Software Quality Journal manuscript No.
(will be inserted by the editor)

Automated Testing of DSL Implementations

Experiences from Building mbeddr

Daniel Ratiu - Markus Voelter -
Domenik Pavletic

Received: date / Accepted: date

Abstract Domain specific languages promise to improve productivity and
quality of software development by providing problem-adequate abstractions
to developers. Projectional language workbenches, in turn, allow the defini-
tion of modular and extensible domain specific languages, generators and de-
velopment environments. While recent advances in language engineering have
enabled the definition of DSLs and tooling in a modular and cost-effective
way, the quality assurance of their implementation is still challenging. In this
paper we discuss our work on testing different aspects of the implementa-
tion of domain specific languages and associated tools, and present several
approaches to increase the automation of language testing. We illustrate these
approaches with the Jetbrains MPS language workbench and our experience
with testing mbeddr, a set of domain specific languages and tools on top of C
tailored to embedded software development. Based on the experience gained
from the mbeddr project, we extract generic lessons for practitioners as well
as challenges which need more research.

Keywords domain specific languages, testing, quality assurance, automation

1 Introduction

Domain specific languages (DSLs) promise an increase in productivity and
quality of software development by providing abstractions that are adequate
for a particular application domain. Using adequate abstractions is a key en-
abler for constructive quality assurance (a wide variety of errors are impossible
to make) and for deep analyses (which are easier to perform at the abstraction
level of the domain). Recent advances in language workbenches, the tools used
to implement languages and their IDEs, enable a very productive approach to

Siemens AG. E-mail: daniel.ratiu@siemens.com
independent/itemis AG. E-mail: voelter@acm.org
itemis AG. E-mail: pavleticQitemis.de

2 Daniel Ratiu et al.

building domain specific tools around DSLs [25]. In addition to the language
itself, authoring support (e.g., editors, refactorings) and transformations (e.g.,
code generators), they enable a plethora of tools (e.g., analyzers) which are
aligned with, and thus can take advantage of, the abstractions of the DSL.

Language Workbenches (LWBs) are tools for efficiently implementing
languages and their IDEs. They support defining the language structure and
syntax, context sensitive constraints, type systems and transformations, as
well as IDE features such as refactorings, find usages, debuggers or domain
specific analyses. Typically, a language workbench ships with a set of DSLs
for describing each language aspect, avoiding much of the accidental complex-
ity traditionally involved in language implementation. In a sense, they move
language development from the domain of computer science into software en-
gineering.

Jetbrains MPS is an open source language workbench developed by Jet-
brains since the early QOOOsﬂ It has comprehensive support for developing
DSLs by specifying structure, syntax, type systems, transformations and gen-
erators, debuggers and IDE support. MPS is one of the most fully-featured
language workbenches [7]. One distinguishing feature of MPS is that it uses
a projectional editor: it does not use parsing to construct the abstract syntax
tree (AST) from a program source, instead, editing gestures directly change
the AST and the concrete syntax is projected from the changing AST. This
approach has multiple advantages such as the possibility to use concrete syn-
taxes other than text, such as diagrams, mathematical notations or tables [30].
Furthermore, projectional editors never encounter parsing ambiguities, which
is why MPS supports a wide variety of language composition techniques [26].
A short introduction in language development with MPS is given in Section [2]

mbeddr is a set of 81 languages and C extensions for embedded software
development built using MPSE| We started building mbeddr in 2012 and we
have invested so far more than 10 person years of effort split across 5 main
developers. Details about mbeddr can be found in [31L33L28], and our lessons
learned regarding the development of mbeddr with MPS are discussed in [29].
Based on mbeddr, Siemens builds a commercial product called the Embedded
Software Designer (ESD)E In this paper, we focus on our experience with
testing the implementation of mbeddr. The mbeddr project has over 2,300 tests
in total, with over 6,000 assertions. This corresponds to approximately 50,000
lines of code, and is about 50% of the size of the mbeddr implementation itself.
mbeddr is still under development and while we are developing new language
features, we are continuously enlarging our knowledge about testing DSLs.
This paper reflects the current state of testing mbeddr.

1 https://www.jetbrains.com/mps/
2 http://mbeddr . com

3 https://www.plm.automation.siemens.com/en_us/products/lms/imagine-lab/
embedded-software-designer.shtml

https://www.jetbrains.com/mps/
http://mbeddr.com
https://www.plm.automation.siemens.com/en_us/products/lms/imagine-lab/embedded-software-designer.shtml
https://www.plm.automation.siemens.com/en_us/products/lms/imagine-lab/embedded-software-designer.shtml

Automated Testing of DSL Implementations 3

1.1 Language Quality

An important aspect of software engineering is quality: the developed artifacts
must conform to a defined minimum quality level for them to be a useful
asset in practice. Several techniques are established in software engineering to
reach this goal. These include process aspects such as systematic requirements
management, issue tracking and code reviews, but also encompass specific
practices and techniques such as (automated) testing, coding standards and
refactoring.

Because of the increasing reliance on DSLs in diverse software de-
velopment activities, there is a strong need to ensure a high quality
of the language implementation and its associated tooling.

Due to the use of language workbenches for developing languages, the qual-
ity of the language implementation is ensured constructively to some degree:
the DSLs provided by LWBs for language development prevent engineers from
making certain categories of errors. However, many kinds of errors are still
possible, and as languages become more complex, more widespread and devel-
oped in shorter cycles, systematic quality assurance is essential. In this paper
we focus on the following categories of defects of the implementation of DSLs
and associated tooling as detailed in the following.

Front-end Defects (D1) The front-end of a DSL relates to the definition
of the language structure (abstract syntax), definition of the editors (concrete
syntax), context sensitive constraints and type system (static semantics).

— Abstract syntaz: The abstract syntax (AST) of the language defines the
available language constructs how they can be composed. Defects of the
AST might either lead to the impossibility of defining some models that
would be valid (missing constructs in the DSL, or lack of support to com-
bine these constructs).

— Concrete syntax: As a projectional editor, MPS interprets the editing ges-
tures and immediately creates models without any parsing involved. The
creation of proper models might involve local re-orderings of the abstract
syntax tree such as in the case of dealing with priorities of arithmetic op-
erators. Defects in the editors might lead to invalid structures of the AST
or discrepancies between what is shown to the DSL user and the content
and structure of the model.

— Static semantics: If the constraints or typing rules are faulty, they allow
language users to define models which are not semantically meaningful;
if they are too strong then users cannot define meaningful models, if con-
straints or typing rules are too weak, runtime-errors (e.g. exceptions) occur
in the IDE, or the generators may fail or produce non-compiling code.

Back-end Defects (D2) Once valid models are authored, generators are
used to produce lower-level artifacts such as code or configuration files. Due to
the abstraction gaps between the input languages and the generation targets,

4 Daniel Ratiu et al.

or because of optimizations implemented in the generators, they can become
very complex and are thus error prone. We distinguish the following classes of
generators problems:

— Robustness defects: For example, generators might simply crash on certain
input models, or they might produce output which does not conform to
the target language.

— Semantics defects: This refers to situations where the generators produce
output that conforms to the definition of the target language but does not
realize the intended semantics of the input model.

— Stability of generated artifacts defects: This refers to situations when using
the same model as input, the generated artifacts change between generator
runs. The instability of generated artifacts might lead to difficulties when
the code reviews are performed or when versioning tools are used on the
generated artifacts.

Defects in the Tooling (D3) Domain specific languages open new possibil-
ities for domain specific tools, such as analyzers or debuggers. They are often
complex and depend on models at various abstraction levels. Furthermore,
many of these tools rely on the integration of external tools (e.g. C-debuggers,
C-level model checkers). We distinguish the following categories of defects:

— Semantics misalignment defects: Analyzers are prone to errors such as se-
mantic misalignment with the generators, or misinterpretation of models.
Semantic misalignments are especially important because they lead to in-
consistencies between different semantic interpretations of the model (gen-
erators, or different analyzers). Independent of the existence of an explicit
and formal semantics definition, the interpretations of the high-level mod-
els by different tools must be consistent with each other.

— Lifting defects: An important class of defects relate to lifting the analyses
results from the output of the analysis tools back to the domain level.
Bridging backwards the abstraction gap between the DSL and lower level
artifacts make lifting challenging, error-prone or even impossible (e.g. due
to differences between big-step vs. small-step semantics).

— Interaction defects: In certain cases, such as the integration of external de-
buggers, the pattern of interaction with the external tool is complex. For
example, performing a step in a debug session at DSL level might require
performing several steps at C-code level. Another example is an optimized
interaction with a verification tool: in order to make use of multicore pro-
cessors for analysis, we first run the verification tool to find out which
properties are in scope, and then we start several instances of the verifica-
tion tool (in parallel, on different cores) to check each of these properties
separately.

Automated Testing of DSL Implementations 5

1.2 Taming the Testing Challenges

Finding the defects described above in a systematic and (semi-)automated way
requires a broad set of techniques, which we summarize below.

— Unit tests: MPS provides several DSLs for writing unit tests for different
language definition aspects (Section .

— Automating unit testing: In order to test mbeddr-specific functionality
(such as formal verification or domain specific debugger) we have created
new testing DSLs in addition to those provided natively by MPS (Sec-
tion .

— Random generation of models: We generate random models and use them
to test the robustness of language definitions in a fully automated manner
(Section [3]).

— Comparison with baseline: Defects about stability of the generated artifacts
can be automatically tested by using a baseline of generated artifacts and
comparing the newly generated artifacts with that baseline (at text level).
Comparison with a baseline can also be used to support manual code review
about how changes in generators affect the generated artifacts.

— Importing existing models: An importer can be used for testing the struc-
ture of the DSLs for which models already exist. Language constructs or
terms not covered by the DSL can be automatically identified.

In Table[I]we provide an overview of the defects defined in the previous section
(D1-Ds3), the technical means which can be used to detect them and the de-
gree to which their testing can be automated. We distinguish two categories of
automation: fully automatic defects identification and semi-automatic identifi-
cation using manually written unit tests and subsequently automatic execution
of these tests.

Formal Techniques for Assuring the DSLs Implementation One focus
of mbeddr is to make formal verification technology easy to use [23122][T5.24]
20], and mbeddr incorporates several formal verification techniques which help
practicing embedded developers increase the reliability of their programs.
The reader might ask why we have not relied more on formal techniques for
assuring the correctness of the implementation of mbeddr itself. For example,
one could formally specify the semantics of DSLs, automatically generate test
cases using symbolic techniques, or formally verify the correctness of the gen-
erators. We did not do this because we are currently not aware of techniques
that are scalable and user-friendly enough to make the formal specification
of DSLs and verification of their implementation work in practice — the def-
inition of a formal semantics for C alone is work for a whole PhD thesis [6]
and very much beyond what we could have done. The contribution of this
paper is to illustrate how testing can achieve a reasonably good quality of a
language implementation. Formal techniques would be a worthwhile addition
to the testing approaches presented in this paper. However, this requires the
evolution of verification technology itself and better integration into language
workbenches in order for the approach to become economically feasible.

6 Daniel Ratiu et al.

Defect Defect Class Concrete Automation
Category Defect Degree
priorities of operators semi (U)
concrete syntax projectional editor actions semi (U)
editors robustness full (R)
language definition too relaxed full (R)
Front end abstract syntax language definition too constrained | full (I)
missing constructs full (1)
type system errors - semantic semi (U) /
full (R)
static semantics type system errors - robustness full (R)
constraints too relaxed full (R)
constraints robustness full (R)
dataflow analyses semi (U)
robustness defects full (R)
Back end generators stability defects full (B)
semantic defects semi (U)
formal verification | semantic misalignments semi (U)
Tooling lifting of results semi (U)
interaction semi (U)
debugger lifting of results semi (U)

Table 1 Overview over language implementation defects (described in Section , the
technical means to detect them (Section and their testing automation degree. We refer
to the technical means used for defects identification by using the following convention: U
- manually written unit tests, R - random generation, I - using C code importer, B - using
comparison with a baseline. Testing automation degree: semi-automatic (manually written
test case and automatic running of tests) vs. fully automatic tests.

1.3 Structure and Contribution

In this paper we advocate that modern DSLs and their tools required a holistic
approach for quality assurance which goes far beyond the techniques used in
traditional compiler construction. Testing DSL-based tools requires a broader
approach due to different language implementation aspects involved (in ad-
dition the language definition itself, we have a plethora of tooling and IDE
support). Furthermore, the process and budget constraints for domain spe-
cific tools are different compared to traditional general purpose languages —
requirements change more regularly, development is agile and the budget is
more limited. The paper makes the following contributions to the state of the
art:

— We present a categorization of various aspects of the quality of DSLs im-
plementation and associated tooling that must be tested (Section |1.1)).

— We extend the MPS native testing support with an approach to automate
testing of domain specific tools such as model checkers and debuggers (Sec-
tion .

— We present a fully automated approach for random testing, using synthe-
sized models which will then be used to test the robustness and correct
implementation of different language aspects (Section .

Automated Testing of DSL Implementations 7

— We present our approach to measure the coverage of tests with respect to
the different DSL and tooling implementation aspects (Section |§[)

— Based on the experience so far, we present a set of best practices (lessons
learned) and of fundamental challenges which we hope will trigger further
research about testing the implementation of DSLs (Section [7)).

— We illustrate the concepts in practice and present our experience with
testing mbeddr, to the best of our knowledge, one of the largest DSLs-
based projects, accumulating more than 10 person years of development.

This work is an extended version of an already published paper [2I]. The
basic approach for testing debuggers has been published in [I7]. This paper
presents a holistic, detailed and self contained view about testing of DSLs
implementation.

Structure of the paper In Section[2]we present a brief introduction about
developing domain specific languages with MPS. In Section [3| we present the
native support in MPS for testing different aspects of the DSLs implementa-
tion. In Section[d we present our approach to increase the automation of testing
domain specific tools such as the integration of the CBMC model checker in
mbeddr and the debugger. In Section [5| we then present our strategy to au-
tomate testing by synthesizing random models (that respect the structures
defined by the abstract syntax) and using increasingly complex oracles to de-
tect bugs in the implementation of different language aspects. In Section [6] we
illustrate our approach to measure the coverage of tests with respect to the
different language implementation aspects. In Section [7] we discuss variation
points and present the main lessons learned and more fundamental challenges
with testing mbeddr. Section [§] contains related work, and we conclude the
paper in Section [0

2 Language Development in MPS

In MPS, a language implementation consists of several language aspects. At
the core, these include structure, concrete syntax, constraints, type system,
transformations, interpreters, data flow analyses or debuggers. We describe
the most important of those in this section. MPS also supports additional
IDE extensions such as buttons, menu items, or additional views; we have
used those extensively for integrating domain specific tools such as analyzers.
However, since these are implemented via regular Java/Swing programs and
a couple of MPS-specific extension points, we do not discuss them in this
section. Analyzers typically also read the model; to this end, MPS supports a
rich API to navigate, query and modify models. We do not discuss this API
in any detail in this section.

MPS ships with a dedicated DSL for implementing each language aspect;
the idea is to apply DSLs not just to a developer’s target domain, but to treat
language development as just another domain for which DSLs can improve
productivity. This approach is common in language workbenches [7].

8 Daniel Ratiu et al.

For reasons of brevity, we will not describe any of these aspect-specific
languages in detail; we refer the reader to [1,3L27]. However, in order to make
this paper self contained, we provide some intuition in the rest of this section.

Structure The structure aspect uses a declarative DSL to describe the
AST of a language. Each AST element is called a concept, and concepts can
have children (that constitute the tree), references (cross-references through
the tree), and properties (primitive-typed values). In addition, a concept can
extend one other concept and implement several concept interfaces. The struc-
ture aspect of MPS languages is closely aligned with EMF or EMOF.

Editor Projectional editors do not use parsers; instead, they render, or
project, a program’s AST in a notation defined by the language developer.
MPS’ editor aspect defines this notation. An editor is made up of cells ar-
ranged in a hierarchy. For example, Fig. [I] shows the editor definition for an
if statement. At the top level, it consists of a list of cells ([- .. -]). Inside
the list, the first cell is a constant that projects the text ”if”. Between the con-
stants for opening and closing parens, we embed the condition child using the
%child’% notation. The remaining parts of the if statement are optional; the
optional cell handles this aspects. The elseIfs and elsePart children, just
like the condition expression, come with their own editor definition which is
embedded into the containing editor when programs are projected.

<default> editor for concept IfStatement
node cell layout:
[- if (% condition %) % thenPart % (- % elselfs % /empty cell: <default> -)
~[- % elsePart % -] -]

Fig. 1 The editor definition for C’s if statement in MPS. In MPS, editors are composed of
cells. Cells can be constant (e.g., the if keyword or the parentheses), they can embed other
nodes (e.g., %hcondition%), or they can provide special editor interaction behavior (e.g., the
optional cell). More details are explained in the text.

MPS supports the definition of several editors for a single concept that can be
switched at runtime. In addition, editor definitions can contain logic to project
the same concepts in different ways, depending on context or user preference.

Type System Type systems are specified using declarative typing equations;
MPS processes them using a solver. Various different kinds of equations are
supported, the most important one is the type inference rule. It acts as type
inference, but also acts as a type checker if several equations expect different
types for the same AST nodes. Fig. [shows a rule that verifies that the
condition of an if statement is Boolean type.

MPS also supports checking rules; these are essentially Boolean expressions
that check some property of the AST and report errors if invalid code is de-
tected. For example, they may report an error if they detect a duplicate name
where unique names are required. The analyses performed by checking rules
can be arbitrarily complex. For example, errors found by a data flow analysis

Automated Testing of DSL Implementations 9

typeof (ifStatement .condition) :==: gBooleanType()3;

Fig. 2 A typing rule that verifies that the condition of an if statement is Boolean. Typing
rules are expressed as equations, where free variables are implicitly declared using typeof and
nodes, such as <BooleanType ()>, represent fixed values. MPS’ solver uses these equations
for checking and inferring types.

are also reported via a checking rule: in this case, the implementation of the
checking uses the data flow analyzer to perform the underlying analysis.

Scopes and Constraints Typing and checking rules inspect an AST and re-
port errors if invalid structures or types are found. In contrast, scopes and con-
straints prevent the user of a language from constructing invalid programs. Re-
member that in a projectional editor, users can only enter code that is proposed
through the code completion menu. The structure of a language determines the
concept that can be used in a child or reference link (e.g., the condition child
of an if statement requires an Expression, or the targetState reference of a
transition in a state machine requires a State). Scopes and constraints further
constrain the valid nodes, beyond the concept.

Scopes determine which nodes are valid targets for a reference; they are
written as arbitrary (procedural) Java code that returns a set of nodes, typi-
cally by traversing the AST and collecting/filtering valid targets. For example,
a scope would determine that only those states that are in the same state ma-
chine as the current transition are allowed as a transition target.

Constraints affect the tree structure. For example, they might express that,
even though an AssertStatement is a Statement and structurally (because
of polymorphism) can be used in all places where a Statement is expected,
they can actually only be used under a TestCase.

Transformations MPS supports two kinds of transformations. Like many
other tools it supports text generation from an AST. The DSL to achieve this
essentially lets developers add text to a buffer and helps with indentation.
However, most of MPS’ transformation work is done by mapping one AST to
another one; only at the very end are text generators used to output text files
for downstream compilation (using gce in the case of mbeddr, for example).

Fig.|3|shows an example of an AST-to-AST transformation from a language
extension that supports concurrent queues and C. It uses the concrete syntax of
the target language (C in this case) to define the target AST. Transformation
macros ($COPY_SRC$ or $[1) replace parts of that AST with parts of the input,
recursively.

Generators assume a correct input model. In particular, this means that the
assumptions made about correctness in the generator must be aligned with the
typing rules, checking rules and constraints expressed in the language. Non-
alignment is a source of errors that we discuss in this paper.

Generator Stack and Generation Plan Generation in MPS is achieved
through a sequence of generation steps which form the generation stack. Each
generator step transforms a higher-level model into lower-level one until the

10 Daniel Ratiu et al.

<TF { TF>
$COPY_SRC$ [int8 | __ val = @
boolean __ taken = false;
atomic <->$/q|/readWrite> {
if (!BCOPY_SRC$ q .isEmpty) {
__val = $COPY_SRC$ [q].take;
__ taken = true;
}
}
if (__ taken) {
$COPY_SRCL$ intB code;
}
}

Fig. 3 An example of a generator template that defines the translation to C of a language
extension that picks a value from a concurrent queue. The input is not shown, but the
screenshot illustrates how source nodes are copied into the output (COPY_SRC) for further
transformation, and how references are resolved using the -> macro. More details on the
transformation process are explained in the text.

target language is reached; then, a text generator creates the final output for
subsequent compilation.

Every language used in a particular model can contribute its specific gen-
erators to the generation stack. The (partial) ordering of generation steps in
the stack is statically defined before the generation starts based on pair-wise
priorities between different generators. The set of generation steps along with
partial ordering among them form the generation plan. Thus, using an addi-
tional language for a given model, the ordering of steps in the generation plan
changes and thereby bugs might be introduced.

3 MPS Native Support for Testing

In this section we discuss the facilities for language testing provided by MPS
out of the box. We cover structure and syntax, editors, the type system, as
well as the semantics as expressed through transformations.

3.1 Structure and Syntax

In a parser-based system, testing the structure and syntax essentially involves
checking if a string of text is parsable, and whether the correct AST is con-
structed. In addition, one may want to check that, if invalid text is parsed,
meaningful error messages are reported and/or the parser can recover and
continue parsing the text following the error. These kinds of tests are neces-
sary because, in a text editor, it is possible to enter invalid text in the first
place; parser-based LWBs such as Spoofax directly support such tests [13]. In
a projectional editor like MPS, entering code that is structurally invalid at a
given location is impossible in the sense that the editor cannot bind the text
and construct the AST; the entered text is rendered with a red background

Automated Testing of DSL Implementations 11

as shown in Fig.] No AST is constructed. MPS does not support any way
to test this: since the code cannot be entered, one cannot even sensibly write
test cases[]

for (int8 i = @; i < 18

int8 add(int8 x, int8 y) {
struct
return x + y;

}

Fig. 4 Trying to enter code in a context where it is not allowed leads to unbound (red)
code. Here we show the attempt at entering a for statement outside a function and a struct
inside a function, where both of them are illegal, respectively.

Note that, because one cannot write code before the language structure and
syntax are implemented, MPS does not support test-first development for
language syntax. However, it supports test-driven development, where, for
every piece of language syntax one defines, one can immediately write a test
case. For other kinds of tests (type checks, semantics), a test-first approach is
feasible and has been used occasionally by the mbeddr team.

3.2 Testing Editors

MPS also supports writing editor tests in order to test whether editor actions
(right transformations, deletions or intentions) work correctly. They rely on
entering a initial program, a script to describe a user’s changes to the initial
program using simulated interactions with the IDE (press UpArrow, type
"int8", press CtrlSpace), and an expected resulting program. When run-
ning such tests, MPS starts with the initial structure, executes the scripted
user actions on that initial structure, and then validates whether the resulting
structure corresponds to the resulting program specified in the test case. In
Figure [5| we illustrate an example of testing the transformation of the else
part of an if statement into an else if.

3.3 Validating the Structure

In addition to testing the technical aspects of the language structure and
editors, one also has to verify whether the language is able to express all
relevant programs from the domain. In general, there is no automated way of

4 In principle, users could open the files in which MPS stores its models and modify the
XML directly, potentially leading to invalid models. However, such low-level modifications
are possible in many tools (UML tools, Simulink, MS Word) and we classify those more as
sabotage and not error prevention. This is why we do not discuss this possibility any further
and assume that users will modify their models exclusively with the IDE.

12 Daniel Ratiu et al.

Editor test case If statement convert to_else if
description: no description
before: if (trme) { } <cell else { }>
result: if (trme) { } else if (<condition>) { }
code:

type " 1f"

Fig. 5 Example of editor tests — we test that the else part of an if statement can be
transformed into an else if. The cell annotations defines where the cursor is located, i.e.,
where the text typed by the user (7 if”) will go.

doing this — the language developer has to collaborate with domain experts to
try and write a set of example programs that are agreed to cover the domain.

However, if a language is implemented for which a body of programs exist,
these programs can be exploited. For the core C part of mbeddr, this is the
case: all C programs ever written (with very few exceptions, detailed in [32])
should be valid mbeddr C programs.

We have automated this validation process using the mbeddr importer (see
the Is in Table , a tool that parses existing, textual C code and converts it
to mbeddr C code. Several open source code bases have been imported. By
making sure those could be imported fully, we tested both the completeness of
the language structure (all imported code must be representable in terms of
the AST) and the importer (a failing import hints at a bug in the importer).

3.4 Testing the Type System

MPS supports the calculation of types for program nodes through a DSL
for type system implementation. It supports type checking, type relationships
such as supertypes as well as type inference. Depending on the language, type-
system rules can be very complex. Native MPS tests can be used to check the
proper calculation of types on certain nodes. In Figure [6] we illustrate an
example of testing type system rules for an integer constant and of a basic
logical operation.

Test case PrimitiveTypesTest
nodes

()
void primitiveTypesCheck() {
<check 128has type (nint8 const wvolatile || intlée const wolatile)>:

<check 1 <« 2Zhas type boolean const>;

Fig. 6 An example of testing the calculation of types: the tester writes example code (here:
a function with numbers in it) and then adds assertions that check the types (the check
. has type ... annotations.).

Automated Testing of DSL Implementations 13

Test case StatemachineConstraints
nodes
[statemachine SM1 initial = s1 { 1

in event el()

<check in event el() has error -
in event =2 ()

state =1 {

<check state s1 { } ‘has error
state s2 {

Fig. 7 Example for testing context sensitive constraints: the names of events and of states
of a statemachine must be unique. Similar to the type tests in Fig. @, the tester writes
example code and then embeds annotations that check for the presence of errors on the
annotated nodes.

Checking for Error Annotations This kind of test verifies whether MPS
detects non-structural programming errors correctly; in other words, they ver-
ify that the expected red squigglies appear on the nodes that have errors. An
example is testing the checking rule for uniqueness of event and state names
of a state machine is shown in Fig. [7] . When such a test case is executed
in MPS, nodes that have an error without having the green has error an-
notation will be flagged as a test failure. Conversely, nodes that have a has
error annotation but do not actually have an error attached will also count
as a failure. Note that this approach can also be used to check typing rules,
because a failing typing rule also leads to an error annotation in the code.

Program Inspection The test cases used for testing for error annotations
can also be used to inspect other properties of a program: any program node
can be labelled, and test cases can query properties of labelled nodes and
compare them to some expected value. This has two major use cases, which
we discuss below.

The first use case tests the construction of the AST based on what the
user types, especially when a tree structure is entered linearly. The primary
example for this are expressions. If the user enters 4 + 3 * 2, precedence
must be respected when constructing the AST: it must correspond to 4 + (3
* 2) and not to (4 + 3) * 2. Using a node test case, the tester writes the
program and then adds a test method that procedurally inspects the tree and
asserts over its structure. Fig. [§] shows an example.

The second use case is testing behavior methods associated with program
nodes. In a test case similar to the one shown in Fig. a user can call a
method on a labelled node and check if the returned values correspond to
some expected value. It is also possible to query for the type of a node and
inspect it; however, it is easier to use the declarative has type annotation
shown above.

14 Daniel Ratiu et al.

3.5 Testing Execution Semantics

We want to test that the results of the execution of an mbeddr program are as
expected by the developer. In mbeddr, since extensions define their semantics
by transformation to C, we test this by generating the mbeddr program to C
and then executing the C code. If semantics are implemented by an interpreter,
that interpreter can be called from a node test case, and asserting over the
resulting behavior as part of a test case similar to the one shown in Fig. [§]

Semantics testing requires the ability to express the expected behavior
(oracle) in the DSL programs. Thus, one of the first C extensions we developed
for mbeddr was the support for unit tests. As the right half of Fig. [0] shows,
mbeddr test cases are similar to void functions, but they support assert
statements. The number of failed assertions is counted, and the test case as
a whole fails if that count is non-zero. Test cases can be executed from the
console (or on a continuous integration server), or they can be run from within
the MPS IDE. We have developed specific language extensions to test specific
C extensions. The example in Fig. [0]shows the test statemachine statement
that can be used to concisely test the transition behavior of state machines:
each line is an assertion that checks that, after receiving the event specified
on the left side of the arrow, the state machine transitions to the state given
on the right.

Such extensions are not just useful for the language developers to test the
semantics; they are also useful for the end user to write tests for a particular
state machine. Language developers expect the state machine and the test
case to both be correct, thus testing whether the generators work correctly.
mbeddr end-users expect that the code generator is correct, testing whether
the state machine corresponds to the assertions expressed in the test case.

3.6 Testing Stability of Generators and Language Migrations

The manually written test suites of mbeddr contain several hundreds of models.
The generated code, once manually validated, can be used as an oracle for

Test case testSideTransformations

(|void f() {)
<expr 4 + 3 * 2>;
}

test methods
test testPrecedence {
assert expr.isInstance0Of(PlusExpression);
assert expr.left.isInstanceOf(NumberLiteral);
assert expr.right.isInstanceOf(MultiExpression);

}

Fig. 8 This test case asserts that the structure of linearly entered expression respects the
precedence specified for the + and * operators. It does so by peeking into the tree structure
explicitly.

Automated Testing of DSL Implementations 15

statemachine SM initial = 51 { exported testcase testState {
in event e() SM sm;
in event f() assert(@) sm.isInState(S1);
state S1 { one [] ->» S2 } test statemachine sm {
state S2 { one [] -> S3 } e 2 S2
state S3 { one [] -> 51 } f > s2

} e > 53

e =2 51
}}

Fig. 9 An example state machine plus a test cases that uses a state machine-specific C
extension to express the test for the state machine. Essentially, the tests contains a list of
event -> state pairs, asserting that after triggering the event, the machine transitions into
state.

further testing. We can generate C code out of these models, create a baseline
and compare newly generated code with this baseline. We use the baseline
both for automatic and semi-automatic testing:

1. Detecting the stability of generators can be done automatically by subse-
quent generation of code from models without performing any change.

2. Detecting changes in the generated code introduced by language refactor-
ings or migrations can be done automatically. Subsequent manual inspec-
tion is needed because some of these changes are not genuine errors (e.g.
change in naming convention of the generated entities).

Fig. shows an example of instability of the mbeddr code generator which
was automatically detected by using baselines of the generated artifacts. The
ordering of the treatment of events changed between different generations.

The advantage of this testing strategy is that it is generic both with re-
spect to the DSLs and to the target language of the generator; it could thus
easily be supported directly by a language workbench. Furthermore, the struc-
tural comparison of the generated code with a baseline can be used to support
manual code review of how changes in the generator affect the generated ar-
tifacts. This is especially important in the case when the target language is
not executable (purely structural, such as XML configuration files) and thus
no executable tests can be written. The downside is that considerable manual
review effort is needed since many of the identified changes are as intended
and thereby benign; they do not change the semantics.

4 Specialized Testing DSLs to Increase Automation

MPS is bootstrapped; it uses DSLs also for the development of DSLs them-
selves, and also supports extension of those languages. We exploited this for
extending the MPS BaseLanguage (MPS’ version of Java) in order to facilitate
definition of test oracles at domain level. Using DSLs for expressing the oracles,
as opposed to plain JUnit code, dramatically eases the definition, maintenance
and review of tests because the expected test results are expressed at domain

16 Daniel Ratiu et al.

level. In this section we describe testing for two such domains: 1) consistent
representation of counterexamples that result from the model checking of C
code (Section and 2) testing of a DSL-specific debugger (Section .

52: a ||52: -
S3:static void statemachine SM_ execute (statemachine S S3:static void statemachine SM_ execute (statemachine S
5414 S4:¢
55: switch (instance->_ currentState) 55: switch (instance->_ currentStace)
56: { 56: {
57: case _ SM start__ state: { S7: case _ SM start_ state: {
switch (event) 58: switch (event)
1 59: {
case _ SM el_ event: {
instance-> currentState = _ SM start_ sta
break;
case _ SM e2_ event: { §0: case _ SM e2_ event: {
instance->_ currentState = _ SM_running_ s 61: instance->_ currentState = _ SM_running_ s
break: 62: break;
3 63:)
3 64: case _ SM el event: {
break; =||[e5: instance-> currentState = _ SM start sta |—
3 ~ll[es: break: T
67:]
68: 3
69: break;
70: }
<[] » <« 1] »

Fig. 10 Example of generator instability of statemachines identified automatically by com-
paring the generated artefacts with a baseline.

statemachine SM initial = S1 { { enum inevents_t{e};

. . - enum states_t { S1, S2 };
in e\.fent e(int8 a) <no binding> typedef struct SM_data {
var ints v = 1 states_t _curState;

H int16_tv;
state S1 { one [a<v] ->S2} } SM_data_t;
state 52 { on e [a > v] -> S1 }

} : void init(SM_data_t *inst) {
inst->_curState =81;
exported void harness() { }mSt_>V_ K
SM sm; :
sm.init; ! void harness() {
harness { SM__data_t sm;

int8 myA; init(&sm); ...

m : execute(&sm, e, ...);

} - ! : assert((sm._curState == S2));
assert(sm.isInstate(S1)); :

} void execute(SM_data_t *inst,
inevents_t event, ...) {

switch (inst->_curState) {

H case S1:{

: switch (event) {

: case e_event: { ...

: inst->_curState = S2; ...

Fig. 11 High-level model representing a statemachine (left); the corresponding generated
C code consisting of several functions and complex data structures (right)

Automated Testing of DSL Implementations 17

5. call harness Idx Property Status Trace.| Time

6. sm={ : Assertions (1) FAIL (1) 1,295
._curState=/*enum*/S1, i 001 Assert:smishState(Sl) FAIL 20 129s
.v=0} :

8. Ca” |n|t E Filter: | |

9. sm._curState = /*enum*/S1

10. sm.v = 1 G Mark Results in Editor D Project cex.

11 . return |n|t e A A A e

12. myA=-64 H Idx|Raw ... Kind Value

17 .. call harness
18 .. state Sl

18 .. smv 0

20 .. initialize statemachine sm

22 .. state 51

23 ..smv 1

24 .. leave statemachine init sm

25 .. mvA -64

27 ..a -64
131 | |triggerevent _lsm->e |
38 .. state 52

40 .. leave trigaer event e
41 .. FAIL Assertion Viol...

17. a=-64

19. call execute

23. sm._curState = /[*enum*/S2
25. return execute

26. failure ASSERTION

Fig. 12 Model-checking C code. The example shows an assertion failure and a counterex-
ample (left); plus the lifted analysis result and counterexample (right).

4.1 Testing the Lifting of Counterexamples

mbeddr enables end-users to use advanced formal verification on their mod-
els. To enable this, mbeddr integrates the CBMC [5] model checker [23]. Our
approach to increasing the usability of formal verification uses domain specific
languages for property specification and environment definition. The verifica-
tion itself is performed on the generated C code. This leads to the problem
that the C-level results must be lifted back to the abstraction level of the
original DSLs. A CBMC-based verification in mbeddr consists of the following
steps:

1. mbeddr models are generated to C code and CBMC-specific macros,

2. CBMC is run on the generated code and produces a counterexample at C
level if the verification fails,

3. The results and counterexamples are lifted back to mbeddr and each lifted
step is associated with a node from the original input program.

In Fig. [[T}eft we show a simple state machine and a verification environment;
on the right hand side we show the generated C code. In Fig[T2}left we illustrate
the counterexample at C level as produced by CBMC, and on the right hand
side we show the IDE’s representation of the analyses results: the lower part
illustrates the lifted counterexample as displayed to the mbeddr user. A more
complete example in the context of safety-critical systems is described in [15].

Lifting the results back to the domain level is challenging since it requires
bridging the gap between the small-step semantics (at C-level) and the big-
step semantics at domain level. Furthermore, it depends on technical details of
MPS such as mapping the lines of the generated C code to the high-level AST

18 Daniel Ratiu et al.

nodes from which that code originates. This mapping is not always accurate
since a C-line can be mapped to several AST nodes. Furthermore, the mapping
itself is subject to change as the code generators evolve. Automated testing is
essential to ensure correct lifting.

During the early stages of mbeddr development we used plain Java and
JUnit for testing the lifting of counterexamples. After several months, we re-
alized that the Java-level test cases were hard to write and maintain. We then
decided to describe the desired shape of counterexamples, as seen by users, by
using a DSL as illustrated in Figure The counterexample expressed in the
DSL is subsequently translated into Java for integration with JUnit and the
MPS testing framework.

test testSM@Counterexample {
model m = model/test.analyses...counterexample.statemachines/;
CBMCLiftedResult res = checkAsserts(m, "SM@", "test").get(@);
counterexample test for res

81 | call -» Function test

02 | state -» State S1 H

83 | cnt.localvar -» LocalvariableDeclaration @
94 | initialize statemachine -» GenericDotExpression cnt

85 | state -> State S1

06 | cnt.localVar - 1

87 | leave statemachine init -» GenericDotExpression cnt

88 | arg -» ExpressionStatement 1

89 | trigger event -» GenericDotExpression cnt->e
10 | state -» State S2

11 | leave trigger event -» GenericDotExpression e

12 | arg -> ExpressionStatement 2

13 | trigger event -» GenericDotExpression cnt->e
14 | state -» State S1

15 | leave trigger event -» GenericDotExpression e

16 | FAIL -> Assert Assert Failed

; a

CBMCLiftedCounterexampleState currentState = res.getCex().getState(idx);

String kind = currentState.nodeKindAsString();

String value = currentState.nodeValueAsString();

SNode node = currentState.getNode();

Assert.assertEquals("Mismatch in node kind", "call", kind);

Assert.assertEquals("Mismatch in node value", "testCounterexample", value);

Assert.assertEquals("Mismatch in analyzed node", "Function",
SNodeOperations.getConceptDeclaration({node).getProperty(“name"));

Fig. 13 Example of counterexample DSL which consists of sixteen steps (top) and the
translation of the first step of the counterexample into Java (bottom).

The testing of counterexample lifting in mbeddr contains 78 high-level tests
with a total of 714 steps. Building this DSL early in the development of anal-
yses proved to be a very good investment over time. We had to fix several
times the counterexamples lifters and the tests in order to keep them aligned
with the evolution of the generators. Having the tests written with a DSL
drastically eased the maintenance process of the CBMC integration.

Automated Testing of DSL Implementations 19

4.2 Testing Debuggers

mbeddr comes with an extensible source-level debugger allowing language
users to debug their code on the abstraction level of the mbeddr languages,
hiding the details of the generated C code [T9[18].

Each mbeddr language contributes a debugger extension, built with a
framework/DSL that was developed during the development of mbeddr [I9].
These extensions provide application-specific debug actions (buttons or menu
items in the IDE) and views on the program state (additional windows in
the IDE). Debugging support is implemented specifically for each DSL by
lifting the call stack/program state from the base-level (C program) to the
source-level (mbeddr program and its extensions); stepping and breakpoints
are mapped in the other direction. Similar to counterexample lifting described
above, we facilitate this using DSLs.

The mbeddr debugger uses gdlﬂ to perform an actual debugging session
on the generated C code. It obtains the debug state from gdb and and uses
it to control the execution of the compiled C program. Language engineers
extend the mbeddr debugger to build debugging support for a C extension
by describing the mapping for language constructs from the C base language
to their language extensions (e.g., state machines). This mapping comprises
different aspects: 1) lifting the call stack by hiding stack frames that have no
representation on the source level and rendering the remaining ones with their
proper identifiers, 2) lifting watch variables by showing only those that have
a representation on the source level and lifting their values accordingly (e.g.,
lifting a C int value to an mbeddr boolean value), 3) translating breakpoints
from the source level to the C level and 4) customizing the stepping behavior
based on the semantics of the languages used in a program.

Due to the interplay between the different semantic levels (i.e. abstract
models on the one hand and C code on the other hand), these mappings
can become very complex. Ensuring the correctness of the debugging aspect
requires comprehensive and rigorous testing. In this section, we present our
approach to automate the testing of debuggers.

4.2.1 Example: Debugger Extension for the State Machines Language

In the following, we sketch the debugger extension for the state machines
language (Fig. E[) in order to illustrate the mbeddr debugger framework.

Breakpoints To stop the execution of certain high level DSL constructs (e.g.
when transitions are fired, when TestStatemachineStatement are entered),
we must support setting breakpoints at the DSL level.

Watches Language constructs with watch semantics are translated to C
variables. When suspending program execution, C variables with a source-level
representation are lifted to the source level and thus end up in the debugger

5 https://www.gnu.org/software/gdb/

https://www.gnu.org/software/gdb/

20 Daniel Ratiu et al.

UTI as watch variables (e.g. the current state of a state machine, the value of
internal variables of state machines).

Stepping Language constructs where program execution can suspend af-
ter performing a step over (e.g., Transition), step into (e.g., TestState-
machineStatement) require special treatment from the debugger framework.
For these language constructs, language engineers use a DSL to describe where
program execution will suspend to imitate the expected behavior of step into,
step over and step out.

Call Stack For language constructs that are callable (i.e., look like functions,
e.g., state machine), the mbeddr debugger shows stack frames in the source-
level call stack. Similarly to implementing stepping behavior, the debugger
framework provides a DSL that is used to describe how source-level stack
frames are constructed from the low-level C call stack.

4.2.2 Automating the Testing of Debuggers

In early versions of the mbeddr debugger framework, we had no possibility to
test the debugging behavior automatically. Language engineers had to manu-
ally test the debugging support by running the debugger on mbeddr programs,
manually verifying the assumptions about the expected debugging behavior.
Not having an automated testing approach was a serious problem, because
mbeddr languages evolve quickly and thus regularly break the mappings (see
Section that have been described with DSLs of the mbeddr debugger
framework. These mappings depended on the language structure and the im-
plementation of generators. Modifying either of the two usually caused the
mapping to become invalid, breaking the debugger. With more users adopting
mbeddr, automated testing of debuggers became necessary. Implementing such
tests in plain Java would be very complex and hard to maintain and validate.
We have thus developed DeTeL (Debugger Testing Language), a generic and
extensible DSL for testing interactive debuggers [17].

DeTeL should allow language engineers to test all debugger aspects intro-
duced earlier: call stack, program state, breakpoints and stepping. Automated
testing of the debugger should cover validation of the debugger state and of
debug control.

Changes in generators can modify the structure of the generated code and
the naming of identifiers and this way, e.g., invalidate the lifting of the pro-
gram state in the debugger. To be able to identify these problems, we need
a mechanism to validate call stacks, and for each of their stack frames the
identifier, program state and location where execution is suspended. In terms
of program state, we must be able to verify the identifiers of watch variables
and their respective values.

Changes in the code generator can also affect the stepping behavior — e.g.
changing the state machine generator to translate entry and exit actions to
separate functions instead of generating one function for a state machine
would require modifications in the implementation of step out as well. To

Automated Testing of DSL Implementations 21

be able to identify these problems, we need the ability to execute stepping
commands (in, over and out) and specify locations where to break.

4.2.8 Testing the State Machine Debugger Extension

Before we use DeTeL to write test cases for validating the debugging behavior
for the state machine language, we first take the example program from Fig. [9]
introduce a test-suite (testcollection) that gets reduced to a main function
and annotate this program in Fig. below with program markers. These
markers are subsequently used by debugger test cases for specification and
verification of code locations where program execution should suspend.

entrypoint testcollection main { statemachine SM initial = S1 {
tests: in event e() <no binding>
[testState;] in event f() <no binding>
state S1 {
exported testcase testState { lone [1 - S2]inS1
SM sm; }
assert(0) sm.isInState(S1); state S2 {
test statemachine sm {|stepIntoSM [one [1 ->S3]inS2
e > 52 }
f-»>S2 state S3 {
e > S3 lone [1 ->S1]inS3
e ~» S1 }
b }
}

Fig. 14 Test vectors for testing the debugger are mbeddr models annotated with informa-
tion about the expected behavior at runtime when the debugger is used on these models.

Stepping Into a State Machine For testing step into for state machines,
we first create a debugger test (Fig. SMTesting that will contain all de-
bugger test cases described in this section. SMTesting refers to the binary
UnitTestingBinary to be executed (compiled from the generated C code) and
instructs the debugger runtime to execute tests with the gdb.

Inside this debugger test, we create a debugger test case named step-
IntoStatemachine shown at the bottom of Fig. This test case first
suspends program execution at the program marker stepIntoSM (the test
statemachine statement), and then performs a single step into command be-
fore it compares the actual call stack against the call stack specified at the
bottom. With this specified call stack, we expect to suspend program execu-
tion inside the state machine at the program marker inS1 with no watch
variables being shown by the debugger.

22 Daniel Ratiu et al.

Debugger Test SMTesting tests binary: UnitTestingBinary
uses debugger: gdb

test case stepIntoStatemachine {
suspend at:
stepIntoSM
then perform:
step into 1 times
finally validate:
call stack {
2 SM: inS1, watches {}
1 testState
0 main

}

}

Fig. 15 DeTel test case for testing step into for the state machine from Fig.
This test case first suspends program execution at the test statemachine statement
(stepIntoSM), next performs a single step into command and validates afterwards that
the source-level call stack contains three stack frames.

Stepping within a State Machine The second testing scenario veri-
fies that performing a step into, over or out command on a fired transition
(inS3) of a state machine suspends program execution back on the trigger,
which is in our example a test statemachine statement (stepIntoSM). To
test this particular scenario, we create in Fig. [I6] three different test cases
that suspend execution location at the program marker inS3, perform a sin-
gle stepping command (step into, step over and step out) and to then verify
that program execution has suspended inside testState (a testcase) at the
program marker stepIntoSM and a single watch variable sm is present rep-
resenting the local variable declaration sm of type SM. Remember, since the
transition at inS3 has no guard condition and no body, performing a step into
or a step over on this transition has the same effect as performing a step out.

The outcome of executed DeTeL test cases are visualized in a dedicated
UT showing the test result (success or fail) and the process output.

4.2.4 Testing the mbeddr Debugger

For the purpose of testing the mbeddr source-level debugger, we have used the
testing DSL presented in this section to create a test suite targeting Windows
and Linux environments, and comprising 496 program markers, 60 debugger
tests and 308 debugger test cases. This test suite validates debugging behavior
for the mbeddr C implementation and for 11 language extensions including
components, state machines anad physical units.

5 Test Synthesis
To increase testing productivity, and hence to increase the quality of lan-

guage implementations, we must increase automation. In particular, we rely
on automatically synthesizing mbeddr models and then using various oracles

Automated Testing of DSL Implementations 23

test case stepOverFiredTransition { test case stepOutOfFiredTransition {
suspend at: suspend at:
inS1 inS1
then perform: then perform:
step over 1 times step out 1 times
finally validate: finally validate:
call stack { call stack {
1 testState: stepIntoSM, watches {sm} 1 testState: stepIntoSM, watches {sm}
0 main 0 main
} }
} }
test case stepIntoFiredTransition {
suspend at:
inS1

then perform:
step into 1 times
finally validate:
call stack {
1 testState: stepIntoSM, watches {sm}
0 main

}

Fig. 16 Three different DeTel. test cases that validate the debugging behavior for per-
forming step into, over and out commands on the transition in state 81 (inS1). The test
cases perform the respective stepping command from the same program location (inS1)
and validate afterwards that program execution has suspended inside the caller testcase,
which contains the next to be executed statement, by verifying the structure of the actual
call stack.

for checking the robustness and correctness of the languages implementation.
Our approach relies on the following steps; we explain them in detail in the
following subsections.

1. Automatically synthesize input models that are correct in terms of context
insensitive syntax (i.e., comply with the abstract syntax of the language).

2. Run the context-sensitive constraints and type system checks against these
models. Models where no errors are reported are considered valid mbeddr
models and may be processed further; those with errors are deemed cor-
rectly recognized as invalid and discarded. Runtime errors in the checkers
reveal robustness bugs in their respective implementations.

3. Generate C code from the non-discarded models. If the generator throws
exceptions while processing a valid input model, we have found a bug in
the generator.

4. Compile the generated C code. If the compiler produces an error, we have
also found a bug in the generator: it has produced non-compilable C code
for a valid model.

5. If code compiles successfully, we then evaluate a suite of assertions that
check the functional requirements on the generator. These assertions de-
scribe the relation between the structure of the input models and the gen-
erators output of the generator and are defined by the language engineers
in addition to the generators.

24 Daniel Ratiu et al.

5.1 Automatic Model Synthesis

We generate test vectors (i.e. mbeddr models) by using concepts from the
languages under test. If the language under test can be composed with other
languages (a crucial feature of MPS and language engineering in general), we
test them together by generating models which cover the space of possible
compositions as defined in a model synthesis configuration. For big languages,
generating non-trivial models like those typically written by a programmer
requires dealing with an explosion in complexity because the combinatorial
space of composing the language constructs is large. To address this problem
we have developed a mutation algorithm which uses as input existing, manually
written models and replaces model elements with new ones according to a user-
defined strategy.

Generation Configuration To specify the parameters for a generation
session, we must define a generation configuration. Fig. [I7] shows an example
of a configuration for generating models. Given a set of models as starting
points, the algorithm attempts for a certain number of tries to mutate
these models. To perform a model mutation, it randomly chooses a node from
this model of a certain type (seed chooser). It replaces this node with another
subtree that is synthesized up to a certain depth by using meta-classes from the
set of languages of interest. The language concepts are chosen as specified
by the concept chooser configuration.

starting point: random from module-reference/test.ex.ext.statemachine/
maximal number of tries: 10000
seed chooser: concepts: IStatemachineContents, IStateContents, Expression
interesting languages:
com.mbeddr.core. statemachines, com.mbeddr.core.expressions,
com.mbeddr.core.modules, com.mbeddr.core.statements
concept chooser: random concept chooser
depth: 2 .. 5

Fig. 17 Example of a testing configuration which takes existing models from the man-
ually written tests for the statemachines, and tries 10000 times to mutate nodes of type
IStatemachineContents, IStateContents or Expression using randomly chosen concepts
from the given set of interesting languages. Only mutations with depth between 2 and 5 are
considered as valid and saved.

Choosing the seed There are two extreme possibilities to choose the start-
ing point in the generation. One extreme would be to start from an empty
model and let the model synthesis engine grow models with increasing depth
and complexity. Another extreme would be to use a large set of existing, man-
ually written test cases (which presumably cover the languages properly) and
perform ”small” mutations on these tests — the second strategy resembles fuzzy
testing. In the cases when the generator generates deep models (as opposed to
”shallow” fuzzying of existing models), a significant fraction of the synthesized
models are "uncommon” due to the randomness of the deep synthesis and thus

Automated Testing of DSL Implementations 25

implausible to be built by end users. Light mutation of existing models results
in models closer to what a language user would build and thereby eventually
find more common bugs. Furthermore, the manually written test models have
a good coverage of major DSLs constructs and their combinations. Slight mod-
ifications of these models by fuzzying is similar to increasing the coverage in
a incremental manner.

After experimenting with different strategies for choosing seeds, we came to
the conclusion that fuzzing is the most efficient. Growing from scratch models
of relevant size proved to be very difficult — the synthesis algorithm often
got lost in building and discarding huge amount of models which are invalid.
Starting from a certain model to be fuzzed requires that we specify the fuzzing
strategy and where the mutation starts from. A naive way would be to choose
randomly a node and start mutating it. This strategy does not work because
the number of models candidate to be fuzzed can itself be very big. Each of
these models has several hundreds of nodes from which the mutation could
plausibly start. To further guide the testing process (e.g. for a test campaign
for state machines) we must restrict the strategy for choosing seeds (e.g., by
requiring that the seed is a node which belongs to the state machines language).

Choosing the replacement concept Once the node to replace is chosen,
we need to ”grow” other nodes which can replace it. We can define the strategy
to grow these nodes with the help of a concept chooser. The naive way to
deal with this is to chose randomly concepts from the set of enabled languages
and which can be used to replace the node. We can however guide the concepts
selection process for example by specifying different probabilities for choosing
the concepts.

Performance concerns We measure performance of the models synthesis
along two directions: how good do the synthesized models cover the space of
the input languages, and how fast can we generate models. The speed with
which new valid models are obtained depends on the chosen minimal depth,
on the starting point definition and on the chosen concepts. For measuring the
coverage of the generated tests we use the techniques described in Section [6]

Experience mbeddr’s implementation of C has 317 language concepts, 116
concept interfaces, as well as 170 relations between them. mbeddr has many
extensions which can themselves be quite big — e.g. the state machine language
has 41 concepts, 7 interfaces, and 38 relations. All these extensions can be
composed with C and with each other — e.g. state machines can be declared in
C modules, C expressions can be used in transition guards, and C types can be
used as types for event arguments; furthermore, state machines can be directly
used as implementation of mbeddr-components (another extension). We use
the models that have been manually written for unit tests of the languages as
starting points for fuzzing. This way, no additional effort has to be spent on
writing the starting point models.

26 Daniel Ratiu et al.

5.2 Robustness of the Front-End

After a model is synthesized, we exercise the functionality of the language
front-end (e.g., editor, constraints, type system). We expect that each model
can be opened in the editor without any runtime error due to faults in the
implementation of the editors. We also expect that the constraints and type
system checks are performed successfully, in the sense that no runtime er-
rors occur as a consequence of a faulty implementation of the checks them-
selves. Otherwise we have identified a potential robustness defect in the editor,
type system rules or constraints. The code causing these runtime errors must
be manually inspected because sometimes a particular model cannot be con-
structed by the user as a consequence of restrictions in the editor, so the error
can never occur with end users. The mutation algorithm does not consider the
editor restrictions when models are created.

Experience Before starting with automatic testing, we had a high confi-
dence in the front-end because front-end errors are very visible while using
mbeddr; we assumed that most had been found and reported. To our surprise,
the automated tests quickly identified dozens of errors for the mbeddr core lan-
guages. This is because the random model synthesizer produces models that
a typical tester may not think of but are still plausible to be encountered in
practice.

In Fig. [18 we illustrate an example of a major robustness defect of editors.
In the upper part of the figure is the starting model which is displayed prop-
erly. However, if component aName 832184 extends the component A (leading
to cyclic extension, which is not allowed), then the editor crashes with the
result in the bottom part of the figure. The cause of this editor crash is a
stack-overflow exception. In this case we have identified two bugs: 1) a miss-
ing check that no circular extensions among components are allowed, and 2)

o component_editor_bug constraints

model com.mbeddt.testing.sample.ts.examples imports

exported component A extends aName 83214 { ... }

exported component aName 83214 extends nothing { ... }
o component_editor_bug constraints
model com.mbeddr.lantest.testdata.res imports
!'exception!: [contents] AtomicComponent "A"[1

!exception!: [contents] AtomicComponent "aName 8321

Fig. 18 Example of the editor working properly (top), and how the same editor is displayed
when a runtime exception is thrown (bottom). The model causing the runtime exception is
obtained through a small mutation of the original model (top) by creating a cyclic extension.

Automated Testing of DSL Implementations 27

the editor bug itself (i.e. editors crash in presence of cyclic extensions among
components). Other similar errors with cyclic references have been found this
way, for example, among typedefs.

In Fig. [[9}left we illustrate an example of a front-end error in which the
synthesizer replaced the reference to variable sm of type Statemachine with a
reference to a variable of type integer, causing a ClassCastException in the
code that scopes the right side of the dot expression. Fig. [[9}right shows the
original front-end code as well as the fix.

5.3 Robustness of Generators

When implementing generators, developers make assumptions about the space
of possible input models. These assumptions should be codified into constraints
or type checks, to prevent invalid models from entering the generator. If this
is not done, the generator may throw exceptions during its execution. As
explained earlier, we consider a generator robust if for each input model which
is free of (reported) errors, the generator does not throw exceptions during its
execution. If exceptions are thrown, either the generator has a bug (because
it fails to process a valid model correctly) or the constraints in the language
are insufficient (failing to reject invalid models).

intl6 anIntvar, i link {event}

void testl() { i referent set handler:<none>
SM cnt; i scope:
cnt.init; : (exists, referenceNode, contextNode, enclosingNodet
cnt.trigger(evt); é node<GenericDotExpression> gde;

} : gde = enclosingNode : GenericDotExpression;

H node<> tpe = gde.expression.type;
.................................... return tpe : StatemachineType.machine.inEvents();

} ¢

intlé anIntvar; i link {event}

void testi() { : referent set handler:<none>
sM cnt; i scope:
cnt.init; H (exists, referenceNode, contextNode, enclosinghode,
anIntvar.trigger(evt) i node<GenericDotExpression> gde;

} : gde = enclosingNode : GenericDotExpression;

H node<> tpe = gde.expression.type;

: ifInstanceOf (tpe is StatemachineType smtpe) {
return smtpe.machine.inEvents();

i }

return new nlist<InEvent>;

}

Fig. 19 Example of defects in the implementation of the front-end. On the left-top side we
present the mbeddr model which does not show any error due to a robustness issue of the
checker. On the bottom-left we show the mbeddr model with functioning constraints. On
the top-right we present the initial implementation (which caused the exception). On the
bottom-right we present the fixed implementation (changes are highlighted in red).

28 Daniel Ratiu et al.

Experience In our experience with mbeddr, surprisingly many problems
result from assumptions of the generators not properly reflected in constraints
or typing rules. For example, in the case of the statemachines language (con-
taining ca. 40 constructs) after synthesizing only a few hundred models, we
identified about a dozen robustness issues with their generator. Most of the
issues originate from the insufficient constraints in the front-end of mbeddr
which do not reflect all the assumptions made by the generators.

5.4 Structural Correctness of Generated Code

It is possible that the output code (e.g. C) is not meaningful because it does
not comply with the target language definition. In this case, the generated code
does not compile. Again, this can be caused either by too weak constraints on
the input model, or by generic errors in the generator. The oracle in this case
is a checker of the well-formedness of the target models. In practice, we try to
compile the code with gcc.

Experience mbeddr assumes that for any valid (error-free) mbeddr model,
the generated C code compiles. Due to the complexity of the C language, we
have found dozens of valid mbeddr models that result in C code that does not
compile. By manually inspecting these errors, we found that over 90% of these
errors originate from a lack of checking in the font-end. Inspection revealed
that often, checks existed in the code but they were not strong enough to cover
all possibilities.

In Fig. 20 we present several examples of models which mbeddr considered
valid, but which lead to C code which does not compile. One of them is a
function with a single variadic argument — this is invalid in C but due to the
lack of constraints, mbeddr mistakenly considered this to be valid.

exported void singleVariadicArgument(...) {
exported void variadicArgumentOnFirstPosition(..., int8 a) {
exported typedef point as my_point;
struct point {
int8 x;
int8 y:

Fig. 20 Examples when insufficient constraints in mbeddr lead to C code which does not
compile. On the top of this figure are functions with one argument of variadic type, in the
middle variadic argument on the first position, and on the bottom an exported typedef
which is generated in a .h file referencing a structure declared only in .c file.

Automated Testing of DSL Implementations 29

5.5 Semantic Correctness of the Generator

To check the semantic correctness of the generator (beyond the structural
correctness discussed above) we must check the relation between the input
models and the target models. Target models are the lowest level models in
the generation stack, they closely resemble the subsequently generated textual
C code.

Assertions We allow language developers to define assertions about the
relation between the input model at DSL level and target model that cap-
ture the intent of a generator. These assertions represent the understanding
of how the DSL should be translated into the target language and are thus a
partial specification of the semantics. In Figure 2I] we present a set of asser-
tions which check that for each state machine the corresponding C program
parts are generated. First, we check that for each input event we generate
an enumeration literal; second, we check that a struct declaration which
contains internal data is generated, and that for each state machine variable
declaration a member is generated into this struct; third, we check that for
each state we generate an enumeration literal; and last but not least we
check that the execute and initialize functions are generated.

Experience Our experience so far with the effectiveness of these semantic
checks shows that only very few additional bugs can be identified. We have
three hypotheses about why this is the case. First, we already have a significant
number of executable unit tests (like the one presented in Fig. E[) which make
sure that the generators work correctly. Second, our assertions are mostly
coarse grained; detailed errors for corner-cases would not be caught with these
coarse-grained constraints. Third, essentially the same foreach statements
are used in the generator templates themselves which are also written in a
declarative manner, so it is unlikely that we would find additional errors there.
The bugs we did find with this mechanism are due to the more complex,
procedural aspects of the generator (e.g. flattening of composite states). There,
the declarative properties are in fact much simpler (and hence, less likely to
contain errors) than the algorithmic implementation in the generators.

6 Measuring the Quality of Tests

A common criterion for measuring test quality is the structural code coverage
of the to-be-tested system. In the case of DSLs development, the system under
test is composed of code written in the MPS DSLs for the various language
aspects (abstract syntax, editors, type-system rules, constraints, generators)
as well as the domain specific that go along with the DSLs. To measure the
coverage with respect to all these aspects, wee follow a staged approach:

1. concept coverage: ensure that all abstract syntax elements of the lan-
guage(s) of interest are instantiated in tests;

30 Daniel Ratiu et al.

foreach Statemachine : sm from: original.descendants<concept = Statemachine> {

exists EnumDeclaration : ed from: outputModel.nodes (EnumDeclaration)

ed.name.equals (sm.name + "__ inevents") : "no enum for input events found" {
foreach InEvent : ie from: sm.inEvents() {
exists Enumliteral : el from: ed.litersls
el.name.equals (sm.name + "_" + ie.name + "__event")
"input event " + ie.name + " does not have a corresponding enum literal"
}

}

exists StructDeclaration : sd from: outputModel.nodes (StructDeclaration)

sd.name.equals (sm.name + " data") : "no structure for internal state" {
exists Member : m from: sd.members
m.name.equals ("_currentState") : "no '_ currentState' member found"
foreach StatemachineVariableDeclaration : svd from: sm.localVariables() {
exists Member : m from: sd.members
m.name.equals (svd.name) : "variable " 4 svd.name + " does not have a corresponding member"
}
}
exists EnumDeclaration : ed from: outputModel.nodes (EnumDeclaration)
ed.name.equals (sm.name + " states") : "no enum declaration found" {
foreach Abstract3tate : s from: nonCompositeStates(sm) {
exists Enumliteral : el from: ed.literals
el.name.equals (literalName (sm, s)) : "no enum literal found for state " 4+ s.name
}

}

exists Function : execFun from: outputModel.nodes (Function)
execFun.name.equals (sm.name + " execute") : "execute function does not exist" {

foreach AbstractState : 8 from: nonCompositeStates(sm) {
exists SwitchCase : swCase from: execFun.descendants<concept = SwitchCase>

gwCase.expression : EnumLiteralRef.literal.name.equals(s.name) : "no switch-case found"
}
}
exists Function : initFun from: outputModel.nodes (Function)
initFun.name.equals (sm.name + "__init") : "init function not found"

}

Fig. 21 Example of a DSL which describes assertions about relations between input and
output models.

2. editors coverage: ensure that the entire logic for rendering the concrete
syntax (projection) is covered by the tests;

3. constraints: make sure that all constraints, checking and type-system rules
from the language definition are applied in tests;

4. generators: make sure that all generators and transformations rules of these
generators are exercised by the tests;

5. tooling: check that tooling such as debuggers or various analyzers work
properly with the DSLs for which they are enabled

Measuring the concept coverage is easy to achieve in MPS by automatically
inspecting the models and checking which concepts are instantiated. For all
other aspects we measure the coverage of the Java codd?| which is ultimately
generated from all the code expressed in MPS’ language implementation DSLs.
In Fig. [22| we show an assessment that reports all concepts from the statema-
chines DSL that are not instantiated in the model that contains the tests for

6 We use EMMA for measuring coverage http://emma.sourceforge.net/

http://emma.sourceforge.net/

Automated Testing of DSL Implementations 31

the lifting of counterexamples; the lifting of counterexamples is not tested at
all for the listed concepts.

assessment: coverage of statemachine concepts_in counterexample tests
query: concepts not instantiated in scope
langunages of interest: com.mbeddr.ext.statemachines
search scope: model/test.analyses.counterexample.statemachines/

SmSectStateTarget
SmHasTxFiredTarget
CommentedStateContent
EmptyStateContents
CommentedStatemachineContent
StatemachineTestStep
StatemachineTestStatement

Fig. 22 Example of the assessment of the coverage of statemachine concepts in the tests for
counterexamples lifting. Below the line are the results of running the assessment, namely,
the concepts from the statemachines language which are not instantiated at all in the set of
tests for counterexamples lifting for statemachines.

Java-level code coverage measurement results are lifted to MPS and presented
to language engineers in a convenient manner. In Fig. 23] we present an example
of coverage measurement results; the top part of the figure is the coverage
information at Java level (as offered natively by EMMA), on the bottom part
the figure illustrates the same coverage result lifted to the level of MPS — in
this case, transformation rules.

public static boolean baseMappingRule Condition 6118219496725747696 (f
return SNodeOperations.isInstanceOf (SLinkOperations.getTarget (_cont

ﬁubli: static boolean baseMappingRule Condition 1582169519237969194 (f
return (SNodeOperations.getNodeAncestor (_context.getNode (), MetalAds

public static boolean baseMappingRule Condition 6118219436710531618 (f

return SNodeOperations.isInstanceOf (SLinkOperations.getTarget (_cont

concept TriggerSelfStatement | --> content node:

inheritors false 1I...

condition <always:>

concept TriggerSelfStatement --> || content node:
inheritors false

condition I (genContext, node, operationContext)->boolean {...}

concept GenericDotExpression = content node:
inheritors false I
condition I (genContext, node, operationContext)->boolean {...}

Fig. 23 EMMA based coverage for the statemachines generator: the upper part of the figure
illustrates the coverage information at Java level in HTML; the bottom part of the figure
illustrates the coverage information lifted at the level of MPS.

Experience We have started measuring the test coverage relatively late in
the development of mbeddr because MPS does not offer support for measur-

32 Daniel Ratiu et al.

ing coverage of the DSL implementation out-of-the-box — we had to retrofit
this functionality ourselves by using EMMA and lifting the raw Java coverage
results in MPS. We incrementally enriched the test suites such that better
coverage is achieved. For example, the line coverage for the statemachine gen-
erator is currently 95%, in the case of other DSLs the generators coverage is
over 75‘7<ﬂ In the case of the checking and typesystem rules the current lines
coverage is around 50% for the statemachines language and between 30% and
80% for the other DSLs.

We have also noticed that the concepts coverage is very coarse-grained —
i.e., it is "easy” to construct mbeddr models which instantiate at least once
all concepts of a DSL, while not resulting in meaningful coverage for the other
DSL aspects.

7 Discussion

In this section we summarize the lessons learned so far, discuss why and how
things could have been done differently, and point out challenges and open
points that need to be addressed in the future in order to better support
efficient testing of DSLs implementations.

7.1 Lessons learned

DSLs for Testing The native support of MPS for testing different language
definition aspects (e.g. type system, checking rules) helps increase testing ef-
ficiency. We have built on this positive experience by developing additional
DSLs for the other aspects of MPS-based DSL implementation, such as coun-
terexamples and debuggers. These investments paid off during the evolution
of mbeddr since they drastically simplified the job of writing unit tests and
keeping them up-to-date with the evolving languages.

Cost-Benefit of Different Generator Testing Strategies Executable
tests proved to be very effective to test the correct implementation of gener-
ators. As programs written in the DSL, they are relatively easy to write and
are similar to the code normally written by language users. Once the infras-
tructure is implemented, writing executable tests is easy to do and represents
the best ratio of error detection vs. effort. On the other hand, assertions on
the relation between input and output models are relatively difficult to define
for meaningfully non-trivial relations, repeat the logic of the generator im-
plementation and are thus less likely to find errors. In addition to those two
approaches, a third strategy compares the generated code after each change

7 Note: due to the way in which MPS generates Java code from the DSLs used to im-
plement different language definition aspects (e.g. default constructors, catch-blocks) and
how EMMA measures the coverage, it is often technically impossible to achieve 100% line
coverage.

Automated Testing of DSL Implementations 33

of a DSL with a previously recorded baseline, with subsequent manual review
of differences to assess their semantic impact. The advantage of this method
is that it is completely generic and thus independent of both the DSL and the
generation target language, and it works even if the DSLs are not executable.
The disadvantage is the high manual review effort involved when generator
changes are benign.

Fuzzy Testing Fuzzy testing proved to be a very effective means to syn-
thesize valid models (see the discussion on ”Efficiency of Models Synthesis”
below) and to discover robustness defects. Approximately 10% of the randomly
generated models reveal a defect of some kind, and about half of these defects
are genuine bugs, relevant to the language users which should be addressed.
Reviewing defects and classifying them according to their severity proved to
be tedious, especially when a single defect is reflected slightly differently in
several test instances.

Measuring the Coverage of Tests We introduced systematic measure-
ment of the test coverage relatively late in the development of mbeddr. We
were surprised that despite the fact that we already had many tests, we could
still find parts of the code uncovered. Furthermore, by systematically inves-
tigating the uncovered parts we realized that some of the uncovered code is
actually dead code (cannot be reached at all). Lifting the EMMA based cov-
erage information from the Java level to the level of MPS dramatically helped
with reviewing the coverage information (just like any other lifting).

7.2 Variations

DSL Development vs. Compiler Construction The ability to test lan-
guages efficiently, and the resulting need for automation, is especially promi-
nent for DSLs. In general purpose languages, relatively few but complex lan-
guages are developed, with relatively few changes over time; they are used by
a large user community. A high test effort can be justified. DSLs are usually
developed for a relatively smaller user group, and languages typically evolve
more rapidly. The resulting economic constraints do not allow spending a lot
of effort on testing, which is why efficient, automated testing is critical.

Efficiency of Model Synthesis A major problem with automatic testing is
the difficulty of generating ”sensible” random models which are correct (pass
through all type-checking rules) and which reveal bugs. We have noticed that
the effectiveness in obtaining valid mutants and in discovering bugs depends
strongly on the chosen seed model and on the allowed mutation depth. The
highest effectiveness was reached when we looked for specific types of bugs
(e.g., bugs with the chosen type of the argument of events of state machines)
and when we allowed only ”shallow” mutations (i.e. fuzzing). This assumes
that the set of manually written seeds have a good coverage of the language.
In the cases when we allowed ”deep” mutations, the algorithm is much slower

34 Daniel Ratiu et al.

(many mutants are discarded as being incorrect w.r.t. the checks of mbeddr)
and the rate of identified bugs is smaller. Nonetheless, over all we consider
model fuzzing useful and efficient for finding defects.

7.3 Challenges

Specifying the Semantics of DSLs Testing the implementation of a DSL
assumes that the semantics of the DSL are well-defined. One of the biggest
challenges in this context we faced is the lack of pragmatic means and method-
ologies that support the formal specification of DSL semantics. The assertions
in the test cases represent only small parts of a full semantic specification. As
a consequence, the single point of truth about the semantics is implied by the
translators of the DSL to the target language. Having the semantics specified
only implicitly by generators makes it very difficult (or even impossible) to en-
sure its completeness or its consistency between different tools which interpret
the model.

Testing Modular and Composable Languages Given a set of existing
languages L = {l1,...,l,}, our goal is to test how a new language !’ that
extends one or more of languages from L integrates with the existing languages
from L. To this end, we must test both the constructs of I’ in isolation, as
well as the integration with the languages from L. Modular extension and
integration of languages is easily possible in MPS, but tools and practices for
testing in such scenarios are still in an early stage. Testing combinations of
uses of different languages in the same model is very expensive.

Testing in an Open World In MPS, languages can be extended without the
need to modify the original languages. When a DSL is designed, it is impossible
to anticipate all of its future extensions. MPS thus assumes an ”open world”
view of languages — unless an extension or composition is explicitly forbidden,
it is by default allowed. In this context, it is a challenge to plan in advance a set
of tests when a language is extended by other languages. A step forward would
be to use a design-by-contract methodology in DSLs development and thereby
make it possible for each DSL to specify assumptions from the surrounding
DSLs and the offered guarantees.

Testing Domain Specific Tooling DSLs are enablers for a wide range
of domain specific tools such as analyzers, debuggers or interpreters. Each of
these tools have an (implicit) interpretation of the semantics of the devel-
oped language. This requires ensuring that the different tools are semantically
aligned with each other, and with the code generators. This heterogeneity
makes testing the alignment of the interpretation of the languages’ semantics
challenging. The absence of pragmatic means to explicitly define the DSLs
semantics makes the testing of alignment between different tools ad-hoc and
in general unsatisfactory.

Automated Testing of DSL Implementations 35

Increasing the Degree of Testing Automation This paper presents our
struggle with automating the testing of a range of language implementation
aspects of mbeddr. There are cases in which the automation can be further
increased, such as testing the generators, testing the tool UI and construction
of models with a UI testing tool. The biggest challenge with testing the gener-
ators is to find better oracles which capture the semantics of the generator. A
possibility would be to have an executable semantics of the language defined
in an independent manner from the generator (e.g. an interpreter) and then
compare the semantics of the generated code with the semantics of the high-
level models. We have used this approach with other (simpler) languages in
the medical domain; however, for C, developing an interpreter that is faithful
to the semantics in the details was decided to be too much work.

Economics of Testing in DSLs Development Language workbenches
like MPS enable language engineers to develop languages in a very efficient
manner. Testing these languages is however not supported to the same extent.
While in classical software development projects the testing accounts for ca.
40% of the total efforts [12], due to the efficiency of language development
with MPS and lack of equal support for testing, that ratio is much higher.
Further research is needed to improve the effectiveness of testing and to assess
empirically the effectiveness of the methods developed in this paper in the
context of other large-scale DSL projects.

Formal Verification Testing has well known limitations with respect to
the covered input space. A further step for increasing the confidence in the
DSLs implementation would be the use of formal verification techniques. In
the case of mbeddr, a stack of extensions over the C language, this would
imply a huge effort for specifying the semantics of the languages (including C)
in order to verify the generators. Currently, despite valuable published works
which present promising results that could be relevant for our case ([6LI1]), we
are not aware of user friendly tool support which would allow us to use these
techniques on the mbeddr project. As we have already said in the introduction,
we did not have enough time, skills and tooling for this to be feasible. It would
also be a different approach, and a different paper.

7.4 Threats to Validity

Internal Validity The development of many of the techniques presented
in this paper was motivated by the need to assure the quality of the imple-
mentation of mbeddr. All of the presented techniques are used to some extent
in different parts of mbeddr, but the extent to which they are used varies
significantly. For example, executable tests (described in Section cover
all languages and generators, whereas testing the generators by comparing to
a baseline (described in Section has been used so far only for some of
the languages due to the manual effors required to re-validate generated code
when small changes in the generator occur.

36 Daniel Ratiu et al.

External Validity Our approach and experience is mostly based on the
JetBrains MPS language workbench; it is different from most other language
workbenches mostly because of its reliance on projectional editing. Conse-
quently, some of the proposed methods and lessons learned are specific to MPS’
approach of developing languages and tooling and might have to be adapted
for other language workbenches. In particular, for parser-based tools such as
Xtext, one has to test the grammar definition, whereas in MPS one does not
(as we described in Section . Furthermore, the presented paper presents only
the lessons learned from testing mbeddr, which is an instantiation of MPS.

The techniques were developed in a generic way to enable their use with
other languages and tools as well. Using existing testing strategies drastically
lowers the effort for implementing future languages with MPS. Our experi-
ence showed that the DSLs testing approaches presented in this paper can
be used for testing the implementation of other DSLs as well — i.e. the tech-
niques proved to be very valuable for testing other DSLs which have been
developed outside of the mbeddr project (e.g. the DSLs stack built as part of
the Embedded Software Designer tool developed by Siemens).

We believe that these techniques are relevant for other language work-
benches — not necessarily projectional — but this has to be proven through
further case-studies.

8 Related Work

To the best of our knowledge there is no other work on testing the implemen-
tation of languages and tooling in a holistic manner as discussed in this paper.
Furthermore, there is no work on industrial experience with testing DSLs and
their tools. Last but not least, literature about language testing does not deal
with projectional editors. However, considering testing of specific aspects of
DSLs, many papers overlap with ours. We discuss some of them below.

Language Testing and Language Workbenches In their seminal work [34],
Wu et al. describe a unit testing framework for testing the behavior of DSLs.
They develop a framework to lift test results from the level of the target pro-
graming language to which the DSL is translated, back to the level of the DSL.
This way the testing process is eased for the language developers. Our work
extends this approach by providing testing DSLs for all aspects of a language
definition, e.g., editor (concrete syntax), type system, scoping, transformation
rules, and finally the debugger.

Kats et al. describe language testing in Spoofax [I3]. Spoofax supports
testing parsers, abstract syntax tree construction, type systems and transfor-
mations; essentially the same features that we describe for MPS in Section
As a consequence of Spoofax’ language composition support, some of these
tests can be expressed using the concrete syntax of the subject language.
However, no special DSL extensions for testing domain specific tools (as in
Section [4]) and no automation of language tests (as in Section [5)) in described.

Automated Testing of DSL Implementations 37

Xtext, another popular tool for DSL development, does not specifically sup-
port the testing of language implementations. However, the Xpect [8] add-on
can be used to test non-syntactic aspects such as scopes and type systems (es-
sentially everything that annotates error markers onto the subject program).
Xpect annotations are expressed in comments as to not interfere with the
syntax of the subject language. Also, since many aspects of DSL are imple-
mented using Java APIs and frameworks, the normal means for testing Java
code can be used (albeit possibly not very efficiently because of the low level
of abstraction of the tests and the implementation).

Compared to the approaches used by Xtext and Spoofax, we focus on
testing the implementation of DSLs and tooling developed with projectional
editors. Furthermore, we present a set of extensions of MPS which were needed
in order to further automate testing in the context of the mbeddr project.

Compiler Testing In [36] Yang et al. present a seminal work on testing C
compilers by randomly synthesizing C programs. Errors which occur during
compilation reveal robustness defects in the compiler. This is similar to our
approach to robustness testing. Furthermore, the programs are compiled by
different compilers and then tested using randomized differential testing. If
different executables produce different outputs then one of the used compilers
has a bug in the translation. This approach tests the semantics (as opposed to
the structure of the generated code). It works so well here because the same
program is executed on sewveral compilers that are all supposed to generate
programs with identical semantics. For DSLs, this approach is usually not
available, because usually, there is only one generator for the language. If
however, multiple generators or an interpreter plus a generator are available,
this approach leads to very good results; as mentioned, we have used it with
other, simpler DSLs.

Grammar Testing and Program Synthesis There is considerable work
on generating models in order to test grammars or model transformations.
[14] represents a seminal work in testing grammars. [35] is a literature review
of meta model-based instance generation. The problem of guiding a random
models generation algorithm to come up with a higher percentage of useful
models is also addressed in the literature [I69]. Our work is based on MPS,
which supports abstract-syntax-oriented definition and composition of lan-
guages. Besides being in a different technological space, our work takes a more
comprehensive view of language testing: we test multiple language aspects such
as abstract syntax, context-sensitive constraints, generators and tooling. Test-
ing the abstract syntax, or grammar, is only part of the overall testing effort.
Furthermore, due to the modularity and composability of languages in MPS,
we face a bigger challenges for testing the interactions of implementations of
different languages. We plan to extend in the future our random models syn-
thesis with techniques for guiding models synthesis towards more meaningful
models.

38 Daniel Ratiu et al.

Testing Model Transformations Amari and Combemale present a com-
prehensive overview of properties on model transformations that can be veri-
fied [2]. Currently, there is no formal verification approach for MPS generators,
and due to the fact that MPS allows the use of Java within its high-level trans-
formation language, the formal verification is hard to implement. Instead, our
approach relies on testing: we synthesize models, run the generators and check
various properties.

Testing Debuggers There is a plethora of work around testing debuggers
for general purpose languages. For example, the tests for the GNU Debug-
ger (GDB) debugger cover different aspects of the debugger functionality and
are written in a scripting language [10]. The GDB project tests debugging
behavior for all of its supported languages, such as C, C++, Java, or Ada. In
contrast to GDB testing, our work focuses on testing debugging functionality
of extensible DSLs. Furthermore, we have created the DeTel. language which
allows engineers to directly annotate models written in the high-level DSL
with the information about expected behavior of the debugger.

The moldable debugger framework [4] is used for adapting debuggers to
a particular domain allowing developers to analyze their software systems on
the domain level with custom debug operations and views. Debuggers built
with this framework are tested by using manually written test cases. In our
work, we provide a DSL to write functional debugger tests.

9 Conclusion and Future Work

Modern language workbenches offer means to develop complex domain spe-
cific languages and tooling very efficiently. Adequate testing of these DSLs is
of paramount importance for their large scale adoption in industrial practice.
Furthermore, DSLs evolve quickly, and to avoid regressions, a high test cover-
age and a high degree of automation is essential. The situation becomes more
challenging when modular languages are composed without a priori knowledge.

In this paper we described our work with testing the different aspects of
DSLs. The work is directly motivated by the need to test the implementation
of the mbeddr language stack built with MPS. All techniques and methods
presented in the paper were applied to some degree for testing mbeddr. We
presented a classification of defects of the implementation of DSLs and ways in
which the testing for these defects can be automated. We describe the out-of-
the-box features provided by MPS for testing language implementations. We
then introduce additional testing support for testing the domain specific tools
such as debuggers or analyzers. We further present a fully automatic approach
to testing the completeness of constraints and type system checks and the
robustness of generators that relies on automatic synthesis of models and the
use of a variety of test oracles in the transformation-generation-compilation
pipeline. For each approach, we presented our experience, lessons learned,
variation points and challenges.

Automated Testing of DSL Implementations 39

While we are convinced that our work on increasing the degree of automa-
tion for testing DSL implementations is the right direction, we also believe
strongly that there are many additional steps that can be taken to increase
the efficiency and effectiveness of testing DSL implementations. In particular,
language workbenches should integrate techniques such as program synthesis,
fuzzing or coverage measurement directly such that they can be used out-of-
the-box for testing DSLs. This way, language testing can be made just as effi-
cient as language implementation. Furthermore, a big part of the automation
described in this paper is about automating the execution of tests, whereas
automatied testing is much broader and involves the automatied synthesis of
models, automated oracles or defects classification. On the mbeddr side we
are continuously working on extending the set of available tests. We also plan
to integrate the fuzzy-testing approach in the nightly build and use the entire
set of hand-writing tests as seeds for fuzzy-ing. We are continuously exploring
additional techniques that can be applied for testing in order to increase con-
fidence in its reliability. This happens within the context of mbeddr, but also
for other languages developed as part of our teams.

References

1. JetBrains MPS Documentation. https://www.jetbrains.com/mps/documentation/.

2. M. Amrani, B. Combemale, L. Lucio, G. M. K. Selim, J. Dingel, Y. L. Traon,
H. Vangheluwe, and J. R. Cordy. Formal verification techniques for model transfor-
mations: A tridimensional classification. Journal of Object Technology, 14(3):1:1-43,
2015.

3. F. Campagne. The MPS Language Workbench. CreateSpace Publishing, 2014.

4. A. Chis, M. Denker, T. Girba, and O. Nierstrasz. Practical domain-specific debuggers
using the moldable debugger framework. Computer Languages, Systems & Structures,
44:89-113, 2015.

5. E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In Tools
and Algorithms for the Construction and Analysis of Systems, - 10th International
Conference, 2004.

6. C. M. Ellison III. A formal semantics of C with applications. University of Illinois at
Urbana-Champaign, 2012.

7. S. Erdweg, T. Storm, M. Vélter, et al. The State of the Art in Language Workbenches.
In Software Language Engineering, LNCS. Springer, 2013.

8. M. Eysholdt. Executable specifications for xtext. Website, 2014. |http://wuw.
xpect-tests.org/.

9. B. Fetscher, K. Claessen, M. Palka, J. Hughes, and R. B. Findler. Making Random
Judgments: Automatically Generating Well-Typed Terms from the Definition of a Type-
System, pages 383-405. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

10. Free Software Foundation. The GNU Project Debugger, 2015.

11. A. Gargantini, E. Riccobene, and P. Scandurra. A semantic framework for metamodel-
based languages. Automated Software Engg., 16(3-4):415-454, Dec. 2009.

12. V. Garousi and J. Zhi. A survey of software testing practices in canada. J. Syst. Softw.,
86(5):1354-1376, May 2013.

13. L. C. Kats, R. Vermaas, and E. Visser. Integrated language definition testing: enabling
test-driven language development. In ACM SIGPLAN Notices, volume 46, pages 139—
154. ACM, 2011.

14. R. Lammel. Grammar testing. In Proceedings of the 4th International Conference on
Fundamental Approaches to Software Engineering, 2001.

http://www.xpect-tests.org/
http://www.xpect-tests.org/

40

Daniel Ratiu et al.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

. 7. Molotnikov, M. Vélter, and D. Ratiu. Automated domain-specific ¢ verification with

mbeddr. In Proceedings of the 29th ACM/IEEE international conference on Automated
software engineering, pages 539-550. ACM, 2014.

M. H. Pa, K. Claessen, A. Russo, and J. Hughes. Testing an optimising compiler by
generating random lambda terms. In Proceedings of the 6th International Workshop on
Automation of Software Test, AST 11, pages 91-97, New York, NY, USA, 2011. ACM.
D. Pavletic, S. A. Raza, K. Dummann, and K. Hafilbauer. Testing Extensible Lan-
guage Debuggers. In T. Mayerhofer, P. Langer, E. Seidewitz, and J. Gray, editors,
Proceedings of the 1st International Workshop on Executable Modeling co-located with
ACM/IEEE 18th International Conference on Model Driven Engineering Languages
and Systems (MODELS 2015), Ottawa, Canada, September 27, 2015., volume 1560 of
CEUR Workshop Proceedings, pages 34-40. CEUR-WS.org, 2015.

D. Pavletic, S. A. Raza, M. Voelter, B. Kolb, and T. Kehrer. Extensible Debuggers for
Extensible Languages. Softwaretechnik-Trends, 33(2), 2013.

D. Pavletic, M. Voelter, S. A. Raza, B. Kolb, and T. Kehrer. Extensible debugger frame-
work for extensible languages. In J. A. de la Puente and T. Vardanega, editors, Reliable
Software Technologies - Ada-FEurope 2015 - 20th Ada-Europe International Conference
on Reliable Software Technologies, Madrid Spain, June 22-26, 2015, Proceedings, vol-
ume 9111 of Lecture Notes in Computer Science, pages 33-49. Springer, 2015.

D. Ratiu and A. Ulrich. Increasing usability of spin-based ¢ code verification using
a harness definition language: Leveraging model-driven code checking to practitioners.
In Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model
Checking of Software, 2017.

D. Ratiu and M. Voelter. Automated testing of dsl implementations: Experiences from
building mbeddr. In Proceedings of the 11th International Workshop on Automation
of Software Test, AST 16, New York, NY, USA, 2016. ACM.

D. Ratiu, M. Voelter, B. Kolb, and B. Schaetz. Using language engineering to lift
languages and analyses at the domain level. In Proceedings the 5th NASA Formal
Methods Symposium (NFM’13), 2013.

D. Ratiu, M. Voelter, B. Kolb, and B. Schétz. Using language engineering to lift lan-
guages and analyses at the domain level. In NASA Formal Methods, 5th International
Symposium, 2013.

D. Ratiu, M. Voelter, B. Schaetz, and B. Kolb. Language engineering as enabler for in-
crementally defined formal analyses. In Proceedings of the Workshop on Formal Methods
in Software Engineering: Rigorous and Agile Approaches (FORMSERA’2012), 2012.
J.-P. Tolvanen and S. Kelly. Model-driven development challenges and solutions - expe-
riences with domain-specific modelling in industry. In Proceedings of the 4th Interna-
tional Conference on Model-Driven Engineering and Software Development - Volume
1: IndTrackMODELSWARD,, pages 711-719, 2016.

M. Voelter. Language and IDE Development, Modularization and Composition with
MPS. In Generative and Transformational Techniques in Software Engineering, Lecture
Notes in Computer Science. 2011.

M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. Kats, E. Visser, and
G. Wachsmuth. DSL Engineering. dslbook.org, 2013.

M. Voelter, A. v. Deursen, B. Kolb, and S. Eberle. Using C language extensions for
developing embedded software: A case study, volume 50. ACM, 2015.

M. Voelter, B. Kolb, T. Szabd, D. Ratiu, and A. van Deursen. Lessons learned from
developing mbeddr: a case study in language engineering with mps. Software € Systems
Modeling, Jan 2017.

M. Voelter and S. Lisson. Supporting diverse notations in mps’projectional editor. In
GEMOC@ MoDELS, pages 7-16, 2014.

M. Voelter, D. Ratiu, B. Kolb, and B. Schaetz. mbeddr: instantiating a language work-
bench in the embedded software domain. Automated Software Engineering, 20(3):339—
390, 2013.

M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb. mbeddr: an Extensible C-based Program-
ming Language and IDE for Embedded Systems. In Proceedings of SPLASH Wavefront
2012, 2012.

M. Voelter, D. Ratiu, B. Schétz, and B. Kolb. mbeddr: an extensible C-based program-
ming language and IDE for embedded systems. In SPLASH ’12, 2012.

Automated Testing of DSL Implementations 41

34. H. Wu, J. G. Gray, and M. Mernik. Unit testing for domain-specific languages. In W. M.
Taha, editor, Domain-Specific Languages, IFIP TC 2 Working Conference, DSL 2009,
Ozxford, UK, July 15-17, 2009, Proceedings, volume 5658 of Lecture Notes in Computer
Science, pages 125—147. Springer, 2009.

35. H. Wu, R. Monahan, and J. F. Power. Metamodel instance generation: A systematic
literature review. Computing Research Repository (CoRR), 2012.

36. X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding bugs in ¢
compilers. SIGPLAN Not., 46(6):283-294, June 2011.

	Introduction
	Language Development in MPS
	MPS Native Support for Testing
	Specialized Testing DSLs to Increase Automation
	Test Synthesis
	Measuring the Quality of Tests
	Discussion
	Related Work
	Conclusion and Future Work

