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Note | by C. Burali-Forti, in Turin

Communicated on 23 February 1896

“To treat all of the geometry of position by itseifith no metric concepts that would
be extraneous.”) is the goal that was proposed by Staudt in his H@e&metrie der
Lage.

For some years now, a new direction has been pess@mtthe form ofprojective
analytic geometryand whose goal — at least, as far as metric conaeptoncerned — is
the opposite of that of Staudt.

The analytic method makes use of coordinates. The gbinegge homogeneous
coordinates are difficult to apply to metric questionsst as Cartesian and polar
coordinates are difficult to apply to projective question8. coordinate system, in
general, represents a geometric elenkeby 1, 2, ... numbers, which vary with not only
P but also with the reference elements, and has onipdirect relationship toP that
eventually becomes of secondary significance in thmutalons that | will consider.

The synthetic method rapidly solves the majorityha& projective questions, but the
metric method must often be linked to analytic geometry.

If a geometric method succeeds in treating the metrit @ojective questions
indifferently and with equal facility then it will be m® perfect and more powerful than
the other ones, and more convenient from the didasfied, since it would be an
instrument that could be applied, not just in many casgsivays ( ).

One that can presently deduce the method that satiséiesdicated conditions — and
we believe, completely — from Grassmann’s bo&ke(Ausdehnungslehre M. E.
Carvallo ("), speaking about Grassmann's work, said: “It synthestte known
theories of mechanics and geometry...” In particularsyibthesizes the analytic-
geometric methods afjuaternions(Hamilton), barycenters(Moébius), andequipollence
(Bellavitis), and the analytic-geometric method of comaitis in general, without having
any need for the use of coordinates, since it can opgpategeometric entitiedirectly.

The scope of this paper is to show how Grassmann’s sk synthesizes the
projective methods ) i.e., the projective entitigsoint, line, planeimmediately take on
geometric forms, as well as linear systems and fundainpnbjective systems of the

() C. SegreC. G. C. V. Staudt ed i suoi’ lavofin the volume “Geometria di Positione di Staudt,
traduzione dal tedesco di M. Pieri”).

(") This does not, by any means prejudice the purely Sfilequestion of treating the geometry of
position independently of any metric concept. That questmms to have been solved rigorously and
completely in the recent papers of Pieri: “Sui principé reggono la geometria di posizione,” Note |, 1895;
Note II, 1896. Atti Accademia Torino. — “Un sistema ssfpdati per la Geometria proiettiva astratta degli
iperspazi.” Revue de Mathématiques, 1896.

(") Nouvelles Annales de Mathématiques, 1892. “La métho@raesmann.”
() F. Gaspary. — Bulletin des Sciences Mathématiquesur-ue méthode générale de la géométrie

qui forme le lien entre la géométrie synthétique et targidrie analytique.”
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first, second, and third kind, andll of the linear correspondences of ordinary
projectivities, and finally, how the general coordinatéshe form coincide with the
homogeneous projective coordinates, so in this way #lde capable of solving the
metric problems, provided that a projective entity is stuted for the geometric form
that identifies it. That is what defines the objectiv¢his first note.

It will result that, with no need to make an explstudy, the already too rich system
of nomenclature that projective geometry currently usesbe simplified and reduced
appreciably. However, it is not totally suppressed, becausn if the concepts that it
expresses do not appear in many of the vast geometric aupig of analysis, such
concepts are indispensible descriptive geometryand are of use tgraphical statics,
optics ... In regard to descriptive geometry, we will see holwoélthe methods of
representation and fundamental operations (prgjection inversior) are obtained from
a special linear correspondence, and in a completelyeakany way. This will define
the principal object of Note II.

Since Grassmann’s methods are widespread todagn6t all of which are known),
we will dispense with the summary of the parts of tineory that we will use. What
remains is a very concise exposition that cannot givexact impression to those who do
not know the theory of forms. Rather than the abstalculations that are contained in
Grassmann’s book, which “miraculously apply to geometry},(we refer to the€alcolo
geometrico(" ) of Peano, which starts with the elementary concept&uclidian
geometry, and then obtains the geometric forms and opesatnat relate to them in a
very simple way.

We like to think that we have done something usefat least, didactically — if we
succeed in convincing the reader that Grassmann’s methodveaargitimate fusiorof
analytic geometry with projective geometry, without thetric and projective questions
losing the importance that they have in the analyte graphic fields.

8 1. — Projective elements.

A line, as it is considered in projective geometry, tisezia line at infinity or consists
of all of the points of a Euclidian line plus a poinhtréinity that is in the direction of the
line. A plane is either a plane at infinity or catsiof all the points of a Euclidian plane
plus the points of a line at infinity that is incidenttbe plane.

We would like to see how the projective point, linej atane can be easily obtained
from geometric forms.

Let A be a form of the first kind. Ih is itsmassandm is non-zero then one knows
() that A is reducible to the product ah by a Euclidian point that is called the
barycenterof A.

(") Rivista di Matematica, 1895. — “Elenco bibliografdl’Ausdehnunglehre di H. Grassmann.”

() Carvallo,loc. cit.

(") G. Peano:Calcolo Geometrico secondo I'Ausdehnungslehre di H. Grassmoecca, Turin,
1888. We shall cite this book with the symbol C. G.

() C.G. pp.36.
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Given the preceding hypotheses, we write padite., the position of) (") for the
location of the barycenter cA. Therefore, positA denotes a uniquely-determined
Euclidian point.

If A, B are forms of the first kind with non-zero mass aqdat barycenters then it is
obvious thatA is equal to the product & by a real number. Conversely,Afis the
product ofB by a number theA andB have the same barycenter. The hypotheses that
relate toA andB then imply that one can write:

(1) positA = positB = A1 gB,

in whichq is the locus of the “real numbers” j.
If I is a vector (which is always intended to be non-zei@.a form of the first kind
with zero mass () — then it is not possible to define pdsits in the preceding case.
We let positl denote an abstract entity that is a function ofubetor!, and ifJ is
another vector then we will say that pdsit positJ whenl is parallel toJ, or — what is
equivalent b — whenl is the product od by a number. That is, we set:

2y positl = positd= 1 [0 qJ;

i.e., we assume that, by definition, (1) can be provieein&, B are not vectors.

It follows from (1) that positl is a function of thatl has in common with all vectors
that are parallel tg; i.e., ones that hawbe same directioasl.

Following the ordinary usage, we say “point at infihitnstead of “position of a
vector” and “projective point” in place of “position @ form of the first kind.” A
projective point is either a Euclidian point or a poininéinity.

Leta be a form of the second kind with zero invariant; aea= 0. It is known that it
is reducible to either Ene (i.e., the product of two Euclidian points) or tbigector (i.e.,
the product of two vectorsﬂ. A form A of the first kind is said to belong towhenAa
=0.

We write posita to denote the class of projective points that ardipasiof the forms
of the first kindA such thaAa = 0.

If a is reducible to the product of two Euclidian poiR{Q then posita will contain
all of the Euclidian points of the line that passesughd® andQ, along with the point at
infinity that is the position of the vect@ — P.

If ais reducible to the product of two vectdrd then any formA such thatAld = 0 is
a vector that is parallel to any Euclidian plane thapasallel to the vectors, J.
Therefore, posia is a class of points at infinity.

One easily proves)( as one does for (1), thataf b are forms of the second kind
with zero invariant then:

(")  The concept of the position of a form, which sen@sonnect this theory with the theory of
projective elements, is discussed in C. G. by Peano (pp0o7236, 2).

(") We make use of the logical symbols that were adopteBamfolario di Matematica,” which was
published inRivista di Matematica [Translator’s note: These symbols have been updlated.

(™) C.G., pp.37.

() C.G., pp.41.

(M c.G., pp.57.

() C.G., pp.28.
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(2) posita = positb = a [ gh.

Therefore, ifi is a bivector then positis a function of thati has in common with all
bivectors that are parallel to

The preceding justifies our saying, following the comnagluage “line at infinity,”
instead of “position of the (non-zero) bivector” and “pxdjve line,” instead of “position
of a (non-zero) form of the second kind with zero mevat.”

Analogously, ifa is a (non-zero) form of the third kind then pasivill denote the
class of projective points that are positions of tiren of the first kindA that lie ona;
I.e., ones such th&ta = 0.

If it easily proved () that if a, B are forms of the third kind then:

3) posita = positf= a [ gB.

If a is reducible to a triangle — i.e., to the product of thdetinct, non-collinear,
Euclidian pointsP, Q, R — then posita will contain all of the points of the Euclidian
plane that are identified by the poifRsQ, R and the points at infinity that are positions
of the vectors that are parallel to that plane. Adhwave seen, these points are on a line at
infinity that isincidenton the plane.

If a, fare trivectors them [J B, and therefore postr, does not change when one
changes the trivectar. In order for the form of the first kin&l to be such thada = 0, it
is necessary and sufficient thatbe a vector, and therefore that pasinust contain all
points at infinity, and only them.

The preceding justifies our saying, following the commanglage, “plane at
infinity,” instead of “position of an arbitrary (non+zg trivector,” and “projective plane,”
instead of “position of a (non-zero) form of the thuidd.”

The fact that these projective elements possessushal properties is easy to
comprehend. An example will suffice.

“Two distinct projective planes have a common projectine.”

Let a, S be two planes and let;, £ be forms of the third kind that haweand S for
their positions. The regressive product)(a/. is not zero because them O g8, would
be zero, sar = 5. The regressive product 3 is a form of the second kind with zero
invariant that contains all of the forms of the filahd that belong tom; and £ .
Therefore, positm S is a projective line that is common &oandg. If a», 5 are forms
of the third kind that have, g for their positions thea, 0 q&, £ 0 q6, a2 £ 0 qaif,
and therefore posin/ = posit x5, is the unique projective line that is commonao
andg.

(") C.G., pp.2s.
(") C.G., pp. 10%t seq.
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8 2. — Linear systems and projective systems.

A system of entities (i.e., classes) is said tdirear () when thesumandproduct
with a real numbeare defined for its elements, and those operations #mogroperties
of the corresponding operations for numbers.

Elementsa;, a,, ..., an of a linear system are said to lneearly-independentor
simply independentwhen it is not possible to determine numbersm, ..., m, that are
not all zero such thaty &g +mpa + ... +mya, =0.

One says that a linear systemmsdimensional” whem independent elements exist,
butn + 1 of them will always be dependent. This is equivalesaying that if, ay, ...,

a, are independent elements of the system arm&l an arbitrary element of the same
system then there are uniquely-defined numignrs, ..., X, suchthab=x; a1 + X ax +

. + X, a,. The numbers are called theoordinatesof a with respect to the reference
elementsay, &, ..., an .

For examples, we know ): The form of the first kind that is incident with a
Euclidian line and the vectors that are parallel to difian plane are linear systems of
dimensiontwo. The forms of the first and second kind of a Euclididane and the
vectors and bivectors of space are linear systems afrdilonthree. The forms of first
and third kind in space are linear systems of dimerfsion

If U is a linear system of geometric forms then we leitpdslenote the system of
projective elements that are positions of the elesmehU. If, e.g.,U is a system of
vectors that are parallel to a plane then pdsiill be the line at infinity that is incident
on that plane.

As one does in ordinary projective geometry, one aam fwhat was done in 8§ 1,
define the “fundamental forms of first, second, and thind’k(" ). Because there is no
place for misunderstandings here between the two meaoirtgs termforms we shall
say ‘projective figureof the first, second, third kind,” in place of the prdiog phrase.

Let n be one of the numbers 2, 3, 4, andUebe ann-dimensional linear system of
geometric forms. postt is then a projective figure of tha € 1)" kind. Conversely, if
positU is a projective figure of then(— 1)th kind thenU will be ann-dimensional linear
system.

The reader can prove this general proposition quiteydagsinaking use of the linear
systems of two, three, and four dimensions that we@astled.

In particular:

a) The systems of geometric forms whose positions ajegtive figures of the first
kind — viz., point-like sheaves of rayssheaves of planes are linear systems of
dimensiontwo for the forms ofirst, second andthird kind, respectively.

b) The systems of geometric forms whose positionspangective figures of the
second kind — vizpoint-like planeruled plane stars of linesstars of planes- are linear
systems of dimensiothreefor the forms ofirst, second andthird kind, respectively.

*

C. G., pp. 141-144.
) C.G. pp.113-119; 141-144.
(") StaudtGeometria di posizionéranslated by Pieri, Bocca, Torino, 1889; pp. 1-11.

%

()
(
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c) The systems of geometric forms whose positions aijegtive figures of the third
kind — viz.,spaces of pointspaces of planes are linear systems of dimensitour for
the forms ofirst andthird kind, respectively.

Observe that projective systems are not linear systemtsonly positions of linear
systems.

8§ 3. — Double ratios.

Let U be a two-dimensional linear system of geometric fornt lata, b, ¢, d be
elements oU.

If positU is a projective line theab is aline or abivectoraccording to whether posit
U is not or is a line at infinity, resp. ¢fl is not zero themb/ cd () is the real number
by which one must multiplgd in order to obtaimb.

If positU is a sheaf of lines then the element&ofill be lines that are incident with
a Euclidian plane or bivectors, and in one case oothher they are products of a fokiw
of the first kind with a fixed position (i.e., the cenbf the sheaf) with a form of the first
kind. The progressive product of two element&Jag always zero. We always intend
thatab shall denote the regressive produck ¢f a with b. One has that = WA b = WB,
¢ =WC, d=WD, whereA, B, C, D are forms of the first kind whose positions are {®in
of the plane of the sheaf pokit Consequently, id is not zero then one has:

ab/cd= (W AB. V}/ (W CD. W =W AB/W CD,

andab/ cdis a well-defined number that relates to two trianglesvo trivectors.

If posit U is a sheaf of planes then the element&)adre forms of third kind and
products of a form of the second kiadi.e., a line or bivector, according to whether the
planes of posit) are not or are parallel, resp.) whose position is xiee &t the sheaf for
forms of the first kind. The produabis always a regressive product X

One hasthaa=s Ab=sB c=s C d=s D, whereA, B, C, D are forms of the first
kind. Ifcdis non-zero then:

ab/cd=(sAB s/ (aCD.s) =sAB/s CD,
andab/ cdis a well-defined number that relates to two tetrahedra
For any posit, if ab is non-zero then we will pugb / 0 = £, while the choice of
sign will remain arbitrary.
Let us, Uy, Us, Us be elements df) such that no three of them have the same position.
Write rat(us, Uy, Us, Ug), or simply ratu, in place of “the double ratio of the sequenge
Uz, Uz, Uy” and set, by definition:

(1) ratu = (U Uz / Up Ug)(Uz Usg / Ug Ug).

C. G, pp. 29.
() C.G., pps.80and99.
") C.G., pp. 109.



Burali-Forti — The Grassmann method in projective geometry 7

From the hypotheses that were made regarding the pogfion, it results
immediately that none of the ratios that watan produce will present themselves in the
form 0 / 0, and that rat cannot present itself in the fornx®o. Therefore, rati is either
a real number or it is equal tooet
(2) ratu OJ (q 0 £ o).

It results immediately from (1) that:

(3) ratu = 0= (u; uz = 0)0 (ux us = 0),
(4) ratu=+oc = (up Uz =0) (U ug = 0),
(5) rat(iz, Uy, Us, Ug) = ratu.

Let u1, Uz be independent, whibg, x., y1, y2 are real numbers, and then consider the
double ratio of the sequenag Uz, X1 Us + Y2 Up, X1 Uz + Y2 Uz . One then immediately has
from (1) that:

(6) I'at(Jl, U, X1 Up +VYolp, Xg Up +VY2 Uz) =Xo V1 [ X1 V2.

One easily deduces the following from (5), (6):

(7) ratu = 1= (up U = 0) O (us ug = 0),
(8) rat(iz, Us, Uy, Ug) = 1—ratu,
(9) rat(iz, Uz, Us, Ug) = 1/ ratu.

Suppose that the preceding hypotheses are valid tordu, and leta;, ay, as, as be
non-zero real numbers. For example, sirgeal()(az Us) = (a1 as) up Us, (1) gives:

rat@; u, az Up, ag Us, & Ug) = ratu.

This says that rat is a function ofposition of the formu, since, e.g., post#y u; =
positu; .

Therefore, ifP1, P,, P3, P4 are elements of a projective figure of the first ksuth
that no three of them coincide then one can defineltldble ratio of the sequence Pf
by:

ratP = ratu,

where theu are geometric forms such that:
positu, = P, (r=1,2,3,4).

This is well-defined, and in general, the double ratio séguence of four elements
of a projective figure of the first kind. The fact thiatoincides with the usual double
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ratio results, in part from the fact that/f, P, Ps, P4 are collinear Euclidian points then
(1) will give:
ratP = (P]_ P3 / Pz P3) (Pz P4 / P]_ P4),

which is customarily assumed by definition. In § 4, ilt fae proved that the double ratio
of the section of a sheaf is independent of the sesfamtent and equal to the double ratio
of the sheaf. The latter property is usually assumetthdylefinition of the double ratio
of four elements of a sheaf. Properties (2)-(9) imatedy give the ordinary properties
of double ratios.

“If Py, Ps, P3, are distinct elements of a projective figure of thet fkind andh is
either a real number or infinity then there will exestactly one elemer, of the figure
such that raP = h.”

Proof. Letus, U, us be geometric forms that hatg, P,, P, for their positions, resp.
Sinceu;, U, are independent angg has a position that is distinct from, u,, one can
determine non-zero numbexs X, such thatu3 =x; Uy + Xo Ux . Putus =y U +yo Up .
One then has rat = (xo / X)) (y1/y2). If ratu has the valué theny; / y; is defined, and
conseqlgently, so ihe positionof the formu, — i.e., the elemer®; — which was to be
proved ().

At the end of this section, we will observe that. “Tledinary projective
homogeneous coordinates)(coincide with the general coordinates of the geometric
form.”

We prove this for the coordinates of the points of geptive planerz

Let A1, Az, As be forms of the first kind that are linearly indegent and have points
of the planerrfor their positions. For a forfa that has its position im the coordinates
X1, X2, X3 With respect to the reference elemehisA,, As are well-defined, and one has:

P=xA1 + XA+ XAz .
If mis a non-zero number then:
m P=(m x) Ac+ (M %) A2 + (M %) As,
and thereforeq, xz, X3 will not be homogeneous coordinatesPof However, since posit
(m P) = positP, x1, X2, X3 Will be homogenous coordinates of pdait
If one sets:

E=A+A + A3
then one will immediately have that

(*) This is because while the coordinates — &,9%, — of us with respect ta;, u, vary whenuy, Uy, Us
varies, the ratioy / x; varies only when the positionsaf, u,, us vary.

(") The first systematic treatment of projective, hormegeis coordinates was made by Fiedler
(Darstellende Geometre The concept of a system of homogeneous coordinatesrid in Mdbius Der
barycentrische Calcyl1827), in StaudtBeitrdge zur Geometrie der Lagé856), and in Hamilton
(Elements of Quaternion$866).
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rat(Al Az, A]_ A(:,, A]_E, A]_P) =X /)('g,
and therefore — e.gx; / x3 — will be the double ratio of the line of the sheabwad center
IS positA; that projects to points that have positions of thenfA,, As, E, P. That isxy,
X2, X3 are the projective homogeneous coordinates of pysiince positA;, posit Ay,

posit Az are vertices of the triangle of reference and gosttheunit point. This proves
our assertion.

8 4. Homographies.

Let o be a correspondence between the elements of a lipgt@ndJ) and another
linear systen”. It is known () that ois called a “linear transformation” when for any
arbitrary elements, y of U and any arbitrary real numbex one has:

ax+y)=ox+agy, omx=m(oXx.

Any real number is a linear transformation of a lImgstem into itself.
From time to time, we shall recall the propertieswth transformations, as required.
Let n be any of the numbers 2, 3, 4, andUeU " ben-dimensional linear systems of

geometric forms. l&y, ..., u, are independent elementsbiindu,, ..., u, are arbitrary
elements ol "then exactly one linear transformationlbfnto U ’is defined such that,
..., Un correspond tay , ..., u,, with some ordering. I&ris that transformation then put:

e (ui, u;j.
U, ... U
If the u" are also independent elementdJdfthen o will admit an inverse. That is,
there will exist a linear transformation fradf to U that makesu, , ..., u;, correspond to

Uy, ..., Ur. This will be denoted by™; i.e., one will set:

e (ul u,:j.
u, ... U
If ois an invertible transformation betwednandU ’then it will be asingle-valued
andreciprocal correspondence betwebnandU".

Linear corrgspondences between systems of geometnis foll be referred to as
homographieg ). We shall study their principal properties.

*

() C.G., pp. 145-151.

(") In part IV of the paper that was cited above, Carvalitained homographies (no. 24) using the
coordinates of the geometric forms. Using the method weapresented, one does not make use of
coordinates, but must only take into account the numbeadiménsions of the system, which is not



Burali-Forti — The Grassmann method in projective geometry 10

I. — “If ogis an invertible homography betwedrandU’, andV is a linear system that
is contained irJ thenoV will be a linear system that is containedJnand has the same
dimension a¥.”

If n = 4 then there will exist an infinitude of linear systevhef dimensions 3 or 2
that are contained . If n = 3 then there will exist an infinitude of two-dimensional
linear system¥ that are contained id. If V is n-dimensional thev = U.

To prove that theorem suppose, e.g., Yhat a two-dimensional linear system. Pif
P, are independent elements\othenoP,, oP, will also be independent elementslbf,
since otherwiserwould not be invertible. IP is an arbitrary element &thenP =x; P
+ %2 P, and thereforer P = x; (0 Py) + %2 (0 P2), which proves the theorem.

II. = “If gis an invertible homography betwednandU"andV is a two-dimensional
linear system that is containedUhthen the double ratio of any four elements/oill
be equal to the double ratio of the corresponding elesrient

Let Py, P2, P3, P4 be elements of. The elementgP,, oP,, oPs, dP4 belong to a
two-dimensional system. If one can consider the doalie of the sequende then the
same thing will be true for the sequer@® sincecis an invertible correspondence. |If
P1, P2, P3, P4 are independent and, x,, X3, X4 are the coordinates &%, P, with respect
to P1, P2 then they will also be the coordinatesabf;, oP4 with respect tagPy, oP,. It
follows from this that raP = rat(c P) = (X2 y1) / (x1 y2), which was to be proved.

[ll. — “If the homographyo betweenU andU is such that there exist+ 1 united
elements oJ and anyn of them are independent thenwill be a number; i.e., every
element otJ will be united with respect to:”

One says that an elemdhbf U is united with respect towhenoP is the product of
P with a non-zero number; i.e., when pogiK) = positP.
LetP, (r=1, ...,n,n+ 1) ben + 1 elements o) that are united with respect to
One has:
oPr=h P (r=1,..,n,n+1),

Prir =X P1+ ... +X%, Pn,
where, from the hypotheses that were mdd@ndx are non-zero numbers. It follows
that:
X1 (hl —hn+1) P+ ...+ X, (hn —hn+1) P, =0.

However,Ps, ..., P, are independent, and the numbegse not zeroes, so:

hy =hy = ... =hp = hyyy,

equivalent to the systematic use of coordinates, whictohisan indirect relationship to the geometric
entities that they identify.
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and consequently is equal to the numbebhs which was to be proved.

IV. - “If sis a geometric form ansl U is ann-dimensional linear system therwill
be a homography betweehands U.”

Let s U denote the system of forms that is produced (progrégswveregressively)
from the forms otJ by the forms. If, e.g., posiU is point-like ands is a form of the first
kind that does not belong td then posits U will be the sheaf of lines that project pddit
from posits. If positU is a star of planes arsds a form of the third kind whose position
does not pass through the center of pdgihen posits U will be theruled planethat cuts
the star posiU with the plane poss.

Proof of the theorem. P, Q are elements dff andm is a number then from the
known () property of progressive and regressive products, ondai#:

P+Q)=sP+sQ smP =m(sh.

Therefores is the symbol of a linear correspondence betwéamds U. However,
by hypothesiss U is ann-dimensional linear system likg, and by definition, it follows
thatsis a homography betweéhands U.

Let P be a (non-zero) element 0f and letm be a non-zero real number. One has
that o (Pm) = m (o P), and therefore that posit[(m P] = positlc P). That is, posio P
does not change whéh which varies irJ, does not change position.

Therefore, given the homography betweenU and U’, we can consider the
transformation between positand positU'to be such that an eleme@tof positU will
correspond to the element posifP), whereP is an arbitrary form itJ such that posie
= Q

We denote such a transformation by pasitiIf Q is an element of posW then its
correspondent in posli © will be denoted by (posi)Q, or more simply by posir Q,
but not by posit¢ Q), sincecg Q has no meaning, in general.

We call a correspondence that comes about betweerptojective figures of the
same type a “projective homography,” or , when it walt fead to any confusion, simply
a “homography.”

Projective homographies are not linear correspondendéso is an invertible
homography betweety and U’ then posito will also be an invertible, projective
homography between podit and positU’ i.e., posito will be a single-valued and
reciprocal correspondence between pdsind positU .

Projective homographies, thus defined, comprise all ottineespondences between
projective figures that one studies in ordinary proyectyeometry under the general
name ofprojectivities

() C. G, pp. 111-112. Formulas (1)-(9), along with what said in §§ 1, 2, immediately give the
principle ofduality.
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If, indeed,S S’ are projective figures of the same kind then from pribipas |, I,
the definition of projective homography, and from what sais in 88 2, 3, one will have
the following proposition:

I — “If A is an invertible projective homography betwe®grand S” and T is a
projective figure that is contained $thenAT will be a projective figure that is contained
in S”that has the same type &%

II". — “For any invertible homography betwe&nand S, the double ratio of four
elements o6is equal to the double ratio of the corresponding elésrien

If one supposes tha&, S’ in II' are projective figures of the first kind, and one
confines oneself to considering double ratios that have éheev 1 (i.e., harmonic
double ratios) then one will have the definition of StUd I corresponds to the general
definition of projectivity for projective figures of tleecond and third kind that was given
in Staudt ().

From prop. lll, one deduces (Staudt’s theorem):

“If a projective homography transforms the fig8®f the o — 1)" kind into itself,
andn + 1 elements 0% such that any of them do not belong to a figure of the— 2)"
kind (") are united then every element Sfwill be united with respect to that
homography.”

One should notice that in 1l it is not necessarystippose that be an invertible
homography, and from the other hypotheses that relate edwrléments that imply that
ois a number, it also results thats an invertible homography.

From prop. Il, IV, one immediately deduces that thed&dmental operations of
projective geometry — viz.projection and cutting (segare) — leave the double ratio
invariant. This proves that the double ratio of four eleimef a sheaf of lines of planes,
as it was defined in 8 3, enjoys the property that one arlyi@gsumes by definition.

In the following note, we will study the homographieswsen particular linear
systems of geometric forms by the methods that we gaes the fundamentals of, and
consequently, the projective homographies between partipudgective figures. For
now, we shall confine ourselves to proving the followwvg propositions:

() Staudtjoc. cit, pp. 42.

(") Staudt,loc. cit, pp. 51. There exists a slight difference that reltiethe way of considering the
correpondence that can be examined later on. For newpwfine ourselves to this example. According
to Staudt’s method, 6 S’ are stars ofines and planeshen one can consider the projectivity that makes
any line (plane, resp.) &correspond to a plane (line, resp.Sof We must split it into two that have, as
we shall see, an intimate relationship between tlsamge a star of lines and planes is not the positian
Iinggr system of forms, but rather the (logical) @afra star of lines with a star of planes.

(") We intend that a point should be a projective figurgypé zera Otherwise, fon = 2, one says
“the three given elements 8fandS’are distinct.”
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“An invertible projective homography between the projecfigaresS, S’ of typen —
1 is defined by the condition that+ 1 given elements @will correspond to + 1 given
elements ofS’, as long as ang of the given elements i8 and S’ do not belong to a
projective figure of typa — 2.”

Let U, U’ be linear systems of geometric forms, such that positS positU’= S’
The systemsJ, U’ aren-dimensional.
LetP, P' (r=1, ...,n,n+ 1) be forms oJ andU’that have the given elements®f

and S’ for their positions. From the hypotheses that were naade from 8§ 2, one
deduces that anyof theP andP’are independent.

Let h be a non-zero number, and set:

P, P,..hP
g= .
P,P,.. P

n

o is then an invertible homography betwd¢randU’, and o P,:1 is a well-defined
form in U’ If one desires that posit(P..1) = posit P,, then the numbeh will be

determined uniquely, and pogitwill be a homography that satisfies the conditions tha
were posed in the theorem.

Let A be a projective homography that satisfies the theor&dn@Q is an arbitrary
element ofSthen one can consider the correspondence bet®8/egnlS’that makes posit
o Q correspond tod Q. This is a projective homography, but it hast 1 united
elements, so na of them will belong to a projective figure of type- 2, and therefore
posito=A. The theorem is thus proved.

“If S S"are projective figures of the first kind and a singlasedl and reciprocal
correspondence betweéhand S’ preserves the double ratios then that correspondence
will be a projective homography.”

This is an immediate consequence of the preceding ptioposnd the fact that when
one is given the value of a double ratio and three of dggtive elements, the fourth one
will be determined uniquely (8§ 2).

Turin, January 1896.

C. BURALI-FORTI




Note Il by C. Burali-Forti, in Turin'j

Communicated on 14 February 1897

In this note, we propose to study the property of homogeaghat any forn® of the
first kind will correspond to a form of the first kindathis a linear function o and a
fixed form W that is also of the first kind ). The projective homography that this
corresponds to (Note I, pp. 192) contains the orditamologiesand perspectivities
and rapidly gives a method of representation that deserigeometry makes use of,
along with the fundamental theorems that it continuadigs.

For brevity of notation, and to symbolically expressie propositions, we write:
Fi1, F2, F3, instead of forms of thigrst, second andthird kind, respectively.

v, V%, V*, instead ofvectors bivectors trivectors respectively;wwill denote the unit
trivector ().

For the homographies, recall the following definitionsl @roperties: Let, U’, U”
ben-dimensional linear systems of geometric forms.

If g, A are homographies betweenandU 'then we will say thatr= A when for any
form P of U, one has thatP = AP. With the same hypotheses, sgt-(A) P = oP + AP,
so o+ Ais a homography, sincegt NP +Q)=(c+A) P+ (c+A) Qand g+ A(MP
=m[(o+ A) P]. If gis a homography betweéhandU’, andA is a homography between
U“andU “then setAdP = A(dP), soAowill be a homography betweéhandU”. If ois
a homography betweds andU then setd’ = g; and ifn is a positive integer then sgt™
= d'o. If ois invertible then set™ = ("), and one easily proves that the powersrof
will enjoy the same properties that powers of numbders

()  See Note | in volume 10, pp. 177-195, in these Rendiconti.

(") By the principle of duality, one obtains, in an analsgway, the homography that makes any
form srof the third kind correspond to a form of the third kihdttis a linear function ofrand a fixed form
fthat is also of the third kind.

Fokk

(") According to what we did in Note I, we have that:

projective point = posiE; # 0),  projective line = posif F;# 0), projective plane = posi{ # 0),
point at infinity = posity # 0), line at infinity = posit¢ # 0),
plane at infinity = posit€ # 0) = positw
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8 5. Collinear homographies.

We say that a linear correspondemcbetween forms of the first kind and forms of
the first kind is acollinear homographyvhen there exists a fixed forvid of the first kind
such that for any forr® of the first kind one has thaP is a linear function oP andW
(ie.,oP O gP + gW).

The formW is called thecentral formof the homographw.

Theorem |. — If gis a collinear homography whose central forndvishen a number
s will be determined, along with at least one famof the third kind such that for any
form P of the first kind one will have:

(1) oP =sP+ (Pa) W.
Proof. IfP, P" areF; then, by hypothesis, numbess, s', I, I, I” will be determined
such that:
oP =sP+ AW, oP' =sP +1'W, oP+P)=s"(P+P)+I"W.

However, by hypothesisy is a homography, and therefooP + P') = oP + oF'.
Consequently:
SP+SP + (1 +I"W=¢g" (P+P) +I"W.

If one multiplies the two sides of the equation byoarf S of the third kind that
containsP' andW (i.e., P'8 = W[ = 0) then one has thaPB = s'Pg, i.e.,s=5s". One
proves that =s'in an analogous way.

From that, one deduces that: “There exists exactlyhangbers such thatoP = sP +
IW.”

Now, letP; (r =1, 2, 3, 4) be four independdrt. If numberd, are determined such
that:

oP =sP+I, W,

and a forma of the third kind is determined such that (
Pa=1,
thenP,P, P; P, will be a unit tetrahedron. R is an arbitraryr; then numbers; will be
determined such that:
P =X P1+X2 P2 + X3 P3 + X4 Pa.

If Pa=11x1+1>X% +13x3 + |4 X4 then one will have that:

oP =sP+ (Pa) W,

() ais the form that has the numbéréor its coordinates with respect to the i.e., one has:

0’=|1P2P3P4+|2P3P4Pl+|3p4plpz+|4plpng.
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which proves the theorem.

We intend the notation:
(2) o=[s,W, a]

to mean that is the collinear homography such that formula (1) igdvialr any formP
of the first kind. Theorem | shows that any collineamography can assume the form
(2).

We call the forma of the third kind that appears in (2) the “base form’tlod
homographyo:

Theorem Il. — The homographys] W, a] is the identity (i.e.,§ W, a] = 1) only
whens =1, and either the central forM/( or the base forn| is zero. In symbols:

[SW,al=1=(s=1)0W=00a=0).

Proof. Ifs=1 andwW = 0 ora = 0 then from (1) one has that for ayoP = P; i.e.,
o=1.

Converse. 1§=1 then from (1) if one has that (P = (Pa) W, from which, upon
multiplying by P, one deduces thaP&)(PW) = 0 for anyP, then this will be true only
when eitheW =0 ora =0. However, iW=0ora=0then (1 s)P=0;i.e..s=1.

Theorem 2.— If the collinear homographies= [s, W, a], g1 = [s1, W1, a1] are not
identities theno = g1 only whens = s; and there exists a real, non-zero numbesuch
thatW, = mWanda = ma; .

(c21)0(@zl)=(0=0)= (s=s) U(mOg#0) OWL =mW O (a=mamm #m\)

Proof. — Ifs= s, and there exists a numhbarsuch thaWw; = mW, a = ma; then from
(1) one will have thatP = ¢iP; for anyP; i.e.,o= 0 .
Converse. o= g then from (1) one will have:

(@ sP+ (Pa) W =g P+ (Pay) Wi,

or, after multiplying byP:
(b) Pa)(PW) = (Pa)(PWy).

If WandW; are non-zero forms then this will show (Theor. hattthe linePW will
always pass through the polW; i.e., it will prove that: “There exists a numbarsuch
that W, = mW” If one takesmW in (b) instead ofW,; then one will have thaPa =
m(Pa); i.e.,a=ma .

If one substitutes that i) then one will have tha==s; .
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We will see some applications of this theorem infthlewing section. For now, we
confine ourselves to pointing out some properties ofinedl homographies that are
easily deduced from the notation (2).

Set:

(3 W, al =[1, W, a],

and from (1) one will easily obtain the formulas:

@) [sWa=[Wal+s-1, W, ] = s[w,%} :s[vzv,a]

The first of (4) is true for anyand reduces any general collinear homographyeo th
sum of a homography [M, a] and a number. The second of (4) is true onlynion-
zeros and reduces the general collinear homographydagtbduct of a homography [1,
W, a] with a number. Except for the homography\]@, a], which is, moreover, devoid
of any interest, all of the other collinear homqarias can be reduced to the form (3).

If m, n are numbers such that+ n is non-zero then from (1) one easily finds that:

5) mW,al+ i Waj] _ [W,ma+ ml_,
m+ n m+n |

(5) mW,al+ i W a] _ [mW+ nvy’a‘,
m+n m+n

which gives the barycentric property of the hompgsalW, a] and therefore that of the
general homographg,[W, a] for non-zercs, as well.

8 6. — Collineations.

We call any collinear homography of the forid, [a] [See § 5, (3)] @ollineation
In the sequel, it will always be implicit that:

o=[W, d,
whereW is a form of the first kind and is a form of the third kind.

. POF1= 0P =P+ (Pa)W.
II. POF.= oP = (Wa+ 1)P + (PW) a.

| is an immediate consequence of (1) in 8 5.sltdleduced from | by observing that
(Pa)W = (PWa + (Wa) P. One obtains the position @P from | by barycentric
construction of the poirf® and the pointV. One obtains the position aP from Il by
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barycentric construction of the poiRtand the point of intersection of the likeéP with
the position of the base form of

One easily proves the following propositions by using psgjns |, II:
. POF; = [P(oP) = 0= (PW=0) O (Pa = 0)].
IV. (POFy) O(o# 1) O(P(oP) 2 0)= ratlW, (PWa, P, oP] = Wa + 1.

(gR)(@R)(R)(R)

V. (P1, P2, P3, P, 0F;) O(PLP2P3 Py #0)= RRRR

-Wa + 1.

[Il shows thatP is united with respect toonly when it lies in the central form or the
base form ofo. 1V says that the double ratio that is definedtty pointW, the point of
intersection of the lin€W with the base form, the poiR and the correspondent Rois
constant (and equal Wa + 1).

We let wdenote a unit trivector — i.e., a trivector subéttif O is an arbitrary point
then the tetrahedro@wis right-handed, and its volume is 1.

VI. FROXO{oXOv = F OXO{X[w+ Wa) a] =0}
VII. POF=[0POv= w+ Wa a=0].
VI [w+ W) ol OV =>WOvOa OV,

VI expresses the idea that: “A forid of the first kind has a vector for its
correspondent under only whenX lies in the form of the third kindv+ (Wa) a.” This
is deduced immediately from | upon observing thHa¢ tonditions ¢P)w = Pw +
(PA)(Ww) = Pw + P[((Wawa] = Plw+ Wawa] and (0P)w = 0 are equivalent to the
condition “oP is a vector.” The fornw+ (Wa) « is called the “limit form” of the
collineationo.

VII expresses the idea that aRy has a vector for its correspondent only when the
limit form of ois zero. VIII expresses the idea that the liror of ois a trivector only
when the central form is a vector or the base ferentrivector (in fact,p+ W al w=

(Wafaa).
Whengis not the identity, we set:
(1) centeto = positW, baseo = posita,

and Theorem Il of 8§ 5 proves that centeis a point function otrand that the baseis
a plane function ot

The numbeMWa + 1 that appears in propositions I, IV, V is edllthe “double ratio
of ¢’ and is denoted by the notation mti.e., we set:



Burali-Forti — The Grassmann method in projective geometry 19

(2) rato=Wa + 1.

Theorem Ill of 8 5 proves that ratis a function ofo.

We call the locus of points that are positionsFafand have vectors for their
correspondents the “limit af” and denote it by lino:. If the limit form of ois not zero
then from prop. IV, one has that:

lim o= positjw+ (Wa) a].

If the limit form of o is zero then (prop. VII) linuis the totality of all points. Theorem
lIl of 8 5 proves that linois a function ofo.

If the limit form of gis not a trivector then the base formawill not be a trivector,
either, and one will have that limmis a projective plane that is parallel to the plaase
o, because the triangl® + (24 ais obtained from the triangl€() a (which has the
mean position ofr) by means of a translation.

Observe that the elementg a can vary for the collineatioor = [W, a], without s
varying, which explains the importance of the projectieenents centeg, baseg, rat g,
lim g, since they are, in a way, invariants of the homography

If, in the above, one considers the (three-dimemdjmsystem ofF; that have their
positions in a projective planginstead of the general systemFafthen one will obtain
collineations of the plana In the sequel, we will suppose that one knows the piieper
of plane collineations that one obtains from the domeg by substituting th&; of the
fixed plane for thé=; .

§ 7. — Homologies.

We shall sajnhomology instead of “collineation with non-zero double ratidf’we
write Collin and Homol, instead of “collineation” and ‘inology” then we will have:

Homol = CollinO ¢ O {rat g% 0}.
l. (c0Homol)O(o# 1)d(mO{n# 0}) = ¢" 0 {Homol # 1}.
(centerd™ = centero) [ (based™ = baseog) U (rat & = (rato)™).

This proposition expresses the idea that:dlis a homology that is not the identity
andm is a non-zero (positive or negative) integer tbEwill also be a homology that is
not the identity that hasthe same center and base asd whose double ratio is thé"
power of the double ratio af”

Proof. — Ifo=[W, a] andW, A, B, C are independeri; then, from | of § 6, one will
have that §W)(oA)(oB)(oC) = Wa + 1)WABGC and thereforeo will be an invertible
homography, of in other words- an arbitrary power o&rwill be a homography.

For anym, one has from | of § 6 that:
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(1) d"W = (ratod™ W.

From the middle proposition, one also has, afteripiyihg by ™" and taking (1)
into account, that:

AP ="' P+ (rato)" (Pa) W.

From this formula for positiven, one deduces that:
(2) d"P=P+[1+rato + (ratg)® + ... + (ratd™ ] (Pa)W,
(2) o"™P=P-[(rato)™+ (rato)? + ... + (rato) ™ (Pa)W,
and these formulas prove the theorem (

Let a, b be two projective geometric elements for which one gise meaning to the

phrase “the distance fromto b.” We shall write dist, b) instead of that phrase. One
has the theorem:

II. (sO{Homol # 1}) O(centero U posit) U (baseo [ posit«) [J(m O N)
= dist(centerg, lim ") = dist(basag; lim o™).

“If gis a homology that is not the identity whose ceatel base are proper elements,
and ifmis a positive integer then the distance from theesesf o to the limit of o™ will

—M »

be equal (in absolute value) to the distance from theddfaséo the limit ofo .

() If we seth = ratain (2), (2) then we will have, for positive or negatiwe

d"P=P+ hh_ll (Pa)y W or d"P=P+m(Pa) W,

according to whethdris not equal to 1 or is equal to 1, respectively.
If we seto = [W, a] then we will have that:

o= {W,hm_la} or d" = [W, mal,

respectively.
2 3
It is known (G. Pean&;alcolo Geometricpthate” =1 + o+ % +% + ... is a convergent series.

From |, one deduces by a simple calculation that:

h-1_.
e”l= {W,e Y 1a} or el=g

It then results tha” " is a homology that has the same center and bageaad whose double ratio is
h-1
e .
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Proof. — If centeloand basesare proper elements then, from Theorem VIIl of 8§ 6
and the preceding theorem, one can deduce that'liand limc™ are proper planes that
are parallel to base:.

Seto=[W, a] andh = rato. Fix the positive sense of rotation on the plarend let
mag a be the signed area of the triangle Let A be the signed distance from centetio
baseoand letAn, be the signed distance from centeo lim o™

Observe that foin # 1 the limit form ofd™ is:

L=w+ hh _1(Wa) a,
S0 one has that
EA = Wa , EAm = W’B )
3 maga 3 magpS

However, the triangl@ is obtained from the product afwith the number\Wea)(h™ -
1) / (h— 1) by means of a translation, and therefore:

m

mag S =Ww H _

maga.

As a consequence, one has:

h and A= 1 A

A= A
" pm-1 h™ -1

One thus has that:
D+ A=A,

and this formula, which is also valid for= 1, proves the theorem.
1l (o0 Homol)= [ = 1= rato=-1].
“A homology is involutory only if its double ratis equal to-1.”

Proof. — The condition” = 1 is equivalent twr= g™*. For anyP, this is equivalent to

Pa = -t Pa, which then proves the theorem.
rato

V. (cOHomol)OMON) O(d"=12A) = (& = 1).
“If a homology is cyclic then it will be involutgy” and this is proved as before.

V. (o0 Homol)= [(lim o= lim 6% = (¢ = 1)O(lim o= positd)].
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“The limit plane {) of a homology coincides with the limit plane of inverse only
when either the homology is involutory or its limlape is at infinity.”

Proof. — The condition linw= lim ¢ is equivalent to:

[+ (Wada [w—i(\/vw)a} -0,
rato

which is developed from:

(1+ ! j(Wa)(aa) = 0.

rato

We call any homology that is not the identity dxag an improper center and a proper
base araffinity. Any proper point will correspond to a propermpbecaus®Vw= 0 and
(0P)w = Pw The ratio between a tetrahedron and its correspat is equal to the
inverse of the double ratio of the affinity (8 @pp. V).

We call any homology that is not the identity dvag a proper center and an improper
base dhomothety If Wis a point Ww= 1) then any proper poift will correspond to a
form of the first kind whose mass is the doublaeoraf a homothety, because (8 6, Il)
(dP)w= Wa + 1Pw=rato. It follows from this and prop. V of § 6 that thatio of a
tetrahedron to its correspondent (with respectdsitpo) is equal to the cube of the
inverse of the double ratio of a homothetyWis a proper point ang is a proper point
then one will have that:

P 1

positoP = I —we
rato rato

(P-W),

so from the usual construction of the homothets pbint it is proved that any figure will
correspond to a figure that is similar to itself.

We call any homology whose center and base areojpep elements aongruence
If o=[W, a] thenWa = 0 and therefore rar= 1. One also has that= ke« wherek is a
number, and thereforeP = P + kW, i.e., any congruence isti@nslation

The reader will easily recognize that the projecthomographies that are the
positions of the homologies that are now studiedthe ordinary projective homologies.
We have replaced the usual term “plane of the hogyslwith the generic term “base,”
so the theorems that were stated are also apmitalglane homologies with some minor
changes. We have replaced the usual term “chait@d®f the homology” with the term
“‘double ratio of the homology,” because rat by itself, does not characteriz¢he
homologyo (). Moreover, we have not followed the common pecacbf considering

() One will have that if{V, a] is a homology of the limit form then it will be nezero, becausef w+
Waya] = Wey(Wa + 1).

() The reader can easily state and prove the custotheoyems in regard to the various ways of
defining a homology with the methods that methods the¢ lbeen used so far.
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the homology (like the rest of the projective transfations) to be *adouble
transformation betweenfast andsecondfigure and asecondandfirst figure ("), which
leads, e.g., to the consideratiorntwb planes that are limited by just one homology.

§ 8. — Perspectivities.

We shall sayerspectivity instead of “collineation with double ratio zero.” Wi
Persp instead of perspectivity, we will have:

Persp = Collid g O{rat s= 0},
or, more simply:

Persp = ColliJ rat O.
If o=[W, a]l andW, A, B, C are independeri; then @W)(g A)(oB)(gC) = 0 when
rat o= Wa + 1 = 0, and therefore: “perspectivities are myertible,” namely, ifois a
pespectivity therr™ will not be a homography.
I. ol Persp= centeroU lim o.

lI. (oUOPersp)d (PO Fy# 0)= positoP [J baseo:

Proposition | expresses the idea that the cerft@ng perspectivity belongs to the
limit figure. This is obvious if limois all of space. If linuis a plane themw+ (Waw) a
# 0 andW w+ (Wa) g = rat a(Wa) = 0, which proves the theorem.

Proposition Il expresses the idea that any forntheffirst kind has a form with its
position in baserfor its correspodent.

If Wis a proper point and basgeis not the plane at infinity then posgitwill be the
usual CENTRAL PROJECTION(), for whichW will be thecenterand baser will be

(")  The concept of correspondence is presented by theaoydimethod in a form that is incomplete
and not at all precise. Regarding the notations centbaseg, lim g, observe that they permit one to
representwo or more homologous planes in a drawing anitErpret the figure with no need for other
information.

(") We point out a system of notation for central @ctipns that seems to be useful to us and would
substitute for the ordinary notation, although it seeery incomplete. If is a figure (i.e., a class of
points) then one lets (as one ordinarily ddeSjlenote the locus of images (or projections) of poiffs. o
This notation is incomplete because it should corgaine hint about the center and the image (quadro); it
is, however, sufficient in practice, because it is uasgary, in any case, to change the reference elements
We write, e.g.,), instead of the point at infinity. Thenafis a line thenJa (instead ofl 0 @) means “point
at infinity of a.” Therefore Ja)’ means “vanishing point @” In place of §a)’, one can writda, but not
Ja’, which would mean “point at infinity for the image @f Analogously, ifa is a plane theda will
mean the “line at infinity oy” and @a)' or J’a will mean the™ “vanishing line ofr.” We indicate the
image by a fixed letter — e.gz— soar arnr(instead ofa [0 77 a O 7) will denote thdraceof aanda. In a
drawing, e.g., a point with the notatiamr= Ja will represent the lina that passes through the center of
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theimage If Wis a vector — i.e., centeris a point at infinity — then posa will be an
ordinary PARALLEL PROJECTION.
For any non-zero forrR of the first kind, set:

Ao=—"% and A=Ay,
maga

If P is a proper point thef\p will be the signed distance to bage If P is a vector
andO is an arbitrary proper point of bagghen one will have thakp = Ag+p ; 1.€., Ap
will be the distance from bageto the extremity of the vecté when the origin oP is a
point of baseg. From prop. | of 8 6, we observe théltr = - 1, so one has that:

(1) oP=P-"P W

If one taked\ for the unit of measure then one will have, frdry (hat:
(2) P = dP + ApW.

If Wis a fixed element then (2) will prove that thenfoP is therepresentativeahat
gives the formoP on the proper plane baseand the numbehr . If P is a proper point
or a vector then under central projectioR will be a form of mass 1 Ap or —Ap,
respectively. Under parallel projectiooR? will be a proper point or a vector; in the latter
case, ifW is normal vector to base then one will have that posir is the ordinary
VALUED PROJECTION (proiezione quotata).

If Q, R are arbitraryr; then, from (2), one will have:

2y PQ = (aP)(aQ) + [Aq(aP) —Ax(aQ)IW,

2y PQR= (aP)(aQ)(aR) + [Ap(0Q)(aR) + Ag(0R)(aP) + Ar(aP)(aQ)IW,

and one thus obtains the representation of the R@wf the second kind and the form
PQRof the third kind in terms of the elements thagresent?, Q, R. One can obtain the
usual properties of central and parallel projectrmm formulas (2), (2) (2)'. However,
it is more interesting to notice that one can dedihedescriptive geometry of geometric
forms from formulas (2), (2) (2)', the importance of which will be obvious if one
observes thaf, can represent systems of forces, and thereforenples method of
representing-; will lead to a rapid solution of the problem o&tbomposition of forces
in spaces, a problem that is very complicated wdrenuses the usual methods (Monge).
Let o= [W, a] be a perspectivity. If3is a non-zerd-; then we can define, in an
infinitude of ways, three form&, B, C of the first kind such thaa andB will belong toa
and g, respectively, and the tetrahedMMABCwill be not zero. One has that (8 6, I):

projection. Two parallel lines with the notatioas J'a will represent the plane, and this notation is
much clearer than the usual osg().
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A=A oB =B, ogC=C+rW,

wherer = Ca is a number. One can therefore give the followingntda for o:

0, A B, C+rW
W, A BC

and o will be a correspondence between ian space and thé; in the planex, as well
as a correspondence betweenRhén the planes and theF; in the planea. If we letA
denote this linear transformation between two thregedsional systems &f; then we
will have:

(4) A:(A’ B, C+ er.
A B C

The homography is called a perspectivity between thein S and the; in a. Itis
invertible, andA™ is a perspectivity between the in a and theF; in 8. We say centei
for centerg, base/ for the lineaf = line AB, and limA for the geometric element that is
common to the plang and lima. If lim A is a proper line then lim™ will also be a
proper line, and liml and limA™ will be parallel to basa.

It is easy to recognize that posiis the usual perspectivity whose center is the point
W between the plangand the plane.

If I, J, K are unit vectors (or of equal modulus), and &ndK are normal td, and if
O is a proper point then if one sets:

0,I1,K
A=
o113)
then one will have thad is arotation of the planeOIK around the linél through the
angle K, J), or aninversionof the planeDIK onto the plan®I1J. The other inversion is

given by:
I, -K
Al - Ol ) ,
o,1,J

and therefore the two inversions of one plane ontth@ngreserve the sense when one is
given the sense of positive rotation on the planeishadrmal to the given planes.

8§ 9. — Theorems.

In the sequelgi, &, o3, ... will be collineations, and we will set:
Ur = [\/\/I’l af]! hr = ratar,
forr=1,2,3, ...
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Theorem I. — If R, Sare linear systems &%, ¢ is an invertible collineation between
RandS W, # 0, and = 0,0,0," then:

1. A will be a collineation between tlg in Sand theF; in :aiR.

2. The center ofl will be the position of the correspondent with resgeats of the
form that is central t@n [i.e., centerd = posita (centerai)].

3. The base of will be the locus of positions of the correspondevwith respect to
o of theF; that lie inR and in baser .

Proof. — LetQ be anF in R. Froml of § 6, one has:

&% (01Q) =a1Q+[(a1Q) ;] W,

If one replacesxnQ in the right-hand side with the value that was given by § 6
then one will have, after some simple calculati@amsl once more from | of § 6:

1) GoQ=6Q+Qa) aW.

If we seta Q = P then we will have tha =o,'P, becauses is invertible between
R andS and therefore (1) will become:

) 0,00, P =P+ [(0;P)a] o W,

This formula proves the theorem, becadBas a linear function ol and o W;, and
sinced W, # 0, theP that belongs to the base bfre such thatoiP)a, = 0.

Corollary. — If, under the hypotheses of Theorem |, one has thato, are
homologies thenl will be a homology, centet = posit > (centeroi), based = posit o
(baseoi), and ratd = rat gi . Indeed, in this cas® = S=F3, and thereford o W, = &
oW1 = 62 (hiWh) = hy(aaWh).

The reader can easily verify that if one is giveffieorem | that posi = baseas,
positS = based; andai, o are perspectivities thehwill be a homology onto the plane
base, and for positd one will obtain the known property of projectionsafplane
figure into a plane from two different centers. Analodypu$one sets posiR = basec
and a1, o; are perspectivities thehwill be a homology onto the plane bagg and for
posit A one will obtain the known property of projections obtaystems of perspective
planes into a plane. It is known that the two progerthat we just recalled are
fundamental for the solution of perspective problems gtidgtive geometry.

Theorem Il. — If R, S T are linear systems &4, if oi is a collineation betwedR and
baser, = base,
then:

S andos is a collineation betwee®andT, and
centero, = centew,
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=

& 01 Will be a collineation betweeR andT.

baser,o, = base,
centero,o, =centar,|

The center of the collineatioms 0, o0, willbein &lin
The bases of the collineatioas g,,0,¢,  willgs through a ling’

H

rati o) = (ratoi)(rat o).
Proof. — IfP is anF; in R then, from | of § 6, one will easily find that:
(2) & 0P =P+ Pa) Wi + [Paz + (Pa1)(Wia)] W .
If one supposes that bage= baseo; then:
xm=ka,
wherek is a number, and (2) will become:
(3) & 01 P =P + (Pa1) [W + KnhWo,

and this formula will immediately prove the first tarparts of the thesis. From (3), it
results that g1 = [W, a1], whereW =W, + khy W, . One has that:

rat (0'2 Oj_) =W +1=W,on+1+khhWhas=hi+hiWo o =h; hy

and this proves the fourth part of the thesis.
One proves the theorem in an analogous way when agntecentero ; i.e.,W, = k
W, .

Corollary I. — Under the hypotheses of Theorem II, if one has thato; are
homologies thermnai will be a homology. Indeedhs, h, will be non-zero, and therefore
rat(czar) will be non-zero.

Corollary 1. — Under the hypotheses of Theorem I, if, in additmme has thats,
o> are perspectivities, and that centeris a point at infinity then lingzoi = lim a1 .
Indeed, the limit form otr o is, for the preceding situatiom+ [(Wy + khy Wo) o an =
w+ Wi a1, which is the limit form ot .

The reader can easily verify thatdi is a perspectivity with a proper base and center,
andT =R, ando is either a rotation o around baser or an inversion o6 in R then
the property of the projective homography positgg) will give the known property of
the center and limit line of a perspectivity between plane systems when one of the
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planes turns around the base of the perspectiityl{ is known that the property that we
just recalled is fundamental for the solution of meproblems in descriptive geometry.

Turin, January 1897.

C. BURALI-FORTI.

() Preserve the notation that was pointed out in thie ao pp. 23 for central projection. Letbe a
plane that is not parallel to the image and doesssoki from the center of projection, andslee a line in
front of a. LetQ,s be the homology (from the plane onto the image) ltlaatthe image of for its base,
the vanishing line‘a of the planex for its limit line, and its center at the inversionto the image of the
center of projection, where that inversion is doneuabB’a in a given sense. The homoldQy. , when
applied to the image of a figure in will give the image of the inversion of that figuneto the front plane
that passes through the lise If i, a, are parallel planes that satisfy the conditionsrpands,, s, are

front lines ofa; anda, then the homologie® Q will have their limit lines and centers in common

as ' TTaps
if the inversion is performed in the same sensens€guentlyQ, . = Q_ _ only when the lines,, s, lie

in a plane that issues from the center of projectids we have already pointed out (Rivista di matematica,
vol. ), this property is useful in descriptive geomet@ne gets, e.g., the image of the apparent contour of
a surface of revolution by applying the inverse of a HogywQ,s to the envelope of a system of
circumferences that is the image of the inversiothefparallel in a system of front planes, a systerh tha
remains defined under the homold@ys, etc.



Note Il by C. Burali-Forti, in Turin(

Communicated on 14 April 1901

§ 10. — Polarity in the plane.

Let A, B, C beF; and leta, b, c beF; in a projective plane. IABC# 0 then the
homography:
(a b cj
(1) o=
ABC
will transform the points of the plane into lines e tplane. If one also has tledic# O
theno™* will transform the lines into points.

ois called golarity when:

1. There exists at least oRethat is not united with respect to

2. Let the formd?, Q of the first kind be arbitrary. P is in oQ thenQ will also be
in gP. [i.e., ifP(oQ) = 0 thenQ(oP) = 0.]

The lineoP is said to be theolar of P, and if gis invertible therP will be thepole
of oP; i.e., ifp is anF thena*p will be a point whose polar [& It immediately results
that the polars of the points @P form a sheaf with centd? that is projective to the
points of oP, and if ois invertible then the poles of the lines that passutiinar'p are

on the linep and form a point-setp(integiatta that is projective to the sheaf whose
center iso”'p (Note. ).

Theorem I. — If gis a polarity, and\ is anF; that is not united [i.eA(gA) # 0], and
any pointP of ¢A is united [i.e.P(oP) = 0] thenoP = 0.

Let B, C, with BC # 0, be twoF; in dA. If ABC# 0 then, by the hypotheses made,

one must have:
o= BC mBA nC
A B c )

If P=xB+yC is an arbitrary point oA then one will have, by hypothesi,oP) =
xy (n —n) ABC= 0 and therefora =m.

Now, if Q =xA+yB +zC R=xXA +yB + ZC are arbitrary points of the plane then
one will have, recalling that = m:

()  See Notes | and 11 ih0 (1896), 177-195 antil (1897), 64-82, resp., in these Rendiconti.
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Q(oR) = (xX + myz — mzy) ABC,
R(g Q) = (xX + mzy — myZ) ABC,

but gis a polarity, and therefore @(oR) = 0 then one will also hav&k¢Q) = 0; i.e., one
must haven = 0, which proves precisely thaP = 0.

Theorem Il. — If gis a polarity then one can determine, and in an infil@tof ways,
three independent forms of the first kiRdQ, R and three numbets k, | that are not all
zero such that:

(hQR kRP |Pcﬂ
(2) o= :
P QO R

If ois a polarity then there will existRthat is not united. If a poir® that is not
united exists inoP then oQ will pass througP and will cut oP at a pointR such that
PQR# 0, and thereforer will have the form (2). If any point adP is united then there
will be fixed pointsQ, R in gP such thaQR# 0, and one will have, from TheoremdQ
= oR =0, and thereforewill again have the form (2).

The trianglePQRof (2) is said to bauto-conjugatewvith respect to the polarity:

Theorem Ill. — If gis a polarity andh, B are anyF; in the plane then one will always
haveA(ogB) =B(gA).

Give othe form (2) and set:

A=xP+yQ+zR B=XP+yQ+ZR,
S0 one has:
A(oB) = (xX +yy +2z2) POQR B(oA) = (Xx +Yy'y +Z2 PQR

Theorem V. — If the homography (1) admits at least éhdhat is not united then it
will be a polarity only when it satisfies any of ti@ldwing conditions:
1. The determinant:

Aa Ab A
Ba Bb Bg =ABC. abc
CaCb C

IS symmetric.
2. IftheFy, P, Q are arbitrary then one will always haRéoQ) = Q(oP).
3. BCa+CAb+AB.c=0.

The first of the two conditions are immediate consaqges of Theorem lll.
As for the third one, one observes tB& a = BA ¢ —Ca. B, and analogously for the
other two products. Therefore, when one sums them:

BC.a+CA b+AB.c=(Bb-BcA+ (Ac—C3B + Ba—AbC.
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Now, if gis a polarity then the right-hand side will be zerecduse the determinant is
symmetric. If the right-hand side is zero then theffadents ofA, B, C must be zero,
becauseABC # 0, and therefore the determinant will be symmetric; cewill be a
polarity.

Condition 3 says that the poirBE. a, CA b, AB. c are collinear; i.e.Any triangle is
homologous to the polar trilateral.

Theorem V. — If the polaritycis not invertible then the locus of unitéd is either a
point or a line or two distinct lines. &is invertible then there will either exist no united
F, or they will define a curve that is described by a paintfion of a numerical variable
that is continuous, along with its derivative.

If we give othe form (2) and sek = xP + yQ + zRthenA will be united- i.e., A(cA)
= 0-only when:
2) hyé + ky? +122 = 0.

Suppose thatris not invertible — i.e.hkl = 0. Ifl = 0 andhk# 0 thenoR = 0, so the
polar of any point will pass throud® and the equation of the uniteg will be hx® + ky*
= 0, and whern andk have the same sign that will give oy but whenh andk have
different signs then two distinct lines will issue frétn If | = k = 0 andh # 0 then any
point will haveQR for its polar, and only the points @R will be united (Theorem I).

On the other hand, ifoc were invertible then (3) would prove the theorem
immediately.

Theorem VI. — If the polarityois invertible then the polars of the poiRt®f a curve
will envelop a curve whose points have the tangents tgitiea curve for their polars.

Let the pointP be a function of the numerical variabland denote its derivative with
respect td by a prime.
Sinceois a distributive operation, one has:

(oP) = oP'.

The tangent té® is the linePP'; the pole of this line is the point®R)(aP'), or (aP)(oP)’,
which is the precisely the point at which the curve thanveloped byP touches the
line agP; i.e., the polar tdé.

Theorem VII. — If the polarityo is invertible and admits a curve of united points
then the polar to an arbitrary poftof it will be the tangent & to the curve.

If P is united therP(oP) = 0. Differentiating give®'(oP) + P(aP') = 0. However,
by Theorem III,P'(oP) = P(oP'), and thereforé'(oP) = 0; i.e., the linePP, which is
tangent td?, will coincide with the linegP, which is the polar t®.
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§ 11. — Conics.

In this section, suppose thatis an invertible polarity on a proper plane and that it
admits a curve of united points that one call®mic

Let P be a point and lgb be a line in the plane of the polarity. The notatipas
Po ! denote two homographies that are applied té-trendF,, respectively, in the plane
that goes through or passes through If pois applied to the points of the lipehen it
will be an involution for that line; i.e., its square Mhle a number and will give the
conjugate pointsvith respect tasthat lie inp. AnalogouslyPo™* will be an involution
for the line that passes throuBtand will give the conjugatine that issues fror® ().

If the pole of the line at infinity, which is the centof the conic, is a proper poitt
thenOg™* will be the involution of the conjugate diameters, asdithogonal rays will
be the two axes. M is at infinity then all of the diameters will be pleh etc., from the
usual projective properties of conics.

Let the proper poin® be the center of the conic and let the unit vedtodse two
conjugate directions. The polarigpwill then have the form:

.= IJ hJO kOl
o1l J)

The pointP = O + xI + yJwill belong to the conic when:

() An involution A of the two-dimensional system (viz., a projectivifiythe first kind) has the form

=(Zb ';aj and A’ = hk The elemenp = xa -+ yb will be united if:
p(Ap) = (¥ —ky’) ab= 0.
Therefore the involutiod will be hyperbolic, elliptic, or parabolic, accorditgwhether:

A>0, 22<0, =0,resp.

If 2> 0 then the united elements afex++/hy, and therefore two arbitrary conjugate elements are
harmonically separated.

If a, b are vectors then in order for there to exist two @timal conjugate elements, one must hajép
=hla|b+kxy & +hxy F+kya|b=0, or, takingg? =b*= 1,a |b = cosg :

hxé cosg + (h + k) xy+ ky? cos¢g = 0.
This will have real roots fax, y when:
(h+K)?—4hkcos ¢p=(h— K2+ 4hksirf ¢ =0,

and since this condition is always satisfied, theikexist a pair (or an infinitude fop = 77/2 andh + k =
0) of orthogonal conjugate directions.
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P(oP) = (1 +h¥ + ky?) O1J =0,
and therefore the equation of the conic will be:
hx +ky? +1 =0,

and sincegadmits united forms, one must have:

1 1
"t KT
One therefore has farthat:
1 1 _
IJ -—=JO Ol 1 (abl\] -bJO F aOIj
g= a b = — )
o | ] abl O al bJ
If one sets:
U =al, V =bJ,

and one neglects the numerical fact@blih othen one will have:

UV -VO F0U
1) o= T,
O uU Vv

and ifP = O + xU + yV then the equation of the conic will be:
Xty =1.

The curve that is given by the upper sign (+)aled anellipse and the one that is
given by the lower sign is called ehyperbola

The vectomU + nV has a point of the curve for its position wharl nV) o(muU +
nV) = - (¥ = n) OUV = 0, and thereforéfhe ellipse has no points at infinity, while the
hyperbola has two points at infinity

From (1), one has, for any numbes O:

s(O+mU):—mV(O+%U), U(O+m\l):imV(Oi%\I),

from which, it results that) The extremes of the conjugate diameters are oeltipse,
and only two are on the hyperbola. The polars leé extremes of two conjugate

() The same result can be arrived at by observing teahtolutions QU)o ™, (OVa™ of the linesOU,

OV are CJ) 8] (\é $VO], respectively. The poir® is the center of the two involutions, and the preugdi
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diameters define a parallelogram that has the extremes of the diarfeetengldle points
of the sides.
If results from (1) that the involution:

FV U
A= ,
u v
when applied to the vect& — O, whereP is a point of the conic, gives the semi-diameter
that is conjugate t& — O in magnitude and direction, and since:

(P-0Px[AP-0))P=(zyY)U?x(xy)VZ=U?-V?
(P-O)JAP-0) =7 (Cty)UV=7 LV,
P-0O)|[A(P-0)=xy(U?-VH+ K> F XUV,

it immediately results thator the ellipse or the hyperbola, the sum or difference of the
squares of two conjugate diameters is constant. The parallelogram tbamssructed
from two conjugate diameters has constant area. Only the circle hadiamuae of
axes, and all pairs of orthogonal conjugate diameters.

If one supposes, as one can do, tha = 0 then one will have that two vectdts-
O, A(P —0) have equal moduli only whe®*(=y?)(U 2=V ?) = 0, and therefore=or the
hyperbola, two conjugate diameters either always have different lengtheyalways
have equal lengthgviz., an equilateral hyperbola)For the ellipse, there exist two

conjugate diameter%g u iV)} of equal length(/2a® + 2b*) that have the axes for

bisectors.
The asymptotes have the united elementsfof their directions, and since:

(MU+nV) A (mU+nV) = F (m?£n?) UV,

one will have immediately thafhe ellipse has no asymptotes. The hyperbolawas t
asymptotes, whose directions are #JV, and are therefore the diagonals of any
parallelogram that has two conjugate diameters itsrmedians. Only the equilateral
hyperbola has orthogonal asymptotes.
Since:
U+V u-Vv

+(x-y)

P=0+xU+yV=0+(x+Yy) > 5

formulas show thafThe product of the distances from the center of an involutiomad@donjugate points is
constant, and for the hyperbolic involutions it equals the squatteeadistance from the center to a double
point.
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andx® —y* = (x + y)(x—y) = 1 for the hyperbola, one has th@ihe equations of the
hyperbola that refers to the asymptotes is=Xm. The triangle that is defined by the
asymptotes and a tangent to a proper point has constant area.

Let A be a point of the conit, a unit vector that is parallel to the diameter tbsues
from A, J, a unit vector that is parallel to the tangenAtonA+ I, a form of the first kind
whose positions is the center of the conic, and finddt p be a positive, non-zero
number.

By virtue of Theorem IV of section 10, one can set:

AJ J(mA+ | N
(2 o= P

A I J

and ifP = A + xl + yJis a point of the conic then one will have tR&P) = 0; i.e.:

) y* = 20x—mpx
will be the equation of the conic.
Form = 0, the center is at infinity, and the conic is a hgp. Form# 0, the center

isO=A+ il, and if one takes this point to be the origin of thesatkeen (3) will

m
become:
X% y?
4 Z+— =1
(4) Trp b
m* nt

which gives an ellipse fan> 0 and a hyperbola fon < 0, and formp it gives the circle.
One says that the poiRt= A+ ki is afocuswhen the involutiorF o™ is circular. As
one usually does, one proves immediately thatin be a focus only wheXl is an axis.
Therefore, in all of what follows, we will assuntet! |J = 0.
If r is a line that issues fromthen one can set:

r =F(ul +vJ) = hvliJ-vJA+ UuAl,
and one will therefore have:
F(og'r). w=v(h®’m—2h) | +upJ,

which is normal tail + vJfor anyu, v only when:

(5) mh —2h+p=0.
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This gives a redi when 1 -mp= 0, and therefore=or the parabolam = 0), there is
just one focus, which is at a distance from the verte4the paramete(2p). For the
hyperbola(m < 0), there are two foci on the transverse axis, and for the ellipse 0),
there are two foci on the major axid, (4)].

(5) says that (3) is true for= h andy = p, so:The chord that is normal to the axis
that passes through the focus is the parameter.

If F1 =A+hil, F; = A+ hyl are the two foci fom # 0 thenhy, hy will be the roots of
(5) and therefore:

LRI L TR TR
2 2 m
That is: The middle point of the foci on a conic with a center is the cehtée conic.
The director that relates to the foc¢uss the polar ofF — i.e., the line:

oF = [(1 —mh) A-hl] J,
and therefore it cuts the focal axis at the point (

h

1-mh

If one now observes that (5) gives:
(mh-1¥=1-mp h-p=h(mh-1)

then one will have, taking (3) into account:

2_ h T
(P-F)=(@-mp [X+1—mh} :

and if one observes that+

h - is the distance fror® to the director of, one wiill

have that:The ratio of the distances from a point of the conic to the focus and to the
director is constant and equal tdl—mp = e (viz., theeccentricity. For the parabola,

ellipse, hyperbola, and circléhe eccentricities will be 1, < 1, > 1, and 0, respebtiv
If m# 0 andry, r, are the signed distances fréhto the two foci then:

1-mh 1-mh,

() The pointsF, H are conjugate for the involutiodl) g, and therefore on a conic with a centary
0), the distances from the center to a focus and to thesponding directors have the semi-focal axis for
their geometric mean.
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and therefore; —r, = 2/m; i.e., For the ellipse and hyperbola, the sum or difference of
the focal rays is the focal axis.
The pointP of the conic is a function of one numerical variabko if:
modP - F;) £+ modP —F,) = const.

then one will have}, upon differentiating with respect to

P-F , P-F [||drP_
mod(P-F) modP-F,)|| dt

and thereforeThe bisector of the focal rays that issue from a point P of the eoaithe
tangent and normal to the conic at P
If O is the base of the perpendicular that goes firoto the director that relates o
then one will have:
modP —F) =e modP —Q),

and if one observes thd £ Q) |dQ/ dt = 0 then one will have:

P-F ___ P-Q Jldr_,
modP-F) modP-Q)|| dt

which gives a simple construction for the normaPam terms of the focus, the director,
and the eccentricity.

The theorems of PASCAL and BRIANCHON are easilyaoi#d with the usual
methods. Thus, we shall examine the theorems of DERAES and STURM, instead.

Let g, a1 be two polarities of the same plane that admit ureiedhents. The two
conics that are defined by the two polarities will p@geugh either four points, or three
points that have a common tangent at one of themworpbints that have common
tangents. Under these hypotheses, the conics thdly shgse conditions are united for
the polaritymo + ngi and a line that cuts them at conjugate points for anutieol One
states the theorem that is dual to that of STURM iaralogous way.

One can set:
U:abc’ Ul:allqcl.
ABC ABC

mo + noi is then (Theorem IV of § 10) a polarity. MoreoveR(poP) = 0 andP(oiP) =
0 then one will also have[(mo + ngi)P] = 0. If (oP)(oiP) = 0 then one will also have

() Cf., C. BURALI-FORTI, Introduction & la Geométriaifférentielle suivant la méthode d¢.
GRASSMANN, Gauthier-Villars, Paris, 1897.
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oP. (mo+nai) P = 0. Conversely, a polaritgp that satisfies the same conditions can be
of the formmg + noi, because a point will determine one of the conicsidered in just
one way, and therefore the first part of the theasepnoved.

Let e be the line that is considered. Just one of the comacs noi will pass through
a pointP of it, and if it cutsr at P’ then P will be a linear function oP; i.e., the
operation] is such thatlP = P' is a homography, and sindé is a number, it will be an
involution.

8 12. — Second-degree equations.

The coordinates of a united form for a polarity wilhal a function of degree two in
its coordinates. Conversely, if:

(1) f(x, y) = i X® + 2nia Xy + oo P + 2his X + 2oy + hgs
is a function of degree two then a polarmtyvill always be determined, up to a numerical

factor, and its curve of united points will have the eigud(x, y) = O.
Indeed, ifO is a fixed point, andl, J are non-parallel unit vectors, and one sets:

1
ar = m (hrl JO + hr2 OI + hr3 IJ)

forr =1, 2, 3, and one supposes that hs; then the homography:

U:(alquj
' J O

will be a polarity, and® = O + x| + yJ will be a united point whef{x, y) = 0.
In the analytical theory of conics, one considery tm following elements:

h, h, hs| |la Ja Og
H= h21 h22 h23 = la, Ja, Oaz =0l & &8s,

hy hy h| | lag Ja Oa

_|h b,
h,,

la, Ja

H
% la, Ja,

‘ =1J.aqg a2 =1J. (al)(A),
and if one sets:

1J = sing, from which, 1iJ = cosg,
then one can also consider the number:

K =hy1+hy—2hyo COS¢ .
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One can give the numbKrthe form:

K=la;+Jap— (laz +Jay) | i J,

and sincd i J. J=1J.iJ + 1, one will have:

K=1J[il.da-id. d].
One will then have:

H _ 00olold

silbg 4013 '
Hy _ W.(01)(09)
Sin’ ¢ (13
K _ il.oJ —-1J ol
Sin’ ¢ 1J ’

for the usualnvariants and since any vector can be expredseghrly in terms ofl, J,
the right-hand sides will give the invariant chaea®f the left-hand sidesnmediately
and with no need for the usual lengthy proof. Boperiority of GRASSMANN'’s
method over the usual analytical method is theemyia new proof, should the ease by
which we obtained the properties of conics in thexeding sections not be enough.

Turin, April 1901.

C. BURALI-FORTI.




