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Abstract

Computation has quickly become of paramount importance in the design of engi-

neered systems, both to support their features as well as their design. Tool sup-

port for high-level modeling formalisms has endowed design specifications with

executable semantics. Such specifications typically include not only discrete-

time and discrete-event behavior, but also continuous-time behavior that is stiff

from a numerical integration perspective. The resulting stiff hybrid dynamic sys-

tems necessitate variable-step solvers to simulate the continuous-time behavior

as well as solver algorithms for the simulation of discrete-time and discrete-event

behavior. The combined solvers rely on complex computer code which makes it

difficult to directly solve design tasks with the executable specifications. To fur-

ther leverage the executable specifications in design, this work aims to formalize

the semantics of stiff hybrid dynamic systems at a declarative level by removing

implementation detail and only retaining ‘what’ the computer code does and not

‘how’ it does it. A stream-based approach is adopted to formalize variable-step

solver semantics and to establish a computational model of time that supports

discrete-time and discrete-event behavior. The corresponding declarative for-

malization is amenable to computational methods and it is shown how model

checking can automatically generate, or synthesize, a feedforward control strat-

egy for a stiff hybrid dynamic system. Specifically, a stamper in a surface mount
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device is controlled to maintain a low acceleration of the stamped component

for a prescribed minimum duration of time.

Keywords: Computational methods, Computer simulation, Computer-aided

control system design, Embedded systems, Numerical simulation, Synchronous

data flow, Systems design, Variable-structure systems, Verification, Zero

crossings

1. Introduction

Over the past decades, the feature set of engineered systems has rapidly in-

creased. To a large extent this increase has been enabled by merit of the flexible

realization of functionality in embedded software. Simultaneously, Model-Based

Design (e.g., Friedman and Ghidella (2006); Nicolescu and Mosterman (2009);

Potter (2004)) has become essential to competitively, if not just successfully,

engineer embedded systems (e.g., Jones (2005)). Computation can then be

identified as the main driver that enables (i) the design of modern systems and

(ii) an unparallelled feature differentiation. This trend has put forward a dis-

tinct need to formally capture the computations that underpin an executable

model which is particularly challenging for the computational approximations

of continuous-time behavior. This article attempts to formalize these computa-

tions, especially to support systems that are stiff from a numerical integration

perspective and that further comprise discrete event behavior, resulting in stiff

hybrid dynamic systems. The formalization intends to capture ‘what’ the ef-

fects of the necessary computations are without the necessity to account for

specifically ‘how’ the computations are evaluated and implemented.

1.1. Model-Based Design for Engineered Systems

To understand this objective, consider engineered systems such as cyber-

physical systems that include physics, computation, and networking aspects.

The design of such systems is abstractly depicted in Fig. 1. In the middle row

of the figure, a triangle that increases in size from left to right illustrates how the
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specification of an engineered system under design is increasingly refined and

extended. The additional detail becoming available in each step is illustrated

by an added layer to the specification.
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Figure 1: Engineered system design

Traditionally, such specifications have been paper documents. To perform

design tasks, an analytic representation would be derived such as, for example,

a particular control law architecture. This analytic model, illustrated in the

top row in Fig. 1, may comprise a linear approximation of the plant to be

controlled so as to facilitate linear control design methods (e.g., Åström and

Wittenmark (1984)). The control structure and parameters so found to satisfy

the specification are then integrated back into a now more detailed specification

with an additional level of complexity.

The performance of the control on a more detailed plant model can then be

studied by computational methods. Sophisticated simulation technology allows

the study of very detailed plant effects based on a computational model, as in-

dicated in the bottom row in Fig. 1. In domains such as Scientific Computing

where large scale models are simulated in great detail such as described by Post

and Votta (2005), a computational approximation is typically still obtained by

software engineers producing low-level code, such as FORTRAN. In the do-

main of control system design, however, technical computing environments are
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available with a built-in code base that supports simulation of high-level (of-

ten graphical) modeling formalisms. This code base (typically C), illustrated

in Fig. 1 by the hashed rectangles, is tailored to an implementation technology

such as, for example, an Intel x86 microprocessor, illustrated by the solid dark

rectangle at the bottom. Note that as the specification becomes more detailed,

the distance to the underlying technology reduces and the code base required

for simulation becomes smaller. The support for high-level modeling formalisms

allows pertinent parts of the specification to be easily transformed into a com-

putational counterpart for analysis based on computational simulation. The

results of such analysis may then help modify the control parameters to account

for more detailed phenomena such as nonlinear effects because these are typi-

cally supported by computational simulation. Consequently, models of higher

fidelity are employed and so a more robust design is obtained (e.g., Looye et al.

(1998)), which can then be integrated back into the more detailed specification.

The specification continues to be extended and refined based on such ana-

lytic and computational approximation till it is sufficiently detailed to be im-

plemented. In Fig. 1, this implies that the base of the specification triangle

has reached a certain implementation technology (e.g., a target embedded pro-

cessor). Notice that the outline of the specification triangles in Fig. 1 has a

dotted line style. This is to indicate that in general the specifications are in-

herently vague because they require interpretation. There may be well-defined

parts, though, such as a computational procedure, and this is illustrated by the

staircase element inside the right-most triangle. One cause for vagueness stems

from the differential equation behavior that typically is extensive (comprising

many state variables), has nonlinearities, and contains switching effects. As

such, no closed-form solution exists, and only a computational approximation

can provide a precise definition.

As computational approximations have become increasingly available and

powerful, they have steadily gained in importance till they triggered an entire

paradigm shift. Instead of being a tool for analysis of the prime deliverables in

document form, the computational models have become the prime deliverables
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themselves. This is illustrated in Fig. 2 where the specification triangles in

Fig. 1 have been replaced by their computational approximations. Because

computational, these specifications are now immediately executable. Note that

a system specification still contains many artifacts other than computational

models. The illustration only serves to highlight how computational models

and, indeed, computational semantics, have become part of the primary path

in control system design.
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Figure 2: Model-Based Design of engineered systems

This status of computational models as first-class deliverables is the founda-

tion of Model-Based Design and enables:

• An interconnected infrastructure for management of design artifacts with

support for fine-grain active links. For example, requirements for produc-

tion code can be linked to the specific code lines with automatic tracing

between them.

• Generating behavior from specifications to provide early insight into de-

sign decisions, share unambiguous information between design teams, and

automate tasks such as optimization and experimental design.

• Verification of domain specific constraints that are static as well as dy-

namic in nature. This includes statically checking not only static seman-

tics (e.g., type checks) but also dynamic semantics (e.g., indexing an array

out of its bounds).
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• Automated completion of a partial design and generation of an implemen-

tation by means of transformations. For example, data types of variables

in a design can be automatically determined while imperative source code

for an implementation can be generated from a declarative design.

1.2. Formalizing Computational Approximations for Design

A contribution of the work presented here is a basis to further leverage com-

putational models. In particular, with physics comprising an essential part of

embedded systems, there is an interest in also defining the semantics of the

corresponding modeling formalisms as denotational composition of functions on

streams. To apply Computer Science methods such as model checking (e.g., An-

dersson et al. (2002)) for purposes of control system design, the computational

approximation must be formalized. In the context of the work presented here,

this then applies to the computational methods that are employed to compute a

simulation of a continuous-time model, potentially with stiff numerical behavior

and interspersed discrete events. Since physics is well modeled by differential

equations (e.g., Breedveld (1984); Cellier et al. (1996)), either ordinary differen-

tial equations (ODEs) or differential and algebraic equations (DAEs), a unifying

framework must encompass the computational semantics of discrete-time and

continuous-time models. Moreover, discrete state changes are often part of

the otherwise continuous-time models of physics, for example to capture mode

changes in models of a component such as a valve or diode. Thus, the framework

should further support defining semantics of discrete-event models.

The work presented here then aims to formulate the computational seman-

tics of the continuous-time part of a model when it is specified by differential

equations. It recognizes that the numerical integration algorithms employed for

computational simulation are key in precisely capturing how a model executes.

In order to honor the continuity requirements of differential equations (such as

a continuous domain and time-derivative constraints), a multi-stage variable-

step solver is studied. The specific challenge that is addressed in this paper

is providing a declarative specification of a variable-step numerical integration
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algorithm such that it can be integrated with discrete-time and discrete-event

behavior to ultimately enable the systematic formalization of the computational

approximation. Such a formalization then unlocks the potential for using Com-

puter Science methods such as model checking for synthesizing control of stiff

hybrid dynamic systems.

The necessity and value of the contribution can be conceptually depicted as

in Fig. 3. Following Fig. 2, the analysis based on simulation of a computational

model includes a large software stack (Fig. 3(a)) that is necessary to make a

model in a high-level formalism executable. This software stack is akin to the

execution engine code of a product such as SimulinkR© (2008) and generally pro-

hibitively complex for model checking. This problem is solved by introducing

progressively higher levels of description such as an operational specification

in Fig. 3(b) that captures the control flow as a transition system but that re-

moves the implementation complexity of the code. At an even higher level, a

denotational specification in Fig. 3(c) maintains only the function of the compu-

tations as a declarative system of equations but that removes the complexity of

sequences of state changes as in the transition system. As a result, the complex-

ity that the analysis must account for is reduced to the levels above the dashed

line in Fig. 3(c). This paper illustrates how computational methods can then

be applied for design to systems that would be prohibitively complex otherwise.

To derive the denotational specification, the work presented here builds on

previous work by Denckla and Mosterman (2006). There, the computational

semantics of discrete-time modeling formalisms such as time-based block dia-

grams in Simulink was defined as a composition of pure functions on streams.

The strict functional approach allows capturing the meaning of a model in a de-

notational sense (i.e., what it does) as opposed to an operational sense (i.e., how

it does something) (e.g., Nielson and Nielson (1992); Zhang and Xu (2004)).

This decouples a specification from its implementation and in general provides

a representation that is easier to understand and reason about, for one because

with pure functions there is no internal state to account for, as eloquently pre-

sented by Backus (1978).



D
R
A
F
T
-
C
O
N
F
ID
E
N
T
IA
L
-
F
O
R
R
E
V
IE
W
O
N
LY

A Computational Model of Time for Stiff Hybrid Systems 8
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Figure 3: Reducing complexity.

In its application, the computational semantics are represented in a strict

subset of Simulink blocks. This subset does not include the continuous-time in-

tegrator block so that the integration behavior that is otherwise approximated

by the code of the Simulink execution engine now becomes explicit as a declara-

tive block diagram. As per Fig. 3(c), this then allows computational methods of

SimulinkR© Design Verifier
TM

(which is not applicable to models with continuous-

time integration) to synthesize a control law. To illustrate, a sequence of feed-

forward control actions, a control force profile, is synthesized for a surface mount

device that stamps components onto a printed circuit board. Such a device is

required to maintain an acceleration profile of the component for a minimal time

to allow the stamped component to adhere to the board. Using the method-

ology described in this paper, SimulinkR© Design Verifier successfully produces

a control force profile that achieves this requirement. This illustrates how the

methodology enables industrial control engineering practitioners to exploit the
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models they have in a novel manner.

1.3. Structure of the Presentation

The presentation is structured so that Section 2 introduces the computa-

tional solution of differential equations by means of numerical integration. In

particular, the approximation error that results from the numerical integration

is briefly discussed. In Section 3, two numerical integration schemes are de-

veloped to constitute the basis of a computational semantics. Section 4 then

presents a functional representation of a variable-step solver based on these in-

tegration schemes. In Section 5, a case study combines the variable-step solver

with discrete-time and discrete-event model parts in order to illustrate how

the resulting abstract notion allows for a new kind of control synthesis. The

approach also unlocks the potential for a methodological process for solving con-

trol engineering problems that can be applied in parallel to traditional methods.

Section 6 evaluates how the presented work advances previous achievements as

well as its more general contribution. Section 7 concludes and outlines future

work.

2. Computational Approximation From Numerical Integration

In the design of cyber-physical systems, such as high-integrity embedded

control systems, a model of the physics that the information components inter-

act with is indispensible (e.g., Åström and Wittenmark (1984); SC-167 (1992);

High Confidence Software and Systems Coordinating Group (2009)). Given

the macrophysical principles of conservation of energy and continuity of power

(e.g., Paynter (1961); Falk and Ruppel (1976)), dynamic models of physical

systems are often represented by differential equations, possibly supplemented

with algebraic constraints (e.g., to formulate balance equations). These models

can be designed based on first principles, such as the laws of physics. Param-

eters are measured or estimated and once a system of equations is arrived at,

it is common to further tune the parameters to best fit the model to measured
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data. In the extreme case of empirical models, only the order of a model may

be provided as an approximation of required detail.

This is illustrated in Fig. 4 where a physical system as shown on the left-

hand side may be modeled based on first principles as a system of differential

equations, as shown in the center. The meaning of such a physical system is

indicated by measurements of pertinent variables. The relation between the

physics and measurements is informally indicated as a denotation. Likewise,

the meaning of the system of differential equations is given by the trajectories

that it embodies. These trajectories are validated to match the corresponding

measurements.

validate

validate

x(k+1) = h(x, u, k)

verify

x(t) = f(x, u, t)

Figure 4: The validated computational representation deviates from its verified representation

When large systems are composed or in general when no analytic solution to

the differential equations exists, the parameters are fit based on computational

simulation of the differential equations. This is indicated by the computational

model on the right-hand side in Fig. 4. The structure of this model and initial

parameter values are typically verified to correspond to the model that is based

on first principles. Since the parameter estimation is based on validating the

computational model against the original measurements, as indicated by the

bottom arrow, this model may significantly change in order to obtain a best

parameter fit. The computational model then starts to lose its correspondence

with the model that is based on first principles till at some point the com-

putational model becomes the single most important artifact used for further

analysis, synthesis, and design effort.
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As a testimony to the absence of an innate and unique separation between

solver and model, the computational model then incorporates the computational

characteristics of the numerical solver that generates the simulation that is used

to fit the parameters. So, parts of a model may be moved to the solver and vice

versa (e.g., Schiela and Olsson (2000)).

Though the mathematical derivation of solver equations provides an esti-

mate of the error bounds, and as such it can be claimed that the solver seman-

tics are defined at the mathematical level, these error bounds are only local.

Guckenheimer (2002) elaborates that the global error of numerical integration

is unknown for most practical cases. For example, consider an ideal induc-

tor/capacitor oscillator






p = −q̇

q = ṗ
(1)

where p may represent flux, q may represent charge, and where the mass and

capacitance parameters are chosen to be 1. The initial flux is chosen p0 = 1 and

the initial charge q0 = 0. This system of equations can be solved in Simulink

with a variable-step Dormand-Prince integration method (ode45) that computes

fourth and fifth order Runge-Kutta solutions and adapts the step size based on

the difference. The solution exhibits a decrease in energy over time, as shown

by the solid line in Fig. 5.
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Figure 5: Numerical simulation of total energy in an ideal oscillator

Numerical dissipation is typical for integration schemes, where the math-
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ematical theory is mostly concerned with the accuracy of the integration al-

gorithm as the discretization tends to 0. Dynamic systems theory in turn, is

more concerned with asymptotic behavior but finds it difficult to determine the

long time error in general. Qualitative analyses exploit structure in the under-

lying problem and may be the best approach. For example, Sanz-Serna (1992)

provides an overview of how symplectic integrators preserve the properties of

Hamiltonian systems such as the ideal oscillator in (1). Fig. 5 illustrates this by

the dotted line, which is a solution generated by numerical integration with the

modified trapezoidal scheme in Simulink (ode23t) that according to Shampine

et al. (1999) eliminates numerical damping.

Shampine et al. (1999) continue to state that numerically damped behavior

at infinity may, in fact, be desirable. Indeed, symplectic integrators have limited

applicability in general, which brings about a situation where mathematical

semantics of the long time error behavior of general-purpose solvers are still not

well developed. This is even more pronounced for solvers with variable step and

sophisticated error control (e.g., Bujakiewicz (1994); Petzold (1982)). Heuristics

to improve performance for classes of systems further exacerbate the matter.

Moreover, to be able to efficiently handle continous-time behavior interspersed

with discrete changes, these solvers interact with algorithms to accurately detect

and locate when discrete events occur. The delicate interplay between these

different algorithms with different error bounds and convergence characteristics

makes it difficult to establish a comprehensive mathematical analysis. This holds

especially true in the face of potentially infinite sensitivity because of discrete

state changes. In order to precisely define the semantics of a model that relies on

a given solver, though, an accurate definition of the solver behavior is imperative.

A computational semantics then provides a representation for analysis at a useful

level without attempting to solve the dynamic systems problems.

Not any less important a ground for developing a computational semantics is

the intent to establish a framework that allows integrating continuous-time se-

mantics with discrete-time and discrete-event semantics of various formalisms.

In this regard, a computational representation of a solver may facilitate cap-
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turing the semantics of combined formalisms, which enables a sound approach

to the study of the intricacies that emerge from such combinations. Given

that discrete-time behavior is well defined by functions that operate on streams

(e.g., Caspi and Pouzet (1997); Reekie (1994)), unification can be achieved

by choosing stream-based functions to capture the computational semantics of

continuous-time behavior as well. This unified framework then enables a com-

prehensive mathematical consideration of continuous-time, discrete-time, and

discrete-event semantics as a composition of pure functions.

3. A Computational Model of Continuous Time

To obtain a computational model of time, a fixed-step Euler and trapezoidal

integration scheme are first reviewed. Next, a variable-step approach is outlined.

3.1. Fixed-Step Integration

Numerical integration is performed in a number of stages at which the dy-

namic system is evaluated. A single-stage and a multi-stage approach follow

after introducing some preliminaries.

3.1.1. Preliminaries

Disregarding the forcing function for now, a continuous-time function can

often be represented as an ODE

dx

dt
= ẋ = f(x); f : Rn → Rn (2)

where x is the state vector. The vector field (2) that this defines is assumed

to be Lipschitz continuous and to satisfy the usual conditions for existence and

uniqueness of a solution. In a neighborhood of Rn × 0, this field then has a

unique flow Φ : Rn × R → Rn such that Φ(x, 0) = x and Φ̇(x, t) = f(Φ(x, t)).

Since there rarely are explicit formulae for Φ in terms of f , iterative numerical

integration algorithms are the norm for obtaining solutions over time based on

discrete approximations.
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3.1.2. Single-Stage Integration

To compute the time, t, map for each iteration, a Forward Euler integra-

tion scheme approximates the state that results from making a time step of

magnitude h as

x((k + 1)h) = x(kh) + hẋ(kh) = x(kh) + hf(x(kh)) (3)

with k the natural numbers representing the iteration step.

To investigate the numerical accuracy of this method, the Taylor series of

f can be expanded around kh to determine the value at (k + 1)h (note that

(k + 1)h− kh = h)

x((k + 1)h) = x(kh) +
ẋ(kh)

1!
h+

ẍ(kh)

2!
h2 + . . . (4)

This agrees to the second degree with the Forward Euler approximation in (3).

The estimate of the error per time step (the local error) then becomes
ẍ(kh)

2
h2

or O(h2).

The long time error can be investigated by first defining a discrete map of

step h, Eh(x) = x + h · f(x). To integrate to a point in time, te, this map can

be iteratively applied Ek+1
h (x) = Eh(E

k
h(x)) with E0

h(x) = x. Now, by reducing

the step size h → 0 and taking l → ∞ steps such that l · h = te, the iterative

solution El
h(x) → Φ(x, te).

The compounded error bound at te becomes l
ẍ(kh)

2
h2. Though the error

can be made arbitrarily small by reducing h, in turn l becomes arbitrarily large.

A large l has two complications: (i) an arbitrarily large error from floating point

computations is introduced and (ii) the computation becomes arbitrarily slow

because each of the l evaluations requires a finite amount of computation.

3.1.3. Multi-Stage Integration

To mitigate the error and performance problems, at least to an extent, a

multi-stage solver can be applied. For example, a trapezoidal integration scheme

employs the average of the gradient at the beginning and end point of the
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integration step as

x((k + 1)h) = x(kh) +
h

2
(ẋ((k + 1)h) + ẋ(kh)) . (5)

This can be rewritten to

x((k + 1)h) = x(kh) + hẋ(kh) +
h2

2

(

ẋ((k + 1)h)− ẋ(kh)

h

)

(6)

and with a finite difference approximation ẍ(kh) =
ẋ((k + 1)h)− ẋ(kh)

h
+O(h)

this matches the Taylor series up to the third degree. The error term then

becomes of order O(h3). As a result, the error converges an order of magnitude

quicker to 0, thereby reducing the size of l to get to te with the same error

bound, while only requiring a linear increase in the number of computations.

The drawback is the use of ẋ((k+1)h) on the right-hand side, which because

of k+1 leads to an implicit integration scheme. This can be solved by computing

a Forward Euler approximation ẋ((k + 1)h) = f(x(kh) + hẋ(kh)) to obtain an

explicit scheme again.

It is important to note that the first-order and higher-order derivatives im-

pose continuity constraints on the continuous-time behavior. Mixing discretized

continuous-time with discrete-time behavior may invalidate the mathematical

assumptions and corresponding error bounds.

3.2. Variable-Step Solver

Because of the inverse relation between the step size h and the rate of change

in f(x), the step size h can be varied over time as f(x) changes, without com-

promising the local error bound. For x where f(x) changes with a relatively

high rate with respect to t, the system is said to be stiff. The solver can thus

selectively choose small steps in stiff intervals, while larger steps can be taken

elsewhere to improve efficiency.

Integration schemes with an adaptive step size are typically referred to as

variable-step solvers. An estimate of the error term may be responsible for the

change in step size during integration. In some approaches, the error term is

approximated by evaluating the difference between the change of x as computed
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by two different numerical integration algorithms (e.g., the Dormand-Prince

method). If this difference exceeds a given threshold, the step size chosen is

reduced and the evaluation performed anew.

4. A Functional Variable-Step Solver

Previous work by Denckla and Mosterman (2008) developed a combined

stream-based and state-based approach to defining the computational seman-

tics of block diagrams. A functional semantics (i.e., without explicit state),

BdFun, and a systems semantics (i.e., with explicit state), BdSys, were spec-

ified in the general lambda calculus (e.g., Peyton-Jones (1987)) framework of

computation. The functional language Haskell (e.g., Jones (2003)) was chosen

for the implementation which allows defining a stream as a potentially infinite

(because of lazy evaluation) list of values. Embedding state-based semantics into

a stream-based semantics was achieved by hierarchical decomposition. This, in

turn, supported the implementation of a variable-step solver as a system with

explicit state so as to let the variable-step solver manipulate the state freely.

The work presented here aims at eliminating the strict decomposition bound-

ary around the variable-step solver by providing it as a stream-based represen-

tation. As such, reasoning about the continuous-time aspects embedded in a

discrete-time model becomes completely transparent.

A variable-step solver is then represented as a pure function (i.e., without

side effects), g, on an input stream, u, returning an output stream, y, as in

y = g(u). (7)

To implement an explicit variable-step solver based on the Forward Euler and

trapezoidal integration schemes of Section 3, a two-stage evaluation is required.

The first stage computes the Euler approximation and the second stage employs

this approximation to compute the average gradient over the integration step

for the trapezoidal approximation. A functional implementation of the solver

cannot rely on internal state to reinstate the values at the beginning of the
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integration step. Instead, the computed change in state is subtracted if the step

size must be reduced. This results in the Euler integration scheme

yeuler(e) =







∑e

i=1 u(i)h(i)− u(i− 2)h(i− 2)p(i) if odd(e)

yeuler(e − 1) otherwise
(8)

with e the evaluations as natural numbers larger than 0 and where p is 1 if

the step size h must be reduced and 0 otherwise. The undefined initial values

(u(−1), u(0), h(−1), and h(0)) are taken to be 0. The function odd returns

true for odd values of e and false otherwise. Note that the Euler integration is

computed every other evaluation to allow the two-stage nature of the trapezoidal

scheme.

The trapezoidal approximation adds the contribution at the beginning and

end of the integration step based on the same integration step size. If necessary,

the state is reinstated at the beginning of the integration step by subtracting

the aggregate contribution computed for the previous step. This results in the

following integration scheme

ytrap(e) =

e
∑

i=1

(u(i− 1) + u(i))h(i − 1)

2
−

(u(i− 3) + u(i− 2))h(i− 3)

2
p(i− 1)

(9)

where undefined initial values can be taken to be 0.

The contributions of the Euler and of the trapezoidal approximations over

the integration step are then compared based on the difference in the contribu-

tion to each of the states

d(e) = (u(e− 3) + u(e− 2))
h(e − 3)

2
− u(e− 2)h(e− 2) (10)

If the maximum of each of the absolute differences, |d(e)|, is less than a prede-

fined tolerance, tol, the step is ‘accepted’ and time moves forward. Otherwise,

the time step is reduced. The acceptance test is implemented by the variable p

as

p(e) =







0 if max(|d(e)|) < tol

1 otherwise
. (11)
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The step size is adapted based on bisection, starting from the maximum step

size, hmax, as prescribed by the user

h(e) = hmax(1− p(e)) +
h(e− 1)

2
p(e). (12)

The solver output, y, alternates between the Euler approximation (to enable

the trapezoidal scheme) and the trapezoidal approximation, where the trape-

zoidal approximation is considered to be more accurate

y(2e+ 1) = yeuler(2e+ 1)

y(2e+ 2) = ytrap(2e+ 2)
(13)

These equations are implemented in Simulink, using the Memory block as a

‘pre’ operator (a function y(e) = gpre(u(e)) that produces y(e) = u(e− 1)). The

evaluations are performed iterating on a discrete evaluation step with nominal

value, 1.

5. Control Synthesis for a Stiff Hybrid Dynamic System

The behavior of the solver developed in Section 4 is studied based on a

surface mount device (SMD) that stamps components onto a printed circuit

board (PCB). For an overview of the various SMD configurations, see Ayob

(2005). The system includes stiff behavior when the stamper is in contact with

the board and discrete-event behavior when contact with the board is made.

Moreover, upon contact, discrete-time control attempts to keep acceleration

low for a specific duration so that the component can attach itself to the board.

5.1. The System Under Control

SMDs are used to manufacture PCBs by rapidly stamping components such

as integrated circuits (ICs), resistors, and capacitors onto the board. The ma-

chines operate at high speeds with the time of one stamping cycle in the order of

tens of milliseconds. The stamper of the SMD studied here is depicted in Fig. 6.

At the bottom it shows an IC held against the stamper by an underpressure

created by a vacuum nozzle. A pipette connected tot he nozzle can move the
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held component up and down. By controlling the force with which the pipette

moves a component, the component is brought to the PCB as quickly as pos-

sible. Upon contact, the force exerted by the stamper must be such that the

acceleration of the component is sufficiently low over a prescribed duration of

time to enable the component to attach to the board.

Figure 6: Surface mount device

5.1.1. Modes of Continuous-Time Behavior

A model of the stamping action is given in Fig. 7. A rigid body with mass m

represents the component that is moved to a printed circuit board with a control

force Fcontrol. The position x indicates the location of the component. A contact

switch, Swcontact, activates the contact behavior between the component and

the board. The contact behavior is modeled as a stiff spring, C, and damper,

R, that combine to exert a reaction force, Fboard.

R C

m

Fcontrol
Swcontact

x=0

x

Figure 7: Model of the surface mount device action
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The behavior of the overall system can be represented as an explicit ordinary

differential equation on the position of the component, x, and the velocity of

the component, v,

ẋ(t) = v(t)

v̇(t) =
Fcontrol(t)+Fboard(t)

m

(14)

with the forces as a forcing term. The differential equations can be discretized

by the solver of Section 4 based on the following mapping of variables

u =











1

ẋ

v̇











, y =











t

x

v











, x0 =











0

0

0











(15)

where the first state variable, t, is included in order to obtain time as a function

of evaluations e, t(e). This allows a unifying framework where all dynamics

such as continuous time, discrete time, and discrete event are represented as

functions of e.

5.1.2. The Switching Semantics

The stamping action switches from a mode where there is no reaction force on

the component to contact behavior that produces a reaction force based on the

stiff spring/damper system. The spring/damper system models the behavior

of contact between the component and the board and is activated when the

component reaches the board level. From a first principles perspective, such

physics are well modeled by simultaneous constraints (e.g., Otter et al. (2000))

and simultaneous inequalities capture the activation. In this case, the activation

is evaluated simultaneously with the differential equations and the inequalities

hold on the continuous time domain as

Fboard(t) =







−
(

R · v(t) + x(t)
C

)

if x(t) < 0

0 otherwise
. (16)

But what does it precisely mean that the activation is evaluated ‘simultane-

ously’? Such interaction semantics must be, and now can be, precisely formu-

lated. For example, the solver developed in Section 4 consists of two evaluation



D
R
A
F
T
-
C
O
N
F
ID
E
N
T
IA
L
-
F
O
R
R
E
V
IE
W
O
N
LY

A Computational Model of Time for Stiff Hybrid Systems 21

stages: one for the Euler and one for the trapezoidal integration, the odd and

even evaluations, respectively. When the time at which the inequalities are eval-

uated is expressed in evaluations it becomes possible to precisely state when the

truth value changes.

The importance of this precise formulation is documented in previous work

by Zander et al. (2011) which showed that distinctly different behavior may

emerge, depending on whether the truth values of the inequalities change for:

(i) all evaluations, (ii) only the odd evaluations, or (iii) only on accepted inte-

gration steps (i.e., where time starts increasing again). The underlying reason

for this is that the variable step causes time to ‘zoom in’ on the point in time

at which the inequalities change their truth value (and the force acting on the

component changes discontinuously). If this change occurs between an odd and

even evaluation, the solver zooms in before accepting the time step. Otherwise,

the time step may first be completed before the change in truth value occurs

and the reaction force is not accounted for until the component is well below

the level of contact.

In the proceedings, the interaction semantics of the inequalities and the

discretized differential equations is such that the truth value of the inequalities

only changes on odd evaluations. This leads to the following precise definition

of the discontinuity:

Fd,board(2e+ 1) = Fboard(t(2e+ 1))

Fd,board(2e+ 2) = Fboard(t(2e+ 1))
(17)

with Fd,board(0) = 0.

Note that from a modeling perspective, generally a more accurate model is

obtained by, in addition to position, expressing the switching condition of the

reaction force by the board in terms of velocity and force. A more detailed trea-

tise is provided in work by Mosterman and Biswas (1996); Pfeiffer and Glocker

(1996).
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5.1.3. Effecting the Control Force

Similar to the reaction force by the board, the evaluations at which the

control force are effected must be made precise. The digital control nature

corresponds to values that change at certain points in time and are constant

otherwise. As such, there is no interaction with the computations that are nec-

essary to generate the behavior for the plant model. Consequently, the control

force only changes at the points in time where numerical accuracy is satisfied,

that is, at accepted integration steps. These integration steps move time forward

and so the force remains constant as long as t(e) ≤ t(e − 1)

Fd,control(e) =







Fd,control(e− 1) if t(e) ≤ t(e − 1)

Fcontrol(t(e)) otherwise
. (18)

5.2. Generating a Force Control Profile

With the mapping in Section 5.1, the computational model is transformed

into a discrete-event representation that includes the differential equations by

incorporating the variable-step solver behavior. Because now issues such as the

discontinuities in behavior and mode switches are treated in a unified discrete

manner, model checking techniques can be applied to find the force control pro-

file, even though stiff numerical behavior may be present. To directly synthesize

a control force profile based on the computational model, first the requirement

that the control must satisfy is formulated as a property for the model checker

to prove true or false.

For the SMD, this property requires the control force Fcontrol to be such that

the acceleration upon contact is less than a maximum value, amax, for a minimal

duration, dtmin. The acceleration part of the requirement is formulated as

dt(e) =







t(e)− t(e− 1) + dt(e− 1) if |v̇(e)| < amax

0 otherwise
(19)

which adds the current time step, t(e) − t(e − 1), to the duration, dt(e), if

the acceleration, v̇(e), is less than the maximum value. Here the initial values

t(e − 1) and dt(e − 1) are taken to be 0. The duration part of the requirement
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is formulated in the negative as

dt(e) 6≥ dtmin (20)

Model checking then attempts to find a control force profile over time such

that the duration property is violated. If model checking evidences such a

violation, it produces the force profile that causes the violation, the so-called

counterexample. This counterexample, then, is precisely a control profile that

satisfies the requirement.

The formulated property is combined with the discrete event model of Sec-

tion 5.1 and formulated in a strict subset of Simulink. This subset contains only

the ‘Memory’ (one evaluation delay) block and a ’Latch’ as (sample and hold),

in terminology of Sander (2003), sequential blocks. All other blocks are purely

combinational and either mathematical or logic operations. This strict subset

introduces minimal semantic complexity and is amenable to model checking

by SimulinkR© Design Verifier. In case continuous-time integration with one of

the built-in variable-step solvers of Simulink were employed, SimulinkR© Design

Verifier would not be applicable.

The top-level model is shown in Fig. 8.1 At the top-left is the variable-step

solver subsystem with initial step size hinit of 0.005 and tolerance tol of 0.0025.

It further takes in the inital values for the continuous state as constant xinit,

which is a vector [00.010]. The variables that this continuous state consists

of is input as u and takes the vector with elements constant 1, velocity, v,

and acceleration, a (cf. Eq. (15)). This vector is integrated and output as y,

which is a vector consisting of elements time, t, position, x, and velocity, v.

The uodd input to yodd output combination implements the rate transition for

the inequalities to compute Fd,board from Fboard. The uaccept input to yaccept

output combination implements the rate transition for the discrete-time control

to compute Fd,control from Fcontrol. The output accept produces a Boolean that

captures whether the current integration step is accepted or not.

1This model can be accessed at the MATLABR© Central web site.
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Figure 8: Top level of the SimulinkR© model

The surface mount device subsystem models the physics of Fig. 7 with mass

m = 2, viscous friction R = 5, and spring constant C = 400. The properties

block models the property formulated to generate the counterexample. The

control subsystem generates the control force profile. The monitor subsystem

consists of scopes to monitor the signal values during simulation and to write

the computed values to a workspace variable. The monitor on accept subsystem

is similar but only executed when an integration step is accepted.

The formulation as a Simulink model allows using the model checking ca-

pabilities of SimulinkR© Design Verifier. To this end, the properties subsystem

formulates the property that the acceleration of the component after contact

cannot be kept below 0.75 for 6.5 ms. SimulinkR© Design Verifier was then asked

to prove this property false and produce the falsifying control force profile. To

reduce the search space for the model checker, the control force was restricted

to be one of −4.5, −5.25, and −6 based on expert knowledge. Furthermore, the
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stamping trajectory was decomposed into two phases: (i) the move of the com-

ponent to the board and (ii) the hold of the component at low acceleration. The

model checker was applied only to the second phase, which was initialized with

the final values of the first phase. Because the functional approach in Section 4

renders all state in the system explicit (including solver state), the composition

of the two phases was seamless and correct by construction.

Figure 9 shows the control force profile that was automatically generated

by SimulinkR© Design Verifier in 1352 seconds on a 3GHz central processing

unit with 12GB of RAM. Since the control force is only effected at accepted

integration steps, which occur at evaluations 0, 6, 12, 18, and 24, only the

force values at those evaluations must be included in the eventual control force

profile. To be generally applicable, the force profile was translated to a form

that can be automatically generated independent of initial conditions. The

finite state machine shown in Fig. 10 generates the control profile by changing

the output after each of the required time intervals, where 0.035 is the initial

time of impact. Note that the conditions for a transition between states are time

based as opposed to evaluation based. As a result, the control is independent of

the number of evaluations that are required between accepted integration steps.

0 5 10 15 20 25 30
-4.8

-4.6

-4.4

-4.2

-4

-3.8

-3.6

-3.4 control force

Figure 9: Automatically generated force profile

Overall results of the control so generated are presented in Fig. 11. In

Fig. 11(a) the velocity of the component is shown as it is moved toward the

board and then being pressed against it with a low force. The control force

profile that was generated based on the generated counterexample is shown in

Fig. 11(b).



D
R
A
F
T
-
C
O
N
F
ID
E
N
T
IA
L
-
F
O
R
R
E
V
IE
W
O
N
LY

A Computational Model of Time for Stiff Hybrid Systems 26

S1
en: y = -10;

S2
en: y = -3.5;

S3
en: y = -4;

S4
en: y = -4.5;

S5
en: y = 10;

[td >=0]/y=2;

[td >=0.0375 - 0.035]/y= 3

[td >=0.04 - 0.035]/y= 4

[td >=0.04375 - 0.035]/y= 5

Figure 10: Control profile generator

5.3. Validating the Control Force Profile

To validate whether the control force profile leads to an acceleration profile

for the component that indeed satisfies the requirement (in other words, that

it is indeed a counterexample), the acceleration during a simulation of a stamp

action is depicted in blue (‘x’ markers) in Fig. 11(c). As expected, the accel-

eration remains close to 0 for the required duration. Next, the component is

released from the stamper and a large positive control force retracts the stamper.

To compare, the acceleration of a simulation where the control force remains

constant is depicted in magenta (‘o’ markers). In this case, the acceleration is

distinctly higher and in violation of the requirement.

A more detailed study is presented in Fig. 12 by plotting the computations

as a function of the evaluations. This provides insight into how the numerical

solver from Section 4 behaves in order to achieve the required tolerance in ac-

curacy of the computed control behavior. Figure 12(b) shows the position of

the stamper with the component attached as they accelerate toward the board.

At evaluation 13, the position first falls below 0, indicating that the compo-

nent makes contact with the board. Because upon contact the reaction force

of the board becomes active, there is a discontinuous change in force and the

corresponding acceleration is shown in Fig. 12(d). On the following evaluation,
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Figure 11: Model checking based control

the trapezoidal method accounts for the change in acceleration and computes

a velocity that is less negative, shown in Fig. 12(c). This change in velocity

is such that the Euler approximation at evaluation 13 and the trapezoidal ap-

proximation at evaluation 14 deviate by 0.0215, which is more than the allowed

tolerance of 0.0025. In response to this, the solver attempts to find a velocity

that satisfies the tolerance at an earlier point in time and so time is moved back

as shown in Fig. 12(a). Time continues to receed till the velocities computed at

evaluations 19 and 20 are within tolerance.

The computed values at evaluation 20 are then accepted (indicated by the

black circles in Fig. 12) and the maximum step (the initial step parameter,

0.005) forward in time is made. Again, the tolerance is initially exceeded and

time moved back as before. Because of the discontinuity upon impact (the point

where the position in Fig. 12(b) is 0) the solver makes increasingly smaller time

steps around this point. Ultimately, at evaluation 48, the accepted position

falls below 0, and a larger step size becomes acceptable because the behavior is

continuous again.
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Figure 12: Values at all evaluations

At this evaluation 48, the control force profile is activated to attain and

maintain an acceleration that is within the specified bounds (between −0.75

and 0.75). While computing the behavior, the initial step continues to be too

large to satisfy the prescribed tolerance, and time continues to recede till the dif-

ference between the Euler and trapezoidal approximations is acceptable. As can

be seen in Fig. 12(d), the computed accelerations at evaluations where the solver

tolerance is exceeded may be beyond the specified bounds. However, the com-

puted accelerations at accepted evaluations (indicated by circles in Fig. 12(d))

are indeed within bounds. This was also illustrated in Fig. 11(c).

The computations at all of the evaluations are necessary for the solver to

properly compute the overall behavior for the SMD. As illustrated, this behavior

includes numerically stiff as well as discontinuous behavior. The explicit formu-

lation of these computations has made such hybrid dynamic system behavior
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amenable to model checking, which was illustrated by automatically synthesiz-

ing a control profile. It is important to note that the model checking approach

presented here does not produce the optimal solution. In other words, the coun-

terexample from which the control profile is derived simply satisfies the stated

requirement, which does not include an optimization objective.

6. Evaluation

This section briefly discusses particularly pertinent previous work that is

advanced as well as general results. Less directly related work has been refer-

enced throughout, which should have provided a good starting point for further

investigation.

6.1. Advancing Previous Work

The presented approach supports continuous-time differential equation mod-

els that rely on pure functions on streams. In previous work on synchronous

languages reported by Benveniste et al. (2003), it was shown how functions

on streams can capture discrete-time and discrete-event behavior. Combined

with the continuous-time support, a unifying computational structure results.

More recent work by Benveniste et al. (2010) employs nonstandard analysis to

precisely define the semantics of hybrid dynamic systems. Nonstandard analy-

sis is shown to facilitate an elegant formalization of the ideal continuous-time

semantics. However, it does not attempt to formalize the computational approx-

imation, which has become a first-class deliverable in the design of engineered

systems (see Fig. 2).

An important distinction over synchronous languages is that there is no im-

plicit underlying discrete clock in the work presented here. Instead, a sequence

of evaluations is defined which is related to the tagged signal model introduced

by Lee and Sangiovanni-Vincentelli (1996). The total order on the model of

time to describe physics, however, would have been too restrictive to capture

the computational semantics of the variable-step solver in Section 4. Instead,
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time can increase and decrease with increasing evaluations in order to capture

variable-step solver semantics. So, in this unifying computational framework,

not only is time possibly constant, as was documented in previous work Moster-

man (2002, 2007), it may recede as well.

In general, decreasing time is well established as ‘roll back’ in the time warp

discrete-event simulation algorithm by Jefferson (1985). Though the algorithm

has been utilized for rigid body simulation by Mirtich (2000), focus was on

efficient simulation rather than formulating a model of time for a unifying se-

mantics.

6.2. Hybrid Dynamic System Semantics Definition

In a general hybrid dynamic systems sense, the presented work holds value

along three axes. First, though the use of numerical integration is wide spread,

the long time behavior is relatively poorly understood. This lack of understand-

ing has not been much of a practical impediment given that the parameters of

continuous-time models are typically fit against measurements by using compu-

tational simulation. As a result, the solver characteristics become incorporated

into the model and this renders computational consistency paramount, which

necessitates an explicit computational semantics and corresponding model of

time.

Second, as documented by Jackson et al. (2009), the definition of a formalism

such as a domain-specific one requires a precise specification of the semantics.

This is important, for example, in order to be able to develop compilers and

model transformations in general, but also to understand the expressiveness of

a formalism. In addition, the semantics specification may provide a reference

implementation that serves as an executable specification for more efficient ex-

ecution engines. With a well-defined semantics, a model becomes truly defined

by the semantics of the formalism, as opposed to the particulars of this un-

derlying, often very sophisticated, execution engine. A precise and explicit

semantics is especially important for hybrid dynamic systems with infinite sen-

sitivity Nikoukhah (2007).
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Finally, integrating different formalisms requires the study of their interac-

tion semantics. The presented unifying framework introduces a common de-

nominator that facilitates the systematic study of such interaction and makes

subtle complications explicit. For example, as documented by Denckla and

Mosterman (2006), the multi-rate character of a multi-stage numerical integra-

tion algorithm may present the need for a rate transition that can be easily

overlooked otherwise.

It should be noted that the presented work does not address pathological

behavior as identified by Mosterman et al. (1998b) to include chattering, Zeno

behavior, and lack of divergence of time. Such behavior typically emerges as

a result of additional solver algorithms such as root-finding, event iteration,

and sliding mode simulation while more sophisticated solvers apply principles

of invariance of state and temporal evolution of state Mosterman et al. (1998a).

Future work intends to define such solver algorithms in a declarative sense to

enable precise analysis of the computational characteristics.

7. Conclusions

Continuous-time behavior as represented by differential equations often does

not have a closed form solution for the trajectories that the equations represent.

While iterative application of numerical integration algorithms allows obtain-

ing such trajectories, the behavior of the approximation error over repeated

iterations is, in general, not well understood. To overcome this lack of a pre-

cise definition, a computational model of time has been presented based on

the semantics of a variable-step solver. Often, the approximation error of a

computational solution to differential equations is eliminated by using numer-

ical integration to calibrate models against experiments. As such, a precise

definition of the computations performed by the variable-step solver provides

the foundation for a representation that can be reasoned about and formally

operated on.

It was argued that capturing the definition in a declarative form discards
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the implementation complexity of solver software modules that are typically

employed by industry strength simulation products. As a result, such definition

allows better understanding the specifics of the solver behavior. The improved

understanding manifests in support for computational methods such as model

checking that apply well at higher levels of abstraction. This contrasts with

the use of solvers at an implementation level which disallows model checking of

continuous-time behavior when variable-step integration is required.

In the presented work, a variable-step solver was formalized in a declarative

sense as pure functions of streams. The formalization fits the framework of other

types of semantics such as discrete-time and discrete-event. It was illustrated

how the comprehensive framework allows understanding interaction behavior in

a unifying framework. Model checking could then exploit the formalization to

synthesize discrete-time feedforward control for a plant model that comprises

stiff continuous-time behavior interspersed by discontinuities.

Future work intends to focus on identifying structure in the nonmonotonic

time as exploited for defining the solver semantics. This structure is expected to

restrict possible behavior of stiff hybrid dynamic systems and support further

analysis methods. Furthermore, as future work implements additional solver

algorithms, pathological behavior such as chattering, Zeno behavior, and lack of

divergence of time becomes precisely defined and analyzable in a computational

sense. Finally, the mapping of integers to a floating point representation is a

subject of potential further study. The numerical effects can lead to dramatically

different behavior, and a scheme to attempt to eliminate such sensitivity is

crucial when continuous-time and discrete-event models are combined.
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