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 There is scarcely a realm in which the indispensability of the calculus that was 
presented in my Ausdehnungslehre (of 1844 and 1862) proves to be as persuasive as it 
does in mechanics.  One can say that any simple mechanical concept has a likewise 
simple associated concept in the calculus.  In fact, once I had recognized the first 
principles themselves, I developed the entire method of calculation further most quickly 
and fruitfully by resorting to mechanics.  Without exception (except for changes of 
notation here and there), I have already published the methods that I will turn to in this 
article and the equations that I will arrive at by using them in a paper on the theory of ebb 
and flow that I submitted at Pfingsten 1840 as a test paper for the scientific board of 
examiners in Berlin.  Very little of it is overlooked in my Ausdehnungslehre of 1844.  
The recent textbooks and articles in mechanics, namely, G. Kirchhoff’s Vorlesungen 
(1875, 1876) show me that the presentation of these methods is still just as requisite today 
as it was thirty-seven years ago when I found the time and opportunity to publish them.  
In a later article, I think that I will then solve the most important of the problems of 
mechanics that have not be touched upon by new methods that likewise arise from the 
theory of extensions. 
 
 

§ 1.  Concepts and laws of the theory of extensions that shall be employed here. 
 
 
 For the sake of clarity, I will give an overview of the theory, to the extent that it shall 
be applied in this article, but refer to my Ausdehnungslehren of 1844 and 1862 for the 
detailed treatment, which I will denote by A1 and A2 in the sequel.  I start with the notion 

of line segment.  I understand this to mean a bounded straight line of definite length and 
direction; i.e., I regard two line segments to be equal if and only if they have equal 
lengths and directions.  Line segments will be added when one continuously lays them 
one after the other, so the line segment from the initial point of the first one to the end 
point of the last one is their sum (A1: § 15-18, A2 : 220).  Subtraction reverts to addition, 

since one can add the line segment that goes from B to A, instead of the one from A to B.  
The concept of multiplication or division by a number emerges from the general concept 
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of these processes immediately.  The fact that the usual rules of calculation are 
completely valid for all of these processes is proved in the theory of extensions. 
 The exterior product of the line segments a and b, which is written [ab], will be 
defined formally by first requiring that for any product the following relationship to 
addition is true: i.e., one has: 
 

[a (b + c)] = [ab] + [ac], [(a + b) c] = [ac] + [bc], 
 
and second, that the exterior product of equal line segments is zero: 
 

[aa] = 0, 
 
but conceptually by requiring that when a is the line segment from the point A to the 
point B and b is the line segment from B to C or from A to D, then [a b] will be the 
surface space of the parallelogram ABCD, and indeed in the sense that two such surface 
spaces are equal to each other if and only if they lie in parallel planes, have equal areas, 
and the perimeters of both of them go through the same sides (right or left) (A1: § 28-30, 

37, A2: 239, et seq.)  The addition of surface spaces, when they do not lie in parallel 

planes, is determined completely by the formula: 
 

[ab] + [ac] = [a (b + c)]. 
 The formula: 

[(a + b)(a + b)] = 0 
 

immediately yields the second important law of exterior multiplication, namely: 
 

[ab] = − [ba]. 
 

 The exterior product of three line segments a, b, c, or of a surface space [ab] and a 
line segment c is defined formally by requiring that: 
 

[abb] = 0 
and therefore also: 

[abc] = − [acb], 
 
and conceptually by associating that symbol to the volume of a parallelepiped that has a, 
b, c as the sides that are connected to each other.  It will be zero when the three line 
segments lie in a plane.  Furthermore, one has: 
 

[abc] = [bca] = [cab] = − [acb] = − [cba] = − [bac]. 
 

(A1: § 37, A2: 240, et seq.) 

 I understand the term inner product [a | b] of two line segments a and b, whose 
lengths are a and b, and subtend the angle ∠ ab to mean the product: 
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[a | b] = ab cos ∠ ab, 

 
and for the sake of brevity, write 2a  for [a | a], and call this the inner square of the line 
segment a (A1: XI, A2: 179).  I would like to call the of three line segments e1, e2, e3 that 

are perpendicular to each other and whose lengths and exterior product [e1e2e3] equal one 
a normal set.  The rules for inner multiplication then emerge from the concept 
immediately, namely: 
 
   [a | b] = [b | a], 
   [a | b] = 0   when a and b are perpendicular, 
   2a = a2,   when a is the length of a, 

   [a | b] = a1b1 + a2b2 + a3b3, 

when 
   a = a1e1 + a2e2 + a3e3 ,  b = b1e1 + b2e2 + b3e3 , 

    
and e1, e2, e3 is a normal set.  Should one wish to express a unit of one normal set as the 
multiple sum of the units of another one, then the coefficients would emerge immediately 
as the inner products of the latter three units with the former one; e.g.: 
 

e1 = [e1 | ε1] ε1 + [e1 | ε2] ε2 + [e1 | ε3] ε3 . 
In fact, if one sets: 

e1 = x ε1 + y ε2 + z ε3 
 
then one gets that [e1 | ε1] = x immediately through inner multiplication by ε1, since: 
 

[ε2 | ε1] = [ε3 | ε1] = 0, and  2
1ε  = 1, 

 
and likewise, [e1 | ε2] = y, [e1 | ε3] = z, so e1 = [e1 | ε1] ε1 + [e1 | ε2] ε2 + [e1 | ε3] ε3 . 
 Not just minor difficulties are associated with converting the equations that are 
obtained from this calculus into algebraic equations.  One then must only choose an 
arbitrary coordinate system, assume that three line segments e1, e2, e3 lie on the three 
coordinate axes, and represent every line segment that enters into an equation as a 
multiple sum of e1, e2, e3 , and thus in the form a1 e1 + a2 e2 + a3 e3 , while every surface 

space that occurs in the form a1 [e2 e3] + a2 [e3 e1] + a3 [e1 e2], in which the numbers a1, 

a2, a3 might be the coordinates of the line segment or surface space, respectively, and one 

ultimately obtains equations in which either no geometric quantities at all occur any more 
or they take on the forms: 
 

B1 e1 + B2 e2 + B3 e3  = 0 or B1 [e2 e3] + B2 [e3 e1] + B3 [e1 e2] = 0, 

 
resp., where the B are functions of just the coordinates.  Three equations: 
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B1 = 0,  B2 = 0,  B3 = 0, 

 
then arise from any such equation. 
 For differentiation and integration, the ordinary definitions suffice.  In mechanics, 
only spatial quantities enter in addition to time t as independent variables.  Hereinafter, it 
will be especially convenient to denote the differentials differently.  I let δ denote the 
differential quotient with respect to time, in which only those quantities are regarded as 
constant that are expressly defined to not change in time, such that when, e.g., the line 
segment x is represented in a proper series (A2: 454): 

 
x = a0 + a1 t + a2 t

2 + … 
 

in which, a0 , a1, a2, … are line segments that do not change in time, so: 
 

δx = a1 + 2a2 t + … 
 
 By contrast, I will generally let d denote the differentials of functions of spatial 
quantities in which the time is held constant.  The concept of partial differential quotients 
of the functions of spatial quantities can be (as was done in A2: 436, et seq.) established 

precisely as it is for functions of algebraic quantities.  Therefore, I shall choose the 
indeed somewhat circuitous − but, I believe, easier for the reader − path of reducing to 
partial differential quotients of functions of algebraic quantities.  I shall start with a 
normal set e1, e2, e3, and express the line segments x, y, … upon which an algebraic 
function f shall depend in coordinates with respect to the line segments of each set, 
namely: 

x = x1 e1 + x2 e2 + x3 e3 , x = x1 e1 + x2 e2 + x3 e3 , etc., 
 

so f becomes a function of these coordinates x1 , x2, etc.  Now, if 
1

f

x

∂
∂

,
2

f

x

∂
∂

, etc., are the 

partial differential quotients with respect to all of the coordinates of the set (A2: 436) then 

I shall understand the partial differential quotients of f with respect to the line segment x – 

which is written f
x

∂
∂

− to mean the line segment: 

 

f
x

∂
∂

 = 1 2 3

f f f
e e e

x y z

∂ ∂ ∂+ +
∂ ∂ ∂

. 

 
It immediately follows from this that: 
 

|f dx
x

∂ 
 ∂ 

 = 1 2 3

f f f
dx dx dz

x y z

∂ ∂ ∂+ +
∂ ∂ ∂

. 
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 However, it remains to be shown that f
x

∂
∂

, whose definition was closely linked to 

the normal set e1, e2, e3 here, remains completely unchanged when one chooses any 
another normal set ε1, ε2, ε3 .  Let x = ξ1 ε1 + ξ2 ε2 + ξ3 ε3 , so: 
 

x1 e1 + x2 e2 + x3 e3 = ξ1 ε1 + ξ2 ε2 + ξ3 ε3 . 
 

 If one inner-multiplies this equation by e1 then one will get: 
 

x1 = ξ1 [ε1 | e1] + ξ2 [ε2 | e1] + ξ3 [ε3 | e1], 
 
since one has 21e  = 0, [e1 | e2] = [e1 | e3] = 0, and from this, one will get the values of x2 

and x3 when one replaces e1 with e2 and e3, resp.  Therefore, one will get 1

1

x

ξ
∂
∂

 = [ε1 | e1], 

and in general: 

r

s

x

ξ
∂
∂

 = [εr | es]. 

 Now, one has: 

1

f

ξ
∂
∂

 = 31 2

1 1 2 1 3 1

xx xf f f

x x xξ ξ ξ
∂∂ ∂∂ ∂ ∂+ +

∂ ∂ ∂ ∂ ∂ ∂
 

 

= 1 1 1 2 1 3
1 2 3

[ | ] [ | ] [ | ]
f f f

e e e
x x x

ε ε ε∂ ∂ ∂+ +
∂ ∂ ∂

, 

 

and from this, one obtains 
2

f

ξ
∂
∂

, 
3

f

ξ
∂
∂

 when one replaces ε1 with ε2 and ε3, resp.; one then 

gets: 

 1 2 3
1 2 3

f f fε ε ε
ξ ξ ξ

∂ ∂ ∂+ +
∂ ∂ ∂

 = 
1

f

x

∂
∂

([ε1 | e1] ε1 + [ε2 | e1] ε2 + [ε3 | e1] ε3) 

  + 
2

f

x

∂
∂

([ε1 | e2] ε1 + [ε2 | e2] ε2 + [ε3 | e2] ε3) 

  +
3

f

x

∂
∂

([ε1 | e3] ε1 + [ε2 | e3] ε2 + [ε3 | e3] ε3) 

  = 1 2 3
1 2 3

f f f
e e e

x x x

∂ ∂ ∂+ +
∂ ∂ ∂

, 

 
and from that, the proof of the theorem on the change of normal set; i.e., the value of the 

partial differential quotient f
x

∂
∂

is independent of the choice of normal set. 
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§ 2.  Basic laws of mechanics. 
 
 

 If x means the line segment that points from a fixed point to the moving point then it 
is immediately clear that δx represents the magnitude and direction of the velocity of that 
point and, in the same way, δ 2x represents its acceleration or change in motion (*).  From 
the law of persistence, any change in the motion of a material point must be ascribed to a 
cause that acts upon it.  If we let the effect of that cause be equal to the line segment p 
then we will have the equation: 
(1)      δ 2x = p. 
 
 If this effect is, e.g., constantly equal to the line segment g then we will obtain 
immediately from integrating the equation δ2x = g that δx = c + gt, where c is an arbitrary 
constant line segment (viz., the initial velocity), and from another integration we get x = b 
+ ct + 1

2 gt2, where b is, once more, a constant line segment (viz., the initial value of x).  

These equations include the usual law of ballistics in its most general form. 
 The so-called parallelogram law for force can be expressed thus: If the effects of 
several causes on the point x equal the line segments p1, p2, …, when taken individually, 
then the simultaneous effect p of all of the causes is equal to the sum of the line segments 
p = p1 + p2 + …  Equation (1) is then also true when p is the sum of all effects that the 
various causes simultaneously exert on the moving point. 
 I use the term simple force to refer to a cause that is seated at a material point, in 
some way, such that the effect of that cause on another material point depends upon only 
the mutual position of the points, but is completely independent of the surrounding space.  
Therefore, if a material point A exerts an effect BC on another point B, and one arbitrarily 
relocates the figure ABC to A1B1C1, such that ABC is remains congruent with A1B1C1, 
however, then B1C1 must be the effect of A1 on B1 .  It follows from this that BC must lie 
in the infinite straight line AB.  If this were not the case, but A, B, C were to define a 
triangle, and one rotated it around the AB axis through an arbitrary angle into the position 
ABC1 then A would have to exert the effect BC1 on B, which contradicts the effect BC, so 
the force can act only to draw them together or push them apart.  However, if the points A 
and B have precisely the same character then one must also be able to switch A with B 
with changing the effect.  Now, if A acts upon B with the effect BC (viz., pushing or 
pulling), and one rotates ABC around the midpoint of AB to the position A1B1 such that A1 
coincides with B and B1 coincides with A, and if we let C1 be the point upon which C 
falls, then B1C – i.e., AC1 – must not be regarded as merely the effect of the point A1 on 
B1, but also the that of the point B on A; i.e., the effect must be reciprocal, and the two 
effects must be equal and opposite to each other.  Moreover, if the material points keep 
the same character then the magnitudes of effects must be a function of only the mutual 
separation (** ).  Now, if A and B do not, in fact, have completely the same character, but 
A exerts the equal and opposite effect on B that B does on A, then we will say that A and 
B are equal in mass.  Which mass we use as the unit of mass is, in itself, irrelevant.  
                                                
 (*) It would be simpler to immediately set x equal to the moving point.  I will save this for a later article 
in which the calculations will be presented using points.  
 (** ) It is already implicit in this that I cannot ascribe the forces that the electricity that moving electric 
currents exert to a simple force. 
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However, once that unit is established, we can set the force equal to the acceleration that 
is associated with a mass of 1.  Therefore, we can make the endpoint of x in equation (1) 
a point of mass 1 and set p equal to the force – or sum of the forces – that act upon it.  In 
this sense, we can make equation (1) the fundamental equation of mechanics. 
 
 

§ 3.  Motion of a freely-moving set of material points. 
 
 

 I shall distinguish between internal and external forces relative to the set.  Internal 
forces are ones by which a point of the union acts upon the other points of the same set, 
while external forces are the remaining ones.  I shall first assume that all points of the set 
are of equal mass and, in fact, of mass 1.  Now, let x1, …, xm be the line segments that 
point from a fixed point to the moving points of the set, let p1 be the sum of all the forces 
that act upon the first point, etc., so, from (1), one has the m equations δ 2x1 = p1 , …, 
δ 2xm = pm , and adding these gives: 
 

δ 2x1 + … + δ 2xm = p1 + … + pm . 
 

 Since the internal forces are pair-wise equal and opposite, they drop out under 
addition, so it follows that we can consider p1, …, pm to be external forces here.  Now, let 
s be the line segment that points from the fixed point to the center of mass of the set, and 
let y1, …, ym be the line segments that point from the center of mass to the points of the 
set, so, by definition, the center of mass will satisfy y1 + …+ ym = 0.  However, x1 = s + 
y1, …, xm = s + ym, so x1 + … + xm = ms, in which the construction of the center of mass 
also lies, so: 

δ 2 x1 + … + δ 2xm = δ 2 (x1 + … + xm) = m δ 2s, 
 
and one thus obtains the above equation in the form: 
 

(2)      δ 2s = 
1

p
m

, 

 
where p is the sum of all external forces and m is the mass of the set.  This is the equation 
of motion for the center of mass.  It can likewise be true as the equation for the motion of 
a point of mass m, and from now on, we can also assume points of unequal mass, so, for 
the sake of simplicity, without sacrificing any generality, we can now continue to use 
points of mass 1.  If we introduce the value s + y1, in place of x1, δ 2s + δ 2y1, in place of 
δ 2x1, and replace δ 2s with the value that was found from (2) in the equation of motion 
then we will get: 

(3)    δ 2y1 = p1 − 
1

p
m

, etc., δ 2ym = pm − 
1

p
m

 

 
for the equations of the relative motion of an arbitrary set relative to the center of mass of 
the point. 
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 If one exterior multiplies the equation δ 2x1 = p1 by x1 then one will get [x1 δ 2x1] on 
the left-hand side, but this is the time differential of [x1 δ x1], since under differentiation 
the other term [δx1 δ x1] will be zero, from the rules of exterior multiplication.  One thus 
obtains δ[x1 δ x1] = [x1 p1].  If one constructs the same equations for the other points and 
adds them then one will obtain, upon applying the summation notation: 
 
(4)      δ ∑ [x dx] = ∑ [x p]. 
 
 The internal forces also drop out here.  If we then let, e.g., λ(x2 – x1) be the force that 
the first point exerts upon the second one then the effect that the latter exerts upon the 
former one will be the opposite one, namely, λ(x1 – x2), so upon summation, one will 
have: 

[x1 λ(x2 – x1)] + [x2 λ(x1 – x2)] = λ [x1 x2] + λ [x2 x1] = 0, 
 
since [x1 x2] = − [x2 x1].  Therefore, all internal forces drop out, and likewise for the 
forces that are directed from the starting point of the x.  If λx1 is such a force that acts 
upon the first point then one will have [x1 λx1] = 0.  Therefore, if no other external forces 
that are directed from the starting point of the x act, as such, then equation (4) will 
express the invariability of the total surface motion ∑ x dx. 
 If one exterior multiplies equations (3) by y1, etc., in the same way and adds them 

then one will obtain, since 
p

y
m

 
  

∑  = 
1

m
[∑ y ⋅⋅⋅⋅ p] is zero, due to the property of the 

center of mass, that: 
(5)      δ ∑ [y dy] = ∑ [y p]; 
 
i.e., the surface equation (4) will also be true when one replaces the fixed starting point of 
the x with the moving center of mass. 
 For the further development of equation (6), it is very essential to regard all of the 
forces p that several points exert upon the point x1 as partial differential quotients with 
respect to x1 of an algebraic function of all of these points, such that if U is that function 

then one would let p = 
1

U
x

∂
∂

.  One can then say that the force p1 originates in the 

tendency (*) of the function U to increase.  Namely, the increase that U experiences 

during an infinitely small displacement dx1 is 1
1

|U dx
x

 ∂
 ∂ 

; if dx1 maintains the same 

length then this increase is largest when dx1 has the direction of the first factor, which 
follows immediately from the formula [a | b] = ab cos ∠ ab; i.e., the motion that results 

from the force p1 assumes the direction in which the function U increases most rapidly; 
i.e., the tendency will be fulfilled most completely.  Likewise, when the point x1 changes 
its position, but dx1 continually keeps the same length and the direction of the first factor 

                                                
 (*) I gave this idea of a tendency its foundation in the aforementioned paper in the year 1840. 
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remains 
1

U
x

∂
∂

 then the force behaves like the increase of U; i.e., like the achievement of 

the goal that one tends towards.  In fact, one can therefore regard the force p as the 
expression of the tendency of U to increase.  It is well-known that U will be called the 
potential.  Finding U poses no difficulty.  We first consider the force p21 that a point x2 
exerts upon another one x1 .  From § 2, this force can be regarded as a function of their 
separation, and it thus behaves like f(r).  However, in order to represent the direction, we 
write it as: 

p21 = 
1

r
 f(r) (x1 – x2). 

 
Here, r is the length of x1 – x2 , i.e., r2 = (x1 – x2)

2, and when this is differentiated, one 
will get: 

r dr = [(x1 – x2) | (dx1 – dx2)]  or dr = 
1

r
(x1 – x2) | (dx1 – dx2), 

so 

 f(r) dr = 
1

r
f(r) [(x1 – x2) | (dx1 – dx2)] 

  = [p21 | (dx1 – dx2)]. 
 

 Now, let ∫ fr ⋅⋅⋅⋅ dr = U12 so one has dU12 = [p21 | (dx1 – dx2)], so 12
1

U
x

∂
∂

 = p21 , and so 

one also has 12
2

U
x

∂
∂

= p12 .  If one has defined a family of quantities Ur , s between any 

two points in the same way then their sum U will become a function of these points, and 
the force that the remaining points of the family exert upon a point x1 will then be equal 

to 
1

U
x

∂
∂

. 

 The distinction between external and internal force is likewise important for the 
introduction of this potential into equation (6).  If one lets V be the complete internal 
potential – i.e., the sum of the potentials between any two points of the set – and let U the 
total external potential – i.e., the sum of the potentials between any internal point and an 
external one – then the first of equations (6) will admit a complete integration, while the 
last one, will admit one only insofar as the external points are unchanging in time.  In 
fact, if one considers the forces p12 and p21 that the first two points exert upon each other 
in the sum ∑ [p | δx], with the associated potential U12 , so [p12 | δx2] + [p21 | δx1] is the 

associated part of that sum, hence, it is equal to 12 2 12 1
1 1

| |U x U x
x x

δ δ
   ∂ ∂+   ∂ ∂   

 = δU12 , 

and one extends this to all internal forces, then the part of that sum that will arise from 
this will equal δV, and equation (6) will assume the form: 
 

(7)     1
2  ∑ (δx)2 = V + |U x

x
δ∂ 

 ∂ 
∑∫ . 
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§ 4.  Motion of a constrained moving set. 

 
 

 The constrained motion of a set will be most simply represented by condition 
equations that the moving points are subjected to.  The motion is still not determined by 
these equations alone.  Moreover, one must assume that there are forces that act upon the 
points of the set, as long as they also move the position only infinitely little away from 
one that satisfies the equations, and irresistibly move it back to a position that does satisfy 
these equations.  This brings us to the more precise determination of these forces. 
 Let L = 0 be such an equation of condition, so we would like to ascribe the force of 
tendency that arises from it that would conserve the equation L = 0; i.e., a potential that is 
equal to L or an arbitrary function of L, such as f(L).  Having assumed this, the force that 

conserves the tendency L = 0 that is produced at P ⋅⋅⋅⋅ x1 equals 
1

( )f L
x

∂
∂

 = f ′L 
1

( )f L
x

∂
∂

, 

if f ′L is the derivative of fL, or if we denote this derivative by λ then the force that the 

point x1 feels due to that tendency will be λ
1

L
x

∂
∂

, the force that P ⋅⋅⋅⋅ x1 feels will be 

λ
2

L
x

∂
∂

, etc.  Now, if that condition equation L = 0 is associated with other ones M = 0, 

etc., then forces µ 
1

M
x

∂
∂

, µ 
2

M
x

∂
∂

, etc., will arise from that, and, from the fundamental 

law (1), the equation of motion will become: 
 

(8)     

2
1 1

1 1

2
2 2

2 2

x p L M
x x

x p L M
x x

δ λ µ

δ λ µ

∂ ∂ = + + + ∂ ∂
 ∂ ∂ = + + +
 ∂ ∂

⋯

⋯

 

where 
L = 0, M = 0, … 

 
suffice to determine the unknowns λ, µ. 
 Now, let dx1, dx2, … be arbitrary displacements of the points x1, x2, …, which, 
however, satisfy the equations dL = 0, dM = 0, etc.  If one inner multiplies the equations 
above by dx1, dx2, etc., and adds them then, since one has: 
 

1 2
1 2

| |L dx L dx
x x

   ∂ ∂+   ∂ ∂   
 + … = dL = 0, 

 
the terms in λ, µ, … will drop out, and one will obtain: 
 
(9)     2[( ) | ]x p dxδ −∑  = 0, 
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which will be true for all displacements that satisfy the equations dL = 0, dM = 0, … 
 
 

§ 5.  Equilibrium and mean motion. 
 
 

 If the forces that act upon a set depend upon only the positions of the points of the set 
and not otherwise upon time then equilibrium is possible, and the formulas for 
equilibrium are then included in the equations above, when one only sets the 
accelerations and velocities of all points of the set equal to zero, by which, equilibrium 
between the forces is then demanded.  However, if these equations are fulfilled then the 
initial position of the points of the set or their initial velocities can be such that no 
equilibrium arises, and, in particular, that for very minor deviations of the initial state 
from a state of stable equilibrium, oscillations about that state will occur.  These 
properties of equilibrium and its perturbation by infinitely small oscillations arise only for 
the case in which the forces depend upon time in such a way that a state of mean motion 
can exist, in which, if this state of mean motion is a stable one then small oscillations can 
once more occur that do not exceed a certain maximum in the course of time. 
 I will use the term “mean motion of a set” that is impelled by given (time-varying) 
forces to refer to that motion for which, under all of the motions that depend upon the 
various initial states, the smallest motion comes about − or stated more precisely − for 
which the sum of the animating forces that are active during a sufficiently long time is a 
minimum.  If T = 1

2  ∑ (δx)2 (the points of the set are always thought of as having equal 

masses) is the animating force, so T ∂t is the animating force that is active during the time 
element ∂t, then ∫ T dt, when taken between the limits t = 0 and t = t, will be the total 
animating force that is active during this time.  Therefore, for the mean motion, that 
integral shall, for a sufficiently large t, be less than it is for any other motion of the 
system, and also remain smaller that that when t increases from there on arbitrarily.  For 
linear equations of motion, I shall couple the concept of mean motion with that of the 
mean integration of linear differential equations of arbitrary order, so I shall choose 
second-order differential equations as an example.  Let n numerical quantities u1, …, un 
be thought of as dependent upon an independent numerical quantity t, and let the 
differential of those quantities with respect to t be denoted by δ, and let that dependency 
be partially determined by the n equations: 
 

(10)*  

2
1 1,1 1 1, 1,1 1 1, 1

2
,1 1 , ,1 1 ,

,

,

n n n n

n n n n n n n n n n

u a u a u b u b u f t

u a u a u b u b u f t

δ δ δ δ δ

δ δ δ δ δ

 + + + + + + =


 + + + + + + =

⋯ ⋯

⋮

⋯ ⋯

 

 
where the a and b are constant numerical quantities. 
 The general integration of these equations is well-known.  Therefore, in order to 
clearly single out the mean integration, it will be necessary to present the general 
integration lucidly.  It is first clear that one can decompose the ft into arbitrary terms, take 
the general integrals that relates to these terms individually, and then add the integrals so 
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obtained.  I decompose the f t into exponential terms whose exponents are proportional to 
time, and then present the equations to be integrated in the form: 
 

(10)  

2
1 1,1 1 1, 1,1 1 1, 1

2
,1 1 , ,1 1 ,

,

,

t
n n n n

t
n n n n n n n n n n

u a u a u b u b u g e

u a u a u b u b u g e

κ

κ

δ δ δ δ δ

δ δ δ δ δ

 + + + + + + =


 + + + + + + =

⋯ ⋯

⋮

⋯ ⋯

 

 
where g1, …, gn .  One also thinks of the u as represented by such terms.  Two types of 
these terms then emerge, namely, ones with the exponential quantity eκ t and ones with 
eλ t, where λ is different from κ, but still to be found.  The former terms define the mean 
integral and can be found immediately, while the latter ones depend upon the solution to 
an equation of degree 2n.  The mean integration gives u1 = y1 e

κ t, …, un = yn e
κ t, where 

the y1, …, yn are determined precisely by the n equations: 
 

(11)  

2
1 1,1 1 1, 1,1 1 1, 1

2
,1 1 , ,1 1 ,

,

,

n n n n

n n n n n n n n n n

y a y a y b y b y g

y a y a y b y b y g

κ κ κ

κ κ κ

 + + + + + + =


 + + + + + + =

⋯ ⋯

⋮

⋯ ⋯

 

 
unless the determinant of the coefficients of the y1, …, yn should be zero, which we will 
discuss below.  By contrast, if one were to set u1 = y1 e

λ t, …, un = yn e
λ t, where λ is not 

equal to κ, then this would yield a system of equations that would correspond to (11) 
above, with the difference that λ, z would enter in place of κ, y, and the right-hand sides 
would be zero.  It follows from this that the determinant of the coefficients of z1, …, zn 
should be zero.  That gives the 2nth-degree equation for λ that was mentioned above.  For 
each of the 2n values λ1, …, λ2n that satisfies this 2nth-degree equation, the associated 
ratios of the z are determined, and with that the general integration is complete.  It is only 
when κ is equal to one of the 2n values λ1, …, λ2n that the aforementioned case will occur 
in which the y1, …, yn of the mean integration become infinite or undetermined; in this 
case, one can first make κ differ from the value of λ by infinitely little, and then 
determine the mean integration that relates to this κ.   The mean integration always 
remains independent of the solution of the equation of degree 2n.  However, in order to 
be able to go over to the equations of motion, we must give equations (10) still another 
form.  Then, since the terms g eκ t, which should represent the forces, become infinite 
with t for real κ, they do not correspond to the case in nature under this assumption.  One 
therefore replaces g eκ t with the two terms c cos κt + c′ sin κt; i.e., 

2 2
i t i tc c i c c i

e eκ κ−′ ′− ++ .  These two terms differ only by the sign of i = 1− .  If one now 

replaces g eκ t in (10) with one of them, 1

2
i tc c i

eκ′−
, etc., then one must replace g1 in (11) 

with 1

2

c c i′−
, etc., and furthermore, replace iκ with – κ2 and κ2, and then the y that are 

determined from (11) will become imaginary – say, v + wi – so one will get u1 = (v1 + w1 
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i) eiκ t, …, un = (vn + wn i) e
iκ t.  If one then replaces g in (10) with 

2
i tc c i

e κ−′+
 then this 

will give values for u1, …, un that differ from the ones above only by the signs of i.  Let 
them be denoted by 1u′ , …, nu′ , so 1u′  = (v1 − w1 i) e

−iκ t, …, nu′  = (vn − wn i) e
−iκ t ; one 

then gets u1 + 1u′  = 2v1 cos κt – 2w1 sin κt = a1 cos κt + b1 sin κt, when one sets 2v1 = a1 

and – 2w1 = b1 . 
 It must now be proved that the motion that is determined by linear equations of the 
form (10) provides the mean integration, as well as the mean motion as it was defined 
above.  For the motion of a set of m equally-massive points in space the n in equations 
(10) and (11) will equal 3m, so the equation in λ will then be of degree 6m.  We assume 
perpendicular coordinate axes.  The total animating force then becomes T = 1

2  ∑ δu2, so    

∫ T dt = 1
2  ∑ ∫ δu2 dt, in which the sum extends over u1, …, u3m .  Now, for the general 

integration, u1 consists, in part, of terms from the mean integration, which are of the form 
a1 cos κt + b1 sin κt, and, in part, of 6m terms of the form 1tzeλ ; therefore, δu1 includes 
terms of the form κb1 cos κt − κa1 sin κt and ones of the form 1

1
tzeλλ , and δu2 then 

contains the squares of these terms and twice the products of each pair of them.  One sees 
immediately that the terms of the form 1

1
tzeλλ  become infinite for infinite t when λ1 is 

real, so Tdt  is certainly smaller when these terms are absent than when they are 
present.  We can then omit these terms for the proof of the mean motion, and the same 
thing is true when λ1 = α + β i, and α is non-zero.  Only terms for which λ1 = β i are then 
to be considered.  Another value of λ might then be λ2 = −β i, and the real terms in u1 that 
would arise from this would be of the form p cos β t + q sin β t, so the ones in δu1 would 
be of the form β (q cos β t – p sin β t), and thus of the form that corresponds to the terms 
of the mean integration.  If we first consider the squares – e.g., (κ b1 cos κ t – κ a1 sin 
κ t)2, so in T dt one will have the terms 1

2 κ2 (κ b1 cos κ t – κ a1 sin κ t)2 dt – then this 

would give: 
 

1
2 κ2 [ 2

1b (1 + cos 2κ t) dt + 2
1a (1 − cos 2κ t) dt – 2a1 b1 sin 2κ t dt]. 

 
 When integrated, will this give 12 κ2 2 2

1 1( )a b+ t + P, where P provides nothing but 

finite periodic terms.  If we further consider the doubled product of two such terms – e.g., 
κ (b1 cos κ t – a1 sin κ t) and β (p cos β t – p sin β t) then that would give the term: 
 

κβ dt (b1q cos κ t cos β t + a1p sin κ t sinβ t − b1p cos κ t sin β t − a1q sin κ t cos β t) 
 
= κβ dt  

× 1 1 1 1 1 1 1 1cos( ) cos( ) sin( ) sin( )
2 2 2 2

b q a p b q a p b q a p b q a p
t t t tκ β κ β κ β κ β+ − + − + + − − + − −  

, 

 
so when κ is not equal to β, this will produce only finite periodic terms.  Now, we can 
assume that t is large enough that the periodic terms vanish when compared to the terms 
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of the form 1
2 κ2 2 2

1 1( )a b+ t, etc.  One then gets ∫ T dt = 1
4 ∑ κ2 (a2 + b2) t + 1

4 ∑ β2 (p2 + 

q2)t, where the first sum relates to all terms of the mean integration, while the second sum 
relates to the remaining ones.  Here, a and b are unchanging values, while p and q can be 
zero, so for a sufficiently long t the integral ∫ T dt is smallest when the p, q are all zero; 
i.e., the integral is the mean one.  It is thus proved that for linear differential equations the 
motion of the mean integration likewise yields the mean motion. 
 I shall call a term of the form a cos κt + b sin κt, where κ is positive, but a and b 
might be numbers or line segments, an elliptic term and κ, its indicator.  In fact, if a and 
b were line segments of unequal direction here, and a cos κt + b sin κt were represented 
as the line segment r that starts from a fixed point then in time 2π / κ its endpoint would 
describe an ellipse, and in fact, in such a way that the line segment r itself would describe 
equal spaces in equal times, namely, in the time dt, it would describe the space 1

2 [a b] κ 

dt; the line segments a and b are conjugate semi-axes of the ellipse.  In fact, if one sets 
cos kt = u, sin kt = v then that radius will become r = ua + vb and u2 + v2 = 1, which is the 
equation for the ellipse with the conjugate semi-axes a and b.  Furthermore, in the time 
element dt, the endpoint of r describes the line segment δr ⋅⋅⋅⋅ dt − i.e., (b cos κ t − a sin κ t) 
κ dt − and r itself describes the surface space 1

2 [r δr] dt – i.e., 1
2 [(a cos κ t + b sin κ t)    

(b cos κ t − a sin κ t) κ dt.  Taking the exterior product gives the value [a b], since [a a] = 
[b b] = 0, [a b] = − [b a] and cos2 κt + sin2 κt is equal to 1, so the surface space that is 
described in the time element dt equal to 12 [a b] κ dt. 

 We can now express the law for the mean motion in our case as follows: If the motion 
of a set of points were represented by linear differential equations then the elliptic terms 
that are present in the expression for force would correspond to the elliptic terms of the 
same indicators in all line segments that point from a fixed point to the moving points, 
and indeed the coefficients of these terms would be determined completely by the given 
equations, and outside of these terms no others will emerge from the mean motion. 
 I now remark that the stability or instability of the mean motion can be most simply 
derived from the principles that were developed above. 
 
 

§ 6.  Application to the theory of ebb and flow. 
 
 

 Here, we also consider a system that is subject to ebb and flow to be a set of m points 
whose masses are 1.  Equation (3) in § 3 is then valid for the motion relative to the center 
of mass, namely, δ 2y1 = p1 + q1 − 1

m p , …, δ 2ym = pm + qm − 1
m p , in which I have, in 

fact, separated the internal forces q1, etc., from the external ones p1, etc, and have set p1 + 
… + pm = p.  Now, let the system be subjected to a uniform rotation around a fixed axis 
that goes through the center of mass, and assume, as is permissible in the theory of ebb 
and flow, which is considered in the first approximation here, that the points are only 
slightly separated from the position in which they were assumed to have uniform rotation.  
Furthermore, let n be the angular velocity of that rotation, so nt is the rotation during the 
time t.  Let a line segment a be assumed to lie in the rotational plane (and thus 
perpendicular to the axis), so it moves under the rotation through an angle nt into a cos nt 
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+ a′ sin nt, where a′ is perpendicular to a in the rotational plane in the positive sense of 
rotation and has the same length as a.  From a well-known analogy, we denote this line 

segment a′ by ai, where i is the planimetric representation of 1− .  a then moves to a 
(cos nt + i sin nt) = a eint, and one will then have δ(aeint) = a eint ⋅⋅⋅⋅ in.  Now, let in = a, 
where α represents the angular velocity, up to its magnitude and direction.  a then moves 
as a result of that rotation into aeαt, and δa eαt becomes a eαt, δ 2a eαt = a eαt α2, where α2 
= − n2, moreover.  In this sense, now let y1 = (x1 + u1) e

αt, where x1 is unchanging in time 
and u1 is infinitely small.  One then has: 
 
 δy1 = δu1 e

αt + (x1 + u1) e
αtα, 

 δ 2y1 = δ 2u1 e
αt + 2δu1 e

αt α + (x1 + u1) e
αtα2, 

 = [δ 2u1 + 2δu1α + (x1 + u1) α2]. 
 
 However, when the entire system rotates through at, the internal forces will also 
rotate through the same angle, and we can then write 1

tq eα′ , instead of q1 .  If we multiply 

by e−αt then we will obtain the equation: 
 

δ 2u1 + 2δu1α + (x1 + u1) α2 = 1 1

1 tq p p e
m

α− ′ + − 
 

. 

 
 However, 1q′  depends upon the mutual separation of the points, so here it will depend 

upon x1 + u1 – (xr + ur); i.e., on x1 – xr + (u1 – xr), where u1 – ur is infinitely small 
compared to x1 – xr .  Thus, 1q′  splits into two terms, the first of which does not contain u, 

while the other one is a linear function of u.  Let the former be denoted by 1q′′  and the 

latter, by ϕ1, so we can split the equations above into two sets of equations, namely: 
 
(12)    x1α2 = 1q′′ , …, xmα2 = mq′′ , 

 
which determine the equilibrium state, and: 
 

(13)   

( )

( )

2 2 1
1 1 1 1 1

2 2 1

2 ,

2 ,

t
m

t
m m m m m m

u u u p p e

u u u p p e

α

α

δ δ α α ϕ

δ δ α α ϕ

−

−

 + + − = −


 + + − = −

⋮  

 
which have precisely the form of the equations that were treated in § 5, and their mean 
integration then gives the motion of the ebb and flow.  All that is left for us to do is to 
develop the right-hand sides of these equations (13) into elliptic terms.  We first assume 
there is only one celestial body, and indeed let it be close to spherical, while the distance 
from its center to the center of mass of the system is infinitely small when compared to 
the dimensions of the system.  The attraction that a ball exerts upon another point due to 
its gravitation is the same as it would be if its mass were concentrated at its center.  Let L 
be this attraction at the distance 1, so at a distance e, it will be equal to L / e2.  Now, let r 
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be the line segment from the center of mass of the system to the center of the ball at time 
t = 0, and let ρ be the length of r, so at that point in time p1 is, when ignoring the terms of 

higher order, due to the smallness of the magnitude and direction, equal to 1
3

1

( )

( )

L r x

r x

−
−

 or 

1
2 3/2

1

( )

( 2[ | ])

L r x

r r x

−
−

.  When developed, that gives: 

p1 = 1
13 2

3[ | ]r xL
r x r

ρ ρ
 − + 
 

. 

 

 Since the x are taken from the center of mass, so ∑ x = 0, one then gets 
1

p
m

 = 3

L
r

ρ
.  

As a result, at time t = 0, the right-hand side of equation (13) will equal 

1
13 2

3[ | ]r xL
r x

ρ ρ
 − 
 

.  Now, let the separation of the celestial body and its declination be 

assumed to be constant in the course of a day, while its right ascension changes by βt in a 
time t, so at time t, first, r goes to r eβt, and second x1 goes to x1 e

αt, and the right-hand 

side of equation (13) becomes 1
13 2

3[ | ]t t
t t tr e x eL

re x e e
β α

β α α

ρ ρ
− 

− 
 

.  Now, from the 

concept of the inner product, the value of this does not change when the two factors 
rotate around the same axis and through equal angles – e.g., through the angle – βt – and 
when one sets α − β = γ, one gets that the right-hand side of equation (13) is equal to: 
 

1
13 2

3[ | ]t
tr x eL

re x
γ

γ

ρ ρ
− 

− 
 

. 

 
 Let the length of x1 equal µρ, so one will have [r | x1 e

γt] = µρ2 cos ϕ, where ϕ is the 
angle between r and x1 e

γt.  Let η be the angle that the axis a makes with r, let ϑ be the 
angle that it makes with x1, and let ω1 be the angle that plane ar makes with the plane ax1, 
so: 

cos ϕ = cos η cos ϑ + sin η sin ϑ cos (ω1 + γt), 
 
and we get that the expression above equals: 
 

3

L

ρ
{3m [cos η cos ϑ + sin η sin ϑ cos (ω1 + γt)] re−γt – x1}, 

 
where one can replace r with r1 + r2 , where r1 lies on the axis and r2 lies on the equator, 
so one can replace re−γt with r1 + r2 e

−γt.  If one then replaces cos(ω1 + γt) with its value 
[sic] 1 1( ) ( )1

2 [ ]i t i te eω γ ω γ+ − +−  then one will see at that point that the entire expression will 

consist of three elliptic terms with indicators 0, γ, and 2γ, where γ is the apparent angular 
velocity of the celestial body, so 2π / γ is its apparent orbital period.  If a second celestial 
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body enters in, as is the case for ebb and flow, which influences the motion, and whose 
apparent orbital period is 2π / γ ′, then two elliptic terms with indicators γ and γ ′ will 
enter in.  If we denote these five elliptic terms for the first point by p1,0, p1,γ, p1,2γ, p1,γ ′, 
p1,2γ ′ then the first of equations (13) will become: 
 
(14)  δ 2u1 + 2δu1α + u1α1 – ϕ1 = p1,0 + p1,γ + p1,2γ + p1,γ ′ + p1,2γ ′ . 
 
 Since only the mean motion is of interest for ebb and flow, this will imply that one 
likewise has a sum of five elliptic terms with the same indicators for u1, so: 
 
(15)   u1 = u1,0 + u1,γ + u1,2γ + u1,γ ′ + u1,2γ ′ , 
 
if u1,0 , u1,γ , etc., represent elliptic terms with the indicators 0, γ, etc, and one has 
corresponding equations for every other point.  The first term u1,0 gives the line segment 
that says how much the mean position of the first point that is demanded by the celestial 
body deviates from the equilibrium position.  The other four terms give the motion of the 
points about its mean position.  From this, we get the main theorem for the theory of ebb 
and flow: 
 The motion that any point of the ocean executes under ebb and flow is obtained by the 
interference of four elliptic motions, two of which have the same period, like the apparent 
orbital period of the sun and the moon, and the other two of which have a period that is 
half as large. 
 Due to its form a cos γt + b sin γt, where a and b are line segments, any elliptic term 
will contain six algebraic constants, so the four elliptic terms will collectively contain 24.  
If these 24 constants are found by observation for a point of the ocean then the motion of 
the point will be determined precisely.  However, should only the height, and therefore 
only the falling and rising, be determined then one could observe only the projections of 
any line segment a, b, etc. onto the vertical line, so one would then obtain eight constants, 
in agreement with Laplace (méc. cél., IV, 3).  The 24 constants are, in principle, 
determined by the internal forces (e.g., gravitation and electricity), and are thus 
determined theoretically only when the character of the system is given completely. 
 If one assumes that matter is distributed continuously in space instead of the m points 
then one must replace x1, …, xm in equations (12) with a variable line segment x, and the 
equation would become: 
(12*)     xα2 = q″, 
 
where q″ would be a function of x.  This equation will determine the equilibrium of the 
system.  The u1, …, um in equations (13) and (14) will then have to be replaced with the 
quantity u that depends upon x, and equation (14) will become: 
 
(14*)  δ 2u + 2δu ⋅⋅⋅⋅ α + u ⋅⋅⋅⋅ α2 – ϕ = p0 + pγ + p2γ + pγ ′ + p2γ ′ , 
 
where u, p0 , pγ , … are functions of x and ϕ is a function of x and u that is linear in u.  
Equation (15) then becomes: 
(15*)    u = u0 + uγ + u2γ + uγ ′ + u2γ ′ , 
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where the elliptic terms are likewise functions of x; e.g., one might have uγ  = ax cos γt + 
bx sin γt, where ax, bx are functions of x. 
 If one would like to consider the upper surface of the ocean as it looks at any time 
during the ebb and flow then one will need only to restrict x to the points of the upper 
surface.  Equation (12*) will then become the equation for the upper surface in 
equilibrium (viz., when the external forces are set to zero).  We can think of this 
equations as being represented such that x becomes a function of its direction ξ; i.e., a 
function of a line segment ξ that has the same direction as x, but whose length is equal 
to1. 
 That is the essential idea behind polar coordinates.  The equation of the upper surface 
at time t is then derived easily, since y = x + u and u is known.  If one takes the (inner) 
square of this equations then one will get y2 = x2 + 2[x | u], since we can omit the last 
term u2 as being of higher order in smallness.  Now, if z is the projection of u onto x (or 
onto ξ) then one will get: 
(16)     y2 = x2 + 2xz 
 
as the equation of the upper surface at time t.  Here, z consists of five elliptic terms with 
the indicators 0, γ, 2γ, γ ′, 2γ ′, but these elliptic terms have a form here such that there 
coefficients are not line segments, but numerical quantities that depend upon ξ. 
 Ebb and flow was determined only in the first approximation in the above.  Should 
one aspire to a higher approximation, then one would have to take the theory that 
developed here as the foundation for it, and then treat the second approximation in a 
corresponding way to what one does in the theory of secular perturbation of the planets. 
 
 Stettin, 31 March 1877. 
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