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PREFACE

The book that we are publishing today contains a brief stipo of thegeometric
calculus and some of its applicationseétementary differential geometry

The geometric calculus was first conjectured by Leibiig79) ¢) whose first
recognized the opportunity — or rather, the necessity — ofatpgrdirectly on the
geometric elements, whereas analytic geometry openat@bers that have an indirect
relationship to the elements that they represent. edewy the geometric operation that
was introduced by Leibniz does not have the usual propeftagebraic operations; the
author did push the geometric research quite further.

Nevertheless, Leibniz’s idea was destined propagateoapbtiuce great results. In
1797, Caspar Vessef)(gave an analytic representation of direction thant@ined
Argand’s (1806) geometric representation of complex numbaeds several operations
that had been introduced by Hamilton (1843-1853) for quaternidfisbius, with his
barycentric calculus(1827-1842) and Bellavitus, with the method exduipollences
(1830-1854) gave two methods for a geometric calculus, indepiyad each other,
that the authors applied to several questions of pure ggoar@rmechanics. In 1843,
Hamilton published his first essay on quaternions, andtiieairy, which was developed
completely by 1854, gave a complete geometric calculus Wes soon know,
appreciated, and even applied by Hamilton’s contemporaragigy, one especially
applies it to physics.

The papers of Hamilton are preceded byAhedehnungslehref H. GRASSMANN
(1844), who, by the power and simplicity of the operaticuspassed all of the other
geometric calculi. The excessively abstract formegposition that was adopted by
Grassmann has retarded the diffusion ofAbsdehnungslehyen such a way that today
one employs the barycentric calculus, the theorgamfipollences, or quaternions, and
even more frequently, Cartesian geometry, in orderoteesgeometric questions that
have a very simple solution using the Grassmann methdtle applications that
Grassmann made to the generation of lines and surfaced@eshadowed the power of
the method; however, in order to make it known and agpde the whole world, he
further constructed a concrete link to Euclidian geometry

Professor Peano was the first one to give a can@gebdmetric interpretation of the
forms and operations of thaisdehnungslehreTaking the common idea of a tetrahedron
for his point of departure, he defined the product of two thinee points. He then
defined the products of these elements by numbers, andfihalldefined the sums of
these products. The theory of forms of first orderegéhe barycentric calculus, along
with that of vectors (or directions). The forms s#cond order represented lines,
orientations and systems of forces that were applieal rigid body. The forms of the

() LEIBNITZENS, Math. Schriften, v. Il and V, Berlin, 1849.

(®) “Essai sur la représentation analytique de la dirett{@m Directionens analytiske Betegning).
Published by the Royal Academy of Sciences and Lettdbemimark, on the occasion of the centenary of
its presentation to the Academy on 10 March 1797. Copenhb8@n,
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third order represent planes and the plane at infinity. o#gnthe operations, the
progressive and regressive products give the geometriataper of projection and
intersection The internal product gives the orthogonal projectamm the quantities that
one refers to in mechanicswasrk, moment,..

In this book, we give the elements of the geometra&culus according to
Grassmann’s method in a very simple and concrete fdime. goal that we shall propose
is that of giving young students the means to easilypcenend that powerful instrument
for calculation, and, at the same time, to give theennheans to apply it to the questions
of higher differential geometry.

We believe that the latter objective of our book istegumportant. Indeed, in
ordinary differential geometry, one obtains someyvsimple properties with very
complicated developments. In general, that compdinat due to the use of coordinates,
because with coordinate we make algebraic transfornsation numbers in order to
obtain, after calculations that are frequently very glicated, a small formula — viz., an
invariant — that is susceptible to a geometric interpretatidrhe geometric calculus
makes no use at all of coordinates. It operates directlthe geometric elements, and
each formula- which is, in itself, an invariant has a very simple geometric significance
that leads very easily to the graphic representatiaine®lement considered. One can
thus predict a simplification when compared to the @irmethods. Our book proves
that the simplification is possible in regard to ordingdifferential geometry, and leaves a
vast field of transformations and research in highemgxy to the younger students.

The importance The of the role that is played byAhedehnungslehrm geometry,
mechanics, and physics is explained quite well by V. Schladak important historical
paper: Die Grassmann’sche Ausdehnungsleh(®,.to which we will refer the reader.
Today, Grassmann’s method has no need for recommendaboty needs to be known
and applied by the whole world. It is bgnstantapplication to all parts of mathematics
that one can comprehend the power and simplicity o$€Bnann’s method.

Turin, April 1897.

() Zeitschrift fiir Mathematik und Physik, Leipzig, 1896.
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CHAPTER I

GEOMETRIC FORMS

8§ 1.— DEFINITIONS AND RULES OF CALCULATION

1. Tetrahedra.— We express the idea that the poiat®, C, D are situated on the
same plane by writingBCD = 0 or by saying that the poinés B, C, D are the summits
of anull tetrahedron One always has:

AABC=ABAC= ... =AAAB= ... =0.

If A, B, C, D are points that are not situated on the same pRBED # 0) then the
notationABCD shall denote a real number. The absolute valu®B&D is the number
that measures and with an arbitrary unit, moreoverthe volume of the tetrahedron
whose summits are precisely the poiAtsB, C, D. The sign of this number is + or —
according to whether an observer that is placed otirt@e\B with their head aA and
their feet aB and regards the lin@D sees the poird to hisright or left, resp., or else he
sees the poirt to hisleft orright, resp. ).

No matter what the point, B, C, D are, the real numb&BCD will be well-defined
once the unit of measure for volumes is fixed. Moreawee, obviously has:

ABCD=-BACD=-ACBD=-ABDC

In an expression such ABCD, one can therefore choose the order in which oneedesi
the letters to appear, on the condition that one thefess recall that every exchange of
two consecutive letters implies a change of sign.

Furthermore, the definition that we just stated gimeaning to the expressions:

ABCD+ A1B:1CiD1 + ... +AB,C, Dy, ABCD-EFGH, mABCD

wherem is a number. One can alwaysand in an infinitude of ways determine the
pointsP, Q, R, Sin such a way that the numbeQRSis equal to a given number, and in
turn, to any of the cited expressions.

If ABCD # 0 then we will naturally say that the tetrahedron wehesmmits are
arranged in the ordek, B, C, D has thedirect senseor theinverse sensaccording to
whether the numbehBCD is positiveor negative In order to abbreviate the language,

(") The consideration of the sense of a sequence of painB C, D as the sense or sign of a
tetrahedron is due to Mdbius. This idea is nowhere foured in the books of Euclid.
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we shall indeed say thaBCD is a tetrahedron, but that word does not possess its
ordinary meaning here, because the equaAlBLD = EFGH expresses the idea that the
tetrahedra with summit&, B, C, D andE, F, G, H have not only the same volume, but
also the same sense.

2. Geometric forms. Equality of forms.— We call entities such as:

(1) X1 A1 + X Ao + ... + X4 An,
(2) X1 A1 By + X Ax By + ... +Xq Ay B,
(3) X1A1B1 C1+ %A B2 G + ... + XA B Gy,

where thex, ... are real numbers aid, ..., By, ..., Cy, ... represent point§orms of the
first, second, and third orderespectively.
Under these conditions, the symbolic equalities:

)y X1 Ag + ..+ X A = xA + . H XA
2y x1A1B:r  + . +X%ABy, =X AB +..+Xx A, B,
(3)’ X1A1 B C +"'+XnAanCn:XiA{qC1 +"'+X:nA{nB’mCm’

express the idea that one has for any péing, R

(1) XX ALPQR  + ..+ APOQR = xAPQR +...+X A PQR
) x1ALB1PQ + ... +X%AB.PQ =xABPQ +..+x, A B PQ,
(3)" X1A1BiC P + ... +XAB,C,P :XiAILaClP*'..."'X:nA{anCmP.

The terminology ofirst-order form for example, is not defined by the expression (1).
We consider the entity (1) to be abstract geometric elemetihat is common to all
forms x A + ... + x A, satisfy the condition (1)a condition that takes on a precise
significafnce by virtue of the equality (1) The same remarks apply to the expressions (2)
and (3) ).

We likewise say that one of these forms — (1), fangxle — is zero, and we write:

XITAL+ X Ao+ ... + X An=0

() The definitions of the entities (1), (2), (3) in arfothat is analogous to the one that we just stated is
due to PeanoQalcolo geometricoBocca, Turin, 1888). It then results that a simple icelahip is
established between the geometric forms and the etsrtteat one considers in Euclidian geometry, and
Grassmann’s abstract calculus acquires a concrete vatug shiaceptible to geometric applications.
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when for any point®, Q, R, one has:
X1 A1 PQR+ Xo A PQR+ oo X0 An PQR: 0.

A tetrahedron that is a sum of tetrahedra or an esipreskex; A1 By C; D1 + ... +
Xn An Bn C, Dy is called dourth-order form by analogy.

If A, B, C are points then we will also writeA, 1 AB, 1 ABC, instead oA, AB, ABC,
This simply amounts to assuming thatis a first-order form (i.e., that each point is a
first-order form),AB is a second-order form, addBCis a third-order form.

3. Points.— We remark, first of all, that i corresponds to a point then one will
necessarily have that# 0.

One will express the idea thitie point A coincides with the pointdy writing A = B.
Indeed, the relatioA = B is equivalent tAPQR= BPQRfor any pointsP, Q, R. Each
plane that contain& (APQR= 0) will then also contaiB (BPQR= 0), and consequently,
A will be identical toB.

4. Line segments— The definition of the equality of second-order foringves that
the equatiolPAB = 0 corresponds to the equality A B in a necessary and sufficient
manner Indeed AB = 0 is equivalent t&ABPQ= 0 for anyP andQ. Therefore, the four
pointsA, B, P, Q must be in the same plane, which demands precisetotheidence of
the pointsA andB.

Similarly, for anyP and Q the two tetrahedré&BPQ and BAPQ which has the
opposite sense, will have the same volume; ABRPQ= - BAPQ andone will always
have the relation AB — BA between two points A and B

If one denotes the modulus AB by “mod AB,” which is the positive or zero number
that measures the distance between the two pAiriisd B, then one will always have
that modAB = mod BA, as well as modB = 0 only when the two pointd and B
coincide, or ifA = B.

THEOREM I. —If x is a non-zero real number and one has that="D then the
four points A B, C, D are situated on the same line amtd AB is equal tanod CD,
multiplied by the absolute value of the numher x

Proof. — If AB = 0 then one will hav€D = 0, and the theorem is proved. AB # O
then one must also have tl@b # 0, and conversely. P, Q are two arbitrary points
then one will havABPQ= xCDPQ and if the poinf is situated on the linaB (°), then
it will be likewise situated on the lin€D, since the two sides of the equation will be
zero, and this will be true for any poiRton the lineAB, which amounts to saying that
the four pointsA, B, C, D will be situated on the same line. But theABPQ# O then
the tetrahedraABPQ xCDPQ can be considered to have the same heights (viz., the

() To abbreviate, we will say “linAB,” instead of “line that joins the poinsandB,” “plane ABC”
instead of “plane that passes through the pdin®, C.” In § 3 of this chapter, we will give a somewhat
difference significance to these expression.
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distance from the poir® to the planeABP) and two equivalent triangles for bases that
have the summiP in common and their bases along the k& Consequently, the
distance between the two poiftsandB will be equal to the distance of the two poi6ts
andD, multiplied by the absolute value of the numker

THEOREM Il. —If A, B, C, D are points on the same line and @D then one can
determine only one real number x such that="8CD.

Proof. — If AB = 0 then one will have = 0. IfAB# 0O then letP andQ be two points
such thatABPQ# 0. There then indeed exists a real numbénat is defined by the
equality ABPQ = xCDPQ Moreover, it immediately results, from some aon$ of
elementary geometry, that the relat®BPQ = xCDPQ persists for any point8, Q, and
in turn (no. 2), the numberthat will answer the questioni.e., that will makeéAB = xCD
—is therefore determined in a unique fashion.

Remark. — Under these conditions, we let the sym%pég (i.e., the ratio ofAB to

CD) denote the numbersuch thatAB = xCD. If %# 0 then we will say that the form
AB has thedirect senseor the opposite senseelative to the formCD according to

whether the numbeg;’ IS positive or negative, respectively.

If AB =CD with CD # 0 then:

1. The point®\, B, C, D will be situated on the same line.

2. The distance between two poidtsandB will be equal to the distance between
the two point<C andD.

3. The formsAB, CD have the same sense.

Therefore, the fornAB is an abstract geometric element that is a functibthe
unbounded line that joins the poifisandB, the distance between these two points, and
the sense of the forB. We will say that the formrAB is aline segmentan expression
that will not have its usual significanceabounded lindere.

If AB# 0 andCD # 0 then if the lineAB is parallel to the lin€D and the lineAC is
parallel toCD we will say that the form8B andxCD are parallel anddo or do not have
the same sensaccording to whethex, which is assumed to be real and non-zero, is
positive or negative, respectively.

5. Triangles.— LetA, B, C, D, E, F be points. The equality of two third-order forms
easily shows that the equali®BC = 0 demands that the poimds B, C be on a straight
line. Similarly, one ha&\BC = - BAC =- ACB. One denotes the modulusABC by
“mod ABC,” which is the positive or zero number that measunesarea of the triangle
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whose summits ar&, B, C, in such a way that modBC = 0 if ABC = 0 and modABC =
modBAC = modACB

THEOREM I. —If one has ABG= xDEF, where x is a non-zero real number, then
the points AB, C, D, E, F are situated in the same plane amdd ABC is equal tanod
DEF, multiplied by the absolute value of the number x

THEOREM Il. —If A, B, C, D, E, F are points on the same plane and DEB then
one can determine just one real number x such that ABBEF.

These two theorems are proved just as theorems | afichdl. 4 were.

Remarks. — Under the hypotheses of the preceding theorem, weefuléh the
symbolg‘—:;c:: (i.e., the ratio oABCto DEF) denote the numbersuch thalBC = xDEF.

If S—E’E # 0 then we can say that the foABC hasthe directsenseor the opposite sense

relative to DEF according to whether the numbeg% IS positive or negative,

respectively.
If ABC=DEF andABC# 0 then:

1. The point®\, B, C, D, E, F are situated on the same plane.

2. The area of the triangle whose summitsAr8&, C is equal to the area of the
triangle whose summits ai® E, F.

3. The formsABC, DEF have the same sense.

As before, the forrABC is an abstract geometric element that is a funabiothe
plane of the point#, B, C, the area of the triangle whose summitsA&r8, C, and the
sense of the formrABC. We will say that the forrABC is atriangle and attribute a
special significance to that word.

If ABC# 0, DEF# 0, the planeABC is parallel to the planBEF, and the line\D,
BE, CF are mutually parallel then the forlABC xDEF will be calledparallel and with
the same sense or natcording to whethex, which is real and non-zero, is positive or
negative, respectively.

Upon supposing tha& BC# 0, an observer that is standing on the pBE is either
placed in the region of all poin® such thatPABCis a positive number, or else in one
whose point$® are such tha®ABCis a negative number. For example, if the obsesver i
in the first of these regions, and he traverses thenpter of the triangl&BC from A to
B, B to C, andC to A then he will have the area of the triangBBC on his right. If he is
always situated in the same region then if he travehgeperimeter of a triangBEF in
the same plane in the se®eE, F then he will have the area to his right or left adoay

IS positive or negative. In this manner, one can cgakely recognize

to whetherABC
DEF

whether two triangles in the same plane have tirvee s opposite senses.
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6. Sum and product with a number.— Let:

Xt AL+ ... X An, y1Bl+---+YmBm

be first-order forms, and létbe a real number. We set:

(X1A1+ +XnAn) + (y]_ B, +... +Ym Bm) =X A1+ ... +XnAn+y1 B, + ... +VYm B,
h(X1A1+ +XnAn) =hx A1+ ... +thx, A, .

These equalities, which define the addition of two fingter forms or the product of
a form by a number will further allow us to define thensaoperations for forms of
second or third order.

All of the rules of calculation for algebraic polyn@ts apply to the sum of forms of
the same order that are finite in number and to thdyatoof a form by a real number.
One introduces the — sign from algebra by agreeing tAat 1) A and thaih —B=A +
(- B), whereA, B are forms of the same order. xlis a non-zero number then we can
write A/ x, instead of { A.

A geometric form is the (algebraic) sum of a &nibumber of forms that are
themselves separately the products of a point, a limaesggor a triangle with a number.

7. Progressive product— For example, set:

(X1A1L + %A2) (Y1B1C1+ y2Bo Co +y3B3 Cg)
= X1y1 AaB1Cy + X1y2 AiBoCo + X1y3 AiB3Cs + Xoy1 AoBi1Cr + Xy AocBoCo + Xoy3 AoBsCs .

In a word, we have operated as if:
X1A1 + %P2, Y1B1Ci+Yy2B2Co +y3B3Cs,

were polynomials, and performed the multiplication whiéspecting the order of the
large letters.

It is easy to generalize this rule in order to takeptweuct of two or more forms,
with the single restriction that the sum of their esdmust not exceed 4. The product
thus defined is called therogressive produgtor simply theproduct when there is no
possible confusion. The line segmé is therefore the product of the potwith the
point B, the triangleABC s the product of the poid with the line segmerBC, or of the
line segmenAB with the pointC, or finally the double product of the poiAtwith the
point B and the poinC. Of course, the same thing will be true for theatetdrorABCD.

It results easily from these definitions that theesubf algebraic calculation apply to
the products of forms [iA = B then one will havé\B = BC, (A + B)C = AC + BC, mAB=
(mA) B], except for the ones that depend upon a commutative pyogderthat case, one
must have recourse to the following rule:AfandB are two forms of orders ands,
respectively, with the condition that- s< 4, then one will have:

AB = (-1)°BA
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That is, in a product of forms, one can permute two eouts/e factors of ordersands
at will, with the caveat that one must multiply theguct by €1)°. The formulasAB =
- BA ABC=-BACare only particular cases of this rule.

§ 2. — VECTORS AND THEIR PRODUCTS.

8. Vectors.— One callghe difference of two pointsvector. If A andB are points
thenB — A will be avector One sees immediately thBt— A = 0 whenA = B, and
conversely.

THEOREM. - In order that the (non-zero) vectors BA, D — C be equal, it is
necessary and sufficient that the line segments@Bbe parallel and have the same
sense and modulus.

Proof. — If P, Q, R are three arbitrary points then:
(B—-A) PQR=BPQR-APQR

will represent the tetrahedron that has the triaRgMR for its base and the distance from
the orthogonal projections & andB onto the perpendicular to the plaR®R for its
height. Consequently, we assert that no matter \mkegtaintsP, Q, R are, the equality:

(B—-A) PQR=(D -C) POR

will amount to an assertion of the necessary anficgrit conditions for the vectoi® —
A, D —Cto be equal.

Remarks. — Say that the non-zero vectdds- A, D — C areparallel when the line
segment#B, CD are parallel. What we will call trairection of a vectoil is an abstract
geometric function of thatl has in common with all of the vectors that are pdrilé.
One deduces from the preceding theoremehatl vectors have the same direction.

If the vectord — A, D — C are parallel then we will say that they halve same sense
or the opposite senseccording to whether the line segmeA& CD do or do not have
the same sense, respectively. Fbaseof a vectorl is therefore an abstract geometric
element that is a function btthatl has in common with the other vectors that are prall
tol. One deduces from the preceding theoremdfaal vectors have the same sense.

Furthermore, set moB(— A) = modAB, and agree thdtis aunit vectorwhen mod
=1. It likewise results thaqual vectors have the same modulus

It also results from the preceding conventions thatorder for two vectors to be
equal, it is necessary and sufficient that they have the sameiahtesense, and
modulus Therefore, a vector is an abstract geometric elethan is a function of its
direction, sense, and magnitude; i.e., a vector is giveen one knows its direction,
sense, and magnitude.

Graphically, one will represent the vec®r— A with the pointsA, B linked by an
arrow whose head is & One thus comprehends that in mechanics one caneapees
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velocity by means of a vector, because a velocitylmadefined as an element that is
known when one has its direction, sense, and magnitude.

If A, B, C are three points then the preceding theorem will imnelgigive us the
construction of the poinD such thaB — A =D — C. A is called theorigin andB, the
extremityof the vectoB —A. It also results from this that one can take anranyifpoint
to be the origin of a vectar, but once the origin is chosen, the extremity Ww#l a
perfectly well-defined point.

9. a. The sum of a point and a vectois a new point that one deduces frérby a
translation whose magnitude, direction, and sense isndieed by the vector. Indeed,
if A is the origin of the vectdrthen its extremityB will be determined by the conditidn
=B —A; it will follow from this thatA +1 =B is a point, etc.

b. The product of a poir® and a vector is a line segment, because=00 + Ol =
O(O +1). Conversely, a line segment is the product of a fmjrd vector. Indeed, A,
B are points then one will have the equalities:

AB=AB-AA=AB-A).
Likewise, modOl = modl, since, by definition:
modAB = modB - A).
c. The sum of two vectors is a vector. Indeed, Jfare vectors an@ is a point then

A =0 +1 +J will be a well-defined point and —O =1 + J will indeed be a vector. The
construction of the expressidnt+ J is the same as the one that will give the resutbént
two velocities that are represented by the vedtods respectively. One will also easily
find the construction of the sum of a finite numbewectors, and one will confirm that
the result is independent of the order that was adoptibe ioperation.

d. If I, J are vectors then one will have:
mod( +J) < modl + modJ,
because that relation is nothing but the one thateeldte distance between the three
pointsO, O +1,0+1 +J.
10. Letl, J, K, U be non-zero vectors.
a'. If xis a non-zero real number thenwill be a vector that is parallel 1o and will
have the same or opposite sensd taccording to whethex is positive or negative,

respectively. The modulus a&F is equal to the modulus of multiplied by the absolute
value ofx. Indeed, ifl = B — A then the poinC such thatxAB = AC is completely
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determined. All that one needs to do now is to imitgéeproof of the theorem in no. 8 in
order to see thadB —A) = C —A, which proves the theorem.

a". Ifl is parallel tal then there will exist exactly one real numkesuch thatl =xI.
Indeed, ifO is an arbitrary point the@!, OJ will be two line segments on the same line,
and the numbex will be such thaDJ = xOl or such thaDJ = O(xl) is well-defined. It
then indeed results that=xl. Letx be another number such thht X1, so one will
have 0 = X — X) I, and thusx = X', which proves that the numbgrwill indeed be
independent of the chosen po@it

a. The condition for the parallelism bfindJ is thus thatl be a multiple of.

One can express the same thing with the reldfion 0. Indeed, il is parallel toJ,
and if O is an arbitrary point then the poir®s O + 1, O + J will be on the same line,
namely:

OO +1)(O+J)=01 =0;

i.e.,,1J = 0. Conversely, il =0 then:
OO +1)(O+J)=0;

i.e., the pointO, O + 1, O + J will be on the same line, or furthermore, the vectors
will be parallel.

If 1, J are parallel vectors then the sighJ will always denote the numbgrsuch that
J =xl, and, in addition, we agree that the symbol & 0.

b'. We say that the vectors parallel to the plang or that the planer is parallel to
the vectorl when there exist two poins B on a such that is parallel toB — A, and that
the vectord, J, K arecoplanarwhenl, J, K, ... are parallel to the same plane.

If I, J, K are coplanar and # 0 then the numbers y such thaK =xI +yJ will be
well-defined. Indeed, IO is a point then the poinB@ +1, O + J, O + K will be on the
same plane that is parallel to the vectoi K. If a line is drawn parallel to the lir@l
through the poin© + K and it meets the lin@J at the pointA then one will hav&K = (A
-0) +[(O +K)—-A]. However,A—O and O + K) — A are vectors that are parallel to
the vectord, J, and the proposition shows that one can determine nsmbesuch that
K =xI +yJ. The numbers, y will not be functions ofO; indeed, ifX, y are other
numbers such th# =x'| +yJ then one must have:

xX=-xX)1+(y-y)J=0 and X-xX)IJ=-y)1J =0,
and it results immediately from the fact thatz O that one must have:
X=X and y=Y.
b". If x, y are numbers, and i€ =xlI + yJ then the vectork, J, K will be coplanar.

Let O be a point, so one has:
O(O +1)(O +J)(O+K) =0lIK,
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and upon replacing with xI +yJ, one will have:

OO +1) (0 +J)(O+K) =0,
which proves the theorem.

b. The condition of coplanarity of three vectbyd, K is thereforeK is the sum of a
multiple ofl and a multiple of], or K is a linear function ol andJ, which one can,
moreover, express by the condition th¢ = 0.

c. If IJK # 0 then the real numbexsy, z such that:
U=xl +yJ +zK

will be well-defined. It suffices to imitate the proofmbposition b').
The vectorsl, yJ, zZK are called theomponent®f U relative to the vectors J, K.
The numbers, y, z are called theoordinatesof U relative to the vectors J, K.

d. One always haklKU = 0; i.e., that the product of four vectors is alwagso.
Indeed, iflJK = 0 then one will indeed havdKU = 0. IfIJK # 0 thenU =xl +yJ +
ZK, and in turn}JJKU = 0.

11. Bivectors.— One calls the product of two vectordiaector, i.e., if I, J are
vectors therlJ will be a bivector. One hdd = 0 when one of the vectoror J is zero,
or furthermore il is parallel toJ, and conversely.

THEOREM I. —In order for the bivectors], KU to be equal, it is necessary and
sufficient that for any point O the triangle$JOOKU be equal

Proof. — By virtue of the definition of the equality of two sedeorder forms, the
conditionlJ = KU is equivalent tdPOlJ = POKU for any pointsP andO. From the
definition of the equality of two third-order forms, thequality is equivalent t®I1J =
OKU for anyO. If one observes th&lJ = O(O +1)(O + J) then it will result thaDI1J is
a triangle.

THEOREM II. —If I, J are vectors then for any points @ the triangles RJ, QIJ
will be parallel and will have the same sense and modulus

Proof. — One proves this theorem by observing that:
Q-P=Q+N)-P+)=Q+J)-P+J).
Remarks. — We say that the non-zero bivecttyskU areparallel or coplanarwhen

for any pointO the trianglesOlJ, OKU are in the same plane. We shall call the
orientationof the bivectolJ an abstract geometric element that is a functidd ¢thatlJ
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has in common will all of the bivectors that are patalb 1J. It then results thatqual
bivectors have the same orientations

If the non-zero bivectordl, KU are parallel then we will say that they do or do not
have the samsenseaccording to whether the triangl®sJ, OKU do or do not have the
same sense, respectively, for any pdht The senseof a non-zero bivectol] is
therefore an abstract geometric element thatas in common with the other bivectors
that are parallel tdJ. Equal bivectors have the same sense

If 1J is a bivector then for any poi@ set modJ = 2 modOIlJ. The modulus of a
bivector is then the positive or zero number that meastite area of the parallelogram
whose three summits are the po@<O + 1, O + J. It further results thagqual bivectors
have the same modulus

Theorem | and the definitions that we just stated likewsmply thatn order for two
bivectors to be equal, it is necessary and sufficient that they hav&atne orientation,
sense, and modulusThus, a bivector is an abstract geometric elementigtafunction
of its orientation, sense, and magnitude.

Graphically, if one excludes its sense, then one caprsept the bivectoB(— A)(C —
A) by the parallelogram whose three summits are thetpAjnB, C, and whose edges
will be the two vector8 — A, C—-A. If A, B, C are points in a planeg then one will
obtain a poinE on the planer such that:

(B-A(C-A =D -AE-A
by constructing the representative parallelogram of:
(B-A)(C-A

in such a way that the triangl@8C, ADE have the same sense. The transformation of a
bivector into another one that is equal to it is theeefoeduced to the problem of
elementary geometry that consists of transforming allprgram into an equivalent one.
Consequently, the equality:

I(J+K)=1J +IK
expresses Varignon’s theorem.

12.a. The product of a point with a bivector is a triangeeproof of Theorem I, no.
11). Conversely, every triangle is the product of a pwittt a bivector, sincABC = A(B
-C)(C-A).

b. We say that the non-zero bivectdris parallel to the non-zero vectidr (or K is
parallel tolJ) when the three vectorsJ, K are coplanar; i.e., when:

IJK =0.
The sum of the non-zero line segmAl with the bivectow that is parallel td3 — A

is a line segment that one deduces fidBhby a translation. Indeed, |&t be a vector
such that:
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K(B-A) =u.
By virtue of:
AB=AB-A),
one will then have:
AB+u=A+K)B-A),

which proves the theorem. The translations not well-defined; on the other hand, the
line upon which the segmeAB + u is situated is defined completely.

If X is a point on the line that joidsandB (i.e., it is a point such th#&BX = 0), and
if Yis a point of the linédB + u then the translatiod =Y — X will be such that:

AB +u = (A+K)(B +K).

c. The sum of two bivectors is a bivector. Indeed, \f are bivectors then there will
always exist a vectdr that is parallel to the two bivectousv. Consequently, one can
determine two vectord K such thau =13, v=1K. However, one will then hawe+ v =
| (J +K), which proves the theorem.

d. One proves very easily that thendition of parallelism between two non-zero
bivectors u, v is that u be a multiple of v.
If u, v are non-zero, parallel bivectors then we will furtlegrthe symboV / u denote
the numbex such that:
V = XU.
We also agree that Qu/= 0.

e. A bivector is always reducible to the sum of three Begments that are the edges
of a triangle, becauselfis a bivector then one will indeed have:

u=B-A)(C-A)=BC-CA+AB,

which will prove the stated property.
By analogy, if a line segment represents a forceishapplied to a rigid body then a
bivector can represent a couple.

13. Trivectors.— One calls the product of three vectots\aector.

If 1, J, K are vectors ang is a point then by virtue of the equalPdK =P(P + 1)(P
+ J)(P + K), one sees th&lJK will be defined to be the tetrahedron whose summits are
the pointsP, P + 1, P + J, P + K. If Q is a point then one will always ha®JK =
QUK ; i.e., the numbePIJK is not a function oP, but only of the trivectolJK , so we
will call the senseof the trivectoJK the sense of the tetrahedi@idK .

Let a be a trivector, and ldt andJ be two non-zero vectors such thatz 0. The
vectorsK such thata = IJK are always well-defined. The determinatiorkoflepends
upon the following problem of elementary geometfyansform a tetrahedron into
another equivalent tetrahedron
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The sum of the non-zero triangkeBC with the trianglea is a triangle that one
deduces from\BC by a translation. Indeed, [Ktbe a vector such that:

K(B-A)(C-A) =a.
One will then have:

ABC+ a=AB-A)(C-A) +K(B-A)(C-A) = (A +K)(B-A)(C-A),

which proves the theorem. The translatioms not defined; on the other hand, the plane
on which the triangl&BC + ¢ is situated is determined completely.

If a, Bare two trivectors such that# 0 then the numbd?S3/ Pa will be independent
of the pointP. We therefore s¢f/ a = PS/ Pa for any pointP, and it is clear thgf/ o
is precisely the numbersuch thajs = xa. Therefore, ifa is a non-zero trivector then the
trivector 5 — whatever it is- will be a multiple ofa. It then further results that the sum
of two trivectors is a trivector.

One can always represent the trianglé — except for its sense — by three vectors
with the same origirO and the parallelepiped whose four summits are prectbely
pointsO, O +1, 0+ J, O + K. The volume of that parallelepiped, which is affdotath
a sign (viz., the sign of the numb&JK ), moreover, is called theagnitudeof IJK
(mag 1JK); this amounts to setting mdgK = 6 OIJK for any pointO. We can then
suppress the sign mag, with no possible ambiguity, andtiggzeymbollJK the double
significance of a trivector and a number.

We call the trivector which we shall always denote ly-~ such that for any poir®
the numbeOw= 1 theunit trivector. If wis considered to be a number then 6.

14. Rotation.— We shall now consider a plane whose three fixed painB, C are
such thaABC# 0.

Let O, O' be two arbitrary points of the pladd8C. One can always determine three
points P, Q, R of the planeABC such that the point®, O’ are interior to the triangle
whose summits are, Q, R, and in additionPQR/ ABCis a positive number.

Let a then be a line of the given plane that passes throeghaintO, and leta’ be a
line in the same plane that passes through the @intThe linesa, @ each meet the
perimeter of the trianglPQR at two pointsM, N andM’, N', respectively. If we make
the pointM traverse the perimeter of the trian§l®R— for example, in the senBeQ, R
(seeno. 5, pp. 5) — then the poiit will simultaneously traverse the perimeter of the
triangle in the same sense, and the dinas well as each of its points wtilirn around the
point O in the plane. We say that the lires®’' (or each point of these linesyn around
the points O and Q respectivelyin the same sensghen the point, M’ (or N, N')
traverse the perimeter of the trianl®Rin the same sense.

Let P1Q:R; be another triangle in the pladdC that enjoys the same properties as
the trianglePQR If M1, N, for example, are the points of intersection oflthe a with
the perimeter of the triangl®,Q:R; , and if the pointM traverses the perimeter of the
triangle PQR in the sensd, Q, R then the poinM; will traverse the perimeter of the
triangle P;Q:R; in the sens®i, Q;, Ry . Therefore, thesense of rotationf a line (or a
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point) around a fixed point of the pladdBC is an abstract geometric element that is a
function of the fixed triangl&BCin the plane.

We can fix theositive senser thenegative sensef the rotation in the plan&BC by
saying thathe line has turned around the point O in P@SITIVE (NEGATIVE, resp.)
SENSE wherthe point M traverses the perimeter of the triangle PQR ineéheesP Q,

R (P, R, Q, resp.). Now, suppose that an observer is placeceiretfion of the pointS
such thatSABCcorresponds to a negative number. If the diterns in the positive sense
then the observer will turn in the inverse sense édhmds of a clock with respect to the
face.

14. cont Let| be a non-zero vectan the planeABC and let¢ be a non-zero
number. We say thdtis equal to the vectdr, but turned through the anglg when:

1. Jis avector.

2. modJ = modl.

3. For any poinO in the planeABC, the lineOl can coincide with the lin®J by
turning in the positive or negative sense according tohehet is positive or negative,
respectively, where the path that is traversed by that @+ | has a measure that is
equal to the absolute value of the num@enod| .

Furthermore, one has thais equal to the vectar turned through a zero anglanda
zero vector is equal to itself turned through an arbitrary angyle

Let I, J be two non-zero vectors in the plaAB such that mod = modJ. There
exists an infinitude of real numbegssuch thatl is equal to the vectdr, turned through
the anglep. Among these numbers, the ones that are positive danmimumeg; and
the ones that are negative have a maxinggm One always has thah — ¢, = 277 and
every numbermp will be of the form¢, + 2n7g ¢, + 2n7/z wheren is an arbitrary integer
number that is positive, negative, or zero.

We saythe angle betweehandJ, and denote it byl (J), when we mean the smallest
of the positive or zero numbegssuch thatl is equal to the vectdr, turned through the
angleg. One should observe that by the notatigrd), the positive sense of rotation in
the planeABCis intended; i.e., the numbdr ) is not just a function of the vectdrand
J, but also of the positive sense that is choserhtrdtation in the plane.

If (1, J) = 0 then we shall call the angle J) radiant. If the anglel(, J) = 77/ 2 then
the angle I, J) will be called aright angle and we will further say that the vectiois
perpendicular to the vectdr or conversely, in the cases ofJ) = 77/ 2 and [, J) = 377/

2.

If U, V are non-zero vectors in the plahBC then we shall say thenglebetweenU
andV, and denote it by, V), to mean the angle between the vettdrmodU and the
vectorV / modV, which amounts to setting:

(U,V):( v__Vv j
modU moav

One has:
U, -U)=m UV)=(EU-V),
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and if:
U 4 vV
modU modV

then one will have:
(U, V) +(V,U) =271

15. If I is a non-zero vector in the plane then we wililledenote the vectdr, when
turned through the positive right angig 2; we also set0 = 0. We then let andJ be
two arbitrary vectors on the plane andXdde a real number. Instead of the notations:

i), x@n, @) +3, 13J),
which presently have a precise significance, wéemiploy simply:
ixl, xil, il +J, 1iJ.
a. If1 =Jthenil =iJ.
b. If nis a positive or zero whole number then we witli8e=1, i"l =i(i"™); in

other words, we will lei"l denote the vector that one deduces fioby applying the
operatiom times. One thus has:

n

which shows that the sighhas the same properties as the synéb/eTl)

c. One can easily prove the formulas:

ixl = xil, i(1 +J)=il +iJ,
(N33) =13, 1iJ = Jil,
li(d +K) =1id +1iK, (,J)=Gl, iJ).

The first one expresses the idea that one cangehidne order of the following two
operationsmultiplication by a numbeandturning through a right angle The second
one shows that the operatiohas the distributive property with respect toshen.

d. The orthogonality condition for two non-zero \astl, J isliJ = 0.

16. Letl be a unit vector in the plane. The modulus oftitvectorlil is 1, and for
any unit vectord, one will haveliJ = lil, which leads us to calll the unit bivectorin
the plane.

a. If uis a bivector in the plansgeno. 12 ()] thenu/ lil will represent the number
x such thatu = xlil . Of course, this number is positive or negative according to
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whether the bivectors andlil do or do not have the same sense, resp., and its absolute
value is modu. We agree to denote the numhbef lil by the symbol, as we have
already done for trivectors; i.e., we give the symbtthe double meaning of a bivector
and a number. If the numbers positive and the angf@u is equal to the triangl®AB

then the observer who traverses the triangle f@no A to B will see the area of the
triangle on his left.

b. If U, V are non-zero vectors and one supposes that the tldocircular
functions is known then one will prove the followirgrhulas quite easily:

UV = modU modV sinl, V),
UiV = modU modV cos({, V),

from which, one will deduce that:

uv uiv uv

sinU,V) = ——M—, cosy, V) =——— tanQU, V)= —
L.v) modU moadv u.v) modU moadv u.v)

uiv -
c. For any vectot, one thus has:
UiU = (modU)>.
Upon agreeing to write)?, instead ofJiU, one will have:

U? = (modU)?, (U +V)*=U? + 2UiV +V?
and
(U+V)i(U-V)=U*-V2

d. If U,V are vectors then the numbgivV will be called thanner product olU with
V (). This inner product enjoys the commutative propand the distributive property
with respect to the sum. If mddl= modV = 1 thenUiV will be the cosine of the angle
(U, V). If modU = 1 thenUiV will give the magnitude and sense of the vectat ththe
orthogonal projection of the vectdf onto U; i.e., the vector YiV) U will be the
orthogonal projection of the vecturonto the vectou.

Examples— 1. IfA;, Ay, ..., A, are points andl is a unit vector in the plane then the
identity:
i (A —A) +1iT1 (As—A) + ...+l 1T (An—An1) =11 (An—Ay)

will show thatthe (algebraic) sum of the projections of the edgfes broken line onto a
line is equal to the projection onto that same lofethe bounded line that joins the
extremities of the broken lir{d).

() The reader must appreciate the importance of the jpmetuct.  The inner product, which was
introduced by Grassmann as an abstract operation, is reduedd kiee progressive product of two vectors
by means of the operation
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2. If1, J are non-zero vectors and have the same modulus thedetfitity ( + J) i
(I —=J) =17 =J? = 0 will express the idea th#te bisectors of two adjacent angles are
rectangular.

3. LetA, B, C be the summits of a triangle in the plane; set:

| =C-B, J=A-C, K=B-A

One has:

(1) | +J+K =0.

One deduces from formula (1) that:

(2) CHK=CK)I=(EDI,

(3) 2= +K?2=2(J)iK,

(4) Z2==Jil=Kil=(=1iJ+(=K)il.

If one divides equations (2) and (4) by mbd mod J . mod K and modl,
respectively, then one will get:

sin(-J ,K) _ sin(-K | ): sin(-1 J)
modl modJ modK

(mod1)? = (modJ)? + (modK )? — 2 modJ modK cosf J, K),
mod| = modJ cosf I, J) + modK cosE K, I),
which are the same as the formulas in plane trigomyrtigdt are known in the form:

sinA _ sinB _ sinC
a b c '

a’ =b? + ¢ — 2bc cosA, a=b cosC + ¢ cosB.

17.1f x, y are real numbers ands a vector in the plane then when one sets:
x+iy) I =x1 +yil,

one will have:

[(x +iy) 1]% = (¢ + ) (mod])?,

mod[(x +iy) I]= X+ y*.

If I # 0 and the numbeps y are not both zero then if one is given that:

and, in turn:

| [(x +iy) 1]=y(mod1)?,  1i[(x+iy) ] =x(modl)?
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then one will have:

tanl, x+iy) 1] =

X <

Therefore multiplying the vector by the complex numbertxiy means multiplying
by the modulus of the complex number and turning the vector thus obtained tarough
angle that is equal to the argument of the complex vector.

If we write the complex number+ iy in the form:

X+iy = p(cos¢ +i sin @)
or in the form: _
X+iy=pd?

then we will see that cag + i sin ¢ — ore? — is the symbol for the operation that will
make a vector turn through the anglevhen it is applied to that vector; i.e., for any
numberg, (cos¢ +i sing) | — or, more simplye"”l — represents the vectirbut turned
through the anglé.

Examples— LetO be a point, and ldtbe a unit vector in the plane.

1. If x, y are numbers, anB = O + (x + iy) | thenx, y will be the rectangular
Cartesian coordinates of the poiftif one takes the poir® to be the origin and the lines
Ol, O(i 1) to be the axes.

2. If p, ¢ are numbers, arld= 0O + p€? | thenp, ¢ will be the polar coordinates of
the pointP, whereO is the pole and th@l is the chosen polar axis.

3. Wheng varies from 0 to Z the pointP = O + r €? | will describe the circle
whose center i® and whose radius s

4. The poinP =0 +r ¢ €?| describes an Archimedean spiral.

5. LetO be the common center of two circles, one of which raaiusa, while the
other one has radils(a > b). A radius of the first one that makes the argleith | will
meet the first one @1 and the second onedt The parallels to the vectolrsil that are
drawn through the pointd, M, respectively, will meet at a poiRt Wheng varies from
0 to 277 the pointP will describe an ellipse whose center i©ednd whose semi-axes are
a andb, respectively.

One easily sees that:

P=0O+acos¢l +ibsingl.
If we recall that:
e? = cosg +i sin g, e = cosg —i sing

then we will have:
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a+b
+
2

a-b _
e .

P=0 e/l +

In general, whem varies, the poinP =0 +h &’ 1 +k e'? | will describe an ellipse
whose semi-axes aket k, h—k.

6. If a circle of radiug rolls without slipping on the linen then the locus of
successive points that a point of the circle must ocuuilbye a cycloid.

P(7)

1Oy
Figure 1.

Let O, M be two points ofn such that mo®M < 27r and, in addition, le€ (fig. 1)
be the center of the circle of radiushat is tangent tan at M. If O is a position of the
point that describes the cycloid then a pdtndn the circle of cente€ that is such that
MP = modOM will be a point of the cycloid.

Therefore, letp = (P — C, M — C); one will then have mo®M =r¢ . Consider the
unit vectorl that is parallel and in the same sense as the Melctdd. We will have:

P-O=M=0)+(C-M)+P-0),

M-O=rgl, C=M=ril, P-C=-re™?il;
therefore: _
P=O+rgl +ril —re'?il,

and the poinP will describe the cycloid wheg@ varies from- o to +co.

7. The point: _ _
P=0+ad™| +bé"l,

when ¢ varies from- o to + oo describes an epicycloid. The radius of the fixed ciscle

an—m (orbmj. The radius of the moving circle ia% (orb%j, and the
n m

distance from the poir to the center of the moving circleligor a).
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18. Index operation.— LetU be a non-zero vectow, a non-zero bivector, and et
be a point. If the lin€U is perpendicular to the plar@u then the linePU will be
perpendicular to the plarféu, and this will be true for any poi. We express this
property by saying thathe vectorU is perpendicular to the bivector, wr u is
perpendicular toU. We give the same significance to the phrasies:bivector u is
perpendicular to the bivector v, and the vedtois perpendicular to the vect®.

If uis a non-zero bivector then we will let the symjpobenote the vector such that:

1. |uis perpendicular to the bivectar

2. mod(ju) = modu.

3. The trivectou(] u) has the direct sense.

The vector {1 is therefore well-defined, and one calls it ingex of u
We agree to give to the relation:

the reciprocal form:

in order to be able to call the index olJ. Consequently, when the operation whose
symbol is |, which one calls tiredex operationis applied to a non-zero bivector, it will
produce a vector, and when it is applied to a non-zer@wndtwill produce a bivector.
Upon also setting:

0=]0,

this convention will succeed in defining the index operatmmch then persists for any
vectors and bivectors.
If, for exampley, v are two bivectord,) is a vector, and is a number then instead of
the symbols:
[ (Jw), (Ju)+U, x(Ju), | &u), u(v),
which currently mean something, we shall write, morgg/m

[[lu, |Ju+U, x]|u, [xu, u]|wv.

a. If u, v, w are bivectors or vectors amdis a real number then we will have the
formulas:

(1) lu=u,
(2) |xu =x|u,
3) ulv=v]uy,
4) |G +v)=]u+tl]y,
(5) U+Vv)|w=u|w+vVv|w
If U =|uthenu = | U, and consequentlyy = || u, which proves formula (1).

Formulas (2), (3) are also proved easily.
Here is the proof of formula (4), which gives the rlsttive property of the index
operation with respect to the sum: Letv be bivectors. If one of them is zero then



Chapter I. Geometric forms. 21

formula (4) will be obvious; therefore, suppose tlhaindv are non-zero bivectors. One
can then determine vectdrs], K such that is perpendicular td andK, and:

modl| =1, u=1J, v=IK.

If one observes that + v =1 (J + K) then one will see thaty, |v, | U + Vv) are the
vectorsJ, K, J + K, which have received a rotation through a right anglihénsame
sense around an arbitrary po@in the planedlJ. Formula (4) is therefore proved when
u, v are bivectors. In the case wherandv are vectors, one will deduce formula (4) for
the vectors in formulas (1) and (4).

Formula (5) is only a consequence of formula (4) andlisteibutive property of the
product with respect to the sum.

b. One has:
u|u= (modu)?.

Upon writingu? instead ofi | u, this will become:
u? = (modu)?, U+ =+ v+,  (U+V) | U-Vv) = -V
c. The perpendicularity condition afwith respect tw is:
ulv=0.

d. LetU, V be non-zero vectors. If we fix the sense of pasitptation on a plane
that is parallel tdJ andV, and we letp represent the angle betwednandV then we
will easily see that the number|V is equal to the product of maglmodV with either
cos ¢ or — cos¢g. We cannot calp or 71— ¢ the angle between the two vectttsV,
becausep is a function of not only, V, but also the sense of positive rotation in the
plane, and we cannot establish a relationship betweenrtdeti@hs of positive rotation
on two arbitrary planes.

Thus, in order to introduce the angle between tworaritvectorsJ, V in space —
that angle being regarded as a function of dhbndV — we set:

U |V =modU modV cosU | V),
or better yet:

) cosy V)= —2 |V

modU | moaV '

and we definel, V) by saying that it is the smallest positive numixezero that verifies
equation (1). One deduces from this, notably, (Watv) can vary from 0 toz and in
turn, sin{J, V) will be a number that is always positive, and ailehave:

modUV) = modU modV sin(U, V).



22 Introduction to differential geometry, following the mettad H. Grassmann

There is no contradiction between the results tlajust obtained and the ones that we
obtained in no. 16, because in the latter ces&/| was not just a function @f andV.

c. One letsU | V denote the inner product bf by V, and that operation has some
properties that are analogous to the operation that wadslrreferred to as thaner
product on a plane

Examples— 1. IfA, B, C, D are arbitrary points then one will always have:
(A-B)|C-D)+B-C)|A-D)+(C-A) |B-D)=0.

In order to prove this formula, it suffices to reduoe vectorsA —B, B—-C, C—Ato
the difference of two vectors that have the samarobgfor exampleA—B = (A—-D) —
(B —D)]. If one then develops the inner products then one indl that the first number
will be equal to zero. The identity that we just stated be interpreted geometrically in
the following mannertf, in the tetrahedron whose summits are the points A, B, QieD, t
opposite edges AB and CD, BC and AD, respectively, are pair-wiperbcular then
the last two edges AC and BD will also be rectangulaven betterThe three altitudes
of a triangle will have a common point

2. IfA, B, C are the summits of a triangle aing a vector then one will have:

B-BI+C-AlI+(A-B[I=0.

Therefore, if two of the vecto® — G C — A A — Bare perpendicular to the vector
then the third one will also be perpendicularl fovhich expresses a theorem that is
already well-known from elementary geometry.

3. Letl, J, K be unit vectors. Set:
a=(J,K), b=(K,I), c=(,J)

and decomposeé into two vectors)’ andJ”, andK into two vectorK' andK"”, where the
first two (viz.,J' andK') are perpendicular tband the second two (vizl} andK") are
parallel tol. With a= (J', K"), one easily finds:

J' |K" = sinb sinc cosa, J" |K" = cosb cosc,
but:
cosa=J|K=Q +J)| K" +K")=J |K'+J" |K",
Therefore:
cosa = cosb cosc + sinb sinc cosa,

which is nothing but the fundamental formula of sphetiggbnometry {).

() E. CARVALLO, “Sur une généralisation du théoréme desjeptions,” Nouvelles Annales de
Mathématique® (1891).
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§ 3. — REDUCTION OF FORMS.

19. First-order forms. — One calls the numbe&y + x> + ... + X, the mass of the first-
order form:
S=X A1+ XA+ ... XA, .

a. The mass of the first-order for&is the numbeBw Indeed:
Alw=Aw=...=Ayw=1 and Sw=x1+X%X+ ... +X,.

b. If a first-order form has zero mass then that farithbe reducible to a vector, and
conversely.
If O is an arbitrary point then we will have:

S= (X1+X2+ +Xn)O+X1(A1—O) +X2(A2—O) + ... +Xn(An_O),

and if we set:
I = Xl(Al —O) +X2(A2—O) + ... +Xn(An —O)
then we will get:

SO +1.

If Sw= 0 thenS =1. However,| is a vector, s& is indeed reducible to a vector.
Conversely, ifSis a vector such th& =B — A then one will have:

Sw=Bw-Aw=1-1=0.

c. If a first-order form does not have mass zero timab form will be reducible to
the product of its mass by a point. Indee&cif% 0 then one will have:

- 1
S= (S@(O+Swlj.

If Sw# 0 then the poinS / Sw will be called thebarycenter of the form.Sin
mechanicsS/ Swis the center of gravity of the massive poistsA, ..., An which have
the masses:

Xll X2! R | an
respectively.

d. If A, B are two points ang, y are non-zero numbers, and furthermore,y # 0
xA+ yB
X+y
segmentAB into two parts that are inversely proportionathie numbers, y. Indeed, if

one multiples the two sides of the equality:

then the poinC =

will be situated on the linAB and will decompose the line

xA+yB=(x+y)C



24 Introduction to differential geometry, following the mettad H. Grassmann

by AB then one will haveABC = 0; i.e., the point#, B, C will be situated on the same
line. If one multiples the same equality Gyhen one will haveAC + yBC = 0; i.e., that

é_CB: = 1, which will prove the last part of the theorem.
X

+
One then easily deduces the graphic construction of thet p)éi‘Jr—;/B and

consequently, the construction of the barycenter @afrbitrary first-order form.
Examples=— LetA, B, C be points.

+
tAB

1. The poin is the middle of the line segmehB.

2. IfABC#£0 thenA++E5+C will be the point through which pass the three medians

of the triangleABC. One proves this property by observing th%{H;LC is the

barycenter of the pointéa‘;—B, C, which are affected with the masses 2, 1, respectively.

3. The identity:

A+B,C+D B+C D+A A+C B+D
A+B+C+D _ 2 2 __ 2 2 __ 2 2

4 2 2 2

shows that the lines that join the middles of tippasite edges and the diagonals of a
guadrilateral have a common point that is precitdedybarycenter of the quadrilateral.

4. If the linesAD, BC intersect at the poir, and the line®\B, CD, at the point~
then if one observes that:

EAD=EBC=FBA=FCD=0
then one can write:

(A + C)(B + C)(E + F) = ABE + ADF + CBF + CDE = (CDE — BAE) — (DAF —CBP),

and the two forms in parentheses will give us ttea af the (plane) quadrilateral whose
summits aréd, B, C, D. Consequently:

(A+C)(B+D)E+F)=0;

i.e.,the middles of the diagonals of a complete quattikd are on the same line.
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5. The pointO (fig. 2) is the common center to two circles. Through atg®@,rior
example, of the inner circle, one draws the rectamgiardsPA andPBC, which one, in
turn, makes turn around the fixed poiht

Figure 2.

1. Prove that the barycenter of the trian§BC s fixed.

2. Prove that the sum of the squares of the distdra@sthe pointP to the point&,
B, Cis constant.

3. Find the locus that is described by the middles ofdgeseof the triangl€’).

If P =0 + (O — P) then the trapezoid whose summits &eB, C, P’ will be
isosceles, and one will easily see that:

(1) A-P)+(B-P)+(C-P)=20-P).
This relation (1) is, moreover, identical to the relat

A+B+C _20+P
3 3

which proves the first part.
The squares (i.e., inner products) of the two sideseoédjuality (1) give:

(A-P)*+B-C)+(C-P)*+2B-P)(C-P) =40-P),
because:
(A-P)i(B-P)=(A-P)i (C-P)=0.

However, ifr, R are the radii of the two circles then one will have:

40-P)* = 42,
2B —-P)i (C—P) =-2(R+r)(R-r),
and, in turn:
(A-P)>+(B-C)*+ (C-P)*= 2R +1?),

() Composition de mathématique a I'Ecole spéciale militaire de &3jint-Course given in 1895.
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which proves the second part.
Finally, set:

p-B*C _C+A __A+B | _P+O
2 2 2 2

If we put the relation (1) into the form:

A+(B-P)+C=20,
or even in the form:
(A-0O)+(B-P)+(C-0)=20,
then it will result that:
_ B—P+C—O__ A-0O
2 2 2

D-K

Therefore, mod) —K) is constant, an® describes a circle of centiérand radius /
2. One will likewise find that the points, F are always on the circle of cent¢rand
radiusR / 2.

20. Second-order forms— Every line segment is reducible to the fokin whereA
is a point and is a vector, becaus&B = A(B — A), and one can do likewise for the
product of a line segment with a number, becaq8e) = A(xl). A second-order form
(which is the sum of a finite number of line segmengsjherefore reducible to the
general form:

(1) S=Al1+A N+ ... +AL,,
whereAy, A, ..., Anare points, andh, |, ..., |, are vectors.

a. Call the vectot thevector of the line segment.ACall the sum of the vectors of
the line segments that comprise a second-order forvettter of the second-order form
The vector oS will then bel; + 12 + ...+ 1,.

b. A formsis reducible — in an infinitude of ways — to the sum tfwector and a
line segment whose vector is the same vector aflgt Indeed, leO be an arbitrary
point. Since:

Al = (Al—O) [, +0l,,

the relation (1) will take the form:
S:O(|1 +1,+ ...+|n) + [(Al—O) [, + (Az—O) o+ ...+ QA\n—O) |n],
which proves the theorem.

In general, ifO is an arbitrary point then one will hage= Ol + u, wherel is the
vector ofs, andu is a bivector that depends up®andO.
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c. If sis a second-order form then one will call the tegchbnsstheinvariant of s

In order for the second-order forsrto be reducible to a line segment or a bivector
(i.e., to the product of two second-order forms), inécessary and sufficient that the
invariant ofs be zero (viz.ss= 0). Indeed, i =0l +uthenss= 20lu. One indeed has
ss= 0 whenlu = 0. Ifl oru are zero thes will be a line segment or a bivector, but if
andu are not zero then will be parallel tol, andOI + u will be a line segment that is
parallel toOl. The condition is therefore indeed also sufficient.

d. Let A, B be two points, and let, J be two vectors in a plane. Consider the
second-order forrm= A1l + BJ. If the segmental, BJ are not parallel an@ is the point
that is common to the lines that carry the line segs?in BJ then the identityg = O(l +
J)+A-0)I + (B -0)J will give s=O(l +J), because the vectors— O, B — O are
parallel to the vectork, J, respectively, and the formuts= O(I + J) will immediately
provide the reduction fto a line segment. If the line segmeAtsBJ are parallel then

A+ xB

J=xl ands= (A +xB)l. If x# -1 then one will have = " (I +J), and one will
X

reducesto a line segment by using the construction of the batgcemhthe formA + xB.

If x =-1 thens = (A —B)I, ands will be reducible to a bivector. In general, a second-
order form that is the sum of line segments in theesplane is always reducible to a line
segment or a bivector.

In mechanics, one can represent a force that iseappdi a rigid body by a line
segment and the resultant of a system of identicgefoby a second-order form. A
couple is represented by a bivectorAlB, C, D are four points then the numb&BCD
will be proportional to the moment of the for&8 with respect to the axiSD. If uis a
bivector then {1 will be the moment axis of the couple.

Examples—
1. LetAq, Ay ..., A, be points in the same plane. The form:
S=AIA+A At AL AVTAAL
has a zero vector. It is therefore reducible to a biwed=or any poinP in the plane, the
triangle Ps has the same value, and one can call the areasthaunded by the closed
polygonal lineAs, Ay, ..., As the area of the triangles If the line is convex then the area
thus defined will be the one that one considers in aléang geometry.

2. LetA, B, C be the summits of a triangle. Set:

BC b= CA AB

a= ———, = , c .
modBC modCA modAB

The line segmentb + ¢, ¢ + a, a + b are on the external bisectors, and the line
segmentd —c, c— a, a—b are on the internal bisectors of the trianglese iflentities:

atb+c=(b+c)+a=(c+a)+b=(@+b)+c
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prove that the points of intersection of the extehbisectors with the opposite edges are
placed on the same line. One will likewise find the getnical significance of the
identitesa+b-c=(@+b)-c=(@-c¢)+b=(b-c)+a ....,.b-c=(b-a)-(c-a), ...

21. Third-order forms. — Every triangle is reducible to the forw, whereA is a
point andu is a bivector, becaus&BC = A(B — C)(C — A), and one can, as before,
likewise make it the product of a triangle by a numbemabsem(Au) = A(mn). As a
result, a third-order forno that is the sum of a finite number of triangles lisays
reducible to the general form:

(1) o=Alui+A U+ ... +A, U,

whereAy, Ay, ..., A, are points, and, Uy, ..., U, are bivectors.

a. Call the bivectou the bivector of the triangle Aand similarly the bivector of a
third-order formwill be the sum of the bivectors of the triangleattgive that form by
addition. The bivector ofris then:

U +u+ ...+Uy.

b. A third-order form is reducible to a trivector or to iangle according to whether
its bivector is zero or not, respectively. For exampiasider an arbitrary poi@. One
has, among other things:

AL u = (Al —O) u; + Ou,
and consequently:

o=0(Uu+u+..+u)+ A -Ouw+..+A-0) U;
i.e., gis precisely reducible to the form:
o=0u+ q,

whereO is an arbitrary pointy is the bivector ot;, anda is a trivector that depends upon
O anda. If u# 0then one can determine the vedtsuch thato + lu, and in turn:

o=0O+I)uy,
and o will indeed be reducible to a triangle. On the comtrdru = O then one will have
o= a, andowill be reducible to a trivector.
22. Projective elements- For any order of non-zero forf&y we will write positA,

instead of thgosition of Ato abbreviate.

a. If Sis a first-order form such th&w# 0 then set:
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positS = i.
Sw

In other words, we will denote the barycenter of tvenfS by the symbol posi. If S’is
a multiple ofSthen one will have pos®&’= positS and conversely.

If 1 is a non-zero vector then we will always agree that symbol positl is
equivalent to thelirection of I. One deduces from this that for two non-zero parallel
vectorsl, J (which amounts, as we have seen, to saying tisad multiple ofJ), one will
have positl = positJ, and conversely. In the language of ordinary projectivangéry,
one would say that poditis apoint at infinity.

We likewise writeprojective pointinstead oposition of a non-zero, first-order form
A projective point can then be a point (a la Euclid) goat at infinity. IfSis a non-
zero, first-order form then we will also write poltinstead of posik

b. Leta be a non-zero, second-order form with zero invariaiat,(@a = 0). We let
the symbol posit denote the locus of projective points that are postiminon-zero,
first-order formsA such thatAa = 0. If A, B are two points such th&B # 0 then posit
AB will contain all of the points of the (unbounded) lilatt joinsA to B, as well as the
point at infinity that is the position of the vec®r A. Similarly, letl, J be two vectors,
with the condition that] # 0. From the preceding conventions, pasiwvill represent a
set of points at infinity that can be identified witle tbrientation of the bivectdd. If a,

b are two non-zero, second-order forms whose invariaptsuppose to be identically
zero and are such thais a multiple ob then we will have:

posita = positb.

We further agree to writprojective ling instead ofposition of a non-zero, second-
order form whose invariant is zerandline at infinity, instead ofosition of a non-zero
bivector, and linea, instead of posia.

c. Let a be a non-zero, third-order form. We let positdenote the locus of
projective points that are the positions of first-orams A such thatAa = 0. Under
these conditions, i\, B, C are three points that are subject to the reladB # 0 then
posit ABCwill contain all of the points of the plane that pas$eoughA, B, C, as well as
all of the points of the line at infinity that is thesition of the bivector§ —A)(C —A). If
ais a non-zero trivector then posit= posit &y and positwis the locus of all points at
infinity. If a andf are non-zero, third-order forms such tbras a multiple of3then one
will have posita = positf, and conversely.

As before, we shall writprojective planginstead ofposition of a non-zero, third-
order form plane at infinity instead of posity and plane, instead of positr (*9).

(*% All of the ordinary properties persist for the prajeetelements that are defined as we just did. By
following the method that we just presented and applying #wrytof linear transformations, one can very
easily obtain all of the properties of ordinary projgetgeometry. $ee C. BURALI-FORTI, “Il metodo
del Grassmann nella Geometria proiettiva,” Rend..Gitatem. di Palermo, Note I, 1896; Note I, 1897.
The power of Grassmann’s method is likewise confirmeterfield of synthetic geometry.
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d. If AB # 0 then lineAB will be the projective line that joins the poimsand B.
With Aa# 0, planeAa will be the projective plane that passes through thet poand the
line a. The conditiongr# 0, AB# 0, Aa = Ba = 0 show that all of the points of the line
AB are situated on the plaae

23.The first-order form#\, B, ..., are callectollinear when the ones that are not zero
have their positions on the same projective line. Wwike, the first-order forma, B, ...,
and the second-order formas b, ... with zero invariants are callembplanar when the
ones that are not zero have their positions on the pamjextive plane.

Example.— Parallel vectors in the same plane have collineando Vectors and
bivectors are coplanar forms.

If AB# 0, and the first-order forn&, B, C, D are collinear then the notati@D / AB
will have a unique significance (no. 4 and no. d)2,sinceAB andCD will be bivectors
or line segments according to whether kg is or is not a line at infinity, respectively.
We then agree to identify the symiD with the numbelCD / AB (the formAB being
fixed) when we consider only first-order forms that afireear withA andB.

b. Likewise, ifABC# 0, and the first-order forms, B, C, D, E, F are coplanar then
the notationDEF / ABC will take on a unique significance becaus8C, DEF will be
trivectors or triangles according to whether pl&&C is or is not the plane at infinity,
respectively. When the fordBC is fixed, we further agree to identify the symbdF
with the numbeDEF / ABC, on the condition that we consider only first-ordmmnis that
are coplanar witid, B, andC.

24. |dentity between first-order forms. — The theorems that we shall state give
relations that exist between five arbitrary first-ordernis, or even between four
coplanar, first-order forms and three collinear forhthe same order.

THEOREM I. —If A, B, C, D, E are first-order forms then one will have:
(1) BCDEA + CDEAB + DEAB.C + EABCD + ABCD.E = 0.

Proof. — If A, B, C, D are points that satisSt(hBCD # 0 then one can determine
numbersx, y, z such that:
E-A=x(B-A) +y(C-A) +zD -A),
or furthermore:
1y E=(Q1—-x-y—-2A+xB+yC+zD.

Upon multiplying the two sides of the equality’(fhy BCD, one will have:

BCDE

1-x-y—-z=- :
Y ABCD
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and other analogous formulas fq1y, z. If we then substitute these values ford—y —
z X, Y, zin the equality (2)then we will find that the formula (1) is proved wh&rB, C,
D, E are points and\, B, C, D are not coplanar. However, equation (1) is symmetiic wi
respect to all symbols, which proves that it is likewis® wherA, B, C, D, E are non-
coplanar points. Moreover, &, B, C, D, E are coplanar points then every term of that
equation will be zero. Therefore, equation (1) is indestdblished for the case whee
B, C, D, E are arbitrary points.

If A, B, C, D, E are first-order forms then one will have:

A=mA+mA, B=mBi+nB,, C=p1Ci+p:C;,
D=qiD1+@D2, E=riEi+rnkE,

whereA, ... represent points amd, ... represent numbers. The analogous equalities to
equation (1) that one can define with the pofts..., By, ... are then verified. On the
other hand, the ones that are multiplied by the productgqr and summed will give
formula (1).
THEOREM II. —If A, B, C, D are coplanar, first-order forms then one will have:
BCD.A-CDAB + DAB.C-ABCD =0.

Proof. — LetE be a first-order form that is not coplanar wi&hB, C, D, so theorem |
will say that one will have:

BCDEA - CDAEB + DABEC -ABCED =0,

becauseABCD = 0. However, the numbers (i.e., tetrahed&®DE, CDAE, ... are
proportional toBCD, CDA, ..., and the theorem is this found to be proved.

THEOREM lIl. —If A, B, C are collinear, first-order forms then one will have:
BCA+CAB+AB.C=0.

Proof. — If D is a first-order form that is coplanar wi#h) B, C then one will deduce

from theorem Il that:
BCD.A + CAD.B + ABD.C =0,
sinceABC = 0. Now, the numberBCD, CAD, ABD are proportional tBC, CA, AB,
which succeeds in establishing the stated theorem.
8 4. —- REGRESSIVE PRODUCTS.
25. Second and third-order forms— LetA, B, P, Q, R be first-order forms. Upon

setting:
() AB.PQR=APQRB —BPQRA,
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we will say thatAB.PQRIs theregressive product or simply, thgproduct— of AB with
PQR Upon comparing the definition (1) with the identitytheorem | of no. 24, one
sees that:

(2) AB.PQR=APQRB + ABRPQ + ABPQR.

a. Ifone hasA'B' = AB andP'Q'R =PQRthen formulas (1), (2) will prove that:
AB.PQR =AB.PQR A'B'.PQB=AB.PQB,

and, in turn, the produ&tB.PQRcan be regarded as a function of the foABsPQR If
we further set:

a=AB, a=POR
then we can write:
1y AB.a =Aa.B -Ba.A,
2y a.PQR=aQRP + aRPQ + aPQR,

which defines the product of a second-order form with zevariant by a third-order
form.

As for the product of an arbitrary second-order farmith a third-order forma, we
agree that it is found to be defined by formuld.(3J one agrees thata = aa then the
product of a second or third-order form with a second ed-tider form will remain
defined in a general manner. Moreover, these products dlawd the properties of
algebraic products that obey the commutative propenby.ekample, one will have:

aa=aaq, @+b)a=aa+ba, a(a+p =aa+apg

and ifx is a real number then:
x(aa) = (xa) a = a(xa).

b. It further results from equations (1) and (2) tret)(a = 0, @a) a = 0, which
proves thata or ga is a first-order form that belongs to the forayar. Ifa# 0, a # 0,
with aa = 0, then one will havaa = 0 when the lina is contained in the plang and
conversely.

c. If Ais a point and is a vector then one will have:
Al. w=Awl -1wA =1,
which amounts to saying that. wis the vector of the line segmehit. In general, iSis
a second-order form thesawwill be the vector of the forms, and one will have, for any
point O:
s=0(sw + u,

and expression in whialnwill denote a bivector that is a function©@fands.
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Examples— LetA, B, ... be pointsa, b, ..., non-zero line segments, aog g, ...,
triangles that are likewise non-zero. One caredta following properties:

1. The parallel to the lina that is drawn through the poiAtis the position of the
formA.aw

2. The plane that is perpendicular to the bn@nd passes throughis the position
of the formA | aw

3. The position of the formAaA | aw is the line that passes through
perpendicularly to the lina, and meets precisely that line at the point that igptistion
of the forma.A |aw

4. The conditions for the parallelism of the lireandb is awbw = 0, and the
condition for perpendicularity of the same lineads| bw= 0.

5. IfAB.a# 0 andAB.a is not a vector theAB.a will be the point at which the line
AB meets the plane, where the mass of that point will be, moreover, etuala.Bw—
Ba.Aw

26. Third-order forms. — LetA, B, C, P, Q, R be first-order forms. Set:
ABCPQR=APQRBC + BPQRCA + CPQRAB,
and callABCPQRtheregressive product or simply, theoproduct— of ABC with PQR

a. Itis obvious thaRBCPQRIis a function of the third-order forPQR However,
one can prove thaABCPQR s also a function of the forABC. Therefore, if one is
given two third-order formsgr and 5 then the productr of these two third-order forms
with each other will be found to be well-defined. Muwrer, these products will have all
of the properties of algebraic products, except for thewncotative property. For
example, one will have:

aB=-pa, aB+y=aB+ay
and ifx is a number then:
X(ap) = (xa)B = a(xD).

b. From the definition itself of the produej3, one deduces thatQ)(ap) = 0, @h)a
=0, @PpP=0;ie., thatafis a second-order with null invariant that belongtheoforms
a, B. If af # 0 then positaf will be the projective line that is the intersectiohthe
planesa and 5. One deduces from this that two projective planes aliflays have at
least one projective line in common. dfz 0, with 5 # 0 then one will haverS = O if
planea = planeg, and conversely.

c. Ifwe letAbe a point and ldt J be two vectors then:
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AllJ. w=Awld +|1wIA +IJwAl =1J.

AlJ. wis the bivector of the triangle. In a general manifieg;is a third-order form
then owwill be the bivector oty; and one will have for any poifx:

o=0(ow + q,
whereq is a trivector that is a function &f and o:

Examples— If A, B, ... are pointsg, b, ... are non-zero line segments, andg, ...
are non-zero triangles then one can say that:

1. The position of the formA.awis the plane that is parallel tmand drawn through
the pointA.

2. The position of the form | (a«) is the line that is perpendicular to the plane
and issues from the poiAt

3. The position of the forra | (e« is the plane that is perpendicular to the plane
and passes through the liae

4. The condition for the parallelism of two planeand S is (@ (| = 0, which
amounts to saying thatrew is a multiple of fay the condition of perpendicularity is
(aw)(Ba) = 0. The condition for the parallelism of the liaewith the planea is
(aw(aw = 0, and the perpendicularity of the line and the @lsnexpressed by |

(aw) = 0.

5. Ifawbw# 0 then the vector pfuba) will be perpendicular to the linesandb.
Consequently, the line:

(1) | @wba)] [b] (awba)]

will be the points that are common to the line (1) d&dlinesa andb.
If A, B are the positions of the forms (2) then one willdha

a=-Aaqy b=B.bw
and
ab=AawB.bw=A(A-B).awbw

However, the vectoh —B is perpendicular to the bivectbwbaw As a result:
mod(b) = 1 mod(AB) mod@wba),
or

(3) modAB) = GLd@b)

mod(@wbw)’
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which gives us the shortest distance between the pafitke linea and those of the line
b when these two lines are not parallel.

27. General properties of products— We shall group the general properties of the
progressive and regressive products here. Therefonealatis be two positive whole
numbers that are less than 4, wiile A are forms of order, andAs, A are forms of

orders. One has:

1. Ifr + s< 4 then the product & with As will be progressive, ané, As will be a
form orderr +s.

2. Ifr + s> 4 then the product & with As will be regressive, ané, As will be a
form orderr +s— 4.

3. IfA = A andAs = A thenA As= AA.

4. AAs=(F1)° AA: .

5. AAs+ A)=AA+AA.

6. Ifxis a number ther(A; Ay = (XA) As = Ar (XA).

28. Duality. — Letr, s, t be positive whole numbers that are smaller than d,ian
addition, letA,, As, A: be forms of order, s, t, respectively. One obtains the product
A/AA: by two multiplications. If these two multiplicatisrare progressive theq As. A
will be a form of order + s +t. If one of these multiplications is progressive aral th
other one is regressive th&nAs. A; will be a form of order + s+t — 4. Finally, if the
two multiplications are both regressive thigi\s. A; will be a form of order + s+t — 8.

IfA B, ...,ab, ...,a G ... are forms of first, second, and third order, respelgtiv
then one can easily prove the following formulas fer products of three factors:

(1) AB.C = ABC, (1) ap.y = a.py,

(2) AB.a =ABa, 2y afa=a.fa,

3) AB.a = Aa.B-Ba.A, 3y af.A=aA.L- PA.q,

(4) ab.C =aAb+DbAa, 4y ab.a =aa.b—-ba.a,
(5) Aaa=Aa.a+aaA.

One deduces formulas () from formulas (1)-(4) by changing the form of the
first and third order into forms of third and first ordexspectively. When an analogous
permutation is performed on formula (5), that will givett same formula, but solved
with respect to the second term on the right-hand side.

The formulas that we just wrote down expressptieciple of dualityfor geometric
forms. From these formulas, equations (3), (4),, (&), (5) relate to projective
geometric elements of space, since a property thateowocthe projections and
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intersections ') will provide another one by changing points into projecfilenes and
planes into projective points.

Formulas (3), (4), (3) (4), (5), and the ones that one can deduce from them by
solving with respect to a term in the right-hand sideniieone to state the following two
general rules:

1. Ifthe sunr + s+tis equal to 5 or 7 then:

A A A= FD)™A AL A - (FLTAACLA.

2. Ifr +s+t =6, without one having=s=t, however, then:

A A A=A AL A (FIAA LA

29. Regressive products in a projective plane: We shall now consider forms of
the first, second, and third order whose positionsrated same given projective plane.
Every third-order form can be identified with a number.

We set:

(1) AB.PQ=APQB -BPQA,

and callAB.PQ theregressive product or simply, theproduct— of AB with PQ, upon
supposing tha#, B, P, andQ are first-order forms. Upon comparing the identity in
theorem Il (no. 24) with that definition, one can write

(2) AB.PQ=ABQP -ABPQ.
a. Ifone hasA’'B' = AB andP'Q' =PQthen it will result that:
ABPQ =ABPQ, AB.PQ=AB.PQ.

Therefore, the produ&B.PQ is a function of the formAB, PQ, and if one seta =
AB, b = PQ then the regressive productaéindb will be well-defined. Moreover, these
products have all the properties of algebraic productsepéxtor the commutative
property; namely:

ab=-Dba, alb+c)=ab+ac
and
X(ab) = (xa)b = a(xb),
if Xxis a number.

(Y In the case where the produd is progressive, posiB will represent the projective element (viz.,
line or plane) that is determined by the condition thattist contain posik and posiB; i.e., that posiAB
is the projective element thatojectspositA, positB being the center of projection. On the contrdrihe
productAB is regressive then poghB will be the projective element (point or line) thadistermined by
the condition that it be continuous in po&iand posiB. In a word, therogressiveproduct will represent
the projectingelement and theegressiveproduct will represent therojectedelement.
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b. From formulas (1) and (2), one deduces thbt &= 0, @b) b= 0; i.e., thatbis a
first-order form that belongs to the forrasandb, while the pointab is the projective
point of intersection of the linesandb in the case wherab # 0. One further deduces
that two coplanar projective lines will always haveeatst one point in common. When
one has # 0 withb # 0, ab will be zero when lin@ = line b, and conversely.

c. If u, v are bivectors then the progressive produat ehdv will always be zero.
However, if one considens v to be second-order forms that have their positiorthen
plane at infinity then the regressive productiafith v will be a vector, and positv will

be a point at infinity that is common to the positiofishe bivectorsi, v (*9), or a line at
infinity in the case wherav # 0.

30. Letr, s be positive whole numbers that are less than 3, amd,ley, A, A be

forms of orderr, s, respectively. The following general properties resalt the
progressive and regressive products in the plane:

1. Ifr + s< 3 then the product & with As will be progressive, ané, As will be a
form of orderr +s.

2. Ifr +s> 3 (orr + s=4) then the product & with As will be regressive, and,
As will be a form of order + s— 3.

3. IfA =A, withAs=A, then one will havé, As= A" A.

4. AAs= (L) AA, .

5. A (As+ A) =AA+AA.

6. Ifxis a number ther(A; As) = (XA) As = Ar (XA).

For the products of three factors in the plane, oneatso write:

(1) AB.C =ABC, ay ab.c =abc,
(2) AB.a =AaB-BaA, 2y ab.A =aAb-Dba,

which gives the principle of duality for geometric foransd projective elements in the
plane.

(** The condition of parallelism of two planesandthat was pointed out in example 4 of no. 26 still
remainsaw fw= 0 whenawfw is a regressive product on the plane at infirgge(d.
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§ 5. — COORDINATES.

31. THEOREM I. —If one is given first-order forms;AA;, As, A4 such that AA;
AsAs # 0 and arbitrary forms Ss, o that are of first, second, and third order,
respectively, then the numbess Xx., X4, V1, ..., Vs, 2, ..., Z2 SUCh that:

1) S=xXA+XAr+X3Az+XsAs,
(2) S=Y1AL A+ Yo Al A + Y3 Al As +Ya Ao Ag + Y5 AsAs + Ve As Az,
3 =AM ARAMTLAAAL+Z3ALAIA +Z AL A A

will be well-defined.
Proof. — The identity in theorem | of no. 24 gives:
ALACAAL. SHFAAGALS. Al — ... +SAAA. A, =0.

In order to get formula (1), it suffices to divide AyA; As A4, with:

w=— DAAS _ AASA
AAAA AAAA

Now, if X is the product of the two first-order forr8sS then:
S=SS= (XA + )(XlA]_ +...),

which gives a formula that is analogous to formula (2nupeveloping the product in the
right-hand side. In genera, when considered to be a sum of two products of first-order
forms, is reducible to the form (2). Similarlg; when considered to be the product of
three first-order forms, is reducible to the form (3t present, it suffices to prove that
the numbery, z are determined in a unique manner. To that effect, consider

s=yAA+Y,AA+ ..
Thus:

Vi=YWAA+(%~ V), AA+ ... =0,

and if one multiplies byAsA4, A2A4, ..., successively then one will get:
Y1= Vi, Y2= s,

The numbers, y, z are called theoordinates of the forms § ¢, respectively, for
the reference elementg, Ay, As, A4 .

THEOREM Il. —If Ay, Az, Ag are first-order forms such that;; As # 0,and Ss
are arbitrary forms of the first and second ordexspectively, that are coplanar with A
Az, As then the numberg X%, X3, Y1, Y2, Y3 such that:
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S=x1A1+ X A+ X3 Az,
O=Y1 A Az+ Yo AsA1 + Y3 Al A

will be well-defined™).

Similarly:

THEOREM . —If Ay, A; are first-order forms with AA, # 0 then for any first-
order form S that is collinear with;Aand A, the numbersx X, such that:

S=x1 A1+t X A
will be well-defined

a. If:
S=x1A1+ ... +X4 As, S =xA+...+ XA
then one will have:
S+S=M+x)A+ ... +tK+X)A,
and for a numbem:
mMS= (mx) A1 + ... + (Mx) As,

which are formulas that determine the coordinates ofoitresS + S andmS

One will get analogous results for the forsys s, ms, o+ ¢, ma. One can,
moreover, easily obtain the coordinates of the progressid regressive product of two
forms.

b. If:
S = X1 A + X2 A + X3 Az + X4 Ag
S = X1 AL + X2 Ao + X3 Az + Xo4 Ag
S =Xa1 A1 + X2 Ao + Xa3 Az + X34 Ag
S =X Ar + X2 Ao + Xa3 Az + Xas Ag

(**) One calls a set of elementsimear systemwhen the sum of elements, as well as the product by a
number, is defined, and these operations will have ttimary (i.e., the ones in algebra) properties. We
say that the elements, u,, ..., u, of a linear system aiiedependentvhen it is impossible to determine
numbergm, m, ..., m, that are not all zero and are such that:

mu+npU+...+mu,=0.

A linear system is called-dimensionalvhen there exist elementsy, u,, ..., U, of the system that are
independent, and + 1 elements of the system would always be dependeuntis Hn arbitrary element of
the system then the numbeng m, ..., m, such thati=my u; + m U, + ... +m, u, will be well-defined.

The preceding theorems thus express the idea8riftgand third) order forms in space are elements of
a four-dimensional linear systenand thatthe second-order forms in space are elements of a six-
dimensional linear systemSimilarly, the forms of first (and second) order on a projective plane are
elements of a three-dimensional linear systeta,

For the other linear systems of geometric forsegeC. BURALI-FORTI, “ll metodo del Grassmann
nella Geometria proiettivaldc. cit.
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whereAy, ..., A4 are first-order or third-order forms and thare numbers, then one will
have:

X X X3 Xy
(1) S.I.SZSSSl: X21 X22 X23 X24 AlAZA\”,A4
X1 Xap X3 Xy
X41 X42 X43 X44
Indeed, one term in the prod&tS & S, is:
X11 X22 X33 Xa4 A1 Az Az Ay,

and one can obtain all of the other terms by permuliagsécond indices of thxe; X2» Xs3
Xa4, @and giving the term thus obtained a + sign or a — sigording to whether the
number of inversions of consecutive indices is or isarmoeven number, respectively.
Thisl‘!aw is nothing but the law of formation for thents in the determinant in formula
1) ().

Here is an example: L&, B, C be the summits of a triangla;, B, C', the points of
intersection with the opposite edges of the interisedtiors of the angles B, C. Seta =
mod BC, b = mod CA, ¢ = modAB. Under these conditions, the po#it will be the
position of the regressive product:

BC(CA AB) _ ABCC+ ABCB.
b c b c

The mass of that form will be:

ABC ABC — ABC b+C

b c bc
and consequently):
A = L B+LC_
b+c b+ c
Similarly, one will have:
B=_Yc+ 2 A,
cta cta

C ——A+LB
a+b at+b

and consequently:

(Y For the theory of determinants, as deduced from Grasssnaparationssee E. CARVALLO,
“Théorie des détérminants,” Nouv. Ann. (1893).

(** One deduces from this formula that the interior biseat the angleA will decompose the opposite
side into parts that proportional to the ed8BsAC. Conversely, that property will give the formula:

A = LB+LC

b+c b+ c
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0 b c
b+c b+c
Apc=|-2 o —° |ABcC= 2abc ABC,
c+a cta (b+o)(cta(at b
a b 0
a+b a+b

which provides the area of the triangt®'C' as a function of the numbeasb, ¢, and the
area of the triangl&BC.

32. Now, take the reference elements to be a pOimind three non-coplanar unit
vectorsl, J, K. If Sis a first-order form then one will have:

S=mO+xl +yJ +ZK,

and sinceéSw=m, one will see that is the mass of the for& For an arbitrary poir®,
one will thus have:

P=0+xl +yJ +z,

and the numbers, y, z will be the Cartesian coordinates of the pdiif one takes the
point O to be the origin and the axes to be the li@sOJ, OK. Likewise, ifU is a
vector then, as we have already seen, one will:have

U=xl +yJ +zK.

In what follows, we will agree that the vectdrd, K are pair-wise perpendicular and
that the trivectodJK is positive, which amounts to supposing that teetarsl, J, K
satisfy the conditions:

|2 — ,J2 — KZ’
J|K =0, KJ|I=0, 1|3 =0,
| = |JK, J=|KI, K =]1J.

The properties that we shall state prove how Gmmeanalytic geometry can be
deduced quite easily from the general theory ahf ().

a. If U=x +yJ+zK then one will havéJ® =% + y* + Z, and the modulus of the

vectorU will be the number/x* + y* + Z°.

b. If U=xl +yJ +zK then one will hav&) || =X, and in turn:

(*®) For the other coordinate systems, one can corBuBRURALI-FORTI, “ll metodo del Grassmann
nella Geometria proiettiva,”ldc. cit). However, it is good to observe that in the developntént
Grassmann’s method the chosen coordinates have no ingereard that the theorems of no. 31 or no. 34
are all that is necessary.
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COSUJ):;, cosy, J) = y

XX +y*+ 7 ./x2+y2+zz’

In a word, the coordinates Ofwill be proportional to the cosines of the angld tha
makes with, J, K, and:

cog(U, 1) + cog(U, J) + co(U, K) = 1.

c. fU=xl+yl+2zK,U =xI+yJ+ZK then the condition that be parallel to
U'" will be:

uu' =0,
or:
y JK + ZXKI+ ny =0,
y Z Z x X Yy
or even:
y z| _ z x| _ X y| 0
y 7 Z X "X ’
which we agree to write in the form:
X_Yy_z
I yl ZI
The orthogonality condition will be:
U|U =0,
which will now be written:
xX +yy +2Z =0.

d. Letu be a bivector. One then has:
u=xlJ +yKlI +23 and |u=x +yJ+z,
which reduces the properties of the coordinates of a bivertbose of a vector.

e If:
P=0+xl +yJ+zZK and P =0+xI+yJ+ZK

then one will have:
modPP = mod f - P),
=mod [k-X) 1 +(y-Yy)J +(z-2Z)K],

= J(x=X)? +(y- ¥)2+(z- 97,

an expression that provides the distance betWesmdP'.
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f. The points:
P=0+xl +yJ+zK and P =0+xI+yJ+ZK

are situated on the linethat is parallel to the vectér = pl + gJ + rK when the vectors
U, P - P are parallel; i.e., when one has:

X=X :y—y: z—-7
p q ro

which is nothing but the equation of the line
g. If ais atriangle then one will have:
a=aQK +b Kl +c OJ —d IK,
and the poinP =0 +xI +yJ + zZK will belong to the plane when:
ax+by+cz+d=0,

which is precisely the equation of the plane

With aw=aJK +bKIl +clJ and | ) =al +bJ +cK, one sees that the numbers
a, b, ¢ will be proportional to the cosines of the anglesttthe normal to the plane
makes with the axes.

Since:

moda:%mod (aa)):% mod | @a):%\/a2+b2+c2,

the number:
3Pa _  ax+by+cz d

moda \/a2+b2+ C2

will be the distance — with a sign — from the pdirtb the plane.
h. If ais a second-order form then one will have:

a=pO0Ol+qQJI+rOK +p'JK +q KI +r'"1J,

and its invariant will be zero since:

1) pp +qd +rr' =0.

The numbersp, q, r, P, d, r', which are coupled by the relation (1), are then the
coordinates of the lina, which are coordinates to which one can easily give a gg@m
significance here, if one observes that:

aw=pl+qJ+rK, | Ca) w=p'l +q J +r' K.
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If a, a are two second-order forms such that:
aa=0, =0, aw. aw# 0

then (no. 26, example 5) the shortest distance betpeiits of the linea and those of
the linea; will be given by the formula:

mod(ppi+qd + rm+ p P+ g4+ (N

2 2 2
\/‘qr rp p q
o nL| [P [P

+ +




CHAPTER Il

VARIABLE FORMS

§ 1. — DERIVATIVES.

33. Definitions.— As in analysis, we will lek(t) denote a geometric forfrthat is a
function of a numerical variabke and we will always suppose, without having to repeat
ourselves in each case, th@d} is a well-defined function in the interval considered.

Therefore, lef(t) be a first-order form, a second form with zero ifevat, or a third-
order form. With the restriction that the fof(t) not be annulled for any value ih the
interval of variation fott, positf(t) will be a projective point, line, or plane, respectiyely
that will be a function of.

When there is no possible confusion, we will write@int, instead of(t), and posit
f, instead of posil(t).

34. Limit of a form. — Letf(t) be a geometric form, and lgtbe an arbitrary number
that is finite or infinite. Consider a fixed forfmof the same order &s Whent tends to
the valuety, we will say thafy is the limit off(t), and write either:

Itl_rtn f(t)y=fo or Itim f=fo or limf=f,.

=ty
One will always have for any poin®s Q, R

lim f()PQR=1o PQR

or
im f()PQ =10 PQ

or
lim f())P =fo P,

according to whethd(t) is a form of first, second, or third order, respeely. It will be
implicit that the variation of must take place in an interval in which the fumeti is
constantlydefined and the knowledge of the limit of a form is thresluced to that of a
variable number, which leads us to suppose thatthkery of limits of numerical
functions is known.
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Example — In a given plane, consider a fixed pdta vectorl, and the pointg\,
Ay, A, ..., whose sequence is determined by the following law:

AL =0+,

Ao :A1+i(A1—O),
Az =Ax+ 1i(A—-Ay),
Ar =As+ 3i(As—Ay),

One easily sees that:

A =0+,
A =A +i,
As = A —1|
- 2 Zl
A 1.
_ 1
As _A4+ZI’

SO:
A2n:O+ 1—£+—1—---i—1 | + 1_1-{-&_...1—1 il
21 4 (2n-2)! 3! 5l (2n-1)!

Knowing the series developments of siand cosx then permits us to write:

lim Apn =0+ (cos 14 sin 1)l =0 +€ I,

which proves that the variable pos, or A, (which is a function of the whole number
n) has a certain poir for its limit position whem increases indefinitely, whose distance
from the pointO is modlI, such that the vectdrmakes an angle of one radian with the
vectorA — O. This sequencé, A, ... thus permits one to construct the angle of one
radian by approximations.

35. Now, suppose thak(t), B(t) that have well-defined limits fdr=1t, (**).

(") If we accept the modern notion of limit (G. PEANRlyista di Matematica, vol. I1) thetim f(t) will
t=t,
be a set of numbers [whéft) is a numerical function]. If that set contains jase element then we will
say thatlim f(t) is well-defined, which agrees with the usual meamihigmit. [For the limit of a variable
t=t,

set,see C. BURALI-FORTI, “Sul limite di una classe variadit’ensembles,” Atti Acc. Sc. Torino, vol.
XXX; “Sur quelques propriétés des ensemble d’ensemblesth MAnN., B. 47.]

The condition that A(t), B(t) have well-defined limits” is necessary. For exampepositiond
expresses the idea that the limit of a product is the pradube limits. Therefore, if one sefs=t 1, B
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a. If A, B are forms of the same order then we will have:
Im(A+B)=limA+IlmB [becauseA +B) PQR=APQR+BPQR.

b. If xis a number that is itself a function of the num&rivariablet, and lim x is

t=ty
well-defined then:
liMm(xA) = (lim x)(lim A).

With the restriction that the number not be annulled for any value ofthat is
considered, even at the limit, one will have:

A _IlimA

x limx’

c. The coordinates of linh are the limits of the coordinates Af Indeed, if, for
example A = xA; + YA, wherex andy are numbers that are functionst@ndA,;, A, are
constant forms, then one will have:

lim A = lim(xAy) + lim(yA2) = (im x) Ay + (limy) A,

d. lim(AB) = (lim A)(lim B).

e. If A is a vector (bivector, trivector, resp.) then lmwill be a vector (bivector,
trivector, resp.), becaugew= 0 and limA &) = (lim A) w= 0, which proves the theorem.

f. If A is a vector in a given plane then:
lim(i A) =i (lim A).
Similarly, if A is a vector or bivector then one will have:
lim(] A) = | (limA).
g. If modA is defined then one will have:
lim(mod A) = mod(limA).
36. Limit of a projective element.— Letf(t) be a geometric form such that in the

interval of variation fot the projective element posit) is well-defined and fot = t, the
functionf(t) has a well-defined, non-zero limit. We set:

:(El+3inflj‘]' wherel, J are, for example, vectors, thalB = (1+tsin%j IJ. One then sees thétn AB =
t=0

1J, whilelim A = 0, andlim B has no meaning.
t=0 t=0
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Itlzrtn [positf(t)] = posit[lti:rtn f(t)} ,

which amounts to saying that the limit of the positodhis the position of the limit of
Moreover, we assume that the forA), a(t), a(t) of first, second, and third order,
respectively, have the same propertie§tasand set:
ImA=A, lima=ay, ima=a.

Under these hypotheses, one will have the following gsipns:

a. If AandAp are not vectors then the limit of the distance betwie pointA and
the pointAy will be zero. Indeed, let be that distance, so one will have:

d= mod [Ai)
Aw Aw
Now:
lim AAg = Ag Ay = 0, imAw. Ad) = (Aow)?,
and consequently:
limd=0.

b. If a pointA of the linea has a well-defined limit') then that limit can only be a
point on the lineay, because it results frofka = that:

lim (Aa) =Apap = 0.

c. If the lineag is not entirely at infinity and\;, which is at a finite distance and is
situated on the lin@, has a well-defined limit then the distance from plt A to the
line ap will tend to zero, becausedfis precisely that distance then one will have:

(modao)*?d = mod@ a).
However:
lim (A &) = (IimA) a =0 (propb),
and, in turn:
limd=0.

d. If a point or a line in the plang has a well-defined limit then that limit will be a
point or a line in the plane.

18) Seethe note on page 46 for the restrictive conditionswlgamust impose upon propositicnd, ...
pag
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e. Ifthe planeay is not the plane at infinity amd, which is at a finite distance in the
planea, has a well-defined limit then the distance from pbét A to the planeny will
have zero for its limit.

37. Derivatives.— Letf(t) be a geometric form. If the function:

f(t+h)— (1)
h

has a well-defined limit foh = 0 then we set:
df (t) _ lim f(t+h)- f(t) |
dt h=0 h

in order to caldf(t) / dt (or df / dt) thederivative of the formf(t), following the language
of analysis.

We further denote the expressift) / dt (or df / dt) by %f(t), f'(t).

Upon writing:
df(t) =f'(t) dt,
instead of:
df (t)
—2 =f'(1),
it ®

one can likewise say thdf(t) is thedifferential of f(t). Therefore, the differential dft)
is the product of the derivative f{f) with the infinitesimal numbeult.

The derivative of the derivative is further called seeond derivativethe derivative
of the second derivative will be called timrd derivative and so on. One sets:

o0’f _d® ., _df

dt?  dt? dt '’
I P
dt"  dt" dt

Now, suppose thak(t), B(t) are geometric forms that have derivatives for anyevalu
of t that is being considered.

a (). If A, B are forms of the same order then one will have:

d(A+B)=dA+dB or A+B) =A +B.

(*% The rules of derivation that we give in propositiead are analogous to the ones in differential
calculus.
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b. If xis real number that is a functiontdhen one will have:

d(xA) = (dX) A + x(dA),
and for a constant numbex
d(mA = m(dA).

c. d(AB) = (dA) B + A (dB), however it is not generally permissible to chatige
order of the factors. More generally, for a non-zetegarn one can write:

n(n 1)

A(n 2) Bn A"B(n 2) + nA,B(n l) +AB(n)

(AR = ADB + nAT Y g + X = D

d. The derivative of a constant form is zero. Convgrsa(t) is constant in an
interval when its derivative is zero for any valuet @ahat is taken from the interval in
guestion.

e. The derivative of a point is a vector, becausig a point then one will havkw
=1, soA'w= 0; i.e.,A" will be a vector.

f. The derivative of a vector is a vector, and conseqyetité derivative of a
bivector or a trivector is a bivector or trivector, regeefrop.c).
Let A be a vector in a given plane, and ¢ebe a real number that is a functiont,of
So:
dé?A) =€?dA +i €? A dg,
and in particular:
d(i A) =i (dA).

In the case wher& is a constant vector, one will have:
dé?A) =i e’ A dg,

andd(€ A) will be a vector that is perpendicular to the veetbA.
Similarly, if A is a vector or bivector then one will have:

d| A) = @A).

g. If A is a vector with constant non-zero modulus therddresative ofA will be a
vector that is zero or perpendicular to the vegtpsince:

A | A = const.,
SO
A|A"+A"|A=2A|A" =0.

h. If A is a vector that is nowhere annulled in the inteofalariation oft then the
necessary and sufficient condition for the direcod to be constant will be precisely
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A (dA) = 0 or, more simplyAA' = O for all values of. Indeed, if one se8 = A / mod
A then one will likewise have:
A = (modA) B,
SO
A’ = (modA)' B + (modA) B’
and
AA' = (modA)?BB'.

Now, modA # 0, by hypothesis, and the necessary and sufficient ttmmdor AA’ =0 is
indeedBB' = 0. However, sinc® is a unit vector, the conditioBB’ = 0 (prop.g) is
equivalent td8' = 0 orB = const.; i.e., to posA = const.

Under the same hypotheses as before, the necessasyféingnt condition for the
vectorA to be parallel to a fixed plane will B&A'A" = O for all values of.

If A is a non-zero bivector the®A' = 0 (regressive product) will be the necessary
and sufficient condition foA to be parallel to a fixed plane, wh#\'A" = 0 will be the
necessary and sufficient condition #dto be parallel to a fixed line.

k. If A is a non-zero vector then:

(modA)' = A A'.
modA
Indeed:
(modA)* = A | A,
and in turn:

(modA)(modA) =A |A,
and on a plane:

(modA)' = A",
m

which proves the stated proposition, since mAa# 0.
Examples—

1. LetA(t) be a point such that moa# 0 for all values ot. We will prove (8§ 2)
that the lineAA' is precisely the tangent at the pofto the curve that is described by
that point.

Thus, if a poinP in a given plane describes a circle whose cesatatQ then P — O)

i (P —-0O) = const. On the other hand, one can consiti¢o be a function of one
numerical variable, in such a way that:

(P-O)iP+Pi(P-0)=2P-0)iP =0,

an expression that proves that the tangent is riclonthe radius at the contact point.
One also finds the same result by setfrgO +r €?1.
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2. ThepoinP=0+rgl +ri | —r€e?il (seeno. 17) describes a cycloid. We then
have:
dP

dg

=P =rl -rée?il

or |
iP=ril-ré?il=M-P.

Therefore, the normal at a poiatof the cycloid is the line that joins the poftto
the contact point of the moving circle with the fixemeli

Figure 3.
3. LetO be a fixed point and Id(t) be a point in a plandig. 3). LetQ(t) represent

the foot of the perpendicular that is drawn thro@ko the linePP. The pointQ will
describe gpodaire(?) of the locus oP. That being the case, one will have:

(Q-P)i(Q-0)=0 or Q-P)i(Q-0)+@Q-P)iQ =0.
However:
P i(Q-0) =0,

which proves that the normal at the pdhof the curve that is described Qywill pass
the middle of the segme@tP.

Figure 4.
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4. With the same point®) fixed andP(t) (fig. 4), consider the poir,(t) = O +

a.2
(P-0)°
inverse curve to the one that was describe® lbyder the transformation by reciprocal
vector radii whose circle of inversion h@dor its center and radiuss One has:

(P - 0), into whicha enters as a positive real numbé&. will then generate the

(P-0)(P1-0) =0, P-0)i(PL-0) =&,
or, upon differentiating:
P(P.-0) =B (P-0), Pi(P.-0)=-R'i (P-0),
and after dividing the two sides of these equationg will get:
tanf®', P-0O) =—tan(R', P-0),

which proves that the tangents to the pohedP; and the perpendicular to the liGd
that is drawn through the middle BP; will agree at the same point.

5. LetP(t) andQ(t) be two points in a plane such that for every gadit the line
PQ is parallel to a fixed line. Iin andn are two real numbers such tmat n # 0 then
upon setting:

_ mP+ nQ
m+n

R

one will have:
(m+n)’RR =nmPP +n* QQ +mn PQ + mn QP.

Moreover, if the vectoP —Q has a constant direction then one can write:

(P-O)P -Q)=0, so PP +QQ =PQ +QP,
or finally:
RR = MPP+ nQQ
m+ n

Therefore:The tangents at the points P, Q, R to their respeaturves will pass
through the same point.

6. IfP(t) is a point, and the variablehat enters in is time thd? andP” will be the
velocity and acceleration, respectively, of thenp®, and will represent their magnitude,
direction, and sense. i is the (constant) mass of the paditwhich is assumed to be
free, thermP’ will represent the magnitude, direction, and seofsthe force, while the
inner productmP’ | dP will provide the elementary work that is done bg tforce. On
the other hand, the inner prodt| P' = (P')? will be the square of the velocity, and

1m(P")* will be thevis viva Now, we haved [%rr( F’)z} =mP’ | dP, and that formula
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expresses the idea th#ie increase in the vis viva will be equal to the elementary work
that is done.

In the case of a central force, the accelera®omvill pass through a fixed poir®;
i.e.,OPP' = 0. Meanwhile, QPP)' = OPP’, soOPP = const., which shows that under
the action of a central force, motion will alwaysganar. If we setr= (P -0, P'),v =
modP’, and ifd is the distance from the poi@tto the linePP then we will have:

d = [modP - 0)] sin q, OPP = 4 [vmodP —0)] sin a,
o)
vd = 20PP = const.,

which proves the well-known propertin the motion that results from the action of a
central force, the product of the magnitude of the velocity withdistance from the
center to the tangent to the variable point will be constant.

7. LetFy, F, be foci for an ellipse or a hyperbola, andRdie a point of the curve:

modP - F;) £+ modP —F,) = const.

One can consideP to be a function of a numerical varialdleand upon taking the
derivative (propk), one will have:

PR, PR lip=o
modP-F,) modP-F,) ’

which expresses the idea that the tangeRtiatone of the bisectors of the angles that are
defined by the two lineBF,, PF, .
For a Cassini oval, we will have:

mod(P —F1) modP - F,) = const.,

SO
modP-F,}——%  + modP-F }——2_|ip =0
>’mod(P-F,) ' 'modP-F, ) '

which provides a very simple construction of the norrm&l. a
The reader will have no difficulty in solving a hostaqpfestions by the method that
we just presented.

38. Mean forms.— If u is a set of real numbers then we will say that thalerx is
the mean of the numbers inwhenx is equal to the least upper bound of thend the
greatest lower bound of the

Let U be a set of first-order forms, and letbe a third-order form. We let the
notationU a denote the set of numbers that are the product of eachiri U by the form
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a. We likewise agree to say that the first-order fofims the mean of the forms in the set
U when for any forma the numbeiXa is the mean of the numbers in the Set In a
completely similar way, we define the second and tbindkr forms that are the means of
the second and third-order forms of a given set.

a |If Ay, Ay, ..., A, are forms of the same order, amgd, m,, ..., m, are positive
numbers then the form:

MA+mA+--+mA
M+ M+ + m

will be the mean of the form&;, Ay, ..., An. Indeed, suppose that, x;, ..., X, are
numbers such that:

X1<Xo< ... X%,
so one will have:

(M+Mm+ .. +mMy) XM X+ M X+ ..+ My X = (Mg + My + ...+ my) X

XM Xt X
m+m+tm

As a result, the numb will indeed by the mean of the numbers

X1, X2, vy Xn.

b. If I andJ are vectors, and is a first-order form that is the mean of the vestor
J thenK will be a vector, and the vectarsJ, K will be coplanar (otJK = 0). Indeed,
we know thaK wwill be the mean ofwandJ« and sincd w=Jw= 0, one will have
Kw= 0; i.e.,K will be a vector. Furthermore, 6 is a triangle then the numbiéra will
be the mean of the numbérg andJa, and ifl @ = Ja = 0 then eithet, J will be parallel
to the planexr orK a = 0, andK will be parallel to the plane.

c. If A, Ay ..., A, are points then a mean form #y, Ay, ..., A, will have a position
that consists of a point that belongs to the smatlestex field that encloses the points
Ay A, o A

39. Taylor's formula.

THEOREM |I. —If f(t) is a geometric form that has derivatives up to omddor
some value of t then one will have:

hn—l

(n- 1)|f O + (1O +F,

(1) fit +h) =f(t) + hf' () +F"(t) + ... +

for that value of t, where F is a form of the sayger as f that is a function of h (and the
value of t that is considered) and satisflligg F = 0,in addition.
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Proof. — For example, lek(t) be a first-order form and let be a third-order form.
Set:

#() =1(t) a.

#(t) is a numerical function dfthat has derivatives up to ordefbecausep™(t) = f ™(t)
a]. For that function, Taylor’s formul&9 gives:

(2) pt+h)=¢(t) +he'(t) + ... +h7n|[¢(”)(t)+F1],

whereF; is a number that is a function bfsuch thatIL[r()] F1 = 0. If one replaceg(t)

with f(t) a in formula (2) and sets; = Fa then it will become formula (1), in whidh
will indeed satisfyIL[r()l F=0.

THEOREM II. —If f(t) is a geometric form that has n successive derigatia the
interval from tto t + h then one can write:

2 n-1

_ iy 2 e h Q)
f(t +h) =f(t) +hf'(t) + o fr) + ... + (n=1D) f+F,

where F is a form of the same order as f that & rrean of the forms‘(t) that one
obtains by making t vary fromttot + h

Proof. — For example, lef(t) be a first-order form, and let be a third-order fornar.
Moreover, set:

#() =(t) a

#(1t) is a numerical function dfthat has derivatives up to ordem the interval front
tot + h, and Taylor’s formula, with Lagrange’s remaindgves:

Pt+h)=gt) +he'(t) + ...+ L_lw(”‘l)(t) + h—nqa,
(n-1)! n!

where® is a number that is the mean of the valueg8t) or f ”(t) . Consequently,
the numbeF a is the mean of the number§’(t) @, no matter what the third-order form
ais; i.e.,F is a mean form for the fornid"(t).

40. Continuous forms.— Letf(t) be a geometric form. We say thé} is continuous
in the interval of variation for when for any numbesp in that interval, one has:

(*® See:Lezioni di Analisi infinitesimale del ProG. PEANO, Turin, 1893, an@alcolo geometrico
loc. cit.
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lim f(t) =f(t) or lim f(to + h) =f(to).

For example, lety, t, be two values dof in the interval considered, and lgft;, t,) be
a form or a numerical function of andt, . If we maket; andt, tend to the same valde
in the interval, and in an arbitrary manrewithout, for example, imagining that one has
(t.t,)

-t

t1 = t, and that the functio has a well-defined limit — then we will denotettha

limit by the notation:

I|m ¢(t1’t2) ,
b=t t, -t
or, more simply:
I|m ¢(t1’t2) ]
t, -t

In an entirely analogous manner, we will define:

P(t,t,.t5)
(tz _tl)(t3 _t1)(t3_t 2) -

THEOREM I. —If f(t) is a form with a well-defined derivative in thedntal of
variation for t then () will be a continuous function.

Proof. — Taylor’'s theorem tells us that:
f(t + h) =f(t) + h[f'(t) + F],

whereF is a form such thdm F = 0. Consequently:

Im f(t + h) =1(t),
which proves the theorem.

THEOREM II. — If f(t) is a geometric form such that the derived forht)fis a
continuous function in the interval of variationr fdhen one will have:

fim )= oy
t, -t
Proof. — If we setn = 1,t =t,, h =t —t; in Taylor’s formula (Theorem IlI) then it will
become:
f(tz) = f(tl) + (tz —tl) F
or
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f(tz)_ f(tl) -F
t, -t .

Howeverf' is assumed to be a continuous function; i.e.:
lim F=f'(t),
becauséd- is the mean form of the valuesfdtt).

THEOREM IIl. — If f(t) is a first-order form, a second-order form with zero
invariant, or a third-order form, and if f{t) is a continuous function in the interval of
variation of t then one will have:

IimM =f(t) f'(t).
t, -t
Proof. — We know that:

f (tl) f (tz) - f(tl) f (tz) —f (tl) .
2 41 >4
However:
lim f(ty) = f(1), lim w: f(1),

which was to be proved.

THEOREM IV. —If f(t) is a first or third-order form such that'fand f" are well-
defined forms, and'f(t) is itself continuous for the values of t considered then one will
have:

F)F)T() o s en
(t, —t)(t,—t)(t,—t) =f() £ () £"(1).

Proof. — Letty, t,, t3 be values of such that:
3>t >t
Set:
fl = f(tl), f2 = f(tz), f3 = f(t3).

Taylor’s formula gives us:

A (Pl ) L
f2:f1+(t2_t1)f1+(2 1) fl,z

(1)

B (e )
f3:f1+(t3_t1)f1+(3 1) f1,3
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where f,, f'; are mean forms of the forrh§(t) whent varies front; to t, or fromt; to

t3 . Moreover, whefis a first or third-order form, we know thiaf,f; = f1(f, —f1), and in
turn, that:

t,

f1f2f3 = f fz_fl f3_f1_f fz_fl[fs_fl_fz_flj.
t,—

PV ! 1
('[2—'[1)('[3—'[]) t, -t t,-t (- t,-t,

Comparing this with formulas (1), the latter widdpbme:

() f (t1) f (tz) f (ta) — E f fz B f1 (t3 _tl) fl’,’3+ (tl_t 2) f ’1’,2
(tz —'[1)('[3—'[1)('[3—'[2) 2" t, -t t,-t,

Moreover,t3 > t; > t,, and the last factor in the right-hand side ofatmun (2) is a mean
formof f",, f;. Inthe limit, by virtue of Theorem Ill and themtinuity hypothesis for

the formf "(t), one will indeed have Theorem IV.

§ 2. — LINES AND ENVELOPES.

41. Lines and envelopes of lines in a projective plane.Suppose tha(t), p(t) are
non-zero form on a projective plane that are dft fand second order, respectively, and
that they are defined, along with their derivativdsarbitrary order, in the interval of
variation oft. If mis a non-zero whole number thef’(t), p™(t) will be forms in the
fixed plane. Indeed, let be a fixed, non-zero, third-order form such tRé} a = 0, p(t)

a = 0 for every value of. As a resultP™(t) a = 0 andp™(t) a = 0, which was to be
proved.

One calls the sé® of projective points  One calls the sgt of projective lines
that are positions of formB(t) whent in that are positions of formg(t) whent
the given interval &éne. varies in the given interval anvelope

These sets are projective elements that can beidevad to be independent of the
numbert, and of the interval in which it can vary.

If R, R, are points of the lin®, and the  Ifr, r; are lines in the envelogeand the
line RR, has a well-defined ling for its pointrr; has a well-defined poirR for its
limit whenR; varies on the lin® in such a limit when r; varies in the envelopp in
way as to tend to the poiRtthen the ling such a way as to tend to the linéhen the
will be calledtangent to the line P at thepoint R will be calledthe characteristic of
point R. the envelope p on the line r.

The normal to the lin@ at the poinR is the perpendicular to the tangent at the point
R (if it exists) that is raised in the plane of theve.
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If the pointP(t) is situated on a fixed line If the line p(t) passes through a fixed
r for every value of, and the lineP does point R for every value oft, and the
not reduce to just one point then the Imeenvelopep does not reduce to just one line
will be the tangent to the lin@ at any point then the poinR will be the characteristic of

in that line. the envelop@ on any line of that envelope.
THEOREM I. —If, for a given value of t, m is the smallest non-zero, whole nurmber
such that:

PP® £ 0 then the tangent to the line P pp® # 0 then the characteristic of the
at the point P will be the line PP. envelope p on the line p will be the point

Proof. (for the statement on the left). — Upon setting:

P =P(t + h),
Taylor’s formula will give:

2 hm—l

P=p+hp + L pry 4 T _pmny h—(P(m) +Q),
2! (m-21)! m!

whereQ is a first-order form such thdim Q = 0. Moreover, by hypothesiBP® = 0 for

x=1,2,...m—-1, and as a result:

PH:DiPﬁ@+P@.
m!

However:
lim positPPy = lim positPP™ + PQ)

= positlim (PP™ + PQ) = positPP™,
which proves the theorem.
The principle of duality for the plane will prodhe theorem on the right.
THEOREM Il

If PPP" # Ofor every value ofthen the If pp'p” # O for every value of then the
line P will be the locus of characteristics oenvelope p will be the set of tangents to the
the envelope whose lines are the tangetitee whose points are the characteristics of
to the lineP. the envelope p.

Proof. (on the left). — To that effect, set= PP. a will then be a non-zero function
oft, and the envelopawill admit the tangents to the lifefor its lines. We will have:

a =PP +PP' =PP',
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and from the regressive prodaet, one will see that:
ad =PP.PP' =PPP'.P -P'PP'.P=PPP". P.
One can also express the left-hand side of TheoremdayingiIf R is a point on the
line P, and r is the tangent to that line at the point R then the powili Re the limiting
position of the point at which the line r meets the tangent to the lat@fRother point R

when the point Rtends to be displaced on the line P in order to make it coincide with the
point R One can give an analogous interpretation to the theeorethe right.

THEOREM III.

If P(t) is a non-zero first-order form on If p(t) is a non-zero, second-order for on
a fixed plane, and 'R) is a continuous a fixed plane, andd'(t) is a continuous
form such that one has(tp) P'(tp) # 0 for form such that one hadtp p'(to) # O for
some valuegtof t then the tangent to thesome valueptof t then the characteristic of
line P at the point Ry) will be the limiting the envelope p on the lingty will be the
position of the line @1)P(tz) when t and & limiting position of the point (b)p(t)
tend to the valuet when { and & tend to the valuet

Proof. (on the left). — One has:

positP(t)P(t) = posit W (k)

2"l
and upon applying Theorem Il of no. 40, one wdt.g
lim posit P(t1) P(t2) = positP(t1)P'(t2),
which proves the theorem.
Examples-
1. Lety=f(x) be the Cartesian equation of a curve. One has:
P=0+X+iy)l,

whereQ is a fixed point, andl is a fixed unit vector in the plane of the curvéx is the
independent variable then one will have:

P=1+iy")I,

and ify has a finite and well-defined derivative in theemval in whichx varies then one
must have tha®' # 0, and the tangent to the pointvill be the linePP'.
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If @is the angle that is defined by th@xis and the tangent at the pditor if = (I,
P') then we will have:

P ylil
tanf= ——= 2L =y,
TR

which gives the ordinary geometric significance of tamhery'.

2. If p=1(¢) is the equation of the curve in polar coordinates then:

P=0+pé?l,
SO: _
P =(p+ip) €?l.

If we setd= (P -0, P') then we will get:

tanezﬁ,,
0

which is the usual formula from analytic geometry.

3. LetP(t) be a first-order form, and I&®P™ be the tangent to the poiRt The
normal will be the lineP i EPP(m).a). Therefore, ifP(t) is a point then the normal to the
point P will be the linePiP™, sinceP™ will be a vector that is parallel to the tangent at
the pointP.

4. LetP(t) be a point such th&PP" # 0 for a given value af and letA be a non-
zero, first-order form that belongs to the planehef lineP such that the poim is not
situated on the tangent to the curve at the ggim addition.

We say that the lin® has itsconcavityat the pointP turned towards the poimt
when the points of the linB are on the same side of the tanger® ais the poinA in
some neighborhood of the poiAt In other words, the line turns its concavity towards
the pointA at the poinP if one can fix a numbes such that the triangles:

Pt) P'(t) P(t+h), P() P (A
have the same sense for émyut are nevertheless smaller tlgan absolute value.
Under these condition, one can say thEte concavity at the point P is turned
towards the point A when the numbll:(Ze;l':),—P'A IS positive.
Indeed:
h2
P(t+h)=P+hP +?(P" +Q)

and
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2

PPP(t + h) = % (PPP" + PP Q).

Since Ilim Q =0, we can determine a numizesuch that ih is smaller tharr in absolute

value then the numbd?PQ will have the same sign as that of the numBetP".
Moreover, for these values bf the numbePPP(t + h) will obviously have the same
sign as the numb&P P", becaus&?’ / 2 will always be positive.

Relative to Cartesian coordinates, one has:

1xy
PPP" = 1y, PP il =1, PF’O:% 01y|=2(xy -y)
100

and at the poinP the curve turns its concavity in the position bé y-axis, or even
presents its concavity at the origin whére 0 or ky —y) y' > 0.

An entirely similar application can be made ingvatoordinates, for which one will
have:

P=pg€e?l +péd?il, P'= (0 - p) €?1 +20€? il,
and thus:
1 p 0
n_l ' — 1 2 _ '

PPP'=210 0 p|=4@20"-p0 + ),
Op"—p 2pl
1p0

PPO:%Op’p =1 ¢
100

5. LetPy(t), Po(t) be two points in the plane such that for evelyeaft:

PP, # 0, R #£0, P, #0,
and
PP, B # PP, P .

The position of the forrp = P1P, describes an envelope whose characteristic igidedc
by the position of the first-order form:

p[j =P,P> (Pl'P2+ Fi F%) = P]_Pzpz'. P, - P]_Pzpl'. P;.
Therefore, the characteristic of the envelppa the linep is the barycenter of the points

P1, P2, which have masses that are equal to the distanoath a definite sign — from
the pointsP, +F;, P, +P to the lineP1P, .
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For example, if:

PL=0+tl, P,=O++a’-t?il,

then the line?,P, will envelop armasteroid The distances from the poils+F andP-
+P, to the lineP.P, will be:

Jaz-t? t?

and -

a aJa -2
As a result, the masses of the polisP, will be:

t2 and a’-t?

and the characteristié of the envelopd”;P, on the lineP;P, will be the foot of the
perpendicular that issues from the pdtt P, — O to the lineP;P; .

42. Skew curves and envelopes of planesLet P(t), 7/£t) be non-zero forms that
are of first and third order, respectively, and are defiaéxhg with the derivatives in a
given interval.

One calls the set of projective points One calls the set of projective planes that
that are positions of form®(t) whent are positions of the formt) whent varies
varies in a given intervalllme. in the given interval agnvelope

If the points of the liné are situated |f the planes of the envelopg pass
on the same line or on a fixed plane for amifrough the same line or through a fixed
value oft then we will say that the line is goint for any value of then we will say
straightor planar ling respectively. that the enveloperis anaxial or conical

enveloperespectively.

If it is impossible to determine an |f it s impossible to determine an
interval, inside of which one VarieE intervaL inside of which one Varies
relative to which the liné® is a straight or (g|ative to which the envelopeis an axial
planar line then one will say that the liRe o conical envelope then we will say that
is askew curve the envelopris askew envelope

If R, Ry are projective points on the line |
P, and the line that joinR andR; has a
well-defined line for its limit whenR;

f p, o are projective planes of the
enveloperz and the line that is common to

varies on the lin® and tends t& then that pandpy has_ a well-defined line for its limit
line will be calledtangent to the line P at""henpl varies on the envelopeand tends

the point R to p then that line will be called the
characteristic of the enveloper in the
planep.
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If the enveloperis an axial envelope and does not reduce to a unique planthéhen
characteristic op will be the line through which all of the planes o¢ ttnveloperwill
pass. That line can be called tnas of the envelopelf that enveloperis a conical
envelope then the characteristicat if it exists, moreover — will pass through the point
that is common to all of the planes of the envelapd hat point can be called teammit
of the envelope

If R, Ry are projective points of the line If p, o are projective planes of the
P and if the projective ling is the tangent enveloper; and if the projective line is
to the lineP at R, while the plane thatthe characteristic op of the enveloper
passes through and R, has the a well- yhjle the point that is common toand o,
defined plane for its limit wheR, varies nas a well-defined point for its limit when
on P and tends t& then that plane will be , \5ries on the envelopzand tends t@
called theosculating plane of the line P afpan that point will be called theoint of

the point R regression of the envelopgon the plane

Finally, we shall call the envelopé” We shall call the line whose points are
whose planes are the osculating planes for.

the line P the osculating envelope of th _omts of regression for the envelophe
line P ine of regression for the envelope

Theorem I. —If, for some value of t, m is the smallest of the non-zero, \whohers
X such that:

PP® # 0 then the tangent to the line P P # 0 then the characteristic of the
at the point P will be the line PP, enveloperron the planerr will be the line

t™,

and this is proved in a way that is identical to thafledorem | of no. 41. In particular:

If PP # 0then the tangent to the life@  If 7/ # 0 then the characteristic of the

at the point? will be the linePP'. enveloperr at the planerrwill be the line
7t
THEOREM Il. —If, for a given value of t, m and n are the smallest non-zero, whole

numbers X, ¥x <y) such that:

PP® # 0 then the osculating plane to 77/ # 0 then the point of regression of
the line P at the point P will be the planéhe enveloperon the planerrwill be the

PPMP®. point 77" 77,

Proof. (on the left). — To that effect, st = P(t + h) and apply Taylor’'s formula.
One gets:

P=p+hP+ .+ pmy 4y N peny h—(P(”) +Q),
m! (n-1)! n!
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whereQ is a first-order form such thelit_rg Q = 0. Moreover, one has, by hypothesis:

PPPPY =0 for y=m+1,..n-1.
Therefore:

PP™P, = % (PPMPM + ppMQ),

and in turn:
lim PP™P; = positPP™P.

However, the linePP™ is tangent to the lin@® at the pointP, and consequently,
lim posit PP™P; is the osculating plane to the pofnt

If PPP" # 0 then the osculating plane If 77z 7# # 0 then the point of regression
to the lineP at the poinP will be the plane of the enveloperon the planerwill be the
PPP". point 77t 7t .

In the case where the lifeis a straight line, the osculating plane at edats@oints
will be indeterminate, becauseRfdescribes a straight linfe@ = XA + yB, whereA, B are
constant forms ang, y are functions of, but thenP™ = xX™A + y™B, andPP™P™ will
be always be zero. The same could be said foxiahenvelope.

If the line P is only a planar line then its osculating pland Wwe the same as the
plane of the curve at each of the points wheradhgent is defined. Indeed, the plane
PP™P, will have a constant position that is nothing that of the plane of the curve.
One can deduce analogous conclusions for a cans@lope.

THEOREM lII.
If one has PRP"P'" # Ofor every value If one haswi 7' 71" # O for every value of

of t then: t then:
a. The line P will be a skew curve. a. The enveloper will be a skew

envelope.
b. The tangents to the skew curve will P

be the characteristics of the osculating b. The characteristics of the skew
envelope of the curve P enveloperr will be tangents to the line of

c. The curve P will be the line OFegressmn of the envelope.

regression of the osculating envelope for ¢ The envelopa will be the osculating
the curve R*).

(* Let P(t) be a point. For a given value pfimagine tham, n, p are the smallest positive, whole
numbersx, y, z such thak < y <z, andP PY PY P@ z 0. If one set®; = P(t + h) then Taylor’s formula
will give, successively:

PP = % (PP™ +Qy),
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envelope of the line of regression of the
enveloperz

Proof. (of the left-hand statements). If the liRes a planar line then one will hatz

=xA +yB + zC whereA, B, C are constant forms, amxly, z are functions of. For any
m, n, p (M < n < p), one must then haveP™P™WPP = 0. The stated part of the theorem

will then result when one h&P P"P"" £ O for every value off.

Now, suppose that = PPP". Since, by hypothesi®PP" # 0 for every value of,
the enveloper will then be the osculating envelope of the skew civ®©ne will have:
a =PPP", o' =PP"P" +PPP",

and for the regressive produete’, aa’ ', one will have:

ad =PPP". PPP" =P"PPP". PP =PPP"P". PP,
ad @' =PPP'P". PP. (PPP" + PPPY) =— (PPP"P"). P,

from which, one can infer the equalities:
positaad’ = positPP, positad’ @' = positP,
which will prove partd, ¢ of the theorem.
THEOREM IV

If P(t) is a first-order form, and %) is If 7£t) is a third-order form, andi(t) is

PPMp, = % (PPMPO +Qy),

P
p PMpOp, = % (PPMPO PO 4+ Oy,

whereQ,, Q,, Q; will be first-order forms that are subject to thedition that limQ; = lim Q, = lim Q; =

0. Upon supposing that is the infinitely small principal, one sees that tligtances from the poift, to
the pointP, to the tangent to the poift, and to the osculating plane at that pdmtwill have the
infinitesimal orderan, n, p, respectively. There is a geometric interpretatiwrthe numbersn, n, p that
gives the type of singularity at the poiat We would not like to study the singular points of curves i
detail here. Here is an exampleglfaries from —7/2 to 77/2 then the point:

P=0+codg| +singcosgd + singK
will describe aViviani windowon the spherical surface with cen@and unit radius. One will have:
P'P"P" = cosg,
and only the poinP(77/2) = O + K will be a singular point of the curve. At the poldt+ K, the tangent

will be the line O + K) J, and the osculating plane will be the pla@etK) J (21 —K). One will have a
singularity, because'(77/2) is parallel to the vectd"' (77/2).
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a continuous form such tha{tp)P'(tp) # 0 a continuous form such thafty) 77(tp) # O
for every value of t then the tangent to thHer any value of t then the characteristic of
line P at the at the point(B) will be the the enveloperon the planefty) will be the
limiting position of the line @1)P(tz) when |imiting position of the liner{ty) 7{t;) when
t1, 2 tend to the valueyt t1, t2 tend to the valu.

This is proved as the theorem in no. 41 was.
THEOREM V.

If P(t) is a first-order form that is If M(t) is a third-order form that is
defined, along with ) and P'(t), and if defined, along witH1'(t) and M"(t), and if
P'(t) is, in addition, a continuous formm”(t) is, in addition, a continuous function
such that: such that:

P(to) P'(to) P"(to) # 0 M(to) M' (o) M"(to) # 0

for some valueotof t then the osculatingfor some valueotof t then the point of
plane to the line P at the poin(th) will be regression of the enveloge in the plane

the limiting position of the plane: M(to) will be the limiting position of the
point:
P(t) P(t2) P(t3) M(t) N(t2) N(ts)
when i, t, t3 tend to the valuet when i, t, tz tend to the valuet

Proof (of the left-hand statement). — One has:

P(t,) P(t,) A(t,)
(tz _tl)(t3 _t1)(t3_t 2) .

positP(t1) P(t;) P(t3) = posit

However,:

PUIPILPL) 1 o o o
(t, —t)(t;—t)(t;—t)) = 3 P(to) P'(to) P"(to),

which proves the theorem.

a. One calls the plane that passes through the poamd is perpendicular to the
tangent line at the poif thenormal planeto the lineP at the pointP. One further calls
the plane that is drawn through the tangent topthiat P and is perpendicular to the
osculating plane at that point thectifying plane. For example, if the planeP™p®
osculates the poir® then the planeB | PP™. «) andPP™ | PP™P™. ¢) will be the
normal and rectifying plane at that point, respetyi.

One calls the line that is common to the osculgdind normal planes at a poithe
principal normalto the lineP at the pointP, and the intersection of the normal and
rectifying planes is theinormal If the planePP™P™ osculates at the poift, and if
one supposes th&(t) is a point theP™ and P™ will be vectors, and the planés P™,

P P | PM™ P™ will be the normal and rectifying planes, respesi, at the poinP. The
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binormal will be the lineP | P™P"™, which will be the principal normalP(| P™).
PP,
b. LetO, I, J, K be reference elements of a Cartesian coordinate systeve set:

P=0+xl +yJ +zK,

wherex, y, z are functions of, then the point will describe a curve. RF™P®™ is the
osculating plane at the poiRtthen upon setting:

Q=0+XI +YJ +ZK,
one will see that the poi will be a point of the lineP™ when the vector® — P, P™

are parallel, an® will be a point of the planEP™P™ when the vector® — P, P™, p"
are coplanar. It will then result that the equatiotheftangent to the poiRtwill be:

X=-x _Y-y Z-z
x(m - y(m) - Z(m)

and that of the osculating plane will be:

X=xY-y Z-
X ym o Am =,
XMWy A

In the case of rectangular coordinates, the plane:
pp(m) | p(m)p(n)

(viz., the rectifying plane) has the equation:

X=X Y-y /- 2z

() Y AM -0,
ym AT gm g || g g
yO AV A0 | g e

and the normal plane is finally:

X=X X"+ (Y-y) Yy +Z-2 2" =0.

§ 3. — RULED SURFACES.
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43. Ruled surfaces in generak- Leta(t) be a non-zero, second-order form with zero
invariant that is defined, along with its derivatives wifitaary order, on a given interval.

One calls the set of projective points that are sgaian the line(t) whent varies in
the interval considered theiled surface aor simply, thesurface a in particular, the
linesa(t) are called thgeneratorsof the surface.

If P(t), Q(t) are first-order forms such thBQ # 0, Pa = Qa = 0 for every value of
then the poinP + uQ will describe the lin@ whenu varies front o to + . As a result,
every point on the surface can be considered to be aidanof two variables, which
justifies the terminologwpurfacethat we employedseeNote ). Moreover, we have no
need to consider the points of the surfade be functions of two variables, and we can
develop the theory of ruled surfaces independently ofgdmeral theory of arbitrary
surfaces.

Sincea is, by hypothesis, a second-order form with a zero iangrone will have:

1) aa=0

for every value of, a formula that will giveaa + a'a= 0. Howeveraa =a'a, so Ad =
0, or:
(2) ad =0
for anyt.
Moreover, ifm is a whole number that is greater than unity thervahdave:

m m
(aa)™ =aa™ + (J aad™+ .+ (J a™a +aMa;

ie.:

(3) 6™ =3 ha"d,

wherer, s are positive whole numbers such that s = m andr < s, while theh, s are
whole numbers that are functionsradnds.
We will make frequent use of formulas (1), (2), (3).

44. For example, let, r; be generators of the surfageand letR be a projective
point ofr, and suppose that the plane that contRiasidr; had a well-defined plane for
its limit whenr, varies while remaining on the surfag@nd tends to. This plane will
be called théangent plané®?) to the ruled surface a at the point R

One calls the perpendicular to the tangent planestofacea at a pointR that issues
from R thenormal to the surface a at the point R

THEOREM I. —If, at a point S on a line that is traced on théedisurface a, the
tangent s to the curve and the tangent plarte the surface a are well-defined then the
line s will be contained in the plare

(*® If Ris a point at a finite distance then the definitibattwe just gave will be a logical consequence
of that of the tangent plane to a surface, in genéral wte gave in Note Il
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Proof. — If we letS; be a point on the line, and latbe the generator of the surface
that passes through then the line that join§ and S, will be contained in the plane
determined bys andr; entirely, which proves that, in the limgwill be contained iro:

THEOREM II. —If P is a non-zero, first-order form that has a point on the line a
(i.e., Pa = 0) for some well-defined value of t, and if m is the smallest ohohezero
whole numbers x such that P& 0 then the tangent plane to the point P of the ruled a
will be precisely the plane B4

Proof. — Seta; = a(t + h), and apply Taylor’s theorem:

hm—l (m-1) N

a=a+hd +..+
(m-21)!

hm
m (a(m) +0Q),

whereq is a second-order form such thl'gtol q= 0. Moreover, by hypothesiBa® = 0
forx=1,2,...m-1, so:
Pa =1 (Pa™ + Pq).
m!

However:
positPa, = posit Pa™ + Pqg),
o)
lim positPa; = positPa™,

an equality that proves the theorem, since theetatnglane to the poirR is nothing but
the limiting position of the planea; .

THEOREM IIl. —While preserving the hypotheses of theorem I, s#es that the
tangent plane to the point P will contain the liadi.e., it contains the generator that
passes through the point.P)

Proof. — Upon developing the regressive prode&f”. a, one will have:

Pd™. a=-Pa a™ +a™a P=ad". P,

but formula (2) of no. 43 proves tha&™. P will be the sum of products of the form
a"a®. P =a"p. a® + a®P. a®. Therefore, since <m, s<m, one will have:

Pa" =pPa® =0, so Pd™ a=0,

which proves the theorem.
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45. From now on, the following conventions will always inplicit in the theorems
that we shall state: The non-zero, first-order fofn®, R, S have their positions on the
line a (i.e.,PA=Qa=Ra=Sa= 0). When we say th#te plane tangent to the point P of
the ruled surface is the plane Pawe intend that to mean thiere exist positive, whole
numbers x such that Pa#z 0, where m is the smallest of these numbdtmally, when
we say thathe plane tangent to the point P is indeterminate will be supposing that,
in other wordsfor any positive, whole number x, one will havé&Ra0.

THEOREM |. —If the plane tangent to the point P is‘®ahen one and only one of
the following properties will always be verified:

a. At any point R that is distinct from P, the tangent plane will B, Réth n<m,
and that plane, as well as the number n, will remain fixed when the Raiaties on the
line a.

b. At any point R that is distinct from P, the tangent plane will & Rehich will
coincide with the plane P8, except for a point S where the tangent plane will be either
the plane S&, with n > m, or indeterminate

c. Atany point R, the tangent plane will be the plan&Rand the tangent planes at
two distinct points of the line a will be different.

Proof. — Indeed, leQQ be an arbitrary point on the lirgethat is distinct fronP. The
tangent plane at the poi will be the pIaneQa(”), withn<m,n=m,orn>m, or it
might even be indeterminate. These different caskamaly propertiesa, b, c, resp., as
we shall show.

For anyR, we have:

1) R=xP+yQ

wherex, y are real numbers. Therefore, if the pl@¥& (n <m) is tangent to the poir@
then, knowing thaPa™ = 0, formula (1) will give us tha®d” = yQd"™. If RP# 0 then
one will havey # 0, andRd" # 0; i.e.,n will be precisely the smallest positive, whole
numberx such thaRd” # 0, or even that the plaree™ will be tangent to the poirR.
However, by virtue of the equalitgd™ =y Q4a", that plane will be identical t@a",
which will succeed in establishing propeaty

The first part of propertp results from the fact that if the plaa®™ (n > m) is
tangent taQ then one will hav&®d™ = x Pd™, a formula that again persists if the tangent
plane to the poin@ is indeterminate.

If the tangent plane & is Qa™ then one will have:

(2) Rd™ =x Pd™ +y Qd™.

One can deduce th@a™ = h Pd™ for the planePd™ = planeQa™, whereh is a
non-zero, real number, and formula (2) will becdR&” = (x + hy) Pd™. Whenx/y #
— h, the planeRd™ = planePa™ will be the tangent plane to the poRitwhile if x / y =
- h, the tangent plane to the polt= point@Q —hP) will be Sd™, with n > m, or even
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indeterminate; one thus completes the proof of progertif pIanePa(m) Z pIaneQa(m)
then the fornrRd™ cannot be zero, ariRd™ will be the tangent plane & The tangent
planes at two distinct poinBandS will not coincide, moreover, because if:

S=xP + le
then one will have:

X
Rém) Sém) = ‘ Xl y Pa-(m) Qa-(m)a

Y1

and in turn, one must have:

Xy
X Y

=0 or Pa™. Qa™ =0,

which finally establishes property

THEOREM II. —If Pa™ is the tangent plane at each point P of the line a — except
for at most one point — thef™a™ = 0 will be the necessary and sufficient condition for
the tangent planes at distinct points to coincide.

Proof. — Indeed, one has upon developing the regressive proafftt Rd™:

Qa™. Rd™ = (Q. Rd™) a™ + (RA™. a™) Q.
However:

Q.Rd™ =0,

because the plarRd™ contains (no. 44, Theorem Il1) the liaeand, in turn, the poir®.
Then:
(1) Qa™. Rd™ = (RA™. &™) Q.

The regressive produRtd™. a™ further provides:

Ra™. a™ = - Rd™. a™ +a™ a™. R
or
Rd™. a™ =1 a™ a™. R,
and formula (1) becomes:
Qa™. Rd™ =1 aM a™ RQ

Furthermore, sinc®R# 0, a™ a™ will indeed be the necessary and sufficient condition
for one to hav&a™. Rd™ = 0, which is precisely what we had to establish.

THEOREM lIl. —If the tangent planes at two arbitrary, but distinct points of the
line a are different then if P4 is, for example, the tangent plane to one of them Ppand
is a non-zero, third-order form that contains the forifi.@., aa = 0) then the plane a will
be tangent to the ruled surface at the pairs™.
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Proof. — aa™. a™ is the tangent plane to the poin&™, but;

dMa. & =-aMa™. a- aa™. &",
or
aa™. d™=-1aMa". a.

Theorem Il givea™a™ # 0; i.e.:

planea a™. &™ = planea,
which proves the theorem.

THEOREM IV. - Preserving the hypothesis of Theorem lIllgifvaries then the
sheaf of planesr will be projective at the contact points of these planes with thesl rul
surface(i.e., the pointsaa™).

Proof. — Two different planesx will correspond to the distinct pointga™, and
conversely. Therefore, the correspondence betweeplahesr and the pointsra™ will
be single-valued and reciprocal.

Then, set:

P1:a1Q+y1R, P2:X2Q+y2R.

The double ratio of the sequence of po@tR, P1, P> (which depends solely upon
the positions of the forn®, R, Py, P,) is the number:

QR RE_ y.QR XRR_ %
RR QR xRR yQR XY,
However, we know that:

Pra™=xQd" +yRd", Pa™ =xQd" +y,Rd",

and, in turn, the double ratio of the sequence of plgned’, R 4™, P, a™, P, a™ is

again that same numb}élrﬁ :
xY:

46. Skew ruled surfaces— We shall say that the ruled surfaxes askew ruled
surfacewhen, for any value df the tangent planes (if they exist) at two distinahfsoof
the linea do not coincide, except perhaps for the lingbat correspond to a system of
isolated values dfin the interval in question; such generators will thecdledsingular
generators.

If we suppose thd®d is the tangent plane at each pdaf an arbitrary non-singular
generator then Theorem Il of no. 45 will show th&a # O for any value ot that
corresponds to a non-singular generator; i.e.,&hatnot reducible to a line segment or a
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bivector, but is always the sum of a line segment dndegctor. Similarly, ifa is a third-
order form withaga = 0 then Theorem Il of no. 45 will prove that the @antouches the
skew ruled surfaca at the poinad’.

a. Inthe case where the forans not a bivector, for a given valuetpione calls the
plane that is tangent to the surface at a point atitywfon the linea — i.e., the tangent
plane to the poinda precisely — thasymptotic plane of the surface or the generator a
The asymptotic plane for the generadawill then be the planacw &' or the plan&’ w a,
because sincaa = 0 (cf., pp. ?), one will have:

awa —ad. w-ad.a=—-adwa.

The plane that passes through the @rend is perpendicular to the asymptotic plane
is called thecentral plane of the surface for the generatpaad its contact point with the
surface is called theentral point of the generatorThe central plane for the lirzeis then
the planea | (aw a' @), since the asymptotic plam@éw a possesses the same orientation
as the bivectoaw a' w Likewise, p| (aw @ )] & is the central point of the liree

One calls the locus of central points on the liadbe line of striction of the skew
ruled surface

b. If a; is a generator of the skew ruled surfacien the asymptotic plane for the
line a is the limiting position of the plane that passesufglothe linea and is parallel to
the linea; when it tends to coincide with the liaeas one varies on the surface.

Seta; = a(t + h). The plane that is parallel g and passes through the liaes the
planea. a;a and upon developing, in a Taylor series, one will have:

a. aw=a. [awt+h(@ +g)d] = h(a. @ w+ a. g,

whereq satisfiesIL[rg g=0. Therefore:

lim planea. a;w= planea. a w
which proves the proposition.

If mod PP; represents the shortest distance between theie®a anda; then the
central point for the lina will be the limiting position of the poir®; whena; tends toa
while remaining on the surface. Indeed, the p&nts nothing but the pointa[| (aw
aa] a1 . Upon developingy using Taylor's formula and passing to the limmeowill
obtain the pointd | (aw a' &)] &', which is the central point of the lize

c. If bis anon-zero, second-order form with zero invdriaen one can easily prove
that the linePd. b will describe a hyperboloid or a paraboloid ofegnent with the
surface all along the linea when the pointP is displaced on the same generador
Similarly, since:

Im Pd.a; =Pd. a",
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the linePd. & will indeed describe the osculating hyperboloid to the serédkcalong
the linea.

d. LetP(t) be a point (that is not at infinity), and I€t) be a unit vector. Set=PI,
so the linea will describe a ruled surface whéwaries in the interval considered. That
surface will be skew if:

aa=FI+PI")PI+PI")=2PP11"#20;

i.e., if the vector$”, I' are non-zero then the vectdt's |, I’ will not be coplanar.P'l I’
is then the asymptotic plane for the liaRk Sincel’ is perpendicular to the vectbrthe
point P will describe the line of striction of the surfaceemhthe vector®, I', |1 1" are
coplanar, and conversely.

Now, suppose that the lifeis the line of striction of for the skew ruled surfdte
The fact that the vectof, I, |1 1" are coplanar gives:

P =hl+k|ll,

whereh, k are real numberk & 0, becaus®P'l I' is not zero). IR is a point of the line
Pl then one will have:
Q=P+,

wherex is a real number, and sin€¥PI)’ is the tangent plane to the po@@t one can
write:

QPIY =P +X)(P1 +PI")y= (P+x)(K |11 +PI"y=PK [11'=x11").

However, the bivectors| I, Il" have the same modulus and are rectangular, in such a
way that if @ is one of the angles that the tangent plar@ fatrms with the central plane
then one will have:

tanezﬁ,
k

a formula that is due to Chasles. The nuntbmr called thedistribution parameter for
the generator P.

47. Developable surfaces: We say that the ruled surfagés adevelopable surface
when for any value of the tangent plane — if it exists — at each point oflittea -
except at most one of themcoincides with a fixed plane, which one calls thegent
plane along the line.a

Therefore, suppose that the tangent plaf&isat each poinP of a generator, except
at the pointQ. Theorem | of no. 45 proves that the tangent plankeapointQ will be
Qda', orQda", ..., or even less if it is indeterminate. Likewi3é&eorem Il of no. 45 is
applicable, and will permit us to wrigéa’ = O for every value of; i.e.,a will be a line
segment or a bivector. Moreover, the latewvill be contained in the plarféa, which is
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tangent along the generatmrprecisely, becaudea. a =—-Pa. a +a'a. P, soPd. a =
0.

a. LetO be a constant, first-order form that is non-zeroraoger, and lefA(t) be a
non-zero form of the same order. The second-order @Aenerates aonewhose
summit isO. In the case where the pofdtis at infinity, the surfac®A is further called
acylinder. On the other hand, one knows tHag)' = OA - i.e., OA)'(OA)' = 0 — which
proves that the cone is a developable surface, justdsuigent plane to the poidtis
indeterminate, because for any positive, whole numbene will haveO(OA)Y = O.
OAY = 0. The tangent plane along the A will be OAA.

b. If aw# 0 anda. @ w a’" w# 0 for every value of then one can state the following
theorems:

THEOREM I. —The tangent plane along the line a ie&’, or also the plane 'au
a, which is identical to the first one.

Proof. - One hasiw & —ad.w-adwa=-a w a, and sinca. a w # 0, the tangent
plane to the point at infinitaw is precisely the planaw a = planea w a, while
Theorem | of no. 45 implies that plaae: &' is tangent along the liree

THEOREM II. - The envelope whose planes are tangent to the surface a has the
lines a for its characteristics.

Proof. — Upon settingy = a' w a, we will have:
ad-—ad'wat+tadwd =a'wa,

because&’ is a line segment, aredaw & = 0. It will then suffice to take the regressive
productad’ in order to see that:

ad =(@wa)(d'wa)=[dw@wa)la+[ad’'wadw=@adwa" d a,
which proves the theorem.

Definition. — One calls the line of regression of the envelopawddnt planes of a
developable surfadhe edge of regression.

THEOREM Ill. —The edge of regression of the surface a can be regarded as being
generated by the poin(&. a" &).

Proof. — Leta=4d.a"w One has:

ad=a'wa and d' =wa+ad'wd,
SO
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adad’'=@dwa'w[ad’'wa)+ta'wd]=(adwadal@a". o,
which establishes the theorem.

THEOREM 1V . — The point of the edge of regression that belongs to the line a is
given by the regressive product aahen it is developed on the tangent plane along the
line a.

Proof. — LetP(t) be a point such th&P P" # 0 for any value of. Since PP)" (PP)’
=PP'PP’ = 0, the linePP will describe a developable surface that admits thelatsog
planesPP P to the curveP for its tangent planes, because:

(PP. @)(PP) =P'(PP") =- PPP".

That developable surfaé®” is called thedosculating developable to the curve P

§ 4. — FRENET FORMULAS.

48. Arcs.— LetP(t) be a point that is a continuous functiontofLet a, b be two
particular values of, and letty, t, ..., t,-1 be a sequence of values such thatt; <t, <
..<ti1<b,orevem=t; 2t > ... 2t,.1 = b. The upper limit of the set of numbers that
one can deduce from:

(1) modP(a) P(t;) + modP(ty) P(t2) + ... + modP(t,-1) P(b),

by varying the sequende t,, ..., t,-1 is called thdength of the arc (on the line P) that is
bounded by the points(&), P(b), and is represented by the notation Rf&) P(b). The
line that is bounded by the poirf¢a), P(b) that has length moB(a) P(b) is called the
chord of arcP(a) P(b).

Under these conditions, if there exists an upper nunabany value of (1) then arc
P(a) P(b) will be a well-defined real number, since otherwase P(a) P(b) = «. For
example, one will always have:

modP(a) P(b) < arcP(a) P(b) and ardP(a) P(a) = 0.

THEOREM I. —1If P(t) is a point, and Kt) is a (vector) form that is a continuous
function of t, and if one has (@) # 0 for some particular valué bf t then the ratio of an
arc of the line P to its chord will have the limit unity whenek&gemities of the arc tend
to the point Rt').

Proof. — It results from the hypotheses and Theorem IV o#@athat the tangent to
the lineP atP(t") will be the limiting position of the line that joing® arbitrary points of
P when these two points tend to coincide at the @e(ty). One can thus determine two
different valuesa andb for t such thaia <t < b, and furthermore, such that the line that
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joins the two arbitrary points of aR{a) P(b) will make an angle with the liné(a) P(b)
that is less than a given angl¢hat lies between 0 arrd/ 2.

If to =a, ty, to, ..., th-1, t, = b have the same significance as before then if ondsets
P(t;) forr =0, 1, ...,nthen one can write:

(Pn—Po)® = (P1—Po) | (Pn = Po) + (P2 —=P1) | (Pn = Po) + ... + Pn—Pa-1) | Pn— Po),

and dividing by:
mod Pn — Po) = mOdPo P,
will give:
mod P P, = modPq P, cos¢@y + ... + modP,-1 P, cos¢,
where
@ = (Pr —Pr-1, Pn —Po) forr=1,2, ...n.

One then deduces that:
(2) modPy P, = (modPy P; + ... + modP,-; P,)) cosg .

In this formula,@ represents a mean angle of the anglesp,, ..., ¢, . It notably results

from equation (2) that the number (1) will always be l&ssn mod CF:‘;SP”Q, and

consequently, arBy P, will be a well-defined real number. Formula (2) wiletefore
persist in the upper limit; i.e.:
mod Py P, = arcPq P, cosy,

where ¢ is a mean angle of the angles tRatP, makes with the lines that join two
arbitrary points of the arBy P,. If we makeP(a) andP(b) tend to the poinP(t') from
now on theny will tend to zero, from which one deduces that:

m arcP @)P(b) — lim 1

= — =1,
modP @)P(b) ¥=0 cosy
which is precisely what we had to prove.
THEOREM II. —If P(t) is a point, andP'(t) is a non-zero vector that is a continuous

function of t, and if, in addition, a and b are twalues of t such thatsb then one will
have:

arcP(a) P(b) = j:mod dp.

Proof. — Upon agreeing to & arcP(a) P(t) denote the increment in the function arc
P(a) P(t) whent passes from the vali¢o the valud + h, one will obviously have:

arcP¢)P(@t+ h)

A aI’CP(a) P(t) = arcP(a) P(t + h) = modP(t )P (t+ h)

mod[P(t + h) — P(t)],
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and upon applying Theorem | in order to simultaneously pas®tintit h = 0, one will
get:
d arcP(a) P(t) = moddP,

a formula that proves the theorem.

49. LetP(t) be a point, and |d®'(t) be a continuous, non-zero functiontofWe will
let S(t) — or, more simplys — represent any function ofsuch thats + ¢ remains well-
defined by the equation:

(1) ds= moddP,

in which the numerical constasthas been chosen arbitrarily, moreover. Sidcés
positive, that equation can be written:

ds dP
1y — =mod—.

dt dt

We then lets denote the arc of the lifg and ifa, b (a < b) are two arbitrary values

of t then one will have:
arcP(a) P(b) = 5(b) — 5(a).

We further call the poirfe(a) for whichs(a) = 0 theorigin of the arc on the line.P
Whent varies in the interval considered so as to tend tolaevg but on the
condition thatltim P be a well-define projective poif , we will set:

=t
arcP(a) Po = fim J:mod dP = [s(t) —(@)].
Examples-
1. Upon considering orthogonal, Cartesian cootds)an particular:
P=0+xl +yJ +zK,
with three functions, y, z of t, one will have:

dP=dx| +dyJ + dzK,
SO

ds= /¥ + dy’ + dZ,

which is the usual formula of analytic geometry.
If one still desires them, then:

cos@P, 1) = %s( cos(P, J) = g—z cosflP, K) = g—z
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will give the cosines of the angles that the tangenthe pointP makes with the
coordinate axes.

2. In polar coordinates on the plane, one will have:
P=0+péd?l

or _
dP=(do+ipdg) €1,

ds= \dp* + p°dg? .

3. The pointP = O + € €?| (a# 0) describes a logarithmic spiral whenvaries
from— o to +o . If one takes precisely to be the independent variable then:

and

P =(a+i)e’ €1,
modP' = v1+a? e,
ds= v1+aZ e dg.

If go andg, are two particular values gfthen:

and therefore

or furthermore:

arcP(go) P(gy) = V1-a [ & dp = L% (@ - %),

and one will have:
2
1+a o

Ji:r[‘m arcP(go) P(¢1) =

Thus, upon taking the asymptotic poto be the origin of the arc of the curve, one will

have for anyp:
_N1+a® o

a

50. Curvature and radius of curvature.— Once more, le®(t) be a point such that
the vectord'(t), P"(t) are well-defined for any value ¢fand in addition, suppose that
P'(t) # 0.

If srepresents the arc-length of the IlR¢hen we can considérto be a function of
the variables, and the formulals = moddP will permit us to obtain the derivatives Bf

with respect te by observing thaf%—P - P dt
S

dt ds’
We set:
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dP
ds
whereT is a unit vector that is parallel to the tangent ®lite P at the pointP, because
2
E: dP will result from the fact that moB # 0. The vectord—T: d’p is well-
ds moddP ds d<

defined, since?” itself is also well-defined, and W?j—Ti 0 then the pIané’Ti—T will
S S

osculate aP.
Upon setting:

(2)

we will call the number 1 o thecurvature of the line P at the point F'he inverse (viz.,
p) of the curvature is further called tredius of curvature at the point P

THEOREM. - In order for the line P to be a straight line, & necessary and
sufficient that the curvature be zero at any pé&int

Proof. — Indeed, if the poinP describes a straight line thér= O + s, whereO is a
fixed point of the lineP, andl is a constant unit vector. One will then hdve | anddT
/ ds = 0, which will indeed imply that 1 4= 0 for every value o§; the condition is
therefore necessary. Now, suppose that one has=1Q for any value o$; i.e.,dT / ds
is constantly zero. It will then result thatis a constant vector. NowP =T ds and in
turn,d(P —sT) = 0; P —sT =0, whereO is a fixed point; the stated condition is therefor
also sufficient.

51. Foranyt, 1 /p# 0, we set:

dT
(3) N(s) =P s
S
i.e., [formula (2)]:
N(s) = dT /ds .
moddT /ds

The vectodT / dsis not zero, since, by hypothesis, 2# 0, soN will be a unit vector,
just like T, to which it is perpendicular. Therefoi, which is parallel to the osculating
plane at the poir, will be the vector that is parallel to the prpe&i normal at the point
P (23).

While preserving the preceding hypotheses, oretbad:PT is the tangent?N is the
principal normal, an@®TN is the osculating plane at the poiht

(*® 1f 1/ p= 0 for some value of and the osculating lane at the pdhis well-defined then only the
sense of the unit vector that is parallel to theagpal normal at the poi® will remain indeterminate.
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The pointA = P + pN that is situated on the principal normal at the pBintill be
called thecenter of curvature at the point
Examples—

1. In orthogonal, Cartesian coordinates:

P=0+xl +yJ +zK,
So:
2 2 2 2
dP:d_T:dx|+dyJ+de’
ds’ ds ds ds’ ds’

1 d2x)’ dzy2 & 2)°
—= + + ,
0 ds’ dg d$

Sinced?P / d’ is parallel to the vectd¥, moreover, one will have:

and

d? d? d?
cosQ\I,I):pd—s;(, cos(\I,J):pdszy, cos(\I,J):pd—szz,

which are equalities that will give the cosinestlodé angles that the principal normal
makes with the coordinate axes.
The center of curvatui@ will likewise have the coordinates:

d’y
ds? '

X 2z
X=X+ —-, Y=y+ =72+ —.
Fe y+o P
2. Setv=ds/dt (If the variablet represents time thenwill be the magnitude of
the velocity at the poirP.) P’ =VT, and if one takes the derivative with respecirteet
then one will have:

2
provT v LIS _yp Vo

ds dt P

whereV? / p N is the normal component of the vect®t (viz., the acceleration).
Therefore, if one sets norm.corfp =V? / p N then one will get the equation:

mod norm.com”’

which will provide a very simple construction otthenter of curvature when one knows
the vectord, P". Through the point® + P, P + P" (fig. 5), draw (in the osculating
plane atP) parallels to the vectad¥, P' that intersect atl. The perpendicular tBM that
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issues from the poi® + P' will meet the principal norm@N at the center of curvature
Q, and this will result immediately from considering guilar triangles whose summits
are the point®, P+ P, Q andP + P', M, P.

Figure 5.

3. ThepoinP=0+hé?| +k e’ | describes an ellipse whose semi-diameters are
h + k andh —k. One then has:

P=hé?il-keil, Pr=-hé?l -ke"l,
SO
P'=0-P.
However:
Vi
O-P =P |¢+—|,
#5)

and example2) in order to obtain the center of curvatureha pointP (fig. 6), it will
suffice to trace out the parallelogram that circomies the ellipse and to carry out the
construction that is indicated by the figure.

Figure 6.

4. For the cycloidgeeno. 17), one likewise has:

P =rl-re| =i(M-P),
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P =re’?il =C-P.

It results from this that the modulus of the normahponent of' is equal to modM —

P), and consequently:
p=2mod M -P);

i.e., the center of curvatuf@ = P + oN is such thaP + Q = 2M, and the expression for
the pointQ is: _
Q=M+M=P)=0O+rgl —ri | +r7? il .

If we then letO denote the center of curvature of the cycloid at thet@§i) then we
will see that:
O1 =0 +rml — 2il,

so it easily results for the poi@t that:
Q=01 +r (=7 +ri | —re’ @iy,

andQ describes a cycloid that is equal to the cycloid ofpbiat P that one can deduce
from the latter by a translation whose vecter| — 21 | gives the magnitude, the
direction, and the sense.

52. Now, suppose that the lifis planar (i.e., not straight). The vecbbrs parallel
to the vectoi T, and we can give a sign to the curvatureolsiich that one will have, for
any value of:

(1) ar = 1 iT.
ds p

a. The locus of the center of curvature of the fhis the locus of the characteristics
of the envelope of the normals to that line, beeaupon setting = PiT, one will see
that:

% =TiT —1 PT,
ds Yo

and the development of the regressive produtz/ dswill give precisely:

a% =PTIiT.iT +1 PTIT. P= 2i (P+AaT),
0

ds Yo
a relation that was to be established.

b. Seta= (i, T), and takd to be a fixed unit vector in the plane of the @fv a is
a function ofs such that:
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d

Q

o
n

_1
pl
Indeed:
cosa=1iT
and

—sinad—azil i(iT) :—1 IT :—isin a.
ds p P P

Therefore, if sino # 0 then:
da

1
s p

However, in the case where one has gir 0 for some certain value of if h is a
constant such that:

sinfa+h) 0
then one will have?():
ds 0 ds p

c. If one gives the numberas a function o then the linéP will be defined, except
for its position plane.
Indeed, leflo be a constant unit vector. Set:

@ T {e‘fps} To.

One will have:
d_T: £|T’
ds p

which is nothing but formula (1), and since:

E:T’
ds

one will have:

3) P:P0+Ueijpsdsj To,

a formula in whichPy represents an arbitrary point of the plane, aedgtiladratures are

performed by starting with a definite valuef Upon introducing the angle that was
defined inb, formula (3) will take the form:

(**) One will arrive at the same result by considerirgggpherical indicatrix of the cur®(seeno. 55).
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(4) P:P0+(je‘”d§ To.

The locus of point® passes throughy, where it admits the linByT, for its tangent.
For example, ifr is constant then the poift will describe a circle, because upon
settings = pg@, formula (4) will give:

P=Po+To=Po—pi (€~ 1)To=(Po+piTo) —p€&?iTo,

and it is obvious that the poiRt will describe a circle whose centerRg + T and
whose radius ig.

The reader can, by way of exercise, determine the esiprefor the pointP in the
following cases:

Development of the circle.............c..cccecuvv.... fF =235

2
Epicycloid, hypocycloid, cycloid.................... §+%= 1,
Logarithmic spiral.............cooovii i, p=as
Clotoyde (?)....eveeeeeee e e, 05 =a,
L1031 RPN ¥ BN (= by

2

Catenary.....cccoe i r:a+%.

d. Upon supposing that the poiRtdescribes a skew curve, an arbitrary panof
the developable ruled surface that is describeBTowill have the expressioQ =P + u
T, whereu is a function of. In addition, letP,(s) be a point that describes a planar line
of arc lengths whose curvature at each point is the same as théeofurveP at the
corresponding point. One can represent the pointseodélelopable surfadel on the
plane of the lind>; by making the poin@ correspond to the point:

Qi=P1+uTy,
and since:

_ _ du)’
moddQ = moddQ, =, || 1+— | +— ds
ds Yo

the correspondence considered will preserve thenitnate of the arcs that are traced on
the developable. In general, we will express phaperty by saying that one can develop
the surfacePT on a plane, or also by saying, more simply, thet surfacePT is
developable.

Examples—

1. If the curveP; rolls without slipping on another cur@® then the trajectory of a
point Q that is invariably linked td?; is called aroulette Therefore, l1eO be a fixed
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point of the curveP (fig. 7), and letQ, be the position of) when the curvé; touchesP
at the poinO. If one has:
arcOP = arcOP,

then one can consider the poiRtandP; to be functions of the same variabjevhich is
the arc-length that is common to the two curves. Uettimg T;, o1 be the elements that
we calledT, o when they related t®, but now they relate t81, and supposing that the
point P takes the positioR; after rolling through an anglg (which is a function o§),
one will have:

(5) T =€*’T,, Q-P=€%(Qv—Py).

Figure 7.

Take the derivative of the first equality. From foren(d), that will give:

Lir=lavit et im,
Y P
or, for the first of formulas (5):
1 1 _d
(6) 114
p pds

and one thus recovers a formula that is due tor8avéf we now derive the second
formula (5), then that will give:

E—T :—ei¢T1+ei¢i (QO—P]_),

ds
@: (1__1} (Q-P),
ds [ )

or
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which proves that in the case wheilﬂe:tithe normal to the poir® of the roulette that
P A

is described by will be the line that joins the poiQ at the contact point of the moving
curve with the fixed curve.

2. If the pointP; describes the locus of centers of curvature ottheeP then one
will have P =P + piT, and if one lets; and 1 /o, denote the arc-length and curvature,

resp., aP; of the curveP; with T; = dP; / dsthen one will have? = %i T. If pis an
S

increasing function in the interval considered tbee will have:
(1) ds =dp,
(2) Tl =iT.

Therefore, lela andb be two values of (a < b). Formula (1) gives:

s1(b) —si(a) = ob) — Aa),

which shows thaarc Pi(a) P»(b) is equal to the difference between the radii of curvature
at the points Ra) and Rb). On the other hand, one can deduce from forn{ilaand (2)
that:

dr, _dnds__1dp._1dp. -
ds dsds pds p ds
and sincedp is positive:
do

P=P s

3. Now, letabe a constant number. Set:

Pp=P+al and P,=P+piT.

One has:
dr =T+ — 1T,
ds Yo
and in turn:
dR _ . . a._)_ a _
(Po—Py)i— = (T —-al)i| T+—iT | =p— —a=0,
ds P P

a relation that proves thétte binormal to the point;Ro the line R passes through the
center of curvature at the corresponding point Fhef line P(%).

25 Similarly, if the pointP describes a skew curve, an®if=P +aT,P,=P + then one will have:
y

(PZ — Pl) | dPl = 0,
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4. Once again, le®; =P +u; T (fig. 8), whereu; is a function of the arc-lengthof
the locus of the poire. Set:

al:(-r,?j, M=P+aT, Qi=P+uwcotmiT.
S

Figure 8.
Since:
L (1+d—ule +HiT :
ds ds Yo
one will have:
Tﬁ = ﬁTiT or (modﬁj sinay = ﬁ.
ds p ds P

However, ifs; is the arc-length of the curve that is describgthle pointP; then one will
have:

u ds
sina, p

ds = (modﬁj ds SO ds =
ds
and

(1) ds, = —2 dg
sina,

in which @is the angle that the vectdrmakes with a fixed vector in the plarseéthis

number, parb).
Sinceﬁ
ds

T=1 +d—ul, one will have:
ds

(modﬁj cosa =1 +d_”1,
ds ds

which shows that the normal plane at the pBinwill pass through the center of curvatiteat the point
P.
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(if uy if an increasing function of), and by virtue of the formulas that we just used in
order to prove formula (1), one can also write:

(2) du; = (up cotar —p) d6.

Upon observing that th&; is the point at which the normal to the pdhineets the
normal atP; and the fact tha¥l is the center of curvature at the pdttone will have the

geometric interpretation of formulas (1), (2), sineeul—, up cot ;14 — p are the
sin

al
magnitudes of the line segmemg),, MQ, . Formulas (1), (2) are due to Mannheim in a
treatise Cours de Géométrie descriptjvéo which we shall refer the reader for the
applications.

5. We shall always suppose tlaait a constant number, and sgt=P + aT. What
is the necessary and sufficient condition for thanoP; to describe a straight line? If 1/
o1 is the curvature at the poiRf then the locus of point3; will be a straight line when
one has 1 jo. = 0 for all values ok. One can arrive at that condition by using the
expression fodT;, but one finds the result more simply by obseninat the pointP;
will describe a straight line when the vectii, has a constant direction; i.seéno. 37

2
h) when %% = 0 for all values o6. Now, since we suppose that 2# 0, we will
have:
dR

Borrifr=Lreaim,
ds PP

in such a way that the poiRf will describe a straight line when, for any vabfes:

(1) ap=pf +a? 92
ds

or even:
,02 + a.2 — aé eZSIa,

whereag is an arbitrary, non-zero constant.
For anyay, there exists a value effor which o= 0, and since the preceding formulas
will persist in the limitp = O, if one takes the origin of the arc to be pwnt that
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corresponds t@ = 0 then one will finday = a, precisely, as the value of the constant, in
such a fashion that the desired condition will takefdne:

(2) p=a (e2-1) .

The curve that is described by the pdttwhose radius of curvature is given by
formula (2) is dractrix, and the locus of its centers of curvature cat@nary Moreover,
the third example will provide a very simply geonetonstruction of the tractrix when
the corresponding catenary is known, and conversely

For a catenary, lefrand 1 /7 denote the arc-length and curvature at the pbattis
precisely the center of curvature of the trackixat P, . The second example shows us
that do = do. However, foro = 0, one will havep = 0, and upon simultaneously
supposing thav= 0, one can write:

1) g=p.

Meanwhile, the same example will further give lstt

_,dp
r=p 4s
along with formula (1):
,02
r=a+-—,
a

an expression that, when compared to formula (B)fimally give:

0.2
r=at+—,
a

which is a relationship between the arc-lengthtlledadius of curvature for a catenary.

53. Torsion and radius of torsion— If the line that is described by the pdihis not
a straight line, and the functidhsatisfies the conditions that were stated in dothgn
the unit vectorg’, N will be defined, and upon setting:

(1) B(s) = T(s) N(9)

for any value of, the vectoB that is thus defined will be parallel to the binairat the
point P.

Upon assuming thalB / dsis a well-defined function of, dB / ds will be a normal
vector to the vectoB; i.e., it will be parallel to the osculating plaR&N at P, at least
when the vectodB / dsis not zero. If one is further given tHat| T = O then one will
have:
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EN:d_B

P ds

dB

ds

T+B

T=0 (becausB |N = 0),

and the vectodB / dswill be zero or parallel to the vectbi

We let 1 /7 represent the real number — which can be positive, inegatr zero —
such that:

e a8

= =—N.
ds

N

The absolute value of the number #4i$ then the modulus of the vectB / ds and

one calls the number 1rthetorsion of the curve P at the point B one also calls the
inverse of the torsion thradius of torsion at the point.P

THEOREM. - In order for the line P to be a planar curve, it iecessary and
sufficient that the torsion be zero for any valfis.o

Proof. — Indeed, if the curve is planar thBrwill be a vector that is perpendicular to
the plane of the curve, and consequently:

— =0 or =0,

o
w
N

which shows that the stated condition is indeed negessam the other hand, suppose 1/
7 = 0 for any value o$. B is a constant vector, andRf is a fixed point on the lin@
then one will have:

(P—Py)|B]=T|B=0;

i.e., [(P—Po) | B will be a constant number. However, if one maRésnd toP, then the
vector P — Py will tend to a vector that is parallel I, and in turn, [P —Pg) | B = 0,
which amounts to saying that the currewill be traced on the plang, | B, so the
condition is indeed sufficient.

54. Frenet formulas.— We have the following formulas that relate to tketorT,
N, B, and whose geometric significance is well-known:

(1) T?=N*=B*=1,
() N|B=B|T=T|N=0,
3) T=|NB, N=|BT, B=|TN,

which expresses the idea tAgtN, B are unit vectors (1) that are mutually perpendicular
(2). The trivectorTNB is, moreover, positive and equal tay and since we suppose

implicitly that:
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in order to define the sign af, one will get t%):

ar _1
ds po

(4 B_1\,
ds 1
d_N:—lT—}B.
ds P r

The first two of these formulas are known alrefaty. 51, formula (2) and no. 53,
formula (2)], and in order to prove the third one, il suffice to consider the expression
N = |BT, from which one deduces immediately that:

Inr=Lien+dNT =- L7
r 0 r D

d_N:‘Bgm
ds P

Lt 1s.
r

Upon representing three rectangular, unit vedigis J, K, one can write, by starting
with formulas (4):

(*®) The linear equations (4) show that a curve is detethiop to position, as a function of the arc-
length when one possesses expressions for the cunaatdréorsion— viz., 1 /pand 1 /7, resp.—as
functions of arc-length. Indeed, upon taking two rectanguidarvectorsT, andNy and settindg8o = | To
No, one will expresd, N, B as functions of the constanfs, No, By by developing them in a convergent
series §ee G. PEANO, “Integrazione per serie delle equazioni dbffieiali lineari,” Atti Acc. Torino,

1887.] Therefore, P, is a fixed point then one will have = Py + f T ds and the curve will be well-
defined, up to position. It will pass through the pégtand the line®,To, PoNg, PoBo will be the tangent,
principal normal, and binormal at that point, respecyivel
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9 cosr))=L conq 1, ),
ds P

9 cos 3 )= cosg 7)),
ds P

9 cosT K =2 cosg K ),
ds P

d
ds

(5) 1
cos@ | )=? cod{ |, ),

because, for example:
d_T | = 1 NI,
ds Yo

or

di(T DEEICID)
s p

Formulas (4), when they are known in the form & due to Frenet, although they
are often called th8erret formulas

55. Spherical indicatrix and contingency angle- Letl(t) be a unit vector with a
non-zero derivative in the interval considered, e be a fixed point. If one sets:

Q=0+l

then the poinQ will describe a curv& on the spherical surface with cen@mand unit
radius that one calls thspherical indicatrix of the vectdr In the particular case where
the vector is parallel to a fixed plane, the cur@ewill be an arc of a great circle on the
sphere. If one represents the arc-length thaessribed by the poir® by ¢ then one
will have:

) d¢ = moddP.

If T, N, B are the vectors that we already considered relatithe curvé®, and if we
set, in an analogous manner:

Q1=0+T, Q:=0+B, Q3=0+N,
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then the pointsQ;, Q., Qs will describe thespherical indicatricesfor the tangent,
binormalandprincipal normal,respectively, of the curve, which are curves whose arc-
lengthsg:, ¢,, ¢s, by virtue of formula (1) and the Frenet formulas, Wwél given by the
equations:

1
dg, = —ds
Yo,
1
dg, = ds
modr

1 1
dgs= |+ ds
\o® T

the first two of which provide a geometric interfat@n for the curvature and modulus of
the torsion in terms of the spherical indicatricdsthe tangents and binormals to the
curveP. For even more symmetry, we say thatdahnd 1 /7 are thefirst andsecond
curvatureof the curveP at the pointP, which leads us naturally to let 14/denote the
third curvature(or normal curvatur¢ when we set:

i1

A o
with the choice of + sign in front of the radicallhe latter of the three preceding
formulas then expresses the idea that the elenyestediength of the spherical indicatrix
of the principal normal at the point that corregg®to the poinP is equal to the product
of the third curvature & timesds

We shall return shortly to the vectbin order to also calll¢ the contingency angle
of the vectorl, which one usually expresses by saying that tletové makes the angle
d¢ with the infinitely close vector(t + dt). Moreover, the exact significance of these
words is nothing but that which is expressed bymida (1), and the geometric
interpretation is provided by the spherical indizaof the vectorl. In particular, if the
vector | is parallel to a fixed plane thehy will represent the angle that is defined
betweerdl and a fixed vector in the plane.

We say that the contingency angle of the ved{9r— which is assumed to be non-
zero, along with its derivative, in the intervahstered- is the contingency angle of the
unit vectord / modJ. If we represent the contingency angle of theareg by d¢ then
we will have:

(ay dy = mod@dJ)

~ (modJy

Indeed, the vectodl is perpendicular to the vectdrand mod( dl) = moddl.
Formula (1) then gives:

d¢ = mod( dl),
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and upon setting = (modJ) I:

dJ = (modJ) dI + (d modJ)l,
or
JdJ = (modJ)? 1 dI.

Moreover, by definitiondy = dg, which establishes formula (1which we shall give
some applications of in the following chapter.



CHAPTER III.

APPLICATIONS.

In this chapter, we shall show how the Frenet forsigkn easily lend themselves to
the study of the principal properties of curves and thedrsilirfaces that relate to a curve.

The hypotheses and conventions that we shall retain snctiapter will be the
following ones: The vectof, N, B are defined, along with their derivatives, at every
point of the curve considered. The number 4 (Viz., the curvature) is not annulled
when the curve is not a straight line. Likewiseh# turve is not a planar curve then the
number 1 /r (viz., torsion) is always non-zer®’Y. Finally, the notation1, N1, B1, o1,
n will have the same significance at a pd#tthat they have at the poiRtwithout the
primes.

§ 1. — HELIX.

56. If the pointP describes a planar curve then the veBiowhich is parallel to the
normal, will always be perpendicular to the planéhefcurve, and consequently, the line
PB will describe a cylindrical surface such that the Ihevill be a cross-section. An
arbitrary pointP; of the cylindrical surface that is generated by the FiBewill be given
by the relationP, = P + uB. The numbers, u that determine the position & on the
surface will be called theoordinatesof P;, upon taking the curv® itself to be the
coordinate axis and the poiRg (S = 0) for the coordinate origin. The numizeis the
abscissaand the numbaeu is theordinate of the pointP;. In particular, ifu is a function
of sthen the poinP; will describe a curve on the cylindrical surface whenaries.

Upon considering a planar rectangular coordinate systentaw make the poir;
of the cylinder correspond to the point of the plane whosordinates are andu, and
conversely, and the fact that a similar correspondenestablished by saying that one
develops the cylindrical surface onto the pleffie (

¢y Our goal is not to study singular points. With thdrietions that we just stated, we are excluding
the singular points on the curiPexactly.

(*®® LetO be a fixed point, and léft) be a unit vector whose derivative is not zero. afdsitrary point®
of the conical surface that is generated by the@havill be given by the relatio® = O + ul, and ifu is a
function oft then the poinP will describe a curve on the conical surface whearies. IfO is a fixed
point, and] is a constant unit vector in a fixed plane then updimnget

P,=0,+ué?J with d¢ = moddl (seeno. 55),

we can represent the co@g in the fixed plane, and, as for the cylinder, we valy shat one develops the
cone onto the plane, because:

moddP = moddP; = \/du” + (umod d Y .
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57. One saydelix to refer to any curve that is traced upon a cylinder ansl the
generators of that cylinder with a constant angleepixéor the very particular cases in
which that angle is zero or equalAd 2. The development of the cylinder onto the plane
then transforms a helix into a line.

THEOREM |. —The ordinate of an arbitrary point of a helix that is traced upon the
cylinder BB is proportional to its abscissa. Conversely, any curve that isdrapen the
cylinder BB is a helix if the ordinate of an arbitrary point is proportional toatsscissa.

Proof. — We have said thatufis a function of then the point:
P, =P +uB

will describe a line on the cylinder. By taking the dative of the two sides of the
equation, in whiclB will figure as a constant vector, one gets:

E:T +%B
ds ds

If ¢ is the constant angle by which the cuRsecuts the generators of the cylinder
then:
_ mod@dR )B _ modBT o= ds

tan g
dR|B du du

or
du=cotgds

Upon supposing that the poiRt coincides with the poire, at the origin (wheres = 0),
one will then have the equation:
u=scotg,

which indeed shows that the ordinate (vig.,s proportional to the abscissa (vig).,at
any point of the helix that is described By.

Conversely, ifu = as (a # 0) then the poinP will describe a curve that cuts the
generators at an angle whose cotangerd; ise., the pointP; will describe a helix
precisely.

Remark. — LetP; be a point of the helix that cuts the generatbtbecylinderPB at
a constant anglg . One has:

1) P, =P +scot¢B,

SO

) 9B 14 cotgB;
ds

however, upon letting; denote the arc-length of the cuiRe, so:
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ds. = moddP; = \/1+ cot’ ¢ ds

and
(3) ds=sing ds ,

one will haves = s; sin ¢, which permits us to construgtwhen we are givesandg.
THEOREM II. —At any point of the helixsPthe ratio of the curvature to the torsion
is constant, and conversely, if the ratio of the curvature to theotorsiconstant at each

point of a curve then that curve will be a helix.

Proof. — Indeed, one has:

r-0R _dRds
dg ds ds’
and by virtue of formulas (2), (3):
(4) T1=sing T + cos¢ B.

Now, dT;/ds=sing/ pN implies thatdT; / ds, = sin2¢ / p, and ifp; is the radius
of curvature at the poif; then:

0
sif g’

(3) L= since Nj;=N.

For the vectoB4, one will have:

B1=|TiN1=|(singT +cosgB) N=sing | TN + cosg | BN,
SO
(6) Bi=singB —cosgT.

Now, the derivative oB; with respect t; is:

dB, __ sing cosp N
ds P

and if one takes into account the definition of 4. And the second of formulas (5) then
one will get:

_ P
% ns sing cosp '

a formula that will indeed prove that / i = — cot ¢ when one compares it to (5); i.e.,
the ratio of the curvature to the torsion will lmnstant at every poim; of the curveP; .
Conversely, if:

— =a (a constant)
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then the first two Frenet formulas will give:

LT, B,
dg ds’

ie.:
aT:—-B; =K,

whereK is a well-defined constant vector of modulu‘3;+ a®>. One deduceK |T;=a
from this, which expresses the constancy of the afgleK(), and in turn, the fact that
the curveP; is a helix that is traced upon the cylinder that is desd by the lind>;K.

THEOREM lll. — At every point Pof a helix that is traced on the cylindeBPthe
binormal will be normal to the cylinder at;Pand conversely, if the binormal to a curve
P, on the cylinder B at a point R is the normal to the cylinder at; Bhen the curve
P,will be a helix.

Proof. — If the curveP; is a helix on the cylindd?;, then the normaP;N; at the point
P, will be parallel to the vectadx; i.e., it will be perpendicular to the tangent plamé¢he
cylinder atP; .

Conversely, if the vectoN; at each poinf; of a curveP; that is traced on the
cylinder is parallel to the normal to the cylinderPatthen it will be perpendicular tB;

i.e.,N1 |B =0, 0r1/o0N;|B =0, or by virtue of the first Frenet formul%% B =0;

however,di(Tl |B) = % B, soT; | B = const.; i.e., the vectdr; makes a constant
S S

angle with the vectoB, precisely, so the curve; will be a helix, since it cuts the
generators of the cylinder at a constant angle.

58. A helix is calledordinary or circular when the cylinder on which it is traced is a
surface of revolution.

THEOREM. - The ordinary helix is the only skew curve with constant curvature and
torsion (Puiseux’s theorem).

Proof. — If the pointP describes a circle themwill be constant, and formulas (5), (7)
of the preceding number will indeed show ttreg ordinary helix is a skew curve whose
curvature and torsion are constant

Conversely, ifor and r; are constants for a cur® then the ratigo, / i1 will be
likewise constant, and the poiat will describe a helix. Formula (5) will then giye=
const.; i.e. $eeno. 52,c), the pointP will describe a circle, and the hel¥ will be an
ordinary helix.
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a. Let O be a fixed point, let be a fixed unit vector in the plane, and ridte a
constant number. B =0 +r €| then the linéB will describe a cylinder of revolution
that has the lin€B for its axis, and a circle with cent& and radius for its cross
section. Since=rg, the point:

P,=0+re?l +rfcot¢ B

will describe an ordinary helix.

The pointsP1(0), P1(27) (where @ is the independent variable) are situated on the
generator of the cylinder that passes through the pa{), and the distance between
them is called thetepof the helix. Now, we have:

Pl(O) =0 +rl,
P1(27) =O +rl + 277 cot ¢ B,
and
modP1(0) P1(27) =+ 277 cot ¢,

according to whethep < 77/ 2 or¢ > i1/ 2. The numbet r cot ¢ is called theaeduced
step and one obtains it by dividing the step by 2

b. The derivative oP; with respect t&?
P =réil+rcotjB

gives a very simple construction of the tangent topbimt P; by making use of the
reduced step r cot ¢ .

c. The line BF describes a developable surface that one callsotb@gary
developable helicoidlf a is a constant number then:

P,=P; +a|:1'

will describe a curve that is traced on the helicoidafase BF and, ifd is its distance
from the lineOB then one will have:

<mod(©B). d = modP,OB or d = 2 modP, OB.
However: _ _
P,OB = P,OB + aR OB =rOB(€°1) +arOB(€”il),

d=2r y1+a®.

SO
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Consequently, the poirf?, will describe a curve that is traced on a cylinder of

revolution with axisOB and whose cross-sectional radius will rb@ . One will
have:
P =R+aR.

However,B'|B =r cotg, B"|B =0, and in turn:
P |B=rcotg;

i.e., the poinP, will describe a helix.
The step of the helix at the poit will be the modulus of the vect®:(27) — P»(0),
and since:
R(0) = R(2m),
one will have:
P2(27) — P(0) =P1(27) —P4(0),

which will prove the equality of the steps that are dbedrbyP; andP- .

d. If one set = O + (a + r@cot @) B then the lineQP will describe an ordinary
skew helicoid whose lin®B will be the line of striction. It will have a direar plane ifa

=0, and a director coneaf# 0.

On the other hand®; —Q =r €?1 —a B or modQP; = v/r2+a?, and the poinP, =
Q + b(P1 — Q), whereb is a constant number, will describe a helix thatrasdd on a
cylinder with axisOB, and whose step will be equal to that of the helix ihadescribed
by the pointP;.

§ 2. — RULED SURFACES THAT RELATE TO A CURVE.

Whent varies, the planeRBNB, PBT will be tangents to two developable surfaces that
one calls thgolar surfaceand therectifying surfaceof the curveP. Similarly, the lines
PN, PB will generate ruled surfaces that one callsdindace of principal normaland
the surface of binormalef the curveP, respectively. As we have already seen, the line
PT describes the osculating developable of the cByrwehich is again the envelope of
the planePTN.

These are precisely the surfaces that we presenipgedo study.

59. Polar surface— Set:
a =PNB,

and take the derivatives (cf., the Frenet formulas):
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gg:TNB—PE£T+}BJB+£PNN:TNB+1PBR
ds P r T P
or
® 992 P+ M) BT;
ds p

i.e., the plan@a/ dsis parallel to the rectifying plane Bt

The characteristic of the envelopein the planea, or the generator of the polar
surface that corresponds to the pdits the linea da / ds or even, from formula (1),
the line P + oN) B.

Therefore:

The generator of the polar surface that corresponds to the point Pspidssegh the
center of the curvature P oN and is parallel to the binormal

In order to determine the edge of regression@fpitblar surface, one can consider that
surface as being generated by the line:

a=(P+poN)B,

and develop the regressive prodada/ dsin the pland®NB. Now:

da :1(p+p|\|)N+(T—T—£B+%NJB:EPN—%BN,
ds p r ds r ds

and if the curve® is skew (viz., 1 I # 0) then:

9§=£(P—TQBBJN.
ds 1 ds

The lineda/ dswill then be parallel to the principal normal teetpointP, its distance to
the linePN will be — 7dp/ ds and consequently, the poiat+ oN — 7 dp/ dsB will be
common to the linea andda/ ds i.e.,the edge of regression of the polar surface will be
described by the point P poN — rdp/ dsB.

b. If the curveP is planar then the polar surface will be a cylmd&he cross-
section is the locus of centers of curvatiare oN of the curve. It is the limiting position
of the sphere that is determined by four pointshefcurve that tend tB. By analogy,
the circle with centeP + oN (viz., the center of curvature) that passes thnahg point
P will be called theosculating circleto the curveP at the poinf.

c. We say that the curv@ is aspherical curvewhen it is traced on a sphere. In
order for the curv@® to be a spherical curve, it is necessary andcseiffi that the poin
+ oN — rdp/ dsbe a fixed point, a condition that one can wrge a
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i(P+pN—T%Bj =0,
ds ds

or, in an equivalent manner:

60. Rectifying surface— Set:
a =PBT.
The Frenet formulas give:
da 1

P(o TN + 7 NB).
ds pr

The line a da / dsis the generator of the rectifying surface thatresponds to the
point P, which is, moreover, situated in the plameda / ds i.e., the rectifying surface
contains the curve.P

In order to determine a second-order form whosgtipa describes the rectifying
surface, it then suffices to determne the regresgieduct of the bivectors of the forms
a, —da/ds These bivectorBT, p TN + 7NB are such that:

BT(0oTN + 7NB) =TNB (o T —7B),
and if a is a second-order form that generates the retjfgurface then one can set:

a=P(pT —-1B).
The determinant:

will be annulled wherp / 7is a constant, and conversely, if the conditidreg tve just
imposed orp andr are satisfied.

We will have pT — rB)di (0T — 1B) = -JTB, and since the conditiopp{T —
s
rB)di (0T —1B) =0, ord =0, orp/ r = const. for any expresses the idea that the
s
direction of the vectop T — 7B is constant, we will have:
The helix is the only skew curve that has a cytlifoleits rectifying surface.

Upon developing the regressive prodoatla / ds on the pland®BT, one obtains a
first-order form with the same position as the form
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T(oT —1B) + AP,
and consequently:
tang = ii ,

P
SO

1)

=+

(1) dg =1+ i ds

and if ¢ is the contingency angle of the vectf — 7B then:

d
mod (oT —7B )— (oT — 1B
_ mod(eT-7B) (T ~78) 5

(2) dw— [mod (pT _B )]2 ds= st .

Upon developing the rectifying surface on a plane, tipdeghwill not change, an@/
will become the angle that the transform of theegator makes with a fixed line in the
plane. However, formulas (1), (2) gide/=+ d¢ or ¢ ¥ ¢ = const. Therefore:

Upon developing the rectifying surface onto a plane, the curve P ankftorm into a
line (*) (Lancret’s theorem)

61. Surface of principal normals— If we set:

a=PN
then we will get:
%:TN +Pd—N :—EPT—EPB + TN,
ds ds P r
and in turn:
%% = 2TNBd—N: - EPTNB.
ds ds ds T

The surface of principal normals of a skew curve is a skew ruldace, and
conversely.

The tangent plane to the surface of normals apthet P is the planeé® da/ ds =
planePTN. Consequently:

(*® Indeed, if the poinP describes a planar line then the pétt P + uT will describe a straight line
when the vectodP; makes a constant angfewith a fixed vector in the plane (no. 5% and no. 50).
Now, if 8is the angle thal makes with, anda is the angle betweeh anddP; then the conditionld, = 0
will be equivalent t@@ =+ da.
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The osculating plane at P to the curve P is the tangent to the suffaocentals at the
point P, or, in other wordsthe osculating developable to the curve P and the surface of
principal normals agree along the curve P.

Likewise, since the plane that is tangent to the serfaf normals at the center of
curvatureP + oN is:

(P + oN) % = planePNB,
ds

one will have:

The surface of normals and the polar surface agree along the locus adritexs of
curvature for the curve .P

The asymptotic plane for the generator is nothing bupt)lﬁmlea.%l @ Now:

d_aa): —1 T _EB’
ds Yo r
SO
a.%l w=P [ETN ——1NBJ.
ds Yo r

The bivector of the forra.%l w IS thereforel T- E B, whose index is the vectej)r B
S P T

- ET, which is parallel to the vect@T — rB. Consequently:
T

The asymptotic plane for the generator of the surface of normals thasphssegh
P is the perpendicular to the generator of the rectifying surfaae gasses through the
same point P

Since the central point of the generaias:

o el

if one develops the progressive and regressiveugtod

da da 1i(1 1 1
a(aw.—a)j — =—=|| 5+ |P+=N|,
ds ds 6|lpo° T P

then one will get:
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The line of striction of the surface of normals can be considered tosoelmb by

the point P+ A%/ pN, for which% = i2+i2 expresses its normal curvature.
\/ p- T

If we setPy = P + P + A%/ pN then we will have:

2 2
dR_(d A A1 1)
ds ds p r\p r

2 2
oL S 7 N N
ds ds p r

or even:
N
ds

SO (seeno. 46,d):

The distribution parameter of the generatdy Rill be the numbe#d?/ r.

62. Surface of binormals— If we set:

a=PB
then we will get:
% =TB + lPN,
ds T
and in turn:
% % =- E PTNB,
ds ds T
SO

The surface of binormals of a skew curve will be a skew rulethcsyr and
conversely.

Moreover, since the planB da / ds = plane PTB is tangent to the surface of
binormals aP, one can further say that:

The surface of binormals and the rectifying surface of a curve Ragnde along the
curve P

The asymptotic plane for the generaias:

planea.%1 w= planePB (E Nj = planePNB,
s T

and in turn:
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The asymptotic planes to the surface of binormals are planes that aralrtorthe
curve P or, in other wordsthe surface of binormals and the polar surface agree along
their curves at infinity.

Since the planBBT is also perpendicular to the plaPsB, one will have:
The line of striction of the surface of binormals will be prelgishe curve P

Since:
88
ds

Q_|O-
ol
I
_|
I
|

one will have that:

The distribution parameter of the generatds Rill be the number.

63. Skew, ruled surfaces whose line of strictiorsigiven. — The surface of
binormals of the skew curwis not the only skew, ruled surface that admits the darve
for its line of striction, and we shall now proposed&termine all of the skew, ruled
surfaces whose cunkis precisely the line of striction.

To that effect, letJ(s) be a unit vector that is further determined such thaskbes
surfacePU will admit the curveP for its line of striction. We will have:

4 puy)Spuy =pPTU,
ds ds ds

and the surface that is generated by theRidewill be skew if for any value o

TUd—U¢ 0;
ds

i.e., if U is not constant and the vectlld / dsis not coplanar with the vectofsandU.
Under these conditions, by virtue of no. 46, the centradtmm the linePU will have a
position of the form:

PU‘UOI—U (TU+Pd—Uj = PUOI—U
ds ds ds

Ud—U P- F’TU‘U£ U,
ds ds

i.e., the line of striction of the surfa&® will be the curveP if one has:

(1) TU‘UOI—U =0 and Ud—U
ds ds

v 4o
ds

for every value oé§.
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The second of these conditions will always be \edifif the derivative o) is not
zero, but the first one demands that the veditbf ds not be coplanar with the vectors
U. Consequently:

All of the skew, ruled surface whose line of striction iscilvee P will be generated
by a line RJ, whereU is a unit vector with non-zero derivative that is not parallel to the
vectorT, and is defined by the differential equation:

) Tulu¥ -0,
ds
Therefore, if we set:
U =xT +yN +zB,

wherex, y, z are functions o such that? + y* + Z = 1, then we can prove quite simply
that the condition (2) is equivalent to the followingeo

dx 1

ds p

If one then supposes, for example, thas known as a function af thenx will be
well-defined. ¢ +y? < 1 thenz will likewise result, and the vectaf will also be well-
defined.

Now, suppose that one has O for every value of. x andz will then be absolute
constants, and one will have:

Every fixed line in the rectifying plane at the igdP that does not coincide with the

tangent at that point upon passing through P wédkclibe a skew, ruled surface for
which the curve P is the line of striction.

64. A developable, ruled surface that is describeldy a line whose position is
fixed with respect to the tetrahedronPTNB. — If we set:
) a=XxPT +yPN +zPB + uNB +vBT +WTN,
wherex, y, z, z, u, v, w are constant numbers such that:
(2) ux + vy +wz= 0,

then it will be clear that the ling(s) will possess a position that is fixed with redpiec
the linesPT, PN, PB. Under these conditions:

da__ Ypr +(1+_Zj nN-YmB-NB +(_”+_W— szT—( y——\jTN ,
ds Yo p T r P p T r
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and the linea will describe a developable surface when:
dada _
ds ds

y Vv (x zj( u w j { \j _
=t —+— || —=+—=2z |- y——| =0,
pp \p t)\p T r\” 1

where, from formula (2), when:

i.e., when:

_Wwz_ux uzw_xz y+7
o p* pr p T

3)

If there exists no relation with constant coeffiteebetween 1 p and 1 /7 then the
line a can describe a developable surface onfy=iz=u =w=0; i.e., only when:

(4) a=(P+hB)T,

whereh is a constant number that is, moreover, arbitrdiye linea will then be on the
rectifying plane to the poir, and will be parallel to the tangentRt Formula (4) will
give:

da_1pmn+INT= i(m hB - hBTjN ,
ds p r

0 T

and the point of intersection of the lineandda/ dswill be:
_ Pr_p_h :
Pi=P+hB-h=T=P-—(pT-17B);
T T

i.e., the line of regression for the ruled surfaceill be described by the generators of the
rectifying surface that contairfs

Finally, if there exists a relation with constaatefficients between the numbers 1 /
pand 1 /rthat is a relation of the form (3), then there eaist linesa other than the
ones that verify equation (4) in order to descab#evelopable surface. Upon following
the method that we just pointed out, the readdreaiily determine these lines in order
to recover the results that were obtained alrego@ésaro ).

(% Lezioni di Geometrica intrinseclaples, 1896.
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§ 3. - ORTHOGONAL TRAJECTORIES.

65. Orthogonal trajectories of the generators of a ruled sudce.— A curve that is
traced on a ruled surface that cuts the generatoreddutiace at a right angle will be
called arorthogonal trajectory to the generators of the surface

In general, we can consider a ruled surface to be dgedeoy a linePK, whereP(s)
andK (s) take the form of a point and a unit vector, respelgtivédn arbitrary curve that
is traced on the surfa¢® will then be described by the point:

P1 =P+ UK,
if one assumes thatis a function ols. We shall thus propose to determinén such a

way thatP; will describe an orthogonal trajectory of the lif&§. In order for this to be
true, it is necessary and sufficient that:

dR k=0,
ds
and by virtue of the fact that:
ﬁ =T+ % K +u d_K ,
ds ds ds
that condition becomes:
T|K + % =0.
ds
Hence:
u=- [(T|K)ds,

which one can write in an equivalent fashion as:
u:—jcos(I'K Xs.

Therefore, if one takes= 0 to be a limit of the integral then one willesthat the
orthogonal trajectories to the generators of thdasa PK will be described by the
points:

Pu=P{ [ (TIK)ds+ c|k ,

wherec is an arbitrary constant.
Now, if the curveP is supposed to be an orthogonal trajectory thenvailt haveT |
K =0, as well a®; =P —cK, which shows that:

The distance between the points of two orthogomgdtories that are situated on
the same generator will be constant.
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66. Developings— One calls an orthogonal trajectory of the odtgadevelopable
of the curveP a developing of the curve.P One will thus obtain the poir®; that
describes a developing of the cuRdy settingK =T in the last formula of no. 65, and
one will also get:

Pi1=P-(s+c)T.
One will then have:

+
d_P :—2N’

1
ds P
SO
The tangent at P of a developing of the curve IP e parallel to the principal
normal at the corresponding point P

Since:

dzPl:_[gHCJNJF St G, ¥ g
ds p P pr
one deduces that:
[dR ’R _ _ (s+ 0’
\ds 2 o

(pT —1B),
and:

The binormal at Pof a developing of the curve P is parallel to tlengrator of the
rectifying surface that passes through the corresjoog point P

The curveP; can be planar only if the direction of the vedBaris constant; i.e. (cf.,
the preceding proposition), when the rectifyingface of the curveP is a cylinder.
Therefore:

The helix is the only skew curve whose develo@ngall planar curves
and:

Every developing of a helix is located in a plahattis normal to the generators of
the cylinder on which the helix is traced, and idewveloping of the normal section itself

of the cylinder that is made by that plane.

The plane normal to the poiRt is the plane:

dR _s+c

> pTB = 2 CprB.
ds  p p

Therefore:

Every developing of the curve P on the polar swefadl coincide with the rectifying
surface of the curve POne can also sayhe locus of the center of the osculating sphere
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to an arbitrary developing of the curve P will be the edge of regressi the rectifying
surface of P

All of the curvesP; whose polar surfaces coincide with the rectifying surfaicine
curveP are described by the point:
P1=P+xB +yT,

such that the vectatP; / dsis parallel to the vectd¥ (*}). As a result, the numbexsy;,
which are functions o, will be subject to the conditions:

X _ o, d,1-0
ds ds

which give:

1) Pp=P+uB-(s+C)T,

wherea andb are constants.

One easily obtains the curves (1) when the develohBsare known.

If Qu=P+aB—-(s+c¢)T, and ifm, n are numbers such that+ n # 0 then one will
have:

(Y In general, one can resolve the following questitthat are the curves,;®) such that one of the
lines BTy, P;N, P,B; is parallel to one of the linesTR PN, PB? For all values of, one will have:

P
(1) T;N=0 when — =uN,
ds
dP
iN=0 when —X =ul|=B-=T|,
2) BIN=0 wh L )l(l 1]
ds p T
dP _ . d¢
(3) N;T=0 when ds =u(cosg N + sing B) with  dg=—,
s T
dP _ . d¢
(4 NB=0 when ds =u(cosg T +sing N) with  dg=-—,
s T
dP _ .
(5) N;N=0 when ds =u(cosgB +singT) with  d¢ =0,
s
dP
(6) T;T=0 orevenBB=0 when d—lzuT,
s
dP
(7) T,B=0 orevenB,T=0 when dl = uB,
s

in whichu is an arbitrary function o.

One easily expresses the vectbisNy, B;, and the numberg,, r; as functions of the vectofis N, B,
and the numberg, 1, A, u for the curves (1)-(7), and one obtains some veppimant properties.

Among the curves (1)-(7), there are some that haveafnthe surfaced?;N;B;, P,B;T;, P;TiN;
coinciding with one of the surfac&\B, PNB, PTN, or one of the surfacdy T4, P;N;, P;B; coinciding
with one of the surfaceBT, PN, PB. The reader can, by way of exercise, recoverdtéelopings, the
developmentsnd the Bertrand curves, etc.
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+ + +
mR+nNQ _,, ma+tng (s+ mc nqu’
m+n m+n m+n

. mMP+n : .
and the p0|nt17+Q will describe a curve (1).
m+ n

67. Developments— Conversely, we shall say that the cuReis one of the
developmentsf the curveP if P is one of the developings & . We shall propose to
determine all of the developments of a given cutve

To that effect, iK represents a unit vector that is a functios tifen the lindPK will
describe a developable surface only in the case where:

AP) A _pprk I 2,
ds ds ds

i.e., when:
() TK K _ 0
ds

for every value oé§.

If K verifies condition (1) without being constant thée edge of regressidpy of
the surfacd’K will be a development of the curtRwhenK is parallel to the planEeNB
(because the curv¥@ must be an orthogonal trajectory of the generatbrihe surface
PK), and the vectodK / ds which is parallel to the principal normal at the pdntwill
be parallel to the vector (because the tangent Rtto the developing is parallel to the
principal normal at the poir; of the development). We can thus determine the vector

K by choosing a numbef# such that:
(2) K = cosg N + sing B,

anddK /dswill be a vector that is parallel tb.
If one is given:

(2)’ d_K:—ﬂT+(E_%

0 » . dsj (sing N — cosg B)

then g will be determined by the differential equation:

© dgp=2,
4

or

3y p=] L+ o,
4

upon introducing an arbitrary constag§ . Moreover, the edge of regression of the
surfacePK can be determined by:
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d co
9 pk) =TK — ¥ pr,
ds Yo

PK. L (PK)=PTK (K LcoP Pj.
ds P

Therefore, when the poif; describes a development of the cuPy@ne will have:

p=P+ P K,
cosy
and, from formula (2):
(4) P.=P+pN + ptan¢ B,

whereg is precisely the number that is provided by foran{#). Since the lineK + oN)
B generates the polar surface to the clitv®rmula (1) will express the idea that:

The developments of the curve P are situated on the polar surface to P
In the case where 1r/= O, for all values o$, the curveP will be planar:
P.=P+pN + ptango B,

and one of the developmentsPWwill be the curve that is described by the p&int o N;
i.e., the enveloping curve of normals to the cuRre The other developments are,
moreover, skew curves that are traced on the @flimthose cross-section is precisely the
locus of the poinP + p N; on the other handlP; / dsis parallel to the vectd{, and the

angle(%,Bj must be constant. Therefore:
S

A planar curve has just one planar development amd infinitude of skew
developments that are helices traced on the cylindi®se cross-section is precisely that
planar development.

Formula (3) also shows thdp is the contingency angle of the veci&yrand in the
development of the polar surface of the given cusmén a plane, the curvé; will
transform into a line. In general, one can supphbaéthere exists a valigg of s such
that:

lim o(s) =0,
=3
so:

Upon developing the polar surface to the curve uesgion onto a plane, the
developments of P will be transformed into lined ffass through a fixed point.
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Let dya, dys, dys be the contingency angles of the vectdis N;, B . T1 will
parallel to the vectoK, just asN; will be parallel to the vectoF, and formulas (2) and
(3) will give:

dyn =+ 2 gs
and
dyp = 1 ds.
P
i1n2
As a result, one will deduce from the fact tIcIrO%ﬁt— co§2¢ = sm2¢ that:
P

dgs= 32 s,
P
and upon observing théf— =+ dg, , one will get:
I dy,

At each point of a development of the curve P vahédave:

&:itanUOd?S+¢oj.

]

P and Iod—s must both be constants. Howevﬁorfj—S is constant when 17 = 0 for
I, T T

any value of. Therefore:
Planar curves have only planar curves or helicesheir developments.

If P, is the edge of regression of the polar surfacthéocurveP then one will have
(seeno. 59):

ptang =- r%,
ds

or

d_; :d|ogp:—tan¢dTS:—tan¢d¢:dIog CcoSsg .

Consequentlyp/ cos¢ will be a non-zero constant. Therefore:

The curves such that one of the developments demevith the locus of the center of
the osculating spheres will have their curvatuiekdd by the relation:
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pzccosUOd;+¢0j,

wherec # 0 and g enter in as arbitrary constants
Similarly, one proves:

Only the planar curves have a development thatod@s with the locus of the
centers of curvature.

If the curveP; describes one of the developments of the cBrileen by formulas (2),
(2), (3), one will have that the rectifying plane to thenp®& is parallel to the bivector |
T = NB. Therefore, since plarf&dNB = planePNB [formula (4)] is the rectifying plane
to the pointP,, one will have:

The edge of regression of the rectifying surfaceamh development of P is the locus
of the centers of the osculating spheres of theeckr

Conversely, if the poinP; describes a curve whose rectifying surface has an edge of
regression that is the edge of regression for the patéace tdP then one must have:

(5) P;=P+pN +xB,

with N1 parallel to the vectof. One easily finds*f) thatN; is parallel toT only when
dP; / dsis parallel to the vector:

cosg N + sing B with d¢:d—s.
T

Consequently, the numbeiin formula (5) is subject to the condition:

%: Xtan¢ +£+d—’0tan¢ :
ds T r ds

However,x = ptan ¢ is a particular integral of that differential equatiand in turn,
the general integral is:

Mds
x:ptan¢+ce[ T,
or even, sincelg =ds/ r:

c
X=ptang + .
ptang coss

From formula (5), one thus has:

(* Because iN, T = 0 then one will hav&; = cosg N + sin ¢ B (seethe note on page 114).
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c jB’
cosy

which givesall of the curves whose rectifying surfaces have the locus of sesfténe
osculating spheres of the curve P for their edges of regression.

P.=P+pN +(,0tan¢+

65. Orthogonal trajectories of the planes of an envelope. Let /7be a third-order
form whose position has an envelope. One can, imyagexeral manner, set:

m=P1J,

whereP is a point, and andJ are two rectangular unit vectors that are functionhef t

arc-lengths of the curve that is described By An arbitrary poin; of the planerzwill
be:
Pi=P+xl +vyJ,

and when the numbersy are functions o§, the pointP; will describe a curve that one
calls the orthogonal trajectoryof the planer if the tangent atP; is constantly
perpendicular to the plarre

One then easily sees that the necessary and safficonditions for the poirfe; to
describe an orthogonal trajectory of the plprage:

daR

| =0,
ds

(1) — J=0.

However:

E:T+%| +Xﬂ+ ﬂ\] +yd_‘],

ds ds ds ds ds
and upon observing that:

1 [J=0, |‘ﬂ:o, )| Y-

_ 0,
ds ds

the conditions (1) become:

1+Y=q

2 Tl +y—|I + ==0, TI|J+x—
@) | yds ds | ds

dJ ‘ dx dl
ds

These differential equations determinandy (>), along with two arbitrary constants,

and the orthogonal trajectories of the plargefine a doubly-indeterminate system.

a. Upon setting =N, J =B, one can obtain the orthogonal trajectories ofplaae
PNB. In the expression:

(*® Seethe note on page ?.
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(3) P =P+u(cosg N + singB),

one must determine the functionsand ¢ of s in such a way that the vectdP; / dsis
parallel to the vectol. For this, one equates the coefficientdNo&andB in the vector
dP; / dsto zero (or, upon applying formulas (2), witee N, J =B, X =u cos¢@, y =u sin

9).

%cos¢ -u %sin¢+ using =0,
ds ds r
%sin¢ +u%cos¢— ucosp =0.
ds ds r

One thus infers that:
du=0 and d¢:d—s,
T

and one sees that the poit will describe an orthogonal trajectory to the plaRBE
whenu is a constant in formula (3) ag=[ ds/ .

The line PP; describes the osculating developable of one of the dawelais (no.
67) of the curveP, and sinceP; is an orthogonal trajectory of the linB$; , one will
have:

The orthogonal trajectories of the normal planes to the cuiae Rhe developments
of the developings of Rr one can also say thttey are the curves that the locus of
centers of the osculating sphefese note page 17, formula (&)hps in common with the
curve P

b. One can further obtain the orthogonal trajectasfebie plane$BT by settingl =
B,J =T. Equations (2) give:

2(_0’ 1+$/: ,
ds ds

or
y=-(s+0), X=a,

with two arbitrary constants andc. As a result:
Pi=P—-(s+¢) T +aB,

and one easily obtains the curves that are describedhéypoint P; from the
developments d? (seeno. 68).

c. In order to obtain the orthogonal trajectoriesha dsculating planes of the curve
P, it will suffice to setl =T, J=N. The curve#$; are then such that the locus of centers
of their osculating spheres is the cuR/eand formulas (2) further give:
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2(: -1, dy— X
ds

D I
o
(7))
IS

which are differential equations that always permit tanget expressions forandy; for
example, as convergent seri&$. (

§ 4. - BERTRAND CURVES.

69. We say that the curv@ is aBertrand curveif there exists a curv® that is
different fromP and has the same principal normals as it, and wectéR; one of the
conjugatedo the curveP.

If P is a Bertrand curve and the cui®gis one of the conjugates Bfthen the curves
P, P1 will be orthogonal trajectories of the surface ohpipal normals. The distance
between the point8 andP; must then be constant, i.e.:

(1) Pi=P+uN,

whereu is a (fixed) non-zero real number.
If P is a plane curve then, by virtue of the equation:

ﬁ = 1-2 T,
ds P
the normals to the poinBsandP; will coincide.
Therefore:
Any planar curve is a Bertrand curve, and its conjugates are generatéet Ippints

P + u N, where u enters in as an arbitrary constant.

70. From now on, we shall suppose that the skew cBriga Bertrand curve and
thatP; is one of the conjugates Bf The vectoiT,, which is parallel to the tangentRy,
is parallel to the planBTB, which permits us to set:

Ti=cos¢ T +sing B,

if we let ¢ denote a function of such thadT / ds (which is a vector that is parallel to
N,) is a vector that is parallel to the vechyr One therefore has:

dT, _ [cos¢ , Sing

dg o
s - . jN+ OIS(cos¢B sing T),

(% Seethe note on page 94.
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and the equatiodT; / ds N = O will be true for anys only if @, which is the angle
between the vectois andT4, is a constant. Consequently:

The osculating plane to the point P of a Bertrand curve makes a constantiatigle
the osculating plane to the corresponding point of a curve that is conjug@te to

Moreover, formula (1) gives:

ﬁ = [1—2}1’ _EB,
ds P r

2 2
v mod®® = J@_zj oY)
ds P r

then we will see that is a non-zero number, and the cogstvhich is such thatr> ¢ >
0, and it satisfies the equation:

and if we set:

(2) 1- — =vcosg, % =-vsing

will be well-defined. Since # 0 and sing # 0, formulas (2) imply that:

(3) sing _ cosp _ sing |
yo, T u

which expresses a relation with constant coeffisiéretween the curvature and torsion at
every point of the curv®, and is a necessary condition for the curve irstioe to be a
Bertrand curve. Conversely, if the condition (8)verified then the poir®; =P +u N

will essentially describe a curve that has the saoneals as the cune Therefore:

In order for the skew curve P to be a Bertrand eunt is necessary and sufficient
that the curvature and torsion be coupled by admeslation with constant coefficients
of the form:

sing _ cosp _ sing
yo, T u

(7> ¢ > 0 andu # 0) at every point of P. Upon assuming that this cboniis satisfied,
the point R = P + u N will describe a conjugate to the curve P, apavill be the angle
that the osculating plane to P makes with the @tmg plane to the corresponding point
P, of the conjugate curve.
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71. The curveP; that is conjugate t® is also a Bertrand curve. Therefore, if one

3 =V, Ez E P=P;—uN, and ifg is the angle thal makes withrl ,
%

ds ds
as well as the angle betwe&rand T3, then the curvature 1 and torsion 1 /; of the
curveP; will be linked by formulas that are analogous to form(s(3), namely:

observes th

2y -4 = Ecos¢, .1 sin g,
p v n v
3y sing _ cosp _ sing
0 r u

or even the ones that one can deduce from themhéggingu into —u, according to
whetherN; = =N or N1 =N. In order to determine the signwtompletely in formulas
(2), (3), observe that the vectBs, which is parallel to the vector:

B\ = [1—EJB+ET,
ds Yo r

is given by the relation:
B;1 =% (cos¢gB —singT),

according to whethad; =+ N . By virtue of (3), the derivative:

dB, :}(cosyﬁ_ sinﬁj N,

ds vl 1 P
gives:
8, __sing, -
ds uv
and in turn:
1 __sing

— [second formula (2),
I, uv

if one considers the second Frenet formula.
It is thus indeed proved that formulas'(23) persist foro, and i, with N3 =— N.
72. Here are some consequences of formulas (2)A)8)(3):
From the second of formulas (2) and (2)results that:

11 (uj
: ,

7, u
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which proves that:

The product of the torsions at every point of a Bertrand curve and its coajhgata
constant value that is equal to the squarsinfg / u.

If 1/ pis constant, and the same is not true for,tlen formula (3) will givep = 7/
2,u=r. Therefore, the preceding theorem and formulapi@®yve that:

If the curvature of a skew, Bertrand curve is constant, but nototls®m, then that
curve will admit the locus of the centers of curvature for its unmprgugate, or, what
amounts to the same thing, the locus of the centers of the osculatingssphe

The angle between the osculating planes at a point of the curve and at the
corresponding point of the conjugate curve will be a right angle.

The curve P and its conjugate will have the same curvature, and the poddhe
torsions at two corresponding points will be equal to the square of the arevat

One easily deduces from formula (3) that:

A skew, Bertrand curve cannot have a constant torsion without the awJading
likewise constantor in other wordsthe only skew Bertrand curves that have constant
torsion are the ordinary helices.

Formula (3) further gives:

A skew, Bertrand curve that is not an ordinary helix possesses jusbojugate. On
the contrary, an ordinary helix has an infinitude of conjugate curves thatieseribed
by the points P=P + uN, where u enters in as an arbitrary constant.

WhenP is an ordinary helix, one can determuén such a way thatls = ds i.e.,
such that the curve® P; have the same arc-length. One must havel, oru=2 4%/ p,
if 1/ A represents the normal curvature. Therefore (no. 64):

If P is an ordinary helix and the central point for the line,R® the surface of
principal normals of P is the mean of P andtRen the curves ,AP; will have the same
arc-length, and conversely.

Letr be the double ratio of the sequence of pdimt3;, P+ o N, P — o1 N. SinceP;
=P +uN, we will havePP; = uPN andP;P = - uP; N. Therefore:

_PP+pN)R(R-pN) _ _ pPN ___ -pPN _ p p _ 1 1
P(R-pN) R(P+pN) UPN-p PN -UEN+pEN u-pgu-p U, U

2

or, by virtue of (3) and (3)
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1
coS ¢’

r=

An arbitrary point of P, its correspondent point & the conjugate curve, and the
centers of curvature at the pointsP will have a constant double ratio that is equallto

/ cog ¢.



NOTES.

Forms that are functions of two or more variables.— As in analysis, we shall
represent a form that is a function of the variables oru, v, w, ... byf(u, v), f(u, v, w),
..., resp. Similarly:

d u, v), df (u, v)
du du

: or f,(u,Vv)

will be the partial derivative dfu, v) with respect tau.
Under the same restrictions as the ones that asdluded in analysis, we shall call,
for example, the infinitesimal numbéf(u, v) such that:

di(u, v = I g, AU
d dv

or in another form, such that:
df(u, v) = f,(u,v) du+ f(u vy d,

thetotal differential of fu, v).
Under these conditions, fifu, v) enters into consideration as a non-zero, continuous,
first-order form then when andv vary between some given limits:

positf(u, v)

will generate a surface, anduf andvp are particular values af andv then the points
f(uo, V), f(u, vo) will describe lines on that surface that one caksudturvesand thev-
curves respectively, which will provide, if one so desiresea of Gaussian coordinate
lines on the surface.

Similarly, if f(u, v) is a non-zero, second-order form with zero invariaentpositf(u,
V) will describe a congruence of lines, and finally, in ¢thee wher§u, v) is a third-order
form, positf(u, v) will take form of a double infinitude of planes that aregeneral
tangent to a well-defined surface.

One can easily extend these considerations to thadoact

f(u, v, w), ...
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Tangent plane.— Suppose tha®(u, v) is a point that is a continuous functionuwof
andv. We say that a plangis tangent atP to the surfaceP if the line PP, makes a
(signed) angle with the plangthat has the limit zero when the poiRi tends to
approach the poir indefinitely in an arbitrary manner, with the single cibioa that it
constantly remain on the surface.

One calls the perpendicular to the planihat passes through the pokhthe normal
to the surface at P

The definition of the tangent plane shows tlfathe tangent planerto the surface is
defined at the point P, along with the tangent r at P to an arbitrary ctivaeis traced
on the surface when starting at the point P then the line r will sadésbe contained in
the planerz

If the vectorsdP / du anddP / dv are continuous functions, and if the bivec%aaf

u dv
. dP dP .
is not zero then the plarﬁed—F will be tangent to the surfa¢eat P.

u dv
Indeed, setP; =P(u + h, v+ h), so one has:

dP . dP
PL=P+h— +k —+
! au KT

whereQ is a vector of infinitesimal order higher than unity wimene takesyh® + k> to
be the infinitely small principal. One deduces from tha:

dP dP_ _ dP dP
(Pr-P) ——=Q ——,
du dv * du dv
and consequently, whdéh tends taP, the vectoQ will tend to zero, along with the angle

that is defined between the vecRr— P and the plan® Ef

du dv’
If z=1(x, y) is the Cartesian equation of the surface then ohdavie:

=0 +xl +yJ+zK

and

Ef:( jJ —ZK -2y o924y,
dx dy dx dx dy

i.e., the angular coefficients of the tangent plartegoointP will be:

a2 _dz
dx' dy
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respectively, and the equation of that tangent planebwill

dz

dz
Z-z=(X-X) — + (Y- .
( )dx Y-y) dy

One thus recovers the usual well-known expression.

First-order differential parameters. — In the questions of mechanics or physics, one
is frequently presented with a situation in which onetbasonsider a numberthat is a
position of a variable poirR. In that case, P is, for example, a function of its Cartesian
coordinates, y, zthen the quantity will likewise be a function of the variablasy, z

We shall saylifferential parameter of uand denote it bi/lu, to mean a vector such
that:
(1) du=0u|dP.

If Cu, Ov are two differential parameterswthen from relation (1) one will have:
Ou|dP=0Cu|dP or Ou-0v) |[dP=0.

As a result, if the differential parameterweéxists, and ifIP is not zero then the vector
(u will be defined in a unique fashion.

One haglu = 0 if u = const., and the vectordu anddP will be zero or rectangular.
However, foru = const., the poirf® will describe a surface or even a lin®ifvas already
subject to being found on a surface andufanddP are well-defined without being zero
then formula (1) will prove that the line@ Ou is the normal aP to the surface that is
described by the poif® or a normal to the curve that is describedPby

Let O be a fixed point, or the foot of the perpendicular thdiased at the poifton
a fixed line (or plane), in such a way ti@#® # 0. If we set:

u = modOP

- i.e., if u essentially represents the distance from the varipbintP to a fixed point,
line, or plane- then we will have:

) Oy = modP-0)
P-0O
Indeed §eeno. 37 k), we know that:
P-0O

u=—— >~ | (dP-do).
mod(P - O)
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However, one has thd = 0, or that the vectd? — O is perpendicular to the vectdO,
and consequently:
u= P;O dP,
mod(P - O)
an expression that one can compare to formula (1)rderoto obtain the required
theorem.
Furthermore, leti andv be functions of, and letf(u, v) be a function ofi,v with
well-defined partial derivatives. One has:

df df

(3) Of = —Ou+—0v.
du dv
Indeed:
df= 9 qu+ 9 gy = I oy | ap+ Aoy dpz(ﬂmmﬂmvj dpP,
u dv du dv du dv

an equality that, along with formula (1), will establible stated property.
If Ois a fixed point, andl, J, K are rectangular unit vectors, and if, moreover:

P=0+x +yJ+zK
then one will have:

(4) Ou = %I +ﬂJJ +itk :
dx dy dz
Indeed, from formula (2):
Ox =1, Oy =J, Uz=K,

and in turn:

du = %dx+ﬂjdy+ﬂjdz
dx

dy dz
:%Dx dP+ﬂJDy dP+ﬂJDz< df
dx dy dz
=94y 94y 94 ) gp
dx y dz

which, by virtue of formula (1), proves the theorem.
In general (cf., Lamé), one sagigferential parameter of wo refer to the number

2 2 2
mod [u, or even (%j + ﬂj +(ﬂjj , and the consideration of the differential
dx dy dz

parameter as a vector is due to Hamilton.
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V.

Curvilinear coordinates. — Let P(u, v) be a point that is a continuous function and
admits derivatives with respect toandv. If the variablesu andv are coupled by an
arbitrary relation then the poiR(u, v) will describe a curve on the surfaeg, v). If we
call the arc-length of that cung and suppose that all of the conditions that weredstate
in 8§ 4 of chapter Il are verified then we will have:

(2) ds= moddP.
However, one has:
dP = Edu+£ dv,
du dv

moreover, and if one sets:
(2) E:E f, F:E f, G:Ef

du | du du | dv dv | dv
then formula (1) will give:
(3) ds’ =E d + 2F du dv+ G dV,

which is a well-known conventional formula. From fadas (2), the numbers, F, G
that one usually considers for the Gaussian coordinates & very simple geometrical
significance.

The second of formulas (2) proves that in the caseemi®/ du anddP/ dv are non-
zero vectors, the coordinate lings/ on the surface can intersect at a right angle oy if
=0.

One can further deduce from formulas (2) that:

2 2
EG-F2= (modﬁ.modd—Pj { modd—P .moed—P c{sEP dj}

du dv du dv du_’d
or
2
EG-F%= (mod@fj :
du dv

which proves that the discriminant of the differentialadratic form (2) is positive or
zero.

If one further associates formulas (2) with the pdewg then one will obtain the
equation:
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which will determine the angle between the coorditiaies that pass through the point

P; of course, one must suppose t.*ga{F is non-zero.
du dv

If one gives a relation betweerandv, and one let¥ denote the angle that is formed,
for example, between the tangenPdb the curve that is described by the p&rand the
line v then one will have:

JE cos@ds= d—P

du

du dv
cosfd=—| E—+F
\/E( ds dsj

In a completely similar manner, one will have:

JE sin@ds= moc{ d—Pde = mod( Ef} dv,
du du dv

dpP,

or

which, from the preceding, one can write as:

VEG - Fzﬂ/
JE ds’

sin@ =

If the bivector?? IS not zero then upon setting:
u dv

oP ap
K = du dv

one will see thaK is a unit vector that is perpendicular to the tamglane to the surface
at P; furthermore PK is the normal to the surface at the same pointrebieer, set:

2 2 2
D:d': K, = 9P 1y pr=9Pl.
du du dv dv?
Since:
2
d’P = d” P d°P dudw— d P dv,
du dv de

one sees that:
d?P |K =D duf + 2D’ du dv+ D" dVA,
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and the right-hand side of this formula is generallfedathe thesecond differential form
of the surfacd®. This differential form gives the magnitude of themal component to
the vectord®P; i.e., the product of that differential form with thiectorK is precisely the
normal component of the vectdfP. By analogy, the vecto®K, D'K, D"K are the
d’P d°P d°P
normal components of the vectots—, ——, :
du* " dudv dv
geometrical significance of the usual elements that amsidered in the theory of
curvilinear coordinates.

By applying the method of the elements that we just ptedeone can easily prove
the theorems of Meusnier, Dupin, Euler, etc., andaiobthe lines of curvature,
asymptotic lines, geodesic lines, etc. However, theditmat have been imposed upon
us do not permit a more complete development of differegometry.

One then sees quite easily the

FIN.



