted based on the shadowed-sample-number field.

The shadow sync samples are normally placed in an area of the track that is not presented during normal play
(edited out by means of an edit list), though this is not a requirement. Note that shadow sync table can be ignored
and the track will play (and seek) correctly if it is ignored (though perhaps not optimally).

The ShadowSyncSample replaces, not augments, the sample which it shadows (i.e. the next sample sent is
shadowed-sample-number+1). The shadow sync sample is treated as if it occurred at the time of the sample it
shadows, having the duration of the sample it shadows.

Hinting and transmission might become more complex if a shadow sample is used also as part of normal playback,
or is used more than once as a shadow. In this case the hint track might need separate shadow syncs, all of which
can get their media data from the one shadow sync in the media track, to allow for the different time-stamps etc.
needed in their headers.
13.2.3.22.1 Syntax
al i gned(8) class ShadowSyncSanpl eAt om
extends Full Atom(‘stsh’, version = 0, 0) {
unsi gned int(32) entry-count;
int i;
for (i=0; i < entry-count; i++) {
unsi gned int(32) shadowed-sanpl e- nunber;
unsi gned int(32) sync-sanpl e- nunber;
}
}

13.2.3.22.2 Semantics

ver si on -is an integer that specifies the version.

entry-count -is an integer that gives the number of entries in the following table.

shadowed- sanpl e- nunber - gives the number of a sample for which there is an alternative sync sample.

sync-sanpl e- nunber - gives the number of the alternative sync sample.

© ISO/IEC 2001 — All rights reserved 281

ISO/IEC 14496-1:2001(E)
13.2.3.23 Degradation Priority Atom (‘stdp")

Atom Type: ‘stdp’

Container: Sample Table Atom (‘stbl’).
Mandatory: No.
Quantity: Exactly one.

The degradation priority atom contains the MPEG-4 degradation priority of each sample. The values are stored in
the table, one for each sample. The size of the table, sanpl e- count is taken from the sanpl e- count in the
Sample Size Atom ('stsz').

The maximum size of a degradation priority in the SL header is 15 bits, A fixed 15-bit field is used here.
13.2.3.23.1 Syntax
al i gned(8) cl ass DegradationPriorityAtom
extends Ful | Aton(‘stdp’, version = 0, 0) {
int i;
for (i=0; i < sanple-count; i++) {
const bit(1l) pad = 0; // must be zero
unsi gned int(15) priority;

}
}

13.2.3.23.2 Semantics

ver si on -is an integer that specifies the version.

priority -isinteger specifying the degradation priority for each sample.
13.2.3.24 Free space atom

Atom Types: ‘free’, ‘skip’

Container: File
Mandatory: No
Quantity: Any number

The contents of a free-space atom are irrelevant and may be ignored, or the object deleted, without affecting the
presentation. (Note that deleting the object may invalidate the offsets used in the sample table, unless this object is
after all the media data).

13.2.3.24.1 Syntax

al i gned(8) cl ass FreeSpaceAt om extends Atom(free-type) {
unsi gned int(8) data[];
}
13.2.3.24.2 Semantics
free-type - may be ‘free’ or ‘skip’.

13.2.3.25 Edit Atom

Atom Type: ‘edts’

Container: Track Atom (‘trak’)
Mandatory: No
Quantity: Exactly one

An edit atom maps the presentation time-line to the media time-line as it is stored in the file. The edit atom is a
container for the edit lists.

Note that the Edit atom is optional. In the absence of this atom, there is an implicit one-to-one mapping of these
time-lines.

In the absence of an edit list, the presentation of a track starts immediately. An empty edit is used to offset the start
time of a track.

282 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

13.2.3.25.1 Syntax

al i gned(8) class EditAtomextends Aton(‘edts’) {

13.2.3.26 Edit List Atom

Atom Type: ‘elst’

Container: Edit Atom (‘edts’)
Mandatory: No
Quantity: 1 only

The edit list atom contains an explicit timeline map. It is possible to represent ‘empty’ parts if the timeline, where no
media is presented; a ‘dwell’, where a single time-point in the media is held for a period; and a normal mapping.

Edit lists provide a mapping from the relative time (the deltas in the sample table) into absolute time (the time line of
the presentation), possibly introducing ‘silent’ intervals or repeating pieces of media.

Starting offsets for tracks (streams) are represented by an initial empty edit. For example, to play a track from its
start for 30 seconds, but at 10 seconds into the presentation, we have the following edit list:

Entry-count = 2

Segment-duration = 10 seconds
Media-Time = -1
Media-Rate = 1

Segment-duration = 30 seconds (could be the length of the whole track)
Media-Time = 0 seconds
Media-Rate = 1

13.2.3.26.1 Syntax

aligned(8) class EditListAtomextends Full Atonm(‘elst’, version, 0) {
unsigned int(32) entry-count;
int i;
for (i=0; i < entry-count; i++) {
if (version==1) {
unsi gned int(64) segnent-duration;
int(64) nedia-tineg;
} else { // version==0
unsigned int(32) segnent-duration;
int(32) media-tine;

i nt(16) nedi a-r at e;
const int(16) reserved = 0;

13.2.3.26.2 Semantics
ver si on -is an integer that specifies the version.
ent ry- count - is an integer that gives the number of entries in the following table.

segnment - durati on - is an integer that specifies the duration of this edit segment in units of the movie's time
scale.

© ISO/IEC 2001 — All rights reserved 283

ISO/IEC 14496-1:2001(E)

medi a-ti me - is an integer containing the starting time within the media of this edit segment (in media time scale
units, in composition time). If this field is set to —1, it is an empty edit. The last edit in a track should never be an
empty edit. Any difference between the movie’s duration and the track’s duration is expressed as an implicit empty
edit.

medi a- r at e - specifies the relative rate at which to play the media corresponding to this edit segment. If this value
is 0, then the edit is specifying a ‘dwell’: the media at media-time is presented for the segment-duration. Otherwise
this field must contain the value 1.

13.2.3.27 User-data atom

Atom Type: ‘udta’

Container: Movie Atom (‘moov’) or Track Atom (‘trak’)
Mandatory: No
Quantity: Any gquantity

The stream user-data atom contains objects that declare user information about the containing atom and its data
(presentation or stream).

The user-data atom is a container atom for informative user-data. This user data is formatted as a set of atoms with
more specific atom types, which declare more precisely their content.

Only a copyright notice is defined in this draft. There may be multiple copyright atoms using different language
codes.

13.2.3.27.1 Syntax
al i gned(8) class UserDat aAtom extends Aton(‘udta’') {

}
al i gned(8) class Copyright Atom
extends Ful | Atonm(‘cprt’, version = 0, 0) {
const bit(1l) pad = 0;
unsi gned int(5)[3] | anguage; // packed | SO 639-2/T | anguage code
string notice;

}

13.2.3.27.2 Semantics

| anguage - declares the language code for the following text. See ISO 639-2/T for the set of three character
codes. Each character is packed as the difference between its ASCII value and 0x60. The code is confined to
being three lower-case letters, so these values are strictly positive.

noti ce - is a null-terminated string giving a copyright notice.

13.3 Extensibility
13.3.1 Objects

The normative objects defined in this specification are identified by a 32-bit value, which is normally a set of four
printable characters from the ISO 8859-1 character set.

To permit user extension of the format, to store new object types, and to permit the inter-operation of the files
formatted to this specification with certain distributed computing environments, there is a type mapping and a type
extension mechanism which together form a pair.

Commonly used in distributed computing are UUIDs (universal unique identifiers), which are 16 bytes. Any MPEG-
4 normative type specified here may be mapped directly into the UUID space by composing the four byte type
value with the twelve byte MPEG reserved value, Oxxxxxxxxx-0011-0010-8000-00AA00389B71. The four-character
code replaces the XXXXXXXX in the preceding number. These types are identified to MPEG as the object types
used in this specification.

User objects use the escape type ‘uuid’. They are documented above. After the size and type fields, there is a full
16-byte UUID.

284 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

Systems which wish to treat every object as having a UUID should employ the following algorithm:

size := read_uint32();
type := read_uint32();
if (type==‘uuid)
then uuid : = read_uuid()
else uuid := formuuid(type, MPEG 12_bytes);
Similarly when linearizing a set of objects into files formatted to this specification, the following is applied:

write_uint32(object_size(object));
uuid : = object_uuid_type(object);
if (is_MPEG uuid(uuid))

write_uint32(MPEG type_of (uuid))

else { wite_uint32(‘uuid); wite_uuid(uuid); }
A file containing MPEG-4 objects which have been written using the ‘uuid’ escape and the full UUID is not
compliant; systems may choose to read objects using the uuid escape and an MPEG-4 uuid as equivalent to the
MPEG-4 object of the same type as equivalent, or not.

13.3.2 Elementary streams

MPEG-4 streams may be combined into a presentation with other streams. Such streams and their declarations are
beyond the scope of this specification.

13.3.3 TransMuxes (protocols)

Hint tracks may be defined for a number of different protocols depending on the desired delivery mechanism.
Examples would include RTP and MPEG-2 Transport.

13.3.4 Storage formats

The main file containing the meta-data may use other files to contain media-data. These other files may contain
header declarations from a variety of standards, including this one.

If such a secondary file has a meta-data declaration set in it, that meta-data is not part of the overall presentation.
This allows small presentation files to be aggregated into a larger overall presentation by building new meta-data
and referencing the media-data, rather than copying it.

The references into these other files need not use all the data in those files; in this way, a subset of the media-data
may be used, or unwanted headers ignored.

14 Syntactic Description Language

14.1 Introduction

This subclause describes the mechanism with which bitstream syntax is documented in ISO/IEC 14496. This
mechanism is based on a Syntactic Description Language (SDL), documented here in the form of syntactic
description rules. It directly extends the C-like syntax used in ISO/IEC 11172:1993 and ISO/IEC 13818:1996 into a
well-defined framework that lends itself to object-oriented data representations. In particular, SDL assumes an
object-oriented underlying framework in which bitstream units consist of “classes.” This framework is based on the
typing system of the C++ and Java programming languages. SDL extends the typing system by providing facilities
for defining bitstream-level quantities, and how they should be parsed.

The elementary constructs are described first, followed by the composite syntactic constructs, and arithmetic and
logical expressions. Finally, syntactic control flow and built-in functions are addressed. Syntactic flow control is
needed to take into account context-sensitive data. Several examples are used to clarify the structure.

14.2 Elementary Data Types

The SDL uses the following elementary data types:

1. Constant-length direct representation bit fields or Fixed Length Codes — FLCs. These describe the encoded
value exactly as it is to be used by the appropriate decoding process.

© ISO/IEC 2001 — All rights reserved 285

ISO/IEC 14496-1:2001(E)

2. Variable length direct representation bit fields, or parametric FLCs. These are FLCs for which the actual length
is determined by the context of the bitstream (e.g., the value of another parameter).

3. Constant-length indirect representation bit fields. These require an extra lookup into an appropriate table or
variable to obtain the desired value or set of values.

4. Variable-length indirect representation bit fields (e.g., Huffman codes).
These elementary data types are described in more detail in the clauses to follow immediately.

All quantities shall be represented in the bitstream with the most significant byte first, and also with the most
significant bit first.

14.2.1 Constant-Length Direct Representation Bit Fields

Constant-length direct representation bit fields shall be represented as:

Rule E.1: Elementary Data Types
[al i gned]t ype[(length)] element_name [= value]; // C++-style comments allowed

The t ype may be any of the following: i nt for signed integer, unsi gned i nt for unsigned integer, doubl e for
floating point, and bi t for raw binary data. The length attribute indicates the length of the element in bits, as it is
actually stored in the bitstream. Note that a data t ype equal to doubl e shall only use 32 or 64 bit lengths. The
value attribute shall be present only when the value is fixed (e.g., start codes or object IDs), and it may also
indicate a range of values (i.e., ‘0x01..0xAF"). The t ype and the optional length attributes are always present,
except if the data is non-parsable, i.e., it is not included in the bitstream. The keyword al i gned indicates that the
data is aligned on a byte boundary. As an example, a start code would be represented as:

aligned bit(32) picture_start_code=0x00000100;

An optional numeric modifier, as in al i gned(32) , may be used to signify alignment on other than byte boundary.
Allowed values are 8, 16, 32, 64, and 128. Any skipped bits due to alignment shall have the value ‘0’. An entity
such as temporal reference would be represented as:

unsi gned int(5) tenporal _reference;

where unsi gned i nt (5) indicates that the element shall be interpreted as a 5-bit unsigned integer. By default,
data shall be represented with the most significant bit first, and the most significant byte first.

The value of parsable variables with declarations that fall outside the flow of declarations (see 14.6) shall be set to
0.

Constants shall be defined using the keyword const .

EXAMPLE —

const int SOVE_VALUE=255; // non-parsabl e constant
const bit(3) BIT_PATTERN=1; // this is equivalent to the bit string “001”

To designate binary values, the Ob prefix shall be used, similar to the 0Ox prefix for hexadecimal numbers. A period
(*.) may be optionally placed after every four digits for readability. Hence OxOF is equivalent to 0b0000.1111.

In several instances, it may be desirable to examine the immediately following bits in the bitstream, without actually
consuming these bits. To support this behavior, a *’ character shall be placed after the parse size parentheses to
modify the parse size semantics.

Rule E.2: Look-ahead parsing
[al i gned]t ype (length) * element_name;

286 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

For example, the value of next 32 bits in the bitstream can be checked to be an unsigned integer without advancing
the current position in the bitstream using the following representation:

al i gned unsigned int (32)* next_code;
14.2.2 Variable Length Direct Representation Bit Fields

This case is covered by Rule E.1, by allowing the length attribute to be a variable included in the bitstream, a non-
parsable variable, or an expression involving such variables.

EXAMPLE —

unsi gned int(3) precision;
i nt(precision) DC

14.2.3 Constant-Length Indirect Representation Bit Fields
Indirect representation indicates that the actual value of the element at hand is indirectly specified by the bitstream

through the use of a table or map. In other words, the value extracted from the bitstream is an index to a table from
which the final desired value is extracted. This indirection may be expressed by defining the map itself:

Rule E.3: Maps
map MapName (output_type) {
index, { value_1, ... value_M},

These tables are used to translate or map bits from the bitstream into a set of one or more values. The input type of
a map (the index specified in the first column) shall always be bit. The output_type entry shall be either a
predefined type or a defined class (classes are defined in 14.3.1). The map is defined as a set of pairs of such
indices and values. Keys are binary string constants while values are output_type constants. Values shall be
specified as aggregates surrounded by curly braces, similar to C or C++ structures.

EXAMPLE —

class YUWbl ocks {// classes are fully defined |ater on
int Ybl ocks;
i nt Ubl ocks;
int Vbl ocks;

}

/!l a table that relates the chroma format with the nunber of bl ocks
/'l per signal conponent
map bl ocks_per _conponent (YUVbl ocks) ({
0booO, {4, 1, 1}, /] 4:2:0
0b01, {4, 2, 2}, /] 4:2:2
0bl10, {4, 4, 4} /] 4:4:4
}

The next rule describes the use of such a map.

Rule E.4: Mapped Data Types
t ype (MapName) name;

The t ype of the variable shall be identical to the t ype returned from the map.

EXAMPLE —
YUVbI ocks(bl ocks_per _conponent) chrome_format;

Using the above declaration, a particular value of the map may be accessed using the construct: chr oma_f or nat . Ubl ocks.

© ISO/IEC 2001 — All rights reserved 287

ISO/IEC 14496-1:2001(E)
14.2.4 Variable Length Indirect Representation Bit Fields

For a variable length element utilizing a Huffman or variable length code table, an identical specification to the fixed
length case shall be used:

class val {
unsi gned int foo;

int bar;

}

map sanple_vlc_map (val) {
0b0000. 001, {0, 5},
0b0000. 0001, {1, -14}

}

The only difference is that the indices of the map are now of variable length. The variable-length codewords are (as
before) binary strings, expressed by default in ‘Ob’ or ‘Ox’ format, optionally using the period ('.") every four digits for
readability.

Very often, variable length code tables are partially defined. Due to the large number of possible entries, it may be
inefficient to keep using variable length codewords for all possible values. This necessitates the use of escape
codes, that signal the subsequent use of a fixed-length (or even variable length) representation. To allow for such
exceptions, parsable type declarations are allowed for nap values.

EXAMPLE — This example uses the class type ‘val’ as defined above.

map sanple_map_wi th_esc (val) {
0b0000. 001, {0, 5},
0b0000. 0001, {1, -14},
0b0000. 0000. 1, {5, int(32)},
0b0000. 0000.0, {0, -20}

}

When the codeword 0b0000.0000.1 is encountered in the bitstream, then the value ‘5’ is assigned to the first element
(val . f 00). The following 32 bits are parsed and assigned as the value of the second element (val . bar). Note that, in case
more than one element utilizes a parsable type declaration, the order is significant and is the order in which elements are
parsed. In addition, the type within the map declaration shall match the type used in the class declaration associated with the
map'’s return type.

14.3 Composite Data Types
14.3.1 Classes

Classes are the mechanism with which definitions of composite types or objects is performed. Their definition is as
follows.

Rule C.1: Classes
[al i gned] [abst ract] [expandabl e[(maxClassSize)]] cl ass object_name [ext ends parent_class] [:
bi t (length) [id_name=] object_id | id_range] {
[element; ...]1 // zero or more elements

The different elements within the curly braces are the definitions of the elementary bitstream components
discussed in 12.2 or control flow elements that will be discussed in a subsequent subclause.

The optional keyword ext ends specifies that the cl ass is “derived” from another cl ass. Derivation implies that
all information present in the base cl ass is also present in the derived cl ass, and that, in the bitstream, all such
information precedes any additional bitstream syntax declarations specified in the new cl ass.

The optional attribute id_name allows to assign an object_id, and, if present, is the key demultiplexing entity which

allows differentiation between base and derived objects. It is also possible to have a range of possible values: the
id_range is specified as start_id .. end_id, inclusive of both bounds.

288 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

If the attribute id_name is used, a derived cl ass may appear at any point in the bitstream where its base cl ass is
specified in the syntax. This allows to express polymorphism in the SDL syntax description. The actual cl ass to be
parsed is determined as follows:

e The base cl ass declaration shall assign a constant value or range of values to object _id.

e Each derived cl ass declaration shall assign a constant value or ranges of values to object_id. This value or
set of values shall correspond to legal object_id value(s) for the base cl ass.

NOTE 1 — Derivation of classes is possible even when object_ids are not used. However, in that case derived classes may not
replace their base cl ass in the bitstream.

NOTE 2 — Derived classes may use the same object_id value as the base cl ass. In that case classes can only be
discriminated through context information.

EXAMPLE —
class slice: aligned bit(32) slice_start_code=0x00000101 .. OxO00001AF {
/1 here we get vertical _size_extension, if present

i f (scal abl e_npode==DATA_PARTI TI ONI NG {
unsigned int(7) priority_breakpoint;
}

}

class foo {
int(3) a;

}

cl ass bar extends foo {
int(5) b; // this b is preceded by the 3 bits of a
int(10) c;

}

The order of declaration of the bitstream components is important: it is the same order in which the elements appear in the
bitstream. In the above examples, bar . b immediately precedes bar . ¢ in the bitstream.

Objects may also be encapsulated within other objects. In this case, the element in Rule C.1 is an object itself.
14.3.2 Abstract Classes

When the abst r act keyword is used in the cl ass declaration, it indicates that only derived classes of this cl ass
shall be present in the bitstream. This implies that the derived classes may use the entire range of IDs available.
The declaration of the abstract cl ass requires a declaration of an ID, with the value 0.

EXAMPLE —
abstract class Foo : bit(1l) id=0 { // the value 0 is not really used

}

/1 derived classes are free to use the entire range of IDs
cl ass FooO extends Foo : bit(1) id=0 {

}
cl ass Fool extends Foo : bit(1) id=1 {

}

class Exanpl e {
Foo f; // can only be FooO or Fool, not Foo
}

© ISO/IEC 2001 — All rights reserved 289

ISO/IEC 14496-1:2001(E)
14.3.3 Expandable classes

When the expandabl e keyword is used in the cl ass declaration, it indicates that the cl ass may contain implicit
arrays or undefined trailing data, called the "expansion”. In this case the cl ass encodes its own size in bytes
explicitly. This may be used for classes that require future compatible extension or that may include private data. A
legacy device is able to decode an expandable cl ass up to the last parsable variable that has been defined for a
given revision of this cl ass. Using the size information, the parser shall skip the cl ass data following the last
known syntax element. Anywhere in the syntax where a set of expandable classes with object_id is expected it is
permissible to intersperse expandable classes with unknown object_id values. These classes shall be skipped,
using the size information.

The size encoding precedes any parsable variables of the cl ass. If the cl ass has an object _id, the encoding of
the object_id precedes the size encoding. The size information shall not include the number of bytes needed for the
size and the object_id encoding. Instances of expandable classes shall always have a size corresponding to an
integer number of bytes. The size information is accessible within the class as class instance variable
si zeOr I nst ance.

If the expandabl e keyword has a maxClassSize attribute, then this indicates the maximum permissible size of this
cl ass in bytes, including any expansion.

The length encoding is itself defined in SDL as follows:

int sizeO'lInstance = 0;
bit (1) nextByte;
bit(7) sizeOInstance;
whi | e(next Byte) {
bit (1) nextByte;
bit(7) sizeByte;
sizeO' I nstance = sizeO I nstance<<7 | sizeByte;

}

14.3.4 Parameter types

A parameter type defines a cl ass with parameters. This is to address cases where the data structure of the
cl ass depends on variables of one or more other objects. Since SDL follows a declarative approach, references to
other objects, in such cases, cannot be performed directly (none is instantiated). Parameter types provide
placeholders for such references, in the same way as the arguments in a C function declaration. The syntax of a
cl ass definition with parameters is as follows.

Rule C.2: Class Parameter Types
[al i gned] [abstract]cl ass object_name [(parameter list)] [ext ends parent_class]
[: bi t (length) [id_name=] object_id | id_range] {
[element; ...] // zero or more elements

The parameter list is a list of t ype names and variable name pairs separated by commas. Any element of the
bitstream, or value derived from the bitstream with a variable-length codeword, or a constant, can be passed as a
parameter.

A cl ass that uses parameter types is dependent on the objects in its parameter list, whether cl ass objects or
simple variables. When instantiating such a cl ass into an object, the parameters have to be instantiated objects of
their corresponding classes or types.

EXAMPLE —

class A {
/'l class body

un5| gned int(4) format;

}

290 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

class B (Aa, int i) { /1 B uses paraneter types
unsigned int(i) bar;

if(a format == SOVE FORMAT) {
.
_—

class C {
int(2) i;
A a;
B foo(a, I); // instantiated paraneters are required

}
14.3.5 Arrays
Arrays are defined in a similar way as in C/C++, i.e., using square brackets. Their length, however, can depend on

run-time parameters such as other bitstream values or expressions that involve such values. The array declaration
is applicable to both elementary as well as composite objects.

Rule A.1: Arrays
t ypespec name [length] ;

typespec is a t ype specification (including bitstream representation information, e.g. ‘i nt (2)’). The attribute
name is the name of the array, and length is its length.

EXAMPLE —

unsi gned int(4) a[5];
int(10) b;
int(2) c[b];

Here ‘a’ is an array of 5 elements, each of which is represented using 4 bits in the bitstream and interpreted as an unsigned
integer. In the case of ‘c’, its length depends on the actual value of ‘b’. Multi-dimensional arrays are allowed as well. The parsing
order from the bitstream corresponds to scanning the array by incrementing first the right-most index of the array, then the
second, and so on.

14.3.6 Partial Arrays
In several situations, it is desirable to load the values of an array one by one, in order to check, for example, a

terminating or other condition. For this purpose, an extended array declaration is allowed in which individual
elements of the array may be accessed.

Rule A.2: Partial Arrays
typespec name[[index]] ;

Here index is the element of the array that is defined. Several such partial definitions may be given, but they shall
all agree on the t ype specification. This notation is also valid for multidimensional arrays.

EXAMPLE —

int(4) a[[3]][[5]];

indicates the element a(5, 3) of the array (the element in the 6™ row and the 4™ column), while
int(4) a[3][[5]];

indicates the entire sixth column of the array, and

int(4) a[[3]][5];

indicates the entire fourth row of the array, with a length of 5 elements.

NOTE — a[5] means that the array has five elements, whereas a[[5]] implies that there are at least six.

© ISO/IEC 2001 — All rights reserved 291

ISO/IEC 14496-1:2001(E)
14.3.7 Implicit Arrays

When a series of polymorphic classes is present in the bitstream, it may be represented as an array of the same
type as that of the base cl ass. Let us assume that a set of polymorphic classes is defined, derived from the base
cl ass Foo (may or may not be abstract):

class Foo : int(16) id = 0 {
}

For an array of such objects, it is possible to implicitly determine the length by examining the validity of the cl ass
ID. Objects are inserted in the array as long as the ID can be properly resolved to one of the IDs defined in the
base (if not abstract) or its derived classes. This behavior is indicated by an array declaration without a length
specification.

EXAMPLE 1 —

cl ass Exanple {
Foo f[]; // length inplicitly obtained via ID resolution

To limit the minimum and maximum length of the array, a range specification may be inserted in the specification of the length.

EXAMPLE 2 —

cl ass Exanpl e {
Foo f[1 .. 255]; // at least 1, at nobst 255 el enents
}

In this example, ‘f' may have at least 1 and at most 255 elements.

14.4 Arithmetic and Logical Expressions

All standard arithmetic and logical operators of C++ are allowed, including their precedence rules.

14.5 Non-Parsable Variables

In order to accommodate complex syntactic constructs, in which context information cannot be directly obtained
from the bitstream but only as a result of a non-trivial computation, non-parsable variables are allowed. These are
strictly of local scope to the cl ass they are defined in. They may be used in expressions and conditions in the
same way as bitstream-level variables. In the following example, the number of non-zero elements of an array is
computed.

unsi gned int(6) size;
int(4) array[size];

int i; // this is a tenporary, non-parsable variable
for (i=0, n=0; i<size; i++) {
if (array[[i]]!=0)
n++;

}

int(3) coefficients[n];
/'l read as many coefficients as there are non-zero elenents in array

14.6 Syntactic Flow Control
The syntactic flow control provides constructs that allow conditional parsing, depending on context, as well as

repetitive parsing. The familiar C/C++ if-then-else construct is used for testing conditions. Similarly to C/C++, zero
corresponds to false, and non-zero corresponds to true.

292 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

Rule FC.1: Flow Control Using If-Then-Else
i f (condition) {

} [el'se if (condition) {
el se
L

EXAMPLE 1 —

cl ass conditional _object {
unsi gned int(3) foo;
bit(1) bar_flag;
if (bar_flag) {
unsi gned int(8) bar;

unsi gned int(32) nore_foo;

}

Here the presence of the entity ‘bar’ is determined by the ‘bar_flag'.
EXAMPLE 2 —

class conditional _object {
unsi gned int(3) foo;
bit(1) bar_flag;
if (bar_flag) {
unsi gned int(8) bar;
} else {
unsi gned int(some_vlc_table) bar;
}

unsi gned int(32) nore_foo;

}

Here we allow two different representations for ‘bar’, depending on the value of ‘bar_flag’. We could equally well have another
entity instead of the second version (the variable length one) of ‘bar’ (another object, or another variable). Note that the use of a
flag necessitates its declaration before the conditional is encountered. Also, if a variable appears twice (as in the example
above), the types shall be identical.

In order to facilitate cascades of if-then-else constructs, the ‘switch’ statement is also allowed.

Rule FC.2: Flow Control Using Switch
swi t ch (condition) {
[case labell: ...]
[defaul t:]

The same category of context-sensitive objects also includes iterative definitions of objects. These simply imply the
repetitive use of the same syntax to parse the bitstream, until some condition is met (it is the conditional repetition
that implies context, but fixed repetitions are obviously treated the same way). The familiar structures of ‘for’,
‘while’, and ‘do’ loops can be used for this purpose.

Rule FC.3: Flow Control Using For
for (expressionl; expression2; expression3) {

}

© ISO/IEC 2001 — All rights reserved 293

ISO/IEC 14496-1:2001(E)

expressionl is executed prior to starting the repetitions. Then expression?2 is evaluated, and if it is non-zero (true)
the declarations within the braces are executed, followed by the execution of expression3. The process repeats
until expression2 evaluates to zero (false).

Note that it is not allowed to include a variable declaration in expressionl (in contrast to C++).

Rule FC.4: Flow Control Using Do
do {

} whi I e (condition) ;

Here the block of statements is executed until condition evaluates to false. Note that the block will be executed at
least once.

Rule FC.5: Flow Control Using While
whi | e (condition) {

}

The block is executed zero or more times, as long as condition evalutes to non-zero (true).

14.7 Built-In Operators

The following built-in operators are defined.

Rule O.1: lengthof() Operator
| engt hof (variable)

This operator returns the length, in bits, of the quantity contained in parentheses. The length is the humber of bits
that was most recently used to parse the quantity at hand. A return value of 0 means that no bits were parsed for
this variable.

14.8 Scoping Rules
All parsable variables have class scope, i.e., they are available as class member variables.
For non-parsable variables, the usual C++/Java scoping rules are followed (a new scope is introduced by curly

braces: {* and ‘}"). In particular, only variables declared in class scope are considered class member variables, and
are thus available in objects of that particular type.

15 Profiles

15.1 Introduction

This clause defines profiles and levels for the usage of the tools defined in this part of ISO/IEC 14496. Each profile
at a given level constitutes a subset of this part of ISO/IEC 14496 to which system manufacturers and content
creators can claim conformance in order to ensure interoperability.

The object descriptor profiles (OD profiles) specify the allowed configurations of the object descriptor tool and the
sync layer tool. The scene graph profiles specify the allowed scene graph elements of the BIFS tool. The graphics
profiles specify the graphics elements of the BIFS tool that are allowed. The MPEG-J profiles specify the packages
of the MPEG-J API specification that are allowed in an MPEG-J terminal.

294 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

Profile definitions, by themselves, are not sufficient to provide a full characterization of a receiving terminal’s
capabilities and the resources needed for a presentation. For this reason, levels are defined within each profile.
Levels constrain the values of parameters in a given profile in order to specify an upper complexity bound.

15.2 OD Profile Definitions

15.2.1 Overview

The object descriptor profiles (OD profiles) specify the configurations of the object descriptor tool and the sync layer
tool that are allowed. The object descriptor tool provides a structure for all descriptive information. The sync layer
tool provides the syntax to convey, among others, timing information for elementary streams. object descriptor

profiles are used, in particular, to reduce the amount of asynchronous operations as well as the amount of
permanent storage.

15.2.2 OD Profiles Tools

The following tools are available to construct OD profiles:

e Object descriptor (OD) tool as defined in 8.5.

e Sync layer (SL) tool as defined in 10.2.

e Object content information (OCI) tool as defined in 8.4.

e Intellectual property management and protection (IPMP) tool as defined in 8.3.
15.2.3 OD Profiles

The OD profiles are defined in the following table. Currently, only one profile is defined, comprising all the tools. No
additional profiles are foreseen at the moment, but the possibility of adding Profiles through amendments is left
open.

Table 58 - OD Profiles

OD Profiles
OD Tools Core
SL X
oD X
OCI X
IPMP X

Decoders that claim compliance to a given profile shall implement all the tools with an ‘X’ entry for that profile.
15.2.4 OD Profiles@Levels
15.2.4.1 Levels for the Core Profile

No levels are defined yet for the OD Core profile. Future definition of Levels is anticipated; this will happen by
means of an amendment to this part of the standard.

15.3 Scene Graph Profile Definitions
15.3.1 Overview

The scene graph profiles specify the scene graph elements of the BIFS tool that are allowed. These elements
provide the means to describe the spatio-temporal locations, the hierarchical dependencies as well as the
behaviors of audio-visual objects in a scene. Profiling of scene graph elements of the BIFS tool serves to restrict
the memory requirements and computational complexities of scene graph traversal and processing of specified
behaviors during the composition and rendering processes.

© ISO/IEC 2001 — All rights reserved 295

ISO/IEC 14496-1:2001(E)

15.3.2 Scene Graph Profiles Tools

The following tools are available to construct the definitions for scene graph profiles:
e BIFS nodes related to scene description as defined in Table 59.

e BIFS commands and BIFS animation as defined in 9.3.6 and 0, respectively.

e BIFS ROUTES as defined in 9.3.7.47.1.

15.3.3 Scene Graph Profiles

The following table defines the scene graph profiles:

Table 59 - Scene graph profiles

Scene Graph Profiles
Scene Graph Tools Audio Simple 2D Complete 2D Complete
Anchor X X
AudioBuffer X X X
AudioDelay X X X
AudioFX X X X
AudioMix X X X
AudioSwitch X X X
Billboard X
Collision X
Composite2DTexture X X
Composite3DTexture X
Form X X
Group X X X X
Inline X X
Layer2D X X
Layer3D X
Layout X X
ListeningPoint X X
LOD X
NavigationInfo X
OrderedGroup X X X
QuantizationParameter X X
Sound X
Sound2D X X X X
Switch X X
Transform X
Transform2D X X X
Viewpoint X
WorldInfo X X
Node Update X X
Route Update X X
Scene Update X X X X
AnimationStream X X
Script ? X
Colorinterpolator X X
Conditional X X
Coordinatelnterpolator2D X X
Coordinatelnterpolator X

296 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

CylinderSensor X
DiscSensor X X
Normalinterpolator X
Orientationinterpolator X
PlaneSensor2D X X
PlaneSensor X
Positioninterpolator X
Positioninterpolator2D X X
ProximitySensor X
ProximitySensor2D X X
ROUTE X X
Scalarinterpolator X X
SphereSensor X
TermCap X X
TimeSensor X X
TouchSensor X X
VisibilitySensor X
Valuator X X

Decoders that claim compliance to a given profile shall implement all the tools with an ‘X’ entry for that profile.

15.3.3.1 BIFS nodes for audio objects

The presence of AudioClip and AudioSource nodes in BIFS scene graph depends on the selected Audio profile.

The following table describes what nodes are allowed in the BIFS scene graph depending on the Audio profile.

Table 60 - BIFS nodes for audio objects

Audio Profiles

Allowed Audio Object Nodes

Main

AudioClip, AudioSource

Scalable

AudioClip, AudioSource

Speech

AudioClip, AudioSource

Low Rate Synthesis

AudioClip, AudioSource

15.3.3.2 BIFS nodes for visual objects

The presence of ImageTexture, Background2D, Background, MovieTexture, Face, Expression, FAP, FDP, FIT,
FaceDefMesh, FaceDefTable, FaceDefTransform, Viseme nodes in a BIFS scene graph depends on the selected
Visual profile. The following table describes what nodes are allowed in the BIFS scene graph depending on the

choice of the Visual profile.

Table 61 - BIFS nodes for visual objects

Visual Profiles Allowed visual object nodes
Simple ImageTexture, Background2D, Background, MovieTexture
Simple Scalable ImageTexture, Background2D, Background, MovieTexture
Core ImageTexture, Background2D, Background, MovieTexture
Main ImageTexture, Background2D, Background, MovieTexture
Simple Scalable ImageTexture, Background2D, Background, MovieTexture
N-Bit ImageTexture, Background2D, Background, MovieTexture
Hybrid ImageTexture, Background2D, Background, MovieTexture,
Face, Expression, FAP, FDP, FIT, FaceDefMesh,
FaceDefTable, FaceDefTransform, Viseme

© ISO/IEC 2001 — All rights reserved

297

ISO/IEC 14496-1:2001(E)

Basic Animated Texture ImageTexture, Background2D, Background, Face, Expression,
FAP, FDP, FIT, FaceDefMesh, FaceDefTable,
FaceDefTransform, Viseme

Scaleable Texture ImageTexture, Background2D, Background

Simple Face Face, Expression, FAP, FDP, FIT, FaceDefMesh,
FaceDefTable, FaceDefTransform, Viseme

If the terminal complies with a 2D graphics profile only, the terminal may choose to ignore the contents of the FDP,
FIT, FaceDefMesh, FaceDefTable, FaceDefTransform nodes.

15.3.4 Scene Graph Profiles@Levels
15.3.4.1 Levels for the Audio Scene Graph Profile
15.3.4.1.1 Functionalities provided

The Audio scene graph profile provides for a set of BIFS scene graph elements for usage in audio only
applications. The Audio scene graph profile supports applications like broadcast radio.

15.3.4.1.2 Levels

No levels are yet defined for the Audio scene graph profile. Future definition of Levels is anticipated; this will
happen by means of an amendment to this part of the standard.

15.3.4.2 Levels for the Simple 2D Scene Graph Profile

15.3.4.2.1 Functionalities provided

The Simple 2D scene graph profile provides for only those BIFS scene graph elements necessary to place one or
more audio-visual objects in a scene. The Simple 2D scene graph profile allows presentation of audio-visual
content with potential update of the complete scene but no interaction capabilities. The Simple 2D scene graph
profile supports applications like broadcast television.

15.3.4.2.2 Level 1

The following restrictions apply for the Simple 2D scene graph profile at Level 1:

Table 62 - Restrictions for Simple 2D scene graph profile at Level 1

Transform2D

Field name

addChildren Ignored
removeChildren Ignored
children X.
center Ignored
rotationAngle
scale
scaleOrientation
translation

1

x|o|r|o

X = allowed;
else: default value

The metric shall be the pixel metrics. BIFSConfig.isPixel=1.

A cascade of Transform2D nodes is not allowed. Children nodes of a Transform2D node shall not be Transform2D
nodes. Only one initial update to convey the complete scene graph is allowed.

298 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
15.3.4.3 Levels for the Complete 2D Scene Graph Profile
15.3.4.3.1 Functionalities provided
The Complete 2D scene graph profile provides for all the 2D scene description elements of the BIFS tool. It
supports features such as 2D transformations and alpha blending. The Complete 2D scene graph profile enables
2D applications that require extensive and customized interactivity.

15.3.4.3.2 Levels

No levels are yet defined for the Complete 2D scene graph profile. Future definition of Levels is anticipated; this will
happen by means of an amendment to this part of the standard.

15.3.4.4 Levels for the Complete Scene Graph Profile
15.3.4.4.1 Functionalities provided

The Complete scene graph profile provides the complete set of scene graph elements of the BIFS tool. The
Complete scene graph profile will enable applications like dynamic virtual 3D world and games.

15.3.4.4.2 Levels

No levels are yet defined for the Complete scene graph profile. Future definition of Levels is anticipated; this will
happen by means of an amendment to this part of the standard.

15.4 Graphics Profile Definitions

15.4.1 Overview

The graphics profiles specify the graphics elements of the BIFS tool that are allowed. These elements provide
means to represent graphics visual objects in a scene. Profiling of graphics elements of the BIFS tool serves to
restrict the memory requirements for the storage of the graphical elements as well as to restrict the computational
complexities of composition and rendering processes.

15.4.2 Graphics Profiles Tools

The following tools are available to construct the graphics profiles:

e BIFS nodes related to graphics as defined in Table 63.

15.4.3 Graphics Profiles

The following table defines the graphics profiles:

Table 63 - Graphics profiles

Graphics Profiles
Graphics Tools Simple 2D | Complete 2D | Complete
Appearance X X X
Box X
Bitmap X X X
Background X
Background2D X X
Circle X X
Color X X
Cone X
Coordinate X
Coordinate2D X X
Curve2D X X
Cylinder X

© ISO/IEC 2001 — All rights reserved 299

ISO/IEC 14496-1:2001(E)

DirectionalLight
ElevationGrid
Expression
Extrusion

Face
FaceDefMesh
FaceDefTable
FaceDefTransform
FAP

FDP

FIT

Fog

FontStyle X
IndexedFaceSet
IndexedFaceSet2D X
IndexedLineSet
IndexedLineSet2D X
LineProperties X
Material
Material2D X
Normal
PixelTexture X
PointLight
PointSet
PointSet2D X
Rectangle X
Shape X X
Sphere
SpotLight
Text X
TextureCoordinate X
TextureTransform X
Viseme

XX XX XX X XX XX X XXX X X XXX X X XXX X X XX XX X X XX XX

Decoders that claim compliance to a given profile shall implement all the tools with an ‘X’ entry for that profile.

15.4.4 Graphics Profiles@Levels
15.4.4.1 Levels for the Simple 2D Graphics Profile
15.4.4.1.1 Functionalities provided

The Simple 2D graphics profile provides for only those graphics elements of the BIFS tool that are necessary to
place one or more visual objects in a scene.

15.4.4.1.2 Levels

No levels are yet defined for the Simple 2D graphics profile. Future definition of Levels is anticipated; this will
happen by means of an amendment to this part of the standard.

15.4.4.2 Levels for the Complete 2D Graphics Profile
15.4.4.2.1 Provided functionality

The Complete 2D graphics profile provides two-dimensional graphics functionalities and supports features such as
arbitrary two-dimensional graphics and text, possibly in conjunction with visual objects.

300 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
15.4.4.2.2 Levels

No levels are yet defined for the Complete 2D graphics profile. Future definition of Levels is anticipated; this will
happen by means of an amendment to this part of the standard.

15.4.4.3 Levels for the Complete Graphics Profile

15.4.4.3.1 Provided functionality

The Complete graphics profile provides advanced graphical elements such as elevation grids and extrusions and
allows creating content with sophisticated lighting. The Complete Graphics profile enables applications such as
complex virtual worlds that exhibit a high degree of realism.

15.4.4.3.2 Levels

No levels are yet defined for the Complete Graphics profile. Future definition of Levels is anticipated; this will
happen by means of an amendment to this part of the standard.

15.5 MPEG-J Profile Definitions

15.5.1 Overview

MPEG-J specifies the format, delivery, and behavior of downloadable byte code on MPEG-4 terminals. This
enables content owners to embed complex control algorithms with the data. MPEG-J aplications, however, can be
local or remote (MPEGlIet). These applications use a specified set of Java APIs.

15.6 MPEG-J Profiles Tools

The following API packages are available to construct MPEG-J profiles:

e Scene APIs (package org.iso.mpeg.mpegj.scene) as defined in 11.5.3.

e Resource APIs (package org.iso.mpeg.mpegj.resource) as defined in 11.5.4.

o Net APIs (package org.iso.mpeg.mpegj.net) as defined in 11.5.6.

e Decoder APIs (package org.iso.mpeg.mpegj.decoder) as defined in 11.5.5.

e Section Filtering and Service Information as defined in 11.5.7.

e Please note that the package org.iso.mpeg.mpegj is required in all terminals.

15.7 MPEG-J Profiles

The MPEG-J profiles are defined in Table 64. Currently, the are two profiles defined, comprising all the API
packages.

The Personal profile addresses a range of constrained devices ranging from mobile and portable devices up to
personal computers. Examples of such devices are cell videophones, PDAs, personal gaming devices, multimedia
computers, etc.

The Main profile is a superset of Personal profile and it addresses the broadcast oriented devices including
entertainment devices. Examples of such devices are set top boxes, digital TVs, etc.

© ISO/IEC 2001 — All rights reserved 301

ISO/IEC 14496-1:2001(E)

Table 64 - MPEG-J Profiles

MPEG-J
Packages

MPEG-J Profiles

Personal Main

Scene

Resource

Decoder

Net

XX | XX

SI/SF

XXX X[X

e Decoders that claim compliance to a given profile shall implement all the packages with an ‘X’ entry for that
profile and the org.iso.mpeg.mpegj package (required for all profiles).

15.8 MPEG-J Profiles@Levels

15.8.1 Levels for the Personal MPEG-J Profile

No levels are defined yet for the MPEG-J Personal profile. No Levels are foreseen at the moment, but the
possibility of adding Levels through amendments is left open.

15.8.2 Levels for the Main MPEG

-J Profile

No levels are defined yet for the MPEG-J Main profile. No Levels are foreseen at the moment, but the possibility of

adding Levels through amendments is left open.

302

© ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

Annex A
(informative)

Bibliography

[1] A. Eleftheriadis, “Flavor: A Language for Media Representation,” Proceedings, ACM Multimedia '97
Conference, Seattle, Washington, November 1997, pp. 1-9.

[2] C. Herpel, “Elementary Stream Management in MPEG-4,” IEEE Trans. on Circuits and Systems for Video
Technology, 1998 (to appear).

[3] Flavor Web Site, http://www.ee.columbia.edu/flavor.

[4] R. Koenen, F. Pereira, and L. Chiariglione, “MPEG-4: Context and Objectives,” Signal Processing: Image
Communication, Special Issue on MPEG-4, Vol. 9, Nr. 4, May 1997.

[5] F. Pereira, and R. Koenen, “Very Low Bitrate Audio-Visual Applications,” Signal Processing: Image
Communication, Vol. 9, Nr. 1, November 1996, pp. 55-77.

[6] A. Puriand A. Eleftheriadis, “MPEG-4: An Object-Based Multimedia Coding Standard Supporting Mobile
Application,” ACM Mobile Networks and Applications Journal, 1998 (to appear).

© ISO/IEC 2001 — All rights reserved 303

ISO/IEC 14496-1:2001(E)

Annex B
(informative)

Time Base Reconstruction

B.1 Time Base Reconstruction

The time stamps present in the sync layer are the means to synchronize events related to decoding, composition
and overall buffer management. In particular, the clock references are the sole means of reconstructing the sending
terminal’s clock at the receiving terminal, when required (e.g., for broadcast applications). A normative method for
this reconstruction is not specified. The following describes the process at a conceptual level.

B.1.1 Adjusting the Receiving Terminal’s OTB

Each elementary stream may be generated by an encoder at the sending terminal with a different object time base
(OTB). For each stream that conveys OCR information, it is possible for the receiving terminal to adjust a local OTB
to the sending terminals’ OTB. This is done by using well-known PLL techniques. The notion of time for each data
stream can therefore be recovered at the receiving end.

B.1.2 Mapping Time Stamps to the STB

The OTBs of all data streams may run at a different speed than the STB of the receiving terminal. Therefore, a
method is needed to map the value of time stamps expressed in any OTB to the STB of the receiving terminal. This
step may be done jointly with the recovery of individual OTB’s as described in the previous subclause.

Note that the receiving terminals’ system time base need not be locked to any of the available object time bases.
The composition time tscr of a composition unit, expressed in terms of STB of the receiving terminal, can be

calculated from the composition time stamp value toct, expressed in terms of the OTB of the relevant sending
terminal, by a linear transformation:

_ Mg Aty

OTB-START + tS'I'B—START

T~ “toct T
AtOTB AtOTB

with:

ter composition time of a composition unit measured in units of tgy

torp current time in the receiving terminal’'s STB

tocr composition time of a composition unit measured in units of tyg

toms current time in the data stream’s OTB, conveyed by an OCR

tsrp_starT value of receiving terminal’s STB when the first byte of the OCR time stamp of the data stream is

encountered
tore_srarT value of the first OCR time stamp of the data stream

Atorg = tors — tore_starr
Atgrg = tsp — s srarr

The quotient Atgp /Aty is the instantaneous scaling factor between the two time bases. In cases where the clock

speed and resolution of the sending terminal and of the receiving terminal are nominally identical, this quotient is
very near 1. To avoid long term rounding errors, the quotient Atgy /Aty should always be recalculated whenever

the formula is applied to a newly received composition time stamp. The quotient can be updated each time an OCR
time stamp is encountered.

304 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

A similar formula can be derived for decoding times by replacing composition time stamps with decoding time
stamps. If time stamps for some access units or composition units are only known implicitly, e.g., given by known
update rates, these have to be mapped with the same mechanism.

With this procedure it is possible to synchronize the STB at a receiving terminal to several OTBs so that correct
decoding and composition from several data streams is possible.

B.1.3 Adjusting the STB to an OTB

When all data streams in a presentation use the same OTB, it is possible to lock the STB at the receiving terminal
to this OTB using well-known PLL techniques. In this case the mapping described in the previous subclause is not
necessary and the following mapping may be used.

tSI'B—SI'ART tOTB—STAR'I'

Atsns = Atgrg

toer =tocr

B.1.4 System Operation without Object Time Base

If a time base for an elementary stream is neither conveyed by OCR information nor derived from another
elementary stream, time stamps can still be used by a receiving terminal but not in applications that require flow-
control. For example, file-based playback may not require time base reconstruction: time stamps alone are
sufficient for synchronization if a single time base is assumed for all the data streams.

In the absence of time stamps, the receiving terminal may only operate under the assumption that each access unit
is to be decoded and presented as soon as it is received. In this case the systems decoder model does not apply
and cannot be used as a model for the terminal’'s behavior.

In the case that a universal clock is available which can be shared between peer terminals, it may be used as a
common time base. It is then possible to use the systems decoder model without explicit OCR transmission. The
procedures for doing so are application-dependent and are not defined in ISO/IEC 14496-1.

B.2 Temporal aliasing and audio resampling

A receiving terminal compliant with ISO/IEC 14496 is not required to synchronize decoding of AUs and composition
of CUs. In other words, its STB does not have to be identical to any of the OTBs of received data streams. The
number of decoded and actually presented (displayed/played back) units per second may therefore differ.
Temporal aliasing may then manifest itself as composition units being either presented multiple times or skipped.

If audio signals are encoded on a system with an OTB different from the STB of the receiving terminal, even
nominally identical sampling rates of the audio samples may not match exactly, so that audio samples may be
dropped or repeated.

Proper re-sampling techniques may of course in both cases be applied at the receiving terminal.

B.3 Reconstruction of a Synchronised Audio-visual Scene: A Walkthrough
The different steps to reconstruct a synchronized scene are as follows:

1. The time base for each data stream is recovered either from the OCR conveyed with the SL-packetized
elementary stream of this data stream or from another data stream present in the presentation.

2. Object time stamps are mapped to the STB of the receiving terminal according to a suitable algorithm (e.g., the
one detailed above).

3. Received access units are placed in the decoding buffer.

© ISO/IEC 2001 — All rights reserved 305

ISO/IEC 14496-1:2001(E)

4. Each access unit is instantaneously decoded by the decoder at instants of time (in terms of the receiver
terminal’s STB) corresponding to its implicit or explicit DTS and the resulting one or more composition units are

placed in the composition memory.

5. The compositor may access each CU at time instants between the one corresponding its CTS and the one
corresponding to the CTS of the subsequent CU.

306 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

Annex C
(normative)

View Dependent Object Scalability

C.1 Introduction

Coding of View-Dependent Scalability (VDS) parameters for texture can provide for efficient incremental decoding
of 3D images (e.g. 2D texture mapped onto a 3D mesh such as terrain). Corresponding tools from the Visual and
Systems parts of this specification (ISO/IEC 14496-2 and ISO/IEC 14496-1, respectively) are used in conjunction
with downstream and upstream channels of a receiving terminal. The combined capabilities provide the means for
a sending terminal to react to a stream of viewpoint information received from a receiving terminal. The sending
terminal transmits a series of coded textures optimized for the viewing conditions, which can be applied to the
rendering of, textured 3D meshes by the receiving terminal. Each encoded view-dependent texture (initial texture
and incremental updates) typically corresponds to a specific 3D view in the user’s viewpoint that is first transmitted
from the receiving terminal.

A Systems tool transmits 3D viewpoint parameters in the upstream channel back to the sending terminal. The
encoder's response is a frequency-selective, view-dependent update of DCT coefficients for the 2D texture (based
upon view-dependent projection of the 2D texture in 3D) back to the receiving terminal, via the downstream
channel, for decoding by a Visual DCT tool at the receiving terminal. This bilateral communication supports
interactive server-based refinement of texture for low-bandwidth transmissions to a receiving terminal that renders
the texture in 3D for a user controlling the viewpoint movement. A gain in texture transmission efficiency is traded
for longer closed-loop latency in the rendering of the textures in 3D. The receiving terminal coordinates inbound
texture updates with local 3D renderings, accounting for network delays so that texture cached in the terminal
matches each rendered 3D view.

A method to obtain an optimal coding of 3D data is to take into account the viewing position in order to transmit
only the most visible information. This approach reduces greatly the transmission delay, in comparison to
transmitting all scene texture that might be viewable in 3D from the sending terminal’s database server to the
receiving terminal. At a given time, only the most important information is sent, depending on object geometry and
viewpoint displacement. This technique allows the data to be streamed across a network, given that a upstream
channel is available for sending the new viewing conditions to the remote database. This principle is applied to the
texture data to be mapped on a 3D grid mesh. The mesh is first downloaded into the memory of the receiving
terminal using the appropriate BIFS node, and then the DCT coefficients of the texture image are updated by taking
into account the viewing parameters, i.e. the field of view, the distance and the direction to the viewpoint.

C.2 Bitstream Syntax

This subclause details the bitstream syntax for the upstream data and details the rules that govern the way in which
higher level syntactic elements may be combined together to generate a compliant bitstream that can be decoded
correctly by the receiving terminal.

C.3.1 specifies the bitstream syntax for a View Dependent Object which initializes the session at the upstream data
decoder. C.3.2 specifies the View Dependent Object Layer and contains the viewpoint information that is to be
communicated back to the texture data encoder in the sending terminal.

C.2.1 View Dependent Object

cl ass Vi ewDependent Obj ect {
unsi gned int (32) View dep_object_start_code;
unsigned int (16) Field of View,
bit (1) Marker_bit;
unsigned int (16) Xsize_of _renderi ng_w ndow,
bit (1) Marker_bit;
unsigned int (16) Ysize_of_renderi ng_w ndow
bit (1) Marker_bit;
unsi gned int (32)* NextStart Code;
whil e (Next Start Code == vi ew_dep_obj ect _| ayer_start_code){
Vi ewDependent Cbj ect Layer vdol ;
unsi gned int (32)* NextStart Code;

© ISO/IEC 2001 — All rights reserved 307

ISO/IEC 14496-1:2001(E)

}
}

cl ass Vi ewDependent Obj ect Layer () {
unsi gned int (32) View dep_object_|ayer_start_code;
unsigned int (16) Xposl ;
bit (1) Marker _bit;
unsigned int (16) Xpos2;
bit (1) Marker _bit;
unsigned int (16) Yposi;
bit (1)Marker _bit;
unsigned int (16) Ypos2;
bit (1) Marker_bit;
unsigned int (16) Zposi;
bit (1) Marker_bit;
unsigned int (16) Zpos2;
bit (1) Marker _bit;
unsi gned int (16) Xaint;
bit (1) Marker _bit;
unsi gned int (16) Xaing;
bit (1) Marker_bit;
unsi gned int (16) Yaint;
bit (1) Marker _bit;
unsi gned int (16) Yain®;
bit (1) Marker _bit;
unsigned int (16) Zainl;
bit (1) Marker_bit;
unsigned int (16) Zain2;

C.3 Bitstream Semantics

C.3.1 View Dependent Object

view_dep_object_start_code: The view_dep_object_start code is the string ‘000001BF’ in hexadecimal. It
initiates a view dependent object session.

field_of view: This is a 16-bit unsigned integer that specifies the field of view.
marker bit: This is a one bit field, set to ‘1’, to prevent start code emulation within the bitstream.

xsize_of _rendering_window: This is a 16-bit unsigned integer that specifies the horizontal size of the rendering
window.

ysize_of_rendering_window: This is a 16-bit unsigned integer that specifies the vertical size of the rendering
window.

C.3.2 View Dependent Object Layer

view_dep_object_layer_start_code: The view_dep_object_layer_start code is the bit string ‘O00001BE’ in
hexadecimal. It initiates a view dependent object layer.

xpos1: Thisis a 16-bit codeword which forms the lower 16 bits of the 32-bit integer xpos. The integer xpos is to be
computed as follows: xpos = xposl + (xpos2 << 16). The quantities xpos, ypos, zpos describe the 3D coordinates
of the viewer's position.

xpos2: This is a 16-bit codeword which forms the upper 16-bit word of the 32-bit integer xpos.

yposl: This is a 16-bit codeword which forms the lower 16-bit word of the 32-bit integer ypos. The integer ypos
can be computed as follows: ypos = yposl + (ypos2 << 16).

ypos2: This is a 16-bit codeword which forms the upper 16bit word of the 32-bit integer xpos.

zposl: This is a 16-bit codeword which forms the lower 16 bits of the 32-bit integer xpos. The integer zpos can be
computed as follows: zpos = zposl + (zpos2 << 16).

308 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
zpos2: This is a 16-bit codeword which forms the upper 16 bits of the 32-bit integer xpos.
xaiml — This is a 16-bit codeword which forms the lower 16 bits of the 32-bit integer xaim. The integer xaim can be
computed as follows: xaim = xaiml + (xaim2 << 16). The quantities xaim, yaim, zaim describe the 3D position of
the aim point.

xaim2: This is a 16-bit codeword which forms the upper 16 bits of the 32-bit integer xaim.

yaim1l: This is a 16-bit codeword which forms the lower 16 bits of the 32-bit integer yaim. The integer yaim can be
computed as follows: yaim = yaim1 + (yaim2 << 16).

yaim2: This is a 16-bit codeword which forms the upper 16 bits of the 32-bit integer yaim.

zaiml: This is a 16-bit codeword which forms the lower 16 bits of the 32-bit integer zaim. The integer zaim can be
computed as follows: zaim = zaim1 + (zaim2 << 16).

zaim?2: This is a 16-bit codeword which forms the upper 16 bits of the 32-bit integer zaim.

© ISO/IEC 2001 — All rights reserved 309

ISO/IEC 14496-1:2001(E)

D.1

Annex D
(informative)

Registration procedure

Procedure for the request of a Registration ID (RID)

Requesters of a RID shall apply to the Registration Authority. Registration forms shall be available from the
Registration Authority. The requester shall provide the information specified in D.3. Companies and organizations
are eligible to apply.

D.2

Responsibilities of the Registration Authority

The primary responsibilities of the Registration Authority administrating the registration of either the private data
format identifiers or the IPMP system type values are outlined in this annex; certain other responsibilities may be
found in the JTC 1 Directives. The Registration Authority shall:

a)

b)
<)

d)

e)

f)

)}

h)

D.3

implement a registration procedure for application for a unique RID in accordance with the JTC 1
Directives;

receive and process the applications for allocation of an identifier from application providers;

ascertain which applications received are in accordance with this registration procedure, and to inform the
requester within 30 days of receipt of the application of their assigned RID;

inform application providers whose request is denied in writing with 30 days of receipt of the application,
and to consider resubmissions of the application in a timely manner;

maintain an accurate register of the allocated identifiers. Revisions to format specifications shall be
accepted and maintained by the Registration Authority;

make the contents of this register available upon request to National Bodies of JTC 1 that are members of
ISO or IEC, to liaison organizations of ISO or IEC and to any interested party;

maintain a data base of RID request forms, granted and denied. Parties seeking technical information on
the format of private data which has a RID shall have access to such information which is part of the data
base maintained by the Registration Authority.;

report its activities annually to JTC 1, the ITTF, and the SC 29 Secretariat, or their respective designees;
and

accommodate the use of existing RIDs whenever possible.

Contact information for the Registration Authority

To Be Determined

D.4

Responsibilities of Parties Requesting a RID

The party requesting a format identifier or an IPMP system type identifier shall:

a)

b)

c)

310

apply using the Form and procedures supplied by the Registration Authority;

include a description of the purpose of the registered bitstream, and the required technical details as
specified in the application form;

provide contact information describing how a complete description can be obtained on a non-discriminatory
basis;

© ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)
d) agree to institute the intended use of the granted RID within a reasonable time frame; and

e) to maintain a permanent record of the application form and the notification received from the Registration
Authority of a granted RID.

D.5 Appeal Procedure for Denied Applications

The Registration Management Group is formed to have jurisdiction over appeals to denied request for a RID. The
RMG shall have a membership who is nominated by P- and L-members of the ISO technical committee responsible
for ISO/IEC 14496. It shall have a convenor and secretariat nominated from its members. The Registration
Authority is entitled to nominate one non-voting observing member.

The responsibilities of the RMG shall be:

a) to review and act on all appeals within a reasonable time frame;

b) to inform, in writing, organizations which make an appeal for reconsideration of its petition of the RMGs
disposition of the matter;

c) to review the annual report of the Registration Authorities summary of activities; and

d) to supply Member Bodies of ISO and National Committees of IEC with information concerning the scope of
operation of the Registration Authority.

D.6 Registration Application Form
D.6.1 Contact Information of organization requesting a RID
Organization Name:

Address:

Telephone:
Fax:
E-mail:
Telex:

D.6.2 Request for a specific RID

NOTE — If the system has already been implemented and is in use, fill in this item and item D.6.3 and skip to D.6.5, otherwise
leave this space blank and skip to D.6.3)

D.6.3 Short description of RID that is in use and date system was implemented

D.6.4 Statement of an intention to apply the assigned RID

© ISO/IEC 2001 — All rights reserved 311

ISO/IEC 14496-1:2001(E)

D.6.5 Date of intended implementation of the RID

D.6.6 Authorized representative

Name:
Title:
Address:
Email:

Signature

D.6.7 For official use of the Registration Authority

Registration Rejected

Reason for rejection of the application:

Registration Granted Registration Value

Attachment 1 — Attachment of technical details of the registered data format.

Attachment 2 — Attachment of notification of appeal procedure for rejected applications.

312

© ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

Annex E
(informative)

The QoS Management Model for ISO/IEC 14496 Content

The Quality of Service (Q0S) aspects deserve particular attention in ISO/IEC 14496: the ability of the standard to
adapt to different service scenarios is affected by its ability to consistently manage QoS requirements. Current
techniques on error resilience are already effective, but are not and will not be able to satisfy every possible
requirement.

In general terms, the end-user acceptance of a particular service varies depending on the kind of service. As an
example, person to person communication is severely affected by the audio quality, while it can tolerate variations
in the video quality. However, a television broadcast with higher video and lower audio quality may be acceptable
depending on the program being transmitted. The acceptability of a particular service thus depends very much on
the service itself. It is not possible to define universal Quality of Service levels that may be suitable for all
circumstances. Thus the most suitable solution is to let the content creator decide what QoS the end-user should
obtain for every particular elementary stream: the author has the best knowledge of the service.

The QoS so defined represents the QoS that should be offered to the end-user, i.e., the QoS at the output of the
receiving terminal. This may be the output of the decoder, but may also take into account the compositor and
renderer if they significantly impact the QoS of the presentation as seen by the end-user, and if a capacity for
processing a specific stream can be quantified. Note that the QoS information is not mandatory. In the absence of
QoS requirements, a best effort approach should be pursued. This QoS concept is defined as total QoS.

In ISO/IEC 14496-1 the information concerning the total QoS of a particular elementary stream is carried in a QoS
Descriptor as part of its elementary stream descriptor (ES_Descriptor). The receiving terminal, upon reception of
the ES_Descriptor, is therefore aware of the characteristics of the elementary stream and of the total QoS to be
offered to the end-user. Moreover the receiving terminal knows about its own performance capabilities. It is
therefore the only possible entity able to compute the Quality of Service to be requested to the delivery layer in
order to fit the user requirements. Note that this computation could also ignore/override the total QoS parameters.

The QoS that is requested to the delivery layer is named media QoS, since it is expressed with a semantic which is
media oriented. The delivery layer will process the requests, determine whether to bundle multiple elementary
streams into a single network connection (TransMux) and compute the QoS for the network connection, using the
QoS parameters as defined by the network infrastructure. This QoS concept is named network QoS, since it is
specific for a particular network technology.

The above categorization of the various QoS concepts managed in ISO/IEC 14496 may suggest that this issue is

only relevant when operating in a network environment. However the concepts are of general value, and are
applicable to systems operating on local files as well, when taking into account the overall capacity of the system.

© ISO/IEC 2001 — All rights reserved 313

ISO/IEC 14496-1:2001(E)

Annex F
(informative)

Conversion Between Time and Date Conventions

The types of conversions that may be required are summarized in the diagram below.

MJD + UTC

—Vv~)

Local offset * add subtract
(positive or negative)

T T~A—""

"Local" MJD + local time

(@) e)

(b) (c (d)
\ 2

Year Month Day

Day of Week - Week
Week Year number

*
Offsets are positive for Longitudes East of Greenwich and negative for longitudes

West of Greenwich.

Figure 38 - Conversion routes between Modified Julian Date (MJD) and
Coordinated Universal Time (UTC)

The conversion between MJD + UTC and the “local” MJD + local time is simply a matter of adding or subtracting
the local offset. This process may, of course, involve a “carry” or “borrow” from the UTC affecting the MJD. The
other five conversion routes shown on the diagram are detailed in the formulas below.

Symbols used:

MJD: Modified Julian Day

uTC: Co-ordinated Universal Time

Y: Year from 1900 (e.g. for 2003, Y = 103)

M: Month from January (= 1) to December (= 12)
D: Day of month from 1 to 31

WY: "Week number" Year from 1900

MN: Week number according to ISO 2015

WD: Day of week from Monday (= 1) to Sunday (= 7)
K,L,M ,W,Y" Intermediate variables

X Multiplication

int: Integer part, ignoring remainder

mod 7: Remainder (0-6) after dividing integer by 7

a) To find Y, M, D from MJD

Y'=int [(MJD - 15 078,2) / 365,25

M'=int {[MJD - 14 956,1 - int (Y' x 365,25)]/ 30,6001 }
D = MJD - 14 956 - int (Y' x 365,25) - int (M' x 30,6001)
IfM' =14 0orM =15,thenK=1;else K=0

314 © ISO/IEC 2001 — All rights reserved

Y=Y +K
M=M-1-Kx12

ISO/IEC 14496-1:2001(E)

b) To find MJD from Y, M, D
fM=1lorM=2thenL=1;elseL=0
MJID =14956 + D +int [(Y - L) x 365,25] +int[(M + 1 + L x 12) x 30,6001]
c) To find WD from WJD
WD =[(MID+2)mod7]+1
d) To find MJD from WY, WN, WD
MJD =15 012 + WD + 7 x { WN +int [(WY x 1 461 / 28) + 0,41] }
e) To find WY, WN from MJD
W =int[(MID/7) -2 144,64]
WY =int [(W x 28 /1 461) - 0,0079]
WN =W -int[(WY x 1461/ 28) + 0,41]
EXAMPLE —
MJD = 45 218 W 4 315
= (19)82 wy (19)82
M = 9 (September) WN 36
D = 6 WD 1 (Monday)

NOTE — These formulas are applicable between the inclusive dates 1 900 March 1 to 2 100 February 28.

© ISO/IEC 2001 — All rights reserved

315

ISO/IEC 14496-1:2001(E)

Annex G
(normative)

Adaptive Arithmetic Decoder for BIFS-Anim

The follwing procedures, in C code, describe the adaptative arithmetic deoder used in a BIFS-Anim session. The
model is specified through the array i nt* cumul _freq[]. The decoded symbol is returned through its index in
the model.

First, the following integers are defined :

static long bottonr0, ql=2714, q2=2715, q3=3*2"14, top=2"16;

The decoder is initialized to start decoding an arithmetic coded bitstream by calling the following procedure.
static long low, high, code_value, bit, length, sacindex, cum zerorun=0;

voi d decoder _reset()

t
int i;
zerorun = O; /* clear consecutive zero's counter */
code_val ue = 0;
| ow = 0;
hi gh = top;
for (i = 1; i <= 16; i++) { //16 bits are read ahead
bit_out _psc_layer();
code value = 2 * code_value + bit;
}
used _bits = 0;
}

In the BIFS-Anim decoding process, a symbol is decoded using a model specified through the array
cumul _freq[] and by calling the following procedure.

static long low, high, code_value, bit, length, sacindex, cum zerorun=0;

int aa_decode(int cumul _freq[])

{
length = high - low + 1;
cum= (-1 + (code_value - low + 1) * cumul _freq[0]) / length;
for (sacindex = 1; cunul _freqg[sacindex] > cum sacindex++);
high =low- 1 + (length * cumul _freq[saci ndex-1]) / cumul _freq[0];

low += (length * cumul _freq[sacindex]) / cumul _freq[O0];
for (5 5) {

if (high < qg2) ;

elseif (low>= g2) {

code_val ue -= g2;
low -= q2;
high -= g2;

}

else if (low>= ql & high < g3) {
code_val ue -= q1i;
I ow -= q1;
hi gh -= q1;

el se {
br eak;

}

low *= 2;

hi gh = 2*high + 1;
bit_out _psc_layer();
code_val ue = 2*code_value + bit;
used_bi t s++;
}

return (sacindex-1);

316 © ISO/IEC 2001 — All rights reserved

ISO/IEC 14496-1:2001(E)

}
voi d bit_out_psc_|ayer()
{
bit = getbits(1);
if (zerorun > 22) {
if ('bit) {
/'l Error condition...long zero runs shouldn’t occur
} else {
bit = getbits(1l); // renoved startCode prevsition bit
zerorun = !bit; /1l if 0, start counting again at zerorun =1
else { // not close to hitting a fake start Code
if ('bit) {
++zerorun;
} else {
zerorun = 0O;
}
}
}

The model is specified in the array cunul _freq[].Itis reset with the following procedure.

voi d nodel _reset(int nbBits)

{
int nbVal ues = (1<<nbBits) +1;
int* cumul _freq = (int*) malloc(sizeof (int)*nbVal ues)
int i;
for (i=1;i<=nbValues;i++) {
cumul _freq[i] = nbVal ues-i
}

The model is updated when the value synbol is read with the following procedure.

voi d update_nodel (int curmul _freq[], int synbol) {

if (cumul _freq[0] == ql) { //The nodel is rescaled to avoid overfl ow
int cum=0
for(int i=nb_of _symbols-1; i>=0; i--) {

cum += (cumul _freq[i]-cumul _freq[i+1] +1)/2
cumul _freq[i] = cum

}
cumul _freq[nb_of _synbol s] = 0;
}

whi | e(synbol >0)
cunul _freq[synbol --] ++

© ISO/IEC 2001 — All rights reserved 317

ISO/IEC 14496-1:2001(E)

Annex H
(normative)

Node coding tables

Nodes: Anchor AnimationStream Appearance AudioBuffer AudioClip AudioDelay AudioFX AudioMix AudioSource
AudioSwitch Background Background2D Billboard Bitmap Box Circle Collision Color Colorinterpolator
CompositeTexture2D CompositeTexture3D Conditional Cone Coordinate Coordinate2D Coordinatelnterpolator
Coordinatelnterpolator2D Curve2D Cylinder CylinderSensor DirectionalLight DiscSensor ElevationGrid Expression
Extrusion Face FaceDefMesh FaceDefTables FaceDefTransform FAP FDP FIT Fog FontStyle Form Group
ImageTexture IndexedFaceSet IndexedFaceSet2D IndexedLineSet IndexedLineSet2D Inline LOD Layer2D
Layer3D Layout LineProperties ListeningPoint Material Material2D MovieTexture NavigationInfo Normal
Normallnterpolator OrderedGroup Orientationinterpolator PixelTexture PlaneSensor PlaneSensor2D PointLight
PointSet PointSet2D PositionInterpolator PositionInterpolator2D ProximitySensor2D ProximitySensor
QuantizationParameter Rectangle Scalarlnterpolator Script Shape Sound Sound2D Sphere SphereSensor
SpotLight Switch TermCap Text TextureCoordinate TextureTransform TimeSensor TouchSensor Transform
Transform2D Valuator Viewpoint VisibilitySensor Viseme WorldInfo

Node Data Types: SF2DNode SF3DNode SFAppearanceNode SFAudioNode SFEBackground2DNode
SFBackground3DNode SFColorNode SFCoordinate2DNode SFCoordinateNode SFExpressionNode SFFAPNode
SFFEDPNode SFFITNode SFFaceDefMeshNode SFFaceDefTablesNode SFFaceDefTransformNode SFFogNode
SFFontStyleNode SFGeometryNode SFELinePropertiesNode SFMaterialNode SENavigationinfoNode
SENormalNode SFEStreamingNode SFTextureCoordinateNode SFTextureNode SFTextureTransformNode
SFTopNode SFViewpointNode SFVisemeNode SFWorldNode

Extended Nodes: : AcousticMaterial AcousticScene ApplicationWindow BAP BDP Body BodyDefTable
BodySegmentConnectionHint DirectiveSound Hierarchical3DMesh MaterialKey PerceptualParameters

Extended Node Data Types: : SF2DNode SF3DNode SFBAPNode SFBDPNode SFBodyDefTableNode
SFBodySegmentConnectionHintNode SFMaterialNode SFPerceptualParameterNode SFWorldNode

H.1 Node Tables

Legend:

Node Name Node Data Type list nodeType/NDT
Field name |Field type |DEFid [INid |OUTid |DYNid [[min, max] |Quantizerid |Animation method

H.1.1 Anchor
SFEWorldNode 0000001
Anchor SF3DNode 000001
SF2DNode 00001
Field name Fieﬁtype DEF id IN id OUTid |DYNid |[[m, M] Q A
addChildren MF3DNode 000
removeChildren MF3DNode 001
children MF3DNode 00 010 00
description SFString 01 011 01
parameter MFString 10 100 10
url MFURL 11 101 11

318 © ISO/IEC 2001 — All rights reserved

H.1.2 AnimationStream

H.1.3

H.1.4

H.1.5

ISO/IEC 14496-1:2001(E)

SFEWorldNode 0000010
L SE3DNode 000010
AnimationStream SF2DNode 00010
SEStreamingNode 001
Field name Field type DEF id IN id OUTid |DYNid [[m, M] Q A
loop SFBool 000 000 000
speed SFFloat 001 001 001 [-1, +I] 0 7
startTime SFTime 010 010 010 [-1, +1]
stopTime SFTime 011 011 011 [, +1]
url MFURL 100 100 100
duration_changed SFTime 101
isActive SFBool 110
Appearance
AIFPEEIEIES gngpopr:ada’\rlggc?eNode 2000011
Field name Field type DEF id IN id OUTid |DYNid [[m, M] Q A
material SFMaterialNode 00 00 00
texture SFTextureNode 01 01 01
textureTransform SFTextureTransform 10 10 10
Node
AudioBuffer
. SFWorldNode 0000100
AudioBuffer SFAudioNode 001
Field name Field type DEF id IN id OUTid |DYNid [[m, M] Q A
loop SFBool 000 000 0000
pitch SFFloat 001 001 0001 [0, +1] 0 7
startTime SFTime 010 010 0010 [0, +I] 0
stopTime SFTime 011 011 0011 [0, +I] 0
children MFAudioNode 100 100 0100
numChan SFInt32 101 101 0101 [0, 255] 13,8
phaseGroup MFInt32 110 110 0110
length SFFloat 111 [0, +I] 0
duration_changed SFTime 0111
isActive SFBool 1000
AudioClip
SFWorldNode 0000101
AudioClip SFAudioNode 010
SEStreamingNode 010
Field name Field type DEF id IN id OUTid |DYNid [[m, M] Q A
description SFString 000 000 000
loop SFBool 001 001 001
pitch SFFloat 010 010 010 [0, +I] 0 7
startTime SFTime 011 011 011 [, +1]
stopTime SFTime 100 100 100 [, +1]
url MFURL 101 101 101
duration_changed SFTime 110
isActive SFBool 111

© ISO/IEC 2001 — All rights reserved

319

ISO/IEC 14496-1:2001(E)

H.1.6 AudioDelay

. SFEWorldNode 0000110
AudioDelay SFEAudioNode 011
Field name Field_type DEF id IN id OUTid |DYNid |[[m, M] Q
addChildren MFAudioNode 00
removeChildren MFAudioNode 01
children MFAudioNode 00 10 0
delay SFTime 01 11 1 [0, +]
numChan SFInt32 10 [0, 255] 13,8
phaseGroup MFInt32 11 [0, 255] 13,8
H.1.7 AudioFX
St
Field name Field_type DEF id IN id OuUTid |DYNid |[[m, M] Q
addChildren MFAudioNode 000
removeChildren MFAudioNode 001
children MFAudioNode 000 010 00
orch SFString 001 011 01
score SFString 010 100 10
params MFFloat 011 101 11 [-1, +] 0
numChan SFInt32 100 [0, 255] 13,8
phaseGroup MFInt32 101 [0, 255] 13,8
H.1.8 AudioMix
- SFWorldNode 0001000
AUEHEIES SFAudioNode 101
Field name Field type DEF id IN id OuUTid |DYNid |[[m, M] Q
addChildren MFAudioNode 000
removeChildren MFAudioNode 001
children MFAudioNode 000 010 00
numinputs SFInt32 001 011 01 [1, 255] 13,8
matrix MFFloat 010 100 10 [0, 1] 0
numChan SFInt32 011 [0, 255] 13,8
phaseGroup MFInt32 100 [0, 255] 13,8
H.1.9 AudioSource
SFWorldNode 0001001
AudioSource SFAudioNode 110
SEStreamingNode 011
Field name Field type DEF id IN id OUTid |DYNid |[[m, M] Q
addChildren MFAudioNode 000
removeChildren MFAudioNode 001
children MFAudioNode 000 010 000
url MFURL 001 011 001
pitch SFFloat 010 100 010 0 [0, +I] 0
speed SFFloat 011 101 011 1 [0, +I] 0
startTime SFTime 100 110 100
stopTime SFTime 101 111 101
numChan SFInt32 110 [0, 255] 13,8
phaseGroup MFInt32 111 [0, 255] 13,8

320

© ISO/IEC 2001 — All rights reserved

H.1.10 AudioSwitch

ISO/IEC 14496-1:2001(E)

. . SFWorldNode 0001010
AudioSwitch SFAudioNode 111
Field name Field_type DEF id IN id OUTid |DYNid [[m, M] Q A
addChildren MFAudioNode 00
removeChildren MFAudioNode 01
children MFAudioNode 00 10 0
whichChoice MFInt32 01 11 1 [0, 1] 13,1
numChan SFInt32 10 [0, 255] 13,8
phaseGroup MFInt32 11 [0, 255] 13,8
H.1.11 Background
SFWorldNode 0001011
Background SF3DNode 000011
SFEBackground3DNode 1
Field name Field type DEF id IN id OUTid |DYNid [[m, M] Q A
set_bind SFBool 0000
groundAngle MFFloat 0000 0001 0000 00 [0, 1.5707963] |6 8
groundColor MFColor 0001 0010 0001 01 [0, 1] 4 4
backUrl MFURL 0010 0011 0010
bottomUrl MFURL 0011 0100 0011
frontUrl MFURL 0100 0101 0100
leftUrl MFURL 0101 0110 0101
rightUrl MFURL 0110 0111 0110
topUrl MFURL 0111 1000 0111
skyAngle MFFloat 1000|1001 1000 |10 Eo?’l ssozes] | 8
skyColor MFColor 1001 1010 1001 11 [0, 1] 4 4
isBound SFBool 1010
H.1.12 Background2D
SFWorldNode 0001100
Background2d | SEENCGE 000100
SFEBackground2DNode 1
Field name Field type DEF id IN id OUTid |DYNid [[m, M] Q A
set_bind SFBool 00
backColor SFColor 0 01 00 [0, 1] 4 4
url MFURL 1 10 01
isBound SFBool 10
H.1.13 Billboard
S
Field name Fielatype DEF id IN id OuUTid |DYNid [[m, M] Q A
addChildren MF3DNode 00
removeChildren MF3DNode 01
children MF3DNode 0 10 0
axisOfRotation SFVec3f 1 11 1 9 9
H.1.14 Bitmap
. SFWorldNode 0001110
Bitmap SFGeometryNode 00001
Field name Field type DEF id IN id OUTid |DYNid [[m, M] Q A
scale SFVec2f [-1, +1] 12 12

© ISO/IEC 2001 — All rights reserved

321

ISO/IEC 14496-1:2001(E)

H.1.15 Box
Box SFEWorldNode 0001111
SFEGeometryNode 00010
Field name Field type DEF id IN id OUTid |DYNid |[[m, M] Q
size SFVec3f [0, +1] 11
H.1.16 Circle
Circle SFWorldNode 0010000
SEGeometryNode 00011
Field name Field type DEF id IN id OUTid |DYNid |[[m, M] Q
radius SFFloat [0, +1] 12
H.1.17 Collision
. SFEWorldNode 0010001
Collision SF3DNode 000110
Field name Field type DEF id IN id OuUTid |DYNid |[[m, M] Q
addChildren MF3DNode 00
removeChildren MF3DNode 01
children MF3DNode 00 10 00
collide SFBool 01 11 01
proxy SF3DNode 10
collideTime SFTime 10
H.1.18 Color
SFEWorldNode 0010010
Cler SFEColorNode 1
Field name Field type DEF id IN id OUTid |DYNid |[[m, M] Q
color MFColor [0, 1] 4
H.1.19 Colorinterpolator
SFWorldNode 0010011
ColorInterpolator SF3DNode 000111
SE2DNode 00100
Field name Field type DEF id IN id OUTid |DYNid |[[m, M] Q
set_fraction SFFloat 00
key MF