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1 Summary of NV E and NV T ensembles

Let us start with a quick summary of the microcanonical (NV E) ensemble. It describes
isolated systems with fixed number of particles N , volume V and energy E.

• The microcanonical ensemble is described by a uniform distribution with two constant
energy shells.

• The connection with thermodynamics is made through Boltzmann’s entropy formula:
S = kB ln Ω, where Ω is the number of microscopic states consistent with thermody-
namic (macroscopic) variables N, V, E.

• Inverting S(N, V,E) we can obtain E(S, V,N). The other thermodynamic quantities
are defined through partial derivatives.

temperature T ≡
(
∂E
∂S

)
V,N

, pressure p ≡ −
(
∂E
∂V

)
S,N

, chemical potential µ ≡
(
∂E
∂N

)
S,V

Next, a quick summary of the canonical (NV T ) ensemble. It describes systems in contact
with a thermostat at temperature T . As a result, the energy of the system no longer remain
constant. The number of particles N and volume V remain fixed.

• The canonical ensemble is described by Boltzmann’s distribution.

ρ({qi}, {pi}) =
1

Z̃
e−βH({pi},{qi}) (1)

Z̃ =

∫ 3N∏
i=1

dqi dpi e
−βH({pi},{qi}) (2)
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• The connection with thermodynamics is made through the expression of Helmholtz
free energy A(N, V, T ) through the partition function Z,

A = −kBT lnZ , Z =
1

N !h3N

∫ 3N∏
i=1

dqi dpi e
−βH({pi},{qi}) (3)

• The other thermodynamic quantities are defined through partial derivatives.

entropy S ≡
(
∂A
∂T

)
V,N

, pressure p ≡ −
(
∂A
∂V

)
T,N

, chemical potential µ ≡
(
∂A
∂N

)
T,V

• The energy (Hamiltonian) of system is no longer conserved, but fluctuate around its
average value.

E ≡ 〈H〉 = − 1

Z

∂Z

∂β
= − ∂

∂β
lnZ (4)

(∆E)2 ≡ 〈H2〉 − 〈H〉2 = −∂E
∂β

= kBT
2Cv = NkBT

2cv (5)

Hence in the thermodynamic limit N →∞,

∆E =
√
NkBT 2cv

∆E

E
∝ 1√

N
→ 0 (6)

The difference between microcanonical (NV E) ensemble and canonical (NV T ) ensem-
ble vanishes.

2 NPT ensemble

The NPT ensemble is also called the isothermal-isobaric ensemble. It describes systems
in contact with a thermostat at temperature T and a bariostat at pressure p. The system
not only exchanges heat with the thermostat, it also exchange volume (and work) with the
bariostat. The total number of particles N remains fixed. But the total energy E and volume
V fluctuate at thermal equilibrium.

Q: What is the statistical distribution ρ({qi}, {pi}) at thermal equilibrium?

Q: What is the microscopic expression for the thermodynamic potential?

Approach: Consider system of interest + thermostat + bariostat all together as a closed system,
which can be described using the microcanonical ensemble.
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2.1 Equilibrium distribution

Notice that in the (NPT ) ensemble, the probability distribution function must also include V
as its variable, because the volume can (in principle) take any value at thermal equilibrium.

ρ({qi}, {pi}, V ) ∝ number of ways (Ω̃) the thermostat and the bariostat can rearrange them-
selves to allow the system to have energy E = H({qi}, {pi}) and volume V .

Let S̃ be the entropy of the thermostat + bariostat, then

Ω̃ = exp

(
S̃

kB

)
(7)

Let V0 and E0 be the total volume and total energy of the thermostat + bariostat + system
of interest. Let V and E be the volume and energy of the system of interest. Then the
volume and energy left for the thermostat + bariostat are, V0− V and E0−E, respectively.

S̃(Ñ , V0 − V,E0 − E) = S̃(Ñ , V0, E0)−

(
∂S̃

∂Ṽ

)
N,E

V −

(
∂S̃

∂Ẽ

)
N,V

E (8)

We recognize
(
∂S̃
∂Ẽ

)
N,V
≡ 1

T
where T is the temperature of the thermostat.

But what is
(
∂S̃
∂Ṽ

)
N,E

?

This is the time to use the second type of Maxwell’s relationship.(
∂S̃

∂Ẽ

)
V,N

·

(
∂Ẽ

∂Ṽ

)
S,N

·

(
∂Ṽ

∂S̃

)
E,N

= −1 (9)

1

T
· (−p) ·

(
∂Ṽ

∂S̃

)
E,N

= −1 (10)

=⇒

(
∂S̃

∂Ṽ

)
N,E

=
p

T
(11)

where p is the pressure of the bariostat. Therefore,

S̃(Ñ , Ṽ , Ẽ) = S̃(Ñ , V0, E0)−
p

T
V − 1

T
E (12)

Ω̃ = const · exp

(
−E + pV

kBT

)
(13)

Therefore, the equilibrium distribution of the isothermal-isobaric (NPT ) ensemble is,

ρ({qi}, {pi}, V ) =
1

Ξ
e−β[H({qi},{pi})+pV ] (14)

Ξ =

∫ ∞
0

dV

∫ 3N∏
i=1

dqi dpi e
−β[H({qi},{pi})+pV ] (15)
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2.2 Thermodynamic potential

By now, we would expect the normalization factor Ξ should be interpreted as a kind of
partition function that will reveal us the fundamental equation of state.

To find out the precise expression, we start with the Shanon entropy expression. (Notice here
that V is an internal degree of freedom to be integrated over and p is an external variable.)

S = −kB
∑
i

pi ln pi

= −kB
∫ ∞
0

dV

∫ 3N∏
i=1

dqi dpi ρ({qi}, {pi}, V ) ·
[
H({qi}, {pi}) + pV

−kBT
− ln Ξ̃

]
=

1

T
(〈H〉+ p〈V 〉) + kB ln Ξ̃ (16)

=
1

T
(E + pVavg) + kB ln Ξ̃ (17)

Hence

−kBT ln Ξ̃ = E − TS + pVavg ≡ G(N, T, P ) (18)

This is the Gibbs free energy, which is the appropriate thermodynamic potential as a function
of N, T, P ! So everything falls into the right places nicely. We just need to careful that
the volume in thermodynamics is the ensemble average Vavg ≡ 〈V 〉, because in (N, T, P )
ensemble, V is not a constant.

Of course, we still need to put in the quantum corrections 1/(N !h3N), just as before. So the
final expression for the Gibbs free energy and chemical potential µ is,

µN = G(T, p,N) = −kBT ln Ξ (19)

Ξ(T, p,N) =
1

N !h3N

∫ ∞
0

dV

∫ 3N∏
i=1

dqi dpi pie
−β[H({qi},{pi})+pV ] (20)

Ξ(T, p,N) =

∫ ∞
0

dV Z(T, V,N) e−βpV (21)

Therefore, Ξ(T, p,N) is the Laplace transform of the partition function Z(T, V,N) of the
canonical ensemble!

2.3 Volume fluctuations

To obtain the average of volume V and its higher moments, we can use the same trick as in
the canonical ensemble and take derivatives of Ξ with respect to p.
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〈V 〉 = −kBT
1

Ξ

∂Ξ

∂p

〈V 2〉 = (kBT )2
1

Ξ

∂2Ξ

∂p2

−∂V
∂p

= kBT
∂

∂p

(
1

Ξ

∂Ξ

∂p

)
= kBT

[
1

Ξ

∂2Ξ

∂p2
− 1

Ξ2

(
∂Ξ

∂p

)2
]

=
1

kBT

[
(kBT )2

1

Ξ

∂2Ξ

∂p2
−
(
kBT

1

Ξ

∂Ξ

∂p

)2
]

=
1

kBT
(〈V 2〉 − 〈V 〉2)

≡ 1

kBT
(∆V )2 (22)

Define compressibility1

βc ≡ −
1

V

(
∂V

∂p

)
T,N

=
(∆V )2

kBTV
(23)

Then we have,

(∆V )2 = kBTβcV (24)

∆V =
√
kBTβcV (25)

∆V

V
∝ 1√

V
→ 0 as V → ∞ (26)

In other words, in the thermodynamic limit (V →∞), the relative fluctuation of volume is
negligible and the difference between (NPT ) ensemble and (NV T ) ensemble vanishes.

2.4 Ideal gas example

To describe ideal gas in the (NPT ) ensemble, in which the volume V can fluctuate, we
introduce a potential function U(r, V ), which confines the partical position r within the
volume V . Specifically, U(r, V ) = 0 if r lies inside volume V and U(r, V ) = +∞ if r lies
outside volume V .

The Hamiltonian of the ideal gas can be written as,

H({qi}, {pi}) =
3N∑
i=1

p2i
2m

+
N∑
j=1

U(ri, V ) (27)

1Not to be confused with β ≡ 1/(kBT ).
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Recall the ideal gas partition function in the (NV T ) ensemble.

Z(T, V,N) =
V N

N !h3N
(2πmkBT )3N/2 =

V N

N !Λ3N
(28)

where Λ ≡ h/
√

2πmkBT is the thermal de Broglie wavelength.

Ξ(T, p,N) =

∫ ∞
0

dV · Z(T, V,N) · e−βpV

=
1

N !λ3N

∫ ∞
0

dV · V N · e−βpV

=
1

N !λ3N
1

(βp)N+1

∫ ∞
0

dx · xN · e−x

=
1

N !λ3N
1

(βp)N+1
N !

=

(
kBT

p

)N+1
1

Λ3N
(29)

In the limit of N →∞,

Ξ(T, p,N) ≈
(
kBT

p

)N
· (2πmkBT )3N/2

h3N
(30)

The Gibbs free energy is

G(T, p,N) = −kB ln Ξ = −NkBT ln

[(
kBT

p

)
· (2πmkBT )3/2

h3

]
(31)

This is consistent with Lecture Notes 6 Thermodynamics §3.2,

µ =
G

N
= −kBT ln

[(
kBT

p

)
· (2πmkBT )3/2

h3

]
(32)

3 Grand canonical ensemble

The grand canonical ensemble is also called the µV T ensemble. It describes systems in
contact with a thermostat at temperature T and a particle reservoir that maintains the
chemical potential µ. The system not only exchanges heat with the thermostat, it also
exchange particles with the reservoir. The volume V remains fixed.2 But the number of
particles N and energy E fluctuate at thermal equilibrium.

2Remember the Gibbs-Duhem relation. We cannot specify all three variables T , p, µ simultaneously.
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Q: What is the statistical distribution ρ({qi}, {pi}) at thermal equilibrium?

Q: What is the microscopic expression for the thermodynamic potential?

Approach: Consider system of interest + thermostat + particle reservoir all together as a closed
system, which can be described using the microcanonical ensemble.

3.1 Equilibrium distribution

Notice that int the grand canonical (µV T ) ensemble, the probability distribution function
must also include N as its variable, because the number of particle can (in principle) be any
non-negative integer at thermal equilibrium.

Following the same approach as in the (NPT ) ensemble, we obtain the equilibrium distri-
bution of the grand canonical (µV T ) ensemble as the following.

ρ({qi}, {pi}, N) =
1

Z̃
e−β(H({qi},{pi})−µN) (33)

where

Z̃ =
∞∑
N=0

∫ 3N∏
i=1

dqi dpi e
−β(H({qi},{pi})−µN) (34)

=
∞∑
N=0

eβµN Z̃(N, V, T ) (35)

ρ is grand canonical distribution and Z̃(N, V, T ) is the normalization factor in the canonical
ensemble for N particles.

3.2 Thermodynamic potential

Again, we should expect the normalization factor to give us the thermodynamic potential
for µ, V, T , which is the Grand potential, or Landau potential,3

Φ(µ, V, T ) = E − TS − µN = −pV (36)

3We called it K in Lecture Notes 6 Thermodynamics.
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Starting from Shanon’s entropy expression, we can show that

Φ(µ, V, T ) = −kBT lnZ , pV = kBT lnZ (37)

where Z is the grand partition function,

Z =
∞∑
N=0

∫ 3N∏
i=1

dqi dpi e
−β(H({qi},{pi})−µN) (38)

=
∞∑
N=0

eβµNZ(N, V, T ) (39)

where Z(N, V, T ) is the partition function of the canonical ensemble. Notice that we have
removed the˜sign, meaning that we have applied the quantum correction 1/(N !h3N).

Define fugacity z ≡ eβµ (so that µ = kBT ln z) we can write,

Z =
∞∑
N=0

zN Z(N, V, T ) (40)

Therefore, the grand partition function Z(µ, V, T ) is the unilateral Z-transform of the
partition function Z(N, V, T ) of the canonical ensemble.4

3.3 Number of particles fluctuations

Average number of particles

〈N〉 = kBT
1

Z
∂Z
∂µ

= kBT
∂

∂µ
(lnZ) = z

∂

∂z
(lnZ) (41)

〈N2〉 = (kBT )2
1

Z
∂2Z
∂µ2

(42)

∂〈N〉
∂µ

=
1

kBT
(〈N2〉 − 〈N〉2) =

(∆N)2

kBT
(43)

Define density ρ ≡ 〈N〉
V

, 〈N〉 = ρV

V · ∂ρ
∂µ

=
(∆N)2

kBT
(44)

(∆N)2 = kBT (∂ρ/∂µ)V (45)

∆N =
√
kBT (∂ρ/∂µ)V (46)

∆N

〈N〉
=

√
kBT (∂ρ/∂µ)V

ρV
∝ 1√

V
→ 0 (as V →∞) (47)

4No wonder it is called the Z-transform. See http://en.wikipedia.org/wiki/Z-transform for proper-
ties of the Z-transform.
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3.4 Ideal gas example

Recall the ideal partition function in the canonical ensemble,

Z(N, V, T ) =
V N

N !h3N
(2πmkBT )3N/2 =

V N

N !Λ3N
(48)

(49)

From this we obtain the grand partition function,

Z =
∞∑
N=0

zN
V N

N !Λ3N
=

∞∑
N=0

1

N !

(
zV

Λ3

)N
(50)

Z = exp

(
zV

Λ3

)
(51)

Next the grand potential Φ = −pV ,

pV = kBT lnZ = kBT
zV

Λ3
(52)

p = kBT
z

Λ3
, z =

p

kBT
Λ3 (53)

eβµ =
p

kBT

(
h2

2πmkBT

)3/2

(54)

µ = kBT ln

[(
p

kBT

)
·
(

h2

2πmkBT

)3/2
]

(55)

This is consistent with the results from the NPT ensemble, as it should!

We now can obtain an explicit expression of the density fluctuation of the ideal gas.

〈N〉 = z
∂

∂z
lnZ = z

∂

∂z

(
zV

Λ3

)
=
zV

Λ3
= lnZ =

pV

kBT
(56)

〈N〉 =
eβµV

Λ3
(57)

∂〈N〉
∂µ

=
eβµβV

Λ3
= β · 〈N〉 =

pV

(kBT )2
(58)

(∆N)2 = kBT
∂〈N〉
∂µ

=
pV

kBT
= 〈N〉 (59)

(60)

Hence the variance of N equals the expectation value of N . The standard deviation of N is

∆N =
√
〈N〉 (61)
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The relative fluctuation of N is
∆N

N
=

1√
〈N〉

(62)

From the above we also obtain how density ρ = N/V changes with the chemical potential,

∂ρ

∂µ
=

1

V

∂〈N〉
∂µ

=
p

(kBT )2
(63)

3.5 Lattice gas model

From the previous sections, we see
∆N = 〈N〉 (64)

Q: Is this result reasonable?

Ideal gas means no correlation between molecules. Hence we can build a lattice gas model
as a further simplification to the ideal gas model.

Imagine we divide the volume V into Nc cells. Each cell can have either 1 molecule or 0
molecule.

Assume Nc � 〈N〉, so that we can ignore the possibility that two molecules occupy the same
cell.

Define a random variable for each cell,

ni =

{
1 cell i contains 1 molecule, probability p
0 cell i contains 0 molecule, probability (1− p) (65)

ni and nj are independent of each other (for i 6= j)

The total number of molecules in volume V is

N =
Nc∑
i=1

ni, (66)

11



The average number of molecules is

〈N〉 =
Nc∑
i=1

〈ni〉 = 〈ni〉 ·Nc (67)

Notice that

〈ni〉 = p (68)

〈n2
i 〉 = p (69)

〈n2
i 〉 − 〈ni〉2 = p− p2 = p (1− p) (70)

Hence

〈N〉 = Nc p (71)

〈N2〉 − 〈N〉2 = Nc p (1− p) = 〈N〉
(

1− 〈N〉
Nc

)
(72)

In the limit of Nc � 〈N〉,5

(∆N)2 = 〈N2〉 − 〈N〉2 = 〈N〉 (73)

This is consistent with the prediction from the grand canonical ensemble.

5Nc can be arbitrarily large and hence much larger than N .
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