
“Theorie der hypercomplexen Größen,” Sitz. Kön. Preuss. Akad. Wiss. (1903), 504-537; Gesammelte 
Abhandlungen, art. 70, pp. 284-317. 
 
 

Theory of hypercomplex quantities. 
 

By G. FROBENIUS. 
 
 

Translated by: D. H. Delphenich 
 

(Received on 16 April [cf. supra, pp. 433].) 
______ 

 
 
 The methods that I developed in my paper “Über die Primfactoren der 
Gruppendeterminante,” Sitzungsberichte 1896 (cited as Gr. in the sequel) in the course of 
researching the properties of the determinant of a finite group, I also arrive at the 
examination of an arbitrary system of hypercomplex quantities in n basis numbers.  
MOLIEN concerned himself with such quantities in his ground-breaking treatise “Über 
Systeme höhere complexer Zahlen.” Math. Ann, Bd. 41 (cited as MOL. in the sequel). 
 An understanding of his paper is impeded somewhat by the fact that he passed over 
the possibility of doing the calculations and sought to present the content of the proof 
abstractly.  Thus, it is not clear to me whether the tools that he developed succeed in 
obtaining a rigorous proof of theorem 25.  Conversely, in § 5, he introduced a fallacy that 
appeared in a Notice in volume 42 of Math. Ann. in the course of a truly circuitous 
calculation.  When I employed a linear combination S(x) + T(y) of the matrices in 
different variables from the two antistrophic groups, in place of the equation that he 
called the KILLING equation, I arrive at precisely this proof, although simplified 
substantially. 
 However, as I have briefly remarked (on pp. 408 of this volume), in addition, there 
was a not-inessential gap in his proof of theorem 19.  Nonetheless, if one ignores this 
minor shortcoming then his trailblazing, thought-provoking paper, which he followed 
through on with unrelenting persistence and pervasive ingenuity, in spite of a rather 
incomplete skill set, defines one of the most important advances in the domain of algebra 
that one refers to as group theory.  On the basis of the comments that I just made, I regard 
it as appropriate to take up the investigation anew with the tools that I, in fact, developed 
in my paper “Über vertauschbare Matrizen,” Sitzungsberichte, 1896. 
 The methods of LIE will not be used at all in this purely algebraic study.  By 
comparison, my presentation has many points of contact with that of DEDEKIND in his 
treatise “Zur Theorie der us n Haupteinheiten gebildeten complexen Grössen,” Göttinger 
Nachrichten, 1885 (cited as DED. in the sequel). 
 The basis for my investigation is defined by formula (2), § 5.  With its help, I show 
directly in § 6 that the variables that appear in the various prime factors of the group 
determinant are all mutually independent, and thus circumvent theorems 3, 4, and 5 of 
MOLIEN, as well as the proof of theorem 25.  With the same formula, I prove in § 7 that 
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the elementary parts of the determinant of a simple group are all linear.  The entire 
development rests upon these two results. 
 For the classification of groups, for which only inadequate Ansätze have been made 
heretofore, nothing less than the exponents and degrees of the elementary parts into 
which the determinants of the two antistrophic groups decompose prove to be the most 
suitable invariants, and moreover, they are the most suitable numbers for the − up till 
now scarcely noticed − parastrophic matrix R(ξ), especially the rank of R(σ) (§ 9).  
However, for non-commutative groups, above all, the elementary invariants relate to the 
matrix uR(ξ) + vR′(η), and the matrices S(x) + T(y) and R(ξ) + R′(η), which depend upon 
2n variables, and indeed these invariants are meaningful when perhaps the determinants 
of R(x) or R(ξ) + R′(η) vanish identically. 
 It was only after completing this examination that the excellent treatise of CARTAN, 
“Sur les groupes bilinéaires er les systèmes de nombres complexes,” Ann. de Toulouse, 
tome XII, 1898, was brought to my attention, in which he derived the result of MOLIEN, 
but without knowing of that paper, it seems.  The path that was followed by CARTAN 
has very little in common with that method or the one employed here.  The 
transformation of the basis, which is the starting point and final objective of his 
investigation, is, in my opinion, to be avoided as much as possible (§ 9).  For him, the 
properties that are invariant of any representation of the group that I begin with only take 
on the meaning of a normal form for the group at the conclusion that is obtained by a 
long series of conversions whose purpose is first made clear at the end of the argument.  
The difference between the two methods is thus the same as the one between the 
procedures of WEIERSTRASS and KRONECKER in the theory of families of bilinear 
forms.  I have obtained (§ 12, (5)) an especially noteworthy formula of CARTAN (§ 65, 
(37)) that was not found by MOLIEN in the simplest way by the decomposition of the 
determinant | S(x) + T(y) | into prime factors. 
 
 

§ 1. 
 

 The coordinates x1, x2, …, xn of the of the hypercomplex quantities: 
 
(1)     x = ε1 x1 + ε2 x2 + … + εn xn , 
 
which are formed from the n basic numbers ε1 , ε2 , …, εn , can all assume real or complex 
values.  The totality of these quantities, which reproduces the addition and multiplication 
of ordinary quantities, I call a group (ε), when, in addition, the product of any two of 
them again belongs to the system, and the associative law (xy)z = x(yz) is valid for any 
three of them. 
 The basic numbers can be coupled to each other by linear relations.  I call the number 
of independent ones among them the order of the group.  One can easily reduce this case 
to the one where the basic numbers are independent.  I therefore assume that n is the 
order of the group (ε) considered. 
 If the multiplication of basic numbers results from the rule: 
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(2)      εβ εγ  = aαβγ α
α

ε∑  

 
then this implies the following relations between the coefficients that appear: 
 
(3)     a aκαβ γκδ

κ
∑ v = a aκβ γακ

κ
∑ , 

 
which follow from the associative principle and the independence of the basic numbers. 
 Then, if x = yz is the product of the two quantities: 
 

y = yλ λε∑ ,  z = zλ λε∑ , 

then one has: 
(4)      xα = 

,

a y zαβγ β γ
β γ
∑ , 

 
or, when ξ1, ξ2, …, ξn are variable, whose system I denote by x and call a parameter: 
 
(5)    ξ(x) = x(ξ) = xα α

α
ξ∑ = F(ξ, y, z) =

, ,

a y zαβγ α β γ
α β γ

ξ∑ . 

If one sets: 
(6)    rαβ(ξ) = aκαβ κ

κ
ξ∑ , sαβ(y) = a yακβ κ

κ
∑ , tαβ(z) = a zαβκ κ

κ
∑ , 

so: 

sαβ(y) = 
x

z
α

β

∂
∂

,  tαβ(z) = 
x

y
α

β

∂
∂

, 

 
then the trilinear form becomes: 
 
(7)   F(ξ, y, z) = ( )r y zβγ β γξ∑ = ( )s y zαγ α γξ∑ = ( )t z yαβ α βξ∑ . 

 
 If denote the matrices of nth degree that are defined by any three systems of linear 
functions by: 
 

R(ξ) = Rξ = (rαβ(ξ)), S(y) = Sy = (sαβ(y)), T(z) = Tz = (tαβ(z)). 
 

 By f(x), I always understand this to mean a function of the coordinates x1, x2, …, xn of 
the quantity x, and by S(x) or Sx, a matrix whose elements are (linear) functions of these 
coordinates.  When I am dealing with a function of the hypercomplex quantity x itself, I 
will employ the symbol f((x)). 
 The conditions (3) for the associative principle are more conveniently discussed when 
one combines them in such a way that one multiplies and adds them with variables.  If x 
and y are two arbitrary quantities, one then obtains (DED. (36)): 
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(8)     ( ) ( )s x t yαλ λβ
λ
∑  = ( ) ( )t y s xαλ λβ

λ
∑ , 

or, more simply: 
(9)      Sx Ty = Ty Sx , 
and: 
(10)    ( ) ( )r s xαλ λβ

λ
ξ∑ = ( ) ( )t x rλα λβ

λ
ξ∑ , 

or, more simply: 
(11)     Rξ Sx = xT′ Rξ , 
 
where T′ is the matrix conjugate to T. 
 I call S(x) and | S(x) | the group matrix and group determinant, resp., T(x) and | T(x) |, 
the antistrophic group matrix and group determinant, resp., and R(ξ) and | R(ξ) |, the 
parastrophic matrix and determinant, resp.  The theorem that is included in formula (9), 
along with its converse, may be expressed in the following way: 
 
 The group matrix S(x) commutes with the antistrophic matrix T(y).  If the 
parastrophic determinant does not vanish identically then one may bring it into the form 
T(y) (S(y)) for any value of x that makes S(x) (T(y)) commute. 
 
 Therefore, let the parameter x be chosen in such a way that the determinant of the 
matrix R(ξ) = R = (rαβ) does not vanish and let U = (uαβ) be any matrix of nth degree that 
is independent of x, and which commutes S(x) with x.  One can then determine y in such a 
way that for λ = 1, 2, …, n, one has (from (7)): 
 

uκ κλ
κ

ξ∑ = r yλβ β
β
∑ = ( )t yα αλξ∑ . 

 
Now, one has SU = US, so: 

( )s x uαλ χβ
λ
∑ = ( )u s xαλ λβ

λ
∑ , 

and with this: 

,

( )s x uκ κλ λβ
κ λ

ξ∑  = ∑ ξκ uκλ sλβ(x) = ∑ ξκ tκλ(y) sλβ(x), 

so from (8): 

,

( )s x uκ κλ λβ
κ λ

ξ∑ = ∑ ξκ sκλ(x) tλβ(y). 

Now, from (7), however: 

,

( )s xκ κλ
κ λ

ξ∑ = r xαλ α
α
∑ . 

 
If one inserts this then by comparing the coefficients of xα this yields: 
 

r uαλ λβ
λ
∑ = ( )r t yαλ λβ

λ
∑ , 
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and with this, because | R | is non-zero uαβ = tαβ(y), U = T(y). 
 In particular, if U = E = (eαβ) is the principal matrix then one can determine a 
quantity y = e such that T(e) = E (DED. (44)).  This quantity: 
 
(12)     e = ε1 e1 + ε2 e2 + … + εn en , 
 
is called the principal unit.  Its coordinates satisfy the conditions: 
 
(13)     sαβ(e) = tαβ(e) = eαβ , 
or: 
(14)    a eαλβ λ

λ
∑ = eαβ ,  a eαβκ κ

κ
∑ = eαβ  . 

 
 Thus, if S(x) = S(y) or T(x) = T(y) or S(x) = T(y) then one has x = y; if R(ξ) = R(η) or 
R(ξ) = R(η) then ξ = η. 
 

§ 2. 
 

 If x = yz, so: 
(1)    xκ = 

,

a y zµλκ λ µ
λ µ
∑  = ( )s y zακ κ

κ
∑ = ( )t z yακ κ

κ
∑ , 

then one has: 
 

sαβ(x) = a xακβ κ
κ
∑ =

, ,

a a y zακβ κλµ λ µ
κ λ µ
∑  = 

, ,

a a y zαλκ κµβ λ µ
κ λ µ
∑  = ( ) ( )s y s zακ κβ

κ
∑  

and: 
tαβ(x) = a xαβκ κ

κ
∑ =

, ,

a a y zαβλ κλµ λ µ
κ λ µ
∑  = 

, ,

a a y zακµ κβλ λ µ
κ λ µ
∑  = ( ) ( )t z t yακ κβ

κ
∑ . 

 
 I denote by f(yz) or S(yz) the result of substituting the coordinates (1) of the product yz 
for the n variables xκ in f(x) or S(x).  One then obtains: 
 
(2)    S(yz) = S(y) S(z), T(yz) = T(z) T(y). 
 
 If S(x) = x1 E1 + x2 E2 + … + xn En then it follows that: 
 
(3)      Eβ Eγ = a Eαβγ α

α
∑ , 

 
and since S(x) = 0 only when x = 0, the n constant matrices E1, E2, …, En  are linearly 
independent.  They therefore define a representation (cf., § 16) of the group (ε) and from 
this it follows that the assumption of the independence of the basic numbers is consistent 
with the quadratic equations (2), § 1, whose coefficients satisfy equations (3), § 1 and the 
inequalities (1), § 3 or that no linear relations between the basic numbers can come out of 
these conditions.  It is first on the basis of this certainty that proofs are admissible, such 
as for formula (3), § 3, in which the hypercomplex numbers themselves are employed. 
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 Furthermore, if T(x) = x1 F1 + x2 F2 + … + xn Fn  then one has: 
 
(4)      Fβ Fγ  = a Fαγβ α

α
∑ . 

 
Since the associative law is valid, the matrices F1, F2, …, Fn define the basis for a group 
– the antistrophic group (ε′).  Another representation of (ε) is given by the matrix T′ that 
is conjugate to T.  One can thus also refer to T′ as the matrix of the group (ε) and S′ as 
that of the antistrophic group (ε′). 
 If z is a parameter, and one sets: 
 
(5′)    ζα = 

,

a yκλα κ λ
κ λ

ξ∑ = ( )r yλα λ
λ

ξ∑ = ( )s yκα κ
κ

ξ∑ , 

 
then one will have: 

rαβ(ζ) = aµαβ µ
µ

ζ∑ =
,

( )s y aκ κµ µαβ
κ µ

ξ∑ . 

 
This is the coefficient of zβ in: 
 

( )r zαβ β
β

ζ∑ = 
,

( ) ( )s y t zκ κµ µα
κ µ

ξ∑  = 
,

( ) ( )t z s yκ κµ µα
κ µ

ξ∑ =
,

( ) ( )s y r zµα µβ β
µ β

ξ∑ . 

 
Therefore: 
(5)      rαβ(ζ) = ( ) ( )s y rµα µβ

µ
ξ∑ , 

or: 
(5)      R(ζ) = S′(y) R(ξ). 
Finally, if one sets: 
(6*)   ηλ = 

,

a zκλµ κ µ
κ µ

ξ∑  = ( )r zλµ µ
µ

ξ∑  = ( )t zµλ µ
µ

ξ∑  

then one will have: 
rαβ(η) = aλαβ λ

λ
η∑ = 

,

( )t z aκ κλ λαβ
κ λ

ξ∑  

and therefore: 
 

( )r yαβ α
α

η∑ = 
,

( ) ( )t z s yκ κλ λβ
κ λ

ξ∑  = 
,

( ) ( )s y t zµ µλ λβ
µ λ

ξ∑  = 
,

( ) ( )r t z yαλ λβ α
α λ

ξ∑ , 

 
from which: 
(6)      rαβ(η) = ( ) ( )r t zαλ λβ

λ
ξ∑  

or: 
(6)      R(η) = R(ξ) T(z). 
 
With a suitable change in the notation, this implies: 
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 If the parastrophic determinant does not vanish identically and the determinant of the 
matrix Rζ = R = (rαβ) is non-zero for the value ζ of the parameter then Rξ  goes to RTx 
under the substitution ξα = r xαβ β

β
∑ , and to xS R′  under the conjugate substitution ξβ 

= r xαβ α
α
∑ . 

 Under any condition, the group determinant of the antistrophic group determinant is 
identically equal, and up to the factor [R], it is also equal to the function in which the 
parastrophic determinant goes to under either of the two conjugate substitutions; all 
three determinants coincide in their elementary parts. 
 
 If ξ, η, ζ, τ are arbitrary parameters then it follows from (9), § 2 that 1R Rτ ξ

−  

commutes with 1R Rτ ζ
−′ ′  or that the matrix 1 1R R R Rζ τ η ξ

− −′ ′  is independent of ζ. 

 
§ 3. 

 
 If | R(x) | does not vanish identically then neither of the two determinants | S(x) | or | 
T(x) | vanishes identically, either, and there is a number e for which one has S(e) = T(e) = 
E.  However, when | R(x) | = 0 identically I add the further assumption, that neither of the 
two determinants: 
(1)      | S(x) |,  | T(x) | 
 
is identically zero.  If one chooses z such that | S(z) | and | T(z) | are both non-zero then 
one can (cf., e.g., MOL., theorem 1), because | S(z) | is non-zero, determine a number e 
that satisfies the equations ze = z.  Furthermore, if x is an arbitrary quantity then one can, 
because | T(z) | is non-zero, determine y such that zy = x.  One then also has xe = x and zex 
= zx, so since | S(z) | is non-zero, ex = x.  Since, furthermore, from (2), § 2, S(z) = S(z) 
S(e) and T(z) = T(e) T(z), one has S(e) = T(e) = E. 
 The theorem of § 1 remains correct when either | S(x) | or | T(x) | vanishes identically, 
and also when | R(ξ) | = 0 identically.  If one then sets u eαµ µ

µ
∑ = yα then one has: 

 

,

( )u s x eαβ βµ µ
β µ
∑ = 

,

( )s x u eαγ γµ µ
γ µ
∑ , 

so: 
u xαβ β

β
∑ = ( )s x yαγ γ

γ
∑ = ( )t y xαβ β

β
∑ , 

 
and therefore uαβ = tαβ(y). 
 If | S(x) | is non-zero for a certain quantity x then one can determine y in such a way 
that xy = e.  Then, from (2), § 2, T(y)T(x) = T(e) = E.  Thus, | S(x) | is non-zero for the 
value x and so is | T(x) |, and conversely.  Therefore, if | S(x) | = 0 then so is | T(x) | = 0.  
Any prime factor Φ(x) of the group determinant | S(x) | is therefore also included in the 
antistrophic determinant | T(x) |, and conversely.  Precisely the same factors Φ(x) appear 
in the two decompositions: 
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(2)     | S(x) | = Π Φ(x)s, | T(x) | = Π Φ(x)t, 
 
so the exponents s and t can be different, but only when | R(ξ) | = 0 identically. 
 The simplest example of this possibility, as MOLIEN has communicated to me, is 
provided by the only non-commutative group of order n = 3, for which one has: 
 

x1 = y1 z1, x2 = y2 z2, x3 = y1 z3 + y3 z2 . 
Therefore: 

R(ξ) = 
1 3

2

3

0

0 0

0 0

ξ ξ
ξ
ξ

 
 
 
 
 

, S(y) = 
1

2

3 1

0 0

0 0

0

y

y

y y

 
 
 
 
 

, T(z) = 
1

2

3 2

0 0

0 0

0

z

z

z z

 
 
 
 
 

, 

 
so, when decomposed into elementary parts: 
 

| S(x) | = x1 x1 x2 ,   | T(x) | = x1 x2 x2 ,   | u R(ξ) + vR′(ξ) | = − (ξ1 + ξ2) 
2
3ξ  u v (u + v). 

 
From equation (2), § 2 it then follows by a repeated application: 
 

xSκ = S(xκ), xTκ = T(xk). 

 
By u, v, w, I intend this to always mean ordinary (not hypercomplex) quantities here.  If 
g(u) is an entire function of the variables u, so g((x)) is an entire function of the 
hypercomplex quantity x itself then one must have: 
 
(3)     g(Sx) = S(g((x)), g(Tx) = T(g((x)). 
 
Therefore, if one of the expressions g((x)), g(Sx), or g(Tx) vanishes for all x then the other 
two vanish, as well (MOL., § 4).  The equation g(S) = 0 of the lowest degree that a matrix 
Sx = S satisfies will be called its reduced equation.  One obtains the function g(u) when 
one divides the characteristic determinant of S, which is the determinant of the matrix: 
 
(4)      u E – S(x) = S(ue – x), 
 
by the greatest common divisor of its subdeterminants of (n − 1)th degree.  From (3), S 
and T satisfy the same reduced equation g(S) = 0 and g(T) = 0, and this is likewise the 
equation g((x)) = 0 of lowest degree that a variable quantity x satisfies.  Thus, while the 
determinants of the two antistrophic groups can be different, their first elementary parts 
always coincide. 
 The reduced function g(u) vanishes for any of the characteristic roots of S, which are 
roots of the characteristic equation | uE – S | = 0.  We have thus proved once more that 
the two antistrophic group determinants include precisely the same prime factors. 
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§ 4. 
 

 If Θ(x) = | S(x) | is the group determinant then from (2), § 2, Θ(yz) = Θ(y) Θ(z).  In 
any prime factor Φ(x) of Θ(x), I imagine that the constant factor has been chosen in such 
a way that Φ(e) = 1.  Then, if Φ(x) is such a factor or a product of several of them then 
one also has: 
(1)      Φ(yz) = Φ(y) Φ(z). 
 
Conversely, any homogeneous function Φ(x) that possesses this property is a product of 
prime factors of Θ(x) (Gr., § 1).  If one then determines y such that xy = Θ(x) e then y1, 
y2, …, yn will be found from n linear equations with the determinant Θ(x), and are thus 
entire functions of x1, x2, …, xn .  If r is the degree of Φ(x) then, from (1), one has: 
 

Φ(x) Φ(y) = Θ(x)r. 
 

 I call the roots u1, u2, …, un of the equation Φ(ue – x) = 0 the characteristic roots of 
Φ(x).  One then has: 
 
(2)  Φ(ue – x) = ur – Φ1(x) ur−1 + Φ2(x) ur−2 − … ± Φr(x) – (u – u1) (u – u2) … (u – ur). 
 
 I call the sum of r roots, Φ1(x) or: 
 
(3)     u1 + u2 + … + ur = χ(x) = xα α

α
χ∑ , 

 
the trace of Φ(x).  The function Φ(x) is determined completely by its system of n 
coefficients, which I likewise denote by ca and call the characteristic parameters of Φ(x) 
(MOL., § 3, Gr., § 3).   One then has that: 
 

g(u) = a(u + v1) (u + v2) … (u + vm) 
 

is an entire function of u, so: 
 

g = g((x)) = a(x + v1 e) (x + v2 e) … (x + vm e) 
 
is, as well, and from (1), so is: 
 

Φ(y) = ar Φ(x + v1 e) Φ(x + v2 e) … Φ(x + vm e). 
If one sets: 

Φ(x + v e) = (u1 + v) (u2 + v) … (ur + v) 
then one obtains: 

Φ(y) = g(u1) g(u2) … g(ur). 
 

If one now replaces g(u) with g(u) – v then one sees that g(u1), g(u2), … g(ur) are the 
characteristic roots of Φ(y).  Therefore: 
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(4)     χ(g((x))) = g(u1) + g(u2) + … + g(ur) 
and especially: 
(5)     χ(xκ) = 1 2 ru u uκ κ κ+ + +⋯ , 

so for χ = 0: 
(6)      r = χ(e) = eα α

α
χ∑ . 

 
 From the well-known relations between the coefficients of an equation and the power 
series of its roots then the prime functions of first degree are then: 
 
(7)    χ(x) χ(y) – χ(xy) = 0,  χβ χγ = aαβγ α

α
χ∑  

 
identically, and for second degree they are: 
 
(8)   χ(x)χ(y)χ(z) −χ(x)χ(yz) −χ(y)χ(zx) −χ(y)χ(yz) +χ(xyz) + χ(xzy) = 0. 
 
I set down the general law for the definition of these equations in Gr. § 3. 
 In particular, the number of different linear prime functions is equal to the number of 
solutions of equations (2), § 1 in ordinary numbers (DED. (19)).  As I will show in § 6, 
these solutions are all linearly independent. 
 If Θ(x) is non-zero for a certain value x then, from (1), § 4, one has: 
 

Φ(x−1yz + ue) = Φ(x−1) Φ(y + ue) Φ(x) = Φ(y + ue) 
 
and thus χ(x−1yz) = χ(y), or, when one replaces y with xy (MOL., theorem 14: Gr., 3 
(13)): 
(9)      χ(xy) = χ(yx). 
 
The matrix of this symmetric bilinear form F(χ, x, y) is: 
 
(10)     Rκ =Rκ′ . 

 
 One then calls ξ a symmetric parameter when it satisfies the equations rαβ(ξ) = rβα(ξ) 
or Rξ =Rξ′  then χ is then such a parameter. 

 A quantity x is called an invariant quantity of the group (ε) when it commutes with 
any quantity y of that group xy = yx.  Therefore: 
 

a xαβγ γ
γ
∑ = a xαγβ γ

γ
∑   or tαβ(x) = sαβ(x). 

 
Conversely, if the variability of x is restricted by the equation S(x) = T(x) then x is an 
invariant quantity of (ε). 
 From (14), § 1, the general equation S(x) = T(y) or: 



Frobenius:  Theory of hypercomplex quantities.                                                 11 

x1E1 + … + xn En = y1 F1 + … + yn Fn  
 

can exist only when x = y is an invariant quantity.  The group that is defined by the 
invariant quantities is then the greatest common divisor of the two antistrophic groups (3) 
and (4), § 2. 
 If y varies without restriction, but x is an invariant variable then S(x) = T(y) commutes 
with S(y) and thus the characteristic roots u1, u2, … of the matrix S(x) can be associated 
with the characteristic roots v1, v2, … of the matrix S(y) in such a way that u1v1, u2 v2 , … 
are the characteristic roots of S(x) S(y) = S(xy).  Thus, one also has: 
 

Φ(ue – xy) = (u – u1y1) (u – u2 y2) …(u – ur yr), 
 
where u1, u2, …, ur depend upon only x and v1, v2, …, vr, upon only y.  If one sets y = e 
then one sees that u1, u2, …, ur are the characteristics roots of Φ(x), and if one sets x = e 
then v1, v2, …, vr are those of Φ(y). 
 For the determination of the way that these roots are associated with each other in the 
aforementioned decomposition, I restrict myself to the case where Φ(y) is a prime 
function.  Φ(uv – y) is then irreducible as a function of u; i.e., it cannot be represented as 
a product of entire functions of u whose coefficients are rational functions of the u 
unrestricted variable quantities y1, y2, …, yr .  Since u1 is independent of them, the 
function Φ(ue – u1y) of the variables u is then irreducible in the same sense.  The function 
Φ(ue – xy) has the factor u – u1 e1 in common with it, and as a result, one has Φ(ue – xy) 
= Φ(ue – u1 y).  With this, one has χ(xy) = u1χ(y), so for y = e, one has c(x) = ru1 .  If one 
sets u = 0, y = e then one will have Φ(x) = 1

ru .  Then, from the theorem of (Gr., § 6): 

 
 If χ(x) is the trace of the prime factor of rth degree Φ(x) of the group determinant, and 
y is an unrestricted variable quantity, but x is an invariant quantity, then: 
 
(11)    χ(x)χ(y) = v χ(xy) = χ(v)χ(xy), 
and: 

(12)   Φ(x) = 
1

( )
r

x
r

χ 
 
 

,  Φ(ue – x) = 
1

( )
r

u x
r

χ − 
 

 

 
is the rth power of a linear function and the r characteristic roots of Φ(x) are all equal to 
1

( )x
r

χ . 

 
§ 5. 

 
 If t = xy then t + ux = x(y + ue), and as a result, if Φ(x) is a factor of a power of Θ(x) 
then Φ(t + ux) = Φ(x) Φ(y + ue).  If one compares the coefficients of ur−1 in this then one 
obtains: 

( )x
t

x α
α α

∂Φ
∂∑ = Φ(x)χ(y), 
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so because one has tα = ( )s x yαβ β
α
∑ : 

( )x
s

x αβ
α α

∂Φ
∂∑ = Φ(x)χβ . 

 
In this way, and through the decomposition yx + ux = (y + ue) x, one obtains (Gr., § 5, 
(3)): 

(1)    
( )

( )
x

s x
x κα

κ κ

∂Φ
∂∑ = 

( )
( )

x
t x

x κα
κ κ

∂Φ
∂∑  = Φ(x)χα  . 

 
If one then sets ξχ = ∂Φ / ∂xκ in formula (5′), § 2 then one will have ζµ = Φχµ , and from 
(5) and (6), § 2, one therefore (Gr., §, (1)) has: 
 

(2)    S′(x) R
x

∂Φ 
 ∂ 

 = R
x

∂Φ 
 ∂ 

 T(x) = Φ(x) R(χ), 

where the matrix is: 

R
x

∂Φ 
 ∂ 

 = a
xκµβ

κ κ

 ∂Φ
 ∂ 
∑ . 

If this goes to: 
R1 u

r−1 + R2 u
 r−2 + … + R 

 
when one replaces x with ue – x then, from (2), § 4: 
 

(R1 u
r−1 + R2 u

 r−2 + … + R) (Eu – T) = Rχ(u
r – Φ1 u

r−1 + Φ2 u
r−2 − …± Φx). 

 
If one compares the coefficients of ur, ur−1, …, u0 then one obtains r + 1 equations.  If one 
multiplies them on the right by T r, T r−1, …, T0 and adds them then this gives (Gr., § 4, 
(5)): 
(3)     Rχ(u

r – Φ1 u
r−1 + Φ2 u

r−2 − …± Φx) = 0 
or, more simply: 

Rχ Φ(xE – eT) = 0. 
 

In the same way, one obtains Φ(xE – eS′ ) Rχ = 0, so when one takes the conjugate 
matrices, from (10), § 4: 
 
(3)    Rχ Φ(xE – eS) = 0,  Rχ Φ(xE – eT) = 0. 
 

From (3), § 3, one can also write S(Φ(x – ((x) e)) for Φ(xE – eS), i.e., S(y), where y = 

g((x)) and g(u) = Φ(x – ue). 
 One also arrives at formula (2), upon which the following development essentially 
rests, when one sets t = xyz (or yzx), and compares the coefficients of yα zβ in the equation 
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( )x
t

x κ
κ κ

∂Φ
∂∑ = Φ(x) χ(yz), 

from which: 

tκ = ∑ aκλµ xκ aναβ yα zβ , χ(yz) = ∑ rαβ(χ) yα zβ  . 
 
 

§ 6. 
 

 I will call the smallest number of independent linear couplings between the variables 
by which a function or a system of functions can be expressed its linear rank, or also just 
its rank, as long as this will not be confused with the concept of the rank of a determinant 
or matrix.  The linear rank m of a quadratic function: 
 
(1)    

,

( )r x xαβ α β
α β

χ∑ = F(χ, x, x) = χ(x2) = 2
1Φ  − 2Φ2 

 
is equal to the rank of the symmetric matrix Rχ that is defined by its coefficients, and 
equal to the linear rank of the system of n linear functions: 
 
(2)      ( )r xαβ β

β
χ∑  

 
which are one-half the derivatives of the quadratic function.  χ(x2) can be represented by 
any m of these linear functions, which are independent of each other.  Likewise, its 
covariant, viz., the symmetric bilinear form: 
 
(3)    

,

( )r x yαβ α β
α β

χ∑ = F(χ, x, y) = χ(xy) = χ(yx), 

 
can be expressed in terms of m and the m of the n variables r yαβ β

β
∑  that are 

independent of each other. 
 The trilinear function χ(xyz) = χ((xy) z) is a bilinear function of the coordinates of xy 
and z, and may thus be expressed in terms of the m variables among the n variables 

r zαβ β
β
∑ that are independent of each other.  It is equal to χ(x(yz)) = χ(z(xy)) = χ((zx) y), 

so it is also independent of the variables r xαβ β
β
∑  and the variables r yαβ β

β
∑ .  The same 

thing is true of χ(xyzt) = χ(yztx) = χ(ztxy) = (txyz).  Therefore: 
 

χ(xκ) = 1 2 ru u uκ κ κ+ + +⋯  

 
also depends upon only the variables (2), so the product Φ(x) = u1 u2 … ur , is as well, 
and it is an entire function of any power series.  Conversely, the functions Φ1(x), Φ2(x), 
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… that appear in the development of Φ(ue – x) may be expressed in terms of linear 
combinations of the variables x1, x2, … xn upon which Φ(x) depends, as well as χ(x2). 
 
 1. If Φ(x) is a product of prime factors of the group determinant and χ(x) is the trace 
of Φ(x) then the linear rank of Φ(x) is equal to that of  the quadratic function χ(x2), so it 
is equal to the rank of the matrix Rχ , and the function Φ(x) may be expressed in terms of 
the derivatives of χ(x2). 
 
 Now, let Φ, Φ′, Φ", … be the k different prime factors of Θ and let χ, χ′, χ", … be 
their traces.  If C, C′, C", … are any matrices of nth degree then I will show: A relation: 
 
(4)      CRχ + C′ Rχ′ + C" Rχ" + … = 0 
can exist only when one has: 

CRχ = C′ Rχ′  = C" Rχ" = … = 0 
 
individually.  From (2), § 5, one then has: 
 

Rχ = 
( )

( )
l

R T x
x

∂ Φ 
 ∂ 

, 

and then, since | T(x) | is non-zero: 
 

( ) ( ) ( )l l l
CR C R C R

x x x

′ ′′∂ Φ ∂ Φ ∂ Φ     ′ ′′+ + +     ∂ ∂ ∂     
⋯= 0. 

 
Now, let Φ = Φ′ Φ" … be the product of the k – 1 prime functions that are different from 
Φ.    If one multiplies this by ΦΨ then one sees that the elements of the matrix Ψ(x) 

CR
x

∂Φ 
 ∂ 

 are all divisible by the function of nth degree Φ(x), so since Φ and Ψ are 

relatively prime, the same is true for the matrix CR
x

∂Φ 
 ∂ 

.  Since this is, however, only 

of (r − 1)th degree, it must be zero.  With that: 
 

0 = 
( )l

CR
x

∂ Φ 
 ∂ 

 = CRχ . 

 
 One can also arrive at this result by means of formula (3), § 5.  From this, one has Rχ′ 
Ψ(xE – eS) = 0, and since any two entire functions of the matrix S commute with each 
other, one also has: 
 

Rχ′ Ψ(xE – eS) = Rχ" Φ"(xE – eS) Φ′(xE – eS) … = 0. 
 

As a result, one also has: 
 



Frobenius:  Theory of hypercomplex quantities.                                                 15 

CRχ(Ψ(xE – eS) + Φ(xE – eS)) = 0. 
 
The determinant of the matrix in the brackets, which is a function of S, is non-zero, 
because the function Ψ(xE – eS) + Φ(xE – eS) of the variables u does not vanish for any 
root of the characteristic equation.  As a result, one must have CRχ = 0. 
 If m, m′, m", … are the ranks of the matrices Rχ, Rχ′, Rχ", … then among the n 
variables ( )r xαβ β

β
χ ′∑ , precisely m′ of them are independent, among the n variables 

( )r xαβ β
β

χ ′′∑ , precisely m" of them are independent, etc.  The m + m′ + m" + … linear 

combinations of the n variables x1, x2, …, xn that are thus obtained are, however, all 
linearly independent.  An identity relation in the x1, x2, …, xn : 
 

( ) ( ) ( )c r x c r x c r xα αβ β α αβ β α αβ β
α β α β α β

χ χ χ
     

′ ′ ′′ ′′+ + +     
     

∑ ∑ ∑ ∑ ∑ ∑  … = 0 

 
can then exist only when the k partial sums vanish individually.  The n equations: 
 

( ) ( ) ( )c r c r c rα αβ α αβ α αβ
α α α

χ χ χ′ ′ ′′ ′′+ +∑ ∑ ∑ + … = 0 

 
have, in fact, the form (4) when C is a matrix in which one row consists of the elements 
c1, c2, …, cn, while the elements of the other row vanish. 

 Since xα α
α

χ∑ = ( )e r xα αβ β
α β

χ
 
 
 

∑ ∑  is a linear combination of the n variables (2), 

the k functions: 
(5)      χ(x), χ′(x), χ"(x), … 
are also linearly independent. 
 Furthermore, χ(x2) can be expressed as a quadratic function of m independent 
variables with non-vanishing determinants, χ′(x2), as a function of m′ variables of rank 
m′, etc., and these m + m′ + m" + … variables are all mutually independent.  If c, c′, c", 
… are constants then the rank of the quadratic function: 
 

c χ(x2) + c′χ′(x2) + c″χ″(x2) + … 
 

is equal to the sum of the ranks of the individual summands.  The rank of cχ(x2) is 0 or m, 
according to whether c = 0 or not, resp. 
 
 II.  The rank of the matrix cR c R c Rχ χ χ′ ′′′ ′′+ + + … is equal to the sum of the ranks of 

the matrices cRχ , c′ Rχ′ , c″ Rχ" , … 
 The linear rank of a product of prime factors of group determinants is equal to the 
sum of the ranks of their various prime factors. 
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§ 7. 
 

 I denote the traces of the determinants | S(x) | and | T(x) | by: 
 
(1)   σ(x) = xα α

α
σ∑ = ( )s xκκ

κ
∑ ,  τ(x) = xα α

α
τ∑ = ( )t xκκ

κ
∑ . 

 
Their coefficients are: 
(2)     σα = aκακ

κ
∑ ,  τα = aκκα

κ
∑ , 

and from (2), § 3, one has: 

(3)     
,

.

s s s s

t t t t

σ χ χ χ χ
τ χ χ χ χ

′ ′ ′′ ′′= + + + =
′ ′ ′′ ′′= + + + =

∑
∑

⋯

⋯

 

 
Therefore, from theorem II, § 6 the matrices Rσ and Rτ both have rank m + m′ + m″ + … 
 I will call a group (ε), for which the determinant of the symmetric matrices: 
 
(4)      Rσ  = P = (pαβ) 
 
is non-zero, a DEDEKIND group (DED. (27)), since DEDEKIND recognized the 
meaning of this condition, at least for commutative groups.  For such a group, from the 
theorem of § 2, Θ(x) = | S(x) | = | T(x) |, so σ = τ, and the rank of Rσ : 
 

n = m + m′ + m″ + … = m∑ . 

 
Thus, a DEDEKIND group can also be defined to be a group whose order is equal to the 
linear rank of its determinant.  If: 
 

ψ = χ + χ′ + χ″ + … = ∑ χ 
 

is the trace of the product of the k different prime factors of Θ: 
 

Ψ(x) = Φ Φ′ Φ″ … = Π Φ(x) 
 
then, from theorem II, § 6, Rψ also has rank ∑ m = n.  Thus, | Rψ | is non-zero.  From (3), 
§ 5 is, however: 

Rψ Ψ(Se – Ex) = 0, 
and as a result: 
(5)      Ψ(Se – Ex) = 0. 
Since the function: 
(6)     g(u) = Ψ(ue – x) = Π Φ(ue – x) 
 
has no a multiple factor, g(S) = 0 is the reduced equation for the matrix S (cf., MOL. 
theorem 24). 
 One can also see this as follows: From (2), § 5, one has: 
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S R
x

∂Θ ′  ∂ 
 = Θ Rχ . 

 
Now, Θ S′ −1 = S′ is the adjoint matrix to S′ , and therefore one has (DED. (63)): 
 

(7)      S′ = 1R R
x σ

−∂Θ 
 ∂ 

 

 
The elements of the matrix S′ are the sub-determinants of (u – 1)th degree of Θ.  They are 
then linear combinations of the derivatives of Θ in the n variables x1, x2, …, xn .  
Conversely, the derivatives of a determinant are linear combinations of their sub-
determinants.  Therefore, the greatest common denominator of the sub-determinants is 
equal to the derivatives, so when x is now replaced by ue – x, it equals: 
 

Π(Φ(ue – x))−1. 
 
From the rules that were mentioned in § 3, however, one obtains the reduced equation 
g(S) = 0 when one divides each expression by: 
 

Θ(ue – x) = Π(Φ(ue – x)), 
 

and consequently g(u) is the function (6).  The roots u1, u2, …, up of the equation g(u) = 0 
are the p = r + r ′ + r″ + … distinct roots of the n roots u1, u2, …, un of the equation Θ(ue 
– x) = 0. 
 

§ 8. 
 

 If A and B are two commuting matrices of nth degree then their characteristic roots a1, 
a2, …, an and b1, b2, …, bn can be associated in such a way that f(a1, b1), f(a2, b2), …, f(an, 
bn) are the characteristic roots of the matrix f(A, B) and this association is independent of 
the choice of the entire function f(u, v).  In § 3 of the present paper, I have further proved: 
 
 I. If the characteristic determinants of two (or more) mutually commuting matrices 
A and B are decomposable into nothing but linear elementary parts then any matrix f(A, 
B) has the same property. 
 
 II. If, moreover, one always has bκ = bλ whenever aκ = aλ then B is an entire 
function of A. 
 
 Now: 
(1)      y(u, x) = Π Φ(ue – x) 
 
is an entire function of pth degree of u whose coefficients are entire functions of the n 
variables x1, x2, … xn .  The p roots u1, u2, … un of the equation g(u, x) = 0 are all 
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mutually distinct.  If X = S(x) then the elementary parts of | uE – X | are all linear and X 
satisfies the equation g(X, x) = 0. 
 This identity equation in x1, x2, …, xn will thus be also satisfied by any special system 
of values for the variables.  For such an equation, u1, u2, …, un do not all need to be 
different, the elementary parts of | uE – X | are not all linear, and g(X, x) = 0 does not 
need to be the reduced equation for X.  The equation | uE – X | = 0 cannot then have more 
than p different roots, and if ψ(X) = 0 then ψ(u) must vanish for any roots of this 
characteristic equation.  Since the equation g(u, x) = 0 has not multiple roots, the 
elementary parts of | uE – X | are all linear. 
 Let x be chosen as above, and let y be a quantity that commutes with x.  The matrix Y 
= S(y) then commutes with X = S(x).  Therefore, the determinant: 
 
(2)   | uX + vY + wE | = | S(ux + vy + we) | = Π(Φ(ux + vy + wz)) 
 
is a product of linear factors u uα + v vα + w, in which uα and vα are the associated 
characteristic roots of the two commuting matrices X and Y and therefore: 
 
(3)     Φ(ux + vy + we) = ( )uu vv wα α

α
+ +∏  

 
is also a product of linear functions of u, v, w.  If one sets v = 0 or u = 0 then one 
recognizes that the r characteristic roots u1, …, ur of Φ(x) are associated with the r roots 
v1, …, vr of Φ(y) in a certain sequence, and consequently the p roots u1, …, ur  of g(u, x) 
= 0 are associated with the p roots v1, …, vr of g(v, y) = 0, as well.  Since u1, …, ur  are 
distinct, moreover, formulas (2) and (3) show that any two equal roots uκ = uλ among the 
n characteristic roots  of X are associated with vκ = vλ equal roots of Y. 
 If l is a constant then v1 – lu1, …, vp – lup are the roots of the equation g(w, y – lx) = 0.  

If l is not equal to one of the ratios 
v v

u u
α β

α β

−
−

 then any p roots are all different, and 

consequently the elementary parts of the characteristic determinants of the matrix Z = Y – 
lX are all linear.  Since X and Z commute and Y = lX + Z is a function of X and Y, from 
theorem I, the elementary parts of | vE – Y | are also all linear.  From theorem II, Y is 
therefore an entire function of X (cf., MOL., theorem 27). 
 The equation of lowest degree that x satisfies has degree p.  Therefore, if x0, x1, …, 
xp−1 are linearly independent then any entire function of x is, however, independent of 
these p.  The linear equations xy – yz = 0 between the n unknowns y1, y2, …, yn thus have 
precisely p independent solutions.  The matrix of their coefficients S(x) – T(x) thus has 
rank n – p. 
 
 III. If the r + r′ + r″ + … roots of the equation Π Φ(ue – x) = 0 are all different for a 
certain quantity x in a DEDEKIND group then the matrix S(x) – T(x) has the rank n – (r  
+ r ′ + r″ + …).  Every quantity y that commutes with x is then an entire function of x, 
and the elementary parts of | vE – S(y) | are all linear for such a quantity y. 
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§ 9. 
 

 I will take the theory of DEDEKIND groups to its conclusion in §§ 13 to 16.  Now, I 
shall turn back to the general theory.  In place of the basis ε1, ε2, …, εn for the group (ε), 
one can introduce a new basis by a linear substitution: 
 
(1)      εβ = cαβ α

α
ε∑  

 
in which the determinant of the matrix C = (cαβ) is non-zero.  Then if: 
 
(2)      xα αε∑ = xα αε∑ , 

then: 
(3)      xα = c xαβ β

β
∑ . 

 
The quantities ∂Φ / ∂xα , ξα , χα , σα are cogredient to the basic numbers εα , the 
quantities yα , zα are cogredient to the coordinates xα , and the basic numbers αε  are 

contragredient.  Furthermore: 
 

(4)     
1 1( ) ( ) , ( ) ( ) ,

( ) ( ) , ( ) ( ) .

S x C S x C T x C T x C

R C R C R C R Cξ ξ ξ ξ

− −= =
′ ′ ′= =

 

 
 Therefore, the exponents and the degrees of the elementary parts into which the 
determinants of the matrices R(x), S(x), T(x) decompose are invariants of the group.  The 
same is true for the determinants of any of the matrices that depend upon 2n variables: 
 
(5)     S(x) + T(x),  R(ξ) + R′(η), 
 
in particular, also for the elementary parts of the determinant of the matrix of the bilinear 
form uF(ξ, y, z) + vF(ξ, z, y) of y and z: 
 
(6)      uR(ξ) + vR′(ξ). 
 
For the explanation for the remark, I consider some examples from the paper of STUDY, 
“Über Systeme von complexen Zahlen,” Göttinger Nachrichten, 1889. If (ST. IX): 
 

(7)     R(ξ) = 

1 2 3 4

2 1 4

3 4 1

4

0

0

0 0 0

c

ξ ξ ξ ξ
ξ ξ ξ
ξ ξ ξ
ξ

 
 
 
 −
 
 

 

then its elementary part is: 
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(8)    3
1 4ξ ξ (u + v) (u + v) ((u – v)2 + c(u + v)2), 

 
in which the last factor is a quadratic elementary part for c = 0; otherwise it decomposes 
into two different linear elementary parts.  This formula shows that c is a (non-numerical) 
invariant of the group. 
 Furthermore, if (ST. XIV): 

(9)     R(ξ) = 

1 2 3 4

2 4

3 4

4

0 0

0 0

0 0 0

ξ ξ ξ ξ
ξ ξ
ξ ξ
ξ

 
 
 
 −
 
 

 

 
then the elementary part of | u R(ξ) + c R′(ξ) |: 
 
(10)    3

1 4ξ ξ (u + c) (u + v) (u – c) (u − v), 

 
is essentially different from the above (for c = 0).  Therefore, I would not like to further 
into the classification of groups here. 
 It is possible that the quantities (2) also define a group (ϑ) when the coordinates are 
subject to certain linear relations.  (ϑ) will then be called a subgroup of (ε).  Its basic 
numbers ϑ1, ϑ2, … are linear combinations of the n basic numbers εα , and therefore in 
order for (ϑ) to be a group, each of the products ϑα ϑβ must be a linear combination of 
the quantities ϑ1, ϑ2, … 
 If each of the products εα ϑβ is a linear combination of the quantities ϑ1, ϑ2, …then 
(ϑ) is an invariant subgroup 1) of (ε).  Formulas (2), § 1 also define a group (η) when the 
n basic number εα are subject to the relations ϑ1 = 0, ϑ2 = 0, or when one considers any 
two quantities of (ε) being equal mod (ϑ) when their difference belongs to the group (ϑ).  
They will be complementary to those of the invariant subgroup (ϑ) that is called the 
group homomorphic to (ε) (Accompanying number system in MOLIEN). 
 In order to see this, one transforms the basis in such a way that ϑ1, ϑ2, … become the 
basic numbers εm+1 , …, εn .  The subgroup (ϑ) will then be determined by the m linear 
equations x1 = 0, …, xm = 0 between the coordinates.  Therefore, in order for (ϑ) to be a 
subgroup it is necessary and sufficient that aαβγ = 0 whenever α < m, β > m and γ > m; in 
order for (ϑ) to be an invariant subgroup it is necessary and sufficient that aαβγ = 0 
whenever α < m and also only one of the two numbers β or γ is greater than m (MOL, 

                                                
 1) If H is a finite group of order n and G is a subgroup of order n/m, and if R is an element of H and P, 

an element of G then the hypercomplex quantities ∑ R xR define a group (ε) of order n, and the quantities ∑ 

R xR , a subgroup (ϑ).  It does not have to be an invariant subgroup of (ε) when G is an invariant subgroup 

of H.  However, if H = G + GA + GB + … then one obtains an invariant subgroup of (ε) of order n – m 

when one restricts the variability of the n coordinates xR by the n equations 
P

P

x∑ = 0, AP
P

x∑ = 0, BP
P

x∑  

= 0, …  The homomorphic group (χ) that is complementary to it in (ε) has the same relationship with the 
group H/G as (ε) does to H. 
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theorem 2).  Equations (2), § 1 also define a group when one sets εm+1 = … = εn = 0.  In 
formulas (4), § 1, x1, …, xm depend only upon y1, …, ym and z1, …, zm .  Therefore, in the 
two matrices S(x) and T(x) all elements vanish when they have the first m rows and the 
last n – m columns in common.  Therefore: 
 

S = 1

21 2

0S

S S

 
 
 

,  T = 1

21 2

0T

T T

 
 
 

, 

 
where, e.g., the partial matrix S1 only includes the first m rows and columns of S.  From 
S(y) S(z) = S(yz), it then follows that S1(y) S1(z) = S1(yz), and since S1(x) = x1E1 + … + xm 
Em depends only upon then the equations: 
 

εβ εγ = 
1

m

aαβγ α
α

ε
=
∑    (β, γ = 1, 2, …, m) 

 
define a group (η) that emerges from (ε) when one sets εm+1 = … = εn = 0.  Since | S | = 
|S1| | S2 | and | T | = | T1 | | T2 |, (η) also satisfies the conditions (1), § 3.  Furthermore, the 
determinant of the group (ε) is divisible by the determinant of any group (η) that is 
homomorphic to (ε), and the same is true for the groups that are antistrophic to (ε) and 
(η). 
 If aαβγ = 0, in addition, when α > m and one of the two numbers β or γ is less than m 
then (ε) decomposes into two groups, each of which is an invariant subgroup of (ε), as 
well as a group homomorphic to (ε). 
 

§ 10. 
 

 If m, m′, m″, … are the ranks of the k matrices Rχ, Rχ′, Rχ″, …, then Φ depends upon 
only the m independent ones among the n linear functions ( )r xαβ β

β
χ∑ , Φ′, upon only the 

m′ independent ones among the functions ( )r xαβ β
β

χ ′∑ , etc., and these m + m′ + m″ + … 

variables are all mutually independent.  One can thus choose the basic numbers in such a 
way that Φ is also independent of x1, …, xm, Φ′, depends upon only xm+1, …, xm+m′, etc.  
χ(x2) = ∑ rαβ(χ) xα xβ then also depends upon only x1, …, xm .  Thus, rαβ(χ) = 0 when α or 
β is greater than m, and since Rχ has rank m, the determinant of mth degree: 
 

| rνλ(χ) |    (ν, λ = 1, 2, …, m) 
 

is then non-zero.  Furthermore, from § 6, the trilinear function: 
 

χ(xyz) = ∑ rνα(χ) aαβγ xν yβ zγ  = ∑ rνλ(χ) aλβγ xν yβ zγ ,  
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depends upon only x1, …, xm , y1, …, ym, z1, …, zm .  Therefore, if β or γ is greater than m 

then 
1

( )
m

r aνλ λβγ
λ

χ
=
∑ = 0, and thus aλβγ = 0.  Therefore, the k different prime factors of Θ  

correspond to k groups that are homomorphic with (ε). 
 More simply: All quantities x whose coordinates satisfy the linear equations ∑ rαβ(χ) 
xβ  = 0 define an invariant subgroup (ϑ) of (ε).  The equations then express the idea that 
χ(tx) = 0 for any quantity t.  If y is an arbitrary quantity of (ε) and one replaces y with yt 
or ty then one obtains χ(t(xy)) = 0 or χ(t(yx)) = 0.  If x then belongs to the complex (ϑ) 
then it also belongs to xy and yx.  Consequently, (ϑ) is an invariant subgroup of (ε). 
 A group (ε) of order r is called simple (MOLIEN: original number system) when it 
has no invariant subgroup (except for (ε)), so it has no homomorphic group of order less 
than n. 
 From the development above, the determinant Θ of a simple group includes no prime 
factor whose linear rank is m < n.  Therefore, from theorem II, § 6, Θ must not include 
two different prime factors, so Θ = Φs must be a power of a prime function and therefore 
σ = sχ.  Furthermore, the rank m of Φ, and thus, the rank of the matrix Rσ = sRχ , must be 
equal to m = n = rs, so (ε) must be a DEDEKIND group. 
 Conversely, if | Rσ | is non-zero and  Θ = Φs is a power of a prime function then (ε) is 
a simple group, so it is not homomorphic to a group (η) whose order n′ < n (MOL., 
theorem 23).  The determinant of (η) is a divisor of Θ, so it equals Θ′ = Φs′, and thus has 
the same rank as Φ, namely, n.  The rank n of Θ′ cannot, however, be larger than the 
order n′ of (η). 
 Since S(x) and T(y) are commuting matrices the determinant: 
 

| u S(x) + v T(y) + W e | 
 
decomposes (Gr., § 10, (1)) into a product of linear functions of u, v, w.  If uu1 + vv1 + w 
is one of them then one sees, when one sets v = 0 (u = 0, resp.) that u1 (v1, resp.) is a 
characteristic root of Φ(x) = (Φ(y)).  If one considers y to be constant, but x to be variable 
then Φ(ux + we) is irreducible as a function of w, and thus Φ(ux + (vv1 + w)e), as well.  
The determinant has the factor uu1 + vv1 + w in common with this function, and thus, all r 
factors uuα + vv1 + w.  If one then considers x to be constant and y to be variable then one 
sees that the determinant of each of the r2 factors is: 
 

uuα + vvβ + w    (α, β = 1, 2, …, r), 
 

and each of them is included equally often.  Therefore: 
 

| u S(x) + v T(y) + w E | = (Π (uuα + vvβ + w))c 
 
and therefore s = rc.  In particular (Gr., § 10, (8)): 
 

(1)    | S(x) – T(x) + w E | = ( )2 2( )
csw w u uβ α

β α>

− −∏ . 
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 The elementary parts of the characteristic determinant of the two commuting matrices 
S(x) and T(x) are all linear.  From theorem I, § 8, the elementary parts of the determinant 
(1), and especially the s for w = 0 also vanish.  Consequently, the matrix S(x) – T(x) has 
rank n – s. 
 From theorem III, § 8, however, they have rank n – r.  Therefore (MOL., theorem 
29): 
(2)      r = s, m = n = r2, 
so c = 1 and: 

(3)     | u S(x) + v T(y) + w E | =
, 1

( )
r

uu vv wα β
α β =

+ +∏ . 

 
 The determinant of a simple group is a power of a prime function whose exponent 
equals the degree of the prime function.  The linear rank of this function, which agrees 
with the order of the group, is equal to the square of its degree. 
 
 

§ 11. 
 

 If, the r roots of the equation Φ(ue – h) = 0 all vanish for a certain quantity h in the 
simple group (ε) of order n = r2, and if a is a particular one of these r roots then the 
determinant | S(ue – h) | has nothing but linear elementary parts, and consequently the 
matrix S(ue – h) has rank n – r.  Therefore, (MOL., § 8), the linear equations (ae – h) t = 
0 in the coordinates t1, …, tn of the unknown quantity t have precisely r independent 
solutions t = t(1), t(2), …, t(r). 
 If x is a variable quantity then t(κ) x is also a solution and therefore: 
 

t(κ) x = ( )x t λ
κλ

λ
∑ . 

 
Since the r solutions t(λ) are independent the quantities xκλ = fκλ(x) are linear functions of 
the coordinates x1, …, xn .  If y and z are two other quantities, and one sets yκλ = fκλ(y), zκλ 
= fκλ (z) then one also has: 
 

t(κ) y = ( )y t λ
κλ

λ
∑ , t(κ) z = ( )z t λ

κλ
λ
∑  

and thus: 
t(κ) yz = ( )y t zλ

κλ
λ
∑ = ( )

,

y z t λ
χµ µλ

λ µ
∑ . 

Thus, if x = yz then: 
(1)      xκλ = y zκµ µλ

µ
∑ . 

 
Among the n = r2 linear functions xµλ = fµλ(x), let m of them be independent.  Therefore, 
from (1), if x = yz then these m combinations of x1, …, xn depend on m combination of y1, 
…, yn and those of z1, …, zn .  Consequently, (ε) has a homomorphic group of order m.  
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However, since (ε) is simple one has m = n = r2, and one can then introduce r2 new basic 
numbers, such that: 

∑ εα xα = ∑ εµλ xµλ . 
 

For this to be true, formulas (4), § 1 must go over to (1) and the relations (2), § 1 to: 
 
(2)    εαβ εβγ = εαγ ,   εαδ εβγ = 0  (β  ≠ δ). 
 
 As was shown at the outset in § 10, the k different prime factors of Θ correspond to k 
groups that are homomorphic to (ε).  The first one has order m, and its determinant is a 
part of Θ and depends only upon x1, …, xm .  Since Φ, Φ′, … are independent of x1, …, xm 
then its determinant is a power of Φ, and thus, like Φ, it has linear rank m.  Because its 
order is likewise m, it is, from § 10, it is a simple group.  Consequently, its determinant is 
equal to Φr and the rank of Φ is m = r2. 
 
 I.  The linear rank of each prime factor of the group determinant is equal to the 
square of its degree. 
 
 I will now denote the k different functions Φ by Φ1, Φ2, …, Φk .  All elements sαβ 
vanish in the group determinant S that have the first m1 rows in common with the last n – 
m1 columns, and likewise all elements that have the following m2 rows in common with 
the m1 and the last n – m1 – m2 columns, and furthermore, the ones that have the 
following m3 rows in common with the first m1 + m2 columns and the last n – m1 – m2 – 
m3 columns, etc., while nothing is known about the last n – m1 − … − mk columns.  The 
same is true for the antistrophic matrix T, and also for u S(x) + v T(y) + w E.  If the first 
m1 rows and columns of S (T, resp.), define the matrix S1 (T1, resp.) and the following m2 
rows and columns of the matrix S2 (T2 , resp.) then let: 
 

U = 

1

2

0 0

0 0

. . .

0 0 k

S

S

S

 
 
 
 
 
 

⋯

⋯

⋯

⋯

,  V = 

1

2

0 0

0 0

. . .

0 0 k

T

T

T

 
 
 
 
 
 

⋯

⋯

⋯

⋯

. 

Therefore: 

S = 
0 0

0U

U S

 
 
 

,  T = 
0 0

0V

V T

 
 
 

. 

 
This gives us the theorem of MOLIEN: 
 
 II. Any group is homomorphic to a DEDEKIND group whose determinant includes 
every prime factor of its determinant Θ and whose order is equal to the linear rank of Θ. 
 
 This rank m is equal to the rank of the quadratic form σ(x2) = ∑ pαβ xα xβ , and in 
order to obtain a group one needs only to introduce the m independent ones among the n 
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functions p xαβ β
β
∑ as new variables.  Therefore, in formula (4), § 9 the substitution C is 

chosen in such a way that it transforms the form σ(x2) into a function of m variables, 
perhaps into a sum of m squares.  I have not, however, succeeded in proving this directly; 
i.e., without any use of the prime function Φm . 
 Furthermore, one has: 
 

| S | = | S1 | … | Sk | | S0 |,  | T | = | T1 | … | Tk | | T0 |, 
and: 
 

| uS(x) + vT(y) + wE |  = | uS1 + vT1 + wE1 | …| uSk + vTk + wEk | | uS0 + vT0 + wE0 |. 
 

Since Sκ is the matrix of a simple group, from (3), § 10, one has: 
 

Ψκ = | uSκ(x) + vTκ(y) + wEκ | = Π (uuα + vvβ + w), 
 
where u1, …, ur are the characteristic roots of Φκ(x) and v1, …, vr are the characteristic 
roots of Φκ(y).  These results remain unchanged when the basic numbers of (ε) are 
chosen arbitrarily, rather than in the manner described. 
 Ψ0 = | uS0(x) + vT0(y) + wE0 | also decomposes into linear factors uu0 + vv0 + w.  
Here, u0 is a characteristic root of a prime factor Φκ(x) and vκ is a characteristic root of a 
prime factor Φλ(y).  From the irreducibility of Φκ(ue – x) and Φλ(ve – y) it then follows 
that Ψ0 also includes all rκ rλ factors of the products Π (uuα + vvβ + w) in which uα runs 
through the rκ characteristics roots of Φκ(x) and vβ runs through the rλ roots of Φλ(y).  If κ 
= λ then the factor Φκ  appears repeatedly.  As the example in § 3 shows, however, κ can 
be different from λ. 
 If one chooses an invariant quantity for x then, from (12), § 4, the rκ quantities uα  are 

all equal to 
1

rκ

χ(κ)(x).  However, formulas (2) and (3), § 8 show that the root vβ is then 

associated with 
1

rλ

χ(λ)(x).  Therefore, κ can be different from λ only for an invariant 

quantity x: 

(1)      
1

rκ

χ(κ)(x) = 
1

rλ

χ(λ)(x)   (Sx = Tx) 

 Now, let w = 0, u = v = 1, and: 
 
(2)      Ψκλ(x, y) = Π(uα + vβ), 
 
where uα runs through the rκ characteristic roots of Φκ(x) and vβ runs through the rλ roots 
of Φλ(y).  Ψκλ is then an irreducible function of x1, …, xn , y1, …, yn relative to any of 
degree rκ , rλ , resp., and one has: 
 

(3)    Ψ(x, y) = | S(x) + T(y) | = ( )( , )
c

x y κλ

κλΨ∏ , 
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where the whole number cκλ > 0, but cκλ ≥ 0, and only under the condition (1) can one 
have cκλ > 0.  Since: 
 

Ψκλ(x, 0) = ( )rx λ
κΦ ,  Ψκλ(0, y) = ( )rx κ

λΦ , 

 
this gives the decompositions: 
 
(4)    | S(x) | = ( )sx λ

λΦ∏ ,  | T(x) | = ( )tx λ
λΦ∏  

 
where the exponents that appear have the expressions: 
 

(5)     1 1 2 2

1 1 2 2

,

,
k k

k k

s c r c r c r

t c r c r c r
λ λ λ λ

λ λ λ λ

= + + +
= + + +

⋯

⋯

 

such that one always has: 
(6)     sλ ≥  rλ ,  tλ ≥  rλ . 
 
The two functions | S(x) | and | T(x) have the same linear rank: 
 
(7)     m = 2 2 2

1 2 kr r r+ + +⋯ ,   

 
which is equal to the tank of the matrix Rσ and that of Rτ , and is equal to the sum of the 
ranks of the k matrices R(χ(n)) or the k prime functions Φκ(x).  By contrast, the order of 
the group (ε): 
(8)    n = r1 s1 + … + rk sk = r1 t1 + … + rk tk = ∑ cκλ rκ rλ , 
 
in which rκ rλ has the coefficients cκλ + cλκ in the event that κ is different from λ. 
 
 

§ 13. 
 

 I now recall the theory that of DEDEKIND groups that was begun in §§ 7 and 8.  For 
such a group, m = n, so, from (6), (7), and (8), § 12, sκ = tκ = rκ . 
 
 I.  The exponent of the power of a prime function that enters in the determinant of a 
DEDEKIND group is equal to the degree of this function. 
 
 The group (ε) decomposes into k simple groups of order r2, r′2, … in each of which 
S(x) decomposes into r identity matrices of rth degree, and the r2 elements xκλ of such a 
matrix are mutually independent of the variables of the other simple groups.  In my paper 
“Über die Darstellungen der endlichen Gruppen durch lineare Substitutionen II,” 
Sitzungsberichte, 1899, § 5, I derived the theorem: 
 
 II. If a and b are two well-defined quantities of a DEDEKIND group and if the 
elementary invariants of the two matrices S(ue – a) and S(ue – b) agree then there is a 
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quantity c in the group for which | S(c) | is non-zero, and which satisfies the condition 
c−1ac = b. 
 
 The determinant of a DEDEKIND group is: 
 
(1)     Θ(x) = | S(x) | = | T(x) | = Π Φr, 
its trace is: 
(2)     σ = τ = r χ + r′ c′ + r″ c″ + … = ∑ r χ, 
so one also has: 
(3)     P = Rσ = r Rχ + r ′ Rχ′ + r″ Rχ″ + … = ∑ r Rχ . 
 
 The matrix Rχ has rank r2, while from theorem II, § 6, the matrix r Rχ + r ′ Rχ′ + … = 
P – r Rχ  has rank r′2 + r″2 + … = n – r2.  The determinant | uP – rRχ | thus vanishes for u 
= 0, at least for order n – r2, for u = 1, at least of order r2, and since it does not vanish for 
more than r values, so one not only has: 
 

(4)     | uP – rRχ | = 
2 2

| | ( 1)n r rP u u− − , 
 
but also that the elementary parts of this determinant are all linear (because they would 
vanish to higher order for either u = 0 or u = 1).  Consequently, the matrix H = r P−1Rχ 
satisfies the equation H2 = H, so one has: 
 

(5)      Rχ P
−1Rχ = 

1

r
 Rχ . 

 
If one then adds the factor Rχ P

−1 to the left-hand side of (3) then one obtains: 
 

0 = r′ (Rχ P
−1) Rχ′  + r″ (Rχ P

−1) Rχ″  + … 
 

and thus, from (4), § 6: 
(6)      Rχ P

−1Rχ′  = 0. 
If the equations: 
(7)      ξα = p xαβ β

β
∑ , 

 
exist between ξ1, …, ξn and x1, …, xn, then I call the parameter ξ and the quantity r 
conjugate.  One then has: 
 
(8)    Rξ = xS P′  = PTx,  Rξ′ = PSx = xT P′ . 

 
Thus, if Rξ = Rξ′  then Sx = Tx , and a symmetric parameter is conjugate to an invariant 

quantity, and conversely. 
 I will call the invariant quantity x = h that is conjugate to the characteristic parameter 
ξ = χ a characteristic quantity for the prime function Φ.  One then has: 
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(9)      χα = p hαβ β
β
∑  

and 
(10)     Rχ = PSh = PTh . 
 

From (5) and (10), it follows that 
1

r
S(h) = S(h)2 = S(h2) and 0 = S(h) S(h′) = S(hh′), hence 

(Gr., § 5, (9)): 

(11)    h2 = 
1

r
 h,  hh′ = 0 

and from (3): 
(12)    e = rh + r′ h′ + r″ h″ + … = ∑ rh , 
 
such that parameter σ and the principal unit e are conjugate.  Furthermore, if: 
 

r Rχ Sh = Rχ ,  r ( ) ( )r s hαλ λβ
λ

χ∑  = rαβ(χ). 

 
If one multiplies this by eα eβ and sums over α and β the one obtains (cf., DED. (13)): 
 
(13)    hα α

α
χ∑ = 1,  hα α

α
χ ′∑ = 0, 

or when one sets: 
h(x) = h1 x1 + … + hn xn 

one gets: 
(14)    χ(h) = h(χ) = 1, χ(h′) = h(χ′) = 0, 
 
or finally, if P−1 = Q = (qαβ): 
 
(15)  ∑ pαβ hα hβ = ∑ qαβ χα χβ = 1, ∑ pαβ hα hβ′ = ∑ qαβ χα βχ ′  = 0. 

 
 

§ 14. 
 

 Let u1, …, ur be the characteristic roots of Φ(x), and let v1, …, vr those of Φ(y).  Then, 
if g(u, v) is an entire function of u and v then, from § 12, the u characteristic roots of the 
matrix g(Sx , Ty) are the r2 quantities g(uα, vβ) and the r′2, r″2, … are quantities that are 
obtained in the stated way. 

 If x is an invariant quantity then, from the theorem of § 4, one has u1 = … = ur = 
1

r
 

χ(x) = c.  Therefore, from (13), § 13, the characteristic determinant of Sh = Th equals 
2

21
r

n ru u
r

− − 
 

and the characteristic roots of (S(x) – cE) T(h) = S((x – ce)h) are all zero.  

Some power of this matrix then vanishes.  However, since it commutes with any group 
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matrix S(y), from theorem III, § 8 the elementary parts of its characteristic determinant 
are all linear.  Thus, the first power vanishes, and therefore: 
 

(1)     xh = ch = h 
1

r
χ(x). 

 
If one then multiplies (12), § 13 by x then one obtains: 
 
(2)   x = rch + r′c′h′ + r″c″h″ + … = h χ(x) + h′ χ′(x) + h″ χ″(x) + …, 
 
where the coefficients rc = χ(x), r′c′ = χ′(x), … are ordinary quantities. 
 The k quantities h, h′, h″, …, which are linearly independent, from (5), § 6 or (11), § 
13, thus define a complete system of solutions to the linear equations S(x) = T(x).  Among 
the n2 equations sαβ(x) = tαβ(x) then n – k of them are independent.  Now, when the 
quantity x satisfies the equations χ(x) = χ′(x) = … = 0, as well, from (2), one has x = 0. 
 One can also see this as follows: If xy = yx then, from (11), § 4, rχ(xy) = χ(x)χ(y).  
Thus, if χ(x) = 0 then one also has χ(xy) = 0 or ( )r xαβ β

β
χ∑ = 0.  If this is also true for χ′, 

χ″, … then this gives r2 + r′2 + … = n independent linear equations, and therefore xξ = 0. 
 
 I. Among the n2 linear functions sαβ(x) − tαβ(x) of the n variables x1, …, xn , n – k of 
them are independent.  Together with the k functions χ(x), χ′(x), ..., they define n 
independent functions.  The k characteristic quantities h, h′, … define a complete system 
of independent solutions of the equations sαβ(x) = tαβ(x). 
 
 II. Among the linear functions rαβ(ξ) − rβα(ξ) of the n variables ξ1, …, ξn, n – k of 
them are independent.  Together with the k functions h(ξ), h′(ξ), …, they define n 
independent functions.  The k characteristic parameters χ, χ′, … define a complete 
system of independent solutions of the equations rαβ(ξ) = rβα(ξ). 
 
 A special case of this theorem is the elegant criterion that MOLIEN gave in theorems 
9 and 10, § 3 for the simplicity of a group.  Any simple group is, from § 10, a 
DEDEKIND group, and in order for it to be simple it is necessary and sufficient that k = 
1. 
 
 III. In order for a group to be simple, it is necessary and sufficient that the 

determinant of nth degree aκ καβ
κ

σ∑  be non-zero, and that ξκ = σκ is the only solution to 

the linear equations: 
( )a aκαβ κβα κ

κ
ξ−∑ = 0. 

 Furthermore: 
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 IV. In order for a group to be simple, it is necessary and sufficient that the 

determinant of nth degree aκ καβ
κ

σ∑  be non-zero and that xλ = eλ is the only solution of 

the linear equations: 
( )a a xαλβ αβλ λ

λ
−∑ = 0. 

 
 The fact that any theorem appears in two forms has its basis in the fact that the group 
itself can be presented in two conjugate forms.  If the parameters ξ, η, ζ are conjugate to 
the quantities x, y, z then let: 
 

F(ξ, y, z) = G(x, y, ζ) = ∑ bαβγ xα ηβ ζγ  . 
One then has: 
(3)     aαβγ  = b pβλα λγ

λ
∑ = b pγαλ λβ

λ
∑ . 

 
The group (ε) goes to an equivalent group ( )ε under this transformation, namely, the 
conjugate group.  If one appeals to the relations (4), § 9 for this then, as long as one sets 
C = P in each formula, this yields: 
 
(4)   Rx = xT P, xR′  = xS P, Sx = xR P′ , Tx = xR P. 
 
 Furthermore, ασ  = eα .  Just as one sets aαβγ = bαβγ , one sets pαβ = qαβ .  One then has 

qαβ = ∑ eκ bκαβ , and therefore: 
 

p qαλ λβ
λ
∑ = 

,

p e bαλ κ κλβ
κ λ
∑ = e aκ βκα

κ
∑ = eαβ , 

 
so Q = P−1.  Consequently, the conjugate group of ( )ε  is again the original group: 
 
(5)     bαβγ  = a qβλα λγ

λ
∑ =  ∑ bγαλ qλβ . 

 
 

§ 15. 
 

 In § 6, (5) it was shown that the k functions χ(x), χ′ (x), … are linearly independent.  
From theorem I, § 14, this is also still true when x does not vary without restrictions, but 
only runs through the invariant quantities of (ε).  This defines a subgroup (η) of (ε), 
whose order is k (in general, not an invariant subgroup).  One choose the basic numbers 
η1, η2 , …, ηk of (η) to be the k quantities rh, r′h′, …  One then has: 
 
(1)      2

κη  = ηκ , ηκ ηλ = 0. 
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Consequently, (η) is a DEDEKIND commutative group whose determinant equals 
1

( )x
r

χ∏ , as long as the quantities η1, …, ηk are expressed in terms of the ε1, …, εk .  In 

fact, these k linear factors, in which the variability of the coordinates is restricted by the 
conditions sαβ(x) = tαβ(x), are linearly independent. 
 
 I. If k is the number of different prime factors of the determinant of a DEDEKIND 
group then its invariant quantities define a commutative group of order k, which is 

likewise a DEDEKIND group.  Its determinant is 
1

( )x
r

χ∏ , while the determinant of the 

given group is equal to 

2

1
( )

r

x
r

χ 
 
 

∏  for an invariant variable x. 

 
 If the degree r = r′ = … = 1 then k = n, so, from theorem I, § 12, one has sαβ(x) = 
tαβ(x), aαβγ = aαγβ , identically. 
 
 II. The determinant of a DEDEKIND group always decomposes when the group is 
commutative, but only into nothing but linear factors. 
 
 In order for the determinant of an arbitrary group to decompose into nothing but 
linear factors, from theorem II, § 12, it is necessary and sufficient that the DEDEKIND 
group of order m = ∑ r2 that it is homomorphic to possess this property, and is therefore a 
commutative group.  One will obtain the same thing when one introduces the m 
independent variables among the n functions p tαβ β

β
∑  as coordinates of a quantity t.  If 

one then sets t = yz then these bilinear functions of y1, …, yn , z1, …, zn must remain 
unchanged under exchanges of y and z.  If x is a third variable then one has the function: 
 

,

p x tαβ α β
α β
∑ = σ(xt) = σ(xyz) 

 
have the same property.  From § 6, this always remains true under a cyclic permutation of 
x, y, z, and thus, under any permutation, in the case considered.  It is the trace of the 
matrix S(xyz) = S(x) S(y) S(z), so it equals: 
 
(2)    σ(xyz) =

, ,

( ) ( ) ( )s x s y s zλµ µκ κλ
κ λ µ
∑ = ∑ aλαµ aµβκ aκγλ xα yβ zγ . 

 
If one employs the antistrophic group then τ(xyz) appears in place of σ(xyz).  Thus, yields 
the theorem (cf., CARTAN, I. Thèse, Sur la structure des groupes de transformations 
finis et continus, Paris, 1894, pp. 48, (5)): 
 
 III. In order for the determinant of a group to be decomposable into nothing but 
linear factors, it is necessary and sufficient that the trilinear functions s(xyz) (or t(xyz)) 
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remains unchanged under permutation of y and z, so it is a symmetric function of the 
three sequences of variables, such that the expression: 
 
(3)     

, ,

a a aλαµ µβκ κγλ
κ λ µ
∑  or 

, ,

a a aλµα µκβ κλγ
κ λ µ
∑  

 
also remains unchanged under a transposition of α, β, γ. 
 
 Since s(xyz) is also the trace of S(x) S(yz), in place of the sums (3), one can also take 
the expressions: 
(4)     

, ,

a a aκλµ µακ λβγ
κ λ µ
∑  or 

, ,

a a aκλµ λκα µβγ
κ λ µ
∑ . 

 
By means of the formulas (1) and (2), § 7, one finally obtains the expressions: 
 

(5)     
, , , ,

, , , ,

,

.

a a a or a a a

a a a or a a a

κλκ λαµ µβγ κκλ λαµ µβγ
κ λ µ κ λ µ

κλκ λµα µβγ κκλ λµα µβγ
κ λ µ κ λ µ

∑ ∑

∑ ∑
 

 
 The decomposition of the determinant of a DEDEKIND group into its prime factors 
may be performed with the help of the theorem above.  The linear equations sαβ(x) – 
tαβ(x) = 0 have k independent solutions.  One know poses the quadratic equations 
between the unknowns χ1, χ2 , …, χn , which are obtained from: 
 
(6)      χ(x) χ(y) = χ(e) χ(xy), 
 
when one replaces x with a sequence of any k solutions and y, with the n basic numbers.  
In combination with the linear equations rαβ(χ) = rβα(χ) the deliver k different systems of 
values for the ratios χ1, χ2 , …, χn .  One chooses the constant factor in such a way that ∑ 
qαβ χα χβ = 1 and ∑ χα eα is positive.  It will then be equal to a positive whole number r, 
which is the degree of the prime function Φ that is determined from the characteristic 
parameter χ. 
 One denotes k independent solutions of the equations sαβ(x) = tαβ(x) by g, g′, … or 
also by η1, η2 , …, ηk .  They define the basis for a commutative DEDEKIND group of 
order k, so one has ηβ ηγ = cαβγ α

α
η∑ , where cαβγ = cαγβ .  Its determinant is a product of k 

independent linear factors, and when the basis ε1, ε2, …, εn is again introduced it goes to 
Π ψ(x), where ψ(x) = ∑ ψα xα .  Since ψ1, ψ2, …, ψn include an arbitrary constant factor, 
one then determines the ratios of the unknowns χ1, χ2 , …, χn from the linear equations: 
 

rαβ(χ) – rβα(χ) = 0, g(χ) = g(ψ), g′(χ) = g′(ψ), … 
 

and from them, the arbitrary values, as before. 
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§ 16. 
 

 If E1, E2, …, En are n matrices of mth degree that satisfy the conditions: 
 
(1)      Eβ Eγ = a Eαβγ α

α
∑  

 
then they define a representation of the group (ε).  If these n matrices are not linearly 
independent (by comparison, cf., MOL., pp. 126, condition 1) then they represent a group 
that is homomorphic to (ε). 
 Thus, if: 
(2)      (xκλ) = ∑ xα Eβ  
then, when x = yz, one has: 

(xκλ) = (yκλ)(zκλ). 
 
Therefore, I call the matrix (2) an associated matrix to the group (ε).  If its determinant is 
non-zero then from (I), § 4: 
(3)      | xκλ | = Π Φ(x)s 
 
is a product of prime factors of the group determinant Θ. 
 If C is a constant matrix of mth degree whose determinant is non-zero then the n 
matrices C−1E1C, C−1E2 C, …, C−1EnC also define a representation of (ε) that is said to be 
equivalent to the first one.  If one cannot choose C in such a way that these n matrices 
assume the form: 

1
(0)
1 1

0E

E E

′ 
 ′′ 

, 2
(0)
2 2

0E

E E

′ 
 ′′ 

, …, (0)

0n

n n

E

E E

′ 
 ′′ 

 

 
then I will call the representation primitive or irreducible, when this is possible, and 
otherwise, I call it imprimitive or reducible, and when (0)

1E , …, (0)
nE  = 0, as well, 

decomposed or decomposable. 
 The methods that I developed in my paper “Über die Darstellung der endlichen 
Gruppen durch lineare Substitutionen, II,” Sitzungsberichte, 1899, may be immediately 
carried over to the arbitrary DEDEKIND groups (with the modification that was 
suggested at the end of § 3). 
 The r2 linear functions of x1, …, xn that I denoted by xκλ in § 11, defined a matrix of 
rth degree that is associated with the group (ε) and whose determinant | xκλ | = Φ(x).  I 
denote the corresponding representation of (ε) by [Φ].  The k different representations 
thus obtained that correspond to then prime factors of the group determinant Θ constitute 
all of the primitive representations of the group (ε). 
 A representation that is equivalent to the representation (2) then decomposes into s 
primitive representations | Φ |, s′ representations [Φ′], etc.  The coefficient of um−1 in the 
determinant | xκλ + v eκλ |, namely: 

ϕ(x) = ∑ s χ(x), 
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is called the trace of the representation (2).  In order for two representations of a 
DEDEKIND group to be equivalent, it is necessary and sufficient that their traces agree. 


