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Abstract—Outlier screening is a popular approach employed
for automotive product lines. There have been many outlier
methods proposed. In practice, it is desirable to choose the
“best” outlier method. This work develops a notion of applica-
bility associated with an outlier method on a given set of wafers.
A measure for applicability is proposed and experiment results
are presented to illustrate its effects for finding outliers and
for analyzing customer returns based on data collected from
several automotive product lines.

1. Introduction
Outlier screening is a popular approach employed in au-

tomotive product lines for screening parametric defects [1].
There have been many outlier methods proposed [2]. Well-
known methods include the various Part Average Testing
(PAT) methods such as Static PAT (SPAT), Dynamic PAT
(DPAT), Automotive Electronic Council PAT (AEC DPAT),
and Robust DPAT (RDPAT), as well as Nearest Neighbor
Residuals (NNR) [3][4] and Location Average (LA) [3][5].
A question frequently asked in practice is: Which method
is the best for my test application?

This questions can be asked in different contexts, for
example, best for a family of product lines, best for a
particular product line, or best for a specific test. Regardless
in what context the question is asked, asking the question
suggests that there exists a best method for the context.
However, this assumption might not be true.

There can also be diverse ways to define what the “best”
means. With a given definition, an evaluation is required to
obtain some measure associated with each method, and to
rank methods using their measured values. Such evaluation
results are also subjective to the data in use.

For example, an evaluation can be based on the intuitive
thinking: “The best method is the one that screens out the
most of defective parts with the lowest yield loss.” This
objective, however, is hard to implement in practice because
(1) the set of all possible defective parts is hard to define
and (2) the number of outlier parts screened out by a method
depends on the allowable yield loss.
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In practice, one can modify the objective to: “The best
method is the one that screens out the most in a given set
of defective parts with a fixed yield loss budget Y L.”

Figure 1. One way to evaluate outlier methods

With a given Y L, one can collect a set of known defec-
tive parts, and determine the number of the defective parts
that can be screened out under the budget Y L. However, this
approach has two concerns: (1) The evaluation is conducted
based on some initial production data. The initial data might
not be representative for the future data. (2) Similarly, the
set of defective parts might not represent all defective parts
that are screenable based on the given Y L.

Suppose method φ is determined to be the best based on
some initial data L and the set of known defective parts F .
Let L′ represent data produced in the future and F ′ represent
all screenable defective parts from L′. The fact that a method
is the best based on the data (L,F ) does not mean that the
method is the best in view of the data (L′, F ′).

One can think of the data (L,F ) as the benchmark used
to compare methods. The two concerns mentioned are both
regarding how “representative” the benchmark is. Although
using benchmarks is a common practice for comparing
methods, benchmarks can also be misleading.

1.1. No Free Lunch
Outlier analysis is commonly known as unsupervised

learning, or can be thought of as supervised learning when
there are actual outlier samples to verify an outlier model
[6]. In the context of machine learning, the No Free Lunch
(NFL) theorem [7] had warned about using benchmarks
to evaluate machine learning algorithms. Indeed, without
a guarantee on the representation of the benchmarks, it is
meaningless to say that one algorithm is better than another.
In a test application, this guarantee is especially hard to
accomplish because characteristics of future data can deviate
significantly from the benchmarks in use.
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NFL is a general theorem. For a specific learning prob-
lem such as a particular outlier screening application sce-
nario, it remains unknown if NFL applies. Proving or dis-
proving a NFL property for a particular application scenario
can be difficult. However, the theorem does raise the concern
how well an evaluation result based on some initial data can
generalize into future data.

There are two dimensions of concern for generalization
from initial data (L,F ) to all (or future) data (L′, F ′): (1)
from L to L′ and (2) from F to F ′. This work focuses on
the aspect from L to L′. If this generalization is already
poor, adding the second aspect can only make it worse.

1.2. Paper flow and the main idea proposed
Suppose outlier screening is applied on each wafer. The

initial data L comprises an initial set of wafers. All data
L′ comprises a much larger set of wafers. In section 2, we
will first show that (1) there is no universally best method,
and (2) the generalization is poor from L to L′. We call
these outcomes the seemingly NFL because they are shown
experimentally (not proved formally).

Section 3 further illustrates the difficulty of comparing
outlier methods, where different methods actually disagree
on what the top outliers should be. These results also
indicate that for choosing a best outlier method in test, one
may be facing a problem similar to that suggested by NFL.

In the rest of the paper, we discuss our approach to
overcome the seemingly NFL barriers. The main idea is
illustrated in Figure 2.

Figure 2. The main idea of this paper

There are two fundamental barriers. Given a problem
space, a benchmark L comprises a small subset of the
instances in the space. The evaluation result using L does
not generalize to a larger subset of instances L′. The second
barrier is that there is no one method better than another if
we consider the entire problem space.

In our context, each problem space is based on a given
test. Each instance in the space is a wafer. Hence, given
a method A, the seemingly NFL situation indicates that
the performance of A seen on L cannot generalize to the
performance of A on L′. To overcome this barrier, our idea
is to constrain the space for this generalization to take place.

Our goal is to determine a subset of wafers, SA, on
which A is applicable. It is important to note that this goal
is not to determine the exact applicable subset. Instead, an
applicable subset serves only as a constraint to restrict the
application of A to those wafers in SA. In other words,
if a wafer is in SA, we have a high confidence that it is
applicable. If it is outside, applicability is simply undecided.

Our conjecture is that while generalization is poor from
L to L′, generalization can be improved if we constrain the
scope to be only from L ∩ SA to L′ ∩ SA.

Furthermore, with such an applicable scope concept, we
no longer need to decide a universally best method. As
shown in Figure 2, each method can be the best on its
respective applicable subset of wafers.

The key in our idea is therefore the applicability concept.
In section 4, the applicability concept is developed and
explained. Section 5 then explains how applicability can be
measured with a set of wafers. In section 6, examples are
provided to illustrate why inapplicability can occur. Then,
in section 7, we show how applicability can be utilized to
identify the applicable subset of wafers for a method and
show its effect on the result presented earlier in section 3.
In section 8, we show that poor generalization result seen
in section 2 can be improved if we limit the scope to the
subsets of applicable wafers. Finally, Section 9 concludes.

2. Choosing a method based on known fails
We consider five outlier methods: SPAT, DPAT, AEC

DPAT, NNR and LA. For each product line, we obtain a set
of customer returns (CQIs - customer quality incidents). We
treat them as the set of “known fails,” F . The evaluation data
L comprises the wafers from the lot where the CQI occurs.
The total data L′ comprises all wafers we collected.

Table 1 shows the list of products and all the data used
in this work. In some cases, most data collected are the CQI
lots. In other cases more data are collected for non-CQI lots.
Hence, data shown in the table has no reflection on the CQI
rate for a product.

TABLE 1. DATA USED FOR THE STUDY
Product code # of wafers # of tests # of CQIs

VP 51100 249 32
KM 9675 350 23
A2M 400 45 11
MPC 4888 620 10
ALP 6996 123 77

In the current experiment, we try to determine the “best”
method (and the corresponding outlier model) for each CQI.
With each method, we search for the test that results in an
outlier model with the minimum yield loss based on L (the
CQI lot). We say that a method (and the model) is better
for the CQI if this minimum yield loss Y Lmin is smaller.

Let the outlier model achieving Y Lmin be M . Then, we
use Y L′min to denote the yield loss by applying M to all
data L′. Poor generalization can then be observed if Y L′min
deviates significantly from Y Lmin. Poor generalization can
also mean that the best method determined based on Y Lmin
is not the best method from the Y L′min point of view.

2.1. No universally best method across CQIs
Figure 3 summarizes the results on Y Lmin for product

VP. Each vertical line corresponds to a CQI. Each marker
corresponds to the Y Lmin result from a method. In this
picture, the “best” method for a CQI is the one with the
lowest marker. From the figure, we observe: (1) different
methods can achieve noticeably different results, and (2)
there is no universally best method across all CQIs.
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Figure 3. Y Lmin for each CQI - product VP

Figure 4. The corresponding Y L′
min - product VP

2.2. Poor generalization from Y Lmin to Y L′
min

Figure 4 then shows the corresponding Y L′min number
for each Y Lmin. The Y L′min results are based on all data,
i.e. the 51100 wafers as shown in Table 1. Observe that for
most CQIs, the Y L′min numbers are substantially larger than
those Y Lmin numbers (the scales on y-axis are different),
i.e. Y Lmin is a poor predictor for Y L′min. Furthermore, the
best method determined using Y Lmin is not necessarily the
best method using Y L′min.

TABLE 2. Y Lmin , Y L′
min , RANKING FOR CQI #10 AND CQI #29

CQI #10 Y Lmin(%): 0.08 < 0.125 < 0.125 < 0.148 < 0.385
Ranking AEC < SPAT < DPAT < NNR < LA

Y L′
min(%): 1.691 < 1.840 < 2.082 < 4.451 < 5.908

Ranking SPAT < NNR < AEC < DPAT < LA
CQI #29 Y Lmin(%): 0.023 < 0.035 < 0.046 < 0.046 < 0.058

Ranking LA < NNR < SPAT < DPAT < AEC
Y L′

min(%): 1.309 < 1.405 < 1.466 < 2.532 < 3.184
Ranking AEC < NNR < DPAT < LA < SPAT

From Figure 3, we select two examples and show their
details in Table 2. For example, for CQI #10, based on
Y Lmin, the best method is AEC with Y Lmin = 0.08%.
The worst method is LA with Y Lmin = 0.385%. However,
when we move to Y L′min, the best method becomes SPAT
with Y L′min = 1.691%, and the worst is still LA.

For CQI #29, based on Y Lmin, the best method is LA
and the worst is AEC. However, based on Y L′min, the best
is AEC and the worst is SPAT.

TABLE 3. # OF CQIS A METHOD IS BEST FOR, BASED ON Y L′
min

Product SPAT DPAT AEC NNR LA total CQIs
VP 3 7 11 5 6 32
KM 4 2 9 1 7 23
A2M 0 3 4 1 3 11
MPC 0 4 4 2 0 10
ALP 11 20 23 12 11 77

Table 3 then summarizes the result of “best method” for
all products. Here the best method is from the Y L′min point

of view. Observe that for each product, each method is the
best for a subset of CQIs.

The results above show that an evaluation result based
on L does not generalize well to all data L′. The earlier
works [10][11] observe similar poor generalization based
on different evaluation objectives. The results above also
show that the best method is very much case-dependent. If
there is no universally best method, then the next question
becomes: Which method should I apply for a given case?

3. Disagreement among outlier methods
One might argue that the comparison in the previous

section is not meaningful because we do not know if a CQI
is a “true” outlier. Take CQI #10 as an example, the AEC
model classifies the CQI as an “outlier” with 0.08% yield
loss on the CQI lot and the model screens 2.082% of the
dies from all lots. A model screening that many dies should
not be a “true” outlier model. In other words, we are setting
the outlier limit too tight and a comparison based on such
a tight limit might not be that meaningful. For example, if
one relaxes the outlier limits, it is possible that results from
different methods become more agreeable.

To see if this is true or not, we perform a simple
experiment. Given a test we apply each method to all the
data L′. We then identify the top N outliers from L′ given
by each method. We let N = 1, 10, 100 which based on all
the data we have, correspond to yield loss 0.063, 0.63, and
6.3 PPM (parts per million), respectively. These numbers
are much smaller than those shown in Table 2.

Following the results presented in Table 2 before, for
CQI #10 all methods use the same test (call it test T10),
except for LA which identifies a different test. For CQI #29,
all methods use the same test (call it test T29).

For T10, when N = 1, all methods find the same part as
the outlier. Figure 5 then show the results for N = 10, 100.

Figure 5. N outliers found by different methods (T10)

For N = 10, all methods agree only on 2 outlier parts.
Each method also identifies its own unique outliers. For
example, AEC identifies 5 parts as outliers unique to itself.
As we increase N to 100, observe that there are unique parts
in every intersection of every three and four methods. The
union for N = 10 has in total 32 outliers and the union for
N = 100 has 214 outliers.

Figure 6 then shows similar results for test T29. For this
test, the five methods tend to disagree more on which parts
should be the outliers. For example, for N = 10, 100, there
is no part agreed by all five methods as an outlier. The union
for N = 10 has 35 outliers and the union for N = 100 ends
up with 431 outliers.
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Figure 6. N outliers found by different methods (T29)
Results above show that even one relaxes the outlier

limits to find the very few top outliers, different methods
can still disagree on which parts should be the outliers. If
two methods cannot even agree on which parts should be the
top outliers, how can we decide which one is better? Later
in Section 7 we will re-visit the result shown in Figure 5
and Figure 6 and show that while we cannot decide which
method is better, with the applicability measure, we can
decide which outliers are more trustable.

4. Applicability of an outlier method
Results shown above seem to reflect what the NFL

theorem had suggested: (1) Benchmarks are misleading, and
(2) In general no one method is better than another.

Given a set of wafers, even if one method is not generally
better than another across all the wafers, it is still possible
that if we restrict to a subset of wafers, one method is better
than others. In other words, each method has its own subset
of applicable wafers (e.g. see Figure 2 before).

Given a wafer Gi and a method φ with a test tj , our
goal is to develop a method APP (Gi, tj , φ) that calculates
an applicability measure for applying φ on the wafer data
Dij . Let φ(Dij) be the result of applying φ on Dij , our goal
is to check some properties of the result φ(Dij) in order to
decide if φ is applicable or not.
4.1. Two properties to check for applicability

Conceptually, let E(φ, tj) denote the “expected result”
of applying φ to a wafer based on tj . The first property to
check is the difference between A(Dij) and E(φ, tj), i.e.
does the result meet the expectation? As it will be explained
later, this property is to ensure that outlier decision made
by method φ is consistent across wafers.

Then, based on the assumption that each φ() should
follow a Normal distribution, the second property is to
check on average how φ() deviates from the Normality
assumption. This property is to ensure that outlier decision
made by method φ is justifiable.

In other words, our notion of applicability is that the
outlier decision made by applying a method on a given set
of wafers is both consistent and justifiable.

To evaluate the first property, we will develop a Variance
concept. To evaluate the second property, we will develop
a Bias concept. Below we will explain their meanings with
respect to a given set of wafers.
4.2. The basic assumption of an outlier

First, note that in outlier analysis there is no golden
definition of what a “true” outlier should be. One of the
most basic statements that can be said about an outlier is:

Given a distribution D, a sample is an outlier if
its probability of occurrence is so small that it is
unlikely the sample is drawn from D.

This definition remains subjective to the probability
threshold to define how small is small enough. However,
this is the minimal about one must assume. The difficulty
to apply this definition directly to find outliers is that one
need to know the distribution D.

For example, suppose n samples are drawn from a
Normal distribution N (µ, σ). For each sample value xi, one
can calculate the so-called z-score zi = xi−µ

σ . A common
method to identify outliers is then using the Grubb’s test [12]
which calculates the probability of the largest z-score given
n (Notice that this probability depends on n). For example,
for n = 2000 and probability threshold 10−6, Grubb’s test
says if a sample has a z-score > 6.19, it is an outlier.

4.3. Density estimation vs. Outlier transform
Based on the basic definition above, in practice there can

be two approaches to develop an outlier method as illustrated
in Figure 7.

Figure 7. Two approaches to develop an outlier method

The first is by applying density estimation [8] to estimate
the distribution D. Once the distribution is known, one
applies a probability-based reasoning similar to the Grubb’s
test to find a threshold. Density estimation, however, is not
very reliable for finding outliers because it is very difficult
to accurately estimate the probability density on the tails of
a distribution [9].

The second apporach is by applying an outlier transform
to convert each test value into an outlier score. As a result,
each test value distribution becomes an outlier score dis-
tribution. Then, a threshold is applied to each outlier score
distribution to find outliers.

There are two concerns with the second approach. (1) If
outlier score distributions on different wafers are different,
then applying the same threshold on them have different
meanings. In this case, the outlier decision is inconsistent
across wafers. (2) To justify using the threshold on each
outlier score distribution, we also desire each outlier score
distribution to follow the assumed distribution where the
probability-based reasoning is applied to derive the thresh-
old. Otherwise, the threshold lacks a justification to be used
with the outlier score distributions.

These two concerns reflect the two properties of applica-
bility in section 4.1 above. In the following, we will explain
how our Variance concept reflects the first concerns and our
Bias concept reflects the second concern.

4.4. Outlier methods in test are outlier transforms
An outlier method in test is basically a transform of a

test value into an outlier score. For example, given a test
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value t for a die c, the five methods studied in this work
(SPAT, DPAT, AEC DPAT, NNR, LA) can all be thought
of as following the abstract transform to obtain an outlier
score Oc:

Oc =
t− E(c)

ς
(1)

where E(c) is the expected test value of die c, and ς is
the quantity to normalize the score. In other words, different
methods differ in how they calculate the expected value and
what normalization value should be used.

For example, SPAT uses the sample mean µs of test
values across the entire wafer for E(c) and uses ς = 1,
i.e. it does not normalize. DPAT also uses µs as E(c) and
in addition, uses the sample standard deviation σs as the
normalization value, i.e. ς = σs.

AEC uses the sample median value Ms across the wafer
for E(c). AEC uses “0.43× (P99−Ms)” or “0.43× (Ms−
P01)” as the normalization value, depending on which side
of the test value t of c is located with respect to the median,
where P99 and P01 are the 99% and 1% quantile values of
the test value distribution, respectively.

NNR also uses the sample median value Mc, but the
samples are not from the entire wafer. Rather, a k × k
window (say 7× 7) is decided centering on the die c. Only
dies located in the window are used to calculated Mc (for
7 × 7, there are up to 49 dies). In this way, Mc can be
different for different dies. Typically, NNR uses ς = 1.

LA also uses a window to calculate Mc and typically
uses ς = 1. The difference is that Mc is not calculated based
on all available dies in the window. Rather, it is based on
only a percentage (say 50%) of the dies whose test values
are the closest to the test value t of c.

Overall, every method makes an assumption of what the
expected test value should be. Then, it makes an assumption
of what a fair comparison should be by deciding how to
normalize the deviation value “t− E(c).”

4.5. Concern of lack of consistency across wafers
Given a set of dies on a wafer Gi, conceptually their test

values based on a given test can be thought of as forming a
distribution Di. Note that the discussion from this point on
assumes the test tj is fixed. Hence, instead of using Dij to
denote the test data as before, we simply use Di.

An outlier method φ() transforms each test value into
an outlier score. Effectively, the result is another distribution
φ(Di). Hence, given W wafers, the result of outlier analysis
by a method can be represented as a sequence of outlier
score distributions φ(D1), . . . , φ(DW ).

In outlier screening, one decides a threshold T to iden-
tify outliers. This T is repeatedly applied to each of the
outlier score distributions φ(D1), . . . , φ(DW ). If these score
distributions are different (e.g. φ(Di) 6= φ(Dj) for i 6= j),
it means that outlier decision made on different wafers are
different, i.e. the decision is not consistent across wafers.

Ideally, to be consistent we would like to have φ(D1) =
· · · = φ(DW ) = D′ as illustrated in Figure 8 where D′

can be the expected outlier score distribution (E(φ, tj)) as
mentioned in section 4.1 before.

Figure 8. Consistency with an outlier method φ()

4.6. Assessing Consistency with Variance
When φ(Di) 6= D′ for some of the i, we would like to

have a way to estimate the degree of discrepancy.
Suppose we have a distance function DIST () that can

measures a distance (difference) between two given distribu-
tions, i.e. let d′i = DIST (φ(Di), D

′). Then, we can define
the Variance of an outlier transform across W wafers as:

Variance of method φ() on W wafers =

∑W
i=1(d

′
i)

2

W
(2)

A larger Variance means the method is less consistent
across the W wafers.

4.7. Assessing Justifiability with Bias
The expected distribution D′ can be thought of as the

average distribution across all φ(D1), . . . , φ(DW ). To make
the threshold T a probability-justifiable decision, we would
like D′ to be close to a known distribution. For example, we
assume D′ should be Normal to justify using Grubb’s test.
Let µD and σD be the sample mean and sample standard de-
viation of D′. Let D be the Normal distribution N (µD, σD).
We therefore can model the degree of justifiability as a Bias:

Bias of method φ() on W wafers = DIST (D′, D) (3)

The larger the Bias is, the less justifiable the method is.
Figure 9 illustrates the Variance and Bias concepts.

Figure 9. Variance and Bias in outlier transform

It is important to note that a large Bias does not nec-
essarily imply the method is not justifiable in general. It
only means we cannot justify it based on our Normality
assumption of D. Hence, applicability is constrained by
the assumed D. Consequently, lack of applicability should
not be interpreted as “not applicable.” A more meaningful
interpretation is that we do not know if it is applicable or
not. As mentioned in Section 1.2 with Figure 2 before, we
treat applicability as a constraint to identify wafers where a
method can be applied with a high confidence.

5. Calculating Variance and Bias
In order to calculate Variance and Bias, we require a way

to implement the distance function DIST (). Our choice for
DIST () is the popular Kolmogorov-Smirnoff (KS) test. The
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KS test, denoted as KS(Da, Db), measures a discrepancy
between two given distributions Da, Db. The result is a
value between 0 and 1, where 0 means the same and 1
means the most different. In practice, a KS tool [13] takes
Da and Db as two vectors of sample values ~va, ~vb. Note
that the lengths of these two vectors can be different.

Hence, with W outlier score distributions φ(D1), . . .,
φ(DW ), each φ(Di) is represented as a vector ~vi of outlier
scores. The KS() tool enables us to obtain pairwise mea-
sures dij = DIST (φ(Di), φ(Dj)) = KS(~vi, ~vj), for i 6= j.

To calculate the Variance and Bias with equations (2)
and (3), we need to calculate the average distribution D′.
With the KS tool, D′ is simply the vector ~v′ comprising the
union of outlier scores from ~v1, . . . , ~vW , i.e. ~v′ = ~v1∪ · · ·∪
~vW . Then, we can obtain each d′i = KS(~v′, ~vi).

To calculate a Bias, we simply perform a random sam-
pling based on the assumed Normal distribution D to obtain
a vector of scores ~v. Then Bias is calculated as KS(~v′, ~v).
5.1. Result visualization

In order to visualize a result like Figure 9, we also
need to project each distribution φ(Di) (i.e. the ~vi) as a
point in Euclidean space. The trick is that in this space,
the points should be positioned relative to their pairwise
distances KS(~vi, ~vj). This is a typical multidimensional
scaling (MDS) problem. We utilize an MDS tool from [14]
to project each distribution into a 3-dimensional space.

Figure 10. Visualizing Variance and Bias for one test

Figure 10 shows plots similar to Figure 9 for one par-
ticular test from product VP. The results here are based
on 500 wafers. The computation is limited to W = 500
wafers because to produce each plot, we need to compute
W -choose-2 pairwise distances KS(~vi, ~vj).

In Figure 10, each blue-gray dot represents a distribution
(from a wafer). The first plot “Test Values” shows the
original test value distributions D1, . . . , D500. Then, in each
method plot, the score distributions φ(D1), . . . , φ(D500) are
shown. The red dot marks the expected distribution D′

which is also used to center each plot. The green dot marks
the assumed Normal distribution D based on D′.

In Figure 10, a larger spread means a larger Variance
and hence the result is less consistent. A larger distance
between the red dot and the green dot means a larger Bias
and hence, the result is less justifiable.

Figure 10 shows that DPAT and AEC have smaller
Variance than others. Table 4 shows their Variance and Bias
values. First, observe that all methods achieve a variance
reduction. For example, DPAT brings the variance from its
original value 0.223 down to 0.0094. This means that the
original test value distributions across wafers are much more
diverse. After an outlier transform, the resulting distributions
become more similar, enabling one to make a more consis-
tent outlier decision across wafers than using the original
test values. This variance reduction can be thought of as a
key objective of an outlier transform.

TABLE 4. # VARIANCE AND BIAS FROM DIFFERENT METHODS
Original SPAT DPAT AEC NNR LA

Variance 0.223 0.046 0.0094 0.0104 0.0543 0.0718
Bias — 0.163 0.158 0.0633 0.174 0.174

While DPAT has the smallest variance, its Bias is not
the smallest. Overall, we see that AEC is better because its
Variance value and Bias value are both small.

5.2. Best method for a particular wafer
For a given wafer Gi, we can further compare methods

based on the distance directly to the Normality assumption
D, i.e. di = DIST (φ(Di), D). We say that the smaller the
di is, the more applicable the φ() is for the wafer because
di can be thought of as measuring the combined effect of
both consistency and justifiability together.

Figure 11. % of wafers a method is best on

Based on di, Figure 11 shows the percentage of wafers
a method is the best on. “Test 1” is the test used to produce
Figure 10. We see that AEC is the best on 95.1% of the
wafers, an expected result based on what we observe in
Figure 10. We further select a “Test 2” to show a contrasting
result, where LA is the best on 52.9% of the wafers. These
examples illustrate that no single method is the best on
every wafer and moreover, different tests result in different
evaluation results.

5.3. Results across tests
For a given test, we can say that a method is the best if its

Variance is the smallest or if its Bias is the smallest. These
two measures provide different perspectives to examine how
overall a method is applicable with the test. Based on the
two perspectives, Figure 12 shows the percentage of tests a
method is best with, across all 249 tests from product VP.
DPAT has the largest percentages in both cases.

Further, if we consider all (1387) tests across the five
products, Figure 13 shows similar results.
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Figure 12. % of tests a method is best with - product VP

Figure 13. % of tests a method is best with - all products

Overall, even though DPAT has the largest percentages,
every method shows its unique values. Thus in a test applica-
tion, one should not discard any of the methods in advance.

6. Examples to illustrate Variance and Bias
Figure 14 shows the test value distributions of two

wafers selected from Figure 10 presented before. Observe
that these two distributions are quite different. In fact, their
KS distance is 0.905 (recall that 0 ≤ KS() ≤ 1).

Figure 14. Original test value distributions D1, D2

Figure 14 then shows the respective outlier score distri-
butions resulting from DPAT transform. Their KS distance
is 0.151, substantially smaller than 0.905. This illustrates
the variance reduction effect with DPAT transform.

Figure 15. Effect of DPAT, KS(DPAT (D1), DPAT (D2))

In comparison, Figure 16 then shows the respective out-
lier score distributions resulting from LA transform. Their
KS distance is larger than the DPAT distance. From this
perspective, we can say that LA is not as effective as DPAT.

The example illustrates how in Figure 10 LA has a larger
spread (a larger Variance) than DPAT. In fact, the two wafers
are selected based on Figure 10 where their distances are
among the farthest in the LA plot.
6.1. Simulated examples to illustrate Bias

In general, there is an implicit assumption with every
outlier transform on what properties a test value distribution

Figure 16. Effect of LA, KS(LA(D1), LA(D2))

should have. While this assumption might not have been
explicitly or formally characterized with a method, such an
assumption should always exist. Consequently, when this
assumption is violated, a large Bias can occur.

Figure 17. 3-wafer examples, all Normal

For example, Figure 17 depicts an example with
3 wafers. Each test value distribution is sampled from
a Normal distribution. 400 dies are sampled from
N (10, 10),N (50, 10), and N (100, 10), respectively.

Because the test value sample distributions are all Nor-
mal, it is expected that DPAT would have a small Bias.
As seen in the DPAT plot, the 3 resulting outlier score
distributions (colored similarly to the “Test values” plot with
blue, orange, and green) are close to the assumed Normal
distribution D (colored as the shaded gray area).

AEC is intended to improve DPAT by taking asymmetric
distribution into account. We see that AEC also has a small
Bias. LA has a slightly larger Bias because each outlier score
is calculated based on a smaller sample size with dies in a
given window. A smaller sample size can cause more noise.
As seen, the 3 distributions from LA deviate more from the
assumed Normal distribution (shaded gray area).

Figure 18. 3-wafer example that favors AEC

Figure 18 then depicts a different 3-wafer example. The
test value distributions are skewed (asymmetric) from a
Normal distribution. This asymmetry violates DPAT’s as-
sumption but meets the assumption of AEC. As a result,
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DPAT has a larger Bias. AEC’s Bias remains comparable
to that seen in Figure 17. Since LA does not consider
asymmetric distribution of test values, its Bias increases
from that in Figure 17 as well.

Figure 19. 3-wafer example that favors LA

The assumption of LA is that there is some location-
based wafer pattern across the test values. In Figure 19, on
each wafer, we create a horizontal line pattern where each
line is repeatedly sampled from one of the three Normal
distributions, N (10, 10),N (50, 10), and N (100, 10). Each
wafer is sampled in the same way. We expect LA to have a
smaller Bias on such an example.

As seen in Figure 19, LA has a small Bias while DPAT
and AEC, which do not consider any wafer pattern, both
have a large Bias.

The three examples illustrate that a large Bias can be
an indication that the test value distribution is out of the
consideration by a method (i.e. violating its assumption of
how the distribution should be). When a large Bias occurs,
using the resulting outlier scores becomes not justifiable.

7. Applicability results
Let Dij denote the test value data based on test tj on

wafer Gi. Let D be our assumed Normal distribution. Given
a method φ, in section 5.2 before, we use the distance
dij = DIST (φ(Dij), D) to measure the combined effect
of consistency and justifiability. Here, we can simply define
applicability of an outlier method φ with tj on Gi as

Applicability: APP (Gi, tj , φ) = 1− dij (4)

Let Happ denote an applicability threshold. For example,
for Happ = 0.90 we are interested in seeing how many
wafer-test combinations have applicability greater than this
threshold. Figure 20 summarizes such results.

Figure 20. Summary results with applicability thresholds

The left chart shows, for all wafer-test combinations
across all products, the percentage of wafer-test combi-
nations for which a method is 0.9-applicable (or 90%-
applicable). This percentage is not exclusive, i.e. multiple
methods can be applicable for the same combination. In
addition, we include an “N/A” bar to indicate the % of
combinations where no method has applicability ≥ 0.90.

As one changes the threshold Happ, the percentage
of N/A combinations would also change. The right plot
in Figure 20 therefore shows how the “N/A” percentage
changes with respect to the change of the threshold Happ.

As seen in the right chart, if we set Happ = 0.95, then
about 65% of the wafer-test combinations become N/A. One
can think of Happ = 0.95 as 95% confidence to apply the
outlier method to a wafer-test combination. Hence, the plot
shows that for 65% of the wafer-test combinations, we do
not have 95% confidence to apply any one of the five outlier
methods. However, if we lower our confidence to 90%, the
percentage of N/A is reduced to 17.9%.

7.1. Removing untrustable outliers
Recall that in Section 3 we show the undesirable dis-

agreement results among the five methods. With the appli-
cability measure, a simple resolution to the disagreement
can be to remove “untrustable” outliers from each method.

Suppose we set Happ = 0.9 and consider any outliers
found on a wafer-test combination with applicability below
Happ as “untrustable.” Figure 21 shows the result after
removing those untrustable outliers from the “N = 100”
Venn diagrams of Figure 5 and Figure 6, respectively.

Figure 21. Results compared to Figure 5 and Figure 6

For T10 the total number of outliers is reduced from 214
in Figure 5, to 121 in Figure 21. For T29, the total number
is reduced from 431 to 61. It is interesting to observe that
for the result with more disagreement in T29, the reduction
is also more significant. It is also interesting to observe that
for T10, the 16 common outliers found by all five methods
in Figure 5 also stay in the Venn diagram in Figure 21.

7.2. Usages of the applicability measure
Given a collection of outlier methods, Figure 20 shows

that applicability can be used to identify the subset of wafer-
test combinations for which each method is applicable, and
the subset of combinations for which no method is appli-
cable. Identifying the applicable subset with each method
enables one to choose the best method for each combination
with more confidence. Identifying the N/A subset enables
one to assess if the collection of methods is sufficient.
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Figure 21 further shows that applicability can be used
to discard “untrustable” outliers found by a method. This
avoids screening low-confidence outliers and hence, can help
reduce yield loss. In the next section, we will re-visit the
results presented in Section 2 and show how those total yield
loss Y L′min numbers can be reduced.

8. Re-visiting results in Section 2
In Section 2, the “best” outlier model is established

for each CQI. For each CQI, we can use applicability to
evaluate if the model (based on the particular method with
the particular test) is indeed applicable on the CQI wafer.
With an applicability threshold Happ = 0.95, Table 5 shows
the # of CQI cases that are not applicable (“N/A”) and the
# of cases that are applicable. In total, about 38% (= 59

153 )
of the CQI cases where their models are applicable.

TABLE 5. APPLICABILITY RESULT ACROSS ALL CQIS

Product VP KM A2M MPC ALP Total
# CQIs 32 23 11 10 77 153
# “N/A” 17 22 5 7 43 94

# Applicable 15 1 6 3 34 59

8.1. Improvement on total yield loss Y L′
min

For the 59 applicable CQI cases, Figure 22 shows how
much the total yield loss Y L′min is reduced if the CQI
outlier model is applied to only wafers with applicability
≥ 0.95. For each CQI, the “Without applicability” bar
denotes the Y L′min from the original experiment described
in Section 2. The “With applicability” marker denotes the
new Y L′min. For a fair comparison, note that this new yield
loss % is based on the total number of parts from only those
applicable wafers, not the entire set of wafers as before. In
other words, both Y L′min numbers are the percentage from
the same formula: total # of parts screened out

total # of parts applied on .

Figure 22. Improvement on total yield loss Y L′
min

The improvement on the total yield loss can be clearly
observed. This is interesting because applicability check
reduces the total number of parts applied on. By reducing
the denominator in the Y L′min formula above (can be a
significant reduction as indicated from Figure 20 that many
cases (65%) are not applicable with Happ = 0.95), we ob-
serve that the resulting Y L′min is also reduced. This implies
that the % of yield loss on those not-applicable wafers is
greater than the % of yield loss on those applicable wafers.
This suggests that the wafers removed by the applicability
check indeed contain the excessive yield loss.

8.2. Improvement on yield loss difference

In Section 2, poor generalization is shown by the sig-
nificant difference between Y Lmin and Y L′min. Based on
this difference, “Y L′min − Y Lmin,” Figure 23 shows how
applicability check improves this generalization.

Figure 23. Improvement on yield loss difference Y L′
min−Y Lmin

8.3. Ideal Y L′
min for each given Y Lmin

It is important to note that because Y L′min is based on a
(much) larger number of parts, it is expected that Y L′min >
Y Lmin. Suppose all wafer outlier score distributions follow
our assumption of Normal distribution D. Even with this
ideal situation, we still expect to see Y L′min > Y Lmin.

To see this, for a given Y Lmin, we perform Monte Carlo
simulation of the ideal situation based on the assumption D
and using the same number of parts in each case (e.g. on
CQI lot, on all lots, without applicability, with applicability).
Through this simulation, we calculate an ideal Y L′min for
each case. Table 6 shows some example results based on
the first five CQIs shown in the figures above.

TABLE 6. EXAMPLES OF IDEAL Y L′
min BASED ON Y Lmin

CQI 1 2 3 4 5
Results without applicability check

Y Lmin = 0.197% 0.209% 0.191% 0.124% 0.12%
Ideal Y L′

min = 0.768% 0.754% 0.649% 0.611% 0.523%
Actual Y L′

min = 5.597% 4.496% 4.461% 4.107% 3.39%
Results with applicability check

Y Lmin = 0.172% 0.343% 0.341% 0.154% 0.00%
Ideal Y L′

min = 0.683% 1.06% 1.124% 0.653% 0.184%
Actual Y L′

min = 0.567% 0.497% 1.31% 0.984% 0.241%

Note that with the applicability check, the Y Lmin on the
CQI lot can change as well, even though we do not change
the outlier model. This is because some wafers from the
CQI lot can be not-applicable.

As seen in the table, each ideal Y L′min is greater than
the Y Lmin, but not too much greater. For each case, if the
actual Y L′min is greater than the ideal Y L′min, then this
means the total yield loss is not ideal.

Without applicability, we see that all cases have an
actual Y L′min above the ideal yield loss. And the difference
between the ideal and the actual is quite large.

With applicability check, for CQI 1 and CQI 2, the actual
Y L′min is smaller than the ideal. Even for the other three
cases, the actual Y L′min is much closer to the ideal than
those numbers without the applicability check.
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Refer back to Figure 23. In the figure we use a diamond
marker to note the CQI cases where the actual Y L′min is
greater than the ideal yield loss in the “Without applicabil-
ity” experiment. We use a circle marker to note those similar
CQI cases in the “With applicability” experiment.

As seen from those makers in Figure 23, without appli-
cability many CQI cases have a total yield loss greater than
the ideal. With applicability, many of these cases (without
a marker) become ideal or smaller than the ideal yield loss.
Note that for most of those CQIs with the circle marker, the
differences between the actual Y L′min and the ideal yield
loss are quite small, similar to those shown in Table 6.

8.4. Consistency without justifiability
In the above experiment, we use the applicability equa-

tion (4). As mentioned above, this applicability reflects the
combined effect of both consistency and justifiability. Sup-
pose we change this to measure only consistency and discard
justifiability. In other words, we use CON(Gi, tj , φ) =
1 − d′ij where d′ij = DIST (φ(Dij), D

′), i.e. distance
to the average distribution D′, rather than to the Normal
distribution D. By replacing APP () with CON(), we re-
perform the experiment for the 59 CQI cases by keeping all
the other aspects in the experiment the same.

Figure 24. Less improvement on total yield loss Y L′
min

Figure 24 shows a similar chart as that shown in Fig-
ure 22 above. Notice that, although the total yield loss
Y L′min is still reduced for many CQIs, the reductions are
smaller than those shown in Figure 22. For a few CQIs, the
new Y L′min is the same as before or even worse.

Figure 24 shows the importance to include justifiability
(i.e. Bias) in our applicability measure. Without checking the
justifiability, we would not be able to obtain the substantial
yield loss improvements as seen in Figure 22.

9. Conclusion
This work is motivated by the seemingly No-Free-Lunch

phenomenon observed in the experiment results presented
in Section 2 and Section 3. Our resolution to the seemingly
NFL problem is by developing an applicability measure.
The paper discusses the reasoning behind this applicability
measure in terms of the Variance and Bias concepts.

Given an outlier method, the applicability is measured
for each wafer-test combination individually. With an appli-
cability threshold Happ, one can therefore decide if a given

outlier method is applicable to each wafer-test combination
or not. Intuitively, we explain that if a method is applicable,
then it means the outlier decision is both consistent and
justifiable for the wafer-test combination.

In Section 7 we provide examples to demonstrate the
effect of our proposed applicability check and explain its
possible usages. Then, in Section 8, based on experiments
for analyzing 153 customer returns from five automotive
product lines, we demonstrate that our applicability defini-
tion is indeed meaningful. In particular, we show that the
applicability check can substantially improve the general-
ization of a yield loss result by an outlier model seen on a
CQI lot, to the entire set of lots.

In practice, the applicability equation (4) can be im-
plemented in an online fashion. Let O be the set of out-
lier scores calculated for the parts from all lots up to a
production point. Let µo and σo be the sample mean and
sample standard deviation of O. The D distribution is simply
the Normal distribution N (µo, σo). In this way, D can be
adjusted incrementally. With this D and an applicability
threshold Happ, one can therefore determine the applicabil-
ity of each outlier method to each wafer-test combination. In
the future work, we plan to pursue such an implementation.
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