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The methods that | developed in my paper “Uber die fadgtaren der
Gruppendeterminante,” Sitzungsberichte 1896 (cite@dras the sequel) in the course of
researching the properties of the determinant of a figitaup, | also arrive at the
examination of an arbitrary system of hypercomplex gtiastin n basis numbers.
MOLIEN concerned himself with such quantities in his grebrehking treatise “Uber
Systeme hohere complexer Zahlen.” Math. Ann, Bd. 4&édats MOL. in the sequel).

An understanding of his paper is impeded somewhat by theéhat he passed over
the possibility of doing the calculations and sought tsqmethe content of the proof
abstractly. Thus, it is not clear to me whether thdsttmat he developed succeed in
obtaining a rigorous proof of theorem 25. Conversely, in @3nthoduced a fallacy that
appeared in a Notice in volume 42 of Math. Ann. in the coofsa truly circuitous
calculation. When | employed a linear combinatie®) + T(y) of the matrices in
different variables from the two antistrophic groups, lacp of the equation that he
called the KILLING equation, | arrive at precisely thpsoof, although simplified
substantially.

However, as | have briefly remarked (on pp. 408 of tbisime), in addition, there
was a not-inessential gap in his proof of theorem 19. etthefess, if one ignores this
minor shortcoming then his trailblazing, thought-provokirapgr, which he followed
through on with unrelenting persistence and pervasive uigyenn spite of a rather
incomplete skill set, defines one of the most imporgaivances in the domain of algebra
that one refers to as group theory. On the basissofdimments that | just made, | regard
it as appropriate to take up the investigation anew weltdhls that I, in fact, developed
in my paper “Uber vertauschbare Matrizen,” Sitzungsberjd&e6.

The methods of LIE will not be used at all in this pyralgebraic study. By
comparison, my presentation has many points of contiictthat of DEDEKIND in his
treatise “Zur Theorie der usHaupteinheiten gebildeten complexen Gréssen,” Gottinger
Nachrichten, 1885 (cited as DED. in the sequel).

The basis for my investigation is defined by formula 8%. With its help, | show
directly in 8§ 6 that the variables that appear in theouarprime factors of the group
determinant are all mutually independent, and thus circumbwentéms 3, 4, and 5 of
MOLIEN, as well as the proof of theorem 25. With taens formula, | prove in 8§ 7 that
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the elementary parts of the determinant of a simpleigrare all linear. The entire
development rests upon these two results.

For the classification of groups, for which only inadequanséatze have been made
heretofore, nothing less than the exponents and degret® aflementary parts into
which the determinants of the two antistrophic groups deconose to be the most
suitable invariants, and moreover, they are the mastlde numbers for the up till
now scarcely noticed parastrophic matriXk($), especially the rank oR(g) (8 9).
However, for non-commutative groups, above all, thenelgary invariants relate to the
matrix uR($) + vR(#7), and the matriceS(x) + T(y) andR(¢$) + R(#), which depend upon
2n variables, and indeed these invariants are meaningful pémaaps the determinants
of R(x) or R($) + R(#) vanish identically.

It was only after completing this examination that éxeellent treatise of CARTAN,
“Sur les groupes bilinéaires er les systemes de nombrgslexas,” Ann. de Toulouse,
tome XIllI, 1898, was brought to my attention, in whichdeeived the result of MOLIEN,
but without knowing of that paper, it seems. The pathwzat followed by CARTAN
has very little in common with that method or the oemployed here. The
transformation of the basis, which is the starting pa@nt final objective of his
investigation, is, in my opinion, to be avoided as much asiple (8 9). For him, the
properties that are invariant of any representatiohefiroup that | begin with only take
on the meaning of a normal form for the group at the losion that is obtained by a
long series of conversions whose purpose is first made atehe end of the argument.
The difference between the two methods is thus the samnthe one between the
procedures of WEIERSTRASS and KRONECKER in the thedrfamilies of bilinear
forms. | have obtained (8 12, (5)) an especially notewddhyula of CARTAN (8 65,
(37)) that was not found by MOLIEN in the simplest waytbg decomposition of the
determinant §x) + T(y) | into prime factors.

§1.

Thecoordinates x X, ..., X, Of the of thenypercomplex quantities:
(1) X=aXi+&X+ .. +& X%,

which are formed from the basic numbers;, &, ..., &, can allassume real or complex
values. The totality of these quantities, which reprositice addition and multiplication
of ordinary quantities, | call agroup (¢), when, in addition, the product of any two of
them again belongs to the system, and the associativéy)z = x(y2) is valid for any
three of them.

The basic numbers can be coupled to each other by figlasions. | call the number
of independent ones among them dinger of the group. One can easily reduce this case
to the one where the basic numbers are independenterefdhe assume that is the
order of the groupg) considered.

If the multiplication of basic numbers results fréme rule:
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(2) Ep &y = zaaﬂyga
then this implies the following relations between tbefticients that appear:
(3) z a‘Kaﬂ a}f«i V= z aKﬂ a}m( !

which follow from the associative principle and the peledence of the basic numbers.
Then, ifx =yzis the product of the two quantities:

y:ZSAYA’ Z:Z‘SAZA’
then one has:

(4) Xa= D 3 Yp 7
By

or, whenéy, &, ..., & are variable, whose system | denotlayd call gparameter:

(5) =X =28 =F(EY. D =D 8,8, Y3,
a a,B.y
If one sets:
(6) raﬁ(é) :za/mﬂgk ) Saﬁ(y) :zam(ﬂ yK ) taﬁ(Z) :zaa KZK )
So:
_ O0X, _ 0X,
SadY) = oz, tad2) = 3y,

then the trilinear form becomes:

) FIEY. 2D =D 1, (E)Y52,= D5, (N 2= Dt (DE, Y5 -

If denote the matrices of" degree that are defined by any three systemseéfi
functions by:

R(§) =Re=(1add)). SY) =S =(sady). T(D =T.= (tad2).

By f(x), | always understand this to mean a functiorhetbordinatess, X, ..., X, of
the quantityx, and byS(x) or S, a matrix whose elements are (linear) functionthese
coordinates. When | am dealing with a functiorihg hypercomplex quantityitself, |
will employ the symbof((x)).

The conditions (3) for the associative principle more conveniently discussed when
one combines them in such a way that one multiglres adds them with variables. xIf
andy are two arbitrary quantities, one then obtainsPDE6)):
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® PIENCINECIEDRMIEWE
or, more simply:

9) S Ty=Ty S,

and:

(10) D1 (O)81(0) =D 1, ()18,
or, more simply:

(11) Rg S< = TX' Rg s

whereT' is the matrixconjugateto T.

| call S(x) and |S(x) | thegroup matrixandgroup determinantresp.,T(x) and |T(x) |,
the antistrophic group matrix and group determinangésp., andR(&) and |R(¢$) |, the
parastrophic matrix and determinamesp. The theorem that is included in formulg (9
along with its converse, may be expressed in thewiong way:

The group matrix & commutes with the antistrophic matrix(yJ. If the
parastrophic determinant does not vanish identically then one may bring thatorm

T(y) (Sy)) for any value of x that make&B(T(y)) commute.

Therefore, let the parameterbe chosen in such a way that the determinantef th
matrix R(é) = R = (r4p does not vanish and leX = (ugp) be any matrix of” degree that
is independent of, and which commuteSx) with x. One can then determigen such a
way that ford = 1, 2, ...,n, one has (from (7)):

nguKﬂ = zrﬁﬂyﬂ = zgataﬂ (y)
K B

Now, one hasSU=US so:
ZSM(X) Usz = ZUMSM()Q,
A A
and with this:
ZfKSM (WU =2 &k U SiAX) =2 Sk ta(y) siAX),
KA

so from (8):

ZfKSM (X Up = 2 & Sa(X) LAY).

Now, from (7), however:
ngSKA(X) = zraﬂxa '

KA

If one inserts this then by comparing the coeffitseofx, this yields:

z ToaUss = z Foatis(Y)
y y



Frobenius: Theory of hypercomplex quantities. 5

and with this, becausdr|| is non-zeralgg = toAy), U = T(y).
In particular, ifU = E = (egp is the principal matrix then one can determine a
guantityy = e such thafl(e) = E (DED. (44)). This quantity:

(12) ezgetoet .. t56,

is called theprincipal unit Its coordinates satisfy the conditions:

(13) Sei(€) =tos(€) = €eys,

or:

(14) zaa/weﬂ = eaﬂ, zaa KQ( = eaﬂ '
A K

Thus, if§X) = Yy) or T(x) = T(y) or Yx) = T(y) then one hag =vy; if R({) = R(#) or
R($) =R(7) thené = 7.

§ 2.

If Xx=yz so:
(1) XK:za,u/le/i%z :zsm((y)Z(:ztm((z)yK’

then one has:

Saf¥) = D 8% = D BB Vi 2 = D BB i 2 = DS () Ss( 2

K AU KAu
and:

taf¥) = D s X = D BmBauYiZ = D BB Y 2 =2 L (D1 (Y).

KA U KA U

| denote byf(y2 or Sy2) the result of substituting the coordinates (1jhef produciyz
for then variablesx, in f(x) or §x). One then obtains:

(2) Sy2 =9y 2. T2 =T T(y).

If SX) =x1 E1 + X% E> + ... +X, E,then it follows that:
(3) Eﬁ EV: zaaﬂyEn )

and sinceSx) = 0 only whenx = 0, then constant matriceg;, E,, ..., E, are linearly
independent. They therefore defineepresentatior(cf., 8 16) of the groupg and from
this it follows that the assumption of the indepemzk of the basic numbers is consistent
with the quadratic equations (2), 8 1, whose coeffits satisfy equations (3), 8 1 and the
inequalities (1), 8 3 or that no linear relatiom$vireen the basic numbers can come out of
these conditions. It is first on the basis of ttestainty that proofs are admissible, such
as for formula (3), 8 3, in which the hypercompiesnbers themselves are employed.
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Furthermore, if(x) =x, F1 + X F2 + ... + X, Fn then one has:
(4) FsFy =Y a,,F, .

Since the associative law is valid, the matriegd, ..., F, define thebasisfor a group
— theantistrophic group¢'). Another representation of)(is given by the matriX ' that
IS conjugate tal. One can thus also refer Td as the matrix of the groug)(andS’ as
that of the antistrophic groug'].

If zis a parameter, and one sets:

(5,) Za = za;(/mg;( y/i = zrﬂa(ayﬂ :zslm( y){/( !

then one will have:

raﬁ(@ = zaﬂaﬂzﬂ :szSK#( y) Kap -

This is the coefficient adz in:

Srs()2= Y 68, (Nta(D =D 6L, (D9 (V=5 (N1, 2, .
B K K. uB

Therefore:

(5) rafd) = S (N 1,(£),

or: '

(5) R(¢) = S(y) R($).

Finally, if one sets:

(6*) = za/dﬂfk 2 = zrﬂﬂ({)zﬂ = ztm (2)<,,

then one will have:

Fa1]) = za/laﬂ”/l = katm(z) Qo

KA
and therefore:

DT DYe = D ELa (D8 =D8,8a(Nts(2 =D 1 (s,

from which:

(6) o)) = z Faa (f)tw (2)
or:

(6) R(7) =R($) T(2.

With a suitable change in the notation, this imglie
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If the parastrophic determinant does not vanish identically and the detemtrof the
matrix R; = R = (rop) is non-zero for the valué of the parameter thensRgoes to RJ
under the substitutiod, = Zraﬂxﬂ, and to S, R under the conjugate substitutiafz

B

= z FoXy -
a

Under any condition, the group determinant of ainéistrophic group determinant is
identically equal, and up to the factfi], it is also equal to the function in which the
parastrophic determinant goes to under either ad ttvo conjugate substitutions; all
three determinants coincide in their elementaryt@ar

If & n, ¢, T are arbitrary parameters then it follows from (9), §hat Rfl%
commutes withR ™R or that the matrixR, R* R ™" is independent of.

§ 3.

If | R(X) | does not vanish identically then neither of the tketerminants §x) | or |
T(X) | vanishes identically, either, and there is a nuralber which one ha§(e) = T(e) =
E. However, whenR(x) | = O identically | add the further assumption, thathegibf the
two determinants:

(1) 1S(3) |, T |

is identically zero. If one choosesuch that §z) | and [T(2) | are both non-zero then
one can (cf., e.g., MOL., theorem 1), becauSg)|| is non-zero, determine a numiger
that satisfies the equatiome=z. Furthermore, ik is an arbitrary quantity then one can,
becauseT(2) | is non-zero, determinesuch thaky=x. One then also ha® = x andzex
= zx so since H2) | is non-zerogx= x. Since, furthermore, from (2), 8 2 = Y2
Se) andT(2) =T(e) T(2), one has§e) = T(e) =E.

The theorem of § 1 remains correct when eitl®x)|| or |T(X) | vanishes identically,
and also whenR(é) | = 0 identically. If one then seE U, €, = Yo then one has:

U

D UpS (e =25,(9y,6,
B.u 1%
SO.

zuaﬂx = zsay(x) M/: zta/](y)x '
B y B

and thereforeigz = toAy).

If | SX) | is non-zero for a certain quantitythen one can determiryein such a way
thatxy =e. Then, from (2), § ZT(y)T(x) = T(e) = E. Thus, |[SX) | is non-zero for the
valuex and so is T(x) |, and conversely. Therefore, BKk) | = 0 then so isT(x) | = 0.
Any prime factord(x) of the group determinantyXx) | is therefore also included in the
antistrophic determinantT|(x) |, and conversely. Precisely the same factgr3 appear
in the two decompositions:
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(2) 1SCG) [ =0 &%, [T | =N D(x)),
so the exponentsandt can be different, but only wheiR(¢$) | = 0 identically.

The simplest example of this possibility, as MOLIE&shcommunicated to me, is
provided by the only non-commutative group of onder 3, for which one has:

X1=Y12, X2 = Y2 2o, X3=Y1Z3+tY32.

Therefore:
$ 04 y, 0 0 z 00
R()=104 0], Sy)y={0y, 0, T(@=|02z 0|,
04 0 0OV, Vy z, 0

so, when decomposed into elementary parts:
|SX) | =xaxa %2, [T |=x1x2 X2, [URE +VR(|==(&+&) & uv(u+v).
From equation (2), 8§ 2 it then follows by a repeated agijdio:
SF=gx),  TF=T).

By u, v, w, | intend this to always mean ordinary (not hyperclexjpquantities here. If
g(u) is an entire function of the variables so g((x)) is an entire function of the
hypercomplex quantity itself then one must have:

3) 9(S) = S(9((¥), 9(T) = T(9((¥)-

Therefore, if one of the expressiag($x)), 9(So), or g(Ty) vanishes for alk then the other
two vanish, as well (MOL., 8§ 4). The equat@(®) = O of the lowest degree that a matrix
S = S satisfies will be called iteeduced equation One obtains the functiag(u) when
one divides theharacteristic determinaraf S which is the determinant of the matrix:

(4) UE-%)=Hue-},

by the greatest common divisor of its subdeterminafits — 1) degree. From (35
andT satisfy the same reduced equatg{8) = 0 andg(T) = 0, and this is likewise the
equationg((x)) = 0 of lowest degree that a variable quantisatisfies. Thus, while the
determinants of the two antistrophic groups can be diffetbalr first elementary parts
always coincide.

The reduced functiog(u) vanishes for any of theharacteristicroots of S which are
roots of thecharacteristic equationuk — S| = 0. We have thus proved once more that
the two antistrophic group determinants include preciselgdhnge prime factors.
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§ 4.

If ©(x) = | 9X) | is the group determinant then from (2), £2y2) = O(y) ©(2). In
any prime factod(x) of ©(x), | imagine that the constant factor has been ¢hossuch
a way thatd(e) = 1. Then, if®(x) is such a factor or a product of several of them then
one also has:

(1) (y2 = D(y) (2.

Conversely, any homogeneous funct®(x) that possesses this property is a product of
prime factors oP©(x) (Gr., 8 1). If one then determingssuch thatxy = O(x) e theny;,

Y2, ..., Yo Will be found fromn linear equations with the determina{x), and are thus
entire functions ofxy, X, ..., %, . Ifr is the degree ab(x) then, from (1), one has:

P(X) P(y) = O(x)'"

| call the rootaus, uy, ..., U, of the equatiorP(ue — ¥ = 0 thecharacteristic rootf
®(x). One then has:

(2) odue—F=u-D YU T+D)U - xD(N)—U—-w) U=—1) ... U—U).

| call the sum of roots,®;(x) or:

(3) U+ lp+ o+l = X0 = D XX,

the trace of ®(x). The function®(x) is determined completely by its system rof
coefficients, which I likewise denote lep and call thecharacteristic parametersf d(x)
(MOL., § 3,Gr., § 3). One then has that:

gu=au+v) (U+tw) ... (U+Vy

is an entire function af, so:

g=0((x)) =a(x +v1€) (X +V2€) ... (X +Vn€)
is, as well, and from (1), so is:

d(y) =a (X +Vv1€) D(X+V26) ... D(X + Vi €).
If one sets:
P(x+ve)=(Uur+V) (U2 +V) ... (U +V)
then one obtains:
D(y) = g(ur) g(u2) ... g(wy).

If one now replaceg(u) with g(u) — v then one sees thg{u;), g(w), ... g(u) are the
characteristic roots @b(y). Therefore:
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(4) X9(09)) = o(ur) +g(u) + ... +g(u)
and especially:

(5) XX =uf U+

so fory =0:

(6) r=xe) =Y X .

From the well-known relations between the coedfits of an equation and the power
series of its roots then the prime functions of filstjree are then:

7) XO) X(y) —x(xy) =0, XeXy= D 8up Xa

identically, and for second degree they are:

(8) XXX XX x(YD —xX(Y)X(ZX -x(Y)X(YD +X(xyd + x(xzy) = 0.

| set down the general law for the definition of gneguations iGr. § 3.

In particular, the number of different linear primadtions is equal to the number of
solutions of equations (2), 8§ 1 in ordinary numbers (DED.)(189 | will show in § 6,
these solutions are all linearly independent.

If ©(X) is non-zero for a certain valxehen, from (1), 8§ 4, one has:

D(Xyz+ue) = D(X ) D(y + ue D(X) = D(y + ue

and thusy(x''y2 = x(y), or, when one replacgswith xy (MOL., theorem 14Gr., 3
(13)):
9) X(xy) = x(y).

The matrix of this symmetric bilinear forR{y, x, y) is:
(20) R«=R..

One then call§ asymmetric parametexhen it satisfies the equationg($) = r (<)
or Rs=R; theny is then such a parameter.

A quantityx is called annvariant quantityof the group € when it commutes with
any quantityy of that groupxy = yx. Therefore:

Zy: a5 X, = Zy: 5%, or  teAX) =S

Conversely, if the variability ox is restricted by the equatid¥x) = T(X) thenx is an
invariant quantity of £).
From (14), 8 1, the general equatigx) = T(y) or:
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X1E1 + ... X, En :y1F1+ +ynFn

can exist only whenx =y is an invariant quantity. The group that is defined by the
invariant quantities is then the greatest common divastie two antistrophic groups (3)
and (4), § 2.

If y varies without restriction, butis an invariant variable the®{x) = T(y) commutes
with §y) and thus the characteristic roots u,, ... of the matrix§(x) can be associated
with the characteristic roots, v», ... of the matrixyy) in such a way that;vi, u; v, ...
are the characteristic roots®&k) Jy) = Sxy). Thus, one also has:

®(ue —xy=(U-uy) U—-wYy) ...(u—uy),

whereus, Uy, ..., U depend upon only andvy, Vs, ..., Vi, upon onlyy. If one sety =e
then one sees that, w, ..., U, are the characteristics roots®x), and if one sets = e
thenvy, vy, ...,V are those of(y).

For the determination of the way that these roots sseciated with each other in the
aforementioned decomposition, | restrict myself to tdase whered(y) is a prime
function. ®(uv —y is then irreducible as a functionwfi.e., it cannot be represented as
a product of entire functions af whose coefficients are rational functions of thne
unrestricted variable quantitieg, y», ..., yr . Sinceu; is independent of them, the
function®(ue — yy) of the variables! is then irreducible in the same sense. The function
®(ue — xy has the factou — u e; in common with it, and as a result, one tgse — xy
= ®(ue — yy). With this, one hag(xy) = uyx(y), so fory = e, one hag(x) =ru; . If one
setsu = 0,y = ethen one will hav&(x) = u; . Then, from the theorem o&¢., § 6):

If x(X) is the trace of the prime factor df degreed(x) of the group determinant, and
y is an unrestricted variable quantity, but x is an invariant quantiisn:t

(11) XOX() =V XOY) = XW)XX),
and:

1 ' 1 '
(12) d(x) = (FX(X)j : ®(ue—-x) = (u —F)((X)j

is the " power of a linear function and the r characteristic rootsb¢f) are all equal to

1.
r

§ 5.

If t =xythent +ux=x(y + ue), and as a result, {p(x) is a factor of a power &(x)
then®(t + ux) = d(x) P(y + ue). If one compares the coefficientsbt" in this then one
obtains:

0P(x) ., _
Za:—axa t; = POIXY),
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so because one has Z s (X Y5

0P
320 5= 000

In this way, and through the decompositiph+ ux= (y + ue) x, one obtainsGr., 8 5

(3)):

1) zag’(x) (9= Zaq’(x)tm(x) PO -

K

If one then setg), = 0P / dx, in formula (3), § 2 then one will havé, = ®y, , and from
(5) and (6), § 2, one thereforér(, §, (1)) has:

oo

j [aq’j T(¥) = P(x) RY),
ox

(%) -z iz)

RUT+RU™?+ ... +R

(2) S(¥) R(

where the matrix is:

If this goes to:

when one replaceswith ue — xthen, from (2), 8 4:
RIUT+Ru™+ ... +R) Eu-T =RU —D1 U + DU = £ D).

If one compares the coefficientsdfu™™, ..., u’ then one obtains+ 1 equations. If one
multiplies them on the right b} ", T", ..., T° and adds them then this giver( § 4,
(5)):
(3) R(U - U™ +du™? - ...2d) =0
or, more simply:

Ry ®(XE — e} = 0.

In the same way, one obtaid¥xE — e3) R, = 0, so when one takes the conjugate
matrices, from (10), § 4:

(3) Ry ®(XE —e$=0, Ry ®(XE — e} = 0.

From (3), § 3, one can also wri®d(x —((X) €)) for O(xE — e$ i.e., ), wherey =

9((x) andg(u) = d(x — us.
One also arrives at formula (2), upon which thiloWing development essentially
rests, when one sdts xyz(oryzy, and compares the coefficientsyafzz in the equation
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5920 — o xiya,

. OX,
from which:
te =2 Ay Xc vapYaZs, XY =2 Tl ) Ya 25

§ 6.
I will call the smallest number of independent lineanings between the variables
by which a function or a system of functions can be egpregslinear rank or also just

its rank, as long as this will not be confused with the conceph@fank of a determinant
or matrix. The linear rank of a quadratic function:

(1) (0%, %, = F(Y, %, X) = Y(€) = ©F — 20,
a.p

is equal to the rank of the symmetric matRx that is defined by its coefficients, and
equal to the linear rank of the systemrmdiear functions:

) D rs(0x,
B

which are one-half the derivatives of the quadrititwtion. y(>*) can be represented by
any m of these linear functions, which are independeinearh other. Likewise, its
covariant, viz., the symmetric bilinear form:

©) D (N % Y5 = FOX X Y) = X(xy) = X(YX),
a.B

can be expressed in terms wf and them of the n variables Zraﬂ y, that are
B

independent of each other.

The trilinear functiony(xy? = x((xy) 2) is a bilinear function of the coordinatesxyf
and z, and may thus be expressed in terms ofrntheariables among tha variables

Zraﬂ z, that are independent of each other. It is equa(Xt/2) = x(z(xy)) = X((zX y).
B

so it is also independent of the variables,; x, and the variable'r,;y,. The same
7 7
thing is true ofy(xyz) = x(yzt¥ = x(ztxy) = (txy. Therefore:
O = U + U+ f

also depends upon only the variables (2), so thdymt®(x) = u; Uz ... U, is as well,
and it is an entire function of any power seri€onversely, the function®1(x), ®2(x),
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... that appear in the development ®fue — ¥ may be expressed in terms of linear
combinations of the variables, x,, ... x, upon which®(x) depends, as well a§x%).

1. If ®©(x)is a product of prime factors of the group determinant gixjlis the trace
of d(X) then the linear rank o®(x) is equal to that of the quadratic functigx®), so it
is equal to the rank of the matrix, Rand the functio®(x) may be expressed in terms of
the derivatives of(®).

Now, let®, @', ®", ... be thek different prime factors o® and lety, Y, X', ... be
their traces. I, C', C", ... are any matrices of" degree then | will show: A relation:

(4) CRy+C' Ry+C'Ry+...=0
can exist only when one has:
CRy=C Ry =C"Ry=...=0

individually. From (2), 8 5, one then has:

ol(d)
ox

R)(:R( jT(%,

and then, sinceT|(X) | is non-zero:

CR(""(Q’)} CF{al (¢')j+ e FEd (¢")J+...: 0.
ox 0x ox

Now, let® =&’ " ... be the product of thie— 1 prime functions that are different from
®. If one multiplies this bypW then one sees that the elements of the m&t(®

CR(%EJ are all divisible by the function af" degreed(x), so since® and¥ are
X

relatively prime, the same is true for the ma@R(%ﬁj. Since this is, however, only
X

of (r — 1)" degree, it must be zero. With that:

ol(P)
[6)4

O:CR( j:CRX.

One can also arrive at this result by means ohida (3), 8 5. From this, one hR&g
W(XE — e$ = 0, and since any two entire functions of therireS commute with each
other, one also has:

Ry W(XE — e$=Ry ®"(XE —ePP'(XE —e$... = 0.

As a result, one also has:
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CR(W(XE — e$ + D(XE — e$) = 0.

The determinant of the matrix in the brackets, whicla iinction ofS is non-zero,
because the functiod(xE — e$ + P(XE — e$ of the variablesi does not vanish for any
root of the characteristic equation. As a result,ranet haveCR, = 0.
If m M, m", ... are the ranks of the matric&, Ry, Ry, ... then among th&
variables Zraﬂ()(’)xﬂ, preciselym of them are independent, among thevariables
B

Zraﬂ()(")xﬂ, preciselym" of them are independent, etc. Tiet m' + m" + ... linear
B

combinations of then variablesxy, X, ..., X, that are thus obtained are, however, all
linearly independent. An identity relation in the X, ..., Xn:

S [ S |+ e T | e[ oo Jr . =0

a B a B a g

can then exist only when tlkgpartial sums vanish individually. Timeequations:
zcaraﬂ(/Y)+ZC;raﬂ(X’)+zCZraﬂ(X") ... = 0

have, in fact, the form (4) whed is a matrix in which one row consists of the elatae
Ci, C2 ..., Cy, While the elements of the other row vanish.

Since D X, X, = D&, [Z s (X) Xﬂj is a linear combination of the variables (2),
a a B

thek functions:
(5) X0, X (9, X'(9, ...
are also linearly independent.

Furthermore, x(x*) can be expressed as a quadratic functiormoindependent
variables with non-vanishing determinant&?), as a function ofrf variables of rank
m’, etc., and thesen + m + m" + ... variables are all mutually independent.c,It’, c",
... are constants then the rank of the quadratictifumc

cXOA) +C X () +c' X' 04) + ...

is equal to the sum of the ranks of the indivicslahmands. The rank of(>?) is 0 orm,
according to whether = 0 or not, resp.

ll. The rank of the matrixR + ¢R. + ¢ R+ ... is equal to the sum of the ranks of

the matrices cR, ¢ Ry ,c" Ry, ...
The linear rank of a product of prime factors obgp determinants is equal to the
sum of the ranks of their various prime factors.
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§7.

| denote the traces of the determinar@x) | and [T(X) | by:

(1) O(X) = zUaXa :zSKK(X) ! T(X) = zraxa :thK(X) '
Their coefficients are:

(2) Oa :zakm( ) la :zamm ’

and from (2), 8 3, one has:

@) og=sy+sy+ §)("+.--:Z g,
T:tX+t’X’+t"X"+"':ZtX.

Therefore, from theorem Il, 8§ 6 the matriégsandR; both have rankn+m + m" + ...
I will call a group €), for which the determinant of the symmetric neas:

(4) Ros =P = (Pap)

is non-zero, aDEDEKIND group (DED. (27)), since DEDEKIND recognized the

meaning of this condition, at least for commutatweups. For such a group, from the

theorem of 8 20(X) = |[S(X) | = |T(X) |, soo= r, and the rank dR, :
n=m+m+m'+..=>m,

Thus, a DEDEKIND group can also be defined to lgecaip whose order is equal to the
linear rank of its determinant. If:

Y=x+X X+ =)
is the trace of the product of tkelifferent prime factors d®:
WX) =@ @' " ... =11 P(X)

then, from theorem Il, § & also has rank. m=n. Thus, Ry | is non-zero. From (3),
8§ 5 is, however:

Ry ¥(Se — ExX=0,
and as a result:
(5) Y(Se - Ex=0.
Since the function:
(6) g(u) =W(ue —y =T d(ue — 3

has no a multiple factog(S = 0 is the reduced equation for the maixcf., MOL.
theorem 24).
One can also see this as follows: From (2), §16,lwas:
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90
sR® | -oR,.
R(axj X

Now, © S’ ! = S’is the adjoint matrix t&’, and therefore one has (DED. (63)):

@ s=R %2R

ox

The elements of the matr& are the sub-determinants of< 1)" degree of. They are
then linear combinations of the derivatives ®fin the n variablesx;, Xz, ..., X, .
Conversely, the derivatives of a determinant are lineanbmations of their sub-
determinants. Therefore, the greatest common denomiohtbhe sub-determinants is
equal to the derivatives, so whers now replaced bye — x it equals:

M(d(ue — Y™

From the rules that were mentioned in 8 3, however,atmains the reduced equation
g(S = 0 when one divides each expression by:

O(ue — 3 =N(P(ue — y),

and consequently(u) is the function (6). The roots, U, ..., U, of the equatiomg(u) = 0
arethep =r +r' +r" + ... distinct roots of tha rootsus, Uy, ..., U, of the equatio®(ue

~¥=0.
§ 8.

If A andB are two commuting matrices of degree then their characteristic roats
a, ..., a, andby, by, ..., bycan be associated in such a way ffat b,), f(ag, by), ..., f(a,,
b,) are the characteristic roots of the maft(#, B) and this association is independent of
the choice of the entire functidfu, v). In 8 3 of the present paper, | have further proved:

I. If the characteristic determinants of two (or mormelitually commuting matrices
A and B are decomposable into nothing but lineamentary parts then any matrgAf
B) has the same property.

[I. If, moreover, one always has b b, whenever a= a, then B is an entire
function of A

Now:
(1) y(u, X) =T d(ue — 3

is an entire function op™ degree ofu whose coefficients are entire functions of the
variablesxi, Xz, ... Xo . Thep rootsus, Uy, ... U, of the equatiorg(u, X) = 0 are all
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mutually distinct. 11X = §x) then the elementary parts aff — X| are all linear an&X
satisfies the equatiag(X, x) = 0.

This identity equation ing, X, ..., Xy Will thus be also satisfied by any special system
of values for the variables. For such an equatigny,, ..., u, do not all need to be
different, the elementary parts ofif — X| are not all linear, ang(X, x) = 0 does not
need to be the reduced equationXorThe equationyE — X| = 0 cannot then have more
than p different roots, and ifA{X) = 0 then¢(u) must vanish for any roots of this
characteristic equation. Since the equatyyn, X) = 0 has not multiple roots, the
elementary parts olUE — X| are all linear.

Let x be chosen as above, andyidie a quantity that commutes wih The matrixY
= §y) then commutes witK = §x). Therefore, the determinant:

(2) [uX + vY + WE| = |Jux + vy + W | =M (P(ux + vy + w3)

is a product of linear factons u, + v v, + w, in whichu, andv, are the associated
characteristic roots of the two commuting matrigesndY and therefore:

3) Pux + vy +wg = [ (uy, + vy, + W

is also a product of linear functions ofv, w. If one setsvy = 0 oru = 0 then one
recognizes that thecharacteristic roots,, ..., u, of ®(x) are associated with thieroots
vi, ..., Vy Of @(y) in a certain sequence, and consequenthpttaotsu,, ..., U, of g(u, X)
= 0 are associated with tlperootsvs, ..., vy of g(v, y) = 0, as well. Sincey, ..., u, are
distinct, moreover, formulas (2) and (3) show @may two equal roots, = u; among the
n characteristic roots of are associated witfy = v, equal roots o¥.

If | is a constant then —Iug, ..., v, — I, are the roots of the equatigw, y — ¥ = 0.

If 1 is not equal to one of the ratiol\jé"—\f then anyp roots are all different, and
a UB

consequently the elementary parts of the charatitedeterminants of the matiz&k=Y —

IX are all linear. SincX andZ commute and =X + Z is a function ofX andY, from

theorem I, the elementary parts off — Y| are also all linear. From theoremYl,is

therefore an entire function &f(cf., MOL., theorem 27).

The equation of lowest degree thasatisfies has degree Therefore, i, X, ...,
X’ are linearly independent then any entire functibix is, however, independent of
thesep. The linear equationsy — yz= 0 between tha unknownsyi, s, ..., ¥» thus have
preciselyp independent solutions. The matrix of their ca#ntsSx) — T(x) thus has
rankn —p

. Ifther+r"+ r”+ ... roots of the equationl ®(ue — 3 = Oare all different for a
certain quantity x in a DEDEKIND group then the matS(x) — T(x) has the rank n {
+r’+r”+ ...). Every quantity y that commutes with x is then aesfunction of x,
and the elementary parts pfE — Qy) | are all linear for such a quantity y.
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§9.

I will take the theory of DEDEKIND groups to its couasion in 88 13 to 16. Now, |
shall turn back to the general theory. In place obédmEss;, &, ..., & for the group §),
one can introduce a new basis by a linear substitution:

(1) &g = ZCaﬂé_‘a

in which the determinant of the mat= (C,p) is non-zero. Then if:

(2) Zgaxa = Zgaia ’

then:
(3) X, = > CopXy.
B

The quantitieso® / 0x, , &, Xa , Oy are cogredientto the basic numbers, , the
quantitiesy,, z, are cogredient to the coordinates, and the basic numbers, are
contragredient. Furthermore:

S(=C'Y¥C T) C TK(

4 — = _
@ R =CRS) G RE)=CR) C

Therefore, the exponents and the degrees of the elmygmarts into which the
determinants of the matric&x), Sx), T(xX) decompose arn@variants of the group.The
same is true for the determinants of any of the mattitat depend upomariables:

(5) SX) +T(X), R($) +R(7),

in particular, also for the elementary parts of theeinant of the matrix of the bilinear
formuF(¢,y, 2) + vR(¢, z y) of y andz

(6) uR(é) + VR(d).

For the explanation for the remark, | consider sexamples from the paper of STUDY,
“Uber Systeme von complexen Zahlen,” Gottinger Natiteis, 1889. If (ST. I1X):

& & 4 4y
$ & ¢, 0
7 R =
(7) (4) £ - c& 0
&, 0 0O
then its elementary part is:
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(8) EEU+V) (U +Y) (U= +cu +v)),

in which the last factor is a quadratic elementary part fo O; otherwise it decomposes
into two different linear elementary parts. This foraashows that is a (hon-numerical)
invariant of the group.

Furthermore, if (ST. XIV):

G $ G54,
$ 04,0
& -6,00
& 0 00

(9) R($) =

then the elementary part ai R¢) + ¢ R(é) |
(10) P& U U+ (U=9 (u-V),

is essentially different from the above (for= 0). Therefore, | would not like to further
into the classification of groups here.

It is possible that the quantities (2) also define a grélipvben the coordinates are
subject to certain linear relations) (will then be called aubgroupof (¢). Its basic
numbers$, &, ... are linear combinations of timbasic numbers, , and therefore in
order for ¢J) to be a group, each of the produétssz must be a linear combination of
the quantities?, &, ...

If each of the products, Js is a linear combination of the quantiti#s &, ...then
() is an invariant subgroup) of (¢). Formulas (2), § 1 also define a grou Wwhen the
n basic numbeg, are subject to the relatiods = 0, 4, = 0, or when one considers any
two quantities of § being equal mods) when their difference belongs to the grow (
They will be complementarto those of the invariant subgroug) (that is called the
grouphomomorphico (£) (Accompanying number systamMOLIEN).

In order to see this, one transforms the basis ih augay that%;, &, ... become the
basic numbergy.1, ..., & . The subgroup) will then be determined by tha linear
equations; = 0, ...,Xn = 0 between the coordinates. Therefore, in orde(fpto be a
subgroup it is necessary and sufficient #agf = 0 wheneverr <m, S>mandy>m; in
order for ¢ to be an invariant subgroup it is necessary and serfidihata,sz = 0
whenevera < m and also only one of the two numbég®r yis greater tham (MOL,

Y If § is a finite group of ordem and® is a subgroup of orde¥m, and ifR is an element af) andP,
an element o then the hypercomplex quantitisR x define a groupd) of ordern, and the quantities
R »%, a subgroups). It does not have to be an invariant subgroug)oivben® is an invariant subgroup
of . However, if$y = & + A + 8B + ... then one obtains an invariant subgroupepfof ordern — m

when one restricts the variability of theoordinatesk by then equationsz %, = 0, z Xap =0, z Xgp
P P P

=0, ... The homomorphic group)(that is complementary to it irg)(has the same relationship with the
group$H/® as €) does tah.
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theorem 2). Equations (2), 8 1 also define a group when t®ese= ... =& =0. In
formulas (4), 8 1x, ..., Xm depend only upow, ..., ym andz, ...,z,. Therefore, in the
two matricesS(x) andT(x) all elements vanish when they have the finstows and the
lastn — mcolumns in common. Therefore:

0 T, 0
SR
SZl % T21 T2
where, e.g., the partial matrg only includes the firsin rows and columns d&. From

Sy) S2 = Sy2), it then follows thaGi(y) Si(2) = Si(y2), and since&S(X) = x1E1 + ... +Xm
En depends only upon then the equations:

&= Y 8y, By=12,..m
a=1
define agroup (#7) that emerges fromegl when one setgn1 = ... =& =0. Since 5| =

S| |S | and [T | =|T1]||T2|, (7) also satisfies the conditions (1), 8 3. Furthermdme, t
determinant of the groupe)(is divisible by the determinant of any group) that is
homomorphic to £), and the same is true for the groups that are amgfstrdo ) and

(7).

If ags,= 0, in addition, whem > m and one of the two numbefor yis less tham
then ) decomposesito two groups, each of which is an invariant subgroupspfas
well as a group homomorphic te) (

§ 10.

If m, M, M, ... are the ranks of tHematricesR,, Ry, Ry, ..., then® depends upon
only them independent ones among thénear functionsz rs(X)Xz , ®', upon only the
B

m independent ones among the functi@saﬂ()(’)xﬂ , etc., and these+m + m"' + ...
B

variables are all mutually independent. One cas tthoose the basic numbers in such a
way that® is also independent af, ..., X, @', depends upon onb.a, ..., Xm+m, €tc.
X0 =X rodX) Xa Xg then also depends upon omly ..., Xn. Thus,r,4AX) = 0 whena or

Bis greater tham, and sincdR, has rankm, the determinant ofi" degree:

[ rvaC) | wA=1,2,..m)

is then non-zero. Furthermore, from § 6, thentedir function:

X(XY2 =2 1va(X) @apy Xv Y52, =2 TvaX) @asy X Y5 2,
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depends upon onb, ..., Xm, Y1, ..., Ym 4, ..., Zn. Therefore, ifB or yis greater tham

then ZrM (Y)a,z = 0, and thusuz = 0. Therefore, thé different prime factors o®
A=1

correspond t& groups that are homomorphic with).(

More simply: All quantitiex whose coordinates satisfy the linear equatiamgA x)

Xz = 0 define an invariant subgroug) (of (¢§). The equations then express the idea that
X(tx) = 0 for any quantity. If y is an arbitrary quantity off and one replaceswith yt

or ty then one obtaing(t(xy)) = 0 or x(t(yX)) = 0. Ifx then belongs to the comple#)(
then it also belongs toy andyx. Consequently,s) is an invariant subgroup of)(

A group €) of orderr is calledsimple(MOLIEN: original number systejrwhen it
has no invariant subgroup (except fg))(so it has no homomorphic group of order less
thann.

From the development above, the determii@uof a simple group includes no prime
factor whose linear rank i < n. Therefore, from theorem II, § & must not include
two different prime factors, 8 = ®° must be a power of a prime function and therefore
o=sy. Furthermore, the rank of ®, and thus, the rank of the matR% = SR, , must be
equal tom=n=rs, so ) must be a DEDEKIND group.

Conversely, if R, | is non-zero and® = ®° is a power of a prime function thes) {s
a simple group, so it is not homomorphic to a grggpwhose orden’ < n (MOL.,
theorem 23). The determinant @) (is a divisor 00, so it equal®’ = ®*, and thus has
the same rank a®, namely,n. The rankn of @ cannot, however, be larger than the
ordern’ of (n).

SinceSx) andT(y) are commuting matrices the determinant:

[uSx) +vT(y) +W e|
decomposeddr., 8§ 10, (1)) into a product of linear functionsuwpi, w. If uw +vvy +w
is one of them then one sees, when oneset® U = 0, resp.) thaty (v4, resp.) is a
characteristic root ob(x) = (®(y)). If one considerg to be constant, butto be variable

then®(ux + we is irreducible as a function @, and thusb(ux + (vvi + w)e), as well.
The determinant has the factag + vv; + win common with this function, and thus, all

factorsuu, + vvi + w. If one then considepsto be constant angto be variable then one
sees that the determinant of each ofrftfactors is:

Uuy + Vg + W (a,6=1, 2, ...)1),
and each of them is included equally often. Tloeef

[uSx) +vTy) +wE]| =1 (uus + s+ w)°

and therefors =rc. In particular Gr., 8 10, (8)):

(1) IS0 —T(X) +WE]| =WSJ;_|(WZ—(uﬂ—L;,)2)C.
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The elementary parts of the characteristic detenmiobthe two commuting matrices
Sx) andT(x) are all linear. From theorem I, § 8, the elemenpanys of the determinant
(1), and especially thefor w = 0 also vanish. Consequently, the ma8{x) — T(x) has
rankn —s.

From theorem lll, 8 8, however, they have rank r. Therefore (MOL., theorem

29):

(2) r=s, m=n=r?

soc=1 and:

© U S0 +v T) +WE| =[] (Uu, + vy + W.

a,f=1

The determinant of a simple group is a power ofrisn@ function whose exponent
equals the degree of the prime function. The fimaak of this function, which agrees
with the order of the group, is equal to the squairds degree.

§ 11.

If, ther roots of the equatio®(ue — H) = 0 all vanish for a certain quantiyin the
simple group §) of ordern = r?, and ifa is a particular one of theseroots then the
determinant Slue — B | has nothing but linear elementary parts, antsequently the
matrix Jue — h has rankh — r. Therefore, (MOL., § 8), the linear equatioas ¢ N t =
0 in the coordinates, ..., t, of the unknown quantity have precisely independent
solutionst =t 1@ 0,

If x is a variable quantity thetf) x is also a solution and therefore:

0 x =3 x 19
A

Since ther solutionst”” are independent the quantities = f.(x) are linear functions of
the coordinateg, ..., X, . If y andz are two other quantities, and one sgis= f«u(y), za
=f« (2) then one also has:

t(K) y :z yK/] t(ﬂ) , t(K) Z :z ZK/] t(ﬂ)
A A
and thus:
tyz=>"y, tPz=>"y, 2,7,
A Au

Thus, ifx =yzthen:
(1) Xt =2 YouZn
i

Among then = r? linear functionsx,y = f,4(X), let m of them be independent. Therefore,
from (1), ifx = yzthen thesen combinations oKXy, ..., X, depend om combination ofy;,
..., Yo and those of, ..., z,. Consequently,g has a homomorphic group of order
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However, sinced) is simple one has = n = r?, and one can then introducenew basic
numbers, such that:

2 EaXa =2 Eur Xup -

For this to be true, formulas (4), 8 1 must go over to (d)the relations (2), § 1 to:

(2) Eap Epy= Eay, Eas Epy= 0 (8 #* 0)

As was shown at the outset in 8§ 10, kiaifferent prime factors d® correspond td
groups that are homomorphic tg).( The first one has orden, and its determinant is a
part of© and depends only upoa, ..., xn . Sinced, @', ... are independent &f, ..., Xn
then its determinant is a power ®@f and thus, likeD, it has linear rankn. Because its
order is likewisam, it is, from 8§ 10, it is a simple group. Consequenttydeterminant is
equal tod®" and the rank ob ism=r?

I. The linear rank of each prime factor of the group determinant is equal to the
square of its degree.

| will now denote thek different functions® by @, ®,, ..., ®¢ . All elementss,p
vanish in the group determina@that have the firgty, rows in common with the last—
my columns, and likewise all elements that have thewolig m, rows in common with
the my and the lasn — m — mp columns, and furthermore, the ones that have the
following mg rows in common with the firsty + mp columns and the last—m, —mp —
mz columns, etc., while nothing is known about the tastm; — ... — mx columns. The
same is true for the antistrophic matfixand also fou §x) + v T(y) + w E If the first
my rows and columns @& (T, resp.), define the matr (T1, resp.) and the followingy,
rows and columns of the mati® (T- , resp.) then let:

§0--0 T,0--0
0S - 0 0T - 0
U= SZ , V= 2 .
008 00T,

Therefore:
[U oj (V oj
S= : T= :
U0 SO VO TO
This gives us the theorem of MOLIEN:

[I. Any group is homomorphic to a DEDEKIND group whose determinant includes
every prime factor of its determina®tand whose order is equal to the linear rankof

This rankm is equal to the rank of the quadratic foafx?) = X, Pag Xa Xz, and in
order to obtain a group one needs only to introducenthrelependent ones among the
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functionsz P.sXs @s new variables. Therefore, in formula (4), § 9 thesstutionC is
B

chosen in such a way that it transforms the faxxf) into a function ofm variables,
perhaps into a sum af squares. | have not, however, succeeded in proving thetlgire
i.e., without any use of the prime functidn, .

Furthermore, one has:

[SI=1S] ... &[S, ITI=1To] ... [Tk | [Tol,
and:

[ugx) +VvT(y) +WE| = |uS +VTi +WE; | ...Ju&+ VT + WE | [uS + VT + WEp |.
SinceSy is the matrix of a simple group, from (3), 8 10, one has:
W, = |uSAX) + VT(y) + WE« | =11 (Uuy + vvg + W),

whereu, ..., U, are the characteristic roots ®@f(x) andvi, ..., v, are the characteristic
roots of d,(y). These results remain unchanged when the basic nsinolbgg) are
chosen arbitrarily, rather than in the manner desdribe

Wo = | uS(X) + vTo(y) + wkp | also decomposes into linear factarg + vvp + w.
Here,up is a characteristic root of a prime factbyx) andv, is a characteristic root of a
prime factor®,(y). From the irreducibility ofp(ue — ¥ and®,(ve — y it then follows
that Wy also includes ali, r, factors of the products (uu, + vvg + w) in whichu, runs
through the , characteristics roots @f.(x) andvgruns through the; roots of®,(y). If x
= A then the facto®, appears repeatedly. As the example in 8 3 shows, howevan
be different from.

If one chooses an invariant quantity fothen, from (12), 8§ 4, thie quantitiesu, are

all equal oL X(x). However, formulas (2) and (3), § 8 show that thotv is then
r

K

associated with= ¥P(x). Therefore,x can be different fromi only for an invariant
r/1

quantityx:
1 e 1
(1) r—)ﬁ ) = r—)ﬂ’(X) &=Ty
K A
Now, letw=0,u=v =1, and:
(2) WX, y) =M(ua + vp),

whereu, runs through the, characteristic roots @b,(x) andvg runs through the, roots
of d,(y). Wx is then an irreducible function od, ..., X., V1, ..., Yn relative to any of
degreay, r,, resp., and one has:

3) Wi y) =150 +TO) | = [ (Wa ()™,
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where the whole numbex, > 0, butc = 0, and only under the condition (1) can one
havec,, > 0. Since:

Wa(x 0) =, (x)", W(0,y) =0, (X",
this gives the decompositions:
4) 1S9 | =[] @, (¥, ITX) | =[] . ()"
where the exponents that appear have the expressions:

S =Cu it G Lt + Gk,

(5) _

L =CuntCyl -+ 0y,
such that one always has:
(6) Sy=2T1,, th=r,.

The two functions §x) | and [T(x) have the same linear rank:
(7) M=r2+r7+- 412,

which is equal to the tank of the matRy and that oR;, and is equal to the sum of the
ranks of thek matricesR()((”)) or thek prime functionsb,(x). By contrast, the order of
the group §):

(8) N=riS+..+n&=riti+ ... +retc=2cCalula,

in whichr, r, has the coefficients; + C,« in the event thak is different fromA.

§ 13.

I now recall the theory that of DEDEKIND groups thes begun in 88 7 and 8. For
such a groupn =n, so, from (6), (7), and (8), 8 1&=t, =r«.

I. The exponent of the power of a prime function that enters in thevileset of a
DEDEKIND group is equal to the degree of this function.

The group & decomposes intk simple groups of orda?, r'?, ... in each of which
S(x) decomposes intp identity matrices of" degree, and the elements,, of such a
matrix are mutually independent of the variables of therosimple groups. In my paper
“Uber die Darstellungen der endlichen Gruppen durch lme&ubstitutionen II,”
Sitzungsberichte, 1899, § 5, | derived the theorem:

II. If a and b are two well-defined quantities of a DEDEKIND group and if the
elementary invariants of the two matricgsi&— g and ue — b) agree then there is a
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qguantity ¢ in the group for whichS(c) | is non-zero, and which satisfies the condition
-1
c ac=h.

The determinant of a DEDEKIND group is:

v O() =[S0 [ = [T | =N @,

its trace is:

(2) O=T=rxy+rc+r'c+..=2ry,

SO one also has:

(3) P=Rs=rRy+r'Ry+r" Ry + ... =2 rRy.

The matrixR, has rank?, while from theorem II, § 6, the matnixR, + r' Ry + ... =
P—rR, hasrank’>+r"?+ ... =n — /. The determinantyP — rR | thus vanishes far
= 0, at least for order — P, for u = 1, at least of ordet, and since it does not vanish for
more tharr values, so one not only has:

(4) uP — 1R | =| P U™ (u-1),
but also that the elementary parts of this determiagatall linear (because they would
vanish to higher order for either= 0 oru = 1). Consequently, the matik=r P‘lRX

satisfies the equatidr? = H, so one has:

(5) RyP 'R, = e Ry.
r

If one then adds the factBy P to the left-hand side of (3) then one obtains:
0=r (RyPHRy +r" RyPHRy +...

and thus, from (4), 8 6:

(6) R,P'R, =0.
If the equations:
(7) ga = z paﬂ Xﬂ ’
B
exist betweené, ..., & andxy, ..., X, then | call the parameteér and the quantity

conjugate. One then has:
(8) Re= S P=PT, R.=PS=TP.

Thus, ifRs =R; thenS, = Ty, and a symmetric parameter is conjugate to an invariant
guantity, and conversely.

I will call the invariant quantitx = h that is conjugate to theharacteristic parameter
&= y acharacteristic quantityor the prime functiorb. One then has:
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9) Xa= D P,shy
g
and
(10) Ry=PS =PTh.

From (5) and (10), it follows tha% Sh) = h)? = gh?) and 0 =S(h) (h') = hH), hence
(Gr., 85, (9)):

(11) =1 h, hh =0
r
and from (3):
(12) e=rth+r'h+r"h+..=>rh,

such that parameterand the principal unié are conjugate. Furthermore, if:

rRyS =Ry, r Y 1) S(h) =rady).
A

If one multiplies this by, ez and sums ovesr andSthe one obtains (cf., DED. (13)):

(13) > xh =1, > X.h,=0,

or when one sets:
h(X) =hy x1 + ... +hy X,
one gets:

(14) x(th) =h(x) =1, x(h') =h(x) =0,
or finally, if P™ = Q = (qup):

(15) 2 Papha N =2 dap Xa X5 = 1, 2 Pap Mo 1= 2. Qap Xa X = 0-

§ 14.

Letus, ..., U be the characteristic roots @{x), and letvy, ..., v; those ofd(y). Then,
if g(u, v) is an entire function af andv then, from § 12, the characteristic roots of the
matrix g(Sc , Ty) are ther? quantitiesg(ua, vp) and ther'?, r"?, ... are quantities that are
obtained in the stated way.
1

r
X(X) = c. Therefore, from (13), § 13, the characterisgtedminant ofS, = T, equals

2

(u—ij u"" and the characteristic roots &X) — cE) T(h) = S(x — cdh) are all zero.

If x is an invariant quantity then, from the theorengeaf, one has; = ... =u,

r
Some power of this matrix then vanishes. HowesEGe it commutes with any group
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matrix Sy), from theorem Ill, 8 8 the elementary parts ofclkaracteristic determinant
are all linear. Thus, the first power vanishes, ancetbes:

(1) xh:ch:h%)((x).

If one then multiplies (12), § 13 lythen one obtains:
(2) x=rch+rch +r"'c'h"+ ... =h x(X) +h' ¥(X) +h" Y'(xX) + ...,

where the coefficients = x(x), r'c’ = ¥ (X), ... are ordinary quantities.

Thek quantitiesh, h', h", ..., which are linearly independent, from (5), § 6 or (&1),
13, thus define a complete system of solutions to therlgepaationsS(x) = T(x). Among
the n? equationssyA(X) = taX) thenn — k of them are independent. Now, when the
guantityx satisfies the equationgx) = ¥ (x) = ... = 0, as well, from (2), one has 0.

One can also see this as followsxyf= yx then, from (11), 8 4rx(xy) = x()x(y).
Thus, if ¥(X) = 0 then one also hggxy) =0 orZraﬂ()()xﬂ = 0. Ifthis is also true foy,

B

X', ... then this gives® + r'> + ... =nindependent linear equations, and therefgre0.

l.  Among the flinear functions g«x) — to4(x) of the n variablesix ..., X,, n — k of
them are independent. Together with the k funstigix), ¥ (x), .., they define n
independent functions. The k characteristic questih, b, ... define a complete system
of independent solutions of the equatioff$ = taAX).

Il. Among the linear functions,4&) — rz«(<é) of the n variablest, ..., &, n — k of
them are independent. Together with the k funstitid), h'(é), ..., they define n
independent functions. The k characteristic patansey, x, ... define a complete
system of independent solutions of the equatigé) = s $).

A special case of this theorem is the elegantrmom that MOLIEN gave in theorems
9 and 10, § 3 for the simplicity of a group. Anynple group is, from 8§ 10, a
DEDEKIND group, and in order for it to be simplestnecessary and sufficient that
1.

lll. In order for a group to be simple, it is necessamnyd sufficient that the

Z UK akaﬂ
K

determinant of #i degree be non-zero, and thd = oy is the only solution to

the linear equations:
z(a/mﬂ - akﬂa)fk = O

Furthermore:
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IV.In order for a group to be simple, it is necessary and sufficieat the

determinant of nth degr%{ 0,35 be non-zero and thatyx e, is the only solution of

the linear equations:
z(amﬂ _aam)xa =0.
A

The fact that any theorem appears in two formsitedsasis in the fact that the group
itself can be presented in tweonjugateforms. If the parametei§ 77, { are conjugate to
the quantities, y, zthen let:

F(&Y, 2 =G(X Y, ) =2 bagyXa 15y -
One then has:

(3) Aapy = zbﬁm By, = zbym Pis -
y y

The group £ goes to an equivalent grou@)under this transformation, namely, the

conjugategroup. If one appeals to the relations (4), 8rthis then, as long as one sets
C =P in each formula, this yields:

4 R=TP, R =SP, S=RP, T.=RP.

Furthermoreg, =e,. Just as one se&, = bgg,, One sety, ;= gqs. One then has
Qo = 2 €« bkap , @and therefore:

z PoaUip = z Poa € b(w = zekaﬁka =€ap,
A K,A K
soQ =P . Consequently, the conjugate group(®J is again the original group:

(5) Dag, = zaﬂ/laq/iy = 2 b Qg
y

§ 15.

In 8§ 6, (5) it was shown that thkefunctionsx(x), x’ (x), ... are linearly independent.
From theorem |, 8§ 14, this is also still true wheaioes not vary without restrictions, but
only runs through the invariant quantities @f.( This defines a subgroug)(of (&),
whose order ik (in general, not an invariant subgroup). One skadbe basic numbers
M, N2, ..., Nk of (1) to be th&k quantitiegh, r'h’, ... One then has:

2

1) nZ=ne,  Nm=0.
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Consequently, ) is a DEDEKIND commutative group whose determinant equals
|_| E)((x), as long as the quantities, ..., 7k are expressed in terms of the ..., &. In
r

fact, thesek linear factors, in which the variability of the cooralies is restricted by the
conditionss,AX) = tyAX), are linearly independent.

I. If kis the number of different prime factors of the determinaat BEDEKIND
group then its invariant quantities define a commutative group of order khwhi

likewise a DEDEKIND group. Its determinantﬁ E)((x), while the determinant of the
r

given group is equal t(ﬂ (%){(x)j for an invariant variable x.

If the degree =r' = ... = 1 therk = n, so, from theorem I, § 12, one hag(x) =
tai(X), aqpy = aagyp , identically.

II. The determinant of a DEDEKIND group always decomposes when the group is
commutative, but only into nothing but linear factors.

In order for the determinant of an arbitrary group to deus®a into nothing but
linear factors, from theorem II, 8§ 12, it is necessamgl sufficient that the DEDEKIND
group of ordem =Y r? that it is homomorphic to possess this property, arfteigfore a
commutative group. One will obtain the same thing whee @troduces them

independent variables among t’rnéunctionsz P.sts as coordinates of a quantity If
B

one then sets = yz then these bilinear functions ¢f, ..., yn, z, ..., Z, must remain
unchanged under exchangey@indz. If x is a third variable then one has the function:

z PopXs s = o(xt) = a(xy2
a.p

have the same property. From § 6, this always remaiasutider a cyclic permutation of
X, Y, z, and thus, under any permutation, in the case considdtad.the trace of the

matrix Sxy2 = SX) Sy) 2, so it equals:

(2) axy2 =2 5, (0 5, (Y $( ¥= Z Qiau 8upc Bt Xa Yp 2.

KA U

If one employs the antistrophic group th&€ry2 appears in place a@i(xy?. Thus, yields
the theorem (cf., CARTANI. These, Sur la structure des groupes de transitioms
finis et continusParis, 1894, pp. 48, (5)):

[ll. In order for the determinant of a group to be deposable into nothing but
linear factors, it is necessary and sufficient tha trilinear functions &xy2 (or t(xy2)
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remains unchanged under permutation of y and z, so it is a symmetriofunttihe
three sequences of variables, such that the expression:

(3) z a/iap qzﬂ/( Q(y/l or z a/l,ua qu(ﬂ Q(/iy

KA KA
also remains unchanged under a transpositiom,g, ).

Sinces(xy2 is also the trace &(x) Sy2), in place of the sums (3), one can also take
the expressions:
(4) z a;d,uqzm( a/lﬂy or z aK/l,uaﬂka apﬂy '

KA U KA U

By means of the formulas (1) and (2), 8 7, one finalbamis the expressions:

Y. BanBiauBpy OF D B By By

(5) KA KA
D BB O D & B B
K AU KAp

The decomposition of the determinant of a DEDEKIND group its prime factors
may be performed with the help of the theorem aboVee linear equations,sx) —
tsgX) = 0 havek independent solutions. One know poses the quadratic equations
between the unknowng, X2, ..., Xn, which are obtained from:

(6) X(X) x(y) = x(&) x(xy),

when one replaceswith a sequence of arkysolutions andy, with then basic numbers.
In combination with the linear equationgs(x) = rz(X) the deliverk different systems of
values for the ratiogi, x2, ..., Yn. One chooses the constant factor in such a waytha
Jag Xa Xp= 1 andX. x, €, is positive. It will then be equal to a positiveaid numberr,
which is the degree of the prime functiénthat is determined from the characteristic
parameteyy.

One denote& independent solutions of the equati®agx) = toAX) by g, d', ... or
also bymi, 2, ..., k. They define the basis for a commutative DEDEKIND grotip

orderk, so one hags 7, = anﬂﬂa , Wherecqp,= Cqyp. Its determinant is a product lof
a

independent linear factors, and when the basis, ..., & is again introduced it goes to
M ¢UX), where¢AX) =2 Wq Xa. Sinceyn, s, ..., ¢ include an arbitrary constant factor,
one then determines the ratios of the unknoying:, ..., x» from the linear equations:

raflX) —Tp(X) =0, 90 =9(¥), g =d(D, ...

and from them, the arbitrary values, as before.
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§ 16.

If Ey, Es, ..., E, aren matrices ofm" degree that satisfy the conditions:
(1) EsE,= D a,E,

then they define aepresentatiorof the group £). If thesen matrices are not linearly
independent (by comparison, cf., MOL., pp. 126, conditiondr) they represent a group
that is homomaorphic tag].
Thus, if:
(2) Q(K/l) = Z Xa E,B
then, wherx =yz one has:
(Xk) = (Vi) (Zea)-

Therefore, | call the matrix (2) aarssociated matrixo the group ). If its determinant is
non-zero then from (1), 8 4:

(3) X1 | =11 D(%)°

is a product of prime factors of the group determir@nt

If Cis a constant matrix af™ degree whose determinant is non-zero thennthe
matricesC™E;C, C'E,C, ..., C'E.C also define a representation &f that is said to be
equivalentto the first one. If one cannot chodSan such a way that thesematrices

assume the form:
E O E, O E O
e” E) & E) T EY E

then | will call the representatioprimitive or irreducible, when this is possible, and
otherwise, | call itimprimitive or reducible, and wherE®, ..., E® = 0, as well,
decomposedr decomposable.

The methods that | developed in my paper “Uber die tBusag der endlichen
Gruppen durch lineare Substitutionen, II,” Sitzungsberichte, 1889, be immediately
carried over to the arbitrary DEDEKIND groups (with theodification that was
suggested at the end of § 3).

Ther? linear functions ok, ..., x, that | denoted by, in § 11, defined a matrix of
r'™ degree that is associated with the grogpafid whose determinani}; | = ®(x). |
denote the corresponding representationgpbf [®]. The k different representations
thus obtained that correspond to then prime factorseoftoup determina® constitute
all of the primitive representations of the grodp (

A representation that is equivalent to the representé®) then decomposes info
primitive representationsd |, s representationsi{], etc. The coefficient af™* in the
determinant X« + v €, |, hamely:

#(x) =2 s x(x),
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is called thetrace of the representation (2). In order for two represt@nts of a
DEDEKIND group to be equivalent, it is necessary andaafit that their traces agree.



