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PREFACE 
 

_________ 
 
 

 The book that we are publishing today contains a brief exposition of the geometric 
calculus, and some of its applications to elementary differential geometry. 
 The geometric calculus was first conjectured by Leibniz (1679) (1) whose first 
recognized the opportunity – or rather, the necessity – of operating directly on the 
geometric elements, whereas analytic geometry operates numbers that have an indirect 
relationship to the elements that they represent.  However, the geometric operation that 
was introduced by Leibniz does not have the usual properties of algebraic operations; the 
author did push the geometric research quite further. 
 Nevertheless, Leibniz’s idea was destined propagate and to produce great results.  In 
1797, Caspar Vessel (2) gave an analytic representation of direction that contained 
Argand’s (1806) geometric representation of complex numbers and several operations 
that had been introduced by Hamilton (1843-1853) for quaternions.  Möbius, with his 
barycentric calculus (1827-1842) and Bellavitus, with the method of equipollences 
(1830-1854) gave two methods for a geometric calculus, independently of each other, 
that the authors applied to several questions of pure geometry and mechanics.  In 1843, 
Hamilton published his first essay on quaternions, and that theory, which was developed 
completely by 1854, gave a complete geometric calculus that was soon know, 
appreciated, and even applied by Hamilton’s contemporaries; today, one especially 
applies it to physics. 
 The papers of Hamilton are preceded by the Ausdehnungslehre of H. GRASSMANN 
(1844), who, by the power and simplicity of the operations, surpassed all of the other 
geometric calculi.  The excessively abstract form of exposition that was adopted by 
Grassmann has retarded the diffusion of the Ausdehnungslehre, in such a way that today 
one employs the barycentric calculus, the theory of equipollences, or quaternions, and 
even more frequently, Cartesian geometry, in order to solve geometric questions that 
have a very simple solution using the Grassmann method.  The applications that 
Grassmann made to the generation of lines and surfaces soon foreshadowed the power of 
the method; however, in order to make it known and applied by the whole world, he 
further constructed a concrete link to Euclidian geometry. 
 Professor Peano was the first one to give a concrete geometric interpretation of the 
forms and operations of the Ausdehnungslehre.  Taking the common idea of a tetrahedron 
for his point of departure, he defined the product of two and three points.  He then 
defined the products of these elements by numbers, and finally, he defined the sums of 
these products.  The theory of forms of first order gave the barycentric calculus, along 
with that of vectors (or directions).  The forms of second order represented lines, 
orientations and systems of forces that were applied to a rigid body.  The forms of the 

                                                
 (1) LEIBNITZENS, Math. Schriften, v. II and V, Berlin, 1849.  
 (2) “Essai sur la représentation analytique de la direction” (Om Directionens analytiske Betegning).  
Published by the Royal Academy of Sciences and Letters of Denmark, on the occasion of the centenary of 
its presentation to the Academy on 10 March 1797.  Copenhagen, 1897.  
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third order represent planes and the plane at infinity.  Among the operations, the 
progressive and regressive products give the geometric operations of projection and 
intersection.  The internal product gives the orthogonal projections and the quantities that 
one refers to in mechanics as work, moment, … 
 In this book, we give the elements of the geometric calculus according to 
Grassmann’s method in a very simple and concrete form.  The goal that we shall propose 
is that of giving young students the means to easily comprehend that powerful instrument 
for calculation, and, at the same time, to give them the means to apply it to the questions 
of higher differential geometry. 
 We believe that the latter objective of our book is quite important.  Indeed, in 
ordinary differential geometry, one obtains some very simple properties with very 
complicated developments.  In general, that complication is due to the use of coordinates, 
because with coordinate we make algebraic transformations on numbers in order to 
obtain, after calculations that are frequently very complicated, a small formula – viz., an 
invariant – that is susceptible to a geometric interpretation.  The geometric calculus 
makes no use at all of coordinates.  It operates directly on the geometric elements, and 
each formula − which is, in itself, an invariant − has a very simple geometric significance 
that leads very easily to the graphic representation of the element considered.  One can 
thus predict a simplification when compared to the ordinary methods.  Our book proves 
that the simplification is possible in regard to ordinary differential geometry, and leaves a 
vast field of transformations and research in higher geometry to the younger students. 
 The importance The of the role that is played by the Ausdehnungslehre in geometry, 
mechanics, and physics is explained quite well by V. Schlegel in his important historical 
paper: “Die Grassmann’sche Ausdehnungslehre…(3), to which we will refer the reader.  
Today, Grassmann’s method has no need for recommendation; it only needs to be known 
and applied by the whole world.  It is by constant application to all parts of mathematics 
that one can comprehend the power and simplicity of Grassmann’s method. 
 
  Turin, April 1897. 
 

___________ 
 

                                                
 (3) Zeitschrift für Mathematik und Physik, Leipzig, 1896.  
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CHAPTER I. 
_____ 

 
GEOMETRIC FORMS 

____ 
 
 

§ 1. – DEFINITIONS AND RULES OF CALCULATION . 
 

 1.  Tetrahedra. – We express the idea that the points A, B, C, D are situated on the 
same plane by writing ABCD = 0 or by saying that the points A, B, C, D are the summits 
of a null tetrahedron.  One always has: 
 

AABC = ABAC = … = AAAB = … = 0. 
 

 If A, B, C, D are points that are not situated on the same plane (ABCD ≠ 0) then the 
notation ABCD shall denote a real number.  The absolute value of ABCD is the number 
that measures − and with an arbitrary unit, moreover − the volume of the tetrahedron 
whose summits are precisely the points A, B, C, D.  The sign of this number is + or – 
according to whether an observer that is placed on the line AB with their head at A and 
their feet at B and regards the line CD sees the point D to his right or left, resp., or else he 
sees the point C to his left or right, resp. (4). 
 No matter what the points A, B, C, D are, the real number ABCD will be well-defined 
once the unit of measure for volumes is fixed.  Moreover, one obviously has: 
 

ABCD = − BACD = − ACBD = − ABDC. 
 

In an expression such as ABCD, one can therefore choose the order in which one desires 
the letters to appear, on the condition that one nonetheless recall that every exchange of 
two consecutive letters implies a change of sign. 
 Furthermore, the definition that we just stated gives meaning to the expressions: 
 

ABCD + A1B1C1D1 + … + An Bn Cn Dn , ABCD – EFGH, mABCD, 
 
where m is a number.  One can always − and in an infinitude of ways − determine the 
points P, Q, R, S in such a way that the number PQRS is equal to a given number, and in 
turn, to any of the cited expressions. 
 If ABCD ≠ 0 then we will naturally say that the tetrahedron whose summits are 
arranged in the order A, B, C, D has the direct sense or the inverse sense according to 
whether the number ABCD is positive or negative.  In order to abbreviate the language, 

                                                
 (4) The consideration of the sense of a sequence of points A, B, C, D as the sense or sign of a 
tetrahedron is due to Möbius.  This idea is nowhere to be found in the books of Euclid. 
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we shall indeed say that ABCD is a tetrahedron, but that word does not possess its 
ordinary meaning here, because the equality ABCD = EFGH expresses the idea that the 
tetrahedra with summits A, B, C, D and E, F, G, H have not only the same volume, but 
also the same sense. 
 
 
 2.  Geometric forms.  Equality of forms. – We call entities such as: 
 
(1)  x1 A1  + x2 A2 + … + xn An , 
 
(2)  x1 A1 B1  + x2 A2 B2 + … + xn An Bn , 
 
(3)  x1 A1 B1 C1 + x2 A2 B2 C2  + … + xn An Bn Cn , 
 
where the x1, … are real numbers and A1, …, B1, …, C1, … represent points, forms of the 
first, second, and third order, respectively. 
 Under these conditions, the symbolic equalities: 
 
(1)′  x1 A1  + … + xn An = 1 1x A′ ′  + … + m mx A′ ′ , 

 
(2)′  x1 A1 B1  + … + xn An Bn = 1 1 1x A B′ ′ ′  + … + m m mx A B′ ′ ′ , 

 
(3)′  x1 A1 B1 C1  + … + xn An Bn Cn = 1 1 1 1x A B C′ ′ ′ ′  + … + m m m mx A B C′ ′ ′ ′ , 

 
express the idea that one has for any points P, Q, R: 
 
(1)″ x1 A1 PQR + … + xn An PQR  = 1 1x A′ ′ PQR  + … + m mx A′ ′ PQR, 

 
(2)″ x1 A1 B1 PQ + … + xn An Bn PQ  = 1 1 1x A B′ ′ ′ PQ + … + m m mx A B′ ′ ′ PQ, 

 
(3)″ x1 A1 B1 C1 P + … + xn An Bn Cn P = 1 1 1 1x A B C′ ′ ′ ′P + … + m m m mx A B C′ ′ ′ ′ P. 

 
 The terminology of first-order form, for example, is not defined by the expression (1).  
We consider the entity (1) to be an abstract geometric element that is common to all 
forms 1 1x A′ ′  + … + m mx A′ ′  satisfy the condition (1)′, a condition that takes on a precise 

significance by virtue of the equality (1)″.  The same remarks apply to the expressions (2) 
and (3) (5). 
 We likewise say that one of these forms – (1), for example – is zero, and we write: 
 

x1 A1 + x2 A2 + … + xn An = 0 

                                                
 (5) The definitions of the entities (1), (2), (3) in a form that is analogous to the one that we just stated is 
due to Peano (Calcolo geometrico; Bocca, Turin, 1888).  It then results that a simple relationship is 
established between the geometric forms and the elements that one considers in Euclidian geometry, and 
Grassmann’s abstract calculus acquires a concrete value that is susceptible to geometric applications. 
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when for any points P, Q, R, one has: 
 

x1 A1 PQR + x2 A2 PQR + … + xn An PQR = 0. 
 
 A tetrahedron that is a sum of tetrahedra or an expression like x1 A1 B1 C1 D1 + … + 
xn An Bn Cn Dn is called a fourth-order form, by analogy. 
 If A, B, C are points then we will also write 1 A, 1 AB, 1 ABC, instead of A, AB, ABC.  
This simply amounts to assuming that A is a first-order form (i.e., that each point is a 
first-order form), AB is a second-order form, and ABC is a third-order form. 
 
 
 3.  Points. – We remark, first of all, that if A corresponds to a point then one will 
necessarily have that A ≠ 0. 
 One will express the idea that the point A coincides with the point B by writing A = B.  
Indeed, the relation A = B is equivalent to APQR = BPQR for any points P, Q, R.  Each 
plane that contains A (APQR = 0) will then also contain B (BPQR = 0), and consequently, 
A will be identical to B. 
 
 
 4.  Line segments. – The definition of the equality of second-order forms shows that 
the equation AB = 0 corresponds to the equality A = B in a necessary and sufficient 
manner.  Indeed, AB = 0 is equivalent to ABPQ = 0 for any P and Q.  Therefore, the four 
points A, B, P, Q must be in the same plane, which demands precisely the coincidence of 
the points A and B. 
 Similarly, for any P and Q the two tetrahedra ABPQ and BAPQ, which has the 
opposite sense, will have the same volume; i.e., ABPQ = − BAPQ, and one will always 
have the relation AB = − BA between two points A and B. 
 If one denotes the modulus of AB by “mod AB,” which is the positive or zero number 
that measures the distance between the two points A and B, then one will always have 
that mod AB = mod BA, as well as mod AB = 0 only when the two points A and B 
coincide, or if A = B. 
 
 THEOREM I.  – If x is a non-zero real number and one has that AB = xCD then the 
four points A, B, C, D are situated on the same line and mod AB is equal to mod CD, 
multiplied by the absolute value of the number x. 
 
 Proof. – If AB = 0 then one will have CD = 0, and the theorem is proved.  If AB ≠ 0 
then one must also have that CD ≠ 0, and conversely.  If P, Q are two arbitrary points 
then one will have ABPQ = xCDPQ, and if the point P is situated on the line AB (6), then 
it will be likewise situated on the line CD, since the two sides of the equation will be 
zero, and this will be true for any point P on the line AB, which amounts to saying that 
the four points A, B, C, D will be situated on the same line.  But then if ABPQ ≠ 0 then 
the tetrahedra ABPQ, xCDPQ can be considered to have the same heights (viz., the 
                                                
 (6) To abbreviate, we will say “line AB,” instead of “line that joins the points A and B,” “plane ABC,” 
instead of “plane that passes through the points A, B, C.”  In § 3 of this chapter, we will give a somewhat 
difference significance to these expression.  
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distance from the point Q to the plane ABP) and two equivalent triangles for bases that 
have the summit P in common and their bases along the line AB.  Consequently, the 
distance between the two points A and B will be equal to the distance of the two points C 
and D, multiplied by the absolute value of the number x. 
 
 THEOREM II.  – If A, B, C, D are points on the same line and CD ≠ 0 then one can 
determine only one real number x such that AB = xCD. 
 
 Proof. – If AB = 0 then one will have x = 0.  If AB ≠ 0 then let P and Q be two points 
such that ABPQ ≠ 0.  There then indeed exists a real number x that is defined by the 
equality ABPQ = xCDPQ.  Moreover, it immediately results, from some notions of 
elementary geometry, that the relation ABPQ = xCDPQ persists for any points P, Q, and 
in turn (no. 2), the number x that will answer the question − i.e., that will make AB = xCD 
− is therefore determined in a unique fashion. 
 

 Remark. – Under these conditions, we let the symbol 
AB

CD
 (i.e., the ratio of AB to 

CD) denote the number x such that AB = xCD.  If 
AB

CD
≠ 0 then we will say that the form 

AB has the direct sense or the opposite sense relative to the form CD according to 

whether the number 
AB

CD
 is positive or negative, respectively. 

 
 If AB = CD with CD ≠ 0 then: 
 
 1. The points A, B, C, D will be situated on the same line. 
 2. The distance between two points A and B will be equal to the distance between 
the two points C and D. 
 3. The forms AB, CD have the same sense. 
 
 Therefore, the form AB is an abstract geometric element that is a function of the 
unbounded line that joins the points A and B, the distance between these two points, and 
the sense of the form AB.  We will say that the form AB is a line segment, an expression 
that will not have its usual significance of a bounded line here. 
 If AB ≠ 0 and CD ≠ 0 then if the line AB is parallel to the line CD and the line AC is 
parallel to CD we will say that the forms AB and xCD are parallel and do or do not have 
the same sense according to whether x, which is assumed to be real and non-zero, is 
positive or negative, respectively. 
 
 
 5.  Triangles. – Let A, B, C, D, E, F be points.  The equality of two third-order forms 
easily shows that the equality ABC = 0 demands that the points A, B, C be on a straight 
line.  Similarly, one has ABC = − BAC = − ACB.  One denotes the modulus of ABC by 
“mod ABC,” which is the positive or zero number that measures the area of the triangle 
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whose summits are A, B, C, in such a way that mod ABC = 0 if ABC = 0 and mod ABC = 
mod BAC = mod ACB. 
 
 THEOREM I.  – If one has ABC = xDEF, where x is a non-zero real number, then 
the points A, B, C, D, E, F are situated in the same plane and mod ABC is equal to mod 
DEF, multiplied by the absolute value of the number x. 
 
 THEOREM II.  – If A, B, C, D, E, F are points on the same plane and DEF ≠ 0 then 
one can determine just one real number x such that ABC = xBEF. 
 
 These two theorems are proved just as theorems I and II of no. 4 were. 
 
 Remarks. – Under the hypotheses of the preceding theorem, we further let the 

symbol 
ABC

DEF
(i.e., the ratio of ABC to DEF) denote the number x such that ABC = xDEF.  

If 
ABC

DEF
≠ 0 then we can say that the form ABC has the direct sense or the opposite sense 

relative to DEF according to whether the number 
ABC

DEF
 is positive or negative, 

respectively. 
 If ABC = DEF and ABC ≠ 0 then: 
 
 1. The points A, B, C, D, E, F are situated on the same plane. 
 2. The area of the triangle whose summits are A, B, C is equal to the area of the 
triangle whose summits are D, E, F. 
 3. The forms ABC, DEF have the same sense. 
 
 As before, the form ABC is an abstract geometric element that is a function of the 
plane of the points A, B, C, the area of the triangle whose summits are A, B, C, and the 
sense of the form ABC.  We will say that the form ABC is a triangle and attribute a 
special significance to that word. 
 If ABC ≠ 0, DEF≠ 0, the plane ABC is parallel to the plane DEF, and the lines AD, 
BE, CF are mutually parallel then the forms ABC, xDEF will be called parallel and with 
the same sense or not according to whether x, which is real and non-zero, is positive or 
negative, respectively. 
 Upon supposing that ABC ≠ 0, an observer that is standing on the plane ABC is either 
placed in the region of all points P such that PABC is a positive number, or else in one 
whose points P are such that PABC is a negative number.  For example, if the observer is 
in the first of these regions, and he traverses the perimeter of the triangle ABC from A to 
B, B to C, and C to A then he will have the area of the triangle ABC on his right.  If he is 
always situated in the same region then if he traverses the perimeter of a triangle DEF in 
the same plane in the sense D, E, F then he will have the area to his right or left according 

to whether 
ABC

DEF
 is positive or negative.  In this manner, one can quite easily recognize 

whether two triangles in the same plane have the same or opposite senses. 
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 6.  Sum and product with a number. – Let: 
 

x1 A1 + … + xn An , y1 B1 + … + ym Bm 
 
be first-order forms, and let h be a real number.  We set: 
 

(x1 A1 + … + xn An) + (y1 B1 + … + ym Bm) = x1 A1 + … + xn An + y1 B1 + … + ym Bm , 
h(x1 A1 + … + xn An) = hx1 A1 + … + hxn An . 

 
 These equalities, which define the addition of two first-order forms or the product of 
a form by a number will further allow us to define the same operations for forms of 
second or third order. 
 All of the rules of calculation for algebraic polynomials apply to the sum of forms of 
the same order that are finite in number and to the product of a form by a real number.  
One introduces the – sign from algebra by agreeing that – A = (−1) A and that A – B = A + 
(− B), where A, B are forms of the same order.  If x is a non-zero number then we can 
write A / x, instead of 1/x A. 
 A geometric form is the (algebraic) sum of a finite number of forms that are 
themselves separately the products of a point, a line segment, or a triangle with a number. 
 
 
 7.  Progressive product. – For example, set: 
 

(x1A1 + x2A2) (y1B1C1 + y2 B2 C2 + y3 B3 C3)  
= x1y1 A1B1C1 + x1y2 A1B2C2 + x1y3 A1B3C3 + x2y1 A2B1C1 + x2y2 A2B2C2 + x2y3 A2B3C3 . 

 
In a word, we have operated as if: 
 

x1A1 + x2A2 , y1B1C1 + y2 B2 C2 + y3 B3 C3 , 
 

were polynomials, and performed the multiplication while respecting the order of the 
large letters. 
 It is easy to generalize this rule in order to take the product of two or more forms, 
with the single restriction that the sum of their orders must not exceed 4.  The product 
thus defined is called the progressive product, or simply the product, when there is no 
possible confusion.  The line segment AB is therefore the product of the point A with the 
point B, the triangle ABC is the product of the point A with the line segment BC, or of the 
line segment AB with the point C, or finally the double product of the point A with the 
point B and the point C.  Of course, the same thing will be true for the tetrahedron ABCD. 
 It results easily from these definitions that the rules of algebraic calculation apply to 
the products of forms [if A = B then one will have AB = BC, (A + B)C = AC + BC, mAB = 
(mA) B], except for the ones that depend upon a commutative property.  In that case, one 
must have recourse to the following rule: If A and B are two forms of orders r and s, 
respectively, with the condition that r + s ≤ 4, then one will have: 
 

AB = (−1)rs BA. 
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That is, in a product of forms, one can permute two consecutive factors of orders r and s 
at will, with the caveat that one must multiply the product by (−1)rs.  The formulas AB = 
− BA, ABC = − BAC are only particular cases of this rule. 
 
 

§ 2. – VECTORS AND THEIR PRODUCTS. 
 

 8.  Vectors. – One calls the difference of two points a vector.  If A and B are points 
then B – A will be a vector.  One sees immediately that B – A = 0 when A = B, and 
conversely. 
 
 THEOREM.  – In order that the (non-zero) vectors B – A, D – C be equal, it is 
necessary and sufficient that the line segments AB, CD be parallel and have the same 
sense and modulus. 
 
 Proof. – If P, Q, R are three arbitrary points then: 
 

(B – A) PQR = BPQR – APQR 
 
will represent the tetrahedron that has the triangle PQR for its base and the distance from 
the orthogonal projections of A and B onto the perpendicular to the plane PQR for its 
height.  Consequently, we assert that no matter what the points P, Q, R are, the equality: 
 

(B – A) PQR = (D – C) PQR 
 
will amount to an assertion of the necessary and sufficient conditions for the vectors B – 
A, D – C to be equal. 
 
 Remarks. – Say that the non-zero vectors B – A, D – C are parallel when the line 
segments AB, CD are parallel.  What we will call the direction of a vector I  is an abstract 
geometric function of I  that I  has in common with all of the vectors that are parallel to it.  
One deduces from the preceding theorem that equal vectors have the same direction. 
 If the vectors B – A, D – C are parallel then we will say that they have the same sense 
or the opposite sense according to whether the line segments AB, CD do or do not have 
the same sense, respectively.  The sense of a vector I  is therefore an abstract geometric 
element that is a function of I  that I  has in common with the other vectors that are parallel 
to I .  One deduces from the preceding theorem that equal vectors have the same sense. 
 Furthermore, set mod(B – A) = mod AB, and agree that I  is a unit vector when mod I  
= 1.  It likewise results that equal vectors have the same modulus. 
 It also results from the preceding conventions that: In order for two vectors to be 
equal, it is necessary and sufficient that they have the same direction, sense, and 
modulus.  Therefore, a vector is an abstract geometric element that is a function of its 
direction, sense, and magnitude; i.e., a vector is given when one knows its direction, 
sense, and magnitude. 
 Graphically, one will represent the vector B – A with the points A, B linked by an 
arrow whose head is at B.  One thus comprehends that in mechanics one can represent a 
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velocity by means of a vector, because a velocity can be defined as an element that is 
known when one has its direction, sense, and magnitude. 
 If A, B, C are three points then the preceding theorem will immediately give us the 
construction of the point D such that B – A = D – C.  A is called the origin and B, the 
extremity of the vector B – A.  It also results from this that one can take an arbitrary point 
to be the origin of a vector I , but once the origin is chosen, the extremity will be a 
perfectly well-defined point. 
 
 
 9.  a.  The sum of a point and a vector I  is a new point that one deduces from A by a 
translation whose magnitude, direction, and sense is determined by the vector I .  Indeed, 
if A is the origin of the vector I  then its extremity B will be determined by the condition I  
= B – A; it will follow from this that A + I  = B is a point, etc. 
 
 b.  The product of a point O and a vector I  is a line segment, because OI  = OO + OI  = 
O(O + I ).  Conversely, a line segment is the product of a point by a vector.  Indeed, if A, 
B are points then one will have the equalities: 
 

AB = AB – AA = A(B – A). 
 

Likewise, mod OI  = mod I , since, by definition: 
 

mod AB = mod(B − A). 
 
 c.  The sum of two vectors is a vector.  Indeed, if I , J are vectors and O is a point then 
A = O + I  + J will be a well-defined point and A – O = I  + J will indeed be a vector.  The 
construction of the expression I  + J is the same as the one that will give the resultant of 
two velocities that are represented by the vectors I , J, respectively.  One will also easily 
find the construction of the sum of a finite number of vectors, and one will confirm that 
the result is independent of the order that was adopted in the operation. 
 
 d.  If I , J are vectors then one will have: 
 

mod(I  + J) ≤ mod I  + mod J, 
 
because that relation is nothing but the one that relates the distance between the three 
points O, O + I , O + I  + J. 
 
 
 10.  Let I , J, K , U be non-zero vectors. 
 
 a′.  If x is a non-zero real number then xI  will be a vector that is parallel to I , and will 
have the same or opposite sense to I  according to whether x is positive or negative, 
respectively.  The modulus of xI  is equal to the modulus of I , multiplied by the absolute 
value of x.  Indeed, if I  = B – A then the point C such that xAB = AC is completely 
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determined. All that one needs to do now is to imitate the proof of the theorem in no. 8 in 
order to see that x(B – A) = C – A, which proves the theorem. 
 
 a″.  If I  is parallel to J then there will exist exactly one real number x such that J = xI .  
Indeed, if O is an arbitrary point then OI , OJ will be two line segments on the same line, 
and the number x will be such that OJ = xOI  or such that OJ = O(xI ) is well-defined.  It 
then indeed results that J = xI .  Let x′ be another number such that J = x′I , so one will 
have 0 = (x − x′) I , and thus x = x′, which proves that the number x will indeed be 
independent of the chosen point O. 
 
 a.  The condition for the parallelism of I  and J is thus that J be a multiple of I . 
 One can express the same thing with the relation IJ  = 0.  Indeed, if I  is parallel to J, 
and if O is an arbitrary point then the points O, O + I , O + J will be on the same line, 
namely: 

O(O + I )(O + J) = OIJ  = 0; 
 

i.e., IJ  = 0.  Conversely, if IJ  = 0 then: 
 

O(O + I )(O + J) = 0; 
 

i.e., the points O, O + I , O + J will be on the same line, or furthermore, the vectors I , J 
will be parallel. 
 If I , J are parallel vectors then the sign I  / J will always denote the number x such that 
J = xI , and, in addition, we agree that the symbol 0 / I  = 0. 
 
 b′.  We say that the vector I  is parallel to the plane α or that the plane α is parallel to 
the vector I  when there exist two points A, B on α such that I  is parallel to B – A, and that 
the vectors I , J, K  are coplanar when I , J, K , … are parallel to the same plane. 
 If I , J, K  are coplanar and IJ  ≠ 0 then the numbers x, y such that K  = xI  + yJ will be 
well-defined.  Indeed, if O is a point then the points O + I , O + J, O + K  will be on the 
same plane that is parallel to the vectors I , J, K .  If a line is drawn parallel to the line OI  
through the point O + K  and it meets the line OJ at the point A then one will have K  = (A 
− O) + [(O + K ) – A].  However, A – O and (O + K ) − A are vectors that are parallel to 
the vectors I , J, and the proposition shows that one can determine numbers x, y such that 
K  = xI  + yJ.  The numbers x, y will not be functions of O; indeed, if x′, y′ are other 
numbers such that K  = x′I  + y′J then one must have: 
 

(x − x′) I  + (y − y′) J = 0 and  (x − x′) IJ  = (y′ − y) IJ  = 0, 
 

and it results immediately from the fact that IJ  ≠ 0 that one must have: 
 

x = x′  and  y = y′. 
 
 b″.  If x, y are numbers, and if K  = xI  + yJ then the vectors I , J, K  will be coplanar.  
Let O be a point, so one has: 

O(O + I )(O + J)(O+ K ) = OIJK , 
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and upon replacing K  with xI  + yJ, one will have: 
 

O(O + I )(O + J)(O+ K ) = 0, 
which proves the theorem. 
 
 b.  The condition of coplanarity of three vectors I , J, K  is therefore: K  is the sum of a 
multiple of I  and a multiple of J, or K  is a linear function of I  and J, which one can, 
moreover, express by the condition that IJK  = 0. 
 
 c.  If IJK  ≠ 0 then the real numbers x, y, z such that: 
 

U = xI  + yJ + zK  
 
will be well-defined.  It suffices to imitate the proof of proposition (b′). 
 The vectors xI , yJ, zK  are called the components of U relative to the vectors I , J, K .  
The numbers x, y, z are called the coordinates of U relative to the vectors I , J, K . 
 
 d.  One always has IJKU  = 0; i.e., that the product of four vectors is always zero.  
Indeed, if IJK = 0 then one will indeed have IJKU  = 0.  If IJK  ≠ 0 then U = xI  + yJ + 
zK , and in turn, IJKU  = 0. 
 
 
 11.  Bivectors. – One calls the product of two vectors a bivector; i.e., if I , J are 
vectors then IJ  will be a bivector.  One has IJ  = 0 when one of the vectors I  or J is zero, 
or furthermore if I  is parallel to J, and conversely. 
 
 THEOREM I.  – In order for the bivectors IJ , KU  to be equal, it is necessary and 
sufficient that for any point O the triangles OIJ , OKU  be equal. 
 
 Proof. – By virtue of the definition of the equality of two second-order forms, the 
condition IJ  = KU  is equivalent to POIJ  = POKU  for any points P and O.  From the 
definition of the equality of two third-order forms, that equality is equivalent to OIJ  = 
OKU  for any O.  If one observes that OIJ  = O(O + I )(O + J) then it will result that OIJ  is 
a triangle. 
 
 THEOREM II.  – If I , J are vectors then for any points P, Q the triangles PIJ , QIJ  
will be parallel and will have the same sense and modulus. 
 
 Proof. – One proves this theorem by observing that: 
 

Q – P = (Q + I ) – (P + I ) = (Q + J) – (P + J). 
 

 Remarks. – We say that the non-zero bivectors IJ , KU  are parallel or coplanar when 
for any point O the triangles OIJ , OKU  are in the same plane.  We shall call the 
orientation of the bivector IJ  an abstract geometric element that is a function of IJ  that IJ  
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has in common will all of the bivectors that are parallel to IJ .  It then results that equal 
bivectors have the same orientations. 
 If the non-zero bivectors IJ , KU  are parallel then we will say that they do or do not 
have the same sense according to whether the triangles OIJ , OKU  do or do not have the 
same sense, respectively, for any point O.  The sense of a non-zero bivector IJ  is 
therefore an abstract geometric element that IJ  has in common with the other bivectors 
that are parallel to IJ .  Equal bivectors have the same sense. 
 If IJ  is a bivector then for any point O set mod IJ  = 2 mod OIJ .  The modulus of a 
bivector is then the positive or zero number that measures the area of the parallelogram 
whose three summits are the points O, O + I , O + J.  It further results that equal bivectors 
have the same modulus. 
 Theorem I and the definitions that we just stated likewise imply that in order for two 
bivectors to be equal, it is necessary and sufficient that they have the same orientation, 
sense, and modulus.  Thus, a bivector is an abstract geometric element that is a function 
of its orientation, sense, and magnitude. 
 Graphically, if one excludes its sense, then one can represent the bivector (B – A)(C – 
A) by the parallelogram whose three summits are the points A, B, C, and whose edges 
will be the two vectors B − A, C – A.  If A, B, C are points in a plane α then one will 
obtain a point E on the plane α such that: 
 

(B – A)(C – A) = (D – A)(E – A) 
 
by constructing the representative parallelogram of: 
 

(B – A)(C – A) 
 
in such a way that the triangles ABC, ADE have the same sense.  The transformation of a 
bivector into another one that is equal to it is therefore reduced to the problem of 
elementary geometry that consists of transforming a parallelogram into an equivalent one.  
Consequently, the equality: 

I (J + K ) = IJ  + IK  
expresses Varignon’s theorem. 
 
 
 12. a.  The product of a point with a bivector is a triangle (see proof of Theorem I, no. 
11).  Conversely, every triangle is the product of a point with a bivector, since ABC = A(B 
– C)(C – A). 
 
 b.  We say that the non-zero bivector IJ  is parallel to the non-zero vector K  (or K  is 
parallel to IJ ) when the three vectors I , J, K  are coplanar; i.e., when: 
 

IJK  = 0. 
 

 The sum of the non-zero line segment AB with the bivector u that is parallel to B − A 
is a line segment that one deduces from AB by a translation.  Indeed, let K  be a vector 
such that: 
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K (B – A) = u. 
By virtue of: 

AB = A(B – A), 
one will then have: 

AB + u = (A + K )(B – A), 
 
which proves the theorem.  The translation K  is not well-defined; on the other hand, the 
line upon which the segment AB + u is situated is defined completely. 
 If X is a point on the line that joins A and B (i.e., it is a point such that ABX = 0), and 
if Y is a point of the line AB + u then the translation K  = Y – X will be such that: 
 

AB + u = (A + K )(B + K ). 
 

 c.  The sum of two bivectors is a bivector.  Indeed, if u, v are bivectors then there will 
always exist a vector I  that is parallel to the two bivectors u, v.  Consequently, one can 
determine two vectors J, K  such that u = IJ , v = IK .  However, one will then have u + v = 
I  (J + K ), which proves the theorem. 
 
 d.  One proves very easily that the condition of parallelism between two non-zero 
bivectors u, v is that u be a multiple of v. 
 If u, v are non-zero, parallel bivectors then we will further let the symbol v / u denote 
the number x such that: 

v = xu. 
We also agree that 0 / u = 0. 
 
 e.  A bivector is always reducible to the sum of three line segments that are the edges 
of a triangle, because if u is a bivector then one will indeed have: 
 

u = (B – A)(C – A) = BC – CA + AB, 
 

which will prove the stated property. 
 By analogy, if a line segment represents a force that is applied to a rigid body then a 
bivector can represent a couple. 
 
 
 13.  Trivectors. – One calls the product of three vectors a trivector. 
 If I , J, K  are vectors and P is a point then by virtue of the equality PIJK  = P(P + I )(P 
+ J)(P + K ), one sees that PIJK  will be defined to be the tetrahedron whose summits are 
the points P, P + I , P + J, P + K .  If Q is a point then one will always have PIJK  = 
QIJK ; i.e., the number PIJK  is not a function of P, but only of the trivector IJK , so we 
will call the sense of the trivector IJK  the sense of the tetrahedron PIJK . 
 Let α be a trivector, and let I  and J be two non-zero vectors such that IJ  ≠ 0.  The 
vectors K  such that α = IJK  are always well-defined.  The determination of K  depends 
upon the following problem of elementary geometry: Transform a tetrahedron into 
another equivalent tetrahedron. 
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 The sum of the non-zero triangle ABC with the triangle α is a triangle that one 
deduces from ABC by a translation.  Indeed, let K  be a vector such that: 
 

K (B – A)(C – A) = α. 
One will then have: 
 

ABC + α = A(B – A)(C – A) + K (B – A)(C – A) = (A + K )(B – A)(C – A), 
 
which proves the theorem.  The translation K  is not defined; on the other hand, the plane 
on which the triangle ABC + α is situated is determined completely. 
 If α, β are two trivectors such that α ≠ 0 then the number Pβ / Pα will be independent 
of the point P.  We therefore set β / α = Pβ / Pα for any point P, and it is clear that β / α 
is precisely the number x such that β = xα.  Therefore, if α is a non-zero trivector then the 
trivector β − whatever it is − will be a multiple of α.  It then further results that the sum 
of two trivectors is a trivector. 
 One can always represent the triangle IJK  – except for its sense – by three vectors 
with the same origin O and the parallelepiped whose four summits are precisely the 
points O, O + I , O + J, O + K .  The volume of that parallelepiped, which is affected with 
a sign (viz., the sign of the number OIJK ), moreover, is called the magnitude of IJK  
(mag IJK ); this amounts to setting mag IJK  = 6 OIJK  for any point O.  We can then 
suppress the sign mag, with no possible ambiguity, and give the symbol IJK  the double 
significance of a trivector and a number. 
 We call the trivector − which we shall always denote by ω − such that for any point O 
the number Oω = 1 the unit trivector.  If ω is considered to be a number then ω = 6. 
 
 
 14.  Rotation. – We shall now consider a plane whose three fixed points A, B, C are 
such that ABC ≠ 0. 
 Let O, O′ be two arbitrary points of the plane ABC.  One can always determine three 
points P, Q, R of the plane ABC such that the points O, O′ are interior to the triangle 
whose summits are P, Q, R, and in addition, PQR / ABC is a positive number. 
 Let a then be a line of the given plane that passes through the point O, and let a′ be a 
line in the same plane that passes through the point O′.  The lines a, a′ each meet the 
perimeter of the triangle PQR at two points M, N and M′, N′, respectively.  If we make 
the point M traverse the perimeter of the triangle PQR – for example, in the sense P, Q, R 
(see no. 5, pp. 5) – then the point N will simultaneously traverse the perimeter of the 
triangle in the same sense, and the line a, as well as each of its points will turn around the 
point O in the plane.  We say that the lines a, a′ (or each point of these lines) turn around 
the points O and O′, respectively, in the same sense when the points M, M′ (or N, N′) 
traverse the perimeter of the triangle PQR in the same sense. 
 Let P1Q1R1 be another triangle in the plane ABC that enjoys the same properties as 
the triangle PQR.  If M1, N1, for example, are the points of intersection of the line a with 
the perimeter of the triangle P1Q1R1 , and if the point M traverses the perimeter of the 
triangle PQR in the sense P, Q, R then the point M1 will traverse the perimeter of the 
triangle P1Q1R1 in the sense P1, Q1, R1 .  Therefore, the sense of rotation of a line (or a 
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point) around a fixed point of the plane ABC is an abstract geometric element that is a 
function of the fixed triangle ABC in the plane. 
 We can fix the positive sense or the negative sense of the rotation in the plane ABC by 
saying that the line has turned around the point O in the POSITIVE (NEGATIVE, resp.) 
SENSE when the point M traverses the perimeter of the triangle PQR in the sense P, Q, 
R (P, R, Q¸ resp.).  Now, suppose that an observer is placed in the region of the points S 
such that SABC corresponds to a negative number.  If the line a turns in the positive sense 
then the observer will turn in the inverse sense to the hands of a clock with respect to the 
face. 
 
 
 14. cont.  Let I  be a non-zero vector in the plane ABC, and let ϕ be a non-zero 
number.  We say that J is equal to the vector I , but turned through the angle ϕ, when: 
 1. J is a vector. 
 2. mod J = mod I . 
 3. For any point O in the plane ABC, the line OI  can coincide with the line OJ by 
turning in the positive or negative sense according to whether ϕ is positive or negative, 
respectively, where the path that is traversed by the point O + I  has a measure that is 
equal to the absolute value of the number ϕ mod I . 
 
 Furthermore, one has that I  is equal to the vector I  turned through a zero angle, and a 
zero vector is equal to itself turned through an arbitrary angle ϕ. 
 Let I , J be two non-zero vectors in the plane AB such that mod I  = mod J.  There 
exists an infinitude of real numbers ϕ such that J is equal to the vector I , turned through 
the angle ϕ.  Among these numbers, the ones that are positive have a minimum ϕ1 and 
the ones that are negative have a maximum ϕ2 .  One always has that ϕ1 – ϕ2 = 2π, and 
every number ϕ will be of the form ϕ1 + 2nπ, ϕ2 + 2nπ, where n is an arbitrary integer 
number that is positive, negative, or zero. 
 We say the angle between I  and J, and denote it by (I , J), when we mean the smallest 
of the positive or zero numbers ϕ such that J is equal to the vector I , turned through the 
angle ϕ.  One should observe that by the notation (I , J), the positive sense of rotation in 
the plane ABC is intended; i.e., the number (I , J) is not just a function of the vectors I  and 
J, but also of the positive sense that is chosen for the rotation in the plane. 
 If (I , J) = 0 then we shall call the angle (I , J) radiant.  If the angle (I , J) = π / 2 then 
the angle (I , J) will be called a right angle, and we will further say that the vector I  is 
perpendicular to the vector J, or conversely, in the cases of (I , J) = π / 2 and (I , J) = 3π / 
2. 
 If U, V are non-zero vectors in the plane ABC then we shall say the angle between U 
and V, and denote it by (U, V), to mean the angle between the vector U / mod U and the 
vector V / mod V, which amounts to setting: 
 

(U, V) = ,
mod mod

 
 
 

U V
U V

. 

 One has: 
(U, − U) = π, (U, V) = (− U, − V), 
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and if: 

mod

U
U

≠ 
mod

V
V

 

then one will have: 
(U, V) + (V, U) = 2π. 

 
 
 15.  If I  is a non-zero vector in the plane then we will let iI  denote the vector I , when 
turned through the positive right angle π / 2; we also set i0 = 0.  We then let I  and J be 
two arbitrary vectors on the plane and let x be a real number.  Instead of the notations: 
 

i(xI ), x(iI ), (iI ) + J,    I (iJ), 
 
which presently have a precise significance, we will employ simply: 
 

ixI ,    xiI ,    iI  + J,    I iJ. 
 

 a.  If I  = J then iI  = iJ. 
 
 b. If n is a positive or zero whole number then we will set i0I  = I , inI  = i(in−1I ); in 
other words, we will let inI  denote the vector that one deduces from I  by applying the 
operation n times.  One thus has: 
 

i2I  = − I ,    i3I  = − iI ,    i4I  = I ,    i5I  = iI ,   …, 
 

which shows that the sign in has the same properties as the symbol ( )1
n

− . 

 
 c.  One can easily prove the formulas: 
 
 ixI  = xiI , i(I  + J) = iI  + iJ, 
 (iI )(iJ) = IJ , I iJ = JiI , 
 I i(J + K ) = I iJ + I iK , (I , J) = (iI , iJ). 
 
 The first one expresses the idea that one can change the order of the following two 
operations: multiplication by a number and turning through a right angle.  The second 
one shows that the operation i has the distributive property with respect to the sum. 
 
 d.  The orthogonality condition for two non-zero vectors I , J is I iJ = 0. 
 
 
 16.  Let I  be a unit vector in the plane.  The modulus of the bivector I iI  is 1, and for 
any unit vector J, one will have JiJ = I iI , which leads us to call I iI  the unit bivector in 
the plane. 
 a. If u is a bivector in the plane [see no. 12 (d)] then u / I iI  will represent the number 
x such that u = xI iI .  Of course, this number x is positive or negative according to 
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whether the bivectors u and I iI  do or do not have the same sense, resp., and its absolute 
value is mod u.  We agree to denote the number u / I iI  by the symbol u, as we have 
already done for trivectors; i.e., we give the symbol u the double meaning of a bivector 
and a number.  If the number u is positive and the angle Ou is equal to the triangle OAB 
then the observer who traverses the triangle from O to A to B will see the area of the 
triangle on his left. 
 
 b.  If U, V are non-zero vectors and one supposes that the theory of circular 
functions is known then one will prove the following formulas quite easily: 
 
 UV  = mod U mod V sin(U, V), 
 UiV  = mod U mod V cos(U, V), 
 
from which, one will deduce that: 
 

sin(U, V) = 
mod mod

UV
U V

,  cos(U, V) = 
mod mod

iU V
U V

, tan(U, V) = 
i

UV
U V

. 

 
 c.  For any vector U, one thus has: 
 

UiU = (mod U)2. 
 
Upon agreeing to write U2, instead of UiU, one will have: 
 

U2 = (mod U)2, (U + V)2 = U2 + 2UiV + V2 
and 

(U + V) i (U − V) = U2 – V2. 
 
 d. If U, V are vectors then the number UiV will be called the inner product of U with 
V (7).  This inner product enjoys the commutative property and the distributive property 
with respect to the sum.  If mod U = mod V = 1 then UiV will be the cosine of the angle 
(U, V).  If mod U = 1 then UiV will give the magnitude and sense of the vector that is the 
orthogonal projection of the vector V onto U; i.e., the vector (UiV) U will be the 
orthogonal projection of the vector V onto the vector U. 
 
 Examples. – 1.  If A1, A2, …, An are points and I  is a unit vector in the plane then the 
identity: 

I  i (A2 – A1) + I  i (A3 – A2) + … + I  i (An – An−1) = I  i (An – A1) 
 
will show that the (algebraic) sum of the projections of the edges of a broken line onto a 
line is equal to the projection onto that same line of the bounded line that joins the 
extremities of the broken line (d). 

                                                
 (7) The reader must appreciate the importance of the inner product.   The inner product, which was 
introduced by Grassmann as an abstract operation, is reduced here to the progressive product of two vectors 
by means of the operation i. 
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 2. If I , J are non-zero vectors and have the same modulus then the identity (I  + J) i 
(I  – J) = I2 – J2 = 0 will express the idea that the bisectors of two adjacent angles are 
rectangular. 
 
 3. Let A, B, C be the summits of a triangle in the plane; set: 
 

I  = C – B, J = A – C, K  = B − A. 
One has: 
(1)      I  + J + K  = 0. 
One deduces from formula (1) that: 
 
(2)     (− J) K  = (− K ) I  = (− I ) J, 
(3)     I2 = J2 + K 2 – 2(− J) i K , 
(4)    I2 = − J i I  – K  i I  = (– I ) i J + (– K ) i I . 
 
 If one divides equations (2) and (4) by mod I  . mod J . mod K  and mod I , 
respectively, then one will get: 
 

sin( , )

mod

−J K
I

 = 
sin( , )

mod

−K I
J

= 
sin( , )

mod

−I J
K

, 

 
(mod I )2 = (mod J)2 + (mod K )2 – 2 mod J mod K  cos(− J, K ), 

 
mod I  = mod J cos(− I , J) + mod K  cos(− K , I ), 

 
which are the same as the formulas in plane trigonometry that are known in the form: 
 

sinA

a
 = 

sinB

b
 = 

sinC

c
, 

 
a2 = b2 + c2 – 2 bc cos A, a = b cos C + c cos B. 

 
 
 17. If x, y are real numbers and I  is a vector in the plane then when one sets: 
 

(x + iy) I  = xI  + y iI , 
one will have: 

[(x + iy) I ]2 = (x2 + y2) (mod I )2, 
and, in turn: 

mod[(x + iy) I ] = 2 2x y+ . 

 
 If I  ≠ 0 and the numbers x, y are not both zero then if one is given that: 
 

I  [(x + iy) I ] = y(mod I )2, I  i[(x + iy) I ] = x (mod I )2 
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then one will have: 

tan [I , (x + iy) I ] = 
y

x
. 

 
 Therefore, multiplying the vector I  by the complex number x + iy means multiplying I  
by the modulus of the complex number and turning the vector thus obtained through an 
angle that is equal to the argument of the complex vector. 
 
 If we write the complex number x + iy in the form: 
 

x + iy = ρ (cos ϕ + i sin ϕ) 
or in the form: 

x + iy = ρ eiϕ 
 
then we will see that cos ϕ + i sin ϕ – or eiϕ – is the symbol for the operation that will 
make a vector turn through the angle ϕ when it is applied to that vector; i.e., for any 
number ϕ, (cos ϕ + i sin ϕ) I  – or, more simply, eiϕ I  – represents the vector I , but turned 
through the angle ϕ. 
 
 Examples. – Let O be a point, and let I  be a unit vector in the plane. 
 
 1. If x, y are numbers, and P = O + (x + iy) I  then x, y will be the rectangular 
Cartesian coordinates of the point P, if one takes the point O to be the origin and the lines 
OI , O(i I ) to be the axes. 
 
 2. If ρ, ϕ are numbers, and P = O + ρ eiϕ I  then ρ, ϕ will be the polar coordinates of 
the point P, where O is the pole and the OI  is the chosen polar axis. 
 
 3. When ϕ varies from 0 to 2π, the point P = O + r eiϕ I  will describe the circle 
whose center is O and whose radius is r. 
 
 4. The point P = O + r ϕ eiϕ I  describes an Archimedean spiral. 
 
 5. Let O be the common center of two circles, one of which has radius a, while the 
other one has radius b (a > b).  A radius of the first one that makes the angle ϕ with I  will 
meet the first one at M and the second one at N.  The parallels to the vectors I , iI  that are 
drawn through the points N, M, respectively, will meet at a point P.  When ϕ varies from 
0 to 2π, the point P will describe an ellipse whose center is at O and whose semi-axes are 
a and b, respectively. 
 One easily sees that: 

P = O + a cos ϕ I  + ib sin ϕ I . 
If we recall that: 

eiϕ = cos ϕ + i sin ϕ,  e−iϕ = cos ϕ – i sin ϕ 
 
then we will have: 
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P = O + 
2 2

i ia b a b
e eϕ ϕ−+ −+I I . 

 
 In general, when ϕ varies, the point P = O + h eiϕ I  + k e−iϕ  I  will describe an ellipse 
whose semi-axes are h + k, h – k. 
 
 6. If a circle of radius r rolls without slipping on the line m then the locus of 
successive points that a point of the circle must occupy will be a cycloid. 

 

O 

P 
I 

C 

P(π) 

m 
Q 

ϕ 
M 

O1  
Figure 1. 

 
 Let O, M be two points of m such that mod OM < 2πr and, in addition, let C (fig. 1) 
be the center of the circle of radius r that is tangent to m at M.  If O is a position of the 
point that describes the cycloid then a point P on the circle of center C that is such that 
MP = mod OM will be a point of the cycloid. 
 Therefore, let ϕ = (P – C, M – C); one will then have mod OM = rϕ .  Consider the 
unit vector I  that is parallel and in the same sense as the vector M – O.  We will have: 
 

P – O = (M – O) + (C – M) + (P – C), 
 

M – O = rϕ I , C – M = ri  I , P – C = − r e−iϕ i I ; 
therefore: 

P = O + rϕ I  + ri  I  – r e−iϕ i I , 
 
and the point P will describe the cycloid when ϕ varies from − ∞ to + ∞. 
 
 7. The point: 

P = O + a eimϕ I  + b einϕ I , 
 

when ϕ varies from − ∞ to + ∞ describes an epicycloid.  The radius of the fixed circle is 
n m

a
n

−
 or 

m n
b

m

− 
 
 

.  The radius of the moving circle is 
m

a
n

 or
m

b
n

 
 
 

, and the 

distance from the point P to the center of the moving circle is b (or a). 
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 18.  Index operation. – Let U be a non-zero vector, u, a non-zero bivector, and let O 
be a point.  If the line OU is perpendicular to the plane Ou then the line PU will be 
perpendicular to the plane Pu, and this will be true for any point P.  We express this 
property by saying that the vector U is perpendicular to the bivector u, or u is 
perpendicular to U.  We give the same significance to the phrases: the bivector u is 
perpendicular to the bivector v, and the vector U is perpendicular to the vector V. 
 If u is a non-zero bivector then we will let the symbol | u denote the vector such that: 
 1. | u is perpendicular to the bivector u. 
 2. mod(| u) = mod u. 
 3. The trivector u(| u) has the direct sense. 
 
The vector | u is therefore well-defined, and one calls it the index of u. 
 We agree to give to the relation: 

U = | u, 
the reciprocal form: 

u = | U, 
 

in order to be able to call u the index of U.  Consequently, when the operation whose 
symbol is |, which one calls the index operation, is applied to a non-zero bivector, it will 
produce a vector, and when it is applied to a non-zero vector, it will produce a bivector.  
Upon also setting: 

0 = | 0, 
 

this convention will succeed in defining the index operation, which then persists for any 
vectors and bivectors. 
 If, for example, u, v are two bivectors, U is a vector, and x is a number then instead of 
the symbols: 

| (| u), (| u) + U, x(| u), | (xu), u(| v), 
 

which currently mean something, we shall write, more simply: 
 

|| u,    | u + U,    x | u,    | xu,    u | v. 
 
 a.  If u, v, w are bivectors or vectors and x is a real number then we will have the 
formulas: 
(1)  || u = u, 
(2)  | xu = x | u, 
(3)  u | v = v | u, 
(4)  | (u + v) = | u + | v, 
(5)  (u + v) | w = u | w + v | w. 
 
 If U = | u then u = | U, and consequently, u = || u, which proves formula (1).  
Formulas (2), (3) are also proved easily. 
 Here is the proof of formula (4), which gives the distributive property of the index 
operation with respect to the sum:  Let u, v be bivectors.  If one of them is zero then 
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formula (4) will be obvious; therefore, suppose that u and v are non-zero bivectors.  One 
can then determine vectors I , J, K  such that I  is perpendicular to J and K , and: 
 

mod I  = 1, u = IJ ,  v = IK . 
 

 If one observes that u + v = I  (J + K ) then one will see that | u, | v, | (u + v) are the 
vectors J, K , J + K , which have received a rotation through a right angle in the same 
sense around an arbitrary point O in the plane OIJ .  Formula (4) is therefore proved when 
u, v are bivectors.  In the case where u and v are vectors, one will deduce formula (4) for 
the vectors in formulas (1) and (4). 
 Formula (5) is only a consequence of formula (4) and the distributive property of the 
product with respect to the sum. 
 
 b. One has: 

u | u = (mod u)2. 
 

Upon writing u2 instead of u | u, this will become: 
 

u2 = (mod u)2,  (u + v)2 = u2 + 2u | v + v2, (u + v) | (u – v) = u2 – v2. 
 

 c. The perpendicularity condition of u with respect to v is: 
 

u | v = 0. 
 

 d. Let U, V be non-zero vectors.  If we fix the sense of positive rotation on a plane 
that is parallel to U and V, and we let ϕ represent the angle between U and V then we 
will easily see that the number U | V is equal to the product of mod U mod V with either 
cos ϕ or – cos ϕ .  We cannot call ϕ or π – ϕ the angle between the two vectors U, V, 
because ϕ is a function of not only U, V, but also the sense of positive rotation in the 
plane, and we cannot establish a relationship between the directions of positive rotation 
on two arbitrary planes. 
 Thus, in order to introduce the angle between two arbitrary vectors U, V in space – 
that angle being regarded as a function of only U and V – we set: 
 

U | V = mod U mod V cos(U | V), 
or better yet: 

(1)     cos(U | V) = 
mod mod

U V
U V

, 

 
and we define (U, V) by saying that it is the smallest positive number or zero that verifies 
equation (1).  One deduces from this, notably, that (U, V) can vary from 0 to π, and in 
turn, sin(U, V) will be a number that is always positive, and one will have: 
 

mod(UV) = mod U mod V sin(U, V). 
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There is no contradiction between the results that we just obtained and the ones that we 
obtained in no. 16, because in the latter case (U, V) was not just a function of U and V. 
 
 c. One lets U | V denote the inner product of U by V, and that operation has some 
properties that are analogous to the operation that we already referred to as the inner 
product on a plane. 
 
 Examples. – 1.  If A, B, C, D are arbitrary points then one will always have: 
 

(A – B) | (C – D) + (B – C) | (A – D) + (C − A) | (B – D) = 0. 
 

 In order to prove this formula, it suffices to reduce the vectors A – B, B – C, C – A to 
the difference of two vectors that have the same origin D [for example, A – B = (A – D) – 
(B – D)].  If one then develops the inner products then one will find that the first number 
will be equal to zero.  The identity that we just stated can be interpreted geometrically in 
the following manner: If, in the tetrahedron whose summits are the points A, B, C, D, the 
opposite edges AB and CD, BC and AD, respectively, are pair-wise perpendicular then 
the last two edges AC and BD will also be rectangular.  Even better: The three altitudes 
of a triangle will have a common point. 
 
 2. If A, B, C are the summits of a triangle and I  is a vector then one will have: 
 

(B – B) | I  + (C – A) | I+ (A – B) | I  = 0. 
 

 Therefore, if two of the vectors B – C, C – A, A – B are perpendicular to the vector I  
then the third one will also be perpendicular to I , which expresses a theorem that is 
already well-known from elementary geometry. 
 
 3. Let I , J, K  be unit vectors.  Set: 
 

a = (J, K ), b = (K , I ), c = (I , J) 
 
and decompose J into two vectors J′ and J″, and K  into two vectors K ′ and K ″, where the 
first two (viz., J′ and K ′) are perpendicular to I  and the second two (viz., J″ and K ″) are 
parallel to I .  With α = (J′, K ′), one easily finds: 
 

J′ | K ′ = sin b sin c cos a, J″ | K ″ = cos b cos c, 
but: 

cos a = J | K  = (J′ + J″) | (K ′ + K ″) = J′ | K ′ + J″ | K ″. 
Therefore: 

cos a = cos b cos c + sin b sin c cos α, 
 
which is nothing but the fundamental formula of spherical trigonometry (8). 

                                                
 (8) E. CARVALLO, “Sur une généralisation du théorème des projections,” Nouvelles Annales de 
Mathématiques 9 (1891). 
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§ 3. – REDUCTION OF FORMS. 
 

 19.  First-order forms. – One calls the number x1 + x2 + … + xn the mass of the first-
order form: 

S = x1 A1 + x2 A2 + … + xn An . 
 
 a.  The mass of the first-order form S is the number Sω.  Indeed: 
 

A1ω = A2ω = … = Anω = 1 and Sω = x1 + x2 + … + xn . 
 
 b. If a first-order form has zero mass then that form will be reducible to a vector, and 
conversely. 
 If O is an arbitrary point then we will have: 
 

S = (x1 + x2 + … + xn) O + x1(A1 – O) + x2(A2 – O) + … + xn(An – O), 
 
and if we set: 

I  = x1(A1 – O) + x2(A2 – O) + … + xn(An – O) 
then we will get: 

S(Sω)O + I . 
 

If Sω = 0 then S = I .  However, I  is a vector, so S is indeed reducible to a vector.  
Conversely, if S is a vector such that S = B – A then one will have: 
 

Sω = Bω – Aω = 1 – 1 = 0. 
 

 c. If a first-order form does not have mass zero then that form will be reducible to 
the product of its mass by a point.  Indeed, if Sω ≠ 0 then one will have: 
 

S = (Sω)
1

O
Sω

 + 
 

I . 

 
 If Sω ≠ 0 then the point S / Sω will be called the barycenter of the form S.  In 
mechanics, S / Sω is the center of gravity of the massive points A1, A1, …, An which have 
the masses: 

x1, x2, …, xn , 
respectively. 
 
 d. If A, B are two points and x, y are non-zero numbers, and furthermore, x + y ≠ 0 

then the point C = 
xA yB

x y

+
+

 will be situated on the line AB and will decompose the line 

segment AB into two parts that are inversely proportional to the numbers x, y.  Indeed, if 
one multiples the two sides of the equality: 
 

xA + yB = (x + y) C 
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by AB then one will have ABC = 0; i.e., the points A, B, C will be situated on the same 
line.  If one multiples the same equality by C then one will have xAC + yBC = 0; i.e., that 
AC

CB
= 

y

x
, which will prove the last part of the theorem. 

 One then easily deduces the graphic construction of the point 
xA yB

x y

+
+

, and 

consequently, the construction of the barycenter of an arbitrary first-order form. 
 
 Examples. – Let A, B, C be points. 
 

 1. The point 
2

A B+
 is the middle of the line segment AB. 

 

 2. If ABC ≠ 0 then 
3

A B C+ +
will be the point through which pass the three medians 

of the triangle ABC.  One proves this property by observing that 
3

A B C+ +
 is the 

barycenter of the points 
2

A B+
, C, which are affected with the masses 2, 1, respectively. 

 
 3. The identity: 
 

4

A B C D+ + +
 = 2 2

2

A B C D+ ++
 = 2 2

2

B C D A+ ++
 = 2 2

2

A C B D+ ++
 

 
shows that the lines that join the middles of the opposite edges and the diagonals of a 
quadrilateral have a common point that is precisely the barycenter of the quadrilateral. 
 
 4. If the lines AD, BC intersect at the point E, and the lines AB, CD, at the point F 
then if one observes that: 

EAD = EBC = FBA = FCD = 0 
then one can write: 
 

(A + C)(B + C)(E + F) = ABE + ADF + CBF + CDE = (CDE – BAE) – (DAF – CBF), 
 
and the two forms in parentheses will give us the area of the (plane) quadrilateral whose 
summits are A, B, C, D.  Consequently: 
 

(A + C)(B + D)(E + F) = 0; 
 
i.e., the middles of the diagonals of a complete quadrilateral are on the same line. 
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 5. The point O (fig. 2) is the common center to two circles.  Through a point P, for 
example, of the inner circle, one draws the rectangular chords PA and PBC, which one, in 
turn, makes turn around the fixed point P. 

 

A 

B 

C 

P′ 
E P O K 

F 

 
Figure 2. 

 
 1. Prove that the barycenter of the triangle ABC is fixed. 
 2. Prove that the sum of the squares of the distances from the point P to the points A, 
B, C is constant. 
 3. Find the locus that is described by the middles of the edges of the triangle (9). 
 
 If P′ = O + (O – P) then the trapezoid whose summits are A, B, C, P′ will be 
isosceles, and one will easily see that: 
 
(1)    (A − P) + (B – P) + (C – P) = 2(O – P). 
 
 This relation (1) is, moreover, identical to the relation: 
 

3

A B C+ +
 = 

2

3

O P+
, 

which proves the first part. 
 The squares (i.e., inner products) of the two sides of the equality (1) give: 
 

(A – P)2 + (B – C)2 + (C – P)2 + 2(B – P)(C – P) = 4(O – P)2, 
because: 

(A – P) i (B – P) = (A – P) i (C – P) = 0. 
 

 However, if r, R are the radii of the two circles then one will have: 
 
 4(O – P)2  = 4r2, 
 2(B – P) i (C – P) = − 2(R + r)(R – r), 
and, in turn: 

(A – P)2 + (B – C)2 + (C – P)2 = 2(R2 + r2), 
 

                                                
 (9) Composition de mathématique à l’École spéciale militaire de Saint-Cyr.  Course given in 1895. 
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which proves the second part. 
 Finally, set: 
 

D = 
2

B C+
, E = 

2

C A+
, F = 

2

A B+
, K = 

2

P O+
. 

 
 If we put the relation (1) into the form: 
 

A + (B – P) + C = 2O, 
or even in the form: 

(A – O) + (B – P) + (C – O) = 2O, 
then it will result that: 

D – K = 
2 2

B P C O− −+  = − 
2

A O−
. 

 
 Therefore, mod(D – K) is constant, and D describes a circle of center K and radius r / 
2.  One will likewise find that the points E, F are always on the circle of center K and 
radius R / 2. 
 
 
 20. Second-order forms. – Every line segment is reducible to the form AI , where A 
is a point and I  is a vector, because AB = A(B – A), and one can do likewise for the 
product of a line segment with a number, because x(AI ) = A(xI ).  A second-order form s 
(which is the sum of a finite number of line segments) is therefore reducible to the 
general form: 
 
(1)     s = A1 I1 + A2 I2 + … + An In , 
 
where A1, A2, …, An are points, and I1, I2, …, In are vectors. 
 
 a. Call the vector I  the vector of the line segment AI .  Call the sum of the vectors of 
the line segments that comprise a second-order form the vector of the second-order form.  
The vector of s will then be I1 + I2 + …+ In . 
 
 b. A form s is reducible – in an infinitude of ways – to the sum of a bivector and a 
line segment whose vector is the same vector as that of s.  Indeed, let O be an arbitrary 
point.  Since: 

A1 I1 = (A1 – O) I1 + OI1 , 
 
the relation (1) will take the form: 
 

s = O(I1 + I2 + …+ In) + [(A1 – O) I1 + (A2 – O) I2 + … + (An – O) In], 
 
which proves the theorem. 
 In general, if O is an arbitrary point then one will have s = OI  + u, where I  is the 
vector of s, and u is a bivector that depends upon s and O. 
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 c. If s is a second-order form then one will call the tetrahedron ss the invariant of s. 
 In order for the second-order form s to be reducible to a line segment or a bivector 
(i.e., to the product of two second-order forms), it is necessary and sufficient that the 
invariant of s be zero (viz., ss = 0).  Indeed, if s = OI  + u then ss = 2OIu.  One indeed has 
ss = 0 when Iu = 0.  If I  or u are zero then s will be a line segment or a bivector, but if I  
and u are not zero then u will be parallel to I , and OI  + u will be a line segment that is 
parallel to OI .  The condition is therefore indeed also sufficient. 
 
 d. Let A, B be two points, and let I , J be two vectors in a plane.  Consider the 
second-order form s = A I  + BJ.  If the segments AI , BJ are not parallel and O is the point 
that is common to the lines that carry the line segments AI , BJ then the identity s = O(I  + 
J) + (A – O) I  + (B – O)J will give s = O(I  + J), because the vectors A – O, B – O are 
parallel to the vectors I , J, respectively, and the formula s = O(I  + J) will immediately 
provide the reduction of s to a line segment.  If the line segments AI , BJ are parallel then 

J = xI  and s = (A + xB)I .  If x ≠ − 1 then one will have s = 
1

A xB

x

+
+

(I  + J), and one will 

reduce s to a line segment by using the construction of the barycenter of the form A + xB.  
If x = − 1 then s = (A – B)I , and s will be reducible to a bivector.  In general, a second-
order form that is the sum of line segments in the same plane is always reducible to a line 
segment or a bivector. 
 In mechanics, one can represent a force that is applied to a rigid body by a line 
segment and the resultant of a system of identical forces by a second-order form.  A 
couple is represented by a bivector.  If A, B, C, D are four points then the number ABCD 
will be proportional to the moment of the force AB with respect to the axis CD.  If u is a 
bivector then | u will be the moment axis of the couple. 
 
 Examples. –  
 
 1. Let A1, A2, …, An be points in the same plane.  The form: 
 

s = A1 A2 + A2 A3 + … An−1 An + An A1 
 
has a zero vector.  It is therefore reducible to a bivector.  For any point P in the plane, the 
triangle Ps has the same value, and one can call the area that is bounded by the closed 
polygonal line A1, A2, …, An the area of the triangle Ps.  If the line is convex then the area 
thus defined will be the one that one considers in elementary geometry. 
 
 2. Let A, B, C be the summits of a triangle.  Set: 
 

a = 
mod

BC

BC
,  b = 

mod

CA

CA
,  c = 

mod

AB

AB
. 

 
 The line segments b + c, c + a, a + b are on the external bisectors, and the line 
segments b – c, c − a, a – b are on the internal bisectors of the triangles.  The identities: 
 

a + b + c = (b + c) + a = (c + a) + b = (a + b) + c 
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prove that the points of intersection of the external bisectors with the opposite edges are 
placed on the same line.  One will likewise find the geometrical significance of the 
identities a + b – c = (a + b) – c = (a − c) + b = (b – c) + a, …, b – c = (b - a) – (c – a), … 
 
 
 21.  Third-order forms. – Every triangle is reducible to the form Au, where A is a 
point and u is a bivector, because ABC = A(B − C)(C – A), and one can, as before, 
likewise make it the product of a triangle by a number because m(Au) = A(mn).  As a 
result, a third-order form σ that is the sum of a finite number of triangles is always 
reducible to the general form: 
(1)     σ = A1 u1 + A2 u2 + … + An un , 
 
where A1, A2, …, An are points, and u1, u2, …, un are bivectors. 
 
 a. Call the bivector u the bivector of the triangle Au, and similarly, the bivector of a 
third-order form will be the sum of the bivectors of the triangles that give that form by 
addition.  The bivector of σ is then: 

u1 + u2 + …+ un . 
 
 b. A third-order form is reducible to a trivector or to a triangle according to whether 
its bivector is zero or not, respectively.  For example, consider an arbitrary point O.  One 
has, among other things: 

A1 u1 = (A1 – O) u1 + Ou, 
and consequently: 
 

σ = O(u1 + u2 + … + un) + (A1 – O) u1 + … + (An – O) un ; 
 

i.e., σ is precisely reducible to the form: 
 

σ = Ou + α, 
 

where O is an arbitrary point, u is the bivector of σ, and α is a trivector that depends upon 
O and α.  If u ≠ 0 then one can determine the vector I  such that α + Iu, and in turn: 
 

σ = (O + I ) u, 
 
and σ will indeed be reducible to a triangle.  On the contrary, if u = 0 then one will have 
σ = α, and σ will be reducible to a trivector. 
 
 
 22.  Projective elements. − For any order of non-zero form A, we will write posit A, 
instead of the position of A, to abbreviate. 
 
 a.  If S is a first-order form such that Sω ≠ 0 then set: 
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posit S = 
S

Sω
. 

 
In other words, we will denote the barycenter of the form S by the symbol posit S.  If S′ is 
a multiple of S then one will have posit S′ = posit S, and conversely. 
 If I  is a non-zero vector then we will always agree that the symbol posit I  is 
equivalent to the direction of I .  One deduces from this that for two non-zero parallel 
vectors I , J (which amounts, as we have seen, to saying that I  is a multiple of J), one will 
have posit I  = posit J, and conversely.  In the language of ordinary projective geometry, 
one would say that posit I  is a point at infinity. 
 We likewise write projective point, instead of position of a non-zero, first-order form.  
A projective point can then be a point (à la Euclid) or a point at infinity.  If S is a non-
zero, first-order form then we will also write point S, instead of posit S. 
 
 b.  Let a be a non-zero, second-order form with zero invariant (viz., aa = 0).  We let 
the symbol posit a denote the locus of projective points that are positions of non-zero, 
first-order forms A such that Aa = 0.  If A, B are two points such that AB ≠ 0 then posit 
AB will contain all of the points of the (unbounded) line that joins A to B, as well as the 
point at infinity that is the position of the vector B – A.  Similarly, let I , J be two vectors, 
with the condition that IJ  ≠ 0.  From the preceding conventions, posit IJ  will represent a 
set of points at infinity that can be identified with the orientation of the bivector IJ .  If a, 
b are two non-zero, second-order forms whose invariants we suppose to be identically 
zero and are such that a is a multiple of b then we will have: 
 

posit a = posit b. 
 

 We further agree to write projective line, instead of position of a non-zero, second-
order form whose invariant is zero, and line at infinity, instead of position of a non-zero 
bivector, and line a, instead of posit a. 
 
 c. Let α be a non-zero, third-order form. We let posit α denote the locus of 
projective points that are the positions of first-order forms A such that Aα = 0.  Under 
these conditions, if A, B, C are three points that are subject to the relation ABC ≠ 0 then 
posit ABC will contain all of the points of the plane that passes through A, B, C, as well as 
all of the points of the line at infinity that is the position of the bivector (B – A)(C – A).  If 
α is a non-zero trivector then posit α = posit ω, and posit ω is the locus of all points at 
infinity.  If α and β are non-zero, third-order forms such that α is a multiple of β then one 
will have posit α = posit β, and conversely. 
 As before, we shall write projective plane, instead of position of a non-zero, third-
order form, plane at infinity, instead of posit ω, and plane α, instead of posit α (10). 

                                                
 (10) All of the ordinary properties persist for the projective elements that are defined as we just did.  By 
following the method that we just presented and applying the theory of linear transformations, one can very 
easily obtain all of the properties of ordinary projective geometry.  [See, C. BURALI-FORTI, “Il metodo 
del Grassmann nella Geometria proiettiva,”  Rend. Circ. Matem. di Palermo, Note I, 1896; Note II, 1897.  
The power of Grassmann’s method is likewise confirmed in the field of synthetic geometry. 
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 d. If AB ≠ 0 then line AB will be the projective line that joins the points A and B.  
With Aa ≠ 0, plane Aa will be the projective plane that passes through the point A and the 
line a.  The conditions α ≠ 0, AB ≠ 0, Aα = Bα = 0 show that all of the points of the line 
AB are situated on the plane α. 
 
 
 23. The first-order forms A, B, …, are called collinear when the ones that are not zero 
have their positions on the same projective line.  Likewise, the first-order forms A, B, …, 
and the second-order forms a, b, … with zero invariants are called coplanar when the 
ones that are not zero have their positions on the same projective plane. 
 
 Example. – Parallel vectors in the same plane have collinear forms.  Vectors and 
bivectors are coplanar forms. 
 
 If AB ≠ 0, and the first-order forms A, B, C, D are collinear then the notation CD / AB 
will have a unique significance (no. 4 and no. 12, d), since AB and CD will be bivectors 
or line segments according to whether line AB is or is not a line at infinity, respectively.  
We then agree to identify the symbol CD with the number CD / AB (the form AB being 
fixed) when we consider only first-order forms that are collinear with A and B. 
 
 b. Likewise, if ABC ≠ 0, and the first-order forms A, B, C, D, E, F are coplanar then 
the notation DEF / ABC will take on a unique significance because ABC, DEF will be 
trivectors or triangles according to whether plane ABC is or is not the plane at infinity, 
respectively.  When the form ABC is fixed, we further agree to identify the symbol DEF 
with the number DEF / ABC, on the condition that we consider only first-order forms that 
are coplanar with A, B, and C. 
 
 
 24. Identity between first-order forms. – The theorems that we shall state give 
relations that exist between five arbitrary first-order forms, or even between four 
coplanar, first-order forms and three collinear forms of the same order. 
 
 THEOREM I.  – If A, B, C, D, E are first-order forms then one will have: 
 
(1)   BCDE.A + CDEA.B + DEAB.C + EABC.D + ABCD.E = 0. 
 
 Proof. – If A, B, C, D are points that satisfy ABCD ≠ 0 then one can determine 
numbers x, y, z such that: 

E – A = x(B – A) + y(C – A) + z(D – A), 
or furthermore: 
(1)′     E = (1 – x − y – z) A + xB + yC + zD. 
 
Upon multiplying the two sides of the equality (1)′ by BCD, one will have: 
 

1 – x − y – z = − 
BCDE

ABCD
, 
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and other analogous formulas for x, y, z.  If we then substitute these values for 1 – x − y – 
z, x, y, z in the equality (1)′ then we will find that the formula (1) is proved when A, B, C, 
D, E are points and A, B, C, D are not coplanar.  However, equation (1) is symmetric with 
respect to all symbols, which proves that it is likewise true when A, B, C, D, E are non-
coplanar points.  Moreover, if A, B, C, D, E are coplanar points then every term of that 
equation will be zero.  Therefore, equation (1) is indeed established for the case where A, 
B, C, D, E are arbitrary points. 
 If A, B, C, D, E are first-order forms then one will have: 
 

A = m1 A1 + m2 A2 , B = n1 B1 + n2 B2 , C = p1 C1 + p2 C2 , 
D = q1 D1 + q2 D2 , E = r1 E1 + r2 E2 , 

 
where A1, … represent points and m1, … represent numbers.  The analogous equalities to 
equation (1) that one can define with the points A1, …, B1, … are then verified.  On the 
other hand, the ones that are multiplied by the products mnpqr and summed will give 
formula (1). 
 
 THEOREM II.  – If A, B, C, D are coplanar, first-order forms then one will have: 
 

BCD.A – CDA.B + DAB.C – ABC.D = 0. 
 

 Proof. – Let E be a first-order form that is not coplanar with A, B, C, D, so theorem I 
will say that one will have: 
 

BCDE.A – CDAE.B + DABE.C – ABCE.D = 0, 
 
because ABCD = 0.  However, the numbers (i.e., tetrahedra) BCDE, CDAE, … are 
proportional to BCD, CDA, …, and the theorem is this found to be proved. 
 
 THEOREM III.  – If A, B, C are collinear, first-order forms then one will have: 
 

BC.A + CA.B + AB.C = 0. 
 

 Proof. – If D is a first-order form that is coplanar with A, B, C then one will deduce 
from theorem II that: 

BCD.A + CAD.B + ABD.C = 0, 
 
since ABC = 0.  Now, the numbers BCD, CAD, ABD are proportional to BC, CA, AB, 
which succeeds in establishing the stated theorem. 
 
 

§ 4. – REGRESSIVE PRODUCTS. 
 

 25.  Second and third-order forms. – Let A, B, P, Q, R be first-order forms.  Upon 
setting: 
(1)     AB.PQR = APQR.B – BPQR.A, 



32 Introduction to differential geometry, following the method of H. Grassmann 

we will say that AB.PQR is the regressive product – or simply, the product – of AB with 
PQR.  Upon comparing the definition (1) with the identity in theorem I of no. 24, one 
sees that: 
(2)     AB.PQR = APQR.B + ABRP.Q + ABPQ.R. 
 
 a. If one has A′B′ = AB and P′Q′R′ = PQR then formulas (1), (2) will prove that: 
 

AB.P′Q′R′ = AB.PQR,  A′B′.PQB = AB.PQB, 
 

and, in turn, the product AB.PQR can be regarded as a function of the forms AB, PQR.  If 
we further set: 

a = AB, α = PQR 
then we can write: 
(1)′     AB.α = Aα.B – Bα.A, 
(2)′    a.PQR = aQR.P + aRP.Q + aPQ.R, 
 
which defines the product of a second-order form with zero invariant by a third-order 
form. 
 As for the product of an arbitrary second-order form a with a third-order form a, we 
agree that it is found to be defined by formula (2)′.  If one agrees that αa = aα then the 
product of a second or third-order form with a second or third-order form will remain 
defined in a general manner.  Moreover, these products have all of the properties of 
algebraic products that obey the commutative property.  For example, one will have: 
 

αa = aα, (a + b) α = αa + bα, a(α + β) = aα + aβ, 
 
and if x is a real number then: 

x(aα) = (xa) α = a(xα). 
 

 b. It further results from equations (1) and (2) that (aα) a = 0, (aα) α = 0, which 
proves that aα or αa is a first-order form that belongs to the forms a, α.  If a ≠ 0, α ≠ 0, 
with aa = 0, then one will have aα = 0 when the line a is contained in the plane α, and 
conversely. 
 
 c. If A is a point and I  is a vector then one will have: 
 

AI.ω = Aω.I – I ω.A = I , 
 
which amounts to saying that AI.ω is the vector of the line segment AI .  In general, if s is 
a second-order form then sω will be the vector of the form s, and one will have, for any 
point O: 

s = O(sω) + u, 
 
and expression in which u will denote a bivector that is a function of O and s. 
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 Examples. – Let A, B, … be points, a, b, …, non-zero line segments, and α, β, …, 
triangles that are likewise non-zero.  One can state the following properties: 
 
 1. The parallel to the line a that is drawn through the point A is the position of the 
form A.aω. 
 
 2. The plane that is perpendicular to the line a and passes through A is the position 
of the form A | aω. 
 
 3. The position of the form Aa.A | aω is the line that passes through A 
perpendicularly to the line a, and meets precisely that line at the point that is the position 
of the form a.A | aω. 
 
 4. The conditions for the parallelism of the lines a and b is aω.bω = 0, and the 
condition for perpendicularity of the same lines is aω | bω = 0. 
 
 5. If AB.α ≠ 0 and AB.α is not a vector then AB.α will be the point at which the line 
AB meets the plane α, where the mass of that point will be, moreover, equal to Aα.Bω – 
Bα.Aω. 
 
 
 26.  Third-order forms. – Let A, B, C, P, Q, R be first-order forms.  Set: 
 

ABC.PQR = APQR.BC + BPQR.CA + CPQR.AB, 
 
and call ABC.PQR the regressive product – or simply, the product – of ABC with PQR. 
 
 a. It is obvious that ABC.PQR is a function of the third-order form PQR.  However, 
one can prove that ABC.PQR is also a function of the form ABC.  Therefore, if one is 
given two third-order forms α and β then the product αβ of these two third-order forms 
with each other will be found to be well-defined.  Moreover, these products will have all 
of the properties of algebraic products, except for the commutative property.  For 
example, one will have: 

αβ = − βα, α(β + γ) = αβ + αγ, 
and if x is a number then: 

x(αβ) = (xα)β = α(xβ). 
 
 b. From the definition itself of the product αβ, one deduces that (αβ)(αβ) = 0, (αβ)α 
= 0, (αβ)β = 0; i.e., that αβ is a second-order with null invariant that belongs to the forms 
α, β.  If αβ ≠ 0 then posit αβ will be the projective line that is the intersection of the 
planes α and β.  One deduces from this that two projective planes will always have at 
least one projective line in common.  If α ≠ 0, with β ≠ 0 then one will have αβ = 0 if 
plane α = plane β, and conversely. 
 
 c. If we let A be a point and let I , J be two vectors then: 
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AIJ.ω = Aω.IJ + I ω.JA + Jω.AI  = IJ . 
 

 AIJ.ω is the bivector of the triangle.  In a general manner, if σ is a third-order form 
then σω will be the bivector of σ, and one will have for any point O: 
 

σ = O(σω) + α, 
 
where α is a trivector that is a function of O and σ. 
 
 Examples. – If A, B, … are points, a, b, … are non-zero line segments, and α, β, … 
are non-zero triangles then one can say that: 
 
 1. The position of the form A.αω is the plane that is parallel to α and drawn through 
the point A. 
 
 2. The position of the form A | (αω) is the line that is perpendicular to the plane α 
and issues from the point A. 
 
 3. The position of the form a | (αω) is the plane that is perpendicular to the plane α 
and passes through the line a. 
 
 4. The condition for the parallelism of two planes α and β is (αω)(|βω) = 0, which 
amounts to saying that αω is a multiple of βω; the condition of perpendicularity is 
(αω)(βω) = 0.  The condition for the parallelism of the line a with the plane α is 
(aω)(αω) = 0, and the perpendicularity of the line and the plane is expressed by (aω) | 
(αω) = 0. 
 
 5. If aω.bω ≠ 0 then the vector | (aω.bω) will be perpendicular to the lines a and b.  
Consequently, the line: 
(1)     [a | (aω.bω)] [b | (aω.bω)] 
 
will be the points that are common to the line (1) and the lines a and b. 
 If A, B are the positions of the forms (2) then one will have: 
 

a = A.aω, b = B.bω 
and 

ab = A.aω.B.bω = A(A – B).aω.bω. 
 

However, the vector A – B is perpendicular to the bivector bω.bω.  As a result: 
 

mod(ab) = 1
2 mod(AB) mod(aω.bω), 

or 

(3)     mod(AB) = 
6mod( )

mod( . )

ab

a bω ω
, 
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which gives us the shortest distance between the points of the line a and those of the line 
b when these two lines are not parallel. 
 
 
 27.  General properties of products. – We shall group the general properties of the 
progressive and regressive products here.  Therefore, let r and s be two positive whole 
numbers that are less than 4, while Ar, rA′  are forms of order r, and As, sA′  are forms of 

order s.  One has: 
 
 1. If r + s ≤ 4 then the product of Ar with As will be progressive, and Ar As will be a 
form order r + s. 
 2. If r + s > 4 then the product of Ar with As will be regressive, and Ar As will be a 
form order r + s – 4. 
 3. If Ar = rA′  and As = sA′  then Ar As = r sA A′ ′ . 
 4. Ar As = (−1)rs As Ar . 
 5. Ar (As + sA′ ) = Ar As + Ar sA′ . 
 6. If x is a number then x(Ar As) = (xAr) As = Ar (xAs). 
 
 
 28.  Duality. – Let r, s, t be positive whole numbers that are smaller than 4, and in 
addition, let Ar, As, At be forms of order r, s, t, respectively.  One obtains the product 
ArAsAt by two multiplications.  If these two multiplications are progressive then Ar As . At 
will be a form of order r + s + t.  If one of these multiplications is progressive and the 
other one is regressive then Ar As . At will be a form of order r + s + t – 4.  Finally, if the 
two multiplications are both regressive then Ar As . At will be a form of order r + s + t – 8. 
 If A, B, …, a, b, …, α, β, … are forms of first, second, and third order, respectively, 
then one can easily prove the following formulas for the products of three factors: 
 
(1)  AB.C = A.BC, (1)′ αβ.γ = α.βγ, 
(2)  AB.a = A.Ba, (2)′ αβ.a = α.βa, 
(3)  AB.α = Aα.B – Bα.A, (3)′ αβ.A = αA.β − βA.α, 
(4)  ab.C = aA.b + bA.a, (4)′ ab.α = aα.b – bα.a, 

(5)  Aa.α = Aα.a + aα.A. 
 

 One deduces formulas (1)′-(4)′ from formulas (1)-(4) by changing the form of the 
first and third order into forms of third and first order, respectively.  When an analogous 
permutation is performed on formula (5), that will give that same formula, but solved 
with respect to the second term on the right-hand side. 
 The formulas that we just wrote down express the principle of duality for geometric 
forms.  From these formulas, equations (3), (4), (3)′, (4)′, (5) relate to projective 
geometric elements of space, since a property that concerns the projections and 
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intersections (11) will provide another one by changing points into projective planes and 
planes into projective points. 
 Formulas (3), (4), (3)′, (4)′, (5), and the ones that one can deduce from them by 
solving with respect to a term in the right-hand side permit one to state the following two 
general rules: 
 
 1. If the sum r + s + t is equal to 5 or 7 then: 
  

Ar As . At = (−1)r+st Ar At . As − (−1)s+1 As At . Ar . 
 

 2. If r + s + t = 6, without one having r = s = t, however, then: 
 

Ar As . At = Ar At . As − (−1)t As At . Ar . 
 
 

 29.  Regressive products in a projective plane. – We shall now consider forms of 
the first, second, and third order whose positions are in the same given projective plane.  
Every third-order form can be identified with a number. 
 We set: 
(1)     AB.PQ = APQ.B – BPQ.A, 
 
and call AB.PQ the regressive product – or simply, the product – of AB with PQ, upon 
supposing that A, B, P, and Q are first-order forms.  Upon comparing the identity in 
theorem II (no. 24) with that definition, one can write: 
 
(2)     AB.PQ = ABQ.P – ABP.Q. 
 
 a. If one has A′B′ = AB and P′Q′ = PQ then it will result that: 
 

AB.P′Q′ = AB.PQ, A′B′.PQ = AB.PQ. 
 

 Therefore, the product AB.PQ is a function of the forms AB, PQ, and if one sets a = 
AB, b = PQ then the regressive product of a and b will be well-defined.  Moreover, these 
products have all the properties of algebraic products, except for the commutative 
property; namely: 

ab = − ba, a(b + c) = ab + ac 
and 

x(ab) = (xa)b = a(xb), 
if x is a number. 
 

                                                
 (11) In the case where the product AB is progressive, posit AB will represent the projective element (viz., 
line or plane) that is determined by the condition that it must contain posit A and posit B; i.e., that posit AB 
is the projective element that projects posit A, posit B being the center of projection.  On the contrary, if the 
product AB is regressive then posit AB will be the projective element (point or line) that is determined by 
the condition that it be continuous in posit A and posit B.  In a word, the progressive product will represent 
the projecting element and the regressive product will represent the projected element. 
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 b. From formulas (1) and (2), one deduces that (ab) a = 0, (ab) b = 0; i.e., that ab is a 
first-order form that belongs to the forms a and b, while the point ab is the projective 
point of intersection of the lines a and b in the case where ab ≠ 0.  One further deduces 
that two coplanar projective lines will always have at least one point in common.  When 
one has a ≠ 0 with b ≠ 0, ab will be zero when line a = line b, and conversely. 
 
 c. If u¸ v are bivectors then the progressive product of u and v will always be zero.  
However, if one considers u, v to be second-order forms that have their positions in the 
plane at infinity then the regressive product of u with v will be a vector, and posit uv will 
be a point at infinity that is common to the positions of the bivectors u, v (12), or a line at 
infinity in the case where uv ≠ 0. 
 
 
 30.  Let r, s be positive whole numbers that are less than 3, and let Ar, rA′ , As, sA′  be 

forms of order r, s, respectively.  The following general properties result for the 
progressive and regressive products in the plane: 
 
 1. If r + s ≤ 3 then the product of Ar with As will be progressive, and Ar As will be a 
form of order r + s. 
 
 2.  If r + s > 3 (or r + s = 4) then the product of Ar with As will be regressive, and Ar 

As will be a form of order r + s – 3. 
 
 3. If Ar = rA′ , with As = sA′ , then one will have Ar As = r sA A′ ′ . 

 
 4. Ar As = (−1)r+s−1 As Ar . 
 
 5. Ar (As + sA′ ) = Ar As + Ar sA′ . 
 
 6. If x is a number then x(Ar As) = (xAr) As = Ar (xAs). 
 
 For the products of three factors in the plane, one can also write: 
 
(1) AB.C = A.BC, (1)′ ab.c = a.bc, 
(2) AB.a = Aa.B – Ba.A, (2)′ ab.A = aA.b – ba, 
 
which gives the principle of duality for geometric forms and projective elements in the 
plane. 
 
 
 
 

                                                
 (12) The condition of parallelism of two planes α and β that was pointed out in example 4 of no. 26 still 
remains αω.βω = 0 when αω.βω  is a regressive product on the plane at infinity (see b).  
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§ 5. – COORDINATES. 
 

 31.  THEOREM I.  – If one is given first-order forms A1, A2, A3, A4 such that A1A2 
A3A4 ≠ 0 and arbitrary forms S, s, σ that are of first, second, and third order, 
respectively, then the numbers x1, …, x4, y1, …, y6, z1, …, z4 such that: 
 
(1) S1 = x1 A1 + x2 A2 + x3 A3 + x4 A4 , 
(2) s  = y1 A1 A2 + y2 A1 A3 + y3 A1 A4 + y4 A2 A3 + y5 A3 A4 + y6 A4 A2 , 
(3) σ = z1 A2 A3 A4 + z2 A3 A4 A1 + z3 A4 A1 A2 + z4 A1 A2 A3  
 
will be well-defined. 
 
 Proof. – The identity in theorem I of no. 24 gives: 
 

A1 A2 A3 A4 . S + A2 A3 A4 S . A1 − … + S A1 A2 A3 . A4  = 0. 
 

In order to get formula (1), it suffices to divide by A1 A2 A3 A4, with: 
 

x1 = − 2 3 4

1 2 3 4

A A A S

A A A A
, x2 = − 2 4 1

1 2 3 4

A A S A

A A A A
, x3 = … 

 
 Now, if x is the product of the two first-order forms S, S′ then: 
 

s = SS′ = (x1A1 + …)( 1x′ A1 + …), 

 
which gives a formula that is analogous to formula (2) upon developing the product in the 
right-hand side.  In general, s, when considered to be a sum of two products of first-order 
forms, is reducible to the form (2).  Similarly, σ, when considered to be the product of 
three first-order forms, is reducible to the form (3).  At present, it suffices to prove that 
the numbers y, z are determined in a unique manner.  To that effect, consider: 
 

s = 1 1 2 2 1 3y A A y A A′ ′+  + … 

Thus: 

1 1 1 2 2 2 1 3( ) ( )y y A A y y A A′ ′− + −  + … = 0, 

 
and if one multiplies by A3A4, A2A4, …, successively then one will get: 

y1 = 1y′ , y2 = 2y′ , … 

 
 The numbers x, y, z are called the coordinates of the forms S, s, σ, respectively, for 
the reference elements A1, A2, A3, A4 . 
 
 THEOREM II.  – If A1, A2, A3 are first-order forms such that A1 A2 A3 ≠ 0, and S, s 
are arbitrary forms of the first and second order, respectively, that are coplanar with A1, 
A2, A3 then the numbers x1, x2, x3, y1, y2, y3 such that: 
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 S = x1 A1 + x2 A2 + x3 A3 , 
 σ = y1 A2 A3 + y2 A3 A1 + y3 A1 A2 
will be well-defined (13). 
 
 Similarly: 
 
 THEOREM III.  – If A1, A2 are first-order forms with A1 A2 ≠ 0 then for any first-
order form S that is collinear with A1 and A2, the numbers x1, x2 such that: 
 

S = x1 A1 + x2 A2   
will be well-defined. 
 
 a. If: 

S = x1 A1 + … + x4 A4 , S′ = 1 1x A′  + … + 4 4x A′  

then one will have: 
S + S′ = (x1 + 1x′ ) A1 + … + (x4 + 4x′ ) A4 , 

and for a number m: 
mS = (mx1) A1 + … + (mx4) A4 , 

 
which are formulas that determine the coordinates of the forms S + S′ and mS. 
 One will get analogous results for the forms s + s′, ms′, σ + σ′, mσ.  One can, 
moreover, easily obtain the coordinates of the progressive and regressive product of two 
forms. 
 
 b. If: 
 S1 = x11 A1 + x12 A2 + x13 A3 + x14 A4 , 
 S2 = x21 A1 + x22 A2 + x23 A3 + x24 A4 , 
 S3 = x31 A1 + x32 A2 + x33 A3 + x34 A4 , 
 S4 = x41 A1 + x42 A2 + x43 A3 + x44 A4 , 
 

                                                
 (13) One calls a set of elements a linear system when the sum of elements, as well as the product by a 
number, is defined, and these operations will have the ordinary (i.e., the ones in algebra) properties.  We 
say that the elements u1, u2, …, un of a linear system are independent when it is impossible to determine 
numbers m1, m2, …, mn that are not all zero and are such that: 
 

m1 u1 + m2 u2 + … + mn un = 0. 
 
 A linear system is called n-dimensional when there exist n elements u1, u2, …, un of the system that are 
independent, and n + 1 elements of the system would always be dependent.  If u is an arbitrary element of 
the system then the numbers m1, m2, …, mn such that u = m1 u1 + m2 u2 + … + mn un will be well-defined. 
 The preceding theorems thus express the ideas that first (and third) order forms in space are elements of 
a four-dimensional linear system, and that the second-order forms in space are elements of a six-
dimensional linear system.  Similarly, the forms of first (and second) order on a projective plane are 
elements of a three-dimensional linear system, etc. 
 For the other linear systems of geometric forms, see C. BURALI-FORTI, “Il metodo del Grassmann 
nella Geometria proiettiva,” loc. cit. 
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where A1, …, A4 are first-order or third-order forms and the x are numbers, then one will 
have: 

(1)   S1 S2 S3 S4 = 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

x x x x

x x x x

x x x x

x x x x

 A1 A2 A3 A4 . 

 
 Indeed, one term in the product S1 S2 S3 S4 is: 
 

x11 x22 x33 x44 A1 A2 A3 A4, 
 
and one can obtain all of the other terms by permuting the second indices of the x11 x22 x33 
x44, and giving the term thus obtained a + sign or a – sign according to whether the 
number of inversions of consecutive indices is or is not an even number, respectively.  
This law is nothing but the law of formation for the terms in the determinant in formula 
(1) (14). 
 Here is an example: Let A, B, C be the summits of a triangle, A′, B′, C′, the points of 
intersection with the opposite edges of the interior bisectors of the angles A, B, C.  Set a = 
mod BC, b = mod CA, c = mod AB.  Under these conditions, the point A′ will be the 
position of the regressive product: 
 

BC 
CA AB

b c
 − 
 

 = 
ABC ABC

C B
b c

+ . 

 
The mass of that form will be: 

ABC ABC

b c
+  = ABC 

b c

bc

+
, 

and consequently (15): 

 A′ = 
b c

B C
b c b c

+
+ +

. 

Similarly, one will have: 

 B′ = 
c a

C A
c a c a

+
+ +

, 

 C′ = 
a b

A B
a b a b

+
+ +

, 

and consequently: 
                                                
 (14) For the theory of determinants, as deduced from Grassmann’s operations, see, E. CARVALLO, 
“Théorie des détérminants,” Nouv. Ann. (1893). 
 (15) One deduces from this formula that the interior bisector of the angle A will decompose the opposite 
side into parts that proportional to the edges AB, AC.  Conversely, that property will give the formula: 
 

A′ = b c
B C

b c b c
+

+ +
. 
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A′B′C′ = 

0

0

0

b c

b c b c
a c

c a c a
a b

a b a b

+ +

+ +

+ +

 ABC = 
2

( )( )( )

abc

b c c a a b+ + +
ABC, 

 
which provides the area of the triangle A′B′C′ as a function of the numbers a, b, c, and the 
area of the triangle ABC. 
 
 
 32.  Now, take the reference elements to be a point O and three non-coplanar unit 
vectors I , J, K .  If S is a first-order form then one will have: 
 

S = mO + xI  + yJ + zK , 
 

and since Sω = m, one will see that m is the mass of the form S.  For an arbitrary point P, 
one will thus have: 

P = O + xI  + yJ + zK , 
 

and the numbers x, y, z will be the Cartesian coordinates of the point P, if one takes the 
point O to be the origin and the axes to be the lines OI , OJ, OK .  Likewise, if U is a 
vector then, as we have already seen, one will have: 
 

U = xI  + yJ + zK . 
 

 In what follows, we will agree that the vectors I , J, K  are pair-wise perpendicular and 
that the trivector IJK  is positive, which amounts to supposing that the vectors I , J, K  
satisfy the conditions: 

I2 = J2 = K 2, 
J | K  = 0, K  | I  = 0, I  | J = 0, 
I  = | JK , J = | KI , K  = | IJ . 

 
 The properties that we shall state prove how Cartesian analytic geometry can be 
deduced quite easily from the general theory of forms (16). 
 
 a. If U = xI  + yJ + zK  then one will have U2 = x2 + y2 + z2, and the modulus of the 

vector U will be the number 2 2 2x y z+ + . 

 
 b. If U = xI  + yJ + zK  then one will have U | I  = x, and in turn: 

                                                
 (16) For the other coordinate systems, one can consult: C. BURALI-FORTI, “Il metodo del Grassmann 
nella Geometria proiettiva,” (loc. cit.).  However, it is good to observe that in the development of 
Grassmann’s method the chosen coordinates have no importance, and that the theorems of no. 31 or no. 34 
are all that is necessary. 
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cos(U, I ) = 
2 2 2

x

x y z+ +
, cos(U, J) = 

2 2 2

y

x y z+ +
, … 

 
 In a word, the coordinates of U will be proportional to the cosines of the angle that U 
makes with I , J, K , and: 
 

cos2(U, I ) + cos2(U, J) + cos2(U, K ) = 1. 
 

 c. If U = xI  + yJ + zK , U′ = x′I  + y′J + z′K  then the condition that U be parallel to 
U′ will be: 

UU′ = 0, 
or: 

 
y z z x x y

y z z x x y
+ +

′ ′ ′ ′ ′ ′
JK KI IJ  = 0, 

or even: 
y z

y z′ ′
 = 0, 

z x

z x′ ′
 = 0, 

x y

x y′ ′
 = 0, 

 
which we agree to write in the form: 

x

x′
 = 

y

y′
 = 

z

z′
. 

 
 The orthogonality condition will be: 
 

U | U′ = 0, 
which will now be written: 

xx′ + yy′ + zz′ = 0. 
 

 d. Let u be a bivector.  One then has: 
 

u = xIJ  + yKI  + zIJ  and | u = xI  + yJ + zK , 
 
which reduces the properties of the coordinates of a bivector to those of a vector. 
 
 e. If: 

P = O + xI  + yJ + zK  and P′ = O + x′I  + y′J + z′K  
 
then one will have: 
 mod PP′ = mod (P − P′), 
  = mod [(x − x′) I  + (y − y′) J + (z − z′) K ], 

  = 2 2 2( ) ( ) ( )x x y y z z′ ′ ′− + − + − , 

 
an expression that provides the distance between P and P′. 
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 f. The points: 
 

P = O + xI  + yJ + zK   and P′ = O + x′I  + y′J + z′K  
 

are situated on the line t that is parallel to the vector P = pI  + qJ + rK  when the vectors 
U, P − P′ are parallel; i.e., when one has: 
 

x x

p

′−
 = 

y y

q

′−
= 

z z

r

′−
, 

 
which is nothing but the equation of the line t. 
 
 g. If α is a triangle then one will have: 
 

α = a OJK  + b OKI  + c OIJ  – d IJK , 
 
and the point P = O + xI  + yJ + zK will belong to the plane α when: 
 

ax + by + cz + d = 0, 
 

which is precisely the equation of the plane α. 
 With αω = a JK  + b KI  + c IJ  and | (αω) = a I  + b J + c K , one sees that the numbers 
a, b, c will be proportional to the cosines of the angles that the normal to the plane α 
makes with the axes. 
 Since: 

mod α = 
1

2
mod (αω) = 

1

2
 mod | (αω) = 2 2 21

2
a b c+ + , 

the number: 
3

mod

Pα
α

 = − 
2 2 2

ax by cz d

a b c

+ + +
+ +

 

 
will be the distance – with a sign – from the point P to the plane a. 
 h. If a is a second-order form then one will have: 
 

a = p OI  + q OJ + r OK  + p′JK  + q′ KI  + r′ IJ , 
 
and its invariant will be zero since: 
(1)      pp′ + qq′ + rr ′ = 0. 
 
The numbers p, q, r, p′, q′, r′, which are coupled by the relation (1), are then the 
coordinates of the line a, which are coordinates to which one can easily give a geometric 
significance here, if one observes that: 
 

αω = p I  + q J + r K ,  | (Oa) ω = p′I  + q′ J + r′ K . 
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 If a, a are two second-order forms such that: 
 

aa = 0,  a1 a1 = 0, aω . aω ≠ 0 
 

then (no. 26, example 5) the shortest distance between points of the line a and those of 
the line a1 will be given by the formula: 
 

1 1 1 1 1 1

2 2 2

1 1 1 1 1 1

mod( )pp qq rr p p q q r r

q r r p p q

q r r p p q

′ ′ ′ ′ ′+ + + + +

+ +

 . 

 
 
 

_________ 
 



CHAPTER II 
______ 

 
VARIABLE FORMS 

______ 
 
 

§ 1. – DERIVATIVES. 
 

 33. Definitions. – As in analysis, we will let f(t) denote a geometric form f that is a 
function of a numerical variable t, and we will always suppose, without having to repeat 
ourselves in each case, that f(t) is a well-defined function in the interval considered. 
 Therefore, let f(t) be a first-order form, a second form with zero invariant, or a third-
order form.  With the restriction that the form f(t) not be annulled for any value of t in the 
interval of variation for t, posit f(t) will be a projective point, line, or plane, respectively, 
that will be a function of t. 
 When there is no possible confusion, we will write simply f, instead of f(t), and posit 
f, instead of posit f(t). 
 
 
 34.  Limit of a form. – Let f(t) be a geometric form, and let t0 be an arbitrary number 
that is finite or infinite.  Consider a fixed form f0 of the same order as f.  When t tends to 
the value t0, we will say that f0 is the limit of f(t), and write either: 
 

0

lim
t t=

f(t) = f0  or 
0

lim
t t=

f = f0 or lim f = f0 . 

 
 One will always have for any points P, Q, R: 
 

0

lim
t t=

f(t)PQR = f0 PQR, 

or 

0

lim
t t=

f(t)PQ = f0 PQ, 

or 

0

lim
t t=

f(t)P = f0 P, 

 
according to whether f(t) is a form of first, second, or third order, respectively.  It will be 
implicit that the variation of t must take place in an interval in which the function f is 
constantly defined, and the knowledge of the limit of a form is thus reduced to that of a 
variable number, which leads us to suppose that the theory of limits of numerical 
functions is known. 
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 Example. – In a given plane, consider a fixed point O, a vector I , and the points A1, 
A2, A3, …, whose sequence is determined by the following law: 
 
 A1 = O + I , 
 A2  = A1 + i(A1 – O), 
 A3 = A2 + 1

2 i(A2 – A1), 

 A4 = A3 + 1
3 i(A3 – A2), 

 ………………………. 
 One easily sees that: 
 A1 = O + I , 
 A2  = A1 + i I , 

 A3 = A2 −
1

2!
I , 

 A4 = A3 −
1

3!
i I , 

 A5 = A4 +
1

4!
I , 

 ………………, 
so: 

A2n = O + 
1 1 1

1
2! 4! (2 2)!n

 
− + − ± − 

⋯ I  + 
1 1 1

1
3! 5! (2 1)!n

 
− + − − 

⋯∓ i I . 

 
 Knowing the series developments of sin x and cos x then permits us to write: 
 

lim
n=∞

A2n = O + (cos 1 + i sin 1) I  = O + ei I , 

 
which proves that the variable point A2n or An (which is a function of the whole number 
n) has a certain point A for its limit position when n increases indefinitely, whose distance 
from the point O is mod I , such that the vector I  makes an angle of one radian with the 
vector A – O.  This sequence A1, A2, … thus permits one to construct the angle of one 
radian by approximations. 
 
 
 35.  Now, suppose that A(t), B(t) that have well-defined limits for t = t0 (

17). 

                                                
 (17) If we accept the modern notion of limit (G. PEANO, Rivista di Matematica, vol. II) then 

0

lim
t t=

f(t) will 

be a set of numbers [when f(t) is a numerical function].  If that set contains just one element then we will 
say that 

0

lim
t t=

f(t) is well-defined, which agrees with the usual meaning of limit.  [For the limit of a variable 

set, see, C. BURALI-FORTI, “Sul limite di una classe variabile d’ensembles,” Atti Acc. Sc. Torino, vol. 
XXX; “Sur quelques propriétés des ensemble d’ensembles,” Math. Ann., B. 47.] 
 The condition that “A(t), B(t) have well-defined limits” is necessary.  For example, proposition d 
expresses the idea that the limit of a product is the product of the limits.  Therefore, if one sets A = t I , B 
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 a. If A, B are forms of the same order then we will have: 
 

lim(A + B) = lim A + lim B [because (A + B) PQR = APQR + BPQR]. 
 

 b. If x is a number that is itself a function of the numerical variable t, and 
0

lim
t t=

x is 

well-defined then: 
lim(xA) = (lim x)(lim A). 

 
With the restriction that the number x not be annulled for any value of t that is 
considered, even at the limit, one will have: 
 

lim
A

x
 = 

lim

lim

A

x
. 

 
 c. The coordinates of lim A are the limits of the coordinates of A.  Indeed, if, for 
example, A = xA1 + yA2 , where x and y are numbers that are functions of t and A1, A2 are 
constant forms, then one will have: 
 

lim A = lim(xA1) + lim(yA2) = (lim x) A1 + (lim y) A2 . 
 

 d. lim(AB) = (lim A)(lim B). 
 
 e. If A is a vector (bivector, trivector, resp.) then lim A will be a vector (bivector, 
trivector, resp.), because Aω = 0 and lim(Aω) = (lim A)ω = 0, which proves the theorem. 
 
 f. If A is a vector in a given plane then: 
 

lim(i A) = i (lim A). 
 
Similarly, if A is a vector or bivector then one will have: 
 

lim(| A) = | (lim A). 
 

 g. If mod A is defined then one will have: 
 

lim(mod A) = mod(lim A). 
 
 

 36.  Limit of a projective element. – Let f(t) be a geometric form such that in the 
interval of variation for t the projective element posit f(t) is well-defined and for t = t0 the 
function f(t) has a well-defined, non-zero limit.  We set: 

                                                                                                                                            

= 1 1
sin

t t
 + 
 

J, where I , J are, for example, vectors, then AB = 1
1 sint

t
 + 
 

 IJ .  One then sees that 
0

lim
t=

 AB = 

IJ , while
0

lim
t=

A = 0, and 
0

lim
t=

B has no meaning. 
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0

lim
t t=

[posit f(t)] = posit 
0

lim ( )
t t

f t
=

 
  

, 

 
which amounts to saying that the limit of the position of f is the position of the limit of f. 
 Moreover, we assume that the forms A(t), a(t), α(t) of first, second, and third order, 
respectively, have the same properties as f(t), and set: 
 

lim A = A0, lim a = a0, lim α = α0 . 
 
Under these hypotheses, one will have the following propositions: 
 
 a. If A and A0 are not vectors then the limit of the distance between the point A and 
the point A0 will be zero.  Indeed, let d be that distance, so one will have: 
 

d = mod 0

0

AA

A Aω ω
 
 
 

. 

Now: 
lim AA0 = A0 A0 = 0,  lim(Aω . Aω) = (A0ω)2, 

 
and consequently: 

lim d = 0. 
 
 b. If a point A of the line a has a well-defined limit (18) then that limit can only be a 
point on the line a0, because it results from Aa = that: 
 

lim (Aa) = A0 a0 = 0. 
 
 c. If the line a0 is not entirely at infinity and A1, which is at a finite distance and is 
situated on the line a, has a well-defined limit then the distance from the point A to the 
line a0 will tend to zero, because if d is precisely that distance then one will have: 
 

(mod a0)
1/2 d = mod(A a0). 

However: 
lim (A a0) = (lim A) a0 = 0  (prop. b), 

and, in turn: 
lim d = 0. 

 
 d. If a point or a line in the plane α has a well-defined limit then that limit will be a 
point or a line in the plane. 
 

                                                
 (18) See the note on page 46 for the restrictive conditions that we must impose upon propositions a, b, …  
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 e. If the plane α0 is not the plane at infinity and A, which is at a finite distance in the 
plane α, has a well-defined limit then the distance from the point A to the plane α0 will 
have zero for its limit. 
 
 
 37.  Derivatives. – Let f(t) be a geometric form.  If the function: 
 

( ) ( )f t h f t

h

+ −
 

 
has a well-defined limit for h = 0 then we set: 
 

( )df t

dt
 = 

0

( ) ( )
lim
h

f t h f t

h=

+ −
, 

 
in order to call df(t) / dt (or df / dt) the derivative of the form f(t), following the language 
of analysis. 

 We further denote the expression df(t) / dt (or df / dt) by 
d

dt
f(t), f ′(t). 

 Upon writing: 
df(t) = f ′(t) dt, 

instead of: 
( )df t

dt
 = f ′(t), 

 
one can likewise say that df(t) is the differential of f(t).  Therefore, the differential of f(t) 
is the product of the derivative of f(t) with the infinitesimal number dt. 
 The derivative of the derivative is further called the second derivative, the derivative 
of the second derivative will be called the third derivative, and so on.  One sets: 
 

 
2

2

d f

dt
= 

2

2

d

dt
f = f ″ = 

df

dt

′
, 

 …………………………, 

 
n

n

d f

dt
= 

n

n

d

dt
f = f (n) = 

( 1)ndf

dt

−

. 

 
 Now, suppose that A(t), B(t) are geometric forms that have derivatives for any value 
of t that is being considered. 
 
 a (19).  If A, B are forms of the same order then one will have: 
 

d(A + B) = dA + dB or (A + B)′ = A′ + B′. 
                                                
 (19) The rules of derivation that we give in propositions a-d are analogous to the ones in differential 
calculus.  
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 b. If x is real number that is a function of t then one will have: 
 

d(xA) = (dx) A + x(dA), 
and for a constant number m: 

d(mA) = m(dA). 
 

 c. d(AB) = (dA) B + A (dB), however it is not generally permissible to change the 
order of the factors.  More generally, for a non-zero integer n one can write: 
 

(AB)(n) = A(n)B + nA(n−1) B′ + 
( 1)

2

n n−
A(n−2) B″ + … +

( 1)

2

n n−
A″B(n−2) + nA′B(n−1) + AB(n). 

 
 d. The derivative of a constant form is zero.  Conversely, A(t) is constant in an 
interval when its derivative is zero for any value of t that is taken from the interval in 
question. 
 
 e. The derivative of a point is a vector, because if A is a point then one will have Aω 
= 1, so A′ω = 0; i.e., A′ will be a vector. 
 
 f. The derivative of a vector is a vector, and consequently, the derivative of a 
bivector or a trivector is a bivector or trivector, resp. (see prop. c). 
 Let A be a vector in a given plane, and let ϕ be a real number that is a function of t, 
so: 

d(eiϕ A) = eiϕ dA + i eiϕ A dϕ, 
and in particular: 

d(i A) = i (dA). 
 

 In the case where A is a constant vector, one will have: 
 

d(eiϕ A) = i eiϕ A dϕ, 
 
and d(eiϕ A) will be a vector that is perpendicular to the vector eiϕ A. 
 Similarly, if A is a vector or bivector then one will have: 
 

d(| A) = | (dA). 
 

 g. If A is a vector with constant non-zero modulus then the derivative of A will be a 
vector that is zero or perpendicular to the vector A, since: 
 

A | A = const., 
so 

A | A′ + A′ | A = 2A | A′ = 0. 
 

 h. If A is a vector that is nowhere annulled in the interval of variation of t then the 
necessary and sufficient condition for the direction of A to be constant will be precisely 
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A (dA) = 0 or, more simply, AA ′ = 0 for all values of t.  Indeed, if one sets B = A / mod 
A then one will likewise have: 

A = (mod A) B, 
so 

A′ = (mod A)′ B + (mod A) B′ 
and 

AA ′ = (mod A)2 BB′. 
 

Now, mod A ≠ 0, by hypothesis, and the necessary and sufficient condition for AA ′ = 0 is 
indeed BB′ = 0.  However, since B is a unit vector, the condition BB′ = 0 (prop. g) is 
equivalent to B′ = 0 or B = const.; i.e., to posit A = const. 
 Under the same hypotheses as before, the necessary and sufficient condition for the 
vector A to be parallel to a fixed plane will be AA ′A″ = 0 for all values of t. 
 If A is a non-zero bivector then AA ′ = 0 (regressive product) will be the necessary 
and sufficient condition for A to be parallel to a fixed plane, while AA ′A″ = 0 will be the 
necessary and sufficient condition for A to be parallel to a fixed line. 
 
 k. If A is a non-zero vector then: 
 

(mod A)′ = 
mod

′A
A

A
. 

Indeed: 
(mod A)2 = A | A, 

and in turn: 
(mod A)(mod A)′ = A | A′, 

and on a plane: 

(mod A)′ = 
mod

i ′A
A

A
, 

 
which proves the stated proposition, since mod A ≠ 0. 
 
 Examples. – 
 
 1. Let A(t) be a point such that mod A ≠ 0 for all values of t.  We will prove (§ 2) 
that the line AA′ is precisely the tangent at the point A to the curve that is described by 
that point. 
 Thus, if a point P in a given plane describes a circle whose center is at O then (P – O) 
i (P – O) = const.  On the other hand, one can consider P to be a function of one 
numerical variable t, in such a way that: 
 

(P – O) i P′ + P′ i (P – O) = 2(P – O) i P′ = 0, 
 
an expression that proves that the tangent is normal to the radius at the contact point.  
One also finds the same result by setting P = O + r eiϕ I . 
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 2. The point P = O + rϕ I  + ri  I − r eiϕ i I  (see no. 17) describes a cycloid.  We then 
have: 

dP

dϕ
 = P′ = rI  − r eiϕ i I  

or 
i P′ = ri I  − r eiϕ i I  = M − P. 

 
 Therefore, the normal at a point P of the cycloid is the line that joins the point P to 
the contact point of the moving circle with the fixed line. 

 
P 

Q 

O 
 

Figure 3. 
 

 3. Let O be a fixed point and let P(t) be a point in a plane (fig. 3).  Let Q(t) represent 
the foot of the perpendicular that is drawn through O to the line PP′.  The point Q will 
describe a podaire (?) of the locus of P.  That being the case, one will have: 
 

(Q – P) i(Q – O) = 0 or (Q′ – P′) i(Q – O) + (Q′ – P′) i Q′ = 0. 
However: 

P′ i(Q – O) = 0, 
 
which proves that the normal at the point Q of the curve that is described by Q will pass 
the middle of the segment OP. 

 

O 

a 

P1 P 

 
Figure 4. 
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 4. With the same points, O fixed and P(t) (fig. 4), consider the point P1(t) = O + 
2

2( )

a

P O−
(P − O), into which a enters as a positive real number.  P1 will then generate the 

inverse curve to the one that was described by P under the transformation by reciprocal 
vector radii whose circle of inversion has O for its center and radius a.  One has: 
 

(P – O)(P1 – O) = 0,  (P – O) i (P1 – O) = a2, 
 
or, upon differentiating: 
 

P′(P1 – O) = 1P′ (P – O), P′ i (P1 – O) = − 1P′ i (P – O), 

 
and after dividing the two sides of these equations, one will get: 
 

tan(P′, P − O) = − tan( 1P′ , P – O), 

 
which proves that the tangents to the points P and P1 and the perpendicular to the line OP 
that is drawn through the middle of PP1 will agree at the same point. 
 
 5. Let P(t) and Q(t) be two points in a plane such that for every value of t the line 
PQ is parallel to a fixed line.  If m and n are two real numbers such that m + n ≠ 0 then 
upon setting: 

R = 
mP nQ

m n

+
+

 

one will have: 
(m + n)2 RR′ = m2PP′ + n2 QQ′ + mn PQ′ + mn QP′. 

 
Moreover, if the vector P – Q has a constant direction then one can write: 
 

(P – O)(P′ − Q′) = 0,  so PP′ + QQ′ = PQ′ + QP′, 
or finally: 

RR′ = 
mPP nQQ

m n

′ ′+
+

. 

 
 Therefore: The tangents at the points P, Q, R to their respective curves will pass 
through the same point. 
 
 6. If P(t) is a point, and the variable t that enters in is time then P′ and P″ will be the 
velocity and acceleration, respectively, of the point P, and will represent their magnitude, 
direction, and sense.  If m is the (constant) mass of the point P, which is assumed to be 
free, then mP″ will represent the magnitude, direction, and sense of the force, while the 
inner product mP″ | dP will provide the elementary work that is done by the force.  On 
the other hand, the inner product P′ | P′ = (P′)2 will be the square of the velocity, and 
1
2 m(P′)2  will be the vis viva.  Now, we have 21

2 ( )d m P′    = mP″ | dP, and that formula 
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expresses the idea that the increase in the vis viva will be equal to the elementary work 
that is done. 
 In the case of a central force, the acceleration P″ will pass through a fixed point O; 
i.e., OPP″ = 0.  Meanwhile, (OPP′)′ = OPP″, so OPP′ = const., which shows that under 
the action of a central force, motion will always be planar.  If we set α = (P – O, P′), v = 
mod P′, and if d is the distance from the point O to the line PP′ then we will have: 
 

d = [mod(P – O)] sin α, OPP′ = 1
2 [v mod(P – O)] sin α, 

so 
vd = 2OPP′ = const., 

 
which proves the well-known property: In the motion that results from the action of a 
central force, the product of the magnitude of the velocity with the distance from the 
center to the tangent to the variable point will be constant. 
 
 7. Let F1, F2 be foci for an ellipse or a hyperbola, and let P be a point of the curve: 
 

mod(P − F1) ± mod(P – F2) = const. 
 
One can consider P to be a function of a numerical variable t, and upon taking the 
derivative (prop. k), one will have: 
 

1 2

1 2mod( ) mod( )

P F P F
iP

P F P F

 − − ′± − − 
 = 0, 

 
which expresses the idea that the tangent at P is one of the bisectors of the angles that are 
defined by the two lines PF1, PF2 . 
 For a Cassini oval, we will have: 
 

mod(P – F1) mod(P − F2) = const., 
so 

1 2
2 1

1 2

mod( ) mod( )
mod( ) mod( )

P F P F
P F P F iP

P F P F

 − − ′− + − − − 
 = 0, 

 
which provides a very simple construction of the normal at P. 
 The reader will have no difficulty in solving a host of questions by the method that 
we just presented. 
 
 
 38.  Mean forms. – If u is a set of real numbers then we will say that the number x is 
the mean of the numbers in u when x is equal to the least upper bound of the u and the 
greatest lower bound of the u. 
 Let U be a set of first-order forms, and let α be a third-order form.  We let the 
notation Uα denote the set of numbers that are the product of each form in U by the form 
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α.  We likewise agree to say that the first-order form X is the mean of the forms in the set 
U when for any form α the number Xα is the mean of the numbers in the set Uα.  In a 
completely similar way, we define the second and third-order forms that are the means of 
the second and third-order forms of a given set. 
 
 a. If A1, A2, …, An are forms of the same order, and m1, m2, …, mn are positive 
numbers then the form: 

1 1 2 2

1 2

n n

n

m A m A m A

m m m

+ + +
+ + +

⋯

⋯
 

 
will be the mean of the forms A1, A2, …, An .  Indeed, suppose that x1, x2, …, xn are 
numbers such that: 

x1 ≤ x2 ≤ …≤ xn  , 
so one will have: 
 

(m1 + m2 + …+ mn) xn ≥ m1 x1 + m2 x2 + …+ mn xn ≥ (m1 + m2 + …+ mn) x1. 
 

As a result, the number 1 1 2 2

1 2

n n

n

m x m x m x

m m m

+ + +
+ + +

⋯

⋯
 will indeed by the mean of the numbers 

x1, x2, …, xn . 
 
 b. If I  and J are vectors, and K  is a first-order form that is the mean of the vectors I , 
J then K  will be a vector, and the vectors I , J, K  will be coplanar (or IJK  = 0).  Indeed, 
we know that K ω will be the mean of I ω and Jω, and since I ω = Jω = 0, one will have 
K ω = 0; i.e., K  will be a vector.  Furthermore, if α is a triangle then the number K α will 
be the mean of the numbers Iα and Jα, and if Iα = Jα = 0 then either I , J will be parallel 
to the plane α or K α = 0, and K  will be parallel to the plane α. 
 
 c. If A1, A2, …, An are points then a mean form for A1, A2, …, An will have a position 
that consists of a point that belongs to the smallest convex field that encloses the points 
A1, A2, …, An . 
 
 
 39.  Taylor’s formula. 
 
 THEOREM I.  – If f(t) is a geometric form that has derivatives up to order n for 
some value of t then one will have: 
 

(1)   f(t + h) = f(t) + hf ′(t) + f ″(t) + … + 
1

( 1)!

nh

n

−

−
f (n – 1)(t) + [f(n)(t) + F], 

 
for that value of t, where F is a form of the same order as f that is a function of h (and the 
value of t that is considered) and satisfies 

0
lim
h=

F = 0, in addition. 
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 Proof. – For example, let f(t) be a first-order form and let α be a third-order form.  
Set: 

ϕ(t) = f(t) α. 
 
ϕ(t) is a numerical function of t that has derivatives up to order n [because ϕ(n)(t) = f (n)(t) 
α].  For that function, Taylor’s formula (20) gives: 
 

(2)   ϕ(t + h) = ϕ(t) + h ϕ ′(t) + … + 
!

nh

n
[ϕ (n)(t) + F1], 

 
where F1 is a number that is a function of h such that 

0
lim
h=

F1 = 0.  If one replaces ϕ(t) 

with f(t) α in formula (2) and sets F1 = Fα then it will become formula (1), in which F 
will indeed satisfy 

0
lim
h=

F = 0. 

 
 THEOREM II.  – If f(t) is a geometric form that has n successive derivatives in the 
interval from t to t + h then one can write: 
 

f(t + h) = f(t) + h f ′(t) + 
2

2!

h
 f ″(t) + … + 

1

( 1)!

nh

n

−

−
 f (n) + F, 

 
where F is a form of the same order as f that is the mean of the forms f (n)(t) that one 
obtains by making t vary from t to t + h. 
 
 Proof. – For example, let f(t) be a first-order form, and let α be a third-order form α.  
Moreover, set: 

ϕ(t) = f(t) a. 
 

 ϕ(t) is a numerical function of t that has derivatives up to order n in the interval from t 
to t + h, and Taylor’s formula, with Lagrange’s remainder, gives: 
 

ϕ(t + h) = ϕ(t) + h ϕ ′(t) + … + 
1

( 1)!

nh

n

−

−
[ϕ (n−1)(t) + 

!

nh

n
Φ, 

 
where Φ is a number that is the mean of the values of ϕ(n)(t) or f (n)(t) α.  Consequently, 
the number Fα is the mean of the numbers f (n)(t) α, no matter what the third-order form 
α is; i.e., F is a mean form for the forms f (n)(t). 
 
 
 40.  Continuous forms. – Let f(t) be a geometric form.  We say that f(t) is continuous 
in the interval of variation for t when for any number t0 in that interval, one has: 

                                                
 (20) See: Lezioni di Analisi infinitesimale del Prof. G. PEANO, Turin, 1893, and Calcolo geometrico, 
loc. cit. 
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0

lim
t t=

f(t) = f(t0) or 
0

lim
h=

f(t0 + h) = f(t0). 

 
 For example, let t1, t2 be two values of t in the interval considered, and let ϕ(t1, t2) be 
a form or a numerical function of t1 and t2 .  If we make t1 and t2 tend to the same value t 
in the interval, and in an arbitrary manner − without, for example, imagining that one has 

t1 = t2 and that the function 1 2

2 1

( , )t t

t t

ϕ
−

 has a well-defined limit – then we will denote that 

limit by the notation: 

1 2

1 2

,
2 1

( , )
lim

t t t t

t t

t t

ϕ
= = −

, 

or, more simply: 

lim 1 2

2 1

( , )t t

t t

ϕ
−

. 

 
 In an entirely analogous manner, we will define: 
 

lim 1 2 3

2 1 3 1 3 2

( , , )

( )( )( )

t t t

t t t t t t

ϕ
− − −

… 

 
 THEOREM I.  – If f(t) is a form with a well-defined derivative in the interval of 
variation for t then f(t) will be a continuous function. 
 
 Proof. – Taylor’s theorem tells us that: 
 

f(t + h) = f(t) + h[f ′(t) + F], 
 
where F is a form such that 

0
lim
h=

F = 0.  Consequently: 

 

0
lim
h=

f(t + h) = f(t), 

which proves the theorem. 
 
 THEOREM II.  – If f(t) is a geometric form such that the derived form f ′(t) is a 
continuous function in the interval of variation for t then one will have: 
 

lim 2 1

2 1

( ) ( )f t f t

t t

−
−

 = f ′(t). 

 
 Proof. − If we set n = 1, t = t2, h = t2 – t1 in Taylor’s formula (Theorem II) then it will 
become: 

f(t2) = f(t1) + (t2 – t1) F 
or 
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2 1

2 1

( ) ( )f t f t

t t

−
−

 = F. 

 
 However, f ′ is assumed to be a continuous function; i.e.: 
 

lim F = f ′(t), 
 
because F is the mean form of the values of f ′(t). 
 
 THEOREM III.  – If f(t) is a first-order form, a second-order form with zero 
invariant, or a third-order form, and if f ′(t) is a continuous function in the interval of 
variation of t then one will have: 

lim 1 2

2 1

( ) ( )f t f t

t t−
 = f(t) f ′(t). 

 Proof. – We know that: 

1 2

2 1

( ) ( )f t f t

t t−
 = f(t1) 2 1

2 1

( ) ( )f t f t

t t

−
−

. 

However: 

lim f(t1) = f(t),  lim 2 1

2 1

( ) ( )f t f t

t t

−
−

= f ′(t), 

 
which was to be proved. 
 
 THEOREM IV.  – If f(t) is a first or third-order form such that f ′ and f ″ are well-
defined forms, and f ″(t) is itself continuous for the values of t considered then one will 
have: 

lim 1 2 3

2 1 3 1 3 2

( ) ( ) ( )

( )( )( )

f t f t f t

t t t t t t− − −
 = f(t) f ′(t) f ″(t). 

 
 Proof. – Let t1, t2, t3 be values of t such that: 
 

t3 > t1 > t2 . 
Set: 

f1 = f(t1), f2 = f(t2), f3 = f(t3). 
 
Taylor’s formula gives us: 
 

(1)    

2
2 1

2 1 2 1 1 1,2

2
3 1

3 1 3 1 1 1,3

( )
( ) ,

2
( )

( ) ,
2

t t
f f t t f f

t t
f f t t f f

 −′ ′′= + − +


− ′ ′′= + − +

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where 1,2f ′′ , 1,3f ′′  are mean forms of the forms f ″(t) when t varies from t1 to t2 or from t1 to 

t3 .  Moreover, when f is a first or third-order form, we know that f1 f2 f3 = f1(f2 – f1), and in 
turn, that: 

1 2 3

2 1 3 1( )( )

f f f

t t t t− −
 = 3 12 1

1
2 1 3 1

f ff f
f

t t t t

−−
− −

 = 3 12 1 2 1
1

2 1 3 1 2 1

f ff f f f
f

t t t t t t

 −− −− − − − 
. 

 
Comparing this with formulas (1), the latter will become: 
 

(2)  1 2 3

2 1 3 1 3 2

( ) ( ) ( )

( )( )( )

f t f t f t

t t t t t t− − −
 = 3 1 1,3 1 2 1,22 1

1
2 1 3 2

( ) ( )1

2

t t f t t ff f
f

t t t t

′′ ′′− + −−
− −

. 

 
Moreover, t3 > t1 > t2, and the last factor in the right-hand side of equation (2) is a mean 
form of 1,2f ′′ , 1,3f ′′ .  In the limit, by virtue of Theorem III and the continuity hypothesis for 

the form f ″(t), one will indeed have Theorem IV. 
 
 

§ 2. – LINES AND ENVELOPES. 
 

 41.  Lines and envelopes of lines in a projective plane. – Suppose that P(t), p(t) are 
non-zero form on a projective plane that are of first and second order, respectively, and 
that they are defined, along with their derivatives of arbitrary order, in the interval of 
variation of t.  If m is a non-zero whole number then P(m)(t), p(m)(t) will be forms in the 
fixed plane.  Indeed, let α be a fixed, non-zero, third-order form such that P(t) α = 0, p(t) 
α = 0 for every value of t. As a result, P(m)(t) α = 0 and p(m)(t) α = 0, which was to be 
proved. 
 
     One calls the set P of projective points 
that are positions of forms P(t) when t in 
the given interval a line. 

     One calls the set p of projective lines 
that are positions of forms p(t) when t 
varies in the given interval an envelope. 

 
 These sets are projective elements that can be considered to be independent of the 
number t, and of the interval in which it can vary. 
 
      If R, R1 are points of the line P, and the 
line RR1 has a well-defined line r for its 
limit when R1 varies on the line P in such a 
way as to tend to the point R then the line r 
will be called tangent to the line P at the 
point R. 

    If r, r1 are lines in the envelope p and the 
point rr1 has a well-defined point R for its 
limit when r1 varies in the envelope p in 
such a way as to tend to the line r then the 
point R will be called the characteristic of 
the envelope p on the line r. 

 
 The normal to the line P at the point R is the perpendicular to the tangent at the point 
R (if it exists) that is raised in the plane of the curve. 
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    If the point P(t) is situated on a fixed line 
r for every value of t, and the line P does 
not reduce to just one point then the line r 
will be the tangent to the line P at any point 
in that line. 

    If the line p(t) passes through a fixed 
point R for every value of t, and the 
envelope p does not reduce to just one line 
then the point R will be the characteristic of 
the envelope p on any line of that envelope. 

 
 THEOREM I.  – If, for a given value of t, m is the smallest non-zero, whole number x 
such that: 
 
     PP(x) ≠ 0 then the tangent to the line P 
at the point P will be the line PP(m). 
 

     pp(x) ≠ 0 then the characteristic of the 
envelope p on the line p will be the point 
pp(m). 

 
 Proof. (for the statement on the left). – Upon setting: 
 

P1 = P(t + h), 
Taylor’s formula will give: 
 

P1 = P + hP ′ + 
2

2!

h
P ″ + … + 

1

( 1)!

mh

m

−

−
P(m−1) + 

!

mh

m
(P(m) + Q), 

 
where Q is a first-order form such that 

0
lim
h=

Q = 0.  Moreover, by hypothesis, PP(x) = 0 for 

x = 1, 2, …, m − 1, and as a result: 
 

PP1 = 
!

mh

m
(PP(m) + PQ). 

However: 
 

0
lim
h=

posit PP1 = 
0

lim
h=

posit(PP(m) + PQ) 

  = posit 
0

lim
h=

(PP(m) + PQ) = posit PP(m), 

which proves the theorem. 
 The principle of duality for the plane will provide the theorem on the right. 
 

THEOREM II. 
 

     If PP′P″ ≠ 0 for every value of t then the 
line P will be the locus of characteristics of 
the envelope whose lines are the tangents 
to the line P. 

    If pp′p″ ≠ 0 for every value of t then the 
envelope p will be the set of tangents to the 
line whose points are the characteristics of 
the envelope p. 

 
 Proof.  (on the left). – To that effect, set a = PP′.  a will then be a non-zero function 
of t, and the envelope a will admit the tangents to the line P for its lines.  We will have: 
 

a′ = P′P′ + PP″ = PP″, 
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and from the regressive product aa′, one will see that: 
 

aa′ = PP′. PP″ = PPP″. P′ − P′PP″.P = PP′P″. P. 
 

 One can also express the left-hand side of Theorem II by saying: If R is a point on the 
line P, and r is the tangent to that line at the point R then the point R will be the limiting 
position of the point at which the line r meets the tangent to the line P at another point R1 
when the point R1 tends to be displaced on the line P in order to make it coincide with the 
point R.  One can give an analogous interpretation to the theorem on the right. 
 

THEOREM III. 
 

     If P(t) is a non-zero first-order form on 
a fixed plane, and P′(t) is a continuous 
form such that one has P(t0) P′(t0) ≠ 0 for 
some value t0 of t then the tangent to the 
line P at the point P(t0) will be the limiting 
position of the line P(t1)P(t2) when t1 and t2 
tend to the value t0 . 

    If p(t) is a non-zero, second-order for on 
a fixed plane, and p′(t) is a continuous 
form such that one has p(t0) p′(t0) ≠ 0 for 
some value t0 of t then the characteristic of 
the envelope p on the line p(t0) will be the 
limiting position of the point p(t1)p(t2) 
when t1 and t2 tend to the value t0 . 

 
 Proof. (on the left). – One has: 
 

posit P(t1)P(t2) = posit 1 2

2 1

( ) ( )P t P t

t t−
, 

 
and upon applying Theorem III of no. 40, one will get: 
 

lim posit P(t1)P(t2) = posit P(t1)P′(t2), 
 
which proves the theorem. 
 
 Examples. − 
 
 1. Let y = f(x) be the Cartesian equation of a curve.  One has: 
 

P = O + (x + iy) I , 
 

where O is a fixed point, and I  is a fixed unit vector in the plane of the curve.  If x is the 
independent variable then one will have: 
 

P′ = (1 + iy ′) I , 
 

and if y has a finite and well-defined derivative in the interval in which x varies then one 
must have that P′ ≠ 0, and the tangent to the point P will be the line PP′. 
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 If θ is the angle that is defined by the x-axis and the tangent at the point P, or if θ = (I , 
P′) then we will have: 

tan θ = 
P

i P

′
′

I
I

= 
y i

i

I I
I I

= y′, 

 
which gives the ordinary geometric significance of the number y′. 
 
 2. If ρ = f(ϕ) is the equation of the curve in polar coordinates then: 
 

P = O + ρ eiϕ I , 
so: 

P′ = (ρ + iρ) eiϕ I . 
 

 If we set θ = (P – O, P′) then we will get: 
 

tan θ = 
ρ
ρ ′

, 

 
which is the usual formula from analytic geometry. 
 
 3. Let P(t) be a first-order form, and let PP(m) be the tangent to the point P.  The 
normal will be the line P i (PP(m).ω).  Therefore, if P(t) is a point then the normal to the 
point P will be the line PiP(m), since P(m) will be a vector that is parallel to the tangent at 
the point P. 
 
 4. Let P(t) be a point such that PP′P″ ≠ 0 for a given value of t, and let A be a non-
zero, first-order form that belongs to the plane of the line P such that the point A is not 
situated on the tangent to the curve at the point P, in addition. 
 We say that the line P has its concavity at the point P turned towards the point A 
when the points of the line P are on the same side of the tangent at P as the point A in 
some neighborhood of the point A.  In other words, the line turns its concavity towards 
the point A at the point P if one can fix a number ε such that the triangles: 
 

P(t) P′(t) P(t + h), P(t) P′(t) A 
 
have the same sense for any h, but are nevertheless smaller than ε in absolute value. 
 Under these condition, one can say that: The concavity at the point P is turned 

towards the point A when the number 
PP P

PP A

′ ′′
′

 is positive. 

 Indeed: 

P(t + h) = P + hP′ + 
2

2

h
(P″ + Q) 

and 
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PP′P(t + h) = 
2

2

h
(PP′P″ + PP′Q). 

 
Since 

0
lim
h=

 Q = 0, we can determine a number ε such that if h is smaller than ε in absolute 

value then the number PP′Q will have the same sign as that of the number PP′P″.  
Moreover, for these values of h, the number PP′P(t + h) will obviously have the same 
sign as the number PP′P″, because h2 / 2 will always be positive. 
 Relative to Cartesian coordinates, one has: 
 

PP′P″ = 1
2 y″,  PP′ iI  = 1

2 , PP′O = 

1
1

0 1
2

1 0 0

x y

y′  = 1
2 (xy′ – y), 

 
and at the point P the curve turns its concavity in the position of the y-axis, or even 
presents its concavity at the origin when y″ > 0 or (xy′ – y) y″ > 0. 
 An entirely similar application can be made in polar coordinates, for which one will 
have: 

P′ = ρ′ eiϕ I  + ρ eiϕ  iI ,  P″ = (ρ″ − ρ) eiϕ I + 2ρ′eiϕ  iI , 
and thus: 

 PP′P″ = 

1 0
1

0
2

0 2

ρ
ρ ρ

ρ ρ ρ
′

′′ ′−
 = 1

2 (2ρ′2 − ρρ″ + ρ2), 

 

  PP′O = 

1 0
1

0
2

1 0 0

ρ
ρ ρ′  = 1

2  ρ2. 

 
 5. Let P1(t), P2(t) be two points in the plane such that for every value of t: 
 

P1P2 ≠ 0, 1P′  ≠ 0,  2P′  ≠ 0,  

and 
P1P2 1P′  ≠ P1P2 2P′ . 

 
The position of the form p = P1P2 describes an envelope whose characteristic is described 
by the position of the first-order form: 
 

pp′ = P1P2 1 2 1 2( )P P P P′ ′+  = P1P2 2P′ . P1 − P1P2 1P′ . P1 . 
 

Therefore, the characteristic of the envelope p on the line p is the barycenter of the points 
P1 , P2 , which have masses that are equal to the distances – with a definite sign – from 
the points P2 + 2P′ , P1 + 1P′  to the line P1P2 . 
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 For example, if: 

P1 = O + tI , P2 = O + 2 2a t−  i I , 
 
then the line P1P2 will envelop an asteroid.  The distances from the points P1 + 1P′  and P2 

+ 2P′  to the line P1P2 will be: 

 
2 2a t

a

−
 and − 

2

2 2

t

a a t−
. 

 
As a result, the masses of the points P1, P2 will be: 
 

t2  and a2 – t2, 
 
and the characteristic P of the envelope P1P2 on the line P1P2 will be the foot of the 
perpendicular that issues from the point P1 + P2 – O to the line P1P2 . 
 
 
 42.  Skew curves and envelopes of planes. – Let P(t), π(t) be non-zero forms that 
are of first and third order, respectively, and are defined, along with the derivatives in a 
given interval. 
 
      One calls the set of projective points 
that are positions of forms P(t) when t 
varies in a given interval a line. 
      If the points of the line P are situated 
on the same line or on a fixed plane for any 
value of t then we will say that the line is a 
straight or planar line, respectively. 
 
     If it is impossible to determine an 
interval, inside of which one varies t, 
relative to which the line P is a straight or 
planar line then one will say that the line P 
is a skew curve. 
 
     If R, R1 are projective points on the line 
P, and the line that joins R and R1 has a 
well-defined line for its limit when R1 
varies on the line P and tends to R then that 
line will be called tangent to the line P at 
the point R. 
 

    One calls the set of projective planes that 
are positions of the forms π(t) when t varies 
in the given interval an envelope. 
    If the planes of the envelope π pass 
through the same line or through a fixed 
point for any value of t then we will say 
that the envelope π is an axial or conical 
envelope, respectively. 
    If it is impossible to determine an 
interval, inside of which one varies t, 
relative to which the envelope π is an axial 
or conical envelope then we will say that 
the envelop π is a skew envelope. 
 
   If ρ, ρ1 are projective planes of the 
envelope π, and the line that is common to 
ρ and ρ1 has a well-defined line for its limit 
when ρ1 varies on the envelope π and tends 
to ρ then that line will be called the 
characteristic of the envelope π in the 
plane ρ. 
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 If the envelope π is an axial envelope and does not reduce to a unique plane then the 
characteristic of ρ will be the line through which all of the planes of the envelope π will 
pass.  That line can be called the axis of the envelope.  If that envelope π is a conical 
envelope then the characteristic of ρ – if it exists, moreover – will pass through the point 
that is common to all of the planes of the envelope π.  That point can be called the summit 
of the envelope. 
 
      If R, R1 are projective points of the line 
P and if the projective line r is the tangent 
to the line P at R, while the plane that 
passes through r and R1 has the a well-
defined plane for its limit when R1 varies 
on P and tends to R then that plane will be 
called the osculating plane of the line P at 
the point R. 
 
      Finally, we shall call the envelope 
whose planes are the osculating planes for 
the line P the osculating envelope of the 
line P. 

    If ρ, ρ1 are projective planes of the 
envelope π, and if the projective line r is 
the characteristic on ρ of the envelope π, 
while the point that is common to r and ρ1 
has a well-defined point for its limit when 
ρ1 varies on the envelope π and tends to ρ 
then that point will be called the point of 
regression of the envelope π on the plane 
ρ. 
    We shall call the line whose points are 
points of regression for the envelope π the 
line of regression for the envelope π. 

 
 Theorem I. – If, for some value of t, m is the smallest of the non-zero, whole numbers 
x such that: 
 
      PP(x) ≠ 0 then the tangent to the line P 
at the point P will be the line PP(m), 
 

    ππ(x) ≠ 0 then the characteristic of the 
envelope π on the plane π will be the line 
ππ(m), 

 
and this is proved in a way that is identical to that of Theorem I of no. 41.  In particular: 
 
     If PP′ ≠ 0 then the tangent to the line P 
at the point P will be the line PP′. 
 

    If ππ′ ≠ 0 then the characteristic of the 
envelope π at the plane π will be the line 
ππ′. 

 
 THEOREM II.  – If, for a given value of t, m and n are the smallest non-zero, whole 
numbers x, y (x < y) such that: 
 
      PP(x) ≠ 0 then the osculating plane to 
the line P at the point P will be the plane 
PP(m)P(n). 

    ππ(x) ≠ 0 then the point of regression of 
the envelope π on the plane π will be the 
point ππ(m)π(n). 

 
 Proof. (on the left). – To that effect, set P1 = P(t + h) and apply Taylor’s formula.  
One gets: 

P1 = P + hP′ + … + 
!

mh

m
P(m) + … + 

1

( 1)!

nh

n

−

−
P(n−1) + 

!

nh

n
(P(n) + Q), 
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where Q is a first-order form such that 
0

lim
h=

Q = 0.  Moreover, one has, by hypothesis: 

 
PP(m)P(y) = 0 for y = m + 1, …, n – 1. 

Therefore: 

PP(m)P1 = 
!

nh

n
(PP(m)P(n) + PP(m)Q), 

and in turn: 

0
lim
h=

PP(m)P1 = posit PP(m)P(n). 

 
 However, the line PP(m) is tangent to the line P at the point P, and consequently, 

0
lim
h=

posit PP(m)P1 is the osculating plane to the point P. 

 
      If PP′P″ ≠ 0 then the osculating plane 
to the line P at the point P will be the plane 
PP′P″. 

    If ππ′π″ ≠ 0 then the point of regression 
of the envelope π on the plane π will be the 
point ππ′π″. 

 
 In the case where the line P is a straight line, the osculating plane at each of its points 
will be indeterminate, because if P describes a straight line P = xA + yB, where A, B are 
constant forms and x, y are functions of t, but then P(m) = x(m)A + y(m)B, and PP(m)P(n) will 
be always be zero.  The same could be said for an axial envelope. 
 If the line P is only a planar line then its osculating plane will be the same as the 
plane of the curve at each of the points where the tangent is defined.  Indeed, the plane 
PP(m)P1 will have a constant position that is nothing but that of the plane of the curve. 
One can deduce analogous conclusions for a conical envelope. 
 

THEOREM III.  
 

      If one has PP′P″P′″ ≠ 0 for every value 
of t then: 
 

      a.  The line P will be a skew curve. 
 

      b.  The tangents to the skew curve will 
be the characteristics of the osculating 
envelope of the curve P. 
 

      c.  The curve P will be the line of 
regression of the osculating envelope for 
the curve P (21). 

    If one has ππ′π″π′″ ≠ 0 for every value of 
t then: 
 

    a.   The envelope π will be a skew 
envelope. 
 

    b. The characteristics of the skew 
envelope π will be tangents to the line of 
regression of the envelope. 
 

    c. The envelope π will be the osculating 

                                                
 (21) Let P(t) be a point.  For a given value of t, imagine that m, n, p are the smallest positive, whole 
numbers x, y, z such that x < y < z, and P P(x) P(y) P(z) ≠ 0.  If one sets P1 = P(t + h) then Taylor’s formula 
will give, successively: 

 PP1 = 
!

mh

m
 (PP(m) + Q1), 
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envelope of the line of regression of the 
envelope π. 
 

 Proof. (of the left-hand statements).  If the line P is a planar line then one will have P 
= xA + yB + zC, where A, B, C are constant forms, and x, y, z are functions of t.  For any 
m, n, p (m < n < p), one must then have PP(m)P(n)P(p) = 0.  The stated part of the theorem 
will then result when one has PP′P″P″′ ≠ 0 for every value of t. 
 Now, suppose that α = PP′P″.  Since, by hypothesis, PP′P″ ≠ 0 for every value of t, 
the envelope α will then be the osculating envelope of the skew curve P.  One will have: 
 

α′ = PP′P″′, α″ = PP″P″′ + PP′PIV, 
 
and for the regressive products αα′, αα′α″, one will have: 
 

αα′ = PP′P″. PP′P″′ = P″PP′P″. PP′ = PP′P″P″′. PP′, 
αα′α″ = PP′P″P″′. PP′. (PP′P″′ + PP′PIV) = − (PP′P″P″′)2. P, 

 
from which, one can infer the equalities: 
 

posit αα′ = posit PP′,  posit αα′α″ = posit P, 
 
which will prove parts b, c of the theorem. 
 

THEOREM IV 
 

      If P(t) is a first-order form, and P′(t) is     If π(t) is a third-order form, and π′(t) is 

                                                                                                                                            

 PP(m)P1 = 
!

nh

n
 (PP(m)P(n) + Q2), 

 P P(m)P(n)P1 = 
!

ph

p
 (PP(m)P(n) P(p)  + Q3), 

 
where Q1, Q2, Q3 will be first-order forms that are subject to the condition that lim Q1 = lim Q2 = lim Q3 = 
0.  Upon supposing that A is the infinitely small principal, one sees that the distances from the point P1 to 
the point P, to the tangent to the point P, and to the osculating plane at that point P, will have the 
infinitesimal orders m, n, p, respectively.  There is a geometric interpretation for the numbers m, n, p that 
gives the type of singularity at the point P.  We would not like to study the singular points of curves in 
detail here.  Here is an example: If ϕ varies from – π /2 to π /2 then the point: 
 

P = O + cos2ϕ I  + sin ϕ cos ϕ J + sin ϕ K  
 
will describe a Viviani window on the spherical surface with center O and unit radius.  One will have: 
 

P′P″P″′ = cos ϕ, 
 
and only the point P(π /2) = O + K  will be a singular point of the curve.  At the point O + K , the tangent 
will be the line (O + K) J, and the osculating plane will be the plane (O + K) J (2I  – K).  One will have a 
singularity, because P′(π /2) is parallel to the vector P″′(π /2). 
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a continuous form such that P(t0)P′(t0) ≠ 0 
for every value of t then the tangent to the 
line P at the at the point P(t0) will be the 
limiting position of the line P(t1)P(t2) when 
t1, t2 tend to the value t0 . 

a continuous form such that π(t0)π′(t0) ≠ 0 
for any value of t then the characteristic of 
the envelope π on the plane π(t0) will be the 
limiting position of the line π(t1)π(t2) when 
t1, t2 tend to the value t0. 

 
 This is proved as the theorem in no. 41 was. 
 

THEOREM V.  
 

      If P(t) is a first-order form that is 
defined, along with P′(t) and P″(t), and if 
P″(t) is, in addition, a continuous form 
such that: 

P(t0) P′(t0) P″(t0) ≠ 0 
 
for some value t0 of t then the osculating 
plane to the line P at the point P(t0) will be 
the limiting position of the plane: 
 

P(t1) P(t2) P(t3) 
 

when t1, t2, t3 tend to the value t0 . 

    If Π(t) is a third-order form that is 
defined, along with Π′(t) and Π″(t), and if 
Π″(t) is, in addition, a continuous function 
such that: 

Π(t0) Π′(t0) Π″(t0) ≠ 0 
 
for some value t0 of t then the point of 
regression of the envelope Π in the plane 
Π(t0)  will be the limiting position of the 
point: 

Π(t1) Π(t2) Π(t3) 
 

when t1, t2, t3 tend to the value t0 . 
 
 Proof (of the left-hand statement). – One has: 
 

posit P(t1) P(t2) P(t3) = posit 1 2 3

2 1 3 1 3 2

( ) ( ) ( )

( )( )( )

P t P t P t

t t t t t t− − −
. 

However,: 

lim 1 2 3

2 1 3 1 3 2

( ) ( ) ( )

( )( )( )

P t P t P t

t t t t t t− − −
 = 1

2  P(t0) P′(t0) P″(t0), 

 
which proves the theorem. 
 
 a. One calls the plane that passes through the point P and is perpendicular to the 
tangent line at the point P the normal plane to the line P at the point P.  One further calls 
the plane that is drawn through the tangent to the point P and is perpendicular to the 
osculating plane at that point the rectifying plane.  For example, if the plane PP(m)P(n) 
osculates the point P then the planes P | (PP(m). ω) and PP(m) | (PP(m)P(n). ω) will be the 
normal and rectifying plane at that point, respectively. 
 One calls the line that is common to the osculating and normal planes at a point P the 
principal normal to the line P at the point P, and the intersection of the normal and 
rectifying planes is the binormal.  If the plane PP(m)P(n) osculates at the point P, and if 
one supposes that P(t) is a point then P(m) and P(n) will be vectors, and the planes P | P(m), 
P P(m) | P(m) P(n) will be the normal and rectifying planes, respectively, at the point P.  The 
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binormal will be the line P | P(m)P(n), which will be the principal normal (P | P(m)). 
PP(m)P(n). 
 b. Let O, I , J, K  be reference elements of a Cartesian coordinate system.  If we set: 
 

P = O + xI  + yJ + zK , 
 
where x, y, z are functions of t, then the point will describe a curve.  If PP(m)P(n) is the 
osculating plane at the point P then upon setting: 
 

Q = O + XI  + YJ + ZK , 
 
one will see that the point Q will be a point of the line PP(m) when the vectors Q – P, P(m) 
are parallel, and Q will be a point of the plane PP(m)P(n) when the vectors Q – P, P(m), P(n) 
are coplanar.  It will then result that the equation of the tangent to the point P will be: 
 

( )m

X x

x

−
 = ( )m

Y y

y

−
= 

( )m

Z z

z

−
, 

 
and that of the osculating plane will be: 
 

( ) ( ) ( )

( ) ( ) ( )

m m m

n n n

X x Y y Z z

x y z

x y z

− − −
 = 0. 

 
 In the case of rectangular coordinates, the plane: 
 

PP(m) | P(m)P(n) 
 

(viz., the rectifying plane) has the equation: 
 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

m m m

m m m m m m

n n n n n n

X x Y y Z z

x y z

y z z x x y

y z z x x y

− − −
 = 0, 

 
and the normal plane is finally: 
 

(X – x) x(m) + (Y – y) y(m) + (Z – z) z(m) = 0. 
 
 

§ 3. – RULED SURFACES. 
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 43.  Ruled surfaces in general. – Let a(t) be a non-zero, second-order form with zero 
invariant that is defined, along with its derivatives of arbitrary order, on a given interval. 
 One calls the set of projective points that are situated on the line a(t) when t varies in 
the interval considered the ruled surface a, or simply, the surface a; in particular, the 
lines a(t) are called the generators of the surface a. 
 If P(t), Q(t) are first-order forms such that PQ ≠ 0, Pa = Qa = 0 for every value of t 
then the point P + uQ will describe the line a when u varies from − ∞ to + ∞.  As a result, 
every point on the surface can be considered to be a function of two variables, which 
justifies the terminology surface that we employed (see Note I).  Moreover, we have no 
need to consider the points of the surface a to be functions of two variables, and we can 
develop the theory of ruled surfaces independently of the general theory of arbitrary 
surfaces. 
 Since a is, by hypothesis, a second-order form with a zero invariant, one will have: 
 
(1)      aa = 0 
 
for every value of t, a formula that will give aa′ + a′a = 0.  However, aa′ = a′a, so 2aa′ = 
0, or: 
(2)      aa′ = 0 
for any t. 
 Moreover, if m is a whole number that is greater than unity then one will have: 
 

(aa)(m) = aa(m) + 
1

m 
 
 

 a′a(m−1) + … +  
1

m 
 
 

 a(m−1) a′ + a(m)a ; 

i.e.: 
(3)     (aa)(m) = ( ) ( )

,
,

r s
r s

r s

h a a∑ , 

 
where r, s are positive whole numbers such that r + s = m and r < s, while the hr,s are 
whole numbers that are functions of r and s. 
 We will make frequent use of formulas (1), (2), (3). 
 
 
 44.  For example, let r, r1 be generators of the surface a, and let R be a projective 
point of r, and suppose that the plane that contains R and r1 had a well-defined plane for 
its limit when r1 varies while remaining on the surface a and tends to r.  This plane will 
be called the tangent plane (22) to the ruled surface a at the point R. 
 One calls the perpendicular to the tangent plane to a surface a at a point R that issues 
from R the normal to the surface a at the point R. 
 
 THEOREM I.  – If, at a point S on a line that is traced on the ruled surface a, the 
tangent s to the curve and the tangent plane σ to the surface a are well-defined then the 
line s will be contained in the plane σ. 

                                                
 (22) If R is a point at a finite distance then the definition that we just gave will be a logical consequence 
of that of the tangent plane to a surface, in general, that we gave in Note II. 
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 Proof. – If we let S1 be a point on the line, and let r1 be the generator of the surface a 
that passes through S1 then the line that joins S and S1 will be contained in the plane 
determined by S and r1 entirely, which proves that, in the limit, s will be contained in σ. 
 
 THEOREM II.  – If P is a non-zero, first-order form that has a point on the line a 
(i.e., Pa = 0) for some well-defined value of t, and if m is the smallest of the non-zero 
whole numbers x such that Pa(x) ≠ 0 then the tangent plane to the point P of the ruled a 
will be precisely the plane Pa(m). 
 
 Proof. – Set a1 = a(t + h), and apply Taylor’s theorem: 
 

a1 = a + ha′ + … + 
1

( 1)!

mh

m

−

−
a(m−1) + 

!

mh

m
(a(m) + q), 

 
where q is a second-order form such that 

0
lim
h=

q = 0.  Moreover, by hypothesis, Pa(x) = 0 

for x = 1, 2, …, m − 1, so: 

Pa1 = 
!

mh

m
(Pa(m) + Pq). 

However: 
posit Pa1 = posit (Pa(m) + Pq), 

so 

0
lim
h=

 posit Pa1 = posit Pa(m), 

 
an equality that proves the theorem, since the tangent plane to the point P is nothing but 
the limiting position of the plane Pa1 . 
 
 THEOREM III.  – While preserving the hypotheses of theorem II, one sees that the 
tangent plane to the point P will contain the line a (i.e., it contains the generator that 
passes through the point P). 
 
 Proof. – Upon developing the regressive product Pa(m). a, one will have: 
 

Pa(m). a = − Pa. a(m) + a(m)a. P = aa(m). P, 
 

but formula (2) of no. 43 proves that aa(m). P will be the sum of products of the form 
a(r)a(s). P = a(r)P. a(s) + a(s)P. a(s).  Therefore, since r < m, s < m, one will have: 
 

Pa(r) = Pa(s) = 0, so Pa(m). a = 0, 
 

which proves the theorem. 
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 45.  From now on, the following conventions will always be implicit in the theorems 
that we shall state: The non-zero, first-order forms P, Q, R, S have their positions on the 
line a (i.e., PA = Qa = Ra = Sa = 0).  When we say that the plane tangent to the point P of 
the ruled surface is the plane Pa(m), we intend that to mean that there exist positive, whole 
numbers x such that Pa(x) ≠ 0, where m is the smallest of these numbers.  Finally, when 
we say that the plane tangent to the point P is indeterminate, we will be supposing that, 
in other words, for any positive, whole number x, one will have Pa(x) = 0. 
 
 THEOREM I.  – If the plane tangent to the point P is Pa(m) then one and only one of 
the following properties will always be verified: 
 
 a. At any point R that is distinct from P, the tangent plane will be Ra(n), with n < m, 
and that plane, as well as the number n, will remain fixed when the point R varies on the 
line a. 
 
 b. At any point R that is distinct from P, the tangent plane will be Ra(m), which will 
coincide with the plane Pa(m), except for a point S where the tangent plane will be either 
the plane Sa(n), with n > m, or indeterminate. 
 
 c. At any point R, the tangent plane will be the plane Ra(m), and the tangent planes at 
two distinct points of the line a will be different. 
 
 Proof. – Indeed, let Q be an arbitrary point on the line a that is distinct from P.  The 
tangent plane at the point Q will be the plane Qa(n), with n < m, n = m, or n > m, or it 
might even be indeterminate.  These different cases will imply properties a, b, c, resp., as 
we shall show. 
 For any R, we have: 
(1)      R = xP + yQ, 
 
where x, y are real numbers.  Therefore, if the plane Q(n) (n < m) is tangent to the point Q 
then, knowing that Pa(n) = 0, formula (1) will give us that Ra(n) = yQa(n).  If RP ≠ 0 then 
one will have y ≠ 0, and Ra(n) ≠ 0; i.e., n will be precisely the smallest positive, whole 
number x such that Ra(x) ≠ 0, or even that the plane Pa(n) will be tangent to the point R.  
However, by virtue of the equality Ra(n) = y Qa(n), that plane will be identical to Qa(n), 
which will succeed in establishing property a. 
 The first part of property b results from the fact that if the plane Qa(n) (n > m) is 
tangent to Q then one will have Ra(m) = x Pa(m), a formula that again persists if the tangent 
plane to the point Q is indeterminate. 
 If the tangent plane at Q is Qa(m) then one will have: 
 
(2)      Ra(m) = x Pa(m) + y Qa(m). 
 
 One can deduce that Qa(m) = h Pa(m) for the plane Pa(m) = plane Qa(m), where h is a 
non-zero, real number, and formula (2) will become Ra(m) = (x + hy) Pa(m).  When x / y ≠ 
− h, the plane Ra(m) = plane Pa(m) will be the tangent plane to the point R, while if x / y = 
− h, the tangent plane to the point S = point(Q – hP) will be Sa(m), with n > m, or even 
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indeterminate; one thus completes the proof of property b.  If plane Pa(m) ≠ plane Qa(m)  
then the form Ra(m) cannot be zero, and Ra(m) will be the tangent plane at R.  The tangent 
planes at two distinct points R and S will not coincide, moreover, because if: 
 

S = x1P + y1Q 
then one will have: 

Ra(m). Sa(m) = 
1 1

x y

x y
 Pa(m). Qa(m), 

and in turn, one must have: 
 

1 1

x y

x y
 = 0 or Pa(m). Qa(m) = 0, 

 
which finally establishes property c. 
 
 THEOREM II.  – If Pa(m) is the tangent plane at each point P of the line a – except 
for at most one point – then a(m) a(m) = 0 will be the necessary and sufficient condition for 
the tangent planes at distinct points to coincide. 
 
 Proof. – Indeed, one has upon developing the regressive product Qa(m). Ra(m): 
 

Qa(m). Ra(m) = (Q. Ra(m)) a(m) + (Ra(m). a(m)) Q. 
However: 

Q. Ra(m) = 0, 
 
because the plane Ra(m) contains (no. 44, Theorem III) the line a and, in turn, the point Q.  
Then: 
(1)     Qa(m). Ra(m) = (Ra(m). a(m)) Q. 
 
The regressive product Ra(m). a(m) further provides: 
 

Ra(m). a(m) = − Ra(m). a(m) + a(m) a(m). R, 
or 

Ra(m). a(m) = 1
2  a(m) a(m). R, 

and formula (1) becomes: 
Qa(m). Ra(m) = 1

2  a(m) a(m). RQ. 

 
Furthermore, since QR ≠ 0, a(m) a(m) will indeed be the necessary and sufficient condition 
for one to have Qa(m). Ra(m) = 0, which is precisely what we had to establish. 
 
 THEOREM III.  – If the tangent planes at two arbitrary, but distinct points of the 
line a are different then if Pa(m) is, for example, the tangent plane to one of them P, and α 
is a non-zero, third-order form that contains the form a (i.e., aα = 0) then the plane a will 
be tangent to the ruled surface at the point α a(m). 
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 Proof. − α a(m). a(m) is the tangent plane to the point α a(m), but: 
 

a(m)α . a(m) = − a(m)a(m). α − α a(m). a(m), 
or 

α a(m). a(m) = − 1
2  a(m)a(m). α . 

 
Theorem II gives a(m)a(m) ≠ 0; i.e.: 
 

plane α a(m). a(m) = plane α, 
which proves the theorem. 
 
 THEOREM IV.  – Preserving the hypothesis of Theorem III, if α varies then the 
sheaf of planes α will be projective at the contact points of these planes with the ruled 
surface (i.e., the points αa(m)). 
 
 Proof. – Two different planes α will correspond to the distinct points αa(m), and 
conversely.  Therefore, the correspondence between the planes α and the points αa(m) will 
be single-valued and reciprocal. 
 Then, set: 

P1 = a1 Q + y1 R, P2 = x2 Q + y2 R. 
 
 The double ratio of the sequence of points Q, R, P1, P2 (which depends solely upon 
the positions of the forms Q, R, P1, P2) is the number: 
 

1 2

1 2

QP RP

RP QP
= 1 1 2 2

1 1 2 2

y QP x RP

x RP y QP
= 1 2

1 2

y x

x y
. 

 However, we know that: 
 

P1 a
(m) = x1 Q a(m) + y1 R a(m),  P2 a

(m) = x2 Q a(m) + y2 R a(m), 
 
and, in turn, the double ratio of the sequence of planes Q a(m), R a(m), P1 a

(m), P2 a
(m) is 

again that same number1 2

1 2

y x

x y
. 

 
 
 46.  Skew ruled surfaces. – We shall say that the ruled surface a is a skew ruled 
surface when, for any value of t, the tangent planes (if they exist) at two distinct points of 
the line a do not coincide, except perhaps for the lines a that correspond to a system of 
isolated values of t in the interval in question; such generators will then be called singular 
generators. 
 If we suppose that Pa′ is the tangent plane at each point P of an arbitrary non-singular 
generator then Theorem II of no. 45 will show that a′a′ ≠ 0 for any value of t that 
corresponds to a non-singular generator; i.e., that a′ is not reducible to a line segment or a 
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bivector, but is always the sum of a line segment and a bivector.  Similarly, if α is a third-
order form with αa = 0 then Theorem III of no. 45 will prove that the plane α touches the 
skew ruled surface a at the point aα′. 
 
 a. In the case where the form a is not a bivector, for a given value of t, one calls the 
plane that is tangent to the surface at a point at infinity on the line a – i.e., the tangent 
plane to the point aω, precisely – the asymptotic plane of the surface or the generator a.  
The asymptotic plane for the generator a will then be the plane aω. a′ or the plane a′ω. a, 
because since aa′ = 0 (cf., pp. ?), one will have: 
 

aω. a′ = aa′. ω − ωa′. a = − a′ω. a. 
 
 The plane that passes through the line a and is perpendicular to the asymptotic plane 
is called the central plane of the surface for the generator a, and its contact point with the 
surface is called the central point of the generator.  The central plane for the line a is then 
the plane a | (aω. a′ω), since the asymptotic plane a′ω. a possesses the same orientation 
as the bivector aω. a′ω.  Likewise, [a | (aω. a′ω)] a′ is the central point of the line a. 
 One calls the locus of central points on the lines a the line of striction of the skew 
ruled surface. 
 
 b. If a1 is a generator of the skew ruled surface a then the asymptotic plane for the 
line a is the limiting position of the plane that passes through the line a and is parallel to 
the line a1 when it tends to coincide with the line a as one varies on the surface. 
 Set a1 = a(t + h).  The plane that is parallel to a1 and passes through the line a is the 
plane a. a1ω, and upon developing a1 in a Taylor series, one will have: 
 

a. a1ω = a. [aω + h(a′ + q)ω] = h(a. a′ω + a. qω), 
 
where q satisfies 

0
lim
h=

q = 0.  Therefore: 

 
lim plane a. a1ω = plane a. a′ω, 

which proves the proposition. 
 If mod PP1 represents the shortest distance between the two lines a and a1 then the 
central point for the line a will be the limiting position of the point P1 when a1 tends to a 
while remaining on the surface.  Indeed, the point P1 is nothing but the point [a | (aω. 
aω)] a1 .  Upon developing a1 using Taylor’s formula and passing to the limit, one will 
obtain the point [a | (aω. a′ω)] a′, which is the central point of the line a. 
 
 c. If b is a non-zero, second-order form with zero invariant then one can easily prove 
that the line Pa′. b will describe a hyperboloid or a paraboloid of agreement with the 
surface all along the line a when the point P is displaced on the same generator a.  
Similarly, since: 

0
lim
h=

 Pa′. a1 = Pa′. a″, 
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the line Pa′. a″ will indeed describe the osculating hyperboloid to the surface all along 
the line a. 
 
 d. Let P(t) be a point (that is not at infinity), and let I (t) be a unit vector.  Set a = PI , 
so the line a will describe a ruled surface when t varies in the interval considered.  That 
surface will be skew if: 
 

a′a′ = (P′I  + PI ′)(P′I  + PI ′) = 2 PP′I I ′ ≠ 0 ; 
 
i.e., if the vectors P′, I ′ are non-zero then the vectors P′, I , I ′ will not be coplanar.  P′I I ′ 
is then the asymptotic plane for the line PI .  Since I ′ is perpendicular to the vector I , the 
point P will describe the line of striction of the surface when the vectors P′, I ′, | I I ′ are 
coplanar, and conversely. 
 Now, suppose that the line P is the line of striction of for the skew ruled surface PI .  
The fact that the vectors P′, I , | I I ′ are coplanar gives: 
 

P′ =  hI  + k | I I ′, 
 
where h, k are real numbers (k ≠ 0, because PP′I I ′ is not zero).  If Q is a point of the line 
PI  then one will have: 

Q = P + xI , 
 
where x is a real number, and since Q(PI )′ is the tangent plane to the point Q, one can 
write: 

Q(PI )′ = (P + xI )(P′I  + PI ′) = (P + xI )(kI  | I I ′ + PI ′) = P(kI  | I I ′ − x I I ′). 
 
However, the bivectors I  | II ′, II ′ have the same modulus and are rectangular, in such a 
way that if θ is one of the angles that the tangent plane at Q forms with the central plane 
then one will have: 

tan θ = 
x

k
, 

 
a formula that is due to Chasles.  The number k is called the distribution parameter for 
the generator PI . 
 
 
 47.  Developable surfaces. – We say that the ruled surface a is a developable surface 
when for any value of t the tangent plane – if it exists – at each point of the line a − 
except at most one of them − coincides with a fixed plane, which one calls the tangent 
plane along the line a. 
 Therefore, suppose that the tangent plane is Pa′ at each point P of a generator, except 
at the point Q.  Theorem I of no. 45 proves that the tangent plane at the point Q will be 
Qa″, or Qa″′, …, or even less if it is indeterminate.  Likewise, Theorem II of no. 45 is 
applicable, and will permit us to write a′a′ = 0 for every value of t; i.e., a′ will be a line 
segment or a bivector.  Moreover, the line a′ will be contained in the plane Pa′, which is 
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tangent along the generator a, precisely, because Pa′. a′ = − Pa′. a′ + a′a′. P, so Pa′. a′ = 
0. 
 
 a. Let O be a constant, first-order form that is non-zero, moreover, and let A(t) be a 
non-zero form of the same order.  The second-order form OA generates a cone whose 
summit is O.  In the case where the point O is at infinity, the surface OA is further called 
a cylinder.  On the other hand, one knows that (OA)′ = OA′ − i.e., (OA)′(OA)′ = 0 – which 
proves that the cone is a developable surface, just as the tangent plane to the point O is 
indeterminate, because for any positive, whole number x, one will have O(OA)(x) = O. 
OA(x) = 0.  The tangent plane along the line OA will be OAA′. 
 
 b. If aω ≠ 0 and a. a′ω. a″ω ≠ 0 for every value of t then one can state the following 
theorems: 
 
 THEOREM I.  – The tangent plane along the line a is aω. a′, or also the plane a′ω. 
a, which is identical to the first one. 
 
 Proof. – One has aω. a′ = a a′.ω − a′ω. a = − a′ω. a, and since a. a′ω  ≠ 0, the tangent 
plane to the point at infinity aω is precisely the plane aω. a′ = plane a′ω. a, while 
Theorem I of no. 45 implies that plane aω. a′ is tangent along the line a. 
 
 THEOREM II.  − The envelope whose planes are tangent to the surface a has the 
lines a for its characteristics. 
 
 Proof. − Upon setting α = a′ω. a, we will have: 
 

a′ = a″ω. a + a′ω. a′ = a″ω. a, 
  
because a′ is a line segment, and a′ω. a′ =  0.  It will then suffice to take the regressive 
product αα′ in order to see that: 
 

αα′ = (a′ω. a)(a″ω. a) = [a′ω (a″ω. a)] a + [a(a″ω. a)] a′ω = (a. a′ω. a″ω) a, 
 
which proves the theorem. 
 
 Definition.  – One calls the line of regression of the envelope of tangent planes of a 
developable surface the edge of regression. 
 
 THEOREM III.  – The edge of regression of the surface a can be regarded as being 
generated by the point a(a′′′′. a″ω). 
 
 Proof. – Let α = a′′′′. a″ω.  One has: 
 

α′ = a″ω. a  and α″ = ω. a + a″ω. a′, 
so 
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αα′α″ = (a. a′ω. a″ω) [a(a″ω. a) + a″ω. a′′′′] = (a. a′ω. a″ω) a(a′′′′a″. ω), 
 
which establishes the theorem. 
 
 THEOREM IV . – The point of the edge of regression that belongs to the line a is 
given by the regressive product aa′, when it is developed on the tangent plane along the 
line a. 
 
 Proof. – Let P(t) be a point such that PP′P″ ≠ 0 for any value of t.  Since (PP′)′ (PP′)′ 
= PP″PP″ = 0, the line PP′ will describe a developable surface that admits the osculating 
planes PP′P″ to the curve P for its tangent planes, because: 
 

(PP′. ω)(PP′)′ = P′(PP″) = − PP′P″. 
 
That developable surface PP′ is called the osculating developable to the curve P. 
 
 

§ 4. – FRENET FORMULAS. 
 

 48.  Arcs. – Let P(t) be a point that is a continuous function of t.  Let a, b be two 
particular values of t, and let t1, t2, …, tn−1 be a sequence of values such that a ≤ t1 ≤ t2 ≤ 
… ≤ tn−1 ≤ b, or even a ≥ t1 ≥ t2 ≥ … ≥ tn−1 ≥ b.  The upper limit of the set of numbers that 
one can deduce from: 
 
(1)   mod P(a) P(t1) + mod P(t1) P(t2) + … + mod P(tn−1) P(b), 
 
by varying the sequence t1, t2, …, tn−1 is called the length of the arc (on the line P) that is 
bounded by the points P(a), P(b), and is represented by the notation arc P(a) P(b).  The 
line that is bounded by the points P(a), P(b) that has length mod P(a) P(b) is called the 
chord of arc P(a) P(b). 
 Under these conditions, if there exists an upper number to any value of (1) then arc 
P(a) P(b) will be a well-defined real number, since otherwise arc P(a) P(b) = ∞.  For 
example, one will always have: 
 

mod P(a) P(b) ≤ arc P(a) P(b) and arc P(a) P(a) = 0. 
 

 THEOREM I.  – If P(t) is a point, and P′(t) is a (vector) form that is a continuous 
function of t, and if one has P′(t′) ≠ 0 for some particular value t′ of t then the ratio of an 
arc of the line P to its chord will have the limit unity when the extremities of the arc tend 
to the point P(t′). 
 
 Proof. – It results from the hypotheses and Theorem IV of no. 42 that the tangent to 
the line P at P(t′) will be the limiting position of the line that joins two arbitrary points of 
P when these two points tend to coincide at the point P(t′).  One can thus determine two 
different values a and b for t such that a ≤ t ≤ b, and furthermore, such that the line that 
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joins the two arbitrary points of arc P(a) P(b) will make an angle with the line P(a) P(b) 
that is less than a given angle θ that lies between 0 and π / 2. 
 If t0 = a, t1, t2, …, tn−1, tn = b have the same significance as before then if one sets Pr = 
P(tr) for r = 0, 1, …, n then one can write: 

(Pn – P0)
2 = (P1 – P0) | (Pn − P0) + (P2 – P1) | (Pn − P0) + … + (Pn – Pn−1) | (Pn − P0), 

 
and dividing by: 

mod (Pn – P0) = mod P0 Pn 
will give: 

mod P0 Pn = mod P0 Pn cos ϕ1 + … + mod Pn−1 Pn cos ϕn , 
where 

ϕr = (Pr – Pr−1, Pn – P0) for r = 1, 2, …, n. 
 
One then deduces that: 
 
(2)  mod P0 Pn = (mod P0 P1 + … + mod Pn−1 Pn) cos ϕ . 
 
In this formula, ϕ represents a mean angle of the angles ϕ1 , ϕ2 , …, ϕn .  It notably results 

from equation (2) that the number (1) will always be less than mod 0

cos
nP P

θ
, and 

consequently, arc P0 Pn will be a well-defined real number.  Formula (2) will therefore 
persist in the upper limit; i.e.: 

mod P0 Pn = arc P0 Pn cos ψ, 
 
where ψ is a mean angle of the angles that P0 Pn makes with the lines that join two 
arbitrary points of the arc P0 Pn .  If we make P(a) and P(b) tend to the point P(t′) from 
now on then ψ will tend to zero, from which one deduces that: 
 

lim 
arc ( ) ( )

mod ( ) ( )

P a P b

P a P b
 = 

0

1
lim

cosψ ψ=
 = 1, 

 
which is precisely what we had to prove. 
 
 THEOREM II.  – If P(t) is a point, and P′(t) is a non-zero vector that is a continuous 
function of t, and if, in addition, a and b are two values of t such that a ≤ b then one will 
have: 

arc P(a) P(b) = mod
b

a
dP∫ . 

 
 Proof. – Upon agreeing to let ∆ arc P(a) P(t) denote the increment in the function arc 
P(a) P(t) when t passes from the value t to the value t + h, one will obviously have: 
 

∆ arc P(a) P(t) = arc P(a) P(t + h) = 
arc ( ) ( )

mod ( ) ( )

P t P t h

P t P t h

+
+

mod[P(t + h) – P(t)], 
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and upon applying Theorem I in order to simultaneously pass to the limit h = 0, one will 
get: 

d arc P(a) P(t) = mod dP, 
 
a formula that proves the theorem. 
 
 
 49.  Let P(t) be a point, and let P′(t) be a continuous, non-zero function of t.  We will 
let s(t) – or, more simply, s – represent any function of t such that s + c remains well-
defined by the equation: 
(1)      ds = mod dP, 
 
in which the numerical constant c has been chosen arbitrarily, moreover.  Since dt is 
positive, that equation can be written: 

(1)′      
ds

dt
 = mod 

dP

dt
. 

 
 We then let s denote the arc of the line P, and if a, b (a ≤ b) are two arbitrary values 
of t then one will have: 

arc P(a) P(b) = s(b) – s(a). 
 

 We further call the point P(a) for which s(a) = 0 the origin of the arc on the line P. 
 When t varies in the interval considered so as to tend to a value t0, but on the 
condition that 

0

lim
t t=

P be a well-define projective point P0 , we will set: 

 

arc P(a) P0 = 
0

lim mod
t

at t= ∫  dP = [s(t) – s(a)]. 

 Examples. − 
 
 1. Upon considering orthogonal, Cartesian coordinates, in particular: 
 

P = O + xI  + yJ + zK , 
 

with three functions x, y, z of t, one will have: 
 

dP = dx I  + dy J + dz K , 
so 

ds = 2 2 2dx dy dz+ + , 

 
which is the usual formula of analytic geometry. 
 If one still desires them, then: 
 

cos(dP, I ) = 
dx

ds
, cos(dP, J) = 

dy

ds
, cos(dP, K ) = 

dz

ds
, 
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will give the cosines of the angles that the tangent to the point P makes with the 
coordinate axes. 
 
 2. In polar coordinates on the plane, one will have: 
 

P = O + ρ eiϕ I  
or 

dP = (dρ + iρ dϕ) eiϕ I , 
and 

ds = 2 2 2d dρ ρ ϕ+ . 

 
 3. The point P = O + eaϕ  eiϕ I  (a ≠ 0) describes a logarithmic spiral when ϕ varies 
from − ∞ to + ∞ .  If one takes ϕ precisely to be the independent variable then: 
 

P′ = (a + i) eaϕ  eiϕ I , 
and therefore 

mod P′ = 21 a+ eaϕ , 
or furthermore: 

ds = 21 a+ eaϕ  dϕ. 
 
 If ϕ0 and ϕ1 are two particular values of ϕ then: 
 

arc P(ϕ0) P(ϕ1) = 
1

0

21 aa e d
ϕ ϕ

ϕ
ϕ− ∫  = 01

21
( )aaa
e e

a
ϕϕ+ − , 

 
and one will have: 

0

lim
ϕ =−∞

arc P(ϕ0) P(ϕ1) = 1

21 aa
e

a
ϕ+

. 

 
Thus, upon taking the asymptotic point O to be the origin of the arc of the curve, one will 
have for any ϕ: 

s = 
21 aa

e
a

ϕ+
. 

 
 

 50.  Curvature and radius of curvature. – Once more, let P(t) be a point such that 
the vectors P′(t), P″(t) are well-defined for any value of t, and in addition, suppose that 
P′(t) ≠ 0. 
  If s represents the arc-length of the line P then we can consider P to be a function of 
the variable s, and the formula ds = mod dP will permit us to obtain the derivatives of P 

with respect to s by observing that 
dP

ds
 = 

dP dt

dt ds
. 

 We set: 
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(1)      T(s) = 
dP

ds
, 

 
where T is a unit vector that is parallel to the tangent to the line P at the point P, because 
dP

ds
= 

mod

dP

dP
 will result from the fact that mod P ≠ 0.  The vector 

d

ds

T
=

2

2

d P

ds
 is well-

defined, since P″ itself is also well-defined, and if T
d

ds

T ≠ 0 then the plane PT
d

ds

T
 will 

osculate at P. 
 Upon setting: 

(2)      
1

ρ
 = mod 

d

ds

T
, 

 
we will call the number 1 / ρ the curvature of the line P at the point P.  The inverse (viz., 
ρ) of the curvature is further called the radius of curvature at the point P. 
 
 THEOREM.  – In order for the line P to be a straight line, it is necessary and 
sufficient that the curvature be zero at any point P. 
 
 Proof. – Indeed, if the point P describes a straight line then P = O + sI , where O is a 
fixed point of the line P, and I is a constant unit vector.  One will then have T = I  and dT 
/ ds = 0, which will indeed imply that 1 / ρ = 0 for every value of s; the condition is 
therefore necessary.  Now, suppose that one has 1 / ρ = 0 for any value of s; i.e., dT / ds 
is constantly zero.  It will then result that T is a constant vector.  Now, dP = T ds, and in 
turn, d(P – sT) = 0; P – sT = O, where O is a fixed point; the stated condition is therefore 
also sufficient. 
 
 
 51.  For any t, 1 / ρ ≠ 0, we set: 
 

(3)      N(s) = ρ 
d

ds

T
; 

i.e., [formula (2)]: 

N(s) = 
/

mod /

d ds

d ds

T
T

. 

 
The vector dT / ds is not zero, since, by hypothesis, 1 / ρ ≠ 0, so N will be a unit vector, 
just like T, to which it is perpendicular.  Therefore, N, which is parallel to the osculating 
plane at the point P, will be the vector that is parallel to the principal normal at the point 
P (23). 
 While preserving the preceding hypotheses, one sees that: PT is the tangent, PN is the 
principal normal, and PTN is the osculating plane at the point P. 
                                                
 (23) If 1 / ρ = 0 for some value of s, and the osculating lane at the point P is well-defined then only the 
sense of the unit vector that is parallel to the principal normal at the point P will remain indeterminate. 
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 The point A = P + ρN that is situated on the principal normal at the point P will be 
called the center of curvature at the point. 
 
 Examples. – 
 
 1. In orthogonal, Cartesian coordinates: 
 

P = O + xI  + yJ + zK , 
so: 

2

2

d P

ds
 = 

d

ds

T
 = 

2

2

d x

ds
I  + 

2

2

d y

ds
J + 

2

2

d z

ds
K , 

and 

1

ρ
= 

2 2 22 2 2

2 2 2

d x d y d z

ds ds ds

     
+ +     

     
. 

 
Since d2P / ds2 is parallel to the vector N, moreover, one will have: 
 

cos(N, I ) = ρ 
2

2

d x

ds
, cos(N, J) = ρ 

2

2

d y

ds
, cos(N, J) = ρ 

2

2

d z

ds
, 

 
which are equalities that will give the cosines of the angles that the principal normal 
makes with the coordinate axes. 
 The center of curvature Q will likewise have the coordinates: 
 

X = x + ρ2 
2

2

d x

ds
, Y = y + ρ2

2

2

d y

ds
, Z = z + ρ2 

2

2

d z

ds
. 

 
 2. Set v = ds / dt.  (If the variable t represents time then v will be the magnitude of 
the velocity at the point P.)  P′ = vT, and if one takes the derivative with respect to time 
then one will have: 

P″ = v′T + v 
d ds

ds dt

T
 = v′T + 

2v

ρ
N, 

 
where v2 / ρ N is the normal component of the vector P″ (viz., the acceleration).  
Therefore, if one sets norm.comp.P″ = v2 / ρ N then one will get the equation: 
 

ρ = 
2

mod norm.comp.

v
′′P

, 

 
which will provide a very simple construction of the center of curvature when one knows 
the vectors P′, P″.  Through the points P + P′, P + P″ (fig. 5), draw (in the osculating 
plane at P) parallels to the vector N, P′ that intersect at M.  The perpendicular to PM that 
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issues from the point P + P′ will meet the principal normal PN at the center of curvature 
Q, and this will result immediately from considering the similar triangles whose summits 
are the points P, P + P′, Q and P + P′, M, P. 
 

 P 

N 
P″ 

Q 

M 

P′ 

 
 

Figure 5. 
 

 3. The point P = O + h eiϕ I  + k e−iϕ I  describes an ellipse whose semi-diameters are 
h + k and h – k.  One then has: 
 

P′ = h eiϕ i I − k e−iϕ i I, P″ = − h eiϕ I − k e−iϕ I, 
so 

P″ = O – P. 
However: 

O − P′ = P 
2

πϕ + 
 

, 

 
and (example 2) in order to obtain the center of curvature at the point P (fig. 6), it will 
suffice to trace out the parallelogram that circumscribes the ellipse and to carry out the 
construction that is indicated by the figure. 
 

 P′ 
P 

Q 

O 

P″ 

 
Figure 6. 

 
 4. For the cycloid (see no. 17), one likewise has: 
 
 P′ = r I  – r e−iϕ I  = i(M – P), 
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 P″ = r e−iϕ  i I = C − P. 
 
It results from this that the modulus of the normal component of P′ is equal to 12 mod(M – 

P), and consequently: 
ρ = 2 mod (M – P); 

 
i.e., the center of curvature Q = P + ρN is such that P + Q = 2M, and the expression for 
the point Q is: 

Q = M + (M – P) = O + rϕ I  – ri I  + r−iϕ  iI  . 
 
 If we then let O denote the center of curvature of the cycloid at the point P(π) then we 
will see that: 

O1 = O + rπ I  – 2ri I , 
 
so it easily results for the point Q that: 
 

Q = O1 + r (ϕ – π) I  + ri  I  – r e−i(ϕ−π) i I , 
 
and Q describes a cycloid that is equal to the cycloid of the point P that one can deduce 
from the latter by a translation whose vector rπ I  – 2ri  I  gives the magnitude, the 
direction, and the sense. 
 
 
 52.  Now, suppose that the line P is planar (i.e., not straight).  The vector N is parallel 
to the vector iT, and we can give a sign to the curvature 1 / ρ such that one will have, for 
any value of s: 

(1)      
d

ds

T
= 

1

ρ
iT. 

 
 a. The locus of the center of curvature of the line P is the locus of the characteristics 
of the envelope of the normals to that line, because, upon setting a = PiT, one will see 
that: 

da

ds
= TiT –

1

ρ
PT, 

 
and the development of the regressive product a da / ds will give precisely: 
 

a
da

ds
 = PTiT. iT +

1

ρ
PTiT. P = 

1

2ρ
(P + ρiT), 

 
a relation that was to be established. 
 
 b. Set α = (i, T), and take I  to be a fixed unit vector in the plane of the curve P.  α is 
a function of s such that: 
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d

ds

α
 = 

1

ρ
, 

 Indeed: 
cos α = I iT 

and 

− sin α d

ds

α
=

1

ρ
I  i(iT) = − 1

ρ
IT  = − 1

ρ
sin α. 

 
Therefore, if sin α ≠ 0 then: 

d

ds

α
 = 

1

ρ
. 

 
However, in the case where one has sin α = 0 for some certain value of t, if h is a 
constant such that: 

sin(α + h) ≠ 0 
then one will have (24): 

( )d h

ds

α +
= 

1

ρ
  or 

d

ds

α
 = 

1

ρ
. 

 
 c. If one gives the number r as a function of s then the line P will be defined, except 
for its position plane. 
 Indeed, let T0 be a constant unit vector.  Set: 
 

(2)      T = 
ds

i

e ρ
 ∫
  
 

 T0 . 

One will have: 
d

ds

T
= 

1

ρ
iT, 

 
which is nothing but formula (1), and since: 
 

dP

ds
= T, 

one will have: 

(3)     P = P0 + 
ds

i

e dsρ
 ∫
  
 
∫  T0 , 

 
a formula in which P0 represents an arbitrary point of the plane, and the quadratures are 
performed by starting with a definite value of s.  Upon introducing the angle α that was 
defined in b, formula (3) will take the form: 

                                                
 (24) One will arrive at the same result by considering the spherical indicatrix of the curve P (see no. 55).  
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(4)     P = P0 + ( )ie dsα
∫  T0 . 

 
 The locus of points P passes through P0, where it admits the line P0T0 for its tangent. 
 For example, if r is constant then the point P will describe a circle, because upon 
setting s = ρϕ, formula (4) will give: 
 

P = P0 + T0 = P0 – ρ i (eiϕ – 1) T0 = (P0 + ρ iT0) – ρ eiϕ iT0 , 
 
and it is obvious that the point P will describe a circle whose center is P0 + ρiT and 
whose radius is ρ. 
 The reader can, by way of exercise, determine the expression for the point P in the 
following cases: 
 
 Development of the circle………………………. ρ2 = 2as, 

 Epicycloid, hypocycloid, cycloid……………….. 
2 2

2 2

s

a b

ρ+ = 1, 

 Logarithmic spiral………………………………. ρ = as, 
 Clotoyde (?)……………………………………... ρs = a2, 

 Tractrix………………………………………….. ρ = a 2 / 1s ae − , 

 Catenary…………………………………………. r = a + 
2s

a
. 

 
 d. Upon supposing that the point P describes a skew curve, an arbitrary point Q of 
the developable ruled surface that is described by PT will have the expression Q = P + u 
T, where u is a function of s.  In addition, let P1(s) be a point that describes a planar line 
of arc length s whose curvature at each point is the same as that of the curve P at the 
corresponding point.  One can represent the points of the developable surface PT on the 
plane of the line P1 by making the point Q correspond to the point: 
 

Q1 = P1 + u T1 , 
and since: 

mod dQ = mod dQ1 = 
2 2

2
1

du u

ds ρ
 + + 
 

 ds, 

 
the correspondence considered will preserve the magnitude of the arcs that are traced on 
the developable.  In general, we will express that property by saying that one can develop 
the surface PT on a plane, or also by saying, more simply, that the surface PT is 
developable. 
 
 Examples. – 
 
 1. If the curve P1 rolls without slipping on another curve P1 then the trajectory of a 
point Q that is invariably linked to P1 is called a roulette.  Therefore, let O be a fixed 
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point of the curve P (fig. 7), and let Q0 be the position of Q when the curve P1 touches P 
at the point O.  If one has: 

arc OP = arc OP1 
 
then one can consider the points P and P1 to be functions of the same variable s, which is 
the arc-length that is common to the two curves.  Upon letting T1, ρ1 be the elements that 
we called T, ρ when they related to P, but now they relate to P1, and supposing that the 
point P takes the position P1 after rolling through an angle ϕ (which is a function of s), 
one will have: 
(5)    T = eiϕT1 ,  Q – P = eiϕ (Q0 – P1). 
 

 

O P T 

Q 

Q0 

T1 

P1 

 
Figure 7. 

 
 Take the derivative of the first equality. From formula (1), that will give: 
 

1

ρ
iT = 

1

1

ρ
eiϕ  i T1 + eiϕ  i T1 , 

 
or, for the first of formulas (5): 

(6)      
1

ρ
− 

1

1

ρ
= 

d

ds

ϕ
, 

 
and one thus recovers a formula that is due to Savary.  If we now derive the second 
formula (5), then that will give: 
 

dQ

ds
− T = − eiϕ T1 + eiϕ i (Q0 – P1), 

or 

dQ

ds
= 

1

1 1

ρ ρ
 

− 
 

i (Q – P), 
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which proves that in the case where 
1

ρ
≠

1

1

ρ
the normal to the point Q of the roulette that 

is described by Q will be the line that joins the point Q at the contact point of the moving 
curve with the fixed curve. 
 
 2. If the point P1 describes the locus of centers of curvature of the curve P then one 
will have P1 = P + ρ iT, and if one lets s1 and 1 / ρ1 denote the arc-length and curvature, 

resp., at P1 of the curve P1 with T1 = dP1 / ds then one will have 1dP

ds
= 

d

ds

ρ
i T.  If ρ is an 

increasing function in the interval considered then one will have: 
 
(1)      ds1 = dρ, 
 
(2)      T1 = i T. 
 
Therefore, let a and b be two values of s (a < b).  Formula (1) gives: 
 

s1(b) – s1(a) = ρ(b) – ρ(a), 
 

which shows that arc P1(a) P2(b) is equal to the difference between the radii of curvature 
at the points P(a) and P(b).  On the other hand, one can deduce from formulas (1) and (2) 
that: 

1

1

d

ds

T
 = 1

1

d ds

ds ds

T
= − 1 d

ds

ρ
ρ

T = 
1 d

ds

ρ
ρ

iT1 , 

and since dρ is positive: 

ρ1 = ρ 
d

ds

ρ
. 

 
 3. Now, let a be a constant number.  Set: 
 

P1 = P + aT and P2 = P + ρ iT . 
One has: 

1dP

ds
 = T + 

a

ρ
 iT, 

and in turn: 

(P2 – P1) i 1dP

ds
 = (ρiT – aT) i

a
i

ρ
 + 
 
T T  = ρ a

ρ
 – a = 0, 

 
a relation that proves that the binormal to the point P1 to the line P1 passes through the 
center of curvature at the corresponding point P of the line P (25). 

                                                
 (25) Similarly, if the point P describes a skew curve, and if P1 = P + aT, P2 = P + ρN then one will have: 
 

(P2 – P1) | dP1 = 0, 
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 4. Once again, let P1 = P + u1 T (fig. 8), where u1 is a function of the arc-length s of 
the locus of the point P.  Set: 
 

α1 = 1,
dP

ds
 
 
 
T , M = P + ρiT,  Q1 = P + u1 cot α1 i T. 

 

Q1 

M 

P T 
P1 

T1 
α1 

θ 

 
Figure 8. 

 Since: 

1dP

ds
 = 1 11

du u
i

ds ρ
 + + 
 

T T , 

one will have: 

T 1dP

ds
= 1u

ρ
TiT or 1mod

dP

ds
 
 
 

 sin α1 = 1u

ρ
. 

 
However, if s1 is the arc-length of the curve that is described by the point P1 then one will 
have: 

ds1 = 1mod
dP

ds
 
 
 

 ds,  so ds1 = 1

1sin

u ds

α ρ
 

and 

(1)      ds1 = 1

1sin

u

α
dθ, 

 
in which θ is the angle that the vector T makes with a fixed vector in the plane (see this 
number, part b). 

 Since 1dP

ds
 T = 1 + 1du

ds
, one will have: 

 

1mod
dP

ds
 
 
 

 cos α1 = 1 + 1du

ds
, 

                                                                                                                                            
 
which shows that the normal plane at the point P1 will pass through the center of curvature P2 at the point 
P. 
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(if u1 if an increasing function of s), and by virtue of the formulas that we just used in 
order to prove formula (1), one can also write: 
 
(2)     du1 = (u1 cot α1 – ρ) dθ . 
 
 Upon observing that that Q1 is the point at which the normal to the point P meets the 
normal at P1 and the fact that M is the center of curvature at the point P, one will have the 

geometric interpretation of formulas (1), (2), since 1

1sin

u

α
, u1 cot α1 – ρ are the 

magnitudes of the line segments P1Q1, MQ1 .  Formulas (1), (2) are due to Mannheim in a 
treatise (Cours de Géométrie descriptive) to which we shall refer the reader for the 
applications. 
 
 5. We shall always suppose that a is a constant number, and set P1 = P + aT.  What 
is the necessary and sufficient condition for the point P1 to describe a straight line?  If 1 / 
ρ1 is the curvature at the point P1 then the locus of points P1 will be a straight line when 
one has 1 / ρ1 = 0 for all values of s.  One can arrive at that condition by using the 
expression for dT1, but one finds the result more simply by observing that the point P1 
will describe a straight line when the vector dP1 has a constant direction; i.e. (see no. 37 

h) when 
2

1 1
2

dP d P

ds ds
 = 0 for all values of s.  Now, since we suppose that 1 / ρ ≠ 0, we will 

have: 
 

  1dP

ds
= T + i

a

ρ
T = 

1

ρ
(ρT + ai T), 

 

  
2

1
2

d P

ds
= 

1

ρ
iT − 2

a

ρ
T − 2

a d

ds

ρ
ρ

iT = 
2

1 d
a a i

ds

ρρ
ρ

  − + −  
  

T T , 

 

  
2

1 1
2

dP d P

ds ds
 = 

3

1
a

d
a a

ds

ρ
ρρ ρ− −

 T i T = 2 2
3

1 d
a a

ds

ρρ ρ
ρ
 + − 
 

, 

 
in such a way that the point P1 will describe a straight line when, for any value of s: 
 

(1)      aρ = ρ2 + a2 
d

ds

ρ
, 

or even: 
ρ2 + a2 = 2 2 /

0
s aa e , 

 
where a0 is an arbitrary, non-zero constant. 
 For any a0, there exists a value of s for which ρ = 0, and since the preceding formulas 
will persist in the limit ρ = 0, if one takes the origin of the arc to be the point that 
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corresponds to ρ = 0 then one will find a0 = a, precisely, as the value of the constant, in 
such a fashion that the desired condition will take the form: 
 

(2)      ρ2 = a2 ( )2 / 1s ae −  . 

 
 The curve that is described by the point P1 whose radius of curvature is given by 
formula (2) is a tractrix, and the locus of its centers of curvature is a catenary.  Moreover, 
the third example will provide a very simply geometric construction of the tractrix when 
the corresponding catenary is known, and conversely. 
 For a catenary, let σ and 1 / τ denote the arc-length and curvature at the point that is 
precisely the center of curvature of the tractrix P1 at P1 .  The second example shows us 
that dσ = dρ.  However, for σ = 0, one will have ρ = 0, and upon simultaneously 
supposing that σ = 0, one can write: 
(1)      σ = ρ. 
 
 Meanwhile, the same example will further give us that: 
 

      τ = ρ 
d

ds

ρ
, 

along with formula (1): 

      τ = a + 
2

a

ρ
, 

 
an expression that, when compared to formula (3), will finally give: 
 

      τ = a + 
2

a

σ
, 

 
which is a relationship between the arc-length and the radius of curvature for a catenary. 
 
 
 53.  Torsion and radius of torsion. – If the line that is described by the point P is not 
a straight line, and the function P satisfies the conditions that were stated in no. 51 then 
the unit vectors T, N will be defined, and upon setting: 
 
(1)      B(s) = | T(s) N(s) 
 
for any value of s, the vector B that is thus defined will be parallel to the binormal at the 
point P. 
 Upon assuming that dB / ds is a well-defined function of s, dB / ds will be a normal 
vector to the vector B; i.e., it will be parallel to the osculating plane PTN at P, at least 
when the vector dB / ds is not zero.  If one is further given that B | T = 0 then one will 
have: 
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1d

ds ρ
+B

T B N = 
d

ds

B
T  = 0  (because B | N = 0), 

 
and the vector dB / ds will be zero or parallel to the vector N. 
 We let 1 / τ represent the real number – which can be positive, negative, or zero – 
such that: 

(2)      
d

ds

B
 = 

1

τ
N. 

 
 The absolute value of the number 1 / τ is then the modulus of the vector dB / ds, and 
one calls the number 1 / τ the torsion of the curve P at the point P, or one also calls the 
inverse of the torsion the radius of torsion at the point P. 
 
 THEOREM.  – In order for the line P to be a planar curve, it is necessary and 
sufficient that the torsion be zero for any value of s. 
 
 Proof. – Indeed, if the curve is planar then B will be a vector that is perpendicular to 
the plane of the curve, and consequently: 
 

d

ds

B
 = 0 or 

1

τ
 = 0, 

 
which shows that the stated condition is indeed necessary.  On the other hand, suppose 1 / 
τ = 0 for any value of s.  B is a constant vector, and if P0 is a fixed point on the line P 
then one will have: 

[(P – P0) | B] = T | B = 0; 
 

i.e., [(P – P0) | B will be a constant number.  However, if one makes P tend to P0 then the 
vector P − P0 will tend to a vector that is parallel to T, and in turn, [(P – P0) | B = 0, 
which amounts to saying that the curve P will be traced on the plane P0 | B, so the 
condition is indeed sufficient. 
 
 
 54.  Frenet formulas. – We have the following formulas that relate to the vector T, 
N, B, and whose geometric significance is well-known: 
 
(1)  T2 = N2 = B2 = 1, 
(2)     N | B = B | T = T | N = 0, 
(3)    T = | NB, N = | BT, B = | TN, 
 
which expresses the idea that T, N, B are unit vectors (1) that are mutually perpendicular 
(2).  The trivector TNB is, moreover, positive and equal to 1

6 ω, and since we suppose 

implicitly that: 
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dP

ds
 = T, 

 
in order to define the sign of T, one will get (26): 
 

(4)     

1
,

1
,

1 1
.

d

ds

d

ds
d

ds

ρ

τ

ρ τ

 =

 =

 = − −


T
N

B
N

N
T B

 

 
 The first two of these formulas are known already [no. 51, formula (2) and no. 53, 
formula (2)], and in order to prove the third one, it will suffice to consider the expression 
N = | BT, from which one deduces immediately that: 
 

d

ds

N
 = 

1 1

ρ τ
+B N NT = 

1 1

ρ τ
+B N NT  = − 

1 1

ρ τ
−T B . 

 
 Upon representing three rectangular, unit vectors by I , J, K , one can write, by starting 
with formulas (4): 
 

                                                
 (26) The linear equations (4) show that a curve is determined, up to position,  as a function of the arc-
length when one possesses expressions for the curvature and torsion − viz., 1 / ρ and 1 / τ , resp. − as 
functions of arc-length.  Indeed, upon taking two rectangular unit vectors T0 and N0 and setting B0 = | T0 
N0, one will express T, N, B as functions of the constants T0, N0, B0 by developing them in a convergent 
series [see G. PEANO, “Integrazione per serie delle equazioni differenziali lineari,” Atti Acc. Torino, 

1887.]  Therefore, if P0 is a fixed point then one will have P = P0 + ∫ T ds, and the curve will be well-
defined, up to position.  It will pass through the point P0, and the lines P0T0, P0N0, P0B0 will be the tangent, 
principal normal, and binormal at that point, respectively. 
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(5)   

1
cos( , ) cos( , ),

1
cos( , ) cos( , ),

1
cos( , ) cos( , ),

1
cos( , ) cos( , ),

........................................,

1 1
cos( , ) cos( , ) cos( , ),

................................

d

ds

d

ds

d

ds

d

ds

d

ds

ρ

ρ

ρ

τ

ρ τ

=

=

=

=

= − −

T I N I

T J N J

T K N K

B I N I

N I T I B I

................................,



















 

 
because, for example: 

d

ds

T
I  = 

1

ρ
N | I , 

or 
d

ds
(T | I ) = 

1

ρ
(N | I ). 

 
 Formulas (4), when they are known in the form (5), are due to Frenet, although they 
are often called the Serret formulas. 
 
 
 55.  Spherical indicatrix and contingency angle. – Let I (t) be a unit vector with a 
non-zero derivative in the interval considered, and let O be a fixed point.  If one sets: 
 

Q = O + I  
 
then the point Q will describe a curve Q on the spherical surface with center O and unit 
radius that one calls the spherical indicatrix of the vector I .  In the particular case where 
the vector I  is parallel to a fixed plane, the curve Q will be an arc of a great circle on the 
sphere.  If one represents the arc-length that is described by the point Q by ϕ then one 
will have: 
(1)      dϕ = mod dP. 
 
 If T, N, B are the vectors that we already considered relative to the curve P, and if we 
set, in an analogous manner: 
 

Q1 = O + T, Q2 = O + B, Q3 = O + N, 
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then the points Q1, Q2, Q3 will describe the spherical indicatrices for the tangent, 
binormal,and principal normal, respectively, of the curve P, which are curves whose arc-
lengths ϕ1, ϕ2, ϕ3, by virtue of formula (1) and the Frenet formulas, will be given by the 
equations: 

 dϕ1 = 
1

ρ
ds, 

 

 dϕ2 = 
1

modτ
ds, 

 

 dϕ3 = 
2 2

1 1

ρ τ
+ ds, 

 
the first two of which provide a geometric interpretation for the curvature and modulus of 
the torsion in terms of the spherical indicatrices of the tangents and binormals to the 
curve P.   For even more symmetry, we say that 1 / ρ and 1 / τ are the first and second 
curvature of the curve P at the point P, which leads us naturally to let 1 / λ denote the 
third curvature (or normal curvature) when we set: 
 

1

λ
 = 

2 2

1 1

ρ τ
+ , 

 
with the choice of + sign in front of the radical.  The latter of the three preceding 
formulas then expresses the idea that the elementary arc-length of the spherical indicatrix 
of the principal normal at the point that corresponds to the point P is equal to the product 
of the third curvature at P times ds. 
 We shall return shortly to the vector I  in order to also call dϕ the contingency angle 
of the vector I , which one usually expresses by saying that the vector I  makes the angle 
dϕ with the infinitely close vector I (t + dt).  Moreover, the exact significance of these 
words is nothing but that which is expressed by formula (1), and the geometric 
interpretation is provided by the spherical indicatrix of the vector I .  In particular, if the 
vector I  is parallel to a fixed plane then dϕ will represent the angle that is defined 
between dI  and a fixed vector in the plane. 
 We say that the contingency angle of the vector J(t) − which is assumed to be non-
zero, along with its derivative, in the interval considered − is the contingency angle of the 
unit vector J / mod J.  If we represent the contingency angle of the vector J by dψ then 
we will have: 

(1)′      dψ  = 2

mod( )

(mod )

dJ J
J

. 

 
 Indeed, the vector dI  is perpendicular to the vector I  and mod(I  dI ) = mod dI .  
Formula (1) then gives: 

dϕ  = mod(I  dI ), 
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and upon setting J = (mod J) I : 
 

dJ = (mod J) dI  + (d mod J)I , 
or 

J dJ = (mod J)2 I dI . 
 

Moreover, by definition, dψ = dϕ, which establishes formula (1)′, which we shall give 
some applications of in the following chapter. 
 
 

_______ 
 

 
 
 
 
 



CHAPTER III. 
_____ 

 
APPLICATIONS. 

_____ 
 
 

 In this chapter, we shall show how the Frenet formulas can easily lend themselves to 
the study of the principal properties of curves and the ruled surfaces that relate to a curve. 
 The hypotheses and conventions that we shall retain in this chapter will be the 
following ones: The vector T, N, B are defined, along with their derivatives, at every 
point of the curve considered.  The number 1 / ρ (viz., the curvature) is not annulled 
when the curve is not a straight line.  Likewise, if the curve is not a planar curve then the 
number 1 / τ (viz., torsion) is always non-zero (27).  Finally, the notations T1, N1, B1, ρ1, 
τ1 will have the same significance at a point P1 that they have at the point P without the 
primes. 
 

§ 1. – HELIX. 
 

 56.  If the point P describes a planar curve then the vector B, which is parallel to the 
normal, will always be perpendicular to the plane of the curve, and consequently, the line 
PB will describe a cylindrical surface such that the line P will be a cross-section.  An 
arbitrary point P1 of the cylindrical surface that is generated by the line PB will be given 
by the relation P1 = P + uB.  The numbers s, u that determine the position of P1 on the 
surface will be called the coordinates of P1, upon taking the curve P itself to be the 
coordinate axis and the point P0 (s0 = 0) for the coordinate origin.  The number s is the 
abscissa and the number u is the ordinate of the point P1 .  In particular, if u is a function 
of s then the point P1 will describe a curve on the cylindrical surface when s varies. 
 Upon considering a planar rectangular coordinate system, we can make the point P1 
of the cylinder correspond to the point of the plane whose coordinates are s and u, and 
conversely, and the fact that a similar correspondence is established by saying that one 
develops the cylindrical surface onto the plane (28). 

                                                
 (27) Our goal is not to study singular points.  With the restrictions that we just stated, we are excluding 
the singular points on the curve P exactly.    
 (28) Let O be a fixed point, and let I (t) be a unit vector whose derivative is not zero.  An arbitrary point P 
of the conical surface that is generated by the line OI  will be given by the relation P = O + uI, and if u is a 
function of t then the point P will describe a curve on the conical surface when t varies.   If O is a fixed 
point, and J is a constant unit vector in a fixed plane then upon setting: 
 

P1 = O1 + u eiϕ J  with  dϕ = mod dI (see no. 55), 
 

we can represent the cone OI  in the fixed plane, and, as for the cylinder, we will say that one develops the 
cone onto the plane, because: 

mod dP = mod dP1 = 2 2( mod )du u d+ I . 
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 57.  One says helix to refer to any curve that is traced upon a cylinder and cuts the 
generators of that cylinder with a constant angle, except for the very particular cases in 
which that angle is zero or equal to π / 2.  The development of the cylinder onto the plane 
then transforms a helix into a line. 
 
 THEOREM I.  – The ordinate of an arbitrary point of a helix that is traced upon the 
cylinder PB is proportional to its abscissa.  Conversely, any curve that is traced upon the 
cylinder PB is a helix if the ordinate of an arbitrary point is proportional to its abscissa. 
 
 Proof. – We have said that if u is a function of s then the point: 
 

P1 = P + uB 
 
will describe a line on the cylinder.  By taking the derivative of the two sides of the 
equation, in which B will figure as a constant vector, one gets: 
 

1dP

ds
= T + 

du

ds
B. 

 
 If ϕ is the constant angle by which the curve P1 cuts the generators of the cylinder 
then: 

tan ϕ  = 1

1

mod( )

|

dP

dP

B
B

 = 
mod

du

BT
ds = 

ds

du
 

or 
du = cot ϕ ds. 

 
Upon supposing that the point P1 coincides with the point P0 at the origin (where s = 0), 
one will then have the equation: 

u = s cot ϕ, 
 

which indeed shows that the ordinate (viz., u) is proportional to the abscissa (viz., s) at 
any point of the helix that is described by P1 . 
 Conversely, if u = as (a ≠ 0) then the point P will describe a curve that cuts the 
generators at an angle whose cotangent is a; i.e., the point P1 will describe a helix 
precisely. 
 
 Remark. – Let P1 be a point of the helix that cuts the generators of the cylinder PB at 
a constant angle ϕ .  One has: 
(1)      P1 = P + s cot ϕ B, 
so 

(2)      1dP

ds
 = T + cot ϕ B; 

 
however, upon letting s1 denote the arc-length of the curve P1 , so: 
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ds1 = mod dP1 = 21 cot ϕ+ ds 
and 
(3)      ds = sin ϕ ds1 , 
 
one will have s = s1 sin ϕ, which permits us to construct s1 when we are given s and ϕ. 
 
 THEOREM II.  – At any point of the helix P1, the ratio of the curvature to the torsion 
is constant, and conversely, if the ratio of the curvature to the torsion is constant at each 
point of a curve then that curve will be a helix. 
 
 Proof. – Indeed, one has: 

      T1 = 1

1

dP

ds
 = 1

1

dP ds

ds ds
, 

and by virtue of formulas (2), (3): 
(4)      T1 = sin ϕ T + cos ϕ B. 
 
 Now, dT1 / ds = sin ϕ / ρ N implies that dT1 / ds1 = sin2 ϕ / ρ, and if ρ1 is the radius 
of curvature at the point P1 then: 
 

(3)     ρ1 = 2sin

ρ
ϕ

,  since N1 = N. 

 
 For the vector B1, one will have: 
 

B1 = | T1 N1 = | (sin ϕ T + cos ϕ B) N = sin ϕ | TN + cos ϕ | BN, 
so 
(6)      B1 = sin ϕ B – cos ϕ T. 
 
 Now, the derivative of B1 with respect to s1 is: 
 

      1

1

d

ds

B
= − 

sin cosϕ ϕ
ρ

 N, 

 
and if one takes into account the definition of 1 / τ1 and the second of formulas (5) then 
one will get: 

(7)       τ1 = − 
sin cos

ρ
ϕ ϕ

, 

 
a formula that will indeed prove that ρ1 / τ1 = − cot ϕ when one compares it to (5); i.e., 
the ratio of the curvature to the torsion will be constant at every point P1 of the curve P1 . 
 Conversely, if: 

1

1

ρ
τ

 = a  (a constant) 
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then the first two Frenet formulas will give: 
 

1

1

d
a

ds

T
 = 1

1

d

ds

B
; 

i.e.: 
a T1 – B1 = K , 

 

where K  is a well-defined constant vector of modulus 21 a+ .  One deduces K  | T1 = a 
from this, which expresses the constancy of the angle (T1, K ), and in turn, the fact that 
the curve P1 is a helix that is traced upon the cylinder that is described by the line P1K . 
 
 THEOREM III.  – At every point P1 of a helix that is traced on the cylinder PB, the 
binormal will be normal to the cylinder at P1, and conversely, if the binormal to a curve 
P1 on the cylinder PB at a point P1 is the normal to the cylinder at P1 then the curve 
P1will be a helix. 
 
 Proof. – If the curve P1 is a helix on the cylinder P1 then the normal P1N1 at the point 
P1 will be parallel to the vector N; i.e., it will be perpendicular to the tangent plane to the 
cylinder at P1 . 
 Conversely, if the vector N1 at each point P1 of a curve P1 that is traced on the 
cylinder is parallel to the normal to the cylinder at P1 then it will be perpendicular to B; 

i.e., N1 | B = 0, or 1 / ρ1 N1 | B = 0, or by virtue of the first Frenet formula, 1

1

d

ds

T
 B = 0; 

however, 
1

d

ds
(T1 | B) = 1

1

d

ds

T
 B, so T1 | B = const.; i.e., the vector T1 makes a constant 

angle with the vector B, precisely, so the curve P1 will be a helix, since it cuts the 
generators of the cylinder at a constant angle. 
 
 
 58.  A helix is called ordinary or circular when the cylinder on which it is traced is a 
surface of revolution. 
 
 THEOREM. − The ordinary helix is the only skew curve with constant curvature and 
torsion (Puiseux’s theorem). 
 
 Proof. – If the point P describes a circle then ρ will be constant, and formulas (5), (7) 
of the preceding number will indeed show that the ordinary helix is a skew curve whose 
curvature and torsion are constant. 
 Conversely, if ρ1 and τ1 are constants for a curve P1 then the ratio ρ1 / τ1 will be 
likewise constant, and the point P1 will describe a helix.  Formula (5) will then give ρ = 
const.; i.e. (see no. 52, c), the point P will describe a circle, and the helix P1 will be an 
ordinary helix. 
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 a. Let O be a fixed point, let I  be a fixed unit vector in the plane, and let r be a 
constant number.  If P = O + r eiθ I  then the line PB will describe a cylinder of revolution 
that has the line OB for its axis, and a circle with center O and radius r for its cross 
section.  Since s = rθ, the point: 
 

P1 = O + r eiθ I  + rθ cot ϕ B 
 
will describe an ordinary helix. 
 The points P1(0), P1(2π) (where θ is the independent variable) are situated on the 
generator of the cylinder that passes through the point P1(0), and the distance between 
them is called the step of the helix.  Now, we have: 
 
 P1(0)  = O + rI , 
 P1(2π)  = O + rI  + 2πr cot ϕ B, 
and 

mod P1(0) P1(2π) = ± 2πr cot ϕ, 
 

according to whether ϕ < π / 2 or ϕ > π / 2.  The number ± r cot ϕ is called the reduced 
step, and one obtains it by dividing the step by 2π. 
 
 b. The derivative of P1 with respect to θ: 
 

1P′  = r eiθ i I  + r cot j B 

 
gives a very simple construction of the tangent to the point P1 by making use of the 
reduced step ± r cot ϕ . 
 
 c. The line 1 1PP′  describes a developable surface that one calls the ordinary 

developable helicoid.  If a is a constant number then: 
 

P2 = P1 + 1aP′  
 
will describe a curve that is traced on the helicoidal surface 1 1PP′  and, if d is its distance 

from the line OB then one will have: 
 

1
2 mod(OB). d = mod P2OB or d = 2 mod P2 OB. 

However: 
P2OB = P1OB + 1aP′ OB = rOB(eiθ I ) + arOB(eiθ iI ), 

so 

d = 2r 21 a+ . 
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 Consequently, the point P2 will describe a curve that is traced on a cylinder of 

revolution with axis OB and whose cross-sectional radius will be r 21 a+ .  One will 
have: 

2P′  = 1 1P aP′ ′′+ . 

 
However, 1P′ | B = r cot ϕ, 1P′′ | B = 0, and in turn: 

 

2P′ | B = r cot ϕ ; 

 
i.e., the point P2 will describe a helix. 
 The step of the helix at the point P2 will be the modulus of the vector P2(2π) – P2(0), 
and since: 

1(0)P′  = 1(2 )P π′ , 

one will have: 
P2(2π) – P2(0) = P1(2π) – P1(0), 

 
which will prove the equality of the steps that are described by P1 and P2 . 
 
 d. If one sets Q = O + (a + rθ cot ϕ) B then the line QP will describe an ordinary 
skew helicoid whose line OB will be the line of striction.  It will have a director plane if a 
= 0, and a director cone if a ≠ 0. 

 On the other hand, P1 – Q = r eiθ I  – a B or mod QP1 = 2 2r a+ , and the point P2 = 
Q + b(P1 – Q), where b is a constant number, will describe a helix that is traced on a 
cylinder with axis OB, and whose step will be equal to that of the helix that is described 
by the point P1. 
 
 

§ 2. – RULED SURFACES THAT RELATE TO A CURVE.  
 

 When t varies, the planes PNB, PBT will be tangents to two developable surfaces that 
one calls the polar surface and the rectifying surface of the curve P.  Similarly, the lines 
PN, PB will generate ruled surfaces that one calls the surface of principal normals and 
the surface of binormals of the curve P, respectively.  As we have already seen, the line 
PT describes the osculating developable of the curve P, which is again the envelope of 
the plane PTN. 
 These are precisely the surfaces that we presently propose to study. 
 
 
 59.  Polar surface. – Set: 

α = PNB, 
 
and take the derivatives (cf., the Frenet formulas): 
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d

ds

α
 = TNB – P

1 1

ρ τ
 + 
 

T B B + 
1

τ
PNN = TNB +

1

ρ
PBT, 

or 

(1)      
d

ds

α
= 

1

ρ
(P + ρN) BT ; 

 
i.e., the plane dα / ds is parallel to the rectifying plane at P. 
 The characteristic of the envelope α in the plane α, or the generator of the polar 
surface that corresponds to the point P, is the line α dα / ds, or even, from formula (1), 
the line (P + ρN) B. 
 Therefore: 
 
 The generator of the polar surface that corresponds to the point P passes through the 
center of the curvature P + ρN and is parallel to the binormal. 
 
 In order to determine the edge of regression of the polar surface, one can consider that 
surface as being generated by the line: 
 

a = (P + ρN) B, 
 
and develop the regressive product a da / ds in the plane PNB.  Now: 
 

da

ds
 = 

1

ρ
(P + ρN) N + 

d

ds

ρ ρ
τ

 − − + 
 
T T B N B = 

1

τ
PN – 

d

ds

ρ
BN, 

 
and if the curve P is skew (viz., 1 / τ  ≠ 0) then: 
 

da

ds
= 

1

τ
d

P
ds

ρτ − 
 

B N . 

 
The line da / ds will then be parallel to the principal normal to the point P, its distance to 
the line PN will be – τ dρ / ds, and consequently, the point P + ρN – τ dρ / ds B will be 
common to the lines a and da / ds; i.e., the edge of regression of the polar surface will be 
described by the point P + ρN – τ dρ / ds B. 
 
 b. If the curve P is planar then the polar surface will be a cylinder.  The cross-
section is the locus of centers of curvature P + ρN of the curve.  It is the limiting position 
of the sphere that is determined by four points of the curve that tend to P.  By analogy, 
the circle with center P + ρN (viz., the center of curvature) that passes through the point 
P will be called the osculating circle to the curve P at the point P. 
 
 c.  We say that the curve P is a spherical curve when it is traced on a sphere.  In 
order for the curve P to be a spherical curve, it is necessary and sufficient that the point P 
+ ρN – τ dρ / ds be a fixed point, a condition that one can write as: 
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d d
P

ds ds

ρρ τ + − 
 

N B  = 0, 

or, in an equivalent manner: 
d d

ds ds

ρ ρτ
τ

 +  
 

 = 0. 

 
 

 60.  Rectifying surface. – Set: 
α = PBT. 

The Frenet formulas give: 
d

ds

α
= − 

1

ρτ
P(ρ TN + τ NB). 

 
 The line α dα / ds is the generator of the rectifying surface that corresponds to the 
point P, which is, moreover, situated in the plane α, dα / ds; i.e., the rectifying surface 
contains the curve P. 
 In order to determine a second-order form whose position describes the rectifying 
surface, it then suffices to determne the regressive product of the bivectors of the forms 
α, − dα / ds.  These bivectors BT, ρ TN + τ NB are such that: 
 

BT(ρ TN + τ NB) = TNB (ρ T – τ B), 
 

and if α is a second-order form that generates the rectifying surface then one can set: 
 

a = P(ρ T – τ B). 
 The determinant: 

δ = d d

ds ds

ρ τ
ρ τ  

 
will be annulled when ρ / τ is a constant, and conversely, if the conditions that we just 
imposed on ρ and τ are satisfied. 

 We will have (ρ T – τ B)
d

ds
 (ρ T – τ B) = − δTB, and since the condition (ρ T – 

τ B)
d

ds
 (ρ T – τ B) = 0, or d = 0, or ρ / τ = const. for any s expresses the idea that the 

direction of the vector ρ T – τ B is constant, we will have: 
 
 The helix is the only skew curve that has a cylinder for its rectifying surface. 
 
 Upon developing the regressive product α dα / ds on the plane PBT, one obtains a 
first-order form with the same position as the form: 
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τ (ρ T – τ B) + δP, 
and consequently: 

tan ϕ = 
τ
ρ

± , 

so 

(1)      dϕ = 2 2

δ
ρ τ

±
+

ds, 

 
and if ψ is the contingency angle of the vector ρ T – τ B then: 
 

(2)    dψ = 
2

mod ( ) ( )

[mod ( )]

d

ds
ρ τ ρ τ

ρ τ

− −

−

T B T B

T B
 ds = 2 2

δ
ρ τ+

ds . 

 
 Upon developing the rectifying surface on a plane, the angle ϕ will not change, and ψ 
will become the angle that the transform of the generator makes with a fixed line in the 
plane.  However, formulas (1), (2) give dψ = ± dϕ or ψ ∓ ϕ = const.  Therefore: 
 
 Upon developing the rectifying surface onto a plane, the curve P will transform into a 
line (29) (Lancret’s theorem) 
 
 
 61.  Surface of principal normals. – If we set: 
 

a = PN 
then we will get: 

da

ds
= TN + P

d

ds

N
 = − 

1

ρ
PT − 

1

τ
PB + TN, 

and in turn: 
da

ds

da

ds
 = 2 TNB

d

ds

N
= − 

2

τ
PTNB. 

 
 The surface of principal normals of a skew curve is a skew ruled surface, and 
conversely. 
 
 The tangent plane to the surface of normals at the point P is the plane P da / ds = 
plane PTN.  Consequently: 
 

                                                
 (29) Indeed, if the point P describes a planar line then the point P1 = P + uT will describe a straight line 
when the vector dP1 makes a constant angle θ with a fixed vector I  in the plane (no. 52, c and no. 50).  
Now, if θ is the angle that T makes with I , and α is the angle between T and dP1 then the condition dθ1 = 0 
will be equivalent to dθ = ± dα. 
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 The osculating plane at P to the curve P is the tangent to the surface of normals at the 
point P, or, in other words, the osculating developable to the curve P and the surface of 
principal normals agree along the curve P. 
 
 Likewise, since the plane that is tangent to the surface of normals at the center of 
curvature P + ρN is: 

(P + ρN) 
da

ds
 = plane PNB, 

one will have: 
 
 The surface of normals and the polar surface agree along the locus of the centers of 
curvature for the curve P. 
 

 The asymptotic plane for the generator is nothing but the plane a.
da

ds
ω.  Now: 

da

ds
ω = − 1

ρ
 T – 

1

τ
B, 

so 

a.
da

ds
ω = P 

1 1

ρ τ
 − 
 

TN NB . 

 

The bivector of the form a.
da

ds
ω  is therefore 

1

ρ
 T – 

1

τ
B, whose index is the vector 

1

ρ
 B 

– 
1

τ
T, which is parallel to the vector ρ T – τ B.  Consequently: 

 
 The asymptotic plane for the generator of the surface of normals that passes through 
P is the perpendicular to the generator of the rectifying surface that passes through the 
same point P. 
 
 Since the central point of the generator a is: 
 

.
da da

a a
ds ds

ω ω
  
  

  
, 

 
if one develops the progressive and regressive product: 
 

.
da da

a a
ds ds

ω ω
  
  

  
 = − 

2 2

1 1 1 1

6
P

ρ τ ρ
  + +  
  

N , 

then one will get: 
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 The line of striction of the surface of normals can be considered to be described by 

the point P + λ2 / ρ N, for which 
1

λ
 = 

2 2

1 1

ρ τ
+  expresses its normal curvature. 

 
 If we set P1 = P + P + λ2 / ρ N then we will have: 
 

1dP

ds
= 

2 2 1 1d

ds

λ λ
ρ τ ρ τ

   − −   
  

N B T , 

or even: 

1dP

ds
= 

2 2d d

ds ds

λ λ
ρ τ

 
− 

 

N
N N , 

so (see no. 46, d): 
 
 The distribution parameter of the generator PN will be the number λ2 / τ. 
 
 
 62.  Surface of binormals. – If we set: 
 

a = PB 
then we will get: 

da

ds
 = TB + 

1

τ
PN, 

and in turn: 
da

ds

da

ds
 = − 

2

τ
 PTNB, 

so: 
 The surface of binormals of a skew curve will be a skew ruled surface, and 
conversely. 
 
 Moreover, since the plane P da / ds = plane PTB is tangent to the surface of 
binormals at P, one can further say that: 
 
 The surface of binormals and the rectifying surface of a curve P will agree along the 
curve P. 
 
 The asymptotic plane for the generator a is: 
 

plane a.
da

ds
ω = plane PB 

1

τ
 
 
 

N  = plane PNB, 

and in turn: 
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 The asymptotic planes to the surface of binormals are planes that are normal to the 
curve P, or, in other words, the surface of binormals and the polar surface agree along 
their curves at infinity. 
 
 Since the plane PBT is also perpendicular to the plane PNB, one will have: 
 
 The line of striction of the surface of binormals will be precisely the curve P. 
 
 Since: 

dP

ds
 = T = − d

ds
τ B

B , 

one will have that: 
 
 The distribution parameter of the generator PB will be the number τ. 
 
 
 63.  Skew, ruled surfaces whose line of striction is given. – The surface of 
binormals of the skew curve P is not the only skew, ruled surface that admits the curve P 
for its line of striction, and we shall now propose to determine all of the skew, ruled 
surfaces whose curve P is precisely the line of striction. 
 To that effect, let U(s) be a unit vector that is further determined such that the skew 
surface PU will admit the curve P for its line of striction.  We will have: 
 

( ) ( )
d d

P P
ds ds

U U  = PTU
d

ds

U
, 

 
and the surface that is generated by the line PU will be skew if for any value of s: 
 

TU
d

ds

U ≠ 0; 

 
i.e., if U is not constant and the vector dU / ds is not coplanar with the vectors T and U.  
Under these conditions, by virtue of no. 46, the central point on the line PU will have a 
position of the form: 
 

d d
P P

ds ds

  +  
  

U U
U U TU  = 

d d d
P P P

ds ds ds

   −   
   

U U U
U U TU U U ; 

 
i.e., the line of striction of the surface PU will be the curve P if one has: 
 

(1)    
d

ds

U
TU U  = 0 and 

d d

ds ds

U U
U U  ≠ 0 

for every value of s. 
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 The second of these conditions will always be verified if the derivative of U is not 
zero, but the first one demands that the vector dU / ds not be coplanar with the vectors T, 
U.  Consequently: 
 
 All of the skew, ruled surface whose line of striction is the curve P will be generated 
by a line PU, where U is a unit vector with non-zero derivative that is not parallel to the 
vector T, and is defined by the differential equation: 
 

(2)      
d

ds

U
TU U  = 0. 

 Therefore, if we set: 
U = xT + yN + zB, 

 
where x, y, z are functions of s such that x2 + y2 + z2 = 1, then we can prove quite simply 
that the condition (2) is equivalent to the following one: 
 

dx

ds
 = 

1
y

ρ
. 

 
 If one then supposes, for example, that y is known as a function of s then x will be 
well-defined.  If x2 + y2 < 1 then z will likewise result, and the vector U will also be well-
defined. 
 Now, suppose that one has y = 0 for every value of s.  x and z will then be absolute 
constants, and one will have: 
 
 Every fixed line in the rectifying plane at the point P that does not coincide with the 
tangent at that point upon passing through P will describe a skew, ruled surface for 
which the curve P is the line of striction. 
 
 
 64.  A developable, ruled surface that is described by a line whose position is 
fixed with respect to the tetrahedron PTNB. – If we set: 
 
(1)    a = xPT + yPN + zPB + uNB + vBT + wTN, 
 
where x, y, z, z, u, v, w are constant numbers such that: 
 
(2)      ux + vy + wz = 0, 
 
then it will be clear that the line a(s) will possess a position that is fixed with respect to 
the lines PT, PN, PB.  Under these conditions: 
 

da

ds
 = − 

y x z y v u w v
P P P z y

ρ ρ τ τ ρ ρ τ τ
     + + − − + + − − −    

    
T N B NB BT TN , 
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and the line a will describe a developable surface when: 
 

da

ds

da

ds
 = 0; 

i.e., when: 
y v x z u w y v

z y
ρ ρ ρ τ ρ τ τ τ

     + + + − − −    
    

 = 0, 

 
where, from formula (2), when: 
 

(3)    − 2 2

wz ux uz wx

ρ ρ ρτ
+− +  = 

2 2xz y z

ρ τ
++ . 

 
 If there exists no relation with constant coefficients between 1 / ρ and 1 / τ then the 
line a can describe a developable surface only if y = z = u = w = 0; i.e., only when: 
 
(4)      a = (P + hB) T, 
 
where h is a constant number that is, moreover, arbitrary.  The line a will then be on the 
rectifying plane to the point P, and will be parallel to the tangent at P.  Formula (4) will 
give: 

da

ds
 = 

1
( )

h
P h

ρ τ
+ +B N NT = 

1
P h h

ρ
ρ τ
 + − 
 

B T N , 

 
and the point of intersection of the lines a and da / ds will be: 
 

P1 = P + hB – h 
ρ
τ

T = P – 
h

τ
(ρ T – τ B) ; 

 
i.e., the line of regression for the ruled surface a will be described by the generators of the 
rectifying surface that contains P. 
 Finally, if there exists a relation with constant coefficients between the numbers 1 / 
ρ and 1 / τ that is a relation of the form (3), then there can exist lines a other than the 
ones that verify equation (4) in order to describe a developable surface.  Upon following 
the method that we just pointed out, the reader will easily determine these lines in order 
to recover the results that were obtained already by Cesaro (30). 
 
 
 
 
 

 

                                                
 (30) Lezioni di Geometrica intrinseca, Naples, 1896.  
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§ 3. – ORTHOGONAL TRAJECTORIES.  
 

 65.  Orthogonal trajectories of the generators of a ruled surface. – A curve that is 
traced on a ruled surface that cuts the generators of the surface at a right angle will be 
called an orthogonal trajectory to the generators of the surface. 
 In general, we can consider a ruled surface to be generated by a line PK , where P(s) 
and K (s) take the form of a point and a unit vector, respectively.  An arbitrary curve that 
is traced on the surface PK  will then be described by the point: 
 

P1 = P + uK , 
 
if one assumes that u is a function of s.  We shall thus propose to determine u in such a 
way that P1 will describe an orthogonal trajectory of the lines PK .  In order for this to be 
true, it is necessary and sufficient that: 

1dP

ds
K = 0, 

 
and by virtue of the fact that: 

1dP

ds
= T + 

du

ds
K  + u 

d

ds

K
, 

that condition becomes: 

T | K  + 
du

ds
 = 0. 

Hence: 

u = − ( | )ds∫ T K , 

 
which one can write in an equivalent fashion as: 
 

u = − cos( , )ds∫ T K . 

 
 Therefore, if one takes s = 0 to be a limit of the integral then one will see that the 
orthogonal trajectories to the generators of the surface PK  will be described by the 
points: 

P1 = P –
0
( | )ds c +

 ∫ T K K , 

 
where c is an arbitrary constant. 
 Now, if the curve P is supposed to be an orthogonal trajectory then one will have T | 
K  = 0, as well as P1 = P – c K , which shows that: 
 
 The distance between the points of two orthogonal trajectories that are situated on 
the same generator will be constant. 
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 66.  Developings. –  One calls an orthogonal trajectory of the osculating developable 
of the curve P a developing of the curve P.  One will thus obtain the point P1 that 
describes a developing of the curve P by setting K  = T in the last formula of no. 65, and 
one will also get: 

P1 = P – (s + c) T. 
One will then have: 

1dP

ds
 = − 

s c

ρ
+

N, 

so 
 The tangent at P of a developing of the curve P will be parallel to the principal 
normal at the corresponding point P. 
 
 Since: 

2
1

2

d P

ds
= − 

2

d s c s c s c

ds ρ ρ ρτ
 + + ++ + 
 

N T B , 

one deduces that: 
2

1 1
2

dP d P

ds ds
 = − 

2

2

( )s c

ρ τ
+

(ρ T – τ B), 

and: 
 
 The binormal at P1 of a developing of the curve P is parallel to the generator of the 
rectifying surface that passes through the corresponding point P. 
 
 The curve P1 can be planar only if the direction of the vector B1 is constant; i.e. (cf., 
the preceding proposition), when the rectifying surface of the curve P is a cylinder.  
Therefore: 
 
 The helix is the only skew curve whose developings are all planar curves, 
 
and: 
 
 Every developing of a helix is located in a plane that is normal to the generators of 
the cylinder on which the helix is traced, and is a developing of the normal section itself 
of the cylinder that is made by that plane. 
 
 The plane normal to the point P1 is the plane: 
 

1
1

dP
P

ds
 = 

s c

ρ
+

P1TB = 
s c

ρ
+

PTB. 

Therefore: 
 
 Every developing of the curve P on the polar surface will coincide with the rectifying 
surface of the curve P.  One can also say: The locus of the center of the osculating sphere 
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to an arbitrary developing of the curve P will be the edge of regression of the rectifying 
surface of P. 
 
 All of the curves P1 whose polar surfaces coincide with the rectifying surface of the 
curve P are described by the point: 

P1 = P + xB + yT, 
 

such that the vector dP1 / ds is parallel to the vector N (31).  As a result, the numbers x, y, 
which are functions of s, will be subject to the conditions: 
 

dx

ds
 = 0, 

dy

ds
 + 1 = 0, 

which give: 
(1)     P1 = P + uB – (s + c) T, 
where a and b are constants. 
 One easily obtains the curves (1) when the developings of P are known. 
 If Q1 = P + a1B – (s + c1)T, and if m, n are numbers such that m + n ≠ 0 then one will 
have: 
                                                
 (31) In general, one can resolve the following question:  What are the curves P1(s) such that one of the 
lines P1T1, P1N, P1B1 is parallel to one of the lines PT, PN, PB?  For all values of s, one will have: 
 

(1) T1N = 0 when 1dP

ds
 = uN, 

(2) B1N = 0 when 1dP

ds
 = uλ 1 1

ρ τ
 

− 
 

B T , 

(3) N1T = 0 when 1dP

ds
 = u (cos ϕ N + sin ϕ B)  with dϕ = 

dϕ
τ

, 

(4) N1B = 0 when 1dP

ds
 = u (cos ϕ T + sin ϕ N)  with dϕ = −

dϕ
τ

, 

(5) N1N = 0 when 1dP

ds
 = u (cos ϕ B + sin ϕ T)  with dϕ = 0, 

(6) T1T = 0 or even B1B = 0  when 1dP

ds
= uT, 

(7) T1B = 0 or even B1T = 0  when 1dP

ds
= uB, 

in which u is an arbitrary function of s. 
 One easily expresses the vectors T1, N1, B1, and the numbers ρ1, τ1 as functions of the vectors T, N, B, 
and the numbers ρ, τ, λ, u for the curves (1)-(7), and one obtains some very important properties. 
 Among the curves (1)-(7), there are some that have one of the surfaces P1N1B1, P1B1T1, P1T1N1 
coinciding with one of the surfaces PNB, PNB, PTN, or one of the surfaces P1T1, P1N1, P1B1 coinciding 
with one of the surfaces PT, PN, PB.  The reader can, by way of exercise, recover the developings, the 
developments, and the Bertrand curves, etc. 
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1 1mP nQ

m n

+
+

 = P + 1ma na

m n

+
+

B − 1mc nc
s

m n

+ + + 
T, 

 

and the point 1 1mP nQ

m n

+
+

 will describe a curve (1). 

 
 
 67.  Developments. – Conversely, we shall say that the curve P1 is one of the 
developments of the curve P if P is one of the developings of P1 .  We shall propose to 
determine all of the developments of a given curve P. 
 To that effect, if K  represents a unit vector that is a function of s then the line PK  will 
describe a developable surface only in the case where: 
 

( ) ( )d P d P

ds ds

K K
 = 2 PTK  

d

ds

K
= 0; 

i.e., when: 

(1)      TK
d

ds

K
= 0 

for every value of s. 
 If K  verifies condition (1) without being constant then the edge of regression P1 of 
the surface PK  will be a development of the curve P when K  is parallel to the plane PNB 
(because the curve P must be an orthogonal trajectory of the generators of the surface 
PK ), and the vector dK  / ds, which is parallel to the principal normal at the point P, will 
be parallel to the vector T (because the tangent at P to the developing is parallel to the 
principal normal at the point P1 of the development).  We can thus determine the vector 
K  by choosing a number ϕ such that: 
 
(2)      K  = cos ϕ N + sin ϕ B, 
 
and dK  / ds will be a vector that is parallel to T. 
 If one is given: 

(2)′    
d

ds

K
= − 

cosϕ
ρ

T + 
1 d

ds

ϕ
τ
 − 
 

(sin ϕ N – cos ϕ B) 

 
then ϕ will be determined by the differential equation: 
 

(3)      dϕ = 
ds

τ
, 

or 

(3)′      ϕ = 
0

ds

τ∫
+ ϕ0 , 

 
upon introducing an arbitrary constant ϕ0 .  Moreover, the edge of regression of the 
surface PK  can be determined by: 
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d

ds
(PK ) = TK  – 

cosϕ
ρ

PT, 

 

 PK.
d

ds
(PK ) = PTK  

cos
P

ϕ
ρ

 + 
 
K . 

 
Therefore, when the point P1 describes a development of the curve P, one will have: 
 

P1 = P + 
cos

ρ
ϕ

K , 

and, from formula (2): 
(4)     P1 = P + ρ N + ρ tan ϕ B, 
 
where ϕ is precisely the number that is provided by formula (3)′.  Since the line (P + ρN) 
B generates the polar surface to the curve P, formula (1) will express the idea that: 
 
 The developments of the curve P are situated on the polar surface to P. 
 
 In the case where 1 / τ = 0, for all values of s, the curve P will be planar: 
 

P1 = P + ρ N + ρ tan ϕ0 B, 
 

and one of the developments of P will be the curve that is described by the point P + ρ N; 
i.e., the enveloping curve of normals to the curve P.  The other developments are, 
moreover, skew curves that are traced on the cylinder whose cross-section is precisely the 
locus of the point P + ρ N; on the other hand, dP1 / ds is parallel to the vector K , and the 

angle 1 ,
dP

ds
 
 
 

B  must be constant.  Therefore: 

 
 A planar curve has just one planar development and an infinitude of skew 
developments that are helices traced on the cylinder whose cross-section is precisely that 
planar development. 
 
 Formula (3) also shows that dϕ is the contingency angle of the vector B, and in the 
development of the polar surface of the given curve onto a plane, the curve P1 will 
transform into a line.  In general, one can suppose that there exists a value s0 of s such 
that: 

0

lim
s s=

ρ(s) = 0, 

so: 
 Upon developing the polar surface to the curve in question onto a plane, the 
developments of P will be transformed into lines that pass through a fixed point. 
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 Let dψ1, dψ2, dψ3 be the contingency angles of the vectors T1, N1, B1 .  T1 will 
parallel to the vector K , just as N1 will be parallel to the vector T, and formulas (2) and 
(3) will give: 

dψ1 = ± 
cosϕ

ρ
 ds 

and 

dψ2 = 
1

ρ
 ds . 

 

As a result, one will deduce from the fact that 
2

2 2

1 cos ϕ
ρ ρ

−  = 
2

2

sin ϕ
ρ

that: 

 

dψ3 = 
sinϕ

ρ
 ds , 

 

and upon observing that 1

1

ρ
τ

= ± 2

1

d

d

ψ
ψ

, one will get: 

 
 At each point of a development of the curve P, one will have: 
 

1

1

ρ
τ

= ± tan 00

ds ϕ
τ

 + 
 
∫ . 

 

 1

1

ρ
τ

 and 
0

ds

τ∫
 must both be constants.  However, 

0

ds

τ∫
 is constant when 1 / τ = 0 for 

any value of s.  Therefore: 
 
 Planar curves have only planar curves or helices for their developments. 
 
 If P1 is the edge of regression of the polar surface to the curve P then one will have 
(see no. 59): 

ρ tan ϕ = − τ 
d

ds

ρ
, 

or 
dρ
ρ

 = d log ρ = − tan ϕ 
ds

τ
= − tan ϕ dϕ = d log cos ϕ . 

 
Consequently, ρ / cos ϕ will be a non-zero constant.  Therefore: 
 
 The curves such that one of the developments coincides with the locus of the center of 
the osculating spheres will have their curvatures linked by the relation: 
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ρ = c cos 00

ds ϕ
τ

 + 
 
∫ , 

 
where c ≠ 0 and ϕ0 enter in as arbitrary constants. 
 
 Similarly, one proves: 
 
 Only the planar curves have a development that coincides with the locus of the 
centers of curvature. 
 
 If the curve P1 describes one of the developments of the curve P then by formulas (2), 
(2)′, (3), one will have that the rectifying plane to the point P1 is parallel to the bivector | 
T = NB.  Therefore, since plane P1NB = plane PNB [formula (4)] is the rectifying plane 
to the point P1, one will have: 
 
 The edge of regression of the rectifying surface of each development of P is the locus 
of the centers of the osculating spheres of the curve P. 
 
 Conversely, if the point P1 describes a curve whose rectifying surface has an edge of 
regression that is the edge of regression for the polar surface to P then one must have: 
 
(5)     P1 = P + ρ N + x B, 
 
with N1 parallel to the vector T.  One easily finds (32) that N1 is parallel to T only when 
dP1 / ds is parallel to the vector: 
 

cos ϕ N + sin ϕ B with dϕ = 
ds

τ
. 

 
Consequently, the number x in formula (5) is subject to the condition: 
 

dx

ds
= 

tan
tan

d
x

ds

ϕ ρ ρ ϕ
τ τ

+ + . 

 
 However, x = ρ tan ϕ is a particular integral of that differential equation, and in turn, 
the general integral is: 

x = ρ tan ϕ + c 
tan

ds
e

ϕ
τ∫ , 

or even, since dϕ = ds / τ : 

x = ρ tan ϕ + 
cos

c

ϕ
. 

From formula (5), one thus has: 
 

                                                
 (32) Because if N, T = 0 then one will have T1 = cos ϕ N + sin ϕ B (see the note on page 114). 
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P1 = P + ρ N + tan
cos

cρ ϕ
ϕ

 + 
 

B, 

 
which gives all of the curves whose rectifying surfaces have the locus of centers of the 
osculating spheres of the curve P for their edges of regression. 
 
 
 65.  Orthogonal trajectories of the planes of an envelope. – Let π be a third-order 
form whose position has an envelope.  One can, in a very general manner, set: 
 

π = PIJ , 
 
where P is a point, and I  and J are two rectangular unit vectors that are functions of the 
arc-length s of the curve that is described by P.  An arbitrary point P1 of the plane π will 
be: 

P1 = P + xI  + yJ, 
 

and when the numbers x, y are functions of s, the point P1 will describe a curve that one 
calls the orthogonal trajectory of the plane π, if the tangent at P1 is constantly 
perpendicular to the plane π. 
 One then easily sees that the necessary and sufficient conditions for the point P1 to 
describe an orthogonal trajectory of the plane p are: 
 

(1)     1dP

ds
I  = 0, 1dP

ds
J  = 0. 

 However: 

1dP

ds
= T + 

dx

ds
I  + x

d

ds

I
+ 

dy

ds
J + y

d

ds

J
, 

and upon observing that: 

I  | J = 0, 
d

ds

I
I  = 0, 

d

ds

J
J = 0, 

 
the conditions (1) become: 
 

(2)   T | I  + y 
d

ds

J
I  + 

dx

ds
= 0, T | J + x

d

ds

I
J  + 

dy

ds
= 0. 

 
 These differential equations determine x and y (33), along with two arbitrary constants, 
and the orthogonal trajectories of the plane π define a doubly-indeterminate system. 
 
 a. Upon setting I  = N, J = B, one can obtain the orthogonal trajectories of the plane 
PNB.  In the expression: 

                                                
 (33) See the note on page ?.  
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(3)     P1 = P + u (cos ϕ N + sin ϕ B), 
 
one must determine the functions u and ϕ of s in such a way that the vector dP1 / ds is 
parallel to the vector T.  For this, one equates the coefficients of N and B in the vector 
dP1 / ds to zero (or, upon applying formulas (2), with I  = N, J = B, x = u cos ϕ, y = u sin 
ϕ): 

 
du

ds
cos ϕ  − u 

d

ds

ϕ
sin ϕ + 

sinu ϕ
τ

 = 0, 

 

 
du

ds
sin ϕ  + u 

d

ds

ϕ
cos ϕ − 

cosu ϕ
τ

 = 0. 

One thus infers that: 

du = 0 and dϕ = 
ds

τ
, 

 
and one sees that the point P1 will describe an orthogonal trajectory to the planes PNB 
when u is a constant in formula (3) and ϕ = ∫ ds / τ. 
 The line PP1 describes the osculating developable of one of the developments (no. 
67) of the curve P, and since P1 is an orthogonal trajectory of the lines PP1 , one will 
have: 
 
 The orthogonal trajectories of the normal planes to the curve P are the developments 
of the developings of P, or one can also say that they are the curves that the locus of 
centers of the osculating spheres [see, note page 17, formula (6)] has in common with the 
curve P. 
 
 b.  One can further obtain the orthogonal trajectories of the planes PBT by setting I  = 
B, J = T.  Equations (2) give: 

dx

ds
 = 0, 1 + 

dy

ds
 = 0, 

or 
y = − (s + c),  x = a, 

 
with two arbitrary constants a and c.  As a result: 
 

P1 = P – (s + c) T + aB, 
 

and one easily obtains the curves that are described by the point P1 from the 
developments of P (see no. 68). 
 
 c. In order to obtain the orthogonal trajectories of the osculating planes of the curve 
P, it will suffice to set I  = T, J = N.  The curves P1 are then such that the locus of centers 
of their osculating spheres is the curve P, and formulas (2) further give: 
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dx

ds
 = 

y

ρ
 − 1,  

dy

ds
 = − 

x

ρ
, 

 
which are differential equations that always permit one to get expressions for x and y; for 
example, as convergent series (34). 
 
 

§ 4. – BERTRAND CURVES. 
 

 69.  We say that the curve P is a Bertrand curve if there exists a curve P that is 
different from P and has the same principal normals as it, and we then call P1 one of the 
conjugates to the curve P. 
 If P is a Bertrand curve and the curve P1 is one of the conjugates of P then the curves 
P, P1 will be orthogonal trajectories of the surface of principal normals.  The distance 
between the points P and P1 must then be constant, i.e.: 
 
(1)      P1 = P + u N, 
 
where u is a (fixed) non-zero real number. 
 If P is a plane curve then, by virtue of the equation: 
 

1dP

ds
 = 1

u

ρ
 − 
 

T, 

 
the normals to the points P and P1 will coincide. 
 Therefore: 
 
 Any planar curve is a Bertrand curve, and its conjugates are generated by the points 
P + u N, where u enters in as an arbitrary constant. 
 
 
 70.  From now on, we shall suppose that the skew curve P is a Bertrand curve and 
that P1 is one of the conjugates of P.  The vector T1, which is parallel to the tangent at P1, 
is parallel to the plane PTB, which permits us to set: 
 

T1 = cos ϕ T + sin ϕ B, 
 
if we let ϕ denote a function of s such that dT1 / ds (which is a vector that is parallel to 
N1) is a vector that is parallel to the vector N,  One therefore has: 
 

1d

ds

T
 = 

cos sinϕ ϕ
ρ τ

 + 
 

N + 
d

ds

ϕ
(cos ϕ B – sin ϕ T), 

 

                                                
 (34) See the note on page 94.  
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and the equation dT1 / ds N = 0 will be true for any s only if ϕ, which is the angle 
between the vectors T and T1, is a constant.  Consequently: 
 
 The osculating plane to the point P of a Bertrand curve makes a constant angle with 
the osculating plane to the corresponding point of a curve that is conjugate to P. 
 
 Moreover, formula (1) gives: 

1dP

ds
 = 1

u

ρ
 − 
 

T – 
u

τ
B, 

and if we set: 

v = mod 1dP

ds
 = 

2 2

1
u u

ρ τ
   − +   

  
 

 
then we will see that v is a non-zero number, and the const ϕ, which is such that π > ϕ > 
0, and it satisfies the equation: 
 

(2)    1 − 
u

ρ
 = v cos ϕ,  

u

τ
 = − v sin ϕ 

 
will be well-defined.  Since v ≠ 0 and sin ϕ ≠ 0, formulas (2) imply that: 
 

(3)     
sin cosϕ ϕ

ρ τ
−  = 

sin

u

ϕ
, 

 
which expresses a relation with constant coefficients between the curvature and torsion at 
every point of the curve P, and is a necessary condition for the curve in question to be a 
Bertrand curve.  Conversely, if the condition (3) is verified then the point P1 = P + u N 
will essentially describe a curve that has the same normals as the curve P.  Therefore: 
 
 In order for the skew curve P to be a Bertrand curve, it is necessary and sufficient 
that the curvature and torsion be coupled by a linear relation with constant coefficients 
of the form: 

sin cosϕ ϕ
ρ τ

−  = 
sin

u

ϕ
 

 
(π > ϕ > 0 and u ≠ 0) at every point of P.  Upon assuming that this condition is satisfied, 
the point P1 = P + u N will describe a conjugate to the curve P, and ϕ will be the angle 
that the osculating plane to P makes with the osculating plane to the corresponding point 
P1 of the conjugate curve. 
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 71.  The curve P1 that is conjugate to P is also a Bertrand curve.  Therefore, if one 

observes that 1ds

ds
 = v, 

1

ds

ds
= 

1

v
, P = P1 – u N, and if ϕ is the angle that T makes with T1 , 

as well as the angle between T and T1, then the curvature 1 / ρ1 and torsion 1 / τ1 of the 
curve P1 will be linked by formulas that are analogous to formulas (2), (3), namely: 
 

(2)′     1 − 
1

u

ρ
 = 

1

v
cos ϕ,  

1

u

τ
= − 

1

v
 sin ϕ, 

 

(3)′      
sin cosϕ ϕ

ρ τ
−  = 

sin

u

ϕ
, 

 
or even the ones that one can deduce from them by changing u into – u, according to 
whether N1 = − N or N1 = N.  In order to determine the sign of u completely in formulas 
(2)′, (3)′, observe that the vector B1, which is parallel to the vector: 
 

1dP

ds
N  = 1

u u

ρ τ
 − + 
 

B T , 

is given by the relation: 
B1 = ± (cos ϕ B – sin ϕ T), 

 
according to whether N1 = ± N .  By virtue of (3), the derivative: 
 

1

1

d

ds

B
 = 

1 cos sin

v

ϕ ϕ
τ ρ

 − 
 

 N1 , 

gives: 

1

1

d

ds

B
= − sin

uv

ϕ
N1 , 

and in turn: 

1

1

τ
 = − 

sin

uv

ϕ
  [second formula (2)′], 

 
if one considers the second Frenet formula. 
 It is thus indeed proved that formulas (2)′, (3)′ persist for ρ1 and τ1 with N1 = − N. 
 
 
 72.  Here are some consequences of formulas (2), (3), (2)′, (3)′: 
 
 From the second of formulas (2) and (2)′, it results that: 
 

1

1 1

τ τ
 = 

2
sin

u

ϕ 
 
 

, 
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which proves that: 
 
 The product of the torsions at every point of a Bertrand curve and its conjugate has a 
constant value that is equal to the square of sin ϕ / u. 
 
 If 1 / ρ is constant, and the same is not true for 1 / τ, then formula (3) will give ϕ = π / 
2, u = r.  Therefore, the preceding theorem and formula (3)′ prove that: 
 
 If the curvature of a skew, Bertrand curve is constant, but not the torsion, then that 
curve will admit the locus of the centers of curvature for its unique conjugate, or, what 
amounts to the same thing, the locus of the centers of the osculating spheres. 
 The angle between the osculating planes at a point of the curve and at the 
corresponding point of the conjugate curve will be a right angle. 
 The curve P and its conjugate will have the same curvature, and the product of the 
torsions at two corresponding points will be equal to the square of the curvature. 
 
 One easily deduces from formula (3) that: 
 
 A skew, Bertrand curve cannot have a constant torsion without the curvature being 
likewise constant, or in other words, the only skew Bertrand curves that have constant 
torsion are the ordinary helices. 
 
 Formula (3) further gives: 
 
 A skew, Bertrand curve that is not an ordinary helix possesses just one conjugate.  On 
the contrary, an ordinary helix has an infinitude of conjugate curves that are described 
by the points P1 = P + uN, where u enters in as an arbitrary constant. 
 
 When P is an ordinary helix, one can determine u in such a way that ds1 = ds; i.e., 
such that the curves P, P1 have the same arc-length.  One must have v = 1, or u = 2 λ2 / ρ, 
if 1 / λ represents the normal curvature.  Therefore (no. 64): 
 
 If P is an ordinary helix and the central point for the line PP1 of the surface of 
principal normals of P is the mean of P and P1 then the curves P, P1 will have the same 
arc-length, and conversely. 
 
 Let r be the double ratio of the sequence of points P, P1, P + ρ N, P1 – ρ1 N.  Since P1 
= P + u N, we will have PP1 = uPN and P1P = − uP1 N.  Therefore: 
 

r = 1 1 1

1 1 1

( )( )

( ) ( )

P PP P

P P P P

ρρ
ρ ρ

−+
− +

NN
N N

= 1 1

1 1 1

PP

uP P uP P

ρρ
ρ ρ

−
− − +

NN
N N N N

= 1

1u u

ρρ
ρ ρ− −

= 

1

1 1

1 1
u u

ρ ρ
− −

, 

 
or, by virtue of (3) and (3)′: 
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r = 2

1

cos ϕ
. 

 
 An arbitrary point of P, its correspondent point P1 on the conjugate curve, and the 
centers of curvature at the points P, P1 will have a constant double ratio that is equal to 1 
/ cos2 ϕ. 
 

________ 
 

 
 
 



NOTES. 
______ 

 
 

I. 
 

 Forms that are functions of two or more variables. – As in analysis, we shall 
represent a form that is a function of the variables u, v, or u, v, w, … by f(u, v), f(u, v, w), 
…, resp.  Similarly: 

d

du
 f(u, v), 

( , )df u v

du
, or ( , )uf u v′  

 
will be the partial derivative of f(u, v) with respect to u. 
 Under the same restrictions as the ones that are introduced in analysis, we shall call, 
for example, the infinitesimal number df(u, v) such that: 
 

df(u, v) = 
( , ) ( , )df u v df u v

du dv
du dv

+ , 

 
or in another form, such that: 
 

df(u, v) = ( , ) ( , )u vf u v du f u v dv′ ′+ , 

 
the total differential of f(u, v). 
 Under these conditions, if f(u, v) enters into consideration as a non-zero, continuous, 
first-order form then when u and v vary between some given limits: 
 

posit f(u, v) 
 
will generate a surface, and if u0 and v0 are particular values of u and v then the points 
f(u0, v), f(u, v0) will describe lines on that surface that one calls the u-curves and the v-
curves, respectively, which will provide, if one so desires, a set of Gaussian coordinate 
lines on the surface. 
 Similarly, if f(u, v) is a non-zero, second-order form with zero invariant then posit f(u, 
v) will describe a congruence of lines, and finally, in the case where f(u, v) is a third-order 
form, posit f(u, v) will take form of a double infinitude of planes that are, in general 
tangent to a well-defined surface. 
 One can easily extend these considerations to the functions: 
 

f(u, v, w), … 
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II.  
 

 Tangent plane. – Suppose that P(u, v) is a point that is a continuous function of u 
and v.  We say that a plane π is tangent at P to the surface P if the line PP1 makes a 
(signed) angle with the plane π that has the limit zero when the point P1 tends to 
approach the point P indefinitely in an arbitrary manner, with the single condition that it 
constantly remain on the surface. 
 One calls the perpendicular to the plane π that passes through the point P the normal 
to the surface at P. 
 The definition of the tangent plane shows that: If the tangent plane π to the surface is 
defined at the point P, along with the tangent r at P to an arbitrary curve that is traced 
on the surface when starting at the point P then the line r will necessarily be contained in 
the plane π. 

 If the vectors dP / du and dP / dv are continuous functions, and if the bivector 
dP dP

du dv
 

is not zero then the plane P
dP dP

du dv
 will be tangent to the surface P at P. 

 Indeed, set: P1 = P(u + h, v + h), so one has: 
 

P1 = P + h
dP

du
 + k 

dP

dv
+ Q, 

 

where Q is a vector of infinitesimal order higher than unity when one takes 2 2h k+  to 
be the infinitely small principal.  One deduces from this that: 
 

(P1 – P) 
dP dP

du dv
= Q 

dP dP

du dv
, 

 
and consequently, when P1 tends to P, the vector Q will tend to zero, along with the angle 

that is defined between the vector P1 – P and the plane P 
dP dP

du dv
. 

 If z = f(x, y) is the Cartesian equation of the surface then one will have: 
 

P = O + xI  + yJ + zK  
 
and 

dP dP

dx dy
 = 

dz dz

dx dy

  + +  
  
I K J K  = − 

dz

dx
JK  − 

dz

dy
KI  + IJ ; 

 
i.e., the angular coefficients of the tangent plane to the point P will be: 
 

− 
dz

dx
, − 

dz

dy
, 1, 



128 Introduction to differential geometry, following the method of H. Grassmann 

respectively, and the equation of that tangent plane will be: 
 

Z – z = (X – x) 
dz

dx
 + (Y – y) 

dz

dy
. 

 
One thus recovers the usual well-known expression. 
 
 

III.  
 

 First-order differential parameters.  – In the questions of mechanics or physics, one 
is frequently presented with a situation in which one has to consider a number u that is a 
position of a variable point P.  In that case, if P is, for example, a function of its Cartesian 
coordinates x, y, z then the quantity u will likewise be a function of the variables x, y, z. 
 We shall say differential parameter of u, and denote it by ∇u, to mean a vector such 
that: 
(1)      du = ∇u | dP. 
 
 If ∇u, ∇v are two differential parameters of u then from relation (1) one will have: 
 

∇u | dP = ∇′u | dP or (∇u − ∇′u) | dP = 0. 
 

As a result, if the differential parameter of u exists, and if dP is not zero then the vector 
∇u will be defined in a unique fashion. 
 One has du = 0 if u = const., and the vectors ∇u and dP will be zero or rectangular.  
However, for u = const., the point P will describe a surface or even a line if P was already 
subject to being found on a surface and if ∇u and dP are well-defined without being zero 
then formula (1) will prove that the line P ∇u is the normal at P to the surface that is 
described by the point P or a normal to the curve that is described by P. 
 Let O be a fixed point, or the foot of the perpendicular that is based at the point P on 
a fixed line (or plane), in such a way that OP ≠ 0.  If we set: 
 

u = mod OP 
 
− i.e., if u essentially represents the distance from the variable point P to a fixed point, 
line, or plane − then we will have: 
 

(2)      ∇u = 
mod( )P O

P O

−
−

. 

 
 Indeed (see no. 37, k), we know that: 
 

du = 
mod( )

P O

P O

−
−

 (dP − dO). 
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However, one has that dO = 0, or that the vector P – O is perpendicular to the vector dO, 
and consequently: 

du = 
mod( )

P O

P O

−
−

 dP, 

 
an expression that one can compare to formula (1) in order to obtain the required 
theorem. 
 Furthermore, let u and v be functions of P, and let f(u, v) be a function of u¸v with 
well-defined partial derivatives.  One has: 
 

(3)     ∇f = 
df df

u v
du dv

∇ + ∇ . 

 Indeed: 
 

df = 
df df

du dv
du dv

+  = 
df df

u dP v dP
du dv

∇ + ∇  = 
df df

u v dP
du dv
 ∇ + ∇ 
 

, 

 
an equality that, along with formula (1), will establish the stated property. 
 If O is a fixed point, and I , J, K  are rectangular unit vectors, and if, moreover: 
 

P = O + xI  + yJ + zK  
then one will have: 

(4)     ∇u = 
du du du

dx dy dz
+ +I J K . 

Indeed, from formula (2): 
∇x = I ,  ∇y = J,  ∇z = K , 

and in turn: 

 du = 
du du du

dx dy dz
dx dy dz

+ +  

  = 
du du du

x dP y dP z dP
dx dy dz

∇ + ∇ + ∇  

  = 
du du du

dx dy dz

 
+ + 

 
I J K  dP, 

 
which, by virtue of formula (1), proves the theorem. 
 In general (cf., Lamé), one says differential parameter of u to refer to the number 

mod ∇u, or even 
22 2

du du du

dx dy dz

    + +    
    

, and the consideration of the differential 

parameter as a vector is due to Hamilton. 
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IV.  
 

 Curvilinear coordinates. – Let P(u, v) be a point that is a continuous function and 
admits derivatives with respect to u and v.  If the variables u and v are coupled by an 
arbitrary relation then the point P(u, v) will describe a curve on the surface P(u, v).  If we 
call the arc-length of that curve s, and suppose that all of the conditions that were stated 
in § 4 of chapter II are verified then we will have: 
 
(1)      ds = mod dP. 
 However, one has: 

dP = 
dP dP

du dv
du dv

+ , 

moreover, and if one sets: 
 

(2)   E = 
dP dP

du du
,  F = 

dP dP

du dv
,  G = 

dP dP

dv dv
 

 
then formula (1) will give: 
(3)     ds2 = E du2 + 2 F du dv + G dv2, 
 
which is a well-known conventional formula.  From formulas (2), the numbers E, F, G 
that one usually considers for the Gaussian coordinates have a very simple geometrical 
significance. 
 The second of formulas (2) proves that in the case where dP / du and dP / dv are non-
zero vectors, the coordinate lines u, v on the surface can intersect at a right angle only if F 
= 0. 
 One can further deduce from formulas (2) that: 
 

EG – F2 = 
22

mod .mod mod .mod cos ,
dP dP dP dP dP dP

du dv du dv du dv

    −    
    

 

or 

EG – F2 = 
2

mod
dP dP

du dv
 
 
 

, 

 
which proves that the discriminant of the differential quadratic form (2) is positive or 
zero. 
 If one further associates formulas (2) with the preceding then one will obtain the 
equation: 

sin ,
dP dP

du dv
 
 
 

 = 
2EG F

EG

−
, 
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which will determine the angle between the coordinate lines that pass through the point 

P; of course, one must suppose that 
dP dP

du dv
 is non-zero. 

 If one gives a relation between u and v, and one lets θ denote the angle that is formed, 
for example, between the tangent at P to the curve that is described by the point P and the 
line v then one will have: 

E cos θ ds = 
dP

dP
du

, 

or 

cos θ = 
1 du dv

E F
ds dsE

 + 
 

. 

 
 In a completely similar manner, one will have: 
 

E  sin θ ds = mod
dP

dP
du

 
 
 

= mod
dP dP

du dv
 
 
 

 dv, 

 
which, from the preceding, one can write as: 
 

sin θ  = 
2EG F dv

dsE

−
. 

 

 If the bivector 
dP dP

du dv
 is not zero then upon setting: 

 

K  =
mod

dP dP

du dv
dP dP

du dv
 
 
 

, 

 
one will see that K  is a unit vector that is perpendicular to the tangent plane to the surface 
at P; furthermore, PK is the normal to the surface at the same point.  Moreover, set: 
 

D = 
2

2

d P

du
 K ,  D′ = 

2d P

du dv
 K , D″ = 

2

2

d P

dv
 K . 

Since: 

d2P = 
2 2 2

2 2
2 22

d P d P d P
du du dv dv

du du dv dv
+ + , 

one sees that: 
d2P | K  = D du2 + 2D′ du dv + D″ dv2, 

 



132 Introduction to differential geometry, following the method of H. Grassmann 

and the right-hand side of this formula is generally called the the second differential form 
of the surface P.  This differential form gives the magnitude of the normal component to 
the vector d2P; i.e., the product of that differential form with the vector K  is precisely the 
normal component of the vector d2P.  By analogy, the vectors DK , D′K , D″K  are the 

normal components of the vectors 
2

2

d P

du
, 

2d P

du dv
, 

2

2

d P

dv
.  One then sees quite easily the 

geometrical significance of the usual elements that are considered in the theory of 
curvilinear coordinates. 
 By applying the method of the elements that we just presented, one can easily prove 
the theorems of Meusnier, Dupin, Euler, etc., and obtain the lines of curvature, 
asymptotic lines, geodesic lines, etc.  However, the limits that have been imposed upon 
us do not permit a more complete development of differential geometry. 
 
 

FIN . 
  

 
 
 

 
 

 


