
UReader: Universal OCR-free Visually-situated Language
Understanding with Multimodal Large Language Model

Jiabo Ye1∗, Anwen Hu2∗, Haiyang Xu2†, Qinghao Ye2, Ming Yan2†, Guohai Xu2, Chenliang Li2,
Junfeng Tian2, Qi Qian2 , Ji Zhang2, Qin Jin3, Liang He1, Xin Lin1, Fei Huang2

1East China Normal University 2DAMO Academy, Alibaba Group 3Renmin University of China
jiabo.ye@stu.ecnu.edu.cn {huanwen.haw,ym119608,shuofeng.xhy}@alibaba-inc.com

Visual Questioning:
Who was ranked 
between denis
menchov and stephane 
Goubert?

Information Extraction:
What is the value for 
the gross_amount?

Text Reading:
Recognize the texts
In the Image.

A stop sign with a 
sticker that says 
eating animals.

In 2020, the total value of beer 
imported into Canada was 
716.55 million Canadian dollars.

Samuel 
Sánchez (ESP)

718,00.00 For Clarly's Sake, Please Don't Say 
"Licensed under GPL, 2……

Image Captioning:
Provide a brief 
description of the 
given image.

Natural Image

Key Points Generation: 
Point out several critical 
features in this image.

Chart Table
Document

Webpage

UReader

Figure 1: The OCR-free Visually-situated Language Understanding performance of UReader on various types of
images and tasks.

Abstract

Text is ubiquitous in our visual world, convey-
ing crucial information, such as in documents,
websites, and everyday photographs. In this
work, we propose UReader, a first exploration
of universal OCR-free visually-situated
language understanding based on the Mul-
timodal Large Language Model (MLLM).
By leveraging the shallow text recognition
ability of the MLLM, we only finetuned 1.2%
parameters and the training cost is much lower
than previous work following domain-specific
pretraining and finetuning paradigms. Con-
cretely, UReader is jointly finetuned on a
wide range of Visually-situated Language
Understanding tasks via a unified instruction
format. To enhance the visual text and
semantic understanding, we further apply two
auxiliary tasks with the same format, namely
text reading and key points generation tasks.
We design a shape-adaptive cropping module
before the encoder-decoder architecture of
MLLM to leverage the frozen low-resolution
vision encoder for processing high-resolution
images. Without downstream finetuning, our
single model achieves state-of-the-art ocr-free
∗ Equal contribution
†† Corresponding authors

performance in 8 out of 10 visually-situated
language understanding tasks, across 5
domains: documents, tables, charts, natural
images, and webpage screenshots. Codes
and instruction-tuning datasets are released at
https://github.com/LukeForeverYoung/UReader.

1 Introduction

Leveraging strong Large Language Models as the
language decoder, some recent works propose Mul-
timodal Large Language Models (MLLMs) (Zhu
et al., 2023; Liu et al., 2023a; Ye et al., 2023; Li
et al., 2023) and achieve promising vision-and-
language understanding performance. Surprisingly,
without in-domain training, these MLLMs exhibit
shallow zero-shot visual text recognition ability
when fed a low-resolution image with salient text
information (Ye et al., 2023; Liu et al., 2023b).
However, due to the variety of image types and the
wide range of image sizes, they are still far from
universal visually-situated language understanding,
such as extracting information from documents,
reading texts from webpages, and visual question
and answering on tables, as shown in Figure 1.

Existing works for visually-situated language un-
derstanding can be categorized into two-stage (Xu
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et al., 2021; Huang et al., 2022; Yang et al., 2021)
and end-to-end (Davis et al., 2022; Kim et al., 2022;
Lee et al., 2022) methods according to whether re-
lying on an off-the-shelf OCR model or API. These
works all follow a domain-specific pretraining and
finetuning paradigm, thus leading to high training
costs, e.g. end-to-end model Donut (Kim et al.,
2022) costs more than 192 A100 days.

Inspired by the shallow text recognition abil-
ity of existing MLLMs, in this work, we propose
UReader for universal OCR-free visually-situated
language understanding, which leverages the multi-
modal Large Language Model via low-cost instruc-
tion tuning (Dai et al., 2023). Different from previ-
ous works, we forgo pretraining tasks by leveraging
the existing MLLM and directly finetune MLLM by
taking full advantage of various Visually-situated
Language Understanding datasets. To make the
most of the strong language understanding ability
of MLLM, we convert all tasks into the vision-
language instruction tuning format. Besides, to en-
hance text recognition and semantic understanding
ability across diverse domains, we design auxil-
iary text reading and key points generation tasks
in the same instruction format. To utilize the low-
resolution encoder of MLLM for processing high-
resolution images and avoid blurry and distortion
problems due to resizing, we propose a shape-
adaptive cropping module to cut a high-resolution
image into multiple local images. Each image is
firstly independently encoded with the frozen vi-
sual encoder and a trainable visual abstractor and
then concatenated to feed into the language de-
coder. Moreover, we add learnable crop position
encoding to help the model correlate local images
and add a resized global image to alleviate salient
information loss due to cropping.

Our contributions in this work are four-fold:
• We first propose instruction tuning with Multi-

modal Large Language Models for OCR-free
Visually-situated Language Understanding.

• We build an instruction-tuning dataset cover-
ing 5 domains of visually-situated language
understanding: document, table, chart, natural
image, and webpage screenshot.

• We design a shape-adaptive cropping module
to utilize the frozen low-resolution vision en-
coder for processing high-resolution images.

• UReader achieves state-of-the-art OCR-free
performance in 8 out of 10 tasks, across 5
domains.

2 Related Work

Visually-situated Language Understanding aims
to comprehend images containing rich text infor-
mation. The image types are quite diverse, cover-
ing document (Mathew et al., 2021, 2022; Stanis-
lawek et al., 2021; Svetlichnaya, 2020; Zhang et al.,
2023), table (Pasupat and Liang, 2015; Chen et al.,
2020), chart (Masry et al., 2022; Methani et al.,
2020; Kafle et al., 2018; Kahou et al., 2018), natu-
ral image (Singh et al., 2019; Mishra et al., 2019;
Biten et al., 2019; Hu et al., 2021), webpage screen-
shot (Tanaka et al., 2021; Chen et al., 2021), etc.
Tasks of Visually-situated Language Understand-
ing range from visual question answering, image
captioning, information extraction to natural lan-
guage inference.

According to whether using off-the-shelf OCR
models or APIs to recognize texts from images,
existing work can be divided into two-stage models
(Xu et al., 2021; Huang et al., 2022; Tang et al.,
2023; Yang et al., 2021) and end-to-end models
(Kim et al., 2022; Davis et al., 2022; Lee et al.,
2022). Two-stage work always designs pretrianing
tasks to learn cross-modality alignment between
visual inputs and text inputs. For example, for doc-
ument understanding, UDOP (Tang et al., 2023)
design a Joint Text-Layout Reconstruction task to
recover masked texts and layout information given
the visual inputs and retained text inputs. Lay-
outLMv3 (Huang et al., 2022) applies a Masked
Image Modeling task to recover masked image
tokens with the context of their surrounding text
and image tokens. Without the help of an off-the-
shelf OCR model, end-to-end models need to learn
text recognition with a high-resolution image en-
coder during the pretraining stage. For example,
Pix2Struct (Lee et al., 2022) proposes a Screenshot
Parsing pretraining task, where the model needs to
generate the complete HTML DOM tree with only
a masked webpage screenshot as the input. Donut
(Kim et al., 2022) designs a pretraining task to gen-
erate all texts in the document image. These work
all follow a domain-specific pretraining and fine-
tuning paradigm and therefore ask for high train-
ing costs, e.g. Donut is trained for more than 192
A100 days. In this work, by leveraging the shal-
low text recognition ability of Multimodal Large
Language Models, we propose to directly perform
instruction tuning across various types of images
and greatly reduce the training cost for universal
visually-situated Language Understanding.
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Figure 2: The overall architecture of UReader.

Multimodal Large Language Model is developed
to empower the Large Language Model with multi-
modality understanding ability, especially for vi-
sion information. These work (Huang et al., 2023;
Zhu et al., 2023; Liu et al., 2023a; Ye et al., 2023;
Li et al., 2023; Dai et al., 2023) mainly connect a
pre-trained vision encoder (usually CLIP VIT-L/14
(Radford et al., 2021)) with a strong large language
model, such as LLaMA (Touvron et al., 2023).
These MLLMs show some emergent abilities, in-
cluding shallow zero-shot text recognition ability
(Liu et al., 2023b). However, they are still far from
universal visually-situated language understanding.
Firstly, due to the pretraining data for the vision en-
coder being mostly natural images, MLLMs show
barely acceptable text understanding performance
on natural images but bad performance on other
types, such as document (Liu et al., 2023b). Sec-
ondly, most images for visuall-situated language
understanding are high-resolution. Rescaling them
to low resolution to adapt to the vision encoder
can cause the texts blurry and distorted. In this
work, we propose to fully leverage the shallow text
recognition ability of MLLMs and perform instruc-
tion tuning to enhance its universal understanding
ability across 5 domains. Besides, we design a
shape-adaptive cropping module to alleviate the
text blur and distortion problem.

3 UReader

The primary goal of UReader is to efficiently utilize
existing MLLMs for Visually-situated Language

Understanding tasks. In this work, we utilize but
are not limited to, the mPLUG-Owl (Ye et al., 2023)
as our basic MLLM. Figure 2 presents an overall
architecture of UReader. The input image is firstly
pre-processed by a shape-adaptive cropping mod-
ule (in Section 3.1). The resulting sub-images are
then simultaneously passed through the visual en-
coder and visual abstractor. To enable the large
language model to correlate multiple cropped sub-
images, we apply a crop position encoding module
to introduce spatial information across sub-images.
(in Section 3.2).

3.1 Shape-Adaptive Cropping Module

Images with texts have various aspect ratios and a
great range of resolutions. Simply resizing the im-
age to Hv,Wv (raw resolution of the MLLM) can
result in text being blurred, distorted, and unrecog-
nizable. Thus we propose a shape-adaptive crop-
ping module. Specifically, as shown in Figure 3,
we pre-define grids {g = (nh × nw)|nh · nw ≤
Nc, nh ∈ N, nw ∈ N} with various shapes, where
nh and nw denote the number of rows and columns
of the grid g and Nc denotes the maximum number
of the cells (sub-images). To select a suitable grid
for an image I with shape H×W , two rules should
be followed: (1) The grid should preserve the reso-
lution of the image as much as possible, and (2) the
grid should fit the aspect ratio of the input image.
To measure the resolution coherence and shape sim-
ilarity between the image and each grid, we calcu-
late the resolution-related and resolution-agnostic
insection over union Srr and Sra as follows:

Srr(I, g) = IoU ((H,W ), (nhHv, nwWv))

Sra(I, g) = IoU

(
(
nwH

W
,nw), (nh, nw)

)
(1)

where IoU denotes the insection over the union
between two rectangles centered and aligned with
each other. The matched grid is selected by maxi-
mizing the matching score:

g∗ = argmax
g

Sra(I, g) + Srr(I, g) (2)

where g∗ is the selected grid. Then, we resize the
input image to (nhHv, nwWv) and crop it to nh ·
nw local images. To maintain the global structure
information of the image, we also resize the input
image to (Hv,Wv) as a global image. All images
are then passed on to the visual encoder and visual
abstractor in parallel.
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Figure 3: The Shape-Adaptive Cropping Module.

The visual encoder extracts visual feature
V ∈ RN×(H′·W ′)×dv from the input images I ∈
RN×H×W×3, where N = (nh · nw) + 1, H ′ ·W ′

and dv denote the number and dimension of the
extracted visual features, respectively. The visual
abstractor further summarizes visual information
and obtains higher semantic visual representations
V l ∈ RN×Nq×dl in language feature space by sev-
eral learnable queries, where dl denotes the dimen-
sion of language feature space and Nq denotes the
number of learnable queries.

3.2 Cropped Images Modeling with LLM

MLLMs are mostly trained with a single image as
the input. Due to the cropping module, we need
to input visual features from multiple images into
the language model. The 1-dimensional position
embeddings of LLM can not reflect the spatial po-
sition of each sub-image, which is critical to cor-
relate local images. Therefore, we incorporate a
2-dimensional crop position encoding to help the
language model to understand the spatial relation-
ship between cropped images. Specifically, we
assign a location index (i, j) for each cell of the
selected grid and obtain their row embedding and
column embedding by two auxiliary embedding
layers as follows:

erowi,j = Embeddingrow(i)

ecolumn
i,j = Embeddingcolumn(j)

ei,j = erowi,j + ecolumn
i,j

(3)

where ei,j ∈ RDl denotes the crop position embed-
ding of the cell (ci, cj). We add the embedding to
the visual feature of each cell in the language space

via broadcasting along the dimension of learnable
queries: V̄ l

i,j = V l
i,j + ei,j . We then reshape the vi-

sual features into V̄l ∈ R(N ·Nq)×dl . The resulting
spatial-aware visual features and word embeddings
of the input sentences are concatenated at sequence
dimension and sent to the large language model.

In order to enhance the language model’s ability
to effectively model multiple images while keeping
low training costs, we freeze the origin language
model and adopt the low-rank adaptation approach
(LoRA) (Hu et al., 2022).

4 Instruction Tuning

For developing a universal visually-situated lan-
guage understanding model that could process vari-
ous types of images and perform different com-
prehension tasks, we conduct low-cost instruc-
tion tuning with a Multimodal Large Language
Model. Without introducing any large-scale pre-
training datasets, we directly ensemble multiple
downstream datasets and perform joint training.
Different downstream tasks are all reorganized to
the unified instruction format (Dai et al., 2023).
Besides, we design auxiliary text reading and key
points generation tasks to enhance text recognition
and semantic understanding ability.

4.1 Tuning Tasks

Unified downstream task. Downstream tasks of
Visuall-situated Language Understanding cover Vi-
sual Question Answering, Information Extraction,
Natural Language Inference, and Image Caption-
ing. For developing a universal model, we reor-
ganize all tasks into the instruction tuning format
(Dai et al., 2023). Concretely, for the Visual Ques-
tion Answering task, the question is directly used
as the instruction: "Human: {question} AI: {an-
swer}". For the Information Extraction task, each
category and value pair is expressed with a prompt
as "Human: What is the value for the {category}?
AI: {value}". If some categories don’t exist in the
image, the value is ‘None’. In the raw annotation
of the Natural Language Inference task, ‘1’ means
‘Entailed’ and ‘0’ means ‘Refuted’. We reorga-
nize the NLI task by constructing the instruction
"Human: {statement}, Yes or No? AI: {answer}",
where ‘Yes’ means ‘Entailed’. For the Image cap-
tioning task, we refer to 11 prompts from LLaVa
(Liu et al., 2023a) to instruct the model to briefly
describe the image and randomly choose 1 prompt
for each caption, such as "Human: Provide a brief



description of the given image. AI: {caption}".
Text Reading task. Text Recognition is a basic
ability for OCR-free Visuall-situated Language Un-
derstanding. Therefore, we apply an auxiliary Text
Reading task to strengthen text recognition ability
across different domains. With the text and position
information in the image, we organize the texts in
the common reading order: from top to down, from
left to right. Directly utilizing all texts as targets
(Kim et al., 2022) will result in the model focusing
on generating the starting texts and neglecting oth-
ers to reduce the loss. Instead, we randomly choose
a split position p from {0, L6 ,

2L
6 , ..., 5L6 }, where L

is the text sequence length. The left part is used
as the input and the right one is the target. p = 0
means to generate all texts while other cases ask
the model to continue reading following the input
texts. Such a design could enforce the model to
read different parts of texts with the context. Start-
ing texts always convey key information about the
image, such as the chart title. Therefore, we apply a
bigger sample rate (0.5) for the ‘0’ position and 0.1
for other positions. To distinguish reading from the
beginning and continuing reading, we design two
groups of prompts and randomly choose 1 prompt
for each sample. For example, an instruction of
reading from the beginning can be "Human: Rec-
ognize text in the image. AI: {all texts}" and an
instruction of continuing reading can be "Human:
The words on this picture are {left texts}. Continue
reading the text. AI: {right texts}".
Key Points Generation task. Large Language
Models learn strong understanding ability from
the tough language modeling task. Therefore, for
stronger vision-and-language semantic comprehen-
sion ability, we propose to design an auxiliary Key
Points Generation task, which requires the model to
give some key points about the image. To support
this task, we collect QA pairs of each image and
convert them to declarative sentences with Vicuna
(Vicuna, 2023). These declarative sentences are
finally regarded as key points about the image. We
also build a set of templates to instruct this task,
such as "Human: Identify some key points in this
picture. AI: {key points}".

All templates for Text Reading and Key Points
Generation tasks can be found in Appendix D.

4.2 Instruction Data Resources

Document. DocVQA (Mathew et al., 2021) com-
prises 50k question and answer(QA) paris on

12k document images from UCSF Industry Doc-
uments Library. InfographicsVQA (InfoVQA)
(Mathew et al., 2022) collects 5k diverse info-
graphics from the internet and annotates 30k QA
pairs. DeepForm∗1 (Svetlichnaya, 2020) and Kleis-
ter Charity (KLC) (Stanislawek et al., 2021) are
two Information Extraction datasets. DeepForm∗

contains 1.1k documents related to election spend-
ing. 2.7k documents of KLC come from published
reports of charity organizations.
Table. WikiTableQuestions (WTQ∗) (Pasupat and
Liang, 2015) comprises 2.1k table images from
Wikipedia and is annotated with 23k question and
answer pairs demanding comparison and arithmetic
operations. TabFact∗ (Chen et al., 2020) is a Nat-
ural Language Inference dataset, which contains
112k ‘entailed’ or ‘refuted’ statements about 16k
Wikipedia tables.
Chart. ChartQA (Masry et al., 2022) collects
various topics and types of charts from four
sources: Statista (statista.com), The Pew research
(pewresearch.org), OWID (ourworldindata.org)
and OECD (oecd.org). It totally contains 21k chart
images and 32k QA pairs.
Natural Images. TextVQA (Singh et al., 2019)
filters 28k natural images with texts from Open
Images V3 (Krasin et al., 2017) and annotates 45k
QA pairs. To support image captioning with read-
ing comprehension, TextCaps (Sidorov et al., 2020)
further collects 145k captions based on TextVQA.
WebPage Screenshot. VisualMRC (Tanaka et al.,
2021) collects 5k full screenshots of webpages
from 35 websites. There are 30k annotated QA
pairs where answers are expressed in fluent sen-
tences (avg. 9.53 words) and much longer than the
ones of QA datasets mentioned above.

5 Experiments

5.1 Implementation Details

We conduct experiments on a recently proposed
MLLM named mPLUG-Owl (Ye et al., 2023) with-
out modifying its hyperparameters. The number
of learnable queries of visual abstractor is 65. The
dimension of hidden states dv and dl are 1024. For
the shape-adaptive cropping module, we set the
maximum number of cells Nc to 20 by default.
During instruction tuning, the maximum sequence
length is limited to 2048, and Hv,Wv are set to

1Superscript ∗ means the reformulated or modified version
in DUE-benchmark (Borchmann et al., 2021)



Table 1: Comparison with ocr-free methods on various types of visually-situated language understanding tasks.
‘TSFT’ means task-spcific fine-tuning on the downstream dataset. ‘underline’ means achieving 80% SOTA perfor-
mance.

Model Train TS Doc Info Deep KLC WTQ TabFact ChartQA TextVQA TextCaps Visual
Param FT VQA VQA Form MRC

Dessurt 127M ✓ 63.2 - - - - - - - - -
Donut 176M ✓ 67.5 11.6 61.6 30.0 18.8 54.6 41.8 43.5 74.4 93.91
Pix2Structbase 282M ✓ 72.1 38.2 - - - - 56.0 - 88.0 -
Pix2Structlarge 1.3B ✓ 76.6 40.0 - - - - 58.6 - 95.5 -

UReader 86M × 65.4 42.2 49.5 32.8 29.4 67.6 59.3 57.6 118.4 221.7

224 to match the pretrained resolution of the vi-
sual encoder. For LoRA, we set the rank r = 8.
The learning rate schedule uses a linear warmup
of 36 steps to 1e−4, followed by cosine decay to
0. The batch size is set to 256. For better conver-
gence of each dataset, DocVQA is up-sampled 3
times, InfoVQA, WTQ, DeepForm, and KLC are
up-sampled 2 times. The instruction tuning pro-
cess takes 16 A100 days for 20k training steps (10
epochs).

5.2 Evaluation

We use official training splits as tuning data and
evaluate models on test splits. Following previous
works (Borchmann et al., 2021; Lee et al., 2022),
DocVQA and InfoVQA are evaluated by ANLS
(Biten et al., 2019), DeepForm and KLC are eval-
uated by F1 score. WTQ, TabFact and TextVQA
are evaluated by accuracy. ChartQA is evaluated
with the relaxed accuracy (Methani et al., 2020).
TextCaps and VisualMRC are measured by CIDEr
(Vedantam et al., 2015). Evaluation of TextVQA
and TextCaps are performed with the official chal-
lenge website.

5.3 Main Results

We first compare UReader with state-of-the-art ocr-
free models on 10 datasets. For fair and consis-
tent comparison across all datasets, we finetune the
strong and accessible baseline Dount on unreported
datasets. As shown in Table 1, UReader achieves
state-of-the-art performance in 8 tasks across 5
domains, covering Visual Question Answering, In-
formation Extraction, Natural Language Inference
and Image Captioning tasks. With much fewer
trainable parameters (86M vs 1.3B) and without
a specific finetuning stage, UReader outperforms
the strong pretriaining model Pix2Structlarge in
InfoVQA, ChartQA, and TextCaps. Considering
that Pix2Structlarge is trained more than 170k steps

with a batch size of 1024 on 128 TPUs, this val-
idates that with the help of open-domain Multi-
modal Large Language Models, learning costs for
universal visually-situated language understanding
can be greatly reduced. More detailed analysis can
be found in Appendix B.

5.4 Ablation Study

We perform comprehensive ablation experiments
to validate the contribution of two auxiliary tasks,
trainable architectures, cross-domain joint training
and the design of shape-adaptive cropping module.

Auxiliary Tasks. As shown in Table 2, dropping
the Key Points Generation task (r10 vs r2) causes a
performance decrease on all domains of datasets,
demonstrating that this task helps the model bet-
ter understand the vision-and-language semantic.
Further removing the Text Reading task (r2 vs r1)
causes more significant performance degradation,
which validates the importance of enhancing text
recognition ability across different domains.

Trainable Architectures. Both the visual ab-
stractor and LoRA in LLM are finetuned in URe-
ader (r10). Freezing either the visual abstractor
(r3) or LoRA (r4) causes performance decrease,
which demonstrates that both the vision and lan-
guage parts should be finetuned for adjusting to
Visually-situated Language Understanding.

Cross-domain Joint Training. After removing
4 document datasets from the training data, URe-
ader achieves worse performance (r10 vs r5) on
the table, natural image, and webpage domains,
validating that images of different domains share
some common characteristics and cross-domain
joint training improves the universal performance.
Besides, although trained without document data,
our model achieves a 46.2 score on the DocVQA
dataset, showing the potential out-of-domain un-
derstanding ability of our training paradigm.



Table 2: Ablation study about auxiliary training tasks, trainable model architectures, cross-domain joint training
and shape-adaptive cropping. ‘KPG’ and ‘TR’ refer to Key Points Generation and Text Reading tasks, respectively.
‘Abs’ refers to the visual abstractor. ‘Doc Data’ means using 4 document datasets as training data or not. ‘Global’
means using a resized global image as input. ‘Crops’ refers to Nc, the maximum number of local images after
cropping. ‘CropPos’ refers to the crop position embedding.

Tasks Trainable Doc Shape-adaptive Cropping DocVQA WTQ ChartQA TextVQA Visual
KPG TR Abs LoRA Data Global CropPos Crops MRC

r1 ✓ ✓ ✓ ✓ ✓ 20 56.7 22.9 56.7 54.3 205.0
r2 ✓ ✓ ✓ ✓ ✓ ✓ 20 64.3 28.1 58.6 56.0 213.5

r3 ✓ ✓ ✓ ✓ ✓ ✓ 20 52.4 20.5 43.5 54.9 194.9
r4 ✓ ✓ ✓ ✓ ✓ ✓ 20 59.5 23.5 58.5 53.3 177.0

r5 ✓ ✓ ✓ ✓ ✓ ✓ 20 46.2 27.4 59.8 54.0 185.6

r6 ✓ ✓ ✓ ✓ ✓ ✓ - 22.0 13.4 24.2 34.4 157.4
r7 ✓ ✓ ✓ ✓ ✓ ✓ 9 58.0 24.7 58.9 55.5 215.3
r8 ✓ ✓ ✓ ✓ ✓ ✓ 20 64.1 27.6 60.7 56.5 210.7
r9 ✓ ✓ ✓ ✓ ✓ ✓ 20 62.8 26.7 58.7 55.4 181.1

r10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 20 65.4 29.4 59.3 57.6 221.7

Figure 4: Visualization of the frequency of selected
grid with shape-adaptive cropping module. The cell at
row i and column j denotes the selected frequency of
grid (nh = i, nw = j). Deeper colors represent higher
selection frequencies.

Shape-adaptive Cropping. The r6 in Table 2
represents directly tuning the mPLUG-Owl with-
out any model revisions. With the shape-adaptive
cropping, UReader achieves significantly better per-
formance (r7 vs r6), showing that our cropping
module is indispensable to leverage pretrained low-
resolution vision encoder for universal visually-
situated language understanding. Besides, increas-
ing the cropping numbers (r8 vs r7) improves the
model’s performance. Due to the resolution of
each local image being constant (224x224), more
crops mean higher overall resolution and therefore
achieves better performance. Furthermore, adding
a resized global image bring a slight improvement
in most datasets (r10 vs r8), validating that a com-
plete image could alleviate possible information
loss due to image cropping. Finally, dropping crop
position encoding also hurts the model’s perfor-
mance (r10 vs r9), proving the effectiveness of crop
position encoding for correlating local images.

For alleviating the distortion problem due to

resizing, we propose to crop images according
to their raw aspect ratio. Figure 4 shows the
frequency distribution of grids selected by our
shape-adaptive cropping module on DocVQA, Vi-
sualMRC and WikiTableQuestions (the distribution
on more datasets can be found in the Appendix
A). For aesthetic purposes, we present the distribu-
tion with Nc = 9. Apparently, different domains
of images have different shape distributions. For
most document images in DocVQA, their height is
greater than the width, while table images are the
opposite. As webpages are scrollable, their screen-
shots are always in the form of a long rectangular
shape. With the shape-adaptive cropping design,
our model can easily adapt to various image shapes
without domain-specific fine-tuning.

Text distortion may pose little influence on vi-
sual question answering because they are always
about partial text information. But it is harmful
for reading texts in the image because every text
matters. For quantitative analysis of the influence
of shape-adaptive design, we directly evaluate the
performance of reading all texts. We choose the
Bleu (Papineni et al., 2002) as the metric because
it directly measures the n-gram overlap between
the ground-truth and predicted text sequence. The
evaluation set is built by combining 100 randomly-
selected test images from each dataset. As shown
in Table 3, compared with cropping all images with
a fixed grid, UReader could better recognize texts
in the image due to our shape-adaptive design that
alleviates the text distortion problem.



Human: On which date was the 
memorandam send ? UReader: 
February 27, 1992 (√)

Human: How many pieces of content is shared each 
day by Facebook users? UReader: 2.5 BiLLION (√)

Human: Who has more active users, Pinterest or 
Twitter? UReader: Twitter (√)

(b)

Human: List a handful of essential elements in this visual.
UReader: The country with the highest wine consumption per 
person in 1979 was Iceland. (√) The country with the lowest 
wine consumption per person in 1979 was Madagascar (x). 

(f)

(a)

Human: What was the first movie that won the filmfare
award for best actress? Ureader: Moggina Manasu (√)

Human: What is the total number of films with the 
language of kannada listed? UReader: 15 (√)

(c)

Human: As an intern who will 
you work closely with?
UReader: You will work closely 
with the FSF staff. (√)

(e)

Human: what does the image read? 
UReader: BIS SIBELIUS 
SYMPHONIES Nos 2&5 MINNESOTA 
ORCHESTRA VANSKA COSMO (√)

(d)

Figure 5: Qualitative results of UReader. Crucial regions are enlarged for clearer visualization.

Table 3: The Text Reading performance of UReader un-
der the condition of Nc = 9. ‘w/o adapt means remov-
ing the shape-adaptive design and cropping the image
with a fixed grid 3× 3.

Model Bleu1 Bleu2 Bleu3 Bleu4

UReader w/o adapt 21.4 15.4 12.0 9.7
UReader 24.9 18.1 14.3 11.7

5.5 Qualitative Results

Figure 5 show some qualitative results produced
by our UReader on different types of images. URe-
ader could not only extract information from the
document (case a), but also understand different
instructions and provide corresponding answers by
attending to different regions (case b). Table un-
derstanding always involves layout comprehension
and statistics. As shown in case c, given a table im-
age, UReader could well relate different columns to
answer the ‘first movie’ and perform simple statis-
tics about the ‘total number’. As for images with
multiple paragraphs of text, e.g. webpage screen-
shot in case e, UReader could also locate the rele-
vant paragraph, understand the texts and answer the
question accurately. Case d shows the text reading
performance. With the help of the Text Reading
task, UReader is able to read texts from top left to
bottom right. But, due to the language decoding
manner, when given an image with rich texts, such
as a page of a book, the model often reads the be-

ginning texts and then continues writing without
watching the image. More qualitative results can
be found in Appendix C. Finally, as shown in case
f, UReader is able to list some key points about the
chart by combining the title and line information.
Listing key points in this work is just a superficial
attempt at open-ended generation, and its perfor-
mance is far from promising, e.g., UReader makes
a mistake about the lowest line. More effort is
needed towards a comprehensive understanding of
images with rich text.

6 Conclusion

We first propose to leverage existing Multimodal
Large Language Models for universal ocr-free
visually-situated language understanding through
low-cost instruction tuning. All downstream tasks
are reorganized into a unified instruction-tuning for-
mat. Besides, we design the Text Reading task and
Key Points Generation task to enhance text recogni-
tion and vision-and-language semantic comprehen-
sion abilities. To utilize the pre-trained vision en-
coder for processing high-resolution images, we de-
sign a shape-adaptive cropping module, which cuts
the image into multiple local images considering its
raw aspect ratio and resolution. UReader achieve
state-of-the-art ocr-free performance in 8 out of 10
datasets, ranging from documents, tables, charts,
and natural images to webpage screenshots.



Limitations

Our experiments validate that UReader is able
to correlate local images after cropping a high-
resolution image. However, UReader struggles to
understand multi-page documents (e.g. books and
papers) due to lacking ability to correlate different
pages and the limited sequence length of the de-
coder. Besides, UReader feeds an equal number
of features for each local image into the language
decoder. But, not all local images contain rich vi-
sion or text information. In the future, we will
explore a more efficient way to encode different
crops. Furthermore, the open-ended generation
about Visually-situated Language understanding is
far from well studied. We try developing key points
generation ability in this work but more difficult
generation tasks are not currently considered, such
as giving the chain-of-the-thought of the answer.
How to simulate such abilities through instruction
tuning is a topic worth studying. Finally, the Text
Reading task helps the model recognize texts, but
the text reading performance with the LLM as the
decoder is far from satisfactory due to the halluci-
nation problem. Instructing the LLM to read texts
strictly according to images is a challenging topic.

Ethics Statement

Our UReader relies on multi-modal large language
models that are trained on large-scale image and
text data from the web and therefore may be subject
to issues such as toxic language and bias (Bender
et al., 2021). However, our model is further fine-
tuned on publicly available datasets and is used
specifically in the domain of visually-situated lan-
guage understanding, where these issues have min-
imal impact.
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A Grid Distribution on Downstream
Datasets

We visualize the frequency distribution of grids
selected by our shape-adaptive cropping module
on all ten datasets in Figure 6. The wide variety of
image shapes in downstream tasks highlights the
crucial role of the shape-adaptive cropping module.

B Detailed Analysis on Performance

B.1 Underperforms Ocr-Free Baselines on
DocVQA and DeepForm

It can be seen that UReaderunderperforms ocr-free
baselines on DocVQA and DeepForm. There are
two main factors: (1) Donut performs the pre-
training on large-scale document dataset IIT-CDIP
(11M document images), which is the same domain
as DocVQA and DeepForm. But UReader does no
have a pretraining process and is just instruction
finetuned on ensembled datasets (less than 0.5M
assorted images). Training with more document
images brings better performance. (2) The pretrain-
ing task of Pix2struct is to predict the HTML dom
tree of a masked web screenshot, which requires
the model to fully understand the layout informa-
tion of the image. But UReader is trained to read
texts from top to down, from left to right, which
requires a weaker layout understanding ability. The
pretraining on layout understanding also leads to
improved performance on DocVQA.

The conclusion can also be substantiated by the
observations on the other two datasets (i.e., In-
foVQA and KLC) included in the document do-
main as previous work (Tang et al., 2023). For the
InfoVQA dataset, the image is poster style and the
layout is not as important as DocVQA and Deep-
Form but the relationship between text and vision
objects matters more, like natural image and chart
image. As for the KLC dataset, ocr-free models
are only fed with the first page (always the cover
of a report) , where the layout is much simpler
than DocVQA and DeepForm. Therefore, URead-
ercan outperform baselines on these two document
datasets.

In summary, compared with ocr-free model
Donut and Pix2Struct, due to the pretrianing of
MLMM on open-domain datasets, UReaderis bet-
ter at understanding cross-modality relationships
in the image but weaker at comprehending text
layout information without large-scale document
pretraining and specific layout understanding tasks.

B.2 Compared with Pipeline Methods

We list the performance of state-of-the-art pipeline
models in Table 4. We can summarize from
the results that there are two distinct aspects.
Firstly, our model achieves comparable or slightly
worse results compared to the pipeline methods on
TextVQA, ChartQA, InfoVQA, TextCaps and Tab-
Fact. Secondly, there is a obvious gap between our
model and pipeline methods on DocVQA, Deep-
Form, KLC, WTQ and VisualMRC.

For the first aspect, there are two reasons for
the similarity performance: (1) Modeling the di-
verse relationship between visual objects and text
presents challenges for both pipeline-based meth-
ods and OCR-free methods. TextVQA, TextCaps
and InfoVQA requires the relation understanding
between text and visual objects (i.e. logos, icons
and common objects). ChartQA asks for trend com-
prehension of lines. Understanding such complex
cross-modality relation is challenging for both ocr-
free and pipeline methods. (2) The simplicity of
task formats can reduces performance gaps. Tab-
fact is a simply binary classification task resulting
the small performance gap.

For this second aspect, the main performance
gap appears in three categories of datasets: docu-
ment, table, and webpage screenshot. The reasons
are two folds: (1) The gap in terms of text recogni-
tion and layout extraction. In document, table and
website, text is the dominant information source
and the layout(e.g. row and column layout in table)
is relatively uniformer than the chart and natural
images. Therefore, with pre-extracted texts and
layout information, it is more easy to understand
the image. But for OCR-Free models, such as our
UReader and Donut, it’s still challenging to fully
recognize all texts. (2) The gap in terms of mod-
eling capacity on multi-page document input. for
multiple-page document datasets KLC (98% > 4
pages) and DeepForm (75% > 1 pages), OCR-Free
models only input the first page and lose much
information.

B.3 Zero-shot Performance

We test the zero-shot performance of UReader on
unseen dataset OCR-VQA. With the same evalua-
tion metrics, UReader outperforms mPLUG-Owl
(41.1 vs 28.6) and a recent work UniDoc (Feng
et al., 2023) (41.1 vs 34.5) with the training of lay-
out prediction. The results show that the zero-shot
performance of our method on unseen domains is



Figure 6: Visualization of the frequency of selected grid with the shape-adaptive cropping module on 10 downstream
datasets.

DocVQA InfoVQA DeepForm KLC WTQ TabFact ChartQA TextVQA TextCaps VisualMRC

OCR-Pipline 84.7(UDOP) 47.4(UDOP) 85.5(UDOP) 82.8(UDOP) 47.2(UDOP) 72.9(UDOP) 70.5(DePlot) 56.3(PreSTU) 139.1 (PreSTU) 364.2(LayoutT5)
UReader 65.4 42.2 49.5 32.8 29.4 67.6 59.3 57.6 118.4 221.7

Table 4: Performance comparison between UReaderand state-of-the-art pipeline methods.

acceptable.

C More Qualitative Results

C.1 Downstream Results

More qualitative results on natural images, charts,
tables, documents and webpage screenshots are
shown in Figure 7-11.

Figure 11 show a sample of Text Reading
and Visual Question Answering about a webpage
screenshot from VisualMRC. As mentioned in Sec-
tion 5.5, when given an instruction about reading
all texts in the image, UReader can read the be-
ginning texts but sometimes is easy to continue to
generate vision-irrelevant texts. With appropriate
instructions, UReader could indeed recognize texts
in other regions, such as ‘exercise increases cellular
recycling’. Therefore, the hallucination problem
during text reading is not because UReader can-
not recognize texts, but the generating manner of
LLM decoder. When beginning texts are read from
the image, the decoder may generate the following
texts according to the closer text context rather than
the image.

C.2 Open-domain Results

We present open-domain examples in Figure 12.
We use randomly collected images and freely ask
questions to the model based on the content of

these images. The original mPLUG-Owl is used
for comparison.

In Figure 12 (a), UReader is able to accurately
recognize and answer questions about the small
text in natural images ("Name of passenger" and
"MORRIS/KARLA"). In contrast, mPLUG-Owl
does not respond with the name in the first round
and gives an incorrect answer even with a prompt
in the second round.

In Figure 12 (b), we raise a query consisting of
two cascaded questions, which requires the model
to simultaneously understand the spatial position
of the non-textual objects referred to by the query
and locate the corresponding fields. It can be seen
that the UReader completes this task well, while
mPLUG-Owl answers incorrectly in both object
recognition and price extraction.

In Figure 12 (c), we conduct multi-turn conver-
sions with UReader on a screenshot. The questions
included references to the history of the conversa-
tion. Some questions also require a certain amount
of common sense. For example, the time of account
creation is equivalent to the time of joining Twitter,
and the inactive state of the Follow button indicates
that the user has not followed Iron Musk. UReader
answers these questions well. mPLUG-Owl can
correctly recognize the Iron Mush, but is it prone
to generating content that is unrelated to the image,



Human: Recognize text in the picture.  UReader: WILLIAM G. MATHER   

Human: Is this ship used for a business? UReader: yes

Human: Who's name is on the ship?  UReader: william g. mather

Human: Provide a brief description of the given image.
UReader: A large ship named William G. Mathers is docked at a pier.

Human: What words are in the image? 
UReader: graphics World Day 2010 S #wgd2010

Human: What day is it? UReader: world graphics day

Human: What year is shown?  UReader: 2010

Human: Render a clear and concise summary of the photo.
UReader: A yellow and black pencil sits on a wooden table with the date 
2010 on it.

(a)

(b)

Figure 7: Text Reading, Visual Question Answering and Image Captioning performance of UReader on natural
images from TextVQA. Correct and wrong answers are colored green and red, respectively.

Human: List the words in the image.
UReader: Global views of Trump's characteristics % who say they think of 
President Donald Trump as.  Arrogant 75 Intolerant 65 Dangerous 62 A strong 
leader 55 Charismatic 39 Well-qualified to be president 26 Caring about ordinary 
people 23.

Human: What percent who think of President Donald Trump as Dangerous?
UReader: 62.

Human: Is the sum of the percents of Charismatic and Well-qualified to be 
president more than A strong leader?
UReader: Yes.

Human: What dose the picture say?
UReader:  Final to primary energy ratio (%), 1990 to 
2010 Albania 80.0 60.0 Sudan 40.0 20.0 0.0 1990.0 
1995.0 2000.0 2005.0 2010.0

Human: Which country represents in red line?
UReader: Benin.

Human: Which country data below 80% for the last 
five years? 
UReader: Sudan.

(a)

(b)

Figure 8: Text Reading and Visual Question Answering performance of UReader on charts from ChartQA. Correct
and wrong answers are colored green and red, respectively.

leading to some erroneous statements.
In Figure 12 (d), we ask the UReader about the

price and its components based on an image consist-
ing of multiple forms. Although UReader wrongly
includes the header in the answer and does not list

the prices for each component, we notice that it
proactively filters out the components with a price
of $0, making the answer more consistent with
the user’s intention. It indicates that UReader can
find the form related to the question and compre-



Human: Highlight a few significant elements in this photo. 
UReader: The constructor that had the most points is Ferrari. 
The constructor that had the most retirements was Williams-
McLaren. The constructor that had the most laps completed 
was Ferrari. The constructor that had the most laps completed 
was Ferrari. The constructor that had the most laps completed 
was Ferrari. 

Human: How long did it take michael schumacher to finish 
the race?
UReader: 1:34:45.026

Human: What was edelweiss's biggest hit?
UReader: “Bring Me Edelweiss”

Human: how many years after “i can't get 
no... Edelweiss” did the single “bring me 
edelweiss” (remix) appear?
UReader: 12

(a)

(b)

Figure 9: Key Points Generation and Visual Question Answering performance of UReader on tables from Wik-
iTableQuestions. Correct, wrong and repetitive answers are colored green, red and gray, respectively.

Human: Identify some key points in this picture. 
UReader: The document is dated March 22, 1991. The document is 
from the United States.

Human: What is the name of the Dealer ? UReader: A. C. Monk

Human: How many grass/straw pieces of matter is found in the core 
samples ? UReader: 2

Human: How many lint/string pieces of matter is found in the core 
samples ? UReader: 2

(a)

(b)

Human: Parse text from imagery.
UReader: A BRIEF HISTORY OF SOCIAL MEDIA 
PLATFORMS 1978 The first public Bulletin Board System went 
online. 1979 UseNet created by Duke University students Tom 
Truscott and Jim Ellis. 2. 1982 Six Degrees, the first social 
media website, is launched. 2002 LinkedIn is created by Reid 
Hoffman. 2003 MySpace is launched by several eUniverse
employees. 2004 f Mark Zuckerberg officially launches Twitter. 
2006 Twitter is launched by Jack Dorsey used by employees at 
Oden. 2007 2008 The photo-sharing app Instagram is launched. 
Tumblr is launched by David Karp. 2010 The blogging site 
Tumblr is launched by David Karp. 9. CREATED BY: Carly 
Racklin / Ghost Tweeting ghostweeting

Human: Which social media site was launched in 2010?
UReader: Instagram.

Figure 10: Text Reading, Key Points Generation and Visual Question Answering performance of UReader on
documents from DocVQA and InfoVQA. Correct and wrong answers are colored green and red, respectively.

hensively understand the meaning of each field in
the form. In contrast, mPLUG-Owl generates re-

sponses that are full of illusions due to the loss of
textual information in the image.



Human: Detect words in the photograph: 
UReader:  ARTICLES WITH THE TOPIC: AUTISM 
Could molecular handcuffs lower the protein that causes 
autism? By Timothy D. Rayne | May 20, 2012 Huntington’s 
disease is a neurodegenerative disorder that causes a 
progressive decline in cognitive unction and motor control. 
It is caused by a mutation in a gene that codes for a protein 
called huntingtin……

Human: What is suggested that molecular handcuffs could 
lower?
UReader: The protein that causes Huntington's disease

Human: What does exercise increase?
UReader: It increases cellular recycling.

Figure 11: Text Reading and Visual Question Answering performance of UReader on a webpage screenshot from
VisualMRC. Correct and wrong answers are colored green and red, respectively.

These results reveal that UReader maintains
some interactive ability of MLMM in the open
domain and shows stronger visually-situated lan-
guage understanding ability.

D Instruction Templates

The instruction templates of the auxiliary Text
Reading and Key Points Generation tasks are
shown in Table 5.



UReader
Human: Who is he and how many people he is following
UReader: Elon Musk, 334
Human: When did he create his twitter account?
UReader: June 2009
Human: Have I followed him?
UReader: No
mPLUG-Owl
Human: Who is he and how many people he is following
mPLUG-Owl: The man in the image is Elon Musk, a famous 
entrepreneur, engineer, and inventor. He is following 10 
people on Twitter, including himself.
Human: When did he create his twitter account?
mPLUG-Owl: Elon Musk created his Twitter account in June 
2006, making him one of the earliest adopters of the social 
media platform.
Human: Have I followed him?
mPLUG-Owl: Yes, you have followed Elon Musk on Twitter.

UReader
Human: Who is the passenger?
UReader: morris/karla
mPLUG-Owl
Human: Who is the passenger?
mPLUG-Owl: The passenger in the image is a woman.
Human: What’s her name?
mPLUG-Owl: The name of the passenger is "Mary."

UReader
Human: What is the fruit on the top left and what is the 
price of it?
UReader: melon, $1.90
mPLUG-Owl

Human: What is the fruit on the top left and what is the 
price of it?
mPLUG-Owl: The fruit on the top left is a lemon, and the 
price of it is $1.

UReader
Human: How much should I pay?
UReader: $136.38
Human: What are the components of the payment?
UReader: Service Name, Amazon CloudFront, AWS Data 
Transfer Service, Amazon Simple Storage Service, Amazon 
Simple DB, Amazon Elastic Compute Cloud
mPLUG-Owl
Human: How much should I pay?
mPLUG-Owl: Based on the image, the total amount you 
should pay for the Amazon Web Services (AWS) bill is 
$1,000.
Human: What are the components of the payment?
mPLUG-Owl: The payment consists of a check and a credit 
card. The check is for $1,000, and the credit card is for 
$1,000.

(a) Text understanding in natural image scenario (b) Spatial-aware comprehension involving non-textual objects.

(c) Multi-turn information extraction (d) Multi-turn form understanding

Figure 12: Comparsion with mPLUG-Owl on open-domain Visually-situated Language Understanding. The key
words in the answers and the key regions in the images are annotated with the same color. The incorrect response of
UReader is colored red.



Table 5: Instructuion templates used for text reading from the beginning, continue reading and key points generation
tasks. The complete instruction for continuing reading is a random combination of a prompt from part A and another
one from part B.

Task Part Instruction Template

text reading from the beginning -

<Image>Human: what words are in the image? AI: {all texts}.
<Image>Human: what texts are in the picture? AI: {all texts}.
<Image>Human: what does the image read? AI: {all texts}.
<Image>Human: what does the picture say? AI: {all texts}.
<Image>Human: what is written in the image? AI: {all texts}.
<Image>Human: list the words in the image. AI: {all texts}.
<Image>Human: list the texts in the picture. AI: {all texts}.
<Image>Human: Recognize text in the image. AI: {all texts}.
<Image>Human: Identify text in the picture. AI: {all texts}.
<Image>Human: Deciphering written content in the photo. AI: {all texts}.
<Image>Human: Extract words from the graphic. AI: {all texts}.
<Image>Human: Parse text from imagery. AI: {all texts}.
<Image>Human: Read written language in the visuals. AI: {all texts}.
<Image>Human: Decode text from the snapshot. AI: {all texts}.
<Image>Human: Translate text in the picture. AI: {all texts}.
<Image>Human: Retrieve written information from the image. AI: {all texts}.
<Image>Human: Detect words in the photograph. AI: {all texts}.

continue reading

A

<Image>Human: The picture reads {left texts}.
<Image>Human: The image says {left texts}.
<Image>Human: There are words {left texts} in the image.
<Image>Human: Words {left texts} are in the picture.
<Image>Human: The texts in this image read {left texts}.
<Image>Human: The words on this picture are {left texts}.
<Image>Human: The script depicted in this image reads {left texts}.
<Image>Human: The writing on this visual representation states {left texts}.
<Image>Human: The content presented in this diagram states {left texts}.
<Image>Human: The language used in this photograph says {left texts}.
<Image>Human: The inscription on this picture explain {left texts}.

B

Continue reading the text. AI: {right texts}.
Read the following text. AI: {right texts}.
Read the text behind. AI: {right texts}.
What is the following text? AI: {right texts}.

key points generation -

<Image>Human: Identify some key points in this picture. AI: {key points}.
<Image>Human: Point out several critical features in this image. AI: {key points}.
<Image>Human: Highlight a few significant elements in this photo. AI: {key points}.
<Image>Human: Give some essential details in this illustration. AI: {key points}.
<Image>Human: Draw attention to some important aspects in this diagram. AI: {key points}.
<Image>Human: Mention a couple of crucial points in this snapshot. AI: {key points}.
<Image>Human: Indicate a few pertinent items in this graphic. AI: {key points}.
<Image>Human: Outline some significant characteristics in this image. AI: {key points}.
<Image>Human: Specify some key components in this picture. AI: {key points}.
<Image>Human: List a handful of essential elements in this visual. AI: {key points}.


