The Patcher
Miller Puckette
IRCAM, 11/8/88

Introduction.

The Patcher is a graphical environment for making real-time computer music, currently
with midi-controllable synthesizers. Its main purpose is to control the instantiation and
configuration of objects in the MAX system {Koechlin, et. al., 1986 ICMC Proceedings.] The
main entities in MAX are windows, which may be text editors, patchers, and function
tables. (In the future, maybe also a sequence editor and a 2-d function editor.) At the
moment the Patcher is the most interesting window type in MAX.

MAX views a performance as a collection of independent objects which communicate by
passing messages. It provides a set of subroutines for timing, midi /O, fast memory
management, and message-passing between objects. In addition there is a simple
interpreter which converts text to messages and passes them appropriately. The current
version runs on a Macintosh personal computer.

The bulk of the MAX system is a set of classes which define the objects themselves and how
they interact. The classes are highly insular; the rest of MAX has very little knowledge
about the inside of any given class. As a result, the classes can be changed, added to or
removed, or new ones created, with little or no effect on the performance of the rest of the
system. The design of MAX aims to make a wide range of performances possible with littie
or no need for additional programming; nonetheless it is easy to add new functionality to the
system. :

MAX has hooks for patching a digital synthesizer, which may just be (as now) an
interpreting program in the Macintosh or may (in the future) be a plug-in signal-processing
card. As a part of the work of controlling a digital synthesizer, certain objects in MAX
create signal-processing elements in the synthesizer. These objects can intercommunicate
by means of signals, special messages through which the objects will arrange to pass a
signal in the synthesizer from one element to the other. Since this capability is still
experimental, it will not be described here.

Parts of MAX were contributed by Lee Boynton, Cort Lippe, and Zack Settel; brave
composers who used it early (and thus helped its development) include Frederic Durieux,
Michael Jarrel, and Philippe Manoury, assisted by Thierry Lancino, Cort Lippe, and Jan
Vandenheede.

Description of the Patcher.

The Patcher presents a visualization of an object in MAX as a box in a window, showing
some of the state of the object. Each box in the Patcher's window has some number of
graphical inlets and outlets. A connection between two objects is represented by a segment
from an outlet of one object to an inlet of another. You can create a new connection by
selecting any outlet of any object and dragging to an inlet of another object; a segment
appears between them. An outlet may be connected to many inlets and vice versa. Figure 1
shows an example of a patch, with three "slider” controls controlling three parameters of a
stream of notes to be sent over MIDI. Outlets of a box are always on the bottom and inlets

ICMC Proceedings 1988 420

on the top. An object is usually taken to be its own first ‘inlet, through which you may
direct any desired message to the associated object; other inlets are for specific functions,
so that standard messages may be used to cause a variety of different actions in the same
object.

A box in the patcher executes code only when something happens to it, usually as a resuit of
a message coming down a line to one of its inlets, but sometimes because the user clicks on
it or a timer goes off. When any of these happen, control is passed to that object which
might: send messages down lines connected to its outlets, draw something on the screen,
and/or set a timer. (An important exception to the "only” is that some boxes (signal
processors) run continuously, communicating over "signal” lines -- but we aren't describing
that here.)

Messages which go down the lines (or any other message in the system) are a symbol
followed by any number of arguments. The arguments may be fixed or floating point
numbers, more symbols, and/or references to other objects. A fixed-point slider, for
example, sends messages like “fix 123”7 Here "fix" is a symbol saying that what follows
will be a fixed-point number, and "123" is the goods. The messages ‘bang’, fix, and ‘float'
are considered standard. They mean nothing but what the following types will be; hence
they could really be considered equivalent to the data types. The selector "bang” takes no
arguments and is usually used to trigger things. The system is optimized for standard
messages; outlets work faster on them than on other messages. Another message, "fixfix",
which holds two fixed-point numbers, is being phased out in favor of a more general facility.
At any rate, you never need to type the words “fix", "float”, or "fixfix" since these are
automatically filled in by the interpreter when needed.

You can see what messages are appearing at a given outlet by connecting the outiet to the
inlet of a "print" object; see for example figure 2. The printouts occurred when the slider
- was slid up and down.

You can do arithmetic as in figure 3. You may set the initial value of the second inlet for "+"
by adding an argument to "+". You can get at function table windows as in figure 4. If you
send integers (i.e. ‘fix' messages) to the tabie box, the table's value for that "x" location
appears on the box's outlet. You may set table values with *fixfix® messages.

Since patches are often too complicated to fit inside a single window, a mechanism for
abstraction is provided, as shown for example in figure 5. There, the "untitled" window is
itself the object associated with the "patcher" box in the window titled "imbed.max"; the
boxes in "untitled” are of classes "inlet" and "outlet” and correspond to inlets and outlets in
the "patcher” box.

Most of the functionality of the system is derived from the classes that can be typed into a
"new" box. To be able to write interesting graphical programs, you need classes for flow
control, arithmetic, timing, 1/O, and signal processing. A library of these objects is provided
with the system. It is possible to add new ones; how to do this is not described here.

Messages and the Interpreter.
Whenever you load a file, evaluate text from the text editor, change the contents of an
"object” box or evaluate a "message” box (by clicking on it when the Patcher is locked or by

sending a standard message to its inlet,) MAX calls its interpreter. The interpreter
converts text into messages; the messages are separated by semicolons or commas.

421 ICMC Proceedings 1988

If the text to be interpreted is in a message box, the interpreter is called with the outlet as
its destination. If a destination is given, the message should contain a symbol (the
message's selector) and any arguments. If no destination is given (for instance using "eval”
in a text-edit window) the message should start with a destination and continue as before.
If a message ends in a comma and there is another message afterward, it is given the same
destination as the earlier one (and hence you shouldn't retype it); if it ends in a semicolon
the destination is cleared before the next message is interpreted (and hence should be
specified in the next message.) For example in figure 6, the messages "foo bar" and *“fix
123" go to the outlet (and hence to the "print"), and the message "ralph bang” goes to the
"send”. ("Send" has the special property that it creates a receiver object with its
argument as a name.)

The interpreter also expands arguments named $1, $2, ... into whatever arguments the
interpreter was given; hence if a message box gets "fixfix 1 2" it sets $1 to 1 and $2 to 2.

Edliting.

The patcher object, in its initial state, presents a window with a menu and a lock button.
The menu presents the classes of graphical objects available from the patcher. You can
create an instance of a class by selecting it on the menu. The instance appears as a new
shape drawn in the window. You can then drag the shape to any place in the window. The
lock button controls whether the patcher's configuration may, at the moment, be edited (the
unlocked state), or whether further gestures from the mouse and keyboard are to be
interpreted as real-time controls.

To make a connection between two boxes the patcher must be unlocked. You click on an outlet
of some box and drag toward some inlet, as in figure 7. If the inlet has no method associated
to the symbol of the outlet and also has no "anything” method, the connection is not made; if
the outlet has no symbol the connection is always made. To delete a connection, select it and
hit "cut® or "clear".

When the patcher is unlocked, you can select boxes and lines by clicking on them; shift-
clicking adds or deletes an object from the current selection. Cut, copy, paste and clear
work from the "edit® menu in the usual way. If you copy and paste a collection of boxes, the
lines connecting two copied boxes are also copied.

You can move boxes by dragging them; dragging the mark on the right side changes the width
of the box. If other boxes are selected they move or grow in parallel. Lines move only as a
result of boxes moving or growing.

If you click in the text portion of a box while it's selected you will select the text; the usual
toolbox text editing rules apply. Changes you make in the text are only internalized when
you deselect the box. If the result is an error the box will get no inlets of outlets.

When the Patcher is locked, if you double-click a "new" box it will send a double-click
message to its associated object, which may activate an editing window for it. In
particular, if the box is an included Patcher or Table it will activate its own window; if it is
another "new" object it puts up a help window for it. The Patcher saves itself to a file by
writing an interpretable text which evaluates to a copy of itself. (This mechanism is also
used for cut and paste.) The Patcher asks all non-built-in objects to save themselves if
they have methods to do so; hence all objects can in principle restore their states entirely.
A Patcher is recreated from a file by the native "load” command in the underlying system.
The file may be ASCII or binary.

ICMC Proceedings 1988

422

Bullt-in objects.

The patcher's nine types of boxes are divided into three groups: controls, 1/0, and text.
Examples of all the boxes, in the locked and unlocked state, are shown in figure 8.

The controls include a momentary pushbutton, a toggle button, a sliding potentiometer, and a
number box; all have one outlet and are their own inlets. The momentary button sends a
"bang" message to its outiet whenever it is clicked; the toggie sends “fix 1" or “fix 0"
alternately when clicked. The slider and number box send out numeric messages which can
be increased or decreased by dragging up or down; the slider slides a bar up and down and
the number box prints out its value.

The /O boxes are "inlet” and "outlet". They only have a meaning when the patcher is
imbedded in another via a "new” box (see below). If the patcher is included in another
patcher as a box, that box will have inlets and outlets corresponding to the inlet and outiet
boxes in the included patcher. If, in the included patcher, you send a message to an outlet
box, the message appears on the corresponding outlet on the "object” box that created it.

There are three kinds of text boxes: "new”, "message”, and "comment”. Each contains a
text edit record; while the patcher is unlocked you may select and edit the contained text.
The "new" box allows you to type out a message which is sent to the new object in the
underlying system; it should evaluate to a newly created object. If the text is changed, the
old object is destroyed and a new one is created.

Normally the object that new creates becomes the object box's first inlet and all other
inlets -and outlets owned by the object are also drawn on the box. Some objects (for
instance a Patcher) prevent this and manage their own inlets and outlets.

The "message” box also contains a message, but it is sent to the box's outlet every time a
standard message is sent to the box. The message may contain variables which are set to
the arguments of the incoming message. If the patcher is locked, clicking on the message
box is equivalent to sending a "bang” message. -

The "comment” box allows you to write text on the patch for labels and comments.
Non-bullt-in objects.

The set of non-built-in objects is still changing, but the following gives a nearly complete
listing. The most up-to-date listing is given by the on-line documentation, which is being
provided by Cort Lippe. Each class has a help window which is actually a patch featuring the
class (figure 9.) There is also a general help window (figure 10) which lists the available
classes. You can double-click on an object in this window (or anywhere else) to get the help
window for that class. A rough list is:

1. Numbers: int, float. They have two inlets and two outlets; the left outlet sends a 'bang'
after the right one sends the value. The right inlet changes the value without sending it; you
can send it later by sending ‘bang' in the the left inlet.

2. Message decomposition: pack, unpack, switch, bang. Unpack takes *fixfix' and splits the
arguments into separate outlets; "pack” does the opposite. Switch interchanges the two
inputs in a way which inverts their order. Bang has two outlets; they both send "bang", the
left side before the right.

3. Arithmestic:

423 ICMC Proceeding

fixed- or floating-point: +, -, *, /,
fixed-point only: &, |, &&, ||, %, ==, l=,), >, <, <=, >=,
not yet implemented: sqrt, sin, cos, tan, asin, acos, atan, atan2, pow, exp, log.

The first two rows, and "atan2" and "pow" from the last row, are binops. If they are given
an argument it is the default value for the right inlet (so that you can use the left one to add,
subtract, etc, a constant.)

4. Filters: change, sel, gate. "Change" takes a fixed-point input and sends it to its outlet
only when it changes. “Sel" selects messages with a specific numeric value and sends them
through, changing "fix" to "bang” and *fixfix" to *fix" (stripping the first argument, acting
only when it's equal to "sel™s argument. "Gate" lets stuff through from its right inlet when
"1* (or anything else nonzero) is sent to its left; not when "0".

5. MIDI: midiin, midiout, ..., follow, ms, midiparse, midiformat. Midi "channels* 17
through 32 refer to the printer port. Midiseq (actually "ms" and "oms") and follow are a
midi sequencer and score follower. Midiparse and midiformat convert raw MIDI bytes to
messages and back; thus midiparse has one iniet and 5 outlets (the midi messages), and
midiformat has 5 inlets and one outlet.

6. Clock: del, metro, timer, speedlim, line. "del” sends a bang a given interval after a
"bang” has come in; if in the meantime another "bang" comes in it reschedules its output to
arrive later. "metro” puts out a metronomic pulse; timer acts like a stopwatch; speedlim
downsamples an input to change no more frequently than desired; "line" makes breakpoint
envelopes.

7. Note-oriented: note, d2nz, notegroup. “"note" takes a “fixfix" and supplies, a given time
later, a corresponding note-off “fixfix". "d2nz" filters out note-offs (i.e. fixfixes where
the second number is zero.) Notegroup waits for a cue and extracts a tempo from it.

8. Misc.: table, patcher, funbuff, send, receive. "Table® and "patcher" are window types.
"Funbuff" (by Zack Settel) maintains a linked list of (x,y) pairs for breakpoint functions or
control sequencing. The "send" object creates an outiet in common to all "receives” of the
same name, so that input to any send of that name appears as output to all of them.

Conclusion.

The system described here lets musicians choose from a wide range of real-time
performance possibilities by drawing message-flow diagrams. These patches can grow
large gracefully, because of a strong facility for embedding and interconnection between
windows; the results can still be fast and reliable enough for stage performance. A rich set
of objects is provided to do computation and MIDI 1/O; their definitions are abstract enough
to make them useful in many different situations.

ICMC Proceedings 1988 424

425

—

£l note.max
=]
pitch velo duration
-ﬂ ——

T

Figure 1. A sample patch.

Untitled

FVVV OOV OOV OO VOOV VYOV V VO V-

max

print
print
print

print:
print:
print:
print:
print:
print:
print:
print:
print:
print:

1

'S5

lilg

:9

Figure 2. Printout.

ICMC Proceedings 1988

ICMC Proceedings 1988

Figure 3. Arithmetic.

14

| |

Figure 4. Function tables.

426

imbed.mas
=)
E(J=== Untitled ==
[
=
Figure S. Imbedding.
foo bar,
fix 123;
ralph bang
T
Eerater)
Figure 6. The interpreter. Figure 7. Editing.

427 ICMC Proceedings 1988

object

message

comment

number
toggle

button

outlet

inlet

slider

ICMC Proceedings 1988

=3
o
4|
L3
=
2

ElE

unlocked

=.
2

=
D
(4]

Eld ﬂx'

|gliss $1 120 |

[gtiss $1 120 |

this is a comment

1
X

L~
a

1 KB

this is a comment |

o
p.!:lﬁ

F(

Figure 8. Built-in objects.

resized

gliss $1
1000

this is a
comment

grow

/ control

428

EC

:max-help:timer.pat

o] Arguments: none;
Left inlet: bang;
click here click here to Right inlet: bang;
to start read elaspsed Outlet: fix;
timer time ‘now’

B0 | time 'now’

Timer takes no arguments. Both inlets take a 'bang’. The outlet sends
a fix’. Timer resets time to zero and starts keeping time when a
‘bang’ is sent to the left inlet. The elapsed time in milliseconds is
output each time a ‘bang’ is sent to the right inlet.

&

Figure 9. A help window.

:max-help:pat.pat

]

MESSAGES

— OTHER
ARITHMETIC relations printout
+ = = == Ip k k
[| | p__1p=_dI | [swap_ljpack junpack | select a number |[sel 12]
* / = I= i
I It N S | K | [nt__Jifleat] filter out repetitions
modulo bit shift logical bitwise open/close a connection [gate
1 K or] SUBWINDOWS nonlocal |5 foo]
>> and & |B&] [patcher] [table | connection [v fos]
M " MORE MIDI linked list [funbuff
raw bytes |midiin |imidiout |lsysexin | sequencing E keyboard :key
midi notes m following cLOCK
ctrichange [ctlin _|[ctieut | add/remove pe==r=jpme— ——
] = noteoffs M delay [del 100
Pgm change [pgmin_] p— timer [fimer
.) bytes <--> |midiparse l . —
pitch bend ; breakpoint
Bendhn | messages == breskpoint [fRe 020)
aftertouch [touchin | [touchout downsampler Speediim 20 |
repeated msg [metro 100
Figure 10. The main help window.
429 ICMC Proceedings 1988

	ICMA_1988.pdf

