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M echanics, according to the principles
of the theory of extensions

By H. GRASSMANN in Stettin.

Translated by D. H. Delphenich

There is scarcely a realm in which the indispensabditythe calculus that was
presented in mAusdehnungslehréof 1844 and 1862) proves to be as persuasive as it
does in mechanics. One can say that any simple meahamincept has a likewise
simple associated concept in the calculus. In facte dnbad recognized the first
principles themselves, | developed the entire methodlotiation further most quickly
and fruitfully by resorting to mechanics. Without exaapt(except for changes of
notation here and there), | have already published #taads that | will turn to in this
article and the equations that | will arrive at by ugimgm in a paper on the theory of ebb
and flow that | submitted at Pfingsten 1840 as a test papehdoscientific board of
examiners in Berlin. Very little of it is overlooked my Ausdehnungslehref 1844.
The recent textbooks and articles in mechanics, namehKi@hhoff's Vorlesungen
(1875, 1876) show me that the presentation of these mathsti§just as requisite today
as it was thirty-seven years ago when | found the &imek opportunity to publish them.
In a later article, | think that | will then solveetmost important of the problems of
mechanics that have not be touched upon by new methodkkdvwaise arise from the
theory of extensions.

81. Conceptsand laws of the theory of extensionsthat shall be employed here.

For the sake of clarity, | will give an overview bkttheory, to the extent that it shall
be applied in this article, but refer to mMyisdehnungslehreaf 1844 and 1862 for the
detailed treatment, which I will denote Ry and®l, in the sequel. I start with the notion

of line segment.l understand this to mean a bounded straight line of teefemgth and
direction; i.e., | regard two line segments to be equahd only if they have equal
lengths and directions. Line segments willdsEledwhen one continuously lays them
one after the other, so the line segment from th&irpoint of the first one to the end
point of the last one is thesum(2(;: 8§ 15-18 2, : 220). Subtractionreverts to addition,

since one can add the line segment that goes B oA, instead of the one frok to B.
The concept omultiplication or division by a number emerges from the general concept
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of these processes immediately. The fact that thealusiles of calculation are
completely valid for all of these processes is prowvethe theory of extensions.

The exterior productof the line segmenta and b, which is written @b, will be
defined formally by first requiring that for any product theldaing relationship to
addition is true: i.e., one has:

[a(b+c)] = [ab] + [ad], [(a+b) c] =[ac] + [bd],
and second, that the exterior product of equal line segnsenéro:

[ag] =0,

but conceptually by requiring that whenis the line segment from the poiAtto the
point B andb is the line segment froB to C or fromA to D, then g b] will be the
surface spacef the parallelogramABCD, and indeed in the sense that two such surface
spaces are equal to each other if and only if thei lgarallel planes, have equal areas,
and the perimeters of both of them go through the sates &iight or left) ¥;: § 28-30,
37,22 239, et seq) The addition of surface spaces, when they do eoinliparallel

planes, is determined completely by the formula:

[ab] + [ac] =[a (b +c)].
The formula:
[(@+b)(a+b)]=0

immediately yields the second important law of extemaittiplication, namely:

[ab] = - [bal.

The exterior product of three line segmeat®, c, or of a surface spacalj] and a
line segment is defined formally by requiring that:

[abh =0
and therefore also:

[abd = - [ach,

and conceptually by associating that symbol to the velofra parallelepiped that has
b, c as the sides that are connected to each other. Il Ibaviero when the three line
segments lie in a plane. Furthermore, one has:

[abd = [bca = [cal = - [ach = — [cbd = - [bad.

(As: 8 37,25 240,et seQ)
| understand the ternmner product[a | b] of two line segmentg andb, whose
lengths arex andb, and subtend the andleab to mean the product:
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[a|b] = ab cosl] ab,

and for the sake of brevity, writa® for [a | a], and call this thénner squareof the line
segment (21: XI, A, 179). | would like to call the of three line segmests,, e; that
are perpendicular to each other and whose lengths amibexi®duct g ee;] equal one

a normal set The rules for inner multiplication then emerge nfrahe concept
immediately, namely:

[a|b] =[b]a],
[a|b]=0 whena andb are perpendicular,
a’=d? whena is the length o8,

[a | b] = a1b1 + azxbs + azbg,
when
a=aie + axe+ azes, b =bie1+ boer + baes,

andey, &, e; is a normal set. Should one wish to express a umhefnormal set as the
multiple sum of the units of another one, then thefficients would emerge immediately
as the inner products of the latter three units witHdhmer one; e.g.:

e=-lelalatealg atlals &s.
In fact, if one sets:

e=xXatyetze
then one gets thag( | &] = x immediately through inner multiplication lay, since:

[&|&]=[&|&] =0, and & =1,

and likewise, ¢ | &l =y, [e|gl=z soe=[e|al atla|g ate]|sg &.

Not just minor difficulties are associated with comwe the equations that are
obtained from this calculus into algebraic equatioi@®ne then must only choose an
arbitrary coordinate system, assume that three Bgenentse;, e, e; lie on the three
coordinate axes, and represent every line segment tbatseinto an equation as a

multiple sum ofe;, e, €3, and thus in the formy e; + a; € + az e3, while every surface
space that occurs in the form[e; €3] + az[e3 €] + az[€e1 &), in which the numbers;,

az, az might be the coordinates of the line segment or seidpace, respectively, and one
ultimately obtains equations in which either no geomefuiantities at all occur any more

or they take on the forms:

Bie +Bre+Bze; =0 or Bi[exes] +Bo[ese] + Bi[er e =0,

resp., where th& are functions of just the coordinates. Three equations:
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then arise from any such equation.

For differentiation and integration, the ordinary deiams suffice. In mechanics,
only spatial quantities enter in addition to titrees independent variables. Hereinatfter, it
will be especially convenient to denote the differdsta@ifferently. | letd denote the
differential quotient with respect to time, in which omlhose quantities are regarded as
constant that are expressly defined to not change in soeh that when, e.g., the line
segmenk is represented in a proper serigs: (454):

X=ag+art +ati+ ...
in which,ap , a1, a2, ... are line segments that do not change in time, so:
X=ag; +2a,t+ ...

By contrast, | will generally letl denote the differentials of functions of spatial
guantities in which the time is held constant. The epnof partial differential quotients
of the functions of spatial quantities can be (as wa® dio2(,: 436, et seq) established

precisely as it is for functions of algebraic quantitie§herefore, |1 shall choose the
indeed somewhat circuitousbut, | believe, easier for the readepath of reducing to

partial differential quotients of functions of algebrajuantities. | shall start with a
normal sete;, &, e, and express the line segmertsy, ... upon which an algebraic
function f shall depend in coordinates with respect to the legments of each set,
namely:

X=X16 + X6 + X363, X=X16 + X6 + X363, etc.,
. . L of of
sof becomes a function of these coordinatesx,, etc. Now, |fa—,a—, etc., are the
X 0X%

partial differential quotients with respect to all bétcoordinates of the séX£ 436) then
| shall understand the partial differential quotient$ with respect to the line segment

which is writtenai f —to mean the line segment:
X

It immediately follows from this that:

0 of of of
— f |dx| =—dx +— dx, +— dz.
[6x | } ox X oy % 0z 4
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However, it remains to be shown thagtf , whose definition was closely linked to
X

the normal sek;, e, e; here, remains completely unchanged when one chooses an
another normal set, &, &. Letx=&a+ & &+ &&, So:

Xt e+txea=a+ba+&e.

If one inner-multiplies this equation leythen one will get:
xu=élal|e]+ &[e]e] + &las el

since one hag’ =0, [e1 | &] = [e1 | &3] = 0, and from this, one will get the valuesxef

andxs when one replaces with e, andes, resp. Therefore, one will g% = [& | el,
1
and in general:

Now, one has:
of _ of ox , of ox, , of %,
0§,  0x 06 0%,0&, 0%X,0&,

of of of
= a[fﬂei]*'&[fﬂ ej +&[51| €,

. . f .
and from this, one obtalngf—, o when one replaces with & andé&;, resp.; one then
2 3
gets:

of  of of  _ of
— g t—E,t—E, = —
0, © 0&, © 04, 0%

+§_;([gl|ez] atlelel atis|e] &)

([ala]l a+[ele] &t [as|eal] &)

+i ([ale]lat]e|e] &t[s]|e)] &)
0X

and from that, the proof of the theorem on the gkaof normal set; i.e., the value of the

partial differential quotientai f is independent of the choice of normal set.
X
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8 2. Basic laws of mechanics.

If x means the line segment that points from a fixed goitlhe moving point then it
is immediately clear thadx represents the magnitude and direction of the velo€itiat
point and, in the same wagi’x represents its acceleration or change in motjpnRrom
the law of persistence, any change in the motionraégerial point must be ascribed to a
causethat acts upon it. If we let the effect of that @bs equal to the line segmgnt
then we will have the equation:

(1) 0% =p.

If this effect is, e.g., constantly equal to the Isegmentg then we will obtain
immediately from integrating the equatidix = g that & = ¢ + gt, wherec is an arbitrary
constant line segment (viz., the initial velocity), dradn another integration we get b
+ct+ %gtz, whereb is, once more, a constant line segment (viz., thalinalue ofx).

These equations include the usual law of ballistics imast general form.

The so-called parallelogram law for force can be esqm@ thus: If the effects of
several causes on the poxequal the line segments, pe, ..., when taken individually,
then the simultaneous effgeof all of the causes is equal to the sum of the kygents
p=p1+p2+ ... Equation (1) is then also true wheis the sum of all effects that the
various causes simultaneously exert on the moving point.

| use the ternsimple forceto refer to a cause that is seated at a materiat,pain
some way, such that the effect of that cause on anotharial point depends upon only
the mutual position of the points, but is completely ind€jpat of the surrounding space.
Therefore, if a material poidt exerts an effedC on another poinB, and one arbitrarily
relocates the figurdBC to A;B;:C;, such thatABC is remains congruent witA;B;C;,
however, therB;C; must be the effect &; onB; . It follows from this thaBC must lie
in the infinite straight lineAB. If this were not the case, bAf B, C were to define a
triangle, and one rotated it around i axis through an arbitrary angle into the position
ABG thenA would have to exert the effeBC; onB, which contradicts the effe&C, so
the force can act only to draw them together or push #part. However, if the points
and B have precisely the same character then one musbalsble to switcih with B
with changing the effect. Now, A acts uporB with the effectBC (viz., pushing or
pulling), and one rotateSBC around the midpoint cAB to the positiorA;B; such tha#\;
coincides withB andB; coincides withA, and if we letC; be the point upon whiclt
falls, thenB;C — i.e.,AC; — must not be regarded as merely the effect of the pgioh
B,, but also the that of the poiBton A; i.e., the effect must be reciprocal, and the two
effects must be equal and opposite to each other. Mereibthe material points keep
the same character then the magnitudes of effectsbaustfunction of only the mutual
separation (). Now, if A andB do not, in fact, have completely the same charabter,
A exerts the equal and opposite effecBotiat B does oA, then we will say tha# and
B are equain mass. Which mass we use as the unit of mass is, in itsedevant.

() It would be simpler to immediately seequal to the moving point. | will save this for aetaarticle
in which the calculations will be presented using points.

(") It is already implicit in this that | cannot ascrilbes tforces that the electricity that moving electric
currents exert to a simple force.
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However, once that unit is established, we can sefbthe equal to the acceleration that
is associated with a mass of 1. Therefore, we can thaekendpoint ok in equation (1)

a point of mass 1 and seequal to the force — or sum of the forces — that aab itpdn
this sense, we can make equation (1) the fundamental eqa&tisethanics.

8 3. Motion of a freely-moving set of material points.

| shall distinguish betweemmternal and externalforces relative to the set. Internal
forces are ones by which a point of the union acts upemther points of the same set,
while external forces are the remaining ones. | sisflassume that all points of the set
are of equal mass and, in fact, of mass 1. Nowxjlet., X, be the line segments that
point from a fixed point to the moving points of the $=ttp; be the sum of all the forces
that act upon the first point, etc., so, from (1), bas them equationsd®; = p1 , ...,
0%m = pm, and adding these gives:

O + ... +0Xm=p1+ ... +Pnm.

Since the internal forces are pair-wise equal and agepakey drop out under
addition, so it follows that we can consigery ..., pm to be external forces here. Now, let
s be the line segment that points from the fixed parthe center of mass of the set, and
let yi, ..., ym be the line segments that point from the centenads to the points of the
set, so, by definition, the center of mass will sgtysf+ ...+yn = 0. Howeverx; =s+
Vi, oy Xm =S+ Ym, SOX1 + ... +Xn = MS in which the construction of the center of mass
also lies, so:

0%+ ... 0% =02 (X + ... +Xm) =M IS,

and one thus obtains the above equation in the form:
2) d’s=—p,
m

wherep is the sum of all external forces amds the mass of the set. This is the equation
of motion for the center of mass. It can likewiséeroe as the equation for the motion of
a point of massn, and from now on, we can also assume points of unegasd, so, for
the sake of simplicity, without sacrificing any gendyalive can now continue to use
points of mass 1. If we introduce the vafite i, in place ofxy, d%s + %y, in place of
0%, and replaced®s with the value that was found from (2) in the equatibmotion
then we will get:

1 1
3) OYi=pi——p, etc, OYm=pm——p
m m

for the equations of the relative motion of an arbytiset relative to the center of mass of
the point.
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If one exterior multiplies the equatia¥fx; = p; by x; then one will get %] on
the left-hand side, but this is the time differenti[>a dxi], since under differentiation
the other termdx; dx4] will be zero, from the rules of exterior multiphition. One thus
obtainsdx; 0x1] = [x1 p1]. If one constructs the same equations for the qibets and
adds them then one will obtain, upon applying the summaiation:

4) o2 [xdy=2[xp.

The internal forces also drop out here. If we tle¢ne.g. A(X; — 1) be the force that
the first point exerts upon the second one then tleztefhat the latter exerts upon the
former one will be the opposite one, namel{; — X2), SO upon summation, one will
have:

[X]_ A(Xz —Xl)] + [Xz A(Xl —Xz)] =A [X]_ X2] + A [X2 Xl] =0,

since k1 xo] = — [%2 x1]. Therefore, all internal forces drop out, and likewfer the
forces that are directed from the starting point efxth If Ax; is such a force that acts
upon the first point then one will have Ax;] = 0. Therefore, if no other external forces
that are directed from the starting point of thect, as such, then equation (4) will
express the invariability of the total surface moftor dx

If one exterior multiplies equations (3) by, etc., in the same way and adds them

then one will obtain, sinceZ[y%} = %[Z y Op] is zero, due to the property of the

center of mass, that:
(5) oX[ydy=21[yn;

i.e., the surface equation (4) will also be true whenreptaces the fixed starting point of
the x with the moving center of mass.

For the further development of equation (6), it is vesgential to regard all of the
forcesp that several points exert upon the pointas partial differential quotients with
respect tox; of an algebraic function of all of these points, stl@dt if U is that function

then one would lep = aiu . One can then say that the fongeoriginates in the
%
tendency () of the functionU to increase. Namely, the increase tbaexperiences
during an infinitely small displacemeadt; is L’)iu |dxl}; if dx; maintains the same
X

length then this increase is largest wlibn has the direction of the first factor, which
follows immediately from the formulal| b] = ab cosO ab; i.e., the motion that results
from the forcep; assumes the direction in which the functidrincreases most rapidly;

i.e., the tendency will be fulfilled most completelyikewise, when the point; changes
its position, butdx continually keeps the same length and the direction dirdtdactor

() 1 gave this idea of a tendency its foundation in thesafentioned paper in the year 1840.
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remains%u then the force behaves like the increas¥;afe., like the achievement of
the goal that one tends towards. In fact, one careftre regard the forcp as the
expression of the tendency Ofto increase. It is well-known that will be called the
potential. FindingJ poses no difficulty. We first consider the foqgg that a pointx,
exerts upon another omxg . From 8 2, this force can be regarded as a functidheaf
separation, and it thus behaves likg. However, in order to represent the direction, we
write it as:

P21 = % () (a —%2).

Here,r is the length ok — X, , i.e.,r* = (x1 — x2)?, and when this is differentiated, one
will get:

rdr=[(x1—x) | dx—dx)] or dr = %(xl —Xo) | @ —dx),
SO
f(r)ydr = %f(r) [(X1—X2) | dx —dx)]
= [po1 | [dxa — )]

Now, let] fr [Hr = U1, so one hagUiz = [pz1 | [dx — dx)], SO aiu12 =p21, and so
%

one also hasaa—Ulf pi2 . If one has defined a family of quantitids s between any
X2

two points in the same way then their sumvill become a function of these points, and

the force that the remaining points of the family éxgron a poini; will then be equal

to2u.

0%

The distinction between external and internal foiscdikewise important for the
introduction of this potential into equation (6). If orslV be the complete internal
potential — i.e., the sum of the potentials betweenanypoints of the set — and letthe
total external potential — i.e., the sum of the poté&nbatween any internal point and an
external one — then the first of equations (6) will adantomplete integration, while the
last one, will admit one only insofar as the extepahts are unchanging in time. In
fact, if one considers the forcps andpy; that the first two points exert upon each other
in the sunX. [p | &], with the associated potentidh, , SO piz2 | ] + [p21 | K] is the

associated part of that sum, hence, it is equ%lé(t?eul2 |5X2}+{61U12|5X1} = 12,
X X

and one extends this to all internal forces, thenptre of that sum that will arise from
this will equaldv, and equation (6) will assume the form:

7) %Z(&)zzqu(%uwx)
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84. Motion of a constrained moving set.

The constrained motion of a set will be most simpypresented by condition
equations that the moving points are subjected to. Th®miststill not determined by
these equations alone. Moreover, one must assutngnéna are forces that act upon the
points of the set, as long as they also move theiposnly infinitely little away from
one that satisfies the equations, and irresistibly nitovack to a position that does satisfy
these equations. This brings us to the more precise dedtion of these forces.

Let L = 0 be such an equation of condition, so we would likastribe the force of
tendency that arises from it that would conserve the equats O; i.e., a potential that is
equal toL or an arbitrary function df, such a$(L). Having assumed this, the force that

conserves the tendenty= O that is produced & [k; equalsai f(L) =f'L ai f(L),
% %

if f'L is the derivative ofL, or if we denote this derivative bithen the force that the

point x; feels due to that tendency will b’eaiL, the force that [Ox; feels will be
%

)liL, etc. Now, if that condition equatidn= 0 is associated with other onds= 0,

0X,

etc., then forcey aiM ,,uaiM , etc., will arise from that, and, from the fundanmae
% X

law (1), the equation of motion will become:

0 0
0% =p+A—L+pu—M+...
=P %, ,Uaxi
(8) 3 3
0%, = P+ A— L+ y— M+--.
=P, ax, ,U6X2
where

L=0, M=0, ...
suffice to determine the unknowAs.
Now, let dx;, dx, ... be arbitrary displacements of the poiris %z, ..., which,

however, satisfy the equatiodk = 0,dM = 0, etc. If one inner multiplies the equations
above bydx;, dx, etc., and adds them then, since one has:

0 0
—L|dx |+|—L]|d + ...=dL =0,
Lxl | x‘i {axz | 4

the terms i, 4, ... will drop out, and one will obtain:

(9) 2.[(°x-p|dq =0,
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which will be true for all displacements that satigfg equationslL = 0,dM =0, ...
8 5. Equilibrium and mean motion.

If the forces that act upon a set depend upon only thagesif the points of the set
and not otherwise upon time then equilibrium is possilaled the formulas for
equilibrium are then included in the equations above, wbea only sets the
accelerations and velocities of all points of theespial to zero, by which, equilibrium
between the forces is then demanded. However, if thgsations are fulfilled then the
initial position of the points of the set or theintial velocities can be such that no
equilibrium arises, and, in particular, that for vemnor deviations of the initial state
from a state of stable equilibrium, oscillations abthdat state will occur. These
properties of equilibrium and its perturbation by infiiteiall oscillations arise only for
the case in which the forces depend upon time in sucltydhata state aihean motion
can exist, in which, if this state of mean motion isadle one then small oscillations can
once more occur that do not exceed a certain maximuhne ioourse of time.

I will use the term “mean motion of a set” that nspelled by given (time-varying)
forces to refer to that motion for which, under dllitkle motions that depend upon the
various initial states, the smallest motion comesuaib or stated more precisety for
which the sum of the animating forces that are activengu sufficiently long time is a
minimum. IfT =3 X ()? (the points of the set are always thought of as haaingl

masses) is the animating force,Tsdt is the animating force that is active during the time
elementdt, then| T dt when taken between the limitss 0 andt = t, will be the total
animating force that is active during this time. Themfdor the mean motion, that
integral shall, for a sufficiently large be less than it is for any other motion of the
system, and also remain smaller that that wthienreases from there on arbitrarily. For
linear equations of motion, | shall couple the concdpinean motion with that of the
mean integrationof linear differential equations of arbitrary order, Isshall choose
second-order differential equations as an example.n lnetmerical quantities;, ..., Uy

be thought of as dependent upon an independent numericditguanand let the
differential of those quantities with respectttioe denoted by, and let that dependency
be partially determined by theequations:

o’u+adu+--+a,0y+hgut-+ hoy= ft
(10y :

o°u, +a,0u+--+3g ou+ hoyt-+ hoy= fi

where thea andb are constant numerical quantities.

The general integration of these equations is-lw@wn. Therefore, in order to
clearly single out the mean integration, it will Ipecessary to present the general
integration lucidly. It is first clear that onercdecompose thie into arbitrary terms, take
the general integrals that relates to these temdigidually, and then add the integrals so
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obtained. | decompose théinto exponential terms whose exponents are propaitton
time, and then present the equations to be integratéd iotm:

o’u+adu+--+a.0y+hgut-+ bhoy= g&
(10) :

o°u, +a, 0u+--+3g ou+hoyt--+ houy= g®,

wheregs, ..., gn . One also thinks of the as represented by such terms. Two types of
these terms then emerge, namely, ones with thenexpial quantitye”' and ones with
e'!, where/ is different fromx, but still to be found. The former terms defihe mean
integral and can be found immediately, while théelaones depend upon the solution to
an equation of degreen2 The mean integration gives = y; €Y, ..., u, =y, €', where
theys, ..., Yy, are determined precisely by thequations:

K’y +Ka, Y ++tka Y+ Byt b y= g
(11) :

K'Y, +Ka, Y+ +Ka, Yt By Y+ + Boy= g,

unless the determinant of the coefficients ofythe..., y, should be zero, which we will
discuss below. By contrast, if one were towset y; €', ..., u, =y, €', whereA is not
equal tok, then this would yield a system of equations thatild correspond to (11)
above, with the difference thdt z would enter in place of, y, and the right-hand sides
would be zero. It follows from this that the detamant of the coefficients o4, ..., z,
should be zero. That gives the"2egree equation fot that was mentioned above. For
each of the & values/y, ..., A that satisfies thisr#-degree equation, the associated
ratios of thez are determined, and with that the general integras complete. It is only
whenk is equal to one of thenZaluesAs, ..., A2n that the aforementioned case will occur
in which they;, ..., y, of the mean integration become infinite or undeteed; in this
case, one can first make differ from the value ofd by infinitely little, and then
determine the mean integration that relates to shis The mean integration always
remains independent of the solution of the equatiotlegree 8 However, in order to
be able to go over to the equations of motion, wistngive equations (10) still another
form. Then, since the terngs €, which should represent the forces, become iefinit
with t for real«, they do not correspond to the case in natureruhteassumption. One
therefore replacesy € ' with the two termsc cos «t + C sin 4t i.e.,
c—Ci 4  C*+Ci
P
2

skt

e'“ . These two terms differ only by the signi af J-1. If one now

replacegy €' in (10) with one of them,c_—zle"“, etc., then one must replagein (11)

y -

with C_zcll , etc., and furthermore, replae with — £ and ¥, and then the that are

determined from (11) will become imaginary — say, wi — so one will getl; = (v1 +wy
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c+cCi

D) €%t .. un = (vn + Whi) €4 If one then replacesin (10) with e™ then this

will give values foruy, ..., U, that differ from the ones above only by the signg ofet

—Kt —Kt

them be denoted by, , ..., u , sou = (W —-wi)e™, ..., u =W, —Whi) e ;one
then getsn + u; = 2v; COSAt — 2w Sin 4t = a; COSAt + by Sin t, when one setsv2 = a;
and—’j?vl:bl.

It must now be proved that the motion that is deteechiby linear equations of the
form (10) provides the mean integration, as well as tkanmmotion as it was defined
above. For the motion of a set mfequally-massive points in space thén equations
(10) and (11) will equalrd, so the equation iA will then be of degreerd We assume
perpendicular coordinate axes. The total animating foree become3 =3 > Aar, so
[T dt=1 X[ & dt, in which the sum extends ove, ..., Usn . Now, for the general
integration,u; consists, in part, of terms from the mean integnatichich are of the form
a; COSkt + by sin t, and, in part, of & terms of the formze" ; therefore,du; includes
terms of the formab; cos t — xa; sin 4t and ones of the formi,ze", and & then
contains the squares of these terms and twice the psoofugach pair of them. One sees
immediately that the terms of the forize" become infinite for infinitet when A, is
real, so~/Tdt is certainly smaller when these terms are abseant thhen they are
present. We can then omit these terms for the prbtifeomean motion, and the same
thing is true whenl; = a + Si, anda is non-zero. Only terms for which = Si are then
to be considered. Another valuebmight then bel, =-£i, and the real terms in that
would arise from this would be of the fopmcosSt + g sin St, so the ones idu; would
be of the formB (q cosfSt —p sin St), and thus of the form that corresponds to the terms
of the mean integration. If we first consider the sgsar e.g., b1 coskt — ka; Sin
k1)?, so inT dt one will have the termg & (kby coskt — ka; sin xt)* dt — then this

would give:

14 [B2(1 + cos Zt) dt + a?(1 - cos 2 t) dt — 23 by sin 2t di].

When integrated, will this givel & (a% +b?)t + P, whereP provides nothing but
finite periodic terms. If we further consider the doulgeaduct of two such terms — e.g.,
Kk (by coskt—a; sinkt) andfS (p cosft—p sinSt) then that would give the term:

kB dt (biq cosktcosft+apsinktsinft—bipcosktsinfSt—aqsinktcosSt)
= k3 dt
{blq;q Poostc+ B) + Qq-z AP o — 3 4 berz 2 Psing + 3 1 pqz B Psind— 3 t)]

so whenk is not equal tQ5, this will produce only finite periodic terms. Now, wan
assume that is large enough that the periodic terms vanish when cauga the terms
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of the formi&*(a +bY)t, etc. One then gefsT dt= 1Y # @ + b)) t+ 13 5 (p* +
oA)t, where the first sum relates to all terms of teamintegration, while the second sum
relates to the remaining ones. He@ndb are unchanging values, whipeandqg can be
zero, so for a sufficiently longthe integral T dtis smallest when thg, q are all zero;
i.e., the integral is the mean one. It is thus prdtetfor linear differential equations the
motion of the mean integration likewise yields the meetion.

| shall call a term of the forra cost + b sin «t, wherex is positive, buta andb
might be numbers or line segments.edliptic termandx, itsindicator. In fact, ifa and
b were line segments of unequal direction here,aacds t + b sin xt were represented
as the line segmentthat starts from a fixed point then in time& 2« its endpoint would
describe an ellipse, and in fact, in such a way tlealinle segment itself would describe
equal spaces in equal times, namely, in the tdiné& would describe the spacda b «

dt; the line segmenta andb are conjugate semi-axes of the ellipse. In fact, & sets

coskt = u, sinkt = v then that radius will beconte= ua + vb andu? + v* = 1, which is the

equation for the ellipse with the conjugate semi-ax@sdb. Furthermore, in the time
elementdt, the endpoint of describes the line segmedit[tit —i.e., o cosxt —asinkt)

k dt — andr itself describes the surface spagle ] dt— i.e., $[(a cos«t + b sin «t)

(b coskt —asinkt) kdt Taking the exterior product gives the valadd], since p a =
[bh =0, [ah =-[ba and co$ &t + sirf &t is equal to 1, so the surface space that is
described in the time elemeditequal to}[a b « dt

We can now express the law for the mean motioruircase as follows: If the motion
of a set of points were represented by linear diffemértjuations then the elliptic terms
that are present in the expression for force wouldespond to the elliptic terms of the
same indicators in all line segments that point frofixed point to the moving points,
and indeed the coefficients of these terms would be rdeted completely by the given
equations, and outside of these terms no others willgenieom the mean motion.

I now remark that the stability or instability of theean motion can be most simply
derived from the principles that were developed above.

8 6. Application tothetheory of ebb and flow.

Here, we also consider a system that is subject taethflow to be a set oh points
whose masses are 1. Equation (3) in 8§ 3 is then valithidomotion relative to the center
of mass, namelyd%: =p1 + g1 — 1 p, ..., 0%Ym = Pm + Gn — < p, in which | have, in

fact, separated the internal foragsetc., from the external onpg etc, and have set +

.+ pm=p. Now, let the system be subjected to a uniform ratadi@und a fixed axis
that goes through the center of mass, and assumg pasnnissible in the theory of ebb
and flow, which is considered in the first approximatiwere, that the points are only
slightly separated from the position in which they wassumed to have uniform rotation.
Furthermore, let be the angular velocity of that rotation, r#as the rotation during the
time t. Let a line segmena be assumed to lie in the rotational plane (and thus
perpendicular to the axis), so it moves under theiootéhrough an anglet into a cosnt
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+ & sinnt, wherea' is perpendicular ta in the rotational plane in the positive sense of
rotation and has the same lengthaasFrom a well-known analogy, we denote this line

segmenta’ by ai, wherei is the planimetric representation oE1. athen moves t@a
(cosnt +i sinnt) = a ", and one will then have{ad™) = a €™ On. Now, letin = a,
wherea represents the angular velocity, up to its magieitand direction.a then moves
as a result of that rotation int&™, andda €" becomes €, 5°a €' =a " o, whered”
= - n?, moreover. In this sense, now Yet= (xi + u1) €™, wherex, is unchanging in time
andu; is infinitely small. One then has:

@1 =AU e‘" + (Xl + U1) ema,
52)/1 = 52U1 e‘" + 24U, e‘" a+ (Xl + U1) e‘"az,
= [0%uy + 2dna + (x + up) &)

However, when the entire system rotates throaghthe internal forces will also
rotate through the same angle, and we can thea gjré" , instead ofy, . If we multiply

by e then we will obtain the equation:
52U1 + 2000+ (X1 + W) af = q1+( pl—% pj er.

However,q depends upon the mutual separation of the painthere it will depend
uponx; + u; — (% + W); i.e., onxg — X + (U — %), whereu; — u; is infinitely small
compared tog —% . Thus,q, splits into two terms, the first of which does ontainu,

while the other one is a linear functionwf Let the former be denoted gy and the
latter, byg@;, so we can split the equations above into twoafegsjuations, namely:

(12) X =, o Xl = O,
which determine the equilibrium state, and:

&u, +20ua +ua’-¢,=( p-+ p €™,
(13) :

=l
ReP
D

o%u +20ua+ua’-¢ = ( p.-

which have precisely the form of the equations thete treated in 8 5, and their mean
integration then gives the motion of the ebb aonavfl All that is left for us to do is to
develop the right-hand sides of these equationsi(it8 elliptic terms. We first assume
there is onlyone celestial body, and indeed let it be close to spak while the distance
from its center to the center of mass of the systemfinitely small when compared to
the dimensions of the system. The attraction @ahiadll exerts upon another point due to
its gravitation is the same as it would be if itas® were concentrated at its center. LLet
be this attraction at the distance 1, so at amtistg it will be equal toL / €”. Now, letr
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be the line segment from the center of mass ofykeem to the center of the ball at time
t =0, and lefo be the length off, so at that point in timp; is, when ignoring the terms of

higher order, due to the smallness of the magnitude anctidingequal toLr—_Xls) or

(r _Xl)
L(r—x,)
(r*=2[r [x,])**

. When developed, that gives:

_ L 3r %]
pl—F[r—Xﬁ plle rj.

. 1 L
Since thex are taken from the center of mass2sp= 0, one then gets-p = —r.
m

As a result, at timet = 0, the right-hand side of equation (13) will elgua

L r|x . , : o
—S(Mr —xlj. Now, let the separation of the celestial bodg @s declination be
Y P

assumed to be constant in the course of a dayewkitight ascension changesfyn a
timet, so at time, first, r goes tor €, and secone; goes tox; €®, and the right-hand

pt
side of equation (13) become,%l‘?[s[rep—lleét]reﬂt—ﬁe”‘jém. Now, from the

concept of the inner product, the value of thissdaet change when the two factors

rotate around the same axis and through equal Rgdeg., through the angle®- and
when one setg — 5= ), one gets that the right-hand side of equatiof iEl8qual to:

L(3[r 1%€"] n _le.
P’ P

Let the length ok; equalup, so one will haver[| x; €] = y” cosg, whereg is the
angle between andx; €. Let 77 be the angle that the axdsmakes wittr, let & be the
angle that it makes witky, and letcy be the angle that plae makes with the planex,
So:

COS@ = Cc0S/ coSHT + sinn sind cos (@ + p),

and we get that the expression above equals:
%{Sm [cosn cosd + sinn sind cos @ + )] re™ —xi},

where one can replacewith r1 +r2 , wherer; lies on the axis ang lies on the equator,
so one can replaage™ with ry + r, €. If one then replaces caa(+ jt) with its value
[sid i[e“™ - '] then one will see at that point that the entirpregsion will

consist of three elliptic terms with indicatorsypand 3; whereyis the apparent angular
velocity of the celestial body, so7Z yis its apparent orbital period. If a second deés
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body enters in, as is the case for ebb and flow, winifthtences the motion, and whose
apparent orbital period is72/ y', then two elliptic terms with indicatongand y' will
enter in. If we denote these five elliptic terms tioe first point bypi o, Py P12s P1ys
P12, then the first of equations (13) will become:

(14) O%Uy + 20 @ + Wt — 1 = Pro+ Pry+ Pray+ Py + Pray -

Since only the mean motion is of interest for ebb ffowd, this will imply that one
likewise has a sum of five elliptic terms with the saimdicators fou;, so:

(15) Ut =UotUyt+U+Uy +U o,

if uo, U, etc., represent elliptic terms with the indicatorsyOetc, and one has

corresponding equations for every other point. The t&shu; o gives the line segment

that says how much the mean position of the firshtpihiat is demanded by the celestial
body deviates from the equilibrium position. The otloer terms give the motion of the

points about its mean position. From this, we getnthe theorem for the theory of ebb
and flow:

The motion that any point of the ocean executes under ebb and flow is obtaihed by
interference of four elliptic motions, two of which have the sameddike the apparent
orbital period of the sun and the moon, and the other two of which have a periaos that
half as large.

Due to its forma cost + b sin t, wherea andb are line segments, any elliptic term
will contain six algebraic constants, so the four attiptrms will collectively contain 24.
If these 24 constants are found by observation for & pbime ocean then the motion of
the point will be determined precisely. However, shoully ohe height, and therefore
only the falling and rising, be determined then one could obsamly the projections of
any line segmerd, b, etc. onto the vertical line, so one would then ob¢aght constants,
in agreement with Laplacemgc. cél. IV, 3). The 24 constants are, in principle,
determined by the internal forces (e.g., gravitation arettedity), and are thus
determined theoretically only when the character oktfstem is given completely.

If one assumes that matter is distributed continuonstpace instead of thme points
then one must replace, ..., Xn in equations (12) with a variable line segmerand the
equation would become:

(12) xa =q,

whereq" would be a function ot. This equation will determine the equilibrium of the
system. Thay, ..., uy in equations (13) and (14) will then have to be replacedl the
guantityu that depends upof and equation (14) will become:

(14) Su+2di Do+ uly” —@g=po+p,+Pay+ Py +p2y,
whereu, po , py, ... are functions ox and ¢ is a function ok andu that is linear inu.

Equation (15) then becomes:
(15) U =Ug + Uy+ Ugy+ Uy + Uy
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where the elliptic terms are likewise functionsxpé.g., one might havwe, = a, cospt +
by sin pt, whereay, by are functions ox.

If one would like to consider the upper surface of theanass it looks at any time
during the ebb and flow then one will need only to rdskito the points of the upper
surface. Equation (ip will then become the equation for the upper surface in
equilibrium (viz., when the external forces are setzero). We can think of this
equations as being represented suchxHacomes a function of its directiéf i.e., a
function of a line segmenf that has the same direction»asbut whose length is equal
tol.

That is the essential idea behind polar coordinates.ediation of the upper surface
at timet is then derived easily, singe= x + u andu is known. If one takes the (inner)
square of this equations then one will get x* + 2[x | u], since we can omit the last
termu? as being of higher order in smallness. Nowg,i§ the projection ofi ontox (or
onto ¢) then one will get:

(16) V=X + Xz

as the equation of the upper surface at timelere,z consists of five elliptic terms with
the indicators Oy, 2y, y', 2y', but these elliptic terms have a form here such ttiexe
coefficients are not line segments, but numerical guesithat depend upaf

Ebb and flow was determined only in the first approxinmatio the above. Should
one aspire to a higher approximation, then one would haveake the theory that
developed here as the foundation for it, and then theasécond approximation in a
corresponding way to what one does in the theoryaflaeperturbation of the planets.

Stettin, 31 March 1877.




